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Abstract

We prove that if the minimum energy advancing discommensuration of
mean spacing p/q for a Frenkel-Kontorova chain is unique up to translations
and has phonon gap then all minimum energy states with mean spacing ω
just above p/q are approximated exponentially well in qω− p by concatena-
tions of advancing p/q discommensuration.

1 Introduction

Aubry’s theory of minimum energy states for Frenkel-Kontorova models is a beau-
tiful body of work that has greatly enhanced understanding of how structure is
determined in the solid state and played a key role in the interplay between con-
densed matter physics and dynamical systems theory and in our careers.

Here we treat one aspect of Frenkel-Kontorova models where dynamical sys-
tems ideas can add some extra insight. In [A], Aubry stated that “a configuration
with atomic mean distance l = [2ar

s
]+δl (δl > 0) can be considered as a commensu-

rate configuration with sδl
2a

equidistant advanced phase defects per atom which are
then at distance 2a

sδl
” (where 2a is the period of the potential and r, s are integers).

This point of view had also been expressed in [Mc], where the term “discommen-
suration” was introduced. It has become very fruitful, e.g. [Gr, FBG]. It is not
clear, however, whether a complete justification has ever been provided.

Let us review the mathematical results of which we are aware in this direction.
Firstly, by Aubry’s theory of minimum energy states [AlD], any minimum energy
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state can be obtained as a limit in product topology of some sequence of mini-
mum energy states with mean spacing converging to the given one; but product
topology means only pointwise convergence, so that is a very weak result. Sec-
ondly, following [AlDA], Aubry had an idea that minimum energy states could be
approximated exponentially well in δl by “arrays of discommensurations” (private
communication); our memory is that there was some correspondence with Mather
on this subject, but that there were problems with the proposed proof. Instead,
in [AGARQ], Aubry developed a third approach: minimum energy states were de-
composed into an exact superposition of translates of a single discommensuration-
like profile; this profile, however, is not necessarily a minimum energy (nor even
equilibrium) state itself.

Nevertheless, the idea of exponentially good approximation of minimum energy
states by an array of discommensurations is good, so as a tribute to Aubry we have
developed a precise statement and proof of such a result.

We present everything in solid-state physics language but translate into dy-
namical systems terminology where appropriate. The case we treat is the generic
one where there is a unique (up to translation) minimum energy state of a given
rational mean spacing (rotation number) p/q, it has phonon gap (is hyperbolic),
and it has a unique (up to translation) advancing minimum energy discommensu-
ration which also has phonon gap (transverse intersection of stable and unstable
manifolds). The proof is via the dynamical systems theory of “shadowing”. The
same can be done for a retreating discommensuration.

We recall necessary background results, then state and prove our result, and
conclude with some remarks.

2 Necessary background

2.1 Frenkel-Kontorova models

A Frenkel-Kontorova model can be viewed as a doubly infinite one-dimensional
chain of identical classical particles with convex nearest neighbour interaction,
subject to a spatially periodic potential (whose period we scale to 1). More gen-
erally, the potential energy of the chain is the formal sum

H(x) =
∑
n∈Z

h(xn, xn+1) , (1)

where xn ∈ R denotes the position of particle n, x denotes the state (xn)n∈Z, and
the function h : R2 → R is C2 and satisfies h(x+1, x′+1) = h(x, x′) and h12 ≤ −b
for some b > 0 (subscript i on a function denotes partial derivative with respect
to the ith argument). The simplest case is h(x, x′) = W (x′ − x) + V (x), with V a
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periodic on-site potential of period 1: V (x + 1) = V (x), and W a strictly convex
interaction potential between (nearest) neighbours: W ′′(ξ) ≥ b. The potential
energy of the chain is typically infinite but its gradient and the equilibria are
well-defined.

