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COLLAPSED 5-MANIFOLDS WITH PINCHED

POSITIVE SECTIONAL CURVATURE

Fuquan Fang1 & Xiaochun Rong2

Abstract. Let M be a closed 5-manifold of pinched curvature 0 < δ ≤ secM ≤ 1.

We prove that M is homeomorphic to a spherical space form if M satisfies one of the

following conditions: (i) δ = 1/4 and the fundamental group is a non-cyclic group of
order ≥ C, a constant. (ii) The center of the fundamental group has index ≥ w(δ),

a constant depending on δ. (iii) The ratio of the volume and the maximal injectivity

radius is < ε(δ). (iv) The volume is less than ε(δ) and the fundamental group π1(M)
has a center of index at least w, a universal constant, and π1(M) is either isomorphic

to a spherical 5-space group or has an odd order.

0. Introduction

The sphere theorem asserts that if a manifold M admits a quarter pinched metric,
1
4 < secM ≤ 1, then the universal covering space of M is homeomorphic to a sphere.
It is natural to ask whether M is homeomorphic to a spherical space form, Sn/Γ,
Γ ⊂ O(n + 1) ([GKR], [IHR]). We will call Γ a spherical n-space group. Clearly,
a positive answer implies that the fundamental group π1(M) is isomorphic to a
spherical space group and the π1(M)-action on the universal covering is conjugate
to a linear action. A subtlety is that neither of these holds without a positive
curvature condition: in every odd dimension n ≥ 5 ([Ha]),
(0.1) There are infinitely many non-spherical space groups acting freely on an n-
sphere.
(0.2) There are infinitely many distinct free actions on an n-sphere by a spherical
space group which do not conjugate to any linear action.
Obviously, the quotient manifolds in (0.1) and (0.2) are not homeomorphic to any
spherical space form.

In this paper, as a first step we investigate the case of dimension 5. We obtain
several rigidity results (Theorems A-D) on a δ-pinched 5-manifold M whose fun-
damental group is not small (equivalently, whose volume is small). In particular,
we rule out (0.1) and (0.2) in our circumstances via studying certain symmetry
structure on M discovered by Cheeger-Fukaya-Gromov ([CFG], [Ro1]).

We now begin to state the main results in this paper.

1Supported by NSFC Grant 19925104 of China, 973 project of Foundation Science of China
2Supported partially by NSF Grant DMS 0203164 and a research found from Capital normal
university

Typeset by AMS-TEX

1



Theorem A.
Let M be a closed 5-manifold with 1

4 < secM ≤ 1. If the fundamental group
π1(M) is a non-cyclic group of order ≥ C (a constant), then M is homeomorphic
to a spherical space form.

With an arbitrary δ-pinching, we obtain the following weak generalization of
Theorem A (which is slightly stronger than the case of δ = 1/4 in Theorem B).

Theorem B.
Let M be a closed 5-manifold with 0 < δ ≤ secM ≤ 1. If the center of π1(M) has

index ≥ w(δ) (a constant depending on δ), then M is homeomorphic to a spherical
space form.

Observe that M in Theorem B has diameter ≤ π/
√

δ (Bonnet theorem) and
small volume (volume comparison). According to [CFG] (cf. [Ro1]), M admits
local compatible isometric T k-actions with k ≥ 1 of some nearby metric (details
will be given shortly). In our circumstance, we show that k ≥ 2, and thus the
universal covering of M is diffeomorphic to a sphere ([Ro2]). The main work is to
show, using the local symmetry structure, that π1(M) is isomorphic to a spherical
space group and the π1(M)-action is conjugate to a linear one (see Theorem E,
compare to (0.1) and (0.2)).

Any δ-pinched 5-manifold satisfies vol(M)/ max injrad(M, x) ≤ d(δ) (by the
Cheeger’s lemma). We find if the ratio is actually small, then k ≥ 2 as in the
above.

Theorem C.
For 0 < δ ≤ 1, there exists a small number, ε(δ) > 0, such that if a closed

5-manifold M satisfies

0 < δ ≤ secM ≤ 1,
vol(M)

max injrad (M, x)
< ε(δ),

then M is homeomorphic to a spherical space form.

Note that Theorems B and C do not hold if one relaxes the condition “δ > 0”
to “δ ≥ 0” (see Example 2.7). We intend to discuss the classification with “δ ≥ 0”
elsewhere.

Consider a collapsed δ-pinched 5-manifold M close in the Gromov-Hausdorff dis-
tance to a metric space X of dimension 4 (equivalently, k = 1). A new trouble is to
determine the topology of the universal covering space, or equivalently the topol-
ogy of X. This looks quite difficult; it seems to require a classification of positively
curved 4-manifolds in the case when X is smooth (and thus the fundamental group
of M is cyclic).

Theorem D.
For 0 < δ ≤ 1, there exists ε(δ) > 0 such that if a closed 5-manifold M satisfies

0 < δ ≤ sec ≤ 1, vol(M) < ε(δ),

then M is homeomorphic to a spherical space form, provided π1(M) has a center
of index at least w > 0, a constant (independent of δ), and π1(M) is a spherical
5-space group or |π1(M)| is odd.
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A spherical 5-space group is either cyclic or has a normal cyclic subgroup of
index three ([Wo]). In either case, there are infinitely many spherical 5-space forms
satisfying the conditions of Theorems A-D (see Example 2.6).

A natural question is when M in Theorems A-C is diffeomorphic to a spherical
5-space form? We mention the following: a spherical 5-space form S5/Γ admits
exactly one or two different smooth structures depending on |Γ| odd or even ([KS],
[Wa]). Moreover, both smooth structures may allow a non-negatively curved metric
(e.g., there are exactly four smooth manifolds homotopy equivalent to RP 5, all of
them admit metrics of non-negative sectional curvature ([GZ]), and two of them
are not homeomorphic to each other).

A question of Yau ([Yau]) asks if in a given homotopy type contains at most
finitely many different diffeomorphism types that can support a metric of positive
sectional curvature. A positive answer is known only in dimensions 2 and 3 ([Ha]).
When restricting to the class of pinched metrics, positive answers are known in
even dimensions and the class of manifolds (odd-dimensions) with finite second
homotopy groups ([FR1], [PT]).

Since there are at most finitely many spherical space forms (up to diffeomor-
phism) with a given homotopy type, Theorem C immediately implies:

Corollary 0.3.
Let M be a close δ-pinched 5-manifold. Then the homotopy type of M contains

at most c(δ) many diffeomorphism types that support a δ-pinched metric, provided
π1(M) has a center with index ≥ w(δ).

As mentioned earlier, our approach to Theorems A-D is based on the fibration
theorem of Cheeger-Fukaya-Gromov on collapsed manifolds with bounded sectional
curvature and diameter ([CFG], [CG1,2]). In our circumstances, the fibration theo-
rem asserts that there is a constant v(n, δ) > 0 such that if a δ-pinched n-manifold
M has a volume less than v(n, δ), then M admits a pure F-structure all whose
orbits are of positive dimensions. By the Ricci flows technique, one can show that
there is invariant metric which is at least δ/2-pinched ([Ro1]).

In the case of a finite fundamental group, the notion of a pure F-structure is
equivalent to that of a π1-invariant torus T k-action on a manifold M , which is
defined by an effective T k-action on the universal covering space M̃ of M such that
it extends to a T k oρ π1(M)-action, where ρ : π1(M) → Aut(T k) is a homomor-
phism from the fundamental group to the automorphism group of T k. Clearly, the
T k-action on M̃ is the lifting of a T k-action on M if and only if ρ is trivial or
equivalently, the T k-action and the π1(M)-action commute. Hence, the notion of a
π1-invariant torus action generalizes that of a global torus action and the T k-orbit
structure on M̃ projects onto M so that each orbit is a flat submanifold.

Consider M as in Theorems A-D. In view of the above, we may assume that M
admits a π1-invariant isometric T k-action (k ≥ 1).

Theorem E.
Let M be a closed 5-manifold of positive sectional curvature. If M admits a π1-

invariant isometric T k-action with k > 1, then M is homeomorphic to a spherical
space form.

Theorem E is known in the following special cases: M (itself) admits an isometric
T 3-action ([GS]) or M is simply connected ([Ro2]). In particular, the universal
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covering space of M is diffeomorphic to a sphere.
We show that under the assumptions of Theorems B and C, k > 1, and thus

Theorem E implies Theorems B and C. In the case k = 1, the T 1-action on the
universal covering M̃ of M is free if M̃ is a sphere and if π1(M) is not cyclic. We
then complete the proof of Theorem A by proving the following topological result:
Let a finite group Γ act freely on S5. If S5 admits a free Γ-invariant T 1-action such
that the induce Γ-action on S5/T 1 is pseudo-free, then S5/Γ is homeomorphic to
a spherical space form (see Proposition 1.3).

In view of the above, Theorem D follows from

Theorem F.
Let M be a closed 5-manifold of positive sectional curvature which admits a π1-

invariant fixed point free isometric T 1-action. Then the universal covering M̃ is
diffeomorphic to S5, provided π1(M) has a center of index ≥ w, and π1(M) has
odd order or is a spherical 5-space group.

It is worth to point it out that every spherical 5-space form admits a π1-invariant
isometric T 3-action and a free isometric T 1-action and many admit π1(M)-invariant
isometric T 2-actions ([Wo], p.225).

