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Abstract

It is suggested that the frequency selectivity of the ear may be based on the phenomenon of mode
conversion rather than critical layer resonance. The distinction is explained and supporting evidence
discussed.

PACS numbers: 43.64.Kc, 43.66.Ba Keywords: Cochlea, travelling wave, mode conversion

1 Introduction

The cochlea is the part of the ear where mechanical vibrations (forced by sound waves in the air) are
turned into neural signals. There is a huge literature about it, both experimental and mathematical
(for summaries, see [RoR] or Ch.23 of [KeS]). There are large differences between the cochleae of dif-
ferent species (especially between mammals, birds and reptiles); in this paper attention is restricted to
mammalian and usually human cochleae.

I was introduced to mathematical modelling of the cochlea at a seminar in the department of Com-
munication and Neuroscience (at the invitation of my father who ran it) at Keele University in Easter
1978: Egbert de Boer analysed a model in which for forcing at a fixed frequency, energy travels to a
location depending on the frequency and is totally absorbed there, with no reflection. It was an explicitly
solvable example of what I recognised as “critical layer absorption” from a course in geophysical fluid
dynamics I’d recently taken from Michael McIntyre in Cambridge. So I had some fruitful exchanges
with de Boer, including adding the effect of damping, as a result of which he invited me to coauthor a
paper [BM] (the first to carry my name). A few months later, I saw an announcement of a seminar in
DAMTP, Cambridge, by James Lighthill on the same topic, in which he independently proposed critical
layer absorption, took the analysis much further and argued that it was the only possible explanation.
Unfortunately I could not attend because I had a (Part III Mathematics) examination at the same time,
but he kindly sent me a preprint when it was ready (published as [Li81]).

Critical layer absorption is perhaps better termed “critical layer resonance”, to put the emphasis on
the build-up of energy rather than its absorption, so I’ll do that from now on. Indeed, “resonance” is the
standard term for the phenomenon in plasma physics [St92], and is used frequently in cochlear mechanics
for this effect, though in the 1960s it appears to have been thought incompatible with traveling waves.
Although it is still disputed by some (e.g. discussion in section VII of [O]), critical layer resonance forms
the basis for most subsequent explanations of cochlear function (e.g. [NMA]), even if the words and
mathematical theory are not always used. The state of the art at 1996 in modelling the dynamics of the
cochlea is surveyed in [B96, HM].

The goal of this paper is to suggest that critical layer resonance is not the right explanation: rather I
think it might be “mode conversion”. This is a phenomenon I learnt about from Tom Stix in the Autumn
of 1978 in a plasma waves course at Princeton, realised might be applicable to the cochlea through a
conversation with Ted Evans around 1990, put an undergraduate student (Kevin Painter, now a lecturer
in Mathematical Biology at Heriot-Watt University) onto simulating in 1993/4, and then discovered that
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Andrew Huxley had proposed the same idea back in 1969 [Hux] (though without the connection formulae
and amplitude and phase profiles of mode conversion).

Critical layer resonance modelling is reviewed in section 2, with particular reference to the cochlea,
first in the frequency domain and then in the time domain. In section 3 a range of inadequacies of critical
layer resonance models for the cochlea is listed. Section 4 surveys the phenomenon of mode conversion
and section 5 suggests how it could occur in the cochlea. Section 6 mentions some precedents. Section
7 gives some ideas about how mode conversion could arise physiologically. Section 8 discusses stability
constraints.

Despite clear experimental evidence for nonlinear effects (e.g. summaries in [RoR] and section 8 of
[B96]), I’ll ignore them in this paper. This is unsatisfactory, as the wave amplitude becomes large near
a mode conversion point, but I leave inclusion of nonlinearity for later investigation.

2 Critical layer resonance

First the phenomenon of critical layer resonance is recalled, together with how it arises in a simple model
of the cochlea.

2.1 Frequency domain

The context is waves in a medium whose properties vary smoothly in space. If the medium can be treated
as linear (i.e. the superposition of any two solutions is another solution) and time-independent, then one
can analyse its behaviour by considering solutions with a single frequency ω, i.e. time-dependence like
(the real part of) eiωt (ω is the “angular frequency”; some may prefer to reserve the word “frequency”
for f = ω/2π). Then one can attempt to write solutions as superpositions of waves ei(ωt−k.x), or better,
WKB (Wentzell, Kramers and Brillouin; also attributed to Liouville, Green and contributed to by Jeffreys)
solutions A(x, ω)ei(ωt−

R x k(y,ω)dy) with A determined by the evolution of wave energy density along the
rays, where the wave vectors k(x, ω) are solutions of the local dispersion relation for the medium. For
introductions to linear wave theory in fluid mechanical contexts, see [Li78, Wh]. A critical layer is a
place x (or line or surface, depending on the ambient dimension) where the local wave number |k(x, ω)|
goes to ∞ for some mode at the given frequency ω.

The phenomenon of critical layer resonance is as follows. Waves can propagate on only one side of the
critical layer. Waves propagating towards it slow down and take infinite time to reach it. Their energy
density increases in inverse proportion to their group speed until damping effects take over. However
small the damping, virtually all the energy is absorbed near the critical layer and almost nothing is
reflected.

Fluid mechanics attribute the discovery and analysis of the critical layer phenomenon to Booker and
Bretherton in 1967 [BB], but it had already been done by the plasma physicist Ken Budden in 1955 [Bu]
(Budden taught me waves in inhomogeneous media in Cambridge in the summer of 1975, including WKB
theory and “cutoff points”; it is surprising that Lighthill was not aware of his work on critical layers),
and it had already been found numerically in a model of the cochlea in 1950 [PB]!

A simple illustration of the critical layer phenomenon is provided by Peterson and Bogert’s passive
1D cochlear model [PB], which is now recalled. Consider the cochlea to consist of a rigid tube separated
into two by a flexible membrane along its length, called the “basilar membrane”, and the fluid motion to
be incompressible (this should be good as long as the time for acoustic waves in the fluid to equilibrate
the pressure to that corresponding to the boundary conditions at the ends is small compared with the
timescale on which the boundaries move, though there are authors who claim this fails above 7 kHz,
referred to in [Li81]) and for the moment only longitudinal (this is highly inaccurate, cf. Fig.7 of [O], but
the effects of 2D and 3D fluid flow are recalled shortly and are only qualitative [Li81]). So the volume
fluxes in the two tubes are equal and opposite, denoted by ±j(x, t) at longitudinal position x and time
t, and the pressures are uniform over each part of the cross-section. Denote the area displaced by the
membrane from its equilibrium position in the two parts of the cross-section by ±a(x, t) and the pressure
difference across the membrane by p(x, t) ([Li81] denotes it 2p). If the membrane deforms in a mode
shape ζ(y) with respect to lateral position y (which may depend on longitudinal position x), then a is
related to the displacement z at a chosen y0 by a = z

ζ(y0)