Aubry was the first of whom we are aware to realise that there is a direct
connection between a Frenkel-Kontorova model and an associated dynamical sys-
tem [AA]. Specifically, the equilibrium states h2(xn−1, xn) + h1(xn, xn+1) = 0 of
a Frenkel-Kontorova model are in 1-1 correspondence with orbits of an associ-
ated area-preserving twist map f : (x, y) 7→ (x′, y′) of the cylinder T× R, defined
implicitly by y′ = h2(x, x′), y = −h1(x, x′). It is more convenient, however, to
use the equivalent map g : (xn−1, xn) 7→ (xn, xn+1) on the cylinder R2/T where
T (x, x′) = (x + 1, x′ + 1). We measure the size of displacements (ξ, ξ′) on the
cylinder by max(|ξ|, |ξ′|).

2.2 Minimum energy states

Aubry defined a state x to have minimum energy if for all M < N it (globally)
minimises

WMN =
N−1∑
n=M

h(xn, xn+1),

subject to xM and xN fixed.
A state x can be represented by a piecewise affine curve connecting the points

(n, xn)n∈Z in order in the plane, called an Aubry diagram. Aubry proved that
the graphs of two minimum energy states in the Aubry diagram cross at most
once (Aubry’s fundamental lemma [AlD]). From this and invariance under the
translations Tpq,

(Tpqx)n = xn+q − p, p, q ∈ Z, (2)

he proved that every minimum energy state x has a mean spacing

ρ = lim
M→−∞,N→∞

xN − xM

N −M
.

In fact,

floor((n−m)ρ) < xn − xm < ceil((n−m)ρ) for all m < n, (3)

where floor(x) is the greatest integer less than x and ceil(x) is the least integer
greater than x (this was proved in [MS] and in our opinion a uniform bound on
(xn − xm) − (n − m)ρ like this is a necessary step for a full proof of Aubry’s
classification of minimum energy states, as was done in [MS]).
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Aubry proved there is a minimum energy state for each mean spacing ω [AlD].
In the rational case, ω = p/q in lowest terms, there is a periodic minimum energy
state with xn+q = xn + p for all n (we say it has type (p, q)). The set Ap/q of
minimum energy states of type (p, q) is totally ordered in the partial order x ≤ y
defined by xn ≤ yn for all n ∈ Z. It is also closed (in product topology, but
since the space of sequences of type (p, q) is finite-dimensional, it is also closed in
uniform topology). If L < R are two states in Ap/q such that there is no x ∈ Ap/q

with L < x < R we say [L,R] is a gap in Ap/q. If [L,R] is a gap in Ap/q there
is a minimum energy advancing discommensuration v with Ln < vn < Rn for all
n ∈ Z, v < Tpqv and vn → Ln as n → −∞, vn → Rn as n → +∞. Similarly
there is a retreating discommensuration, traversing the gap in the other direction.
Denoting by Ap/q+ and Ap/q− the sets of respectively advancing and retreating
discommensurations of mean spacing p/q, and A′

p/q± their unions with Ap/q, A′
p/q±

are totally ordered and closed (in product topology).
In the irrational case, we separate the set A′

ω of minimum energy states of mean
spacing ω into the union of its recurrent ones and non-recurrent ones (x is recurrent
if there exist sequences nk →∞ and mk such that (xnk

−mk, xnk+1−mk) → (x0, x1)
as k →∞). The set Aω of recurrent minimum energy states of mean spacing ω is
totally ordered and closed and is either a curve or a Cantor set. If Aω is a curve
then there are no non-recurrent ones, so A′

ω = Aω. In the case that Aω is a Cantor
set, there are possibly some non-recurrent states in its gaps, but A′

ω is still totally
ordered and closed.

Some of these results were also proved by Mather (starting in [Mat] indepen-
dently of Aubry), so the subject is often called Aubry-Mather theory (for a review,
see [Golé]). Corresponding to Aω etc. we denote the invariant sets for the associ-
ated map g by Mω etc.