We would like to put Theorems D and E in a little perspective. In the study
of positive sectional curvature, due to the obvious ambiguity the class of positively
curved manifolds with (large) symmetry has frequently been a focus of the inves-
tigations. According to K. Grove, this also serves as a strategy of searching for
new examples and obstructions. There has been significant progress in the last
decade on classification of simply connected manifolds with large symmetry rank
(the rank of the isometry group), cf. [GS], [FR1,2], [HK], [Ro1-3], [Wi1,2]. How-
ever, not much is known for non-simply connected manifolds with large symmetry
rank. These results may be treated as an attempt in this direction.

We now give an outline of the proof of Theorems E and F.
By the compact transformation group theory ([Bre]), the topology of a T k-

space M is closely related to that of the singular set (the union of all non-singular
orbits) and the orbit space M/T k. In the presence of an invariant metric of positive
sectional curvature, the singular set and the orbit space are very restricted, and this
is the ultimate reason for a possible classification. In our proofs, we will thoroughly
investigate of the structure of the singularity and the orbit space.

The proof of Theorem E divides into two situations: k = 3 (Theorem 3.1) and
k = 2, and the main work is in the case of k = 2. When k = 2, we first prove
Theorem E at the level of fundamental groups (Theorem 4.1). Then we divide the
proof into two cases: the π1-invariant T 2-action is pseudo-free (section 5) and not
pseudo-free (section 6). In the former case, we study the T 2-action on the universal
covering space, M̃ ' S5, which has a singular set, S, consisting of three isolated
circle orbits. It suffices to show that the (π1(M), T 2)-bundle, M̃−S → (M̃−S)/T 2,
is conjugate to a standard linear model from spherical space forms. This can be
done following [FR2] if one can assume that the orbit space, X = M̃/T 2, is a
homeomorphic sphere. The problem is that we only know that X is a homotopy
3-sphere. We overcome this difficulty by combining the above with tools from the
s-cobordism theory in dimension 5. In the non-pseudo-free case, the singular set
has dimension 3, and by analyzing the singular structure, we are able to view M
as a gluing of standard pieces.
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In the proof of Theorem F, by studying the induced π1(M)-action on M̃/T 1

(which is not trivial because π1(M) is not cyclic), we bound from above the Euler
characteristic of M̃/T 1 via the technique of q-extent (Proposition 7.5, cf. [Gr],
[Ya]). With this constraint, we show that the condition on the fundamental groups
implies that M̃ is a homology sphere, the T 1-action is free and the π1(M)-action on
M̃/T 1 is pseudo-free (note that the standard free linear T 1-action on S5 is preserved
by any spherical 5-space group, [Wo]). By employing results in [HL] and [Wi1,2] on
pseudo-free actions by finite groups on a homeomorphic complex projective plane,
we show that the π1(M)-action is homeomorphically conjugate to a linear action.

Remark 0.5. By the improved sphere theorem due to Abresch-Meyer [AM], the
1
4 -pinching in Theorem A may be replaced by a slightly weaker pinching constant
1
4 − ε.

Remark 0.6. Theorems C and E, and the Corollaries 0.1 and 0.2 hold in a much
less restrictions on π1(M) (see Section 3).

Remark 0.7. Our approach seems not able to apply to higher dimensions to
obtain analogies of Theorems A, B and C. One difficulty is the analog of Theo-
rem 3.2 in higher dimensions seems not true. An analog of Theorem A for cyclic
group is plausible if one could establish a generalized version of Theorem 3.2 for 4-
dimensional orbifold, and for non-pseudofree actions. However, there are examples
of non-linear pseudofree circle actions on S5 (cf. [FS]).

The rest of the paper is organized as follows: In Section 1 we give a proof of
Theorem A by assuming Theorem E. In Section 2, we prove Theorem B by assuming
Theorem E and construct examples mentioned following Theorem B. In Section 3,
we prove Theorem C by assuming Theorems D, E. In Section 4 we provide the main
tools that will be used in the proof of Theorems D and E. In Section 5, we prove
the case of Theorem E for k = 3. In Section 6, we prove Theorem E at the level of
fundamental groups. In Sections 7 and 8, we complete the proof of Theorem E for
k = 2. In Section 9, we prove Theorem F.

Acknowledgment: The first author would like to thank Ian Hambleton, Michael
Mccooey and Joan Porti for invaluable discussions concerning various topological
problems involved in the paper.

1. Proof of Theorem A by Assuming Theorem E

Consider M as in Theorem A; whose universal covering space M̃ is homeomor-
phic to S5 (the sphere theorem). Because the volume of M is small, M̃ admits a
π1-invariant isometric T k-action (Theorems 1.1 and 1.2). We will use this structure
to show that M is homeomorphic to a spherical space form (compare to (0.1) and
(0.2)). By Theorem E, we may assume that k = 1. Because π1(M) is non-cyclic,
we show that the isometric T 1-action must be free and commute with the π1(M)-
action such that the induced π1(M)-action on M̃/T 1 is pseudo-free (Lemma 1.9).
The key is to show, based on a result (Lemma 1.4) in [HL] and [Wil1,2], that these
properties imply that π1(M) is isomorphic to a spherical 5-space group (Lemma
1.6) and the π1(M)-action is conjugate to a linear action (Proposition 1.3).
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a. π1-invariant isometric T k-actions on collapsed manifolds.

According to [CFG], if a closed n-manifold M with bounded curvature and
diameter has a small volume, then M admits a pure nilpotent Killing structure
whose orbits are infra-nilmanifolds. When the fundamental group of M is finite,
the infra-nilmanifolds are actually flat and thus the nilpotent Killing structure is
equivalent to a π1-invariant almost isometric T k-action ([Ro1]). The π1-invariance
implies that the T k-orbits on the universal covering descend to M , also denoted by
T k(x), x ∈ M . A T k-orbit on M is called regular, if it has a tubular neighborhood
in which T k-orbits form a fiber bundle. Let S denote the set of all non-regular
orbits. Then M − S is an open dense subset. For a small number η > 0, let
U−η = {x ∈ U : d(x,S) > η}.
Theorem 1.1 ([CFG]).

Given n, d > 0, there exist constants, ε(n, d), c(n) > 0, such that if a closed
n-manifold M of finite fundamental group satisfying

|secM | ≤ 1, diam (M) ≤ d, vol (M) < ε(n, d),

then M admits a π1-invariant T k-action satisfying
(1.1.1) Every T k-orbit has a positive dimension.
(1.1.2) Any orbit in U−η has a second fundamental form, |II| ≤ c(n)η−1.
(1.1.3) For any ε > 0, there is a T k-invariant metric of bounded sectional curvature
by one which is ε-close to the original metric in C1-norm.

Note that one can always assume a small constant η = η(n) > 0 such that
U−η 6= ∅ (if U−η = ∅, then diam(M) < η and thus M is almost flat ([Gr1]). Then
S = ∅ and therefore U−η = M , a contradiction). Using the Ricci flows in [Ha], one
can obtain a T k-invariant metric with additional properties.

Theorem 1.2 ([Ro1]).
Let (M, g) satisfy the conditions of Theorem 1.1. For ε > 0, there is a T k-

invariant metric gε such that

|g − gε|C1 < ε, min secg − ε ≤ secgε ≤ max secg + ε.

b. A criterion of a pseudo-free linear action on 5-spheres.

Consider a finite group Γ acting freely on S5. As mentioned in (0.1) and (0.2),
Γ may not be isomorphic to any spherical 5-space group, nor, even assuming Γ
isomorphic to a spherical 5-space group, the Γ-action on S5 may not be conjugate
to any linear action (see (0.1) and (0.2)). Obviously, additional conditions are
required for the Γ-action to conjugate a linear action.

We will give a criterion, Proposition 1.3, and use it to prove Theorem A. We
point it out that this criterion will be also used in the proofs of Theorems D and
E.

Spherical space forms have been completely classified, see [Wo]. From p225.
[Wo], we observe that if a finite group Γ ⊂ SO(6) acts freely on S5, then Γ commutes
with a standard free linear T 1-action on S5. If, in addition, Γ is not cyclic, then
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the induced Γ-action on S5/T 1 is pseudo-free i.e., any non-trivial element has only
isolated fixed point.

The above properties are indeed sufficient conditions for a free Γ-action on S5

to conjugate to a linear action.

Proposition 1.3.
Let a finite group Γ act freely on S5. If Γ commutes with a free T 1-action on

S5 such that the induced Γ-action on S5/T 1 is pseudo-free, then the Γ-action is
topologically conjugate to a linear action.

A G-action is called locally linear, if each singular point has an invariant neigh-
borhood which is equivariantly homeomorphic to a neighborhood of 0 in a real
representation space. In particular, smooth actions are locally linear.

The following result (cf. [HL], [Wi1-2]) plays a crucial role in the proof of Propo-
sition 1.3.

Theorem 1.4 ([Wi1]).
Any pseudo-free locally linear action by a finite group on a 4-manifold home-

omorphic to CP 2 is topologically conjugate to the linear action of a subgroup of
PSU(3) on CP 2.

Note that PSU(3) = SU(3)/Z3, where Z3 is the center of SU(3). It is perhaps
useful to recall some details of which finite subgroups of PSU(3) may act linearly
and pseudo-freely on CP 2. By [Wi2] (also [HL]) the group is either a cyclic group
Zn = 〈x〉, or noncyclic with a presentation

(1.5) {x, y : yxy−1 = xr, xn = y3 = 1, where r2 + r + 1 = 0 mod (n)}

The linear action of the group on CP 2 is given by

x[z0, z1, z2] = [ωz0, ω
−rz1, z2]; y[z0, z1, z2] = [z1, z2, z0]

where ω = e
2πi
n is the n-th root of the unit.