∫
ζ dy, so some authors convert a to z. Then
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fluid mass conservation leads to
∂a

∂t
=

∂j

∂x
, (1)

and horizontal momentum conservation (ignoring viscous effects) to

σ
∂j

∂t
= −∂p

∂x
, (2)

where
σ(x) =

ρ1

A1
+

ρ2

A2
,

with ρi the fluid density in the two tubes and Ai(x) their equilibrium cross-sectional areas. It would be
reasonable to take ρ1 = ρ2, but the analysis is no different when ρ1 6= ρ2, and actually the upper channel
consists of two fluids of different ionic composition separated by a very flexible membrane. Combining
these equations,

∂2a

∂t2
= − ∂

∂x

1
σ

∂p

∂x
. (3)

The vertical momentum equation is

m
∂2a

∂t2
= −p− λa, (4)

where λ(x) is the stiffness of the membrane (meaning the pressure difference to produce unit area dis-
placement in the plane at constant x) and m(x) an effective “density” of the membrane. If the membrane
deforms in mode ζ as above and has mass µ(x, y) per unit area in (x, y), then [Li81]

m(x) = (
∫

µζ2dy)/(
∫

ζ dy)2. (5)

A more realistic evaluation of m requires incorporation of how the organ of Corti moves, which in the
above treatment is regarded as moving rigidly with the basilar membrane. In live cochlea it is well
established that there are additional forces generated by the outer hair cells (OHCs), e.g. [RoR]. Effects
of active feedback could be added to (4), as could any other contributions to the transverse force, but for
simplicity of illustration of the phenomenon we continue without them.

Combining (3) and (4), and looking for solutions with time dependence eiωt, yields(
λ

ω2
−m

)
∂

∂x

1
σ

∂p

∂x
+ p = 0. (6)

Thus if the parameters σ, λ,m are treated as locally independent of x one obtains p ∝ e±ikx with dispersion
relation

(λ−mω2)k2 − σω2 = 0. (7)

The term σω2 proportional to ω2 is sometimes described by saying the response of the longitudinal fluid
flow to transverse membrane motion acts like an “added mass” for the membrane, with density σ/k2.

Lighthill surveyed ways to calculate 2D and 3D corrections to this added mass [Li81], which involve
modifying (3) to give a as the convolution of p with a nonlocal version of the second derivative of a
delta-function, so one no longer obtains a differential equation, but one can still perform WKB analysis,
inserting

p = −ω2I(k)a

into (4) with

I(k) ∼ {
σ
k2 for kh � 1
2ρ

w|k| for kh � 1,
(8)

where w is an effective width of the membrane and h an effective height of the two channels.
Sticking to the 1D model for ease of exposition, (7) yields

k2 =
σω2

λ−mω2
.
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It is usually stated that σ and m do not vary much along the length of the cochlea. On the other hand,
Fig.1 of [MN] shows a significant variation of A1 and A2, hence of σ, and it seems difficult to me to
estimate m; the simplest guess from (5) would be that m is inversely proportional to the width w of the
membrane. Nevertheless, all agree that λ decreases by a factor of about 104 from base to apex (partly
because the width of the membrane increases by a factor of about 4), so k2 increases. Taking the direction
of increasing x from the base to the apex, k2 goes to plus infinity as x approaches a place where

λ(x) = m(x)ω2 (9)

and is thereafter negative (i.e. k is imaginary, so solutions grow or decay exponentially with respect to
x locally). Thus there is a critical layer at the solution x(ω) of (9). It moves from base to apex as the
frequency ω decreases from an upper limit to a lower limit.

It is useful to consider the affine impedance model obtained by the straight-line approximation

1
σ(x)

(
λ(x)
ω2

−m(x)
)
≈ β(x(ω)− x)

for x near x(ω), and supposing σ locally constant. In the scaled variable

X =
x− x(ω)

β
, (10)

this yields
Xp′′ = p. (11)

The solutions can be written in terms of Bessel functions of order 1 [BM]. Using (3) to convert p to a
gives

a =
σp

ω2β2X
,

and one obtains that the solutions on each side of the critical layer look like linear combinations of those
in Fig. 1. In particular a(X) →∞ like |X|−1 for most solutions as x approaches x(ω) from either side.
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Figure 1: Graph of a(x) for some solutions of (6), plotted against X = x−x(ω)
β .
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The differential equation (6) does not tell one how to connect the solutions on the two sides of the
critical layer, because it is singular at x = x(ω) (the coefficient of the highest derivative goes through
0 there). Nevertheless, adding a little damping (e.g. a dissipative term to (4)) allows one to match
the solutions on the two sides: for the affine approximation the answer is that the solution with no
growing mode as X → +∞ (a physically reasonable requirement) has only in-going waves on the other
side [Bu, St62, BB]: at one phase of the oscillation the solution for a is the blue curve of Fig. 1 on
the left and zero on the right, and π

2 later it is the red curve (both have infinite jump discontinuity).
Then the amplitude of oscillation |a| is proportional to a function to be denoted A(X), drawn in Fig. 2.
Damping makes the maximum of |a(x)| finite, albeit still large (inversely proportional to the damping
strength) [BM]. Similarly, one can plot the phase φ of the solution (Fig. 2). Note the jump of −π

2 on
crossing the critical layer, which is determined by considering the effect of small damping. Analysis of the
Bessel functions entering the exact solution shows that the phase deviates from the WKB approximation
φ = −

∫
k dX = 2

√
−X − π

4 (choosing the constant to fit the asymptotics of the Hankel function) by
losing an extra π/4 in the non-WKB regime, followed by this jump of −π/2.
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Figure 2: Amplitude A(X) and scaled phase φ(X)/π for the affine impedance critical layer model.

Somewhere to the left of the critical layer one has to match the solution of the affine impedance
model to the full model. This can be done with ease if the affine approximation is good over a range
x(ω)−Cβ < x ≤ x(ω) for some C significantly larger than 1, because then it can be matched to a WKB
solution coming in from x < x(ω)−Cβ. The condition for validity of the WKB approximation is k′ � k2

and we assume this holds up to a point where the affine impedance approximation (11) takes over (for
the affine impedance model, k′/k2 = 1

2 |X|
−1/2, so WKB is good for |X| � 1

4 ).
When 2D or 3D effects for the motion of the fluid are taken into account, the local dispersion relation

changes from (7) to
I(k) = λ/ω2 −m.

Then the criterion for the WKB approximation is just β � Ā/w, where Ā is the harmonic mean of A1

and A2, which holds nearly everywhere in the cochlea [Li81] (if the membrane is assumed to fill the width
of the cochlea then Ā/w ≈ h, so this shorthand will sometimes be used). It follows that the amplitude |a|
grows like |X|−1 again near the critical layer, but that the phase goes to +∞ in proportion to − log |X|
as X increases to 0.