2.3 Phonon gap

A configuration x ∈ RZ is said to have phonon gap if the second derivative D2H
has bounded inverse in `2-norm. The value of the phonon gap can be defined to
be ||D2H−1||−1

2 .
We proved that phonon gap for an equilibrium state (or set of them) is equiva-

lent to uniform hyperbolicity for the corresponding invariant set of the associated
twist map [AMB]. In particular, periodic equilibrium states whose corresponding
orbit is hyperbolic have phonon gap, and if an equilibrium x has phonon gap then
the Green function G for the linearised response to an infinitesimal force at n = 0
decays exponentially with uniform exponential bounds |Gn| ≤ C0µ

−|n|
0 for some

µ0 > 1 and C0 > 0. If µ is the supremum of µ0 such that there is an exponential
bound of this form then ξ = 1/ log µ is called the coherence length of x.

It follows by homotopy that all equilibrium states y asymptotic to x to the right

4



(or left) converge to x with uniform exponential bounds of the form |yn − xn| ≤
Cµ∓n

0 |y0 − x0| for n > 0 (respectively n < 0), for some C slightly larger than
C0 (starting with |y0 − x0| small enough). The case of interest for this paper is
when x is periodic, say of type (p, q). In this case the supremum µ is attained
and the above result (with µ0 = µ) can be proved by converting to the associated
dynamical system g: it becomes a question of the approach of orbits to a hyperbolic
fixed point of gq, which is asymptotically geometric with contraction factor equal
to the modulus of the eigenvalue of Dgq inside the unit circle. By the approach of
[AMB] connecting hyperbolicity of g to decay of Green functions, this is µ−q.

It also follows from [AMB] that a state with phonon gap is unique in some
neighbourhood in uniform topology. More precisely, if A is a set of equilibrium
states with phonon gap at least some K > 0 and whose associated invariant set
on the cylinder is bounded, then there exists δ > 0 such that if x ∈ A and y
is an equilibrium state with |yn − xn| < δ for all n ∈ Z then y = x. This can
be proved by establishing contraction of the map y 7→ y − D2W−1DW (y) on a
δ-neighbourhood of x.

We also proved that the phonon gap is continuous in Hausdorff topology on
the orbits of the associated map [BM].

2.4 Shadowing

Let w ∈ RZ be a concatenation of segments of equilibrium states vk, k ∈ Z, of
a Frenkel-Kontorova model, i.e. there exists an increasing sequence of integers nk

such that
wn = vk

n for n = nk + 1, . . . , nk+1.

We define the jumps in w to be the 2D vectors jk = (vk
nk
− vk−1

nk
, vk

nk+1 − vk−1
nk+1).

See Figure 1. We measure the size of a jump by max(|vk
nk
− vk−1

nk
|, |vk

nk+1− vk−1
nk+1|).

We let j(w) be the supremum of the jump sizes.
A translation of the shadowing theorem of Anosov and Bowen (e.g. [KH]) from

dynamical systems theory into solid-state physics terminology yields:

Theorem 2.1. If the vk, k ∈ Z all have phonon gap at least some K > 0 and lie
in a bounded set when mapped to the cylinder then there exist δ > 0 and κ > 0
such that if j(w) < δ/κ there is an equilibrium state within κj(w) of w and it is
unique within δ of w.

This can be proved for example by converting Palmer’s proof [Pal] from first
order to second order recurrence relations.
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Figure 1: An Aubry diagram showing the jump from state vk−1 to vk at n = nk.

3 The result and its proof

We will approximate any minimum energy state of mean spacing just above a
given rational p/q by a concatenation of segments of translates of an advancing
minimum energy discommensuration of mean spacing p/q if the latter is unique
up to translation and has phonon gap. These conditions are satisfied generically,
so are not big restrictions. The rational p/q is fixed throughout and the interest
is on how good the approximation can be made as a function of ω − p/q.

Here is our result.

Theorem 3.1. Suppose Ap/q+ is generated by a single (advancing discommen-
suration) state v and that it has phonon gap. Then: (i) Ap/q is generated by a
single (periodic) state u and it has finite coherence length ξ < ∞; (ii) there are
constants ε > 0, C ′, C ′′ such that for all ω ∈ (p/q, p/q + ε) and all y ∈ A′

ω there
exists a concatenation w of segments of translates of v with jumps of size at most
C ′ exp− 1

2ξ(qω−p)
and within C ′′ exp− 1

2ξ(qω−p)
of y.