Observe that the group in (1.5) is Z3⊕Z3 = 〈x, y〉 if n = 3, and n can not be an
integral multiple of 9. Therefore, it can never be a 5-dimensional spherical space
form group if n > 1 (cf. [Wo] page 225). However, Petrie [Pe] constructed a free
action of (1.5) on S5 if n = 7 and r = 2.

Lemma 1.6.
Let Γ be as in Proposition 1.3. Let Γ0 ⊂ Γ be the principal isotropy group of the

Γ-action on S5/T 1. Then Γ0 ⊂ C(Γ), the center of Γ. Moreover, Γ is isomorphic
to a subgroup of SU(3), acting pseudo-freely on S5.

Proof. For any nontrivial γ ∈ Γ/Γ0, since γ acts on S5/T 1 ≈ CP 2 with isolated
fixed points, the subgroup of Γ generated by γ and Γ0 acts freely on the circle orbit
over a fixed point of γ, and so it is cyclic. This implies the first assertion.

Obviously, Γ0 is isomorphic to a cyclic group Z`. By the above discussion, Γ/Γ0

is either cyclic, or a noncyclic group (1.5). The desired result follows in the former
case because Γ itself must be cyclic.

Let Γ/Γ0 be the group (1.5). From the presentation Γ/Γ0 has trivial center.
Moreover, n must be coprime to 3 because otherwise it contains Z3 ⊕ Z3 as a
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subgroup, and so Γ contains a non-cyclic abelian subgroup, this is absurd since Γ
acts freely on S5. Similarly, one concludes that Γ must be a center extension of Z`

by Γ/Γ0 such that its restrictions on 〈x〉, 〈y〉 are cyclic groups of order `n and 3`
respectively. Therefore Γ contains Z`n as a cyclic subgroup of index 3, and the only
3-Sylow group is cyclic. Therefore, writing |Γ| = ks = 3`n with (k, 3) = 1 (e.g.,
we may take k = n(`, n) and s = 3`n/(`, n)), by the Burnside Theorem (cf. [Wo]
Theorem 5.4.1, p.163), Γ is generated by two elements A and B with relations

Ak = Bs = 1, BAB−1 = Ar

where ((r − 1)s, k) = 1 and rs ≡ 1(mod k). Since {A,B3} generates a cyclic index
3 subgroup, r3 ≡ 1(mod k). Therefore, Γ may be realized as the subgroup of SU(3)
generated by the matrices




R(1/k) 0 0
0 R(r/k) 0
0 0 R(r2/k)


 ,




0 I 0
0 0 I

R(3/s) 0 0


 ,

where R(θ) denote the standard 2×2 rotation matrix with rotation angle 2πθ, and
I the 2× 2 identity matrix. ¤

Proof of Proposition 1.3.
By Freedman [Fr], S5/T 1 is homeomorphic to CP 2. Consider the induced Γ-

action on S5/T 1, let Γ0 be the principal isotropy group, and let Γ̄ = Γ/Γ0. Clearly,
Γ0
∼= Z` is a subgroup of T 1. By Theorem 2.4, the Γ̄-action is conjugate to a linear

Γ̄-action on CP 2 (and thus Γ̄ is identified with a subgroup of PSU(3), denoted by
Γ̄`) by an equivariant homeomorphism f : (S5/T 1, Γ̄) → (CP 2, Γ̄`).

By Lemma 1.6, Γ ∼= Γ` ⊂ SU(3). And Γ` acts linearly on S5 lifting the Γ̄ = Γ̄`-
action on CP 2 (but we should note that the Γ`-action may not be free a priorly).
For the sake of convenience, let us identify Γ` with Γ. It remains to prove that, the
free Γ-action on S5 is conjugate to the linear Γ`-action.

Consider the (Γ, T 1)- (resp. (Γ`, T
1)) principal bundle S5 → S5/T 1.

By Theorem (??) it suffices to prove that the induced principal T 1-bundle

(1.7) T 1 → EΓ×Γ S5 → EΓ×Γ CP 2

is equivalent to the corresponding principal T 1-bundle of (Γ`, T
1)-bundle on S5. It is

easy to see that the fundamental group of EΓ×ΓCP 2 is Γ, and π2(EΓ×ΓCP 2) ∼= Z.
Therefore, H2(EΓ ×Γ CP 2;Z) ∼= Z ⊕H1(Γ), where the free part may be regarded
as Hom(π2(EΓ×Γ CP 2);Z).

Let eΓ denote the Euler class of the principal T 1-bundle. By the homotopy exact
sequence one sees that eΓ is a primitive element of H2(EΓ×ΓCP 2;Z), i.e. modulo
the torsion group H1(Γ) it generates the group. Moreover, with the notions in the
proof of Lemma 3.4, H1(Γ) ∼= Zs.

Let Zs be the subgroup of Γ generated by B, which acts on CP 2 with three
isolated fixed points. Let [p] ∈ CP 2 be such a fixed point with isotropy group
Zs. Consider the orbit Γ[p] ⊂ CP 2. The restriction of the fiber bundle (1.7) on
EΓ×Γ Γ[p] = EZs ×Zs

[p] is equivalent to the principal bundle

(1.8) T 1 → EZs × T 1 → EZs ×Zs
[p] ' BZs
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whose total space is homotopy equivalent to T 1/Zs = T 1. Therefore, the Eu-
ler class eΓ, restricts to the Euler class of (1.7), which is clearly a generator of
H2(EZs×Zs

[p]) = Zs. On the other hand, the generator of Hom(π2(EΓ×ΓCP 2),Z),
considered as a subgroup of H2(EΓ×Γ CP 2), restricts to zero in H2(EZs ×Zs

[p]),
since π2(EZs ×Zs

[p]) = 0. Therefore, we may write eΓ in the following form

(1, α) ∈ Hom(π2(EΓ×Γ CP 2),Z)⊕H1(Γ) ∼= Z⊕H1(Γ)

where α ∈ H1(Γ) ∼= Zs is a generator.
Fix a generator 1 ∈ H1(Γ) ∼= Zs. By [Wo] Theorem 5.5.6 (cf. page 168, where

d = 3 for our case) there always exists an automorphism ψ = ψ1,t,u : Γ → Γ
such that the induced automorphism [ψ] ∈ Aut(H1(Γ)) satisfies that [ψ](α) = ±1
(depending mod (3) type of t). Therefore, by composing the Γ-action with an
automorphism ψ of Γ, we may assume that eΓ = (1,±1).

The same goes through for the linear Γ`-action on S5. And the Euler class
eΓ`

= (1,±1) ∈ H2(EΓ`×CP 2,Z). It is easy to see that, for the complex conjugated
linear action of Γ` on S5, the Euler class is (1,−1) (resp. (1, 1)), if eΓ`

= (1, 1)
(resp. resp. (1,−1)). Therefore the T 1-principal bundle (1.7) is equivalent to the
T 1-principal bundle associated to some linear Γ`-action. In particular, Γ acts freely
and linearly on S5, and so Γ is isomorphic to a 5-dimensional spherical space form
group. The desired result follows. ¤

c. Proof of Theorem A by assuming Theorem E.

We need the following lemma to apply the criterion in Proposition 1.3.

Lemma 1.9.
Let M be a closed 5-manifold of positive curvature whose universal covering space

is a sphere. Assume that M admits a π1-invariant isometric T 1-action. If π1(M)
is not cyclic, then the T 1-action is free and commutes with the π1(M)-action such
that the induced π1(M)-action on M̃/T 1 is pseudo-free.

Proof. Consider the holonomy representation, ρ : π1(M) → Aut(S1) = {±1}, and
let Γ = ker(ρ), a normal subgroup of index at most 2 which commutes with the
T 1-action. It is easy to see that if the T 1-action is not free, then Γ =< γ > is cyclic
and the induced γ-action on M̃/T 1 is pseudo-free. Otherwise, M̃ has a T 1-invariant
totally geodesic 3-submanifold N . Because π1(M) preserves N , π1(M) is cyclic, a
contradiction.

Consider the γ-action on M̃/T 1 = CP 2. Then γ has three isolated fixed point.
Assume that β /∈ Γ.

By [RW] the T 1-action on M̃ is free. If the induced π1(M)-action on M̃/T 1 is
not pseudo-free, then there is γ ∈ π1(M) such that the induced γ̄-action on M̃/T 1

has a fixed point component F̄0 of dimension 2. For any η ∈ π1(M), we then have
that η̄(F̄0) ∩ F̄0 6= ∅ i.e. there is x̄ ∈ F̄0 such that γ̄(η̄(x̄)) = η̄(x̄). This implies
that η̄−1γ̄η̄(x̄) = x̄ and thus η−1γη and γ generalize a cyclic subgroup of π1(M).
Consequently, η−1γη is in the normalizer of < γ >, and thus the normalizer is a
normal subgroup of π1(M). It is easy to see that the normalizer is cyclic, and thus
< γ > is a normal subgroup of π1(M), and therefore π1(M) is cyclic because it
coincides with the normalizer, a contradiction. ¤
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Proof of Theorem A by assuming Theorem E.
Consider M as in Theorem A, whose Riemannian universal covering space M̃

is homeomorphic to S5 (the sphere theorem). Let S5
δ denote a sphere of constant

curvature δ. By the volume comparison,

vol(M) =
vol(M̃)
|π1(M)| ≤

vol(S5
1/4)

C
< ε

is small, and thus without loss of generality we may assume M̃ admits a π1(M)-
invariant isometric T k-action (Theorems 1.1 and 1.2). By Theorem E, we may
further assume that k = 1. By Lemma 1.9, we can apply Proposition 1.3 to conclude
the desired result. ¤

2. Proof of Theorems B and C by Assuming Theorem E

d. Proof of Theorem B by assuming Theorem E.