Critical layer resonance sounds a perfect explanation for the cochlea: frequency ω is mapped to place
x(ω), so a given inner hair cell (which transduces movement into neural signals to the brain) is stimulated
mainly by Fourier components with only a given frequency. One can work out the frequency selectivity,
assuming some reference for forcing amplitude. Sound pressure level in the ear canal is a common choice
in experiments; to translate this into models one could assume conservation of wave energy through the
ossicles and ear drum; the sound energy flux in the ear canal is A

ρc |p|
2, where |p| is the amplitude of
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pressure fluctuation, A the cross-section of the ear canal, ρ the density of air and c the speed of sound in
air; so constant sound pressure level corresponds to constant energy flux, independently of frequency. In
the model, the energy flux for a right-going wave in the WKB regime is

Φ = 〈<p <j〉 =
1
2
<(pj̄) =

1
2
σ
(ω

k

)3

|a|2, (12)

by (1) and (2), where 〈〉 denotes the average over a cycle. Thus the amplitude of oscillation as a function
of incoming frequency ω for fixed incoming energy flux Φ in the WKB regime is (for the 1D model)

|a| =
√

2Φ
σ

(
k

ω

)3/2

=
√

2Φσ1/4

(λ−mω2)3/4
.

Matching this to the energy flux of the solution of (11) gives

|a| = π

√
Φ
2σ

(ωβ)−3/2A(X)

in the regime where (11) holds. Consequently, the frequency response at a given place looks like Fig. 3(a),
computed for the exponential model: λ(x) = Ce−αx, σ and m constant [BM]. This has a scaling symmetry
so it suffices to study a single place or a single frequency and there is just one free parameter α2m

σ , which
is about 1

40 in the cochlea [BM]; actually, the result in the WKB regime is independent of its value, so I
plotted for α2m

σ = 1
4 , else the decay above the resonant frequency becomes too steep to plot. Also I found

that the extension of the WKB curve to the left half of the affine region agreed to within one pixel with
that for the affine model, so plotted just the WKB curve and the right-hand half of the affine region.
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Figure 3: Exponential model with α2m
σ = 1/4: (a) Amplitude |a| of response at a given place x to forcing

of a given energy flux, as a function of scaled frequency ω
ωr(x) , with ωr(x) being the resonant frequency

at x; (b) a tuning curve.

A more common protocol in experiments is to measure the forcing amplitude required to produce a
given amplitude of response at a given point, which also has the advantage for comparison with theory
that the system is likely to remain in the linear regime. Also the measure of response amplitude is
usually basilar membrane velocity ż, which on linear theory is proportional to ȧ at a given place. It is
then plotted on a log-log scale and called a “tuning curve” (though sometimes a linear scale is used for
the frequency). A tuning curve for the exponential model is shown in Fig. 3(b). After incorporation of
damping, it looks roughly like observed tuning curves, e.g. Fig.6 of [RoR]. One could also compute the
phase at a given position relative to that at the stapes, as a function of input frequency, and incorporate
modifications for the effects of 2D and 3D fluid flow.
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Another feature one can calculate for critical layer models is the travel of a group of waves with given
frequency, in WKB approximation. It moves with the group velocity cg = ∂ω

∂k , thus for the 1D model

one obtains cg = (λ−mω2)3/2

λσ1/2 , slowing down even more when 2D or 3D effects are included and kh � 1,

to cg = (λ−mω2)2w
4ρλω . This makes the time t from the stapes for a group to reach a given x near the

critical layer t = 2λ
ω3σβ2

√
−X

+ cst for the 1D model provided X < −1, and 4λρ
ω3σβ3w|X| + cst with 2D or

3D corrections, provided −(h
β )2 < X < 0.

2.2 Time domain

On the view of the ear as a frequency analyser it is natural to work in the frequency domain, as this paper
has done until now. Some issues are better discussed in the time-domain, however, such as response to
an impulse (“click”) [RRG, RRNR], even though for a time-invariant linear system this is in principle all
contained in the frequency response. Almost any treatment of nonlinear effects will require formulation
in the time-domain. Even the stability problem is best treated in the time-domain. So here the system,
with or without 2D or 3D effects and OHC forces, is formulated as a time-evolution. This point of view
was taken by [MN], for example.

Given the deflection a of the membrane as a function of x along the membrane and boundary con-
ditions at the base and apex, the pressure field is determined by the assumptions of incompressible and
irrotational flow, in particular the pressure difference p across the membrane is determined as a function
of x. Let’s do the simplest case: one-dimensional fluid flow approximation and no OHC force. Then the
equation determining p is

m
∂

∂x

1
σ

∂p

∂x
− p = λa. (13)

This does not involve time. Physically what happens is that the pressure equilibrates rapidly to a solution
of (13) via acoustic waves in the fluid. The situation is analogous to water waves [Wh, Li81] where the
velocity potential under the surface is determined instantaneously by a boundary condition at the surface,
and it is another surface boundary condition that determines the evolution.

Equation (13) needs supplementing by boundary conditions at the base and apex, however, which I’ll
call x = 0 and xh respectively. An appropriate boundary condition at the apex, where there is a hole
in the membrane called the helicotrema which permits fluid to flow from one side to the other, is that
p = ρ

d
∂j
∂t where d is the diameter of the hole (it has area about 0.06 mm2) [Li81]. Under the 1D flow

approximation, (2) makes the boundary condition at x = xh

p +
ρ

σhd
p′ = 0, (14)

where σh = σ(xh).
At the base, the channels end in flexible membranes called the oval and round windows. Actually

these are on the sides of the channels near the base, but let us model as if at their ends. Both can flex
in and out of the middle ear, and the oval window moves the stapes which moves the other ossicles and
hence the ear drum. I’m not aware of a good treatment of this boundary condition, though much is
written about the impedance of the stapes, so here is a proposed treatment. Denote by v the volume
of fluid displaced by the oval window (positive if displaced into the scala vestibula). By the assumed
compressibility of the fluid and rigidity of the bone around the cochlea, an equal and opposite volume is
displaced by the round window, and j(0) = v̇. Using (2) again, this gives

p′(0) = −σ0v̈, (15)

where σ0 = σ(0). Now suppose change of v and associated motion of the windows, ossicles and eardrum
has an effective “mass” M (in g cm−2 because with respect to a volume-coordinate) and “elasticity” µ,
so that

Mv̈ = −µv −Ap + F

where A is an effective mean area of the two windows and F is any external force due to interaction of
the eardrum with sound waves in the outer or middle ear. Using (15), this gives boundary condition at
x = 0

Ap− M

σ0
p′ = −µv + F. (16)
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The ratio M
Aσ0

should be an effective length of the stapes (if replaced by a cylinder of material of the
density of the fluid with the same volume).

Equation (13), with boundary conditions (14) and (16), determines the function p in terms of the
function a and the numbers v and F . Then a and v evolve in time according to

∂2a

∂t2
= − ∂

∂x

1
σ

∂p

∂x
(17)

∂2v

∂t2
= − 1

σ0
p′(0) = − 1

M
(µv + Ap(0)− F ),

the first being the result of volume and horizontal momentum conservation in the 1D approximation (as
in (3)), and the second being (15). The analysis of [MN] leads to a similar formulation.