Proof. (i) In each gap of Ap/q, as recalled in subsection 2.2, Aubry proved there
is at least one advancing discommensuration. So if Ap/q+ is generated by a single
discommensuration v then up to translations there is only one gap in Ap/q. Since v
is assumed to have phonon gap, the periodic states to which it is asymptotic must
also have phonon gap, and hence are isolated in Ap/q. So Ap/q is generated by a
single state we denote by u, and it has phonon gap. It follows as in subsection 2.3
that u has finite coherence length, which we denote by ξ.

(ii) In the Aubry diagram, the graphs of u, v and their translates form a
lamination of the plane (see Figure 2). The closest translate of u above u is Tp′,q′u
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where p′/q′ is the upper Farey neighbour of p/q (the last convergent from the
continued fraction expansion of p/q with p′/q′ > p/q). The closest translate of v
above v is Tpqv.

T     up',q'

T       u-p',-q'

T    vp,q

T      v-p,-q
uv

Figure 2: An Aubry diagram illustrating that the states in A′
p/q+ form a lamination

of the plane (to simplify, we draw the graphs of u and its translates as straight
lines and of v and its translates as smooth curves, rather than piecewise affine).

Given ω > p/q and y ∈ A′
ω, the graph of y crosses each of those of u, v and

their translates precisely once (and upwards), by Aubry’s fundamental lemma.
Let δ > 0 be such that we have the shadowing theorem for A′

p/q, and less than
half the minimum distance between u and Tp′q′u. Make a neighbourhood U of
u bounded by segments of v and its translates, repeated with period q, within
δ of u. Specifically, let v+ = v and v− = Tkp−p′,kq−q′v for some k ∈ Z (whose
choice is irrelevant except for drawing figures) and choose segments v± of length
q (i.e. containing q successive atoms) within δ of u, define u± by extending them
periodically using Tpq and define U as the region between u± (see Figure 3).

Since y crosses each translate of u and v precisely once and upwards, y enters
U from below and leaves U from above, and then crosses the gap between U and
its translate Tp′q′U , and so on.

Lemma 3.2. There exists J independent of ω such that the time P that y spends
in U (or any translate) is at least 1

qω−p
− J .
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u

U

v

 n  

+

u+

v-u-

q

Figure 3: The neighbourhood U of u bounded by u±, made by repeating periodi-
cally segments of length q of v± contained within δ of u.

Proof. We use synonymously the terms “time” and “length” of a segment of y
between crossings with two other states to mean the number of atoms of the
segment; if a crossing happens at an atom we count it as half.

T     U

u

U

p',q'

T     up',q'

y1

y2y1

q

y2

Figure 4: An Aubry diagram to show that if two segments of y between entries to
successive translates of U differ in length by more than q then their graphs cross.

The lengths of segments of y between entries to successive translates of U differ
by at most q, else translate two such segments to start in U and so that the longer
one starts to the left of the shorter one but within q of it, then the segments would
be forced to cross (see Figure 4), contradicting y being minimising. Thus the mean
interval between entries of y to successive translates of U exists; furthermore it
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T     U

u
U

p',q'

p',q'

T     u

y v

m+Lm
L

Figure 5: The length of a segment of y between exit of U and entry into Tp′q′U is
at most 1 + L where L is the length of the indicated segment of v.

is 1
qω−p

, else y would have a different mean spacing from ω. Because y crosses
each translate of v precisely once and upwards, the intervals between exiting a
translate of U and entering the next one are bounded by one plus the length L
of the segment vm, . . . , vm+L of v indicated in Figure 5. Hence the result, with
J = q + L + 1.

Now choose δ′ ∈ (0, δ] so that the distance between v and Tpqv for n =
m, . . . , m + L − 1 exceeds 2δ′. So there is an “island” which is avoided by all
states which remain within δ′ of the union of the translates of v (see Figure 6).