Consider M be as in Theorem B. As in the proof of Theorem A, the volume of M
is small and thus M̃ admits a π1(M)-invariant isometric T k-action. By Theorem
E, it suffices to show that the condition on the fundamental groups implies that
k > 1.

Consider a π1-invariant T 1-action on M̃ . The kernel of the holonomy represen-
tation, ρ : π1(M) → Aut(T 1) ∼= Z2, is a normal subgroup of index at most two.
Then the T 1-action on M̃ descends to a T 1-action on M̃/ ker(ρ), which is either
M or a double covering of M . In particular, there is a local T 1-action on M . We
will call isotropy groups of the local T 1-action isotropy groups of the π1-invariant
T 1-action.

Lemma 2.1.
Let Mi be a sequence of closed n-manifolds of |secMi | ≤ 1 which converges in the

Gromov-Hausdorff distance to a compact metric space X of dimension (n−1). Then
there is a uniform upper bound on the order of isotropy group of the π1-invariant
T 1-action on Mi.

Proof. We argue by contradiction, assuming that xi ∈ Mi such that the isotropy
group T 1

xi
∼= Zhi with hi →∞ (see (1.1.1)). Passing to a subsequence if necessary,

we may assume that xi → x ∈ X. Note that an open neighborhood of x is home-
omorphic to a cone over the limit of S⊥xi

/T 1
xi

, where S⊥xi
is the unit sphere in the

normal space to T 1(xi), and T 1
xi

is the acts on S⊥xi
via the isotropy representation.

Because hi → ∞, the limit of S⊥xi
/T 1

xi
has dimension ≤ n − 3, and thus the cone

has dimension ≤ n− 2, a contradiction to dim(X) = n− 1. ¤

Consider an exceptional T 1-orbit T 1(x) in M , with isotropy group Zh. Then a
lower bound for h is related to the fundamental group in the following way. Let γ
denote the homotopy class of T 1(x) with order r, and let σ be the homotopy class
of a principal T 1-orbit with order s. Then h ≥ r/s.

In the proof of Theorem B, we will use the following result on fundamental
groups of positively curved manifolds ([Ro3]). A cyclic subgroup of π1(M) is called
maximal, if it is not properly contained in any cyclic subgroup of π1(M).
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Theorem 2.2.
Let M be a closed n-manifold of positive sectional curvature. If M admits a π1-

invariant isometric T k-action, then any maximal normal subgroup of π1(M) has
index ≤ w(n).

Proof of Theorem B by assuming Theorem E.
By the volume comparison, vol(M) = vol(M̃)/|π1(M)| ≤ vol(S5

δ )/w(δ). We may
assume that w(δ) is large so that vol(M) < ε. By Theorems 1.1 and 1.2, without
loss of generality we may assume that M admits a π1-invariant isometric T k-action.
By Theorem E, it suffices to show that k > 1.

We argue by contradiction: assuming a sequence, Mi, satisfying the above with
wi →∞, and k = 1. By the Gromov’s compactness, we may assume that Mi

dGH−−−→
X. Because k = 1, it follows that dim(X) = 4, and thus any isotropy group of the
π1-invariant T 1-action on Mi has order ≤ c (Lemma 2.1).

To get a contradiction, we will find an isotropy group of order > c. Take any
maximal normal cyclic subgroup Hi =< γi >⊂ π1(Mi). By Theorem 2.2, we obtain

wi ≤ [π1(Mi) : cent(π1(Mi))]

≤ [π1(Mi) : Hi ∩ cent(π1(Mi))]

= [π1(Mi) : Hi] · [Hi : Hi ∩ cent(π1(Mi))]

≤ w(5) · [Hi : Hi ∩ cent(π1(Mi))].

(note that the above implies that Hi is not trivial) Clearly, for i large we may
assume that [Hi : Hi ∩ cent(π1(Mi))] > c. Let σi denote the homotopy class of
a principal T 1-orbit on Mi. Then σi is in the center of π1(Mi). Assume that γi

preserves some T 1-orbit T 1(x̃) ([Ro3]). Because σ preserves all T 1-orbits, γi and σi

generate a normal cyclic subgroup, and the maximality of Hi implies that σi ∈ Hi.
Note that γi is a multiple of the homotopy class of the projection of T 1(x̃) in M .
Then the isotropy group of the projection has order at least [Hi :< σi >] ≥ [Hi :
Hi ∩ cent(π1(Mi))] > c, a contradiction. ¤

e. Proof of Theorem C by assuming Theorem E.

Similar to the proof of Theorem B, Theorem C is a consequence of the following
proposition and Theorem E.

Proposition 2.3.
Let M be a closed n-manifold of finite fundamental group satisfying

|secM | ≤ 1, diam (M) ≤ d,
vol (M)

sup injrad (M, x)
< ε1(n, d).

Then M admits a π1-invariant isometric T k-action with k > 1.

For a motivation of Proposition 2.3, consider the metric product of a unit sphere
and a flat ε-torus, Mε = Sn × ε2T k. Then vol (Mε)/ sup injrad (Mε) → 0 (resp. is
proportional to vol (Sn)) if k > 1 (resp. k = 1), and the π1-invariant structure in
Theorem 1.1 is the multiplication on the T k-factor.
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Proof of Proposition 2.3.
We may assume that ε1(n, d) is small so that vol (M) < ε(n, d), and thus M

admits a π1-invariant almost isometric T k-action (Theorem 1.1). Without the loss
of generality, we may assume that the metric is T k-invariant (Theorem 1.2).

We argue by contradiction; assuming a sequence, Mi, as in the above such that
vol(Mi)/ max injrad(Mi) → 0 and k = 1. Without loss of generality, we may assume
that Mi

dGH−−−→ X. Let xi ∈ Mi such that injrad(Mi, xi) = max injrad (Mi, x). We
claim that there is a constant, η > 0, such that (for all i) T 1(xi) is contained in the
η-tube Ui of some T 1-orbit, T 1(yi). Assuming the claim (whose proof is given at
the end of the proof), we will bound vol(Ui)

injrad (Mi,xi)
from below by a positive constant

(depending on η), a contradiction.
Because T 1 acts isometrically on Ui,

(2.3.1) vol(Ui) = length(T 1(yi)) · area(D⊥
i ),

where D⊥
i denotes a normal slice of Ui. We shall bound area(D⊥

i ) from below, and
bound length(T 1(yi)) in terms of length(T 1(xi)).

Let T 1
yi

be the isotropy group of T 1(yi), and let pi : Ũi → Ui denote the Rie-
mannian |T 1

yi
|-covering map, where Ũi = T 1 × D⊥

i , Ui = T 1 ×T 1
yi

D⊥
i (the Slice

lemma) and the lifting T 1-action acts on Ũi by the rotation of the T 1-factor. By the
Gray-O”Neill Riemannian submersion formula, the sectional curvature on Ũi/T 1 is
upper bounded by a constant c1(n). By the volume comparison, we conclude that
vol(D⊥

i ) = area(Ũi/T 1) ≥ vol(Bη), where Bη is a η-ball in the (n − 1)-space form
of constant curvature c1(n). From (2.3.1), we get

(2.3.2) vol(Ui) ≥ length(T 1(yi)) · vol(Bη).

By (1.1.2) we may assume that the second fundamental group of all T 1-orbits on
Ũi are uniformly bounded by a constant c(n)η−1. Then we may assume a constant
c(n, r) such that length(T 1(x̃i)) ≤ c(n, η) · length(T 1(ỹi)), where pi(x̃i) = xi and
pi(ỹi) = yi. Then

(2.3.3) length(T 1(xi)) ≤ c(n, η) · |T 1
yi
| · length(T 1(yi)).

Recall that the T 1-orbit at any point represents all the collapsed directions of the
metric (cf. [CFG]). In particular, we may assume that

(2.3.4) injrad(Mi, xi) ≤ 1
2
length(T 1(xi)).

Using (2.3.2)-(2.3.4), we derive

vol (Mi)
max injrad (Mi)

≥ vol (Ui)
1
2 length(T 1(xi))

≥ length(T 1(yi)) · vol (Bη)
1
2 length(T 1(xi))

≥ 2 · vol (Bη)
c(n, η) · |T 1

yi
| .

(2.3.5)
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By Lemma 2.1, we may assume that |T 1
x | ≤ h(n, d) and thus see a contradiction in

(2.3.5) because the left hand side converges to zero.
We now verify the claim. Recall that Mi/T 1 is homeomorphic and εi-isometric

X, εi → 0, and the projection of the singular set on Mi into X converging to the
singular set of X (with respect to the Hausdorff distance). On the other hand, X
is the metric quotient, X = Y/O(n), where Y is a Riemannian manifold on which
O(n) acts isometrically (cf. [CFG]). We can now pick up η from the stratification
structure on (Y, O(n) i.e. there are O(n)-invariant subsets,

Y = S0 ⊃ S1 ⊃ · · · ⊃ Sr, S̄i =
⋃

j≥i

Sj

such that each component of Si has a unique isotropy group, and Sr is a closed
totally geodesic submanifold. We can choose a sequence of numbers, 1 > ηr >>
ηr−1 >> · · · > η1 such that each x ∈ Si =

⋃
j>i Tηj

(Sj) satisfies that O(n)(x) has
a ηi-tube. We then choose η = η1/2. ¤

Remark 2.4.
Observe that the above proof goes through if one replaces the assumption,

“vol(M)/ sup injrad(M, x) < ε1(n, d)” by “vol(M)/injrad(M) < ε1(n, d)”. How-
ever, any spherical 5-space form satisfies vol(S5/Γ)/injrad(S5/Γ) ≥ π/3 while given
ε > 0, there are many spherical 5-spaces satisfying vol(S5/Γ)/ max injrad(S5/Γ) < ε
(see Example 2.6).