In reality the evolution equations are more complicated. We have to allow 3D fluid flow (as [MN]
point out, that is in principle straightforward, though in practice requires numerical computation if one
wants to include the real geometry of the cochlea), add damping effects and OHC forces, and we have to
determine the radiation of sound by the eardrum and corresponding reaction force to include in F , but
let us stick with system (13,14,16,17) for this section.

A first issue about the system is its stability. It is a question of the spectrum of the operator taking
(a, v) to the right hand side of (17) being entirely negative. Thus, stability is decided not purely by the
basilar membrane dynamics: interaction with the stapes plays a role. Since there is a critical layer for
every frequency of interest, we should expect the spectrum to consist mainly of a continuum (in contrast to
acoustic waves in brass and woodwind instruments, for example, where the non-zero wave speed and finite
length of the instrument makes the spectrum discrete), but there should also be at least one eigenvalue,
corresponding to the discrete variable v. What frequency should the discrete eigenvalue give? I don’t have
a good way to estimate this, but I suggest that it is the principal frequency of spontaneous oto-acoustic
emissions (SOAE) and transiently evoked oto-acoustic emissions (EOAE), sound below the threshold of
hearing that comes out of the ear at around 2 kHz, continuously in some people and in response to a
pulse in most (e.g. Fig. 5.6 of [B91]). Noise would be amplified at this frequency, hence the SOAE. Input
at this frequency would build up to large amplitude, hence the EOAE. If active forces happened to give
a positive growth rate for this mode then it would destabilise, producing tinnitus, audible ringing in the
ear (though it appears that most tinnitus is not associated with production of SOAE). The instability
would be saturated by compressive nonlinearity of the OHC response.

A second issue is its impulse response. This does not look easy to determine, but should presumably
separate into a wave train with locally defined (in space and time) frequency and wave number, and
energy flow given by the group velocity. Thus the calculation of travel of a group of waves with given
frequency at the end of the previous subsection should give the main features.

3 Inadequacies of critical layer models

Critical layer models of the cochlea, however, have several inadequacies.
Firstly, even after modification for 2D and 3D effects, damping and active processes (outer hair cell

active feedback), it seems agreed that the peak in the response to periodic forcing does not come out the
right shape [B96]: “either the amplitude of the peak remains too low or the phase variations in the peak
region are too fast”.

Let us discuss particularly the phase variation. On a critical layer model, the wavelength should go
to zero at the critical layer. Yet the wavelength (inferred as 2π over the rate of change of phase with
position) of the travelling wave along the basilar membrane is observed not to go to 0, indeed it seems to
go to a minimum of about 0.5–1mm at the resonance (Table 4 of [RoR]), with the shorter minimum for
the higher frequencies. Now the 1D models can be allowed to escape this criticism because even though
the slope of the phase does go to infinity, it does so in such a way that the phase change up to the critical
layer is finite (Fig. 2), so any smoothing effects (damping, nonlinearity, other forces, experimental error)
will make the maximum slope finite. Note also that if instead one considers the wavelength to be twice
the distance between nodes then the 1D case escapes even without adding extra effects because the WKB
approximation is not valid for |x(ω)−x| ≤ β so the image of slowly modulated waves is not correct there,
and it can be inferred from the analysis behind Fig. 1 that there is a c > 0 (of order 1) such that there
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is at most one node between x(ω)− cβ and x(ω). An order of magnitude estimate for β, however, for a
model with exponential stiffness variation [BM] is 0.075mm (independent of frequency), which is much
shorter than the observed minimum wavelength.

2D and 3D models do not escape this criticism, because they predict that the phase goes to infinity
on approaching the critical layer, which disagrees strongly with observations. One could argue that the
observations are masked by an additional component due to the differences between the oval and round
windows, so that the infinite phase change gets truncated to some large value. Indeed, the phase beyond
the critical layer is always observed to adopt a specific relation modulo 2π with that of the stapes, so
perhaps this is a valid escape. The observed sharpness of tuning at low amplitudes, however, suggests
that damping is almost cancelled and then the phase should go to infinity.

Similarly, we can compare with experiments observing fixed place at varying frequency. The accu-
mulated phase (usually measured as the phase difference between response at a fixed place and forcing
at the stapes, on increasing the frequency ω from 0), does not go to infinity as ω approaches the critical
frequency for the given place; instead it plateaus at around 3–4 cycles, e.g. Fig.7 of [RoR] and Fig.5 of
[SG]. This is consistent with a 1D critical layer but not a 2D or 3D one.

Secondly, a common objection to such critical layer models (e.g. [NM]) is that the observed variation
in stiffness (by a factor of 104, e.g. [OM]) from one end of the membrane to the other is inadequate
to account for the observed range of frequencies that we can hear (103). According to the models, the

natural frequency at a given place is
√

λ
m , which would change by a factor of only 102 from one end

to the other (as already mentioned, the effective membrane density m is usually assumed not to vary
much). Some authors try to get round this by proposing alternative resonances below the minimum on
the basilar membrane, to extend the range, for example using the helicotrema [Li81], but the effects look
weak to me.

Thirdly, nearly all the models ignore longitudinal stiffness of the membrane, which, although appar-
ently very small [Vo], can not logically be neglected in models which predict k2 to go through infinity at
some point and the basilar membrane displacement to suffer an infinite discontinuity there! Addition of
longitudinal stiffness would add a term αk6 (a different α from the exponential model!) to the dispersion
relation, and instead of going through infinity as x increases, k2(x) would rise steeply and then plateau
at
√

mω2/α. Thus one would obtain an enhanced amplitude as the wave approaches what was the crit-
ical layer but the amplitude would remain high thereafter, unless damping was stronger for such short
wavelength modes. I worried about this already during the writing of [BM] (though Lighthill dismissed
the problem [Li81]). Critical layer models in any domain of science suffer from a generalisation of this
problem: the phenomenon of critical layer absorption is not robust to addition of many other physical
effects, however small [Sw, St92]. To some extent this situation is mitigated by damping: addition of
physical effects weaker than damping does not change the results much, except for smoothing off the sin-
gularity at the critical layer. In the (live and oxygenated) cochlea, however, damping can be considered
to be very small because of the active feedback provided by outer hair cells, which among other things is
likely to nearly cancel (or exceed) damping.

Fourthly, the impulse response is often observed to have a double-lobed structure, e.g. Fig.9 of [RoR],
and I don’t think critical layer models can explain this. On a critical layer model, an impulse at the
stapes should produce a response at a given location starting with low frequencies and increasing to the
resonant frequency for that location and then ringing at that frequency for a number of cycles depending
on the damping. The double-lobed response suggests that a second packet of waves arrives later and
interferes with the first. From where does it come?