Lemma 3.3. There exists ε > 0 such that the projection to the cylinder of every
minimum energy state of mean spacing in (p/q, p/q + ε) lies within δ′ of Mp/q+.

Proof. If not, there are sequences ωk → p/q+ as k →∞, yk ∈ A′
ωk

and nk ∈ Z such
that (yk

nk
,yk

nk+1)/T is not in the δ′-neighbourhood of Mp/q+. These points lie in a
bounded subset of the cylinder because of (3), so have a convergent subsequence
with a limit point (z0, z1) not in the δ′-neighbourhood. Being a limit of minimum
energy states (in product topology) with mean spacing converging to p/q+, the
orbit of (z0, z1) is in M ′

p/q+ by Aubry’s theory, so is in the δ′-neighbourhood, which
is a contradiction.
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T     up',q'

T    vp,q

v

u

!'

!'

m m+L-1

Figure 6: An “island” between v and Tpqv, avoided by states within δ′ of Ap/q+.

So, given ω ∈ (p/q, p/q + ε) and y ∈ A′
ω, y can not cross the island nor any

of its translates. Thus for each gap in Ap/q, y follows within δ′ a precise sequence
from Ap/q+, say D between U and Tp′q′U (Figure 7).

T     up',q'
T     Up',q'

T    Dp,q

T      D-p,-q

D

u

y
U

Figure 7: The state y follows one translate D of v within δ′ across the given gap
in Ap/q.

Similarly, y follows a specific discommensuration D′ within δ′ between T−p′,−q′U
and U .

To make our concatenation w of discommensurations approximating y, we
need to choose where to switch from D′ to D. The most natural choice might
be the place where y crosses Ap/q, but to make sure the jumps are exponentially
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u

< 2C!µ-P/2

D

D'

< !

< !

P >            - J1
q"-p

y

Figure 8: Halfway between entry and exit of y in/out of U , the chosen discom-
mensurations D, D′ are within Cδµ−P/2 of u, with P ≥ 1

qω−p
− J .

small (indeed, of the order anticipated in [A]) we make a different choice. We
jump halfway between the entry and exit of y in and out of the neighbourhood
U of the periodic state u. By the result quoted in subsection 2.3, D′ approaches
u and D leaves u with exponential bounds of the form Cδµ±n with n measured
from the entry or exit (see Figure 8). Thus halfway in between entry and exit,
the distance between the two bounding discommensurations is at most 2Cδµ−P/2,
where P is the number of atoms between entry and exit. So by Lemma 3.2, the
jumps between discommensurations halfway between entry and exit have size at

most C ′µ−
1

2(qω−p) with C ′ = 2CδµJ/2.
By the shadowing theorem 2.1, it follows that there is a true equilibrium state

z within κC ′µ−
1

2(qω−p) of the concatenation w of discommensurations, and that it
is unique within δ of w. By construction of w, however, y is an equilibrium state
within δ of w, so the equilibrium state z we just found must be y. Hence w is

within κC ′µ−
1

2(qω−p) of y. The result follows by using ξ = 1/ log µ and setting
C ′′ = κC ′.

4 Final remarks

It may be possible to simplify our proof, but the one given is the first we found
that works.
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Note that shadowing also constructs many other equilibrium states exponen-
tially close to concatenations of discommensurations, given by choosing pseudo-
random switch times between long enough segments of discommensuration. This
is directly analogous to Palmer’s proof [Pal] of the Birkhoff-Conley-Moser subshift
from a transverse homoclinic orbit to a hyperbolic periodic orbit. One can gener-
alise, e.g. allow switching between advancing and retreating discommensurations,
provided both have phonon gap.

We expect it is possible to generalise our result to cases where Ap/q+ is generated
by more than one discommensuration, provided they have phonon gap bounded
away from zero. If Ap/q is also generated by more than one periodic state, however,
the exponential bound on the accuracy of approximation will depend in a more
complicated way on their coherence lengths.
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