The following may be viewed as a converse to Proposition 2.3.

Lemma 2.5.
Let Mi

dGH−−−→ X such that |secMi
| ≤ 1 and diam(Mi) ≤ d. If dim(X) ≤ n − 2,

then vol(Mi)/ max injrad(Mi, x) → 0.

Proof. We argue by contradiction; without loss of generality we may assume that
vol(Mi)/ max injrad(Mi, z) ≥ c > 0 for all i. By the Cheeger’s lemma, the ratio,

c ≤ vol(Mi)
injrad(M)

· injrad(Mi)
max injrad(Mi, z)

=
vol(Mi)

max injrad(M, z)
≤ c(n, d),

and thus 1 ≤ max injrad(Mi,z)
injrad(Mi)

≤ c(n, d)/c.
Let Si denote the singular set of the π1(Mi)-invariant isometric T k-action on

Mi, and let Ui denote the ε-tube of Si. Then the orbit projection, pi : Mi − Ui →
Mi − Ui = (Mi − Ui)/T k (x̄ = pi(x)) is a Riemannian submersion with fiber a flat
manifold Fi. We may choose ε small so that

c

2
≤ vol(Mi − Ui)

max injrad(Mi, z)
=

∫
Mi−Ui

vol(p−1
i (x̄))dvol

max injrad(Mi, z)
.

Because diam(p−1
i (x̄)) → 0 uniformly as i →∞, again by the Cheeger’s lemma we

may assume that
vol(p−1

i (x̄)) ≤ injrad(p−1
i (x̄))εi,

where εi → 0 as i →∞.
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Because the fiber p−1
i (x̄) points all collapsed directions ([CFG]), we may assume

that injrad(Mi, x) ' injrad(p−1
i (x̄)). Then

c

2
≤ vol(Mi − Ui)

max injrad(Mi, z)

≤
∫

Mi−Ui

2injrad(Mi, x)
max injrad(Mi, z)

εidvol

≤ 2c(n, d)
c

vol(Mi − Ui)εi → 0,

a contradiction. ¤

We now apply Lemma 2.5 to construct spherical 5-space forms satisfying Theo-
rem C.

Example 2.6.
We first construct lens spaces, S5/Zp. Consider a semi-free linear T 2-action on

S5. Let T 1
i ⊂ T 2 such that diam(T 2/T 1

i ) ≤ i−1 and T 1
i has no fixed point. We then

choose a large prime pi so that Zpi
(⊂ T 1

i ) acts freely on S5 and length(T 1/Zpi
) ≤

i−1 (because the T 1
i -action has only finitely many isotropy groups). Clearly, the

Gromov-Hausdorff distance, dGH(S5/Zpi
, S5/T 2) → 0. By Lemma 5.2, S5/Zpi

satisfies the conditions of Theorem C.
We now construct non-lens spaces. Recall from [Wo] (p.225) that if a spherical

5-space group, Γ, is not cyclic, then Γ is generated by two elements,

γ1 =




R(1/m) 0 0
0 R(r/m) 0
0 0 R(r2/m)


 , γ2 =




0 I 0
0 0 I

R(3l/n) 0 0


 ,

satisfying that γm
1 = γn

2 = 1, γ2γ1γ
−1
2 = γr

1 with n = 0 mod (3), (n(r− 1),m) = 1,
r 6= r3 = 1 mod (m) and (l, n/3) = 1, where R(θ) denote the standard 2 × 2
rotation matrix with rotation angle θ. Clearly, the center of Γ is generated by γ3

2 .
Hence, the index of [Γ : γ3

2 ] ≥ m. Then S5/Γ satisfies conditions of Theorems B
and C when m large.

Example 2.7.
We will construct examples showing that Theorems B and C are false if relaxing

“δ > 0” to “δ ≥ 0”.
According to [Wo], there is a sequence of non-cyclic spherical 3-space groups, Γi,

such that S3/Γi converges to a closed interval I and [Γi : cent(Γi)] → ∞. Then
Mi = S2/Γi × S2 converges to I × S2 with 0 ≤ secMi

≤ 1. However, Γi cannot act
freely on S5 (any finite group acting freely both on S3 and S5 must be cyclic, cf.
[Bro]). Note that by Lemma 2.5, vol(Mi)/ max injrad(Mi) → 0.

3. Proof of Theorem D by Assuming Theorems E and F

In this section we give a generalization of Theorems E and F.
To exclude such an ambiguity, we introduce the following notion. We call an

abelian subgroup cs of a finite group Γ a semi-center, if its centralizer has index at
14



most two in Γ and if |cs| is ‘maximal’ among such abelian subgroups. Obviously,
a semi-center contains the center, and coincides with the center when |Γ| is odd.
However, a semi-center may not be unique when |Γ| is even.

The following theorem is a generalization of Theorem D.

Theorem 3.1.
Given 0 < δ ≤ 1, there exists ε(δ) > 0 such that if a closed 5-manifold M satisfies

0 < δ ≤ sec ≤ 1, vol(M) < ε(δ),

then M is homeomorphic to a spherical space form, provided
(3.1.1) a semi-center of the fundamental group π1(M) has index at least w > 0,

a universal constant (independent of δ);
(3.1.2) π1(M) does not contain any index ≤ 2 subgroup isomorphic to a spherical

3-space group.

By combining Theorem 1.1, Theorem E, Proposition 1.3 and Lemma 1.9, the
following generalized version of Theorem F implies Theorem 3.1.

Theorem 3.2.
Let M be a closed 5-manifold of positive sectional curvature which admits a π1-

invariant fixed point free isometric T 1-action. Then the universal covering M̃ is
diffeomorphic to S5, provided π1(M) satisfies (3.1.1) and (3.1.2).

Proof of Theorem D (resp. E) by assuming Theorem 3.1 (resp. 3.2).
It suffices to verify the conditions (3.1.1) and (3.1.2) in the circumstance of

Theorem C. Note that a spherical 3-space group of odd order is cyclic, therefore,
(3.1.1) and (3.1.2) hold if π1(M) has odd order, since π1(M) is not cyclic. If π1(M)
is a non-cyclic spherical 5-space group, by [Wo] p225 it contains an index 3 normal
cyclic subgroup, and therefore a semi-center coincides again with its center, and
π1(M) contains no spherical 3-space group of index at most 2. The desired result
follows. ¤

4. Preparations

In this section, we supply materials that will be used in the proofs of Theorems
D and E in the rest of this paper.

a. Fixed point set of abelian groups.

Consider a compact Lie group G acting isometrically on a closed manifold M .
Let F (G,M) denote the set of G-fixed points. Then each component of F (G,M)
is a closed totally geodesic submanifold. If G = T k, then F has even codimension.
For a generic compact Lie group, the topology of M may not be well related to the
topology of F (G,M). However, the opposite situation occurs when G is abelian
(cf. [Bre], p.163).

Theorem 4.1.
Let M be a compact Zh-space. If h = p is a prime, then

χ(M) = χ(F (Zp,M)) mod p.
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If Zp (p is a prime) acts trivially on the homology group H∗(M ;Z), then

χ(M) = χ(F (Zp,M)).

The last assertion of the above lemma is from [Bre] III exercise 13 (p.169).

Theorem 4.2.
Let a compact abelian Lie group G act effectively on a closed manifold M , and

let N denote an invariant subset. Then

rank(H∗(F (G,M), F (G,N); `)) ≤ rank(H∗(M, N ; `)),

where G = T k and ` = Q or G = Zk
p and ` = Zp.

A consequence of Theorem 4.2 is

Theorem 4.3 (Smith).
Let a torus T k act effectively on a closed manifold M . If M is a rational homology

sphere, then F (T k,M) is a rational homology sphere.

The T k-action on a sphere without fixed points is well understood.

Theorem 4.4 ([Bre], P. 164).
Let M be a n-dimensional homology sphere and admit a T k action with no fixed

point. If H ⊂ T k is a subtorus of dimension k−1, let r(H) denote that integer, for
which F (H, M) is a homology r(H)-sphere. Then with H ranging over all subtori
of dimension k − 1 and r(H) > 0, we have

n + 1 =
∑

H

(r(H) + 1).

A basic relation between the fundamental groups of M and that of its orbit space
is the following homotopy lifting property.

Lemma 4.5 ([Bre]).
Let M be a manifold which admits a compact Lie group G-action. If either G is

connected or G has a fixed point, then the orbit projection, p : M → M/G, induces
an onto map on the fundamental groups.

b. A generalized Lashof-May-Segal theorem.

Let G denote a compact Lie group (G can be finite). For two G-spaces, Y and
Z, a map, f : Y → Z, is called an G-map if f(g · y) = g · f(y) for all y ∈ Y and
g ∈ G.

A principal (G,T k)-bundle is a principal T k-bundle, T k → E
p−→ Y , such that E

and Y are G-spaces, p is a G-map and the G-action on E preserves the structural
group of the bundle. Note that the G-action and T k-action may not commute. Two
principal (G,T k)-bundles are called equivalent, if there is a G-equivariant bundle
equivalent map.
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Let B(G,T k)(B) be the set of equivalence classes of principal (G,T k)-bundles
over B. When G = {1}, we will skip G from the notation.

Let EG be the infinite join of G, a contractible free G-CW complex (cf. [Hu]).
Put BG = EG×G B and EG = EG×G E. There is a natural transformation,

Φ : B(G,T k)(B) → B(T k)(BG)

by sending a principal (G,T k)-bundle p : E → B to the principal T k-bundle pG :
EG → BG. The following theorem is a special case of [FR2] Theorem 3.3 which
generalizes the Lashof-May-Segal theorem.