Fifthly, despite having made a plausible explanation for two types of oto-acoustic emission (OAE)
in the previous section, critical layer models have trouble explaining some of their features. There are
various sorts [PLM]:

spontaneous : occurs in about one third of ears, at one or more well defined frequencies (e.g. Fig. 5.6
of [B91] and figures in [MP, MLPC], and a case with 23 has been reported [PLM]). Although
sometimes correlated with tinnitus, a subjectively audible high frequency whistle, opinion seems to
be that tinnitus is a distinct phenomenon [PLM].

transiently evoked : response to a click or short tone-burst; it usually has a fairly well defined frequency
and delay time (around 10 ms) before starting. The reflected energy can reach 100% of the incident
energy at low stimulus amplitudes, e.g. Figs 5 and 8 of [Wi83]. This was the first form of OAE to
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be discovered [Ke] and was a topic of hot discussion during de Boer’s seminar in 1978. Pat Wilson
at Keele kindly demonstrated transiently evoked OAEs on Kevin Painter and me in 1994.

tone-evoked : response at the same frequency; interference with the incident waves causes modulation
in the frequency response of the ear canal with a period of around 100 Hz, which approaches near
complete cancellation at low amplitudes, e.g. Fig.1 of [SG].

evoked distortion-products : response at a combination frequency to input at two frequencies.

Spontaneous OAEs and the near full energy reflection of transiently and tone-evoked OAEs were the
first evidence for an active component to the mechanics of the cochlea. In itself, that is not a problem
for critical layer models. But the first three classes of OAEs are incompatible with critical layer models
in several ways (evoked distortion products probably are compatible with critical layer models, but as
a clearly nonlinear effect I’m laying this to one side at present). Critical layer models can produce
one eigenvalue, but SOAEs in some subjects occur at more than one frequency. On linear theory, all
those places with negative damping would produce SOAEs corresponding to their resonant frequency,
and nonlinear effects could lock them to a discrete set of frequencies (or produce chaotic output), but it
seems to me the set of frequencies would be highly sensitive to physiological conditions, in contrast to the
observed stability [MLPC]. It is usual to try to explain transiently and tone-evoked OAEs in terms of
errors in the WKB approximation, because of non-smooth spatial variations of the medium, or nonlinear
effects producing some equivalent, but I am dubious about such explanations because the delay time for
transiently evoked OAEs is around 10–14 periods, whereas the phase shift from stapes to resonance is of
the order of 3, so if the echo were a reflection in the same mode before the critical layer it would have a
time delay of at most 6 periods [B91]. Shera and Zweig made a particularly thorough attempt to make
this approach work [ZS, SZ].

Sixthly, if the active processes over-compensate for damping, as is believed near the resonant location,
then the connection formula for critical layer resonance changes, so that an incoming wave produces a
response growing rapidly towards the apex and the solution decaying towards the apex matches to an
outgoing wave from the critical layer. One might say this is spontaneous OAEs, but then the cochlea
should be unable to match in-going waves at unstable frequencies to bounded displacement at the apex. In
any case, using a model with such extreme sensitivity to the balance between damping and anti-damping
feels risky. It is a good general principle that models should be robust to modifications unless there are
strong constraints on their form.

In contrast, mode conversion is robust to modelling errors, can work with the observed range of
stiffness, can explain multiple SOAEs, tone-evoked OAEs, and with some tweaking of models might give
the right tuning curves.

4 Mode conversion

The context for mode conversion is a wave-bearing medium which varies smoothly in space in such a way
that the square k2 of the local wavenumber is a multivalued function of position x, with a fold point at
a positive value of k2 where two real values of k merge and split as two complex solutions (Fig. 4).

It is crucial to distinguish this from the well known case where k2 decreases through 0, which is usually
called a “cutoff” (because waves can not propagate beyond it) or “turning point” (because it gives a fold
in the graph of k(x)) and plays a fundamental role in semiclassical mechanics, radio propagation and
many other domains of science. To avoid confusion, I’ll always refer to the place where the graph of k2(x)
folds as a “fold point”, although both “turning point” and “cutoff” would a priori have been equally good
descriptions.

The phenomenon is that a wave entering in one mode slows down to zero group velocity at the fold
point and then turns into the other mode and propagates back out the way it came. The intensity builds
up in inverse proportion to the group speed. This phenomenon was found and analysed by Stix in 1965 in
a plasma waves context [St65] (warning: Stix called the fold a “critical layer”, which again is reasonable
terminology but was subsequently used by [BB] for the case of k2(x) passing through 0 and the latter
usage has dominated). In magnetised plasmas (ionised gases) it occurs near lower and upper hybrid
resonances, the perpendicular ion-cyclotron resonance and the Buchsbaum two-ion resonance [St92]. I
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Figure 4: Squared wavenumber as a function of position for a system to exhibit mode conversion, con-
trasted with a case of critical layer resonance.

think it should also occur in many other contexts, e.g. ultrasound in elastic plates with thickness gradients,
cf. Fig.1 of [PBM].

Stix considered equations of the form

ηp(4) −Xp′′ + p = 0, (18)

representing the leading terms in a description of a lossless medium near a point (X = 0) where the
coefficient of the second derivative changes sign. Actually, he used a parameter µ and spatial coordinate
u, related to ours by η = µ3 and X = −µu, but the above form is more convenient for present purposes.
The case of small positive η was studied earlier by Wasow [Was] in connection with the Orr-Somerfeld
theory for linear stability of parallel shear flows, though application to that problem requires taking η
imaginary.

We take η > 0 (η < 0 has no fold and corresponds qualitatively to the case with longitudinal stiffness).
The local dispersion relation is

ηk4 + Xk2 + 1 = 0,

so it has local dispersion curve

k2 =
−X ±

√
X2 − 4η

2η
,

equivalently
X = −(ηk2 + k−2), (19)

with a fold at X = −2η1/2, k = η−1/4. He was considering waves in a warm magnetised plasma, but (18)
can be viewed as a (singular) perturbation of (11).

The general solution of (18) can be written as a linear combination of solutions of the form

p(X) =
∫

Γ

dz exp
(

η

3z3
− X

z
− z

)
, (20)

for various choices of contour Γ in the complex z-plane (some are shown in [St92] in the plane of u = µz).
Asymptotic analysis of these solutions showed that the solutions going to 0 on the far left do so like

i

√
2X

π
K1(2

√
X)
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and connect to linear combinations of solutions asymptotic to

−
√
−πX

2
H−

1 (2
√
−X) +

η3/4

√
2(−X)5/4

ei( 2
3 η−1/2(−X)3/2−π

4 )

and its complex conjugate on the far right (a subdominant term on the left determines the linear combi-
nation). K1 and H−

1 are Bessel functions: K1 decays to 0 as its argument goes to infinity, H−
1 oscillates

with clockwise-rotating phase.
The interpretation is that an incoming wave from large negative X in a mode where ηp(4) is negligible

(the term involving H−
1 ; this is the usual mode approaching a critical layer) produces an evanescent wave

for X > 0 (the term involving K1; just as for a critical layer) and an outgoing wave for X < 0 in a mode
where p is negligible (resulting from a balance between ηp(4) and Xp′′; this would be a new mode in the
cochlear context).