Theorem 4.6.
Let B,G be as in the above. Then Φ : B(G,T k)(B) → B(T k)(B) is a bijection.

Theorem 4.6 can be used in the following situation (see Section 7): Let M be a
closed manifold of finite fundamental group which admits a pseudo-free T k-action.
Let M̃0 = M̃−S, and let X = (M̃−S)/T k. Then M̃0 → X is a (π1(M), T k)-bundle.

c. Positive curvature and isometric torus actions.

In the rest of this section, we will consider an isometric T k-action on a closed
manifold M of positive sectional curvature. As seen in Theorems 4.1 and 4.2 and
Lemma 4.5, the topology of M is closely related to the singular structure and the
orbit space of the T k-action. In the presence of a positive curvature, the singular
structure and the orbit space is very restricted. This is the ultimate reason for
many results in this field.

A basic constraint on the singular structure is given by following Berger’s van-
ishing theorem ([Ro1], also [GS], [Su]).

Theorem 4.7.
Let a torus T k act isometrically on a closed manifold M of positive sectional

curvature. Then there is a T k-orbit which is a circle. Moreover, the fixed point set
is not empty when dim(M) is even.

Theorem 4.7 implies, via the isotropy representation at a circle orbit, that large
k yields closed totally geodesic submanifolds of small codimension.

In the study of the fundamental group of a positively curved manifold on which
T k acts isometrically, the following result is a basic tool.

Theorem 4.8 ([Ro4]).
Let M be a closed manifold of positive sectional curvature on which T k acts

isometrically, and let φ be an isometry on M which commutes with the T k-action.
Then φ preserves some T k-orbit which is a circle.

We now illustrate a situation where Theorem 2.8 may be applied. Let T k act
isometrically on a closed manifold M of finite fundamental group, and let π :
M̃ → M denote the Riemannian universal covering. Let p : M̃ → M̃/T̃ k be the
orbit projection, where T̃ k denotes the covering torus of T k acting on M̃ . For
any γ ∈ π1(M), because the γ-action commutes with the T̃ k-action, γ induces an
isometry of M̃/T̃ k, denoted by γ̄.
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(4.9.1) γ̄ is trivial if and only if γ ∈ H, the subgroup generated by loops in a
principal T k-orbit.
(4.9.2) γ preserves an orbit, say T̃ k(x̃), if and only γ̄ fixes x̄ = p(T̃ k(x̃)).
(4.9.3) If k = 1 and γ preserves T̃ 1(x̃), then T 1(x) is an exceptional orbit, x = π(x̃)
whose isotropy group contains a subgroup Zh with h the exponent of γ.

Corollary 4.10.
Let M be a closed manifold of positive sectional curvature. If M admits an

isometric T k-action, then the subgroup generated by loops in a principal T k-orbit
is cyclic, say < α >. If α 6= 1, then for all γ ∈ π1(M), α and γ generate a cyclic
subgroup.

Theorem 4.11 ([GS]).
Let M be a closed n-manifold of positive sectional curvature. If M admits an

isometric T k-action, then k ≤ [n+1
2 ] and “=” implies that M is diffeomorphic to a

sphere, or a lens space, or a complex projective space.

Theorem 4.12 ([Ro2]).
Let M be a closed 5-manifold of positive sectional curvature. If M admits an

isometric T 2-action, then M is diffeomorphic to a sphere.

Consider an isometric T k-action on a closed manifold of positive sectional curva-
ture. A consequence of Lemma 2.5 is that large k implies a closed totally geodesic
submanifold of small codimension. The following connectedness theorem of Wilk-
ing provides a useful tool to contract information on homotopy groups from the
existence of a closed totally geodesic submanifold of small codimension (see [FMR]
for a further development).

A map from N to M is called (i + 1)-connected, if it induces an isomorphism
up to the i-th homotopy groups and a surjective homomorphism on the (i + 1)-th
homotopy groups.

Theorem 4.13 ([Wi]).
Let M be a closed n-manifold of positive sectional curvature, and let N be a closed

totally geodesic k-submanifold. If there is a Lie group G that acts isometrically on
M and fixes N pointwisely, then the inclusion map is (2k−n+1+C(G))-connected,
where C(G) is the dimension of a principal orbit of G.

We close this subsection by giving the following obstructions on a closed manifold
of non-negative sectional curvature from ([Gr2]).

Theorem 4.14.
Let M be a closed n-manifold of non-negative sectional curvature.

(4.14.1) π1(M) can be generated by at most `(n)-elements.
(4.14.2) rank(H∗(M ; `)) ≤ b(n), where ` is any coefficient field.

5. Proof of Theorem E for k = 3

Consider the case k = 3 in Theorem E. By Theorem 4.11, we may assume
that the T 3-action on M̃ does not commute with the π1(M)-action (equivalently,
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ρ : π1(M) → Aut(T 3) = GL(3,Z) is not trivial). For examples of such spherical
5-space forms, see [Wo] p.225.

The goal of this section is to prove the following:

Theorem 5.1.
Let M be a closed 5-manifold of positive sectional curvature. If M admits a

π1-invariant isometric T 3-action, then M is homeomorphic to a spherical space
form.

By Proposition 1.3, the following two lemmas imply Theorem 5.1.

Lemma 5.2.
Let M be a closed 5-manifold of positive sectional curvature. Suppose that M

admits a π1-invariant isometric T 3-action. Then T 3 has a circle subgroup T 1 which
acts freely on M̃ and which commutes with the π1(M)-action.

Proof. Let ρ : π1(M) → Aut(T 3) = SL(Z, 3) be the holonomy representation.
Without the loss of generality, we may assume that ρ is not trivial (see Theorem
4.11). We claim that ker ρ has index 3 in π1(M). First, M̃ is diffeomorphic to S5

(Theorem 4.11) and M̃/T 3 is homeomorphic to a simplex 42 as stratified set; the
three vertices are the projection of isolated three circle orbits in M̃ and the three
edges are the projection of three components of T 2-orbits (cf. [FR3]). Because
π1(M)/ ker ρ acts effectively on M̃/T 3 ' 42 which preserves the three vertices and
the three edges, it is clear that π1(M)/ ker ρ ∼= Z3.

Consider the standard SL(Z, 3)-action on a three torus. Note that SL(Z, 3) has a
unique subgroup isomorphic to Z3, generated by the permutation of three factors,
and the diagonal circle subgroup of T 3 is Z3-invariant. (cf. [Wo], p.225). This
implies that T 3 has a circle subgroup, T 1, on which ρ(π1(M)) ∼= Z3 acts trivially.
Therefore T 1-action and ρ(π1(M))-action commute, since tγ · x = γρ(γ)(t) · x, for
any γ ∈ π1(M), t ∈ T 3, and x ∈ M̃ .

It remains to show that the T 1-action is free. If 1 6= H ⊂ T 1 such that
F (H, M̃) 6= ∅, then F (H, M̃) is either a circle or a totally geodesic three sphere
(Theorems 2.3 and 2.13). Because π1(M) preserves F (H, M̃) and π1(M)/ker ρ acts
effectively on ∆2, we may assume that F (H, M̃) is a totally geodesic three sphere.
In particular, F (H, M̃) contains two isolated circle orbits (of the T 3-action). This
implies that π1(M) must fix a vertex of M̃/T 3 ' 42, and this implies that π1(M)
acts trivially on M̃/T 3, a contradiction. ¤

Lemma 5.3.
Let T 1 be as in Lemma 5.2. If ρ : π1(M) → GL(Z, 3) is non-trivial. Then the

induced π1(M)-action on M̃/T 1 is pseudo-free.

Proof. Suppose not, let γ ∈ π1(M) so that it acts on M̃/T 1 (≈ CP 2 up to orienta-
tion by Freedman’s result) with a 2-dimensional fixed point set. Let π : M̃/T 1 →
M̃/T 3 ≈ ∆2 be the orbit projection. By the proof of Lemma 5.2 we know that
π1(M)/ker(ρ) ∼= Z3.

If ρ(γ) is non-trivial, clearly the induced action of γ on M̃/T 3 has only an isolated
fixed point in the interior of the disc ∆2. Thus its preimage in M̃/T 1 is a 2-torus.
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This preimage contains the fixed point set of the γ-action on M̃/T 1, which is a
totally geodesic 2-dimensional submanifold (a sphere or RP 2). A contradiction.

It remains to consider the case when ρ(γ) is trivial. If γ has a 2-dimensional
fixed point set in M̃/T 1, there is an element t0 ∈ T 1 so that the fixed point set of
t0γ ∈ T 3 o π1(M) contains a 3-dimensional totally geodesic submanifold F ⊂ M̃ .
Observe that F is T 3-invariant (since γ ∈ ker(ρ)) and its principal isotropy group
(of the T 3-action) is a circle subgroup C ⊂ T 3. Note that ker(ρ) is a normal cyclic
subgroup of π1(M) of index 3. Therefore, 〈γ〉 is also a normal subgroup in π1(M),
and so π1(M) acts on the fixed point set F . On the other hand, for an element
α ∈ π1(M) so that ρ(α) is non-trivial, the principal isotropy group of α(F ) = F is
ρ(α)(C). This proves that ρ(α)(C) = C. Thereby C = T 1, since the diagonal is
the unique fixed point circle for the holonomy representation ρ. This is absurd by
Lemma 5.2, since T 1 acts freely on M̃ . ¤

6. Proof of Theorem E at the level of fundamental Group

In this section, we will prove Theorem C at the level of fundamental groups. The
main result in this section is the following:

Theorem 6.1.
Let M be a closed 5-manifold of positive sectional curvature. If M admits a

π1-invariant isometric T k-action (k > 1), then the fundamental group of M is
isomorphic to that of a spherical 5-space form.

By Theorem 5.1, it suffices to prove Theorem 6.1 for k = 2.
According to [Wo], the fundamental group of a spherical 5-space form, Γ, is

either cyclic or is generated by two elements satisfying

Am = Bn = 1, BAB−1 = Ar,

such that n = 0(mod 9), (n(r − 1),m) = 1, r 6= r3 = 1 mod (m). We first give the
following criterion of a spherical 5-space form group.

Lemma 6.2.
A finite non-cyclic group Γ is isomorphic to the fundamental group of a spherical

5-space form, if Γ satisfies the following conditions:
(6.2.1) Every subgroup of order 3p is cyclic, for any prime p.
(6.2.2) Γ has a normal cyclic subgroup of index 3.

Proof. Writing |Γ| = mn with (m, 3) = 1, by the Burnside Theorem (cf. [Wo]
Theorem 5.4.1, p.163) and [Wo] Theorem 5.3.2 on page 161, Γ is metacyclic, i.e., it
is generated by two elements A and B with relations

Am = Bn = 1, BAB−1 = Ar

where ((r − 1)n,m) = 1 and rn ≡ 1(mod m). In particular, any Sylow 3-subgroup
of Γ is cyclic. By (6.2.2), {A,B3} generates a cyclic subgroup of index 3, and thus
r3 ≡ 1(mod m), but r 6= 1(mod m), otherwise Γ is cyclic. By [Wo] page 225, it
only remains to prove that n is divisible by 9. If not, i.e., (n

3 , 3) = 1. For any
20



prime factor p of m, let pi be the largest p-factor of m. Since the automorphism
group Aut(Zpi) is cyclic if p is odd, and an abelian 2-group if p = 2, its only order
3 subgroup is contained in Aut(Zp). By (6.2.1), B commutes with the order p
elements, i.e., corresponds to zero in Aut(Zp). Therefore, B commutes with every
element of order pi. This implies that Γ is an abelian group, and so it is cyclic. A
contradiction. ¤

In the proof of Theorem 6.1, we will establish (6.2.1) and (6.2.2).

Lemma 6.3.
Let M be a closed 5-manifold of positive sectional curvature. Suppose that M

admits a π1-invariant isometric T k-action (k > 1). If the T k-fixed point set is not
empty, then π1(M) is cyclic.

Proof. Because π1(M) preserves F (T k, M̃), it suffices to show that F (T k, M̃) is a
circle. By Theorem 4.12, the universal covering space M̃ is diffeomorphic to S5.
By Theorems 4.3 and 4.8, F (T k, M̃) is connected. Because T k acts effectively on
the normal space of F (T k, M̃), F (T k, M̃) is a circle. ¤

Recall that a T k-action (k > 1) is pseudo-free, if all singular orbits are isolated
and outside of which the T k-action is free.

Lemma 6.4.
Let M be a closed 5-manifold of positive sectional curvature. Suppose that M

admits a π1-invariant isometric T 2-action without fixed point. If the T 2-action on
M̃ is not pseudo-free, then π1(M) is cyclic.

Proof. First, M̃ is diffeomorphic to S5 (Theorem 4.12). Hence, if H ⊂ T 2 is a circle
or Zp (p is a prime), then F (H, M̃) is connected (Theorem 4.3).

Consider all circle subgroups of T 2 with nonempty fixed point sets: According to
Theorem 4.4, there are two possibilities: (1) There are two distinct circle subgroups:
T 1

1 , T 1
2 such that dim(F (T 1

1 , M̃)) = 3 and F (T 1
2 , M̃) is a circle. (2) There are three

distinct circle subgroups with fixed points set of dimension one.
Because F (ρ(γ)(T 1

1 ), M̃) = γ(F (T 1
1 , M̃)), ρ(γ)(T 1

1 ) = T 1
1 (otherwise, there two

distinct circle subgroups with fixed point sets of dimension 3). Consequently,
ρ(γ)(T 1

2 ) = T 1
2 and thus π1(M) preserves F (T 1

2 , M̃) (this implies that π1(M) is
cyclic).

We then consider (2) such that there is a Zp ⊂ T 2 (p is a prime) with dim(F (Zp, M̃)) =
3. If ρ(γ)(Zp) = Zp for all γ ∈ π1(M), then π1(M) preserves F (Zp, M̃). Because
F (Zp, M̃) contains exactly two of the three circle orbits in (2), π1(M) must preserve
the unique circle orbit outside F (Zp, M̃) and thus π1(M) is cyclic.

If there is γ ∈ π1(M) such that ρ(γ)(Zp) 6= Zp, then γ(F (Zp, M̃)) = F (ρ(γ)(Zp), M̃),
and F0 = F (Zp, M̃) ∩ F (ρ(γ)(Zp), M̃) is a circle which is the fixed point set of
Z2

p ⊂ T 2 (Theorem 4.4). Because ρ(γ)(Z2
p) = Z2

p for all γ ∈ π1(M), π1(M) pre-
serves F0, and thus π1(M) is cyclic. ¤

Lemma 6.5.
Let M be a closed 5-manifold of positive sectional curvature. Suppose that M

admits a π1-invariant isometric T 2-action with an empty fixed point set. If the
T 2-action on M̃ is pseudo-free, then either π1(M) is cyclic or satisfies
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(6.5.1) π1(M) has a normal cyclic subgroup of index 3.
(6.5.2) Any subgroup of π1(M) with order 3q is cyclic, where q is a prime.

Combining Lemmas 6.2-6.5, we conclude the case of Theorem 6.1 for k = 2, and
therefore the proof of Theorem 6.1, by Theorem 5.1.

From the proof of Lemma 6.4, there are exactly three isolated circle orbits.
The pseudo-free condition implies that M̃/T 2 is a topological manifold and thus

a homotopy 3-sphere because M̃/T 2 is simply connected. The π1(M)-action on
M̃ induces a π1(M)-action on M̃/T 2. Because γ ∈ π1(M) maps a circle orbit
to a circle orbit, we may view π1(M) acting on three points by permutations i.e.
there is a homomorphism, φ : π1(M) → S3, the permutation group of three letters.
The kernel of φ is a normal subgroup, which acts trivially on the three points (or
equivalently, which preserving each of the circle orbits). Thus ker(φ) is cyclic.

In the proof of Lemma 6.5 we need

Lemma 6.6.
Let M be as in Lemma 6.5. Then φ is trivial if and only if the holonomy repre-

sentation ρ : π1(M) → Aut(T 2) is trivial.

Proof. Let Hi, i = 1, 2, 3, denote the three isotropy groups of the isolated single
orbits of the pseudofree T 2-action on M̃ . Note that, for any γ ∈ π1(M), and x ∈ M̃
with isotropy group Ix, the isotropy group of γ(x), Iγ(x) = ρ(γ)(Ix). Therefore, if ρ
is trivial, then π1(M) preserves the isotropy groups, and so preserves every singular
orbits, i.e., φ is trivial.

Conversely, if φ is trivial, π1(M) preserves the three singular orbits. In particular,
π1(M) is cyclic. Therefore, ρ(γ)(Hi) = Hi for a generator γ ∈ π1(M). It is easy to
see that Hi, i = 1, 2, 3, generate T 2. Therefore, in the Lie algebra of T 2, R2, the
automorphism ρ(γ) ∈ GL(Z, 2) has three different eigenvectors whose eigenvalues
are 1 or −1. This implies that ρ(γ) is the identity. The desired result follows. ¤

Our proof of Lemma 6.5 involves a homotopy invariant, ‘the first k-invariant’.
This invariant can be used to distinguish two connected spaces whose first and
second homotopy groups are the same. Let’s now briefly recall its definition ([Wh]).

Let X be a connected space, and K(πi(X), `) denote the Eilenberg-Maclane
space. Corresponding to each map, k1 : K(π1(X), 1) → K(π2(X), 3), there is a
unique fibration,

K(π2(X), 2) −−−−→ Ek1yf

K(π1(X), 1) k1−−−−→ K(π2(X), 3)

with fiber K(π2(X), 2). Moreover, there is a unique Ek1 such that the classifying
map f has a lifting, f̃ : X → Ek1 ,

Ek1y
X

f−−−−→ K(π1(X), 1)
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satisfying that f̃∗ : πi(X) → πi(Ek1) is an isomorphism for i = 1, 2. The corre-
sponding cohomology class k1 ∈ H3(K(π1(X);π2(X)) is called the first k-invariant
of X. Clearly, the first k-invariant is a homotopy invariant.

Let L` = S3/Z` denote a lens space. It is well-known that the punctured lens
space has non-trivial first k-invariant, i.e., for p ∈ L`, k1(L` − {p}) 6= 0 (cf. [EM]).