Note that the problem depends on the parameter η which can not be removed by scaling, so unlike
critical layer solutions, there is not a universal form for mode conversion solutions.

On the k′ � k2 criterion the WKB approximation is good for |2ηk3 − 2
k | � 1. This corresponds to

avoiding sufficiently a neighbourhood [k1, k2] of the wavenumber at the fold, with k1,2 ∼ η−1/4 ∓ 1
8η−1/2

for η � 1
4096 , k1 ∼ 2, k2 ∼ (2η)−1/3 for η � 1

4096 . This corresponds to X being to the left of X1 on the
lower branch, X2 on the upper branch, with X1,2 ∼ −2

√
η − 1

16 for η � 1
4096 , X1 ∼ − 1

4 , X2 ∼ −(η
4 )1/3

for η � 1
4096 . Since the crossover occurs at a small value of η, it is valid to use the large η formulae even

for η of order 1.

5 Correspondence with the cochlea

Let us assume that there is some physical effect in the cochlea which produces a perturbation of the form
ηp(4) to (11), and analyse to what predictions it would lead for the cochlea.

Initially (3) is used to convert p to a, though 2D and 3D effects are addressed later. Painter computed
numerically some solutions a(X) for his undergraduate Applied Maths project in 1994. To select solutions
which decay to the right one should shoot from small final conditions on the right or treat it as a two-
point boundary value problem giving at least two (small or zero) values at the right. Figure 5 shows one
produced recently: one can see two wave modes on the left – the underlying long one corresponds to the
critical layer resonance and the superimposed short one is the new mode.

One might say that the large amplitude short wave mode is inconsistent with observations of the
cochlea, but perhaps one would need greater than usual spatial resolution to see it; probably most current
measurement procedures would average away the short wave leaving only the long one. Furthermore, I’d
suggest that except at low power the short mode is damped relatively fast, so decays to the left for a
solution with input power coming from the left in the long mode.

To start some analysis of the shape of the solutions, note that (18) has a conserved quantity, “power”
or “wave energy flux”:

Φ =
1

2σω
=(ηp′′p̄(3) − pp̄′)

(the factor 1
2σω is included to correspond with the physically derived (12) in the case η = 0). This can

be checked by differentiation or derived as a consequence of the following Hamiltonian formulation for
(18). Equation (18) defines a non-autonomous dynamical system on the space of (p, p′, p′′, p(3)) ∈ R4.
For a solution p let H = 1

2 (ηp(3)2 −Xp′′2 + 2pp′′ − p′2) and for two solutions p, q let ω(p, q) = η(p′′q(3) −
q′′p(3)) − (pq′ − qp′). Then ω is a symplectic form on R4 and the Hamiltonian vector field of H with
respect to ω (i.e. solution V of ω(V, ξ) = dH(ξ) ∀ξ ∈ R4) is equivalent to (18). Conservation of ω is
automatic; this is the Hamiltonian way to view conservation of Wronskians. The formulation can be
extended to C4 by letting H = 1

2 (η|p(3)|2 − X|p′′|2 + 2<(pp̄′′) − |p′|2) and ω(p, q) = =(ηp′′q̄(3) − pq̄′).
Then phase rotation invariance implies the associated Noether conserved quantity P = =(ηp′′p̄(3) − pp̄′)
solving ω(W, ξ) = dP (ξ) ∀ξ ∈ C4, where W is the vector field for infinitesimal phase rotation. Up to
multiplication by a physical factor, this P is the “power”. It is not necessary (nor even possible, because
dH(p)

dX = ∂H
∂X 6= 0) for H to be conserved. Note that all this remains true even if the coefficient of p′′ in

(18) is replaced by any real function of X. Indeed, such a Hamiltonian formulation is the mathematical
expression for the physical concept of a “lossless medium” at the linear time-invariant level.
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Figure 5: a(X) ∝ p′′(X) for a solution of (18) for µ = 1.

Now let us see what the WKB approximation tells us about the solutions, using conservation of power.
We’ve seen that as soon as η � 1

4096 the domain of validity of the WKB approximation is all but an
interval of length about 1

16 in X to the left of the fold point (and even for smaller η it is all but an interval
of about 1

4 in X). For solutions bounded on the right, hence going to zero, Φ = 0, so it follows that the
incoming and mode-converted waves carry equal and opposite powers, which abusing notation I’ll also
write as Φ. Then in the WKB regime for each mode,

|p|2 =
2σωΦ

(ηk4 + 1)k
, (21)

|a|2 =
2k3Φ

σω3(ηk4 + 1)
= − 2kΦ

σω3X
,

using (3) to convert p to a (one could redo this to allow for 2D and 3D fluid flow effects, by taking
ηk2 = −X − 1/|k| for kh � 1). Using (19), note that the resulting amplitude as a function of position
depends only on X/η1/2 (up to scale in a which is arbitrary). Figure 6 shows the amplitude as a function
of X/η1/2 for the two waves (connected through the fold even though the WKB approximation is not
formally valid there).

The phase of the waves from WKB theory is φ = −
∫

k dX. Using (19) and integration by parts one
obtains φ = 2(ηk3

3 + 1
k ). Thus in terms of κ = η1/4k we have

X = −η1/2(κ2 + κ−2), φ = 2η1/4(
κ3

3
+

1
κ

).

This is also plotted in Fig. 6. For the phase of the true problem, there is a non-WKB correction and a
non-trivial approach to a constant on the right, which I have not computed.

Since the maximum amplitude in mode conversion occurs near the fold rather than at the resonance, it
is feasible for the range of mode-converting frequencies to be broader than that for critical layer resonances.
In particular, the frequency range extends considerably downwards because for low frequencies one can
have a fold on the basilar membrane at a frequency whose resonant location would be off the apical end.

With addition of suitable anti-damping to the incoming wave, damping to the outgoing one and 3D
effects, I think it is likely that a fit with observed tuning curves could be obtained.
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Figure 6: Amplitude |a| and scaled phase φ/η1/4 of oscillation as functions of X/η1/2 for the WKB
approximation of (18). The long-wave mode has the lower amplitude and shallower phase curve.

Mode conversion could explain EOAEs, because it gives complete conversion of the incoming wave into
an outgoing one, and the properties of the second mode can be widely different from the first, e.g. much
slower group velocity, so it could fit the long time delay for the echo and the accumulated phase curves.

As a first step, a specific form for the additional term is proposed, namely a force ∂2

∂t2
∂
∂xν ∂a

∂x , to be
justified physiologically in section 7. Let us compute the phase shift and group delays for a case of this
with exponential stiffness variation but other properties constant. 3D fluid flow effects are allowed, but
success or failure of this particular model should not be taken as definitive for the whole class of mode
conversion models. Thus I take λ(x) = Ce−αx and m, ν and the function I of (8) independent of x. So
the dispersion relation is

νk2 − (
C

ω2
e−αx −m) + I(k) = 0.

This inherits the simplifying feature from the exponential critical layer model that a change in ω is
equivalent to a shift in x. It follows that

e−αx =
ω2

C
f(k) (22)

where f(k) = νk2 + m + I(k).
First, compute the phase shift from the base to the fold in the long wave mode (using the WKB

approximation):

∆φf = −
∫ xf (ω)

0

k dx,

where the position xf (ω) of the fold is given by e−αxf (ω) = ω2M
C with M = mink f(k). Using integration

by parts, and defining k−(ω) < k+(ω) to be the positive roots of f(k) = C
ω2 for ω <

√
C/M (the

maximum frequency for which the fold falls in the domain x ≥ 0) and kf to be the minimiser of f (note
that this is independent of ω, whereas experiment shows the wavenumber at the characteristic place to
increase weakly with frequency, but this could be fixed by allowing ν, m or I to vary with x, at the cost
of more complicated calculations), one obtains

∆φf = −kfxf (ω) +
∫ kf

k−

x dk = − 1
α

(
k− log

C

Mω2
+
∫ kf

k−

log
f(k)
M

dk

)
.

This gives a phase delay of magnitude 1/α times the area shown in Figure 7. As ω → 0 the area converges
to a finite limit L =

∫ kf

0
log f(k)

M dk. Thus for ω sufficiently below
√

C/M the phase shift is close to
−L/α. This corresponds with observations of a phase delay from stapes to characteristic place (of about

14



g

8

6

k

4

2

2
0

1.510.50

Figure 7: The area entering the calculation of the phase delay from stapes to fold for the exponential
mode conversion model. The function g(k) = log f(k)

M , the horizontal cutoff is at log C
Mω2 , and the integral

extends to the minimum. The plot was made using ν = 1 and I(k) = 1
k tanh k .

23 radians) independent of frequency. This model predicts a slight reduction in the magnitude of the
phase delay as frequency increases, at a rate τf

p = −∂∆φf

∂ω = 2k−(ω)
αω ≈ 2

α

√
σ
C . It would be interesting to

know whether such a change is observed.
Next, let us compute the group delay τf

g from stapes to fold in the long-wave mode. Disturbances
near frequency ω propagate at the group velocity cg = ∂ω

∂k . Thus the time delay for a disturbance from
stapes to fold is

τf
g =

∫ xf (ω)

0

dx

cg
=
∫ kf

k−

∂x

∂k
/
∂ω

∂k
dk,

the derivative in the numerator being performed at constant ω and that for the denominator at constant
x. This evaluates to

τf
g =

2
αω

(kf − k−(ω)) ∼ 2kf

αω

for ω sufficiently below
√

C/M . Thus the model predicts a group delay from stapes to characteristic
place inversely proportional to frequency. I don’t know if this has been measured.

Thirdly, let us compute the phase shift for a wave entering in the long wave mode and coming out
in the short one (or equivalently, the other way round). The WKB phase shift (perhaps one should add
something for the non-WKB region near the fold) is, integrating by parts,

∆φ0 = −
∫

k dx =
∫ k+

k−

x dk = − 1
α

∫ k+

k−

log
ω2f(k)

C
dk.

This is a phase advance, because the argument of the logarithm is less than 1 in the given range. I am not
aware of a direct measurement of this phase change, but what has been measured is its derivative with
respect to frequency, inferred from the 100 Hz modulation of the frequency response. This derivative is

τ0
p =

∂∆φ0

∂ω
= − 2

αω
(k+(ω)− k−(ω)).

Note first that it is negative, so looks like a time delay. This agrees with the sign observed (Kemp,

private communication). Secondly, for ω sufficiently below
√

C/M we have k+(ω) ∼
√

C
ν

1
ω and k− much
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smaller, so τ0
p ∼ − 2

α

√
C
ν

1
ω2 ; it decreases in magnitude as frequency increases but too fast compared

with observations, which give ωτ0
p approximately constant at about 15 × 2π [Wi80]. So perhaps some

modifications of the model are necessary, e.g. ν could vary exponentially with x too.
Fourthly, the group delay for the round trip from stapes to stapes is:

τ0
g =

∫
dx

cg
=
∫ k+

k−

∂x

∂k
/
∂ω

∂k
dk =

2
αω

(k+(ω)− k−(ω)),

which, remarkably, is the same as −τ0
p . The equality of τ0

g and −τ0
p agrees with observations [Wi80], but

again the frequency dependence is incorrect.
In principle, one could work out a formulation in the time domain for a mode conversion system,

analogous to that of section 2.2, but we can already deduce further qualitative features without this.
For example, consider generation of SOAEs. In contrast to critical layer models, mode conversion

models have a discrete set of resonant frequencies, much as in a wind instrument but using reflection
between the two modes at the fold and a combination of reflections at the base. Of these, it could be that
some are unstable or at least so close to unstable that they amplify noise and hence give rise to an array
of spontaneous OAEs, cf. Fig.1 of [MLPC]. Fig.9 of [Wi83] suggests a situation close to a subcritical
Hopf bifurcation for one of the modes.

Finally, consider the impulse response for a mode conversion model. An impulse at the stapes will
generically produce waves in both modes, of which the short-wave mode is slower. Thus at a given
location one should expect to see first a fast wave arrive, with frequency increasing to the value for the
fold at that location, followed by a slow wave, with frequency also increasing to the value for the fold at
that location. This could explain the two-lobed waveform of [RRNR]. If one waits longer one might also
see the effects of the lower frequency waves turning at their more apical folds and passing back over the
given location, and even the effects of waves reflecting at the stapes and coming round again.

To obtain realistic predictions of the shape of the tuning curves, impulse response and OAEs one
would have to make realistic models, including realistic variation of the parameters along the length,
active feedback and all the relevant transfer functions, and probably nonlinear effects too (which could
have a drastic effect on peak shape!).

6 Precedents

The idea of mode conversion has already been proposed in cochlear mechanics, albeit without the ter-
minology or results. Huxley pointed out that it was inconsistent to leave out the effects of longitudinal
stiffness of the membrane and suggested that to obtain the observed frequency to place response addi-
tional effects should be included to make a path for waves from the incoming mode to an outgoing one
[Hux]. He suggested this could be achieved by longitudinal compression of the membrane (with which I
agree, though whether it is physical is another matter) or an effect of the spiral geometry of the cochlea
(which I haven’t managed to understand). Longitudinal stiffness would give rise to an irrelevant third
mode with much shorter wavelength.

The idea of studying models with more than one mode has been proposed several other times (see
section 7.1 of [B96]). In addition to the references given there, Kolston [Ko] proposed an “OHCAP” model,
which has two modes of deformation of the basilar membrane, de Boer proposed a two-membrane model
(basilar membrane and reticular lamina) [B90] and Hubbard proposed a two-mode model [Hub]. Also
Wilson and Bruns [WB] observed two modes of deformation of the basilar membrane in a bat. These and
others are surveyed in section 4.3 of [HM]. I don’t think any of them exhibits mode conversion, however.

Note that Watts’ “second mode” [Wat] is not a candidate, because it is just the evanescent wave on
the apical side of a critical layer. Nor is the “fast wave” of [Li81] a candidate, because it has a much
longer wavelength, this being an acoustic wave in the fluid due to its slight compressibility.

7 Physiological origin of mode conversion?

What the mode conversion explanation requires before anything else is a plausible physical reason for a
fold in the wavenumber as a function of position. I am not convinced by Huxley’s suggestions. It is not
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clear to me that any of the two-mode models have mode conversion, and if they produce critical layers
then they will fail for the same reasons as already discussed.

Here is one conjectured mechanism for a fold. The outer hair cells (OHCs) could exert a downward
force ω2 ∂

∂xν ∂a
∂x on the membrane, for some function ν(x). What forces the OHCs produce is a matter

of continuing debate (see section 7.2 of [B96] for a survey up to that date), but since they are contained
within the organ of Corti they can not produce a net force nor a net longitudinal torque on the basilar
membrane, so it seems to me the force must be a second derivative with respect to x (or a change in
transverse mode shape). This could be a natural result of evolution of the hair cells sharpening the
response, since such a force acts as amplification of transverse displacement with inhibition. There are
three rows of OHCs and they are slanted differently along the membrane so could easily produce a second
derivative response (indeed, a first derivative response was already proposed by [KVBD, SBTZ]). In any
case, a second derivative in x of the given sign creates a fold in k2(x), analogous to Huxley’s suggestion
of longitudinal compression. The factor ω2 is required to keep the membrane stable (stability is analysed
in the next section). It is also reasonable because [MN] claim that despite the OHCs being low-pass
filters, the “inertial reaction of the tectorial membrane makes the triggering mechanism of outer hair cells
increase as the square of frequency over a wide range”. This picture disagrees with those who see the
OHCs as having a natural frequency [DJ].

Note that this proposed outer hair cell force is reactive rather than resistive. The possibility of
a reactive component was anticipated in [G]. Of course there could be, and almost certainly is, an
(anti)resistive component too to cancel damping but it might be that the principal response of the outer
hair cells is reactive [KoS] (this would also be sensible to reduce the power requirement of the OHCs, which
is a prohibitive concern for many models). The work of [BN] inferring the basilar membrane impedance by
fitting data to a 3D critical layer model does not allow one to settle this question, because the separation
of the imaginary part into active and passive parts was not possible. Also it seems strange to me that they
obtain anti-damping only in the region just before the peak response at the tested frequency: I would
have thought the anti-damping should be ready for any frequency of input and therefore distributed along
the whole membrane, but see sections 6.1 and 8.3 of [B96] for a distinction between “undamping” and
“local activity”: I think the idea is that undamping is a force proportional to a velocity whereas local
activity can depend on other time and space derivatives.

Then one would obtain dispersion relation (ignoring the now irrelevant longitudinal stiffness term
−αk6, but using 1D fluid flow for simplicity)

νω2k4 − (λ−mω2)k2 + σω2 = 0.

If m, σ and ν are taken to be roughly constant and λ to decrease with x, then one obtains a fold as in
Fig. 4 at the position x where λ(x) = (m + 2

√
νσ)ω2 and the wavenumber at the fold is k = (σ

ν )1/4ω.
Taking the affine approximation (11) the parameter η of (18) is given by η = ν

σβ4 , evaluated near the
fold.

One feature of this model is that existence of the return mode depends on outer hair cell activity, so
if it were inhibited (e.g. by oxygen deprivation or aspirin) then the fold would be replaced by the critical
layer curve of Fig. 4 and there would be no transiently or tone-evoked OAEs, consistent with observations
[WPM, MLPC]; but of course, oxygen deprivation would also reduce the cancellation of damping and it
might just be that the OAEs become more damped so not noticeable.

8 Local Stability

A fundamental requirement of a cochlear model is that the undisturbed state normally be stable, though
spontaneous OAEs show it to be close to the threshold of instability. To obtain a first idea we’ll study
“local stability” meaning that we’ll treat the case where all properties like λ, σ,m are constant along the
membrane.

Longitudinal compression K would lead to instability, because the modification of (4) to

m
∂2a

∂t2
= −K

∂2a

∂x2
− λa− p
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with (3) gives frequencies ω for real wave number k according to

ω2 =
λk2 −Kk4

σ + mk2
,

which is negative for k2 > λ/K so the membrane is unstable (to short wave buckling).
In contrast, the proposed outer hair cell force proportional to the second derivative in both time and

space would be stable, because

m
∂2a

∂t2
= −ν

∂2

∂t2
∂

∂x
ν

∂a

∂x
− λa− p (23)

with (3) gives

ω2 =
λk2

σ + mk2 + νk4
,

which is positive for all real k.
To treat the case of λ, σ,m, ν depending on position one ought to examine the spectrum of the

generalised eigenvalue problem (eigenvalue ω2)

(
λ

ω2
−m)

∂

∂x

1
σ

∂p

∂x
− ∂

∂x
ν

∂2

∂x2

1
σ

∂p

∂x
+ p = 0

with appropriate boundary conditions, for which the eigenfunctions can not be assumed to be of the form
eikx, but the above treatment should suffice to gain a first impression. In fact, consideration of the correct
boundary conditions leads to the requirement to include the volume displacement at the oval and round
windows as an additional dynamical variable, as was already done for critical layer models in section 2.2.

9 Conclusion

The inadequacy of critical layer resonance models of the cochlea has been explained and it is proposed
that they be replaced by mode conversion models.

The main prediction for experimentalists is that a short-wave mode should occur on the basilar
membrane in addition to the “usual” one, depending on a balance between membrane stiffness and outer
hair cell forces. This might be observable in transiently evoked oto-acoustic emission experiments, but
the wavelength will be shorter than those observed so far, so it would require high spatial resolution to
detect. Presumably, away from the fold the wavelength would reduce to a minimum corresponding to
two segments of the cochlear partition, so about 20 µm [MN].

The most important extension for modellers to make to this work is to analyse the effects of nonlin-
earity on mode conversion models.
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recepteurs auditifs (Collège de France, 1983), 103–125.

[WB] Wilson JP, Bruns V, Basilar membrane tuning properties in the specialised cochlea of the CF-
bat, Rhinolophus ferrumequinum, Hearing Research 10 (1983) 15–35.

[ZS] Zweig G, Shera CA, The origin of periodicity in the spectrum of evoked otoacoustic emissions,
J Acoust Soc Am 98 (1995) 2018–47.

20