Proof of Lemma 6.5.
(6.5.1) By the discussion after Lemma 6.4, we have a homomorphism φ : π1(M) →

S3. A priori, Im(φ) could be {1}, Z3, or S3 or Z2.
If Im(φ) ∼= {1}, then π1(M) fixes all isolated circle orbits, therefore π1(M) acts

on every circle orbit freely. This implies that π1(M) is cyclic.
We will now rule out the latter two cases.
If Im(φ) ∼= Z2, there is an element γ ∈ π1(M) so that φ(γ) is nonzero. By

definition γ preserves a unique singular circle orbit, with isotropy group H ∼= S1,
and permutes the rest two circle orbits. Since M̃/T 2 is a homotopy 3-sphere, the
induced action of γ on M̃/T 2 has at least a fixed point which is not the isolated
singular points (the singular orbits). This implies that γ preserves a principal
orbit T 2 · x and acts freely on. By Lemma 6.6 ρ(γ) is also nonzero, of order 2.
It is easy to show that the γ-action and the transitive T 2-action on T 2 · x do not
commute. Therefore, the free γ-action on T 2·x has a quotient space the Klein bottle.
This implies that, up to conjugation, the action of γ on the orbit is given by the

composition of the multiplication
[

α1

α2

]
∈ T 2 with the rotation

[
1 0
0 −1

]
= ρ(γ)

on T 2. Thus, for t0 =
[

α−1
1

α−1
2

]
∈ T 2, the fixed point set of t0γ on T 2 · x contains

two disjoint circles, S1 × {±1}. Therefore, the fixed point set F of t0γ on M̃ has
dimension 3, a homology 3-sphere, which intersects with every principal orbit either
empty, or two disjoint circles.

Observe that F projects to the fixed point set γ on M̃/T 2. Therefore, γ acts
on M̃/T 2 with fixed point set a 2-dimensional homology sphere. If F does not
intersect with the circle orbit with isotropy group H (preserved by γ), the fixed
point set of γ on M̃/T 2 is not connected, a contradiction. Since H is preserved
by ρ(γ), i.e. ρ(γ)(H) = H, H is either S1 × {1}, or {1} × S1 in the standard
coordinate for T 2. Now the intersection of F with the singular circle orbit consists
of either two points, or the whole singular orbit, depending on whether the reduced
automorphism ρ(γ) ∈ Aut(T 2/H) is trivial or not. In the former case, H acts F
semifreely, with two isolated fixed points. A contradiction, since F is a homotopy
3-sphere by Theorem 4.13, because otherwise H acts on two points punctured 3-
sphere freely, absurd by Euler characteristic reasoning. For the latter case, the
quotient F/H is a 2-disk, with an action of {±1} ⊂ 1× S1 freely in the interior of
the disk. A contradiction again by the Brower fixed point theorem.

If φ(π1(M)) = S3, we may use φ−1(Z2) instead of π1(M) to get the contradiction.
It remains to prove (6.5.2). By (6.5.1), it suffices to prove π1(M) satisfies the

pq-condition for q = 3. If π1(M) contains a non-cyclic subgroup of order 3q, where
q is a prime, then the subgroup contains Z3 as a subgroup which acts pseudo-freely
on M̃/T 2 (denoted by Σ), a homotopy 3-sphere. Let M̃0 denote the complement of
the three isolated circle orbits on M̃ , and let Σ0 = M̃0/T 2. Consider the T 2-bundle,

T 2 → M̃0/Z3 → Σ0/Z3,
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and its classifying map, f : Σ0/Z3 → B(T 2 o Z3). Because M̃0 is 2-connected, by
the transversality f is a 3-equivalence. This implies that the first k-invariant of
Σ0/Z3 is zero, a contradiction, because Σ0/Z3 is homeomorphic to the punctured
lens space L3 − {p} which has a non-zero first k-invariant. ¤

7. Proof of Theorem E for Pseudo-free T 2-actions

The goal of this section is to prove Theorem E where the π1-invariant isometric
T 2-action is pseudo-free (Theorem 7.1). In the complementary situation, there is
a totally geodesic submanifold of codimension 2 that requires a different argument
(see Section 8). In the proof we need to use the topology of the orbit space M̃/T 2,
which is a homotopy 3-sphere. A serious problem is that the Poincaré conjecture is
open and we can not conclude that it is homeomorphic to S3. This can be solved
because everything can go through by employing s-cobordism theory in differential
topology, and using the well-known s-cobordism theorem (due to Smale) in dimen-
sion 5. In this section we will give our proof by assuming the Poincare conjecture
and leave the proof in the general case to an Appendix, since it is probably easier
to follow the geometric ideas, and also partly since the work of Perelman.

Theorem 7.1.
Let the assumptions be as in Theorem E. If k = 2 and the T 2-action is pseudo-

free, then M is homeomorphic to a spherical space form.

To start with, it is very helpful to look at the linear model of a locally pseudofree
T 2-action on a spherical space form S5/Γ. There is a linear pseudofree T 2-action
on S5 defined as follows:

(eiθ, eiφ)(z0, z1, z2) = (ei(θ+φ)z0, e
i(θ−2φ)z1, e

i(−2θ+φ)z2)

with principal isotropy group Z3 generated by (e
2
3 πi, e

4
3 πi).

A linear action of a cyclic group Zk` on S5 commuting with the linear pseudofree
T 2-action reduces to a linear action on the orbit space S5/T 2 = S3. Let Zk denote
the principal isotropy group of the reduced linear action on S3. It is equivalent
to say that Zk acts along the T 2-orbits. The reduced Z` = Zk`/Zk action on S3

has a fixed point set S1, which spans a linear plane of R4. The condition of the
linear Zk action (defined by multiplying (e

a
k πi, e

b
k πi, e

c
k πi)) along the T 2-orbits can

be written as a + b + c = 0(mod 2k).
Let Γ be a non-cyclic spherical 5-group acting freely and linearly on S5, Γ ⊂

SO(6) is generated by two matrices

A =




R(1/m) 0 0
0 R(r/m) 0
0 0 R(r2/m)


 , B =




0 I 0
0 0 I

R(3/n) 0 0


 ,

where R(θ) denote the standard 2×2 rotation matrix with rotation angle 2πθ, and
I the 2 × 2 identity matrix, r, n ∈ Z satisfying r2 + r + 1 = 0(mod m). Note that
the action by A may not be along the T 2-orbits.

In the following context we will continue to use Γ0 (resp. T 2
0 ) to mean a linear

Γ-action (T 2-action) on S5 so that it extends to a linear action of T 2
0 o Γ0.
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Consider the pseudofree linear T 2-action on S5 defined above. Let S5
0 denote

the complement of small open tubes (' D4 × T 1) around the three isolated circle
orbits on S5. Let M be as in Theorem 7.1. By Theorem 4.4 the pseudofree T 2-
action on M̃ ≈ S5 has exactly three isolated circle orbits. Let M̃0 denote the
complement of small open tubes of the three isolated circle orbits. By Theorem 6.1
Γ = π1(M) is a spherical 5-space group. Our main effort is to show that M0 = M̃/Γ
is homeomorphic to S5

0/Γ0. By [SW] the gluing of a handle D4 × T 1 is unique up
to homeomorphism, and therefore M is homeomorphic to S5/Γ0.

Let ρ : π1(M) = Γ → Aut(T 2) denote the holonomy representation of the π1-
invariant action. By Lemma 6.6 we know that ker(ρ) is cyclic, and the image ρ(Γ)
is either trivial or isomorphic to Z3. Let Zk denote the principal isotropy group
of the reduced Γ-action on M̃/T 2 := Σ. By definition one sees that Zk acts on M̃
through the T 2-orbits.

Now let us consider the principal T 2-bundle T 2 → M̃0 → M̃0/T 2 = Σ0. Assum-
ing the Poincare conjecture, Σ0 = S3

0 is the complement of S3 by removing three
small 3-disks. Note that Γ acts on this principal bundle, and moreover, the sub-
action of ker(ρ) commutes with the T 2-action. The following lemma is immediate:

Lemma 7.2. The principal T 2-bundle is unique up to weak equivalence. Therefore,
every pseudofree T 2-action on S5 is conjugately linear.

Proof. Note that the bundle is uniquely determined by its Euler class, an element
in H2(Σ0;Z2) ∼= Hom(Z2,Z2). Considering the Euler class as a 2× 2 matrix (given
by its classifying map to BT 2), its determinant is ±1 since the total space M̃0

is 2-connected by the transversality theorem. Therefore, up to the left action by
GL(Z, 2), i.e. up to an automorphism of T 2, the bundle is unique. The desired
result follows. ¤

By Lemma 7.2 the sub-action by Zk on M̃ ≈ S5 is conjugately linear. Therefore
M̃/Zk is diffeomorphic to a lens space S5/Zk. Of course one should note that there
are possibly many different ways to embed a Zk in T 2 which acts freely on S5, and
consequently the lens space may not be unique.

Let us consider the reduced principal T 2-bundle T 2/Zk → M̃0/Zk → Σ0, re-
garded as a Γ/Zk-equivariant bundle. By Lemma 7.2 M̃/Zk is a lens space.

Lemma 7.3. If the Γ-action and T 2-action on M̃ commute, then the above Γ-
equivariant principal T 2-bundle is Γ-equivariantly equivalent to a linear T 2-bundle
T 2/Zk → S5

0 → S3
0 .

Proof. Note that Γ is cyclic. Let us write Γ = Zk` where Zk is as above. The
effective action on Z` on Σ ≈ S3 is has fixed point. By a deep theorem of [BLP]
this action of Z` on Σ is conjugate to a linear action on S3. Therefore, by Theorem
4.6 it suffices to prove that the associated principal T 2-bundle

T 2/Zk → EZ` ×Z`
M̃0/Zk → EZ` ×Z`

Σ0

is unique up to weak equivalence. We need only to show its Euler class e(γ) ∈
H2(EZ` ×Z`

Σ0;Z2) can be realized by the Euler class of a linear Γ0-equivariant
principal T 2-bundle over S3

0 with total space S5
0/Zk, where Zk acts linearly on

S5 along the T 2-orbits. By some standard calculation we get that H2(EZ` ×Z`

Σ0;Z2) ∼= Hom(Z2,Z2) ⊕ Z2
` . By restricting the bundle to EZ` ×Z`

[p] where
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[p] ∈ Σ0 is a fixed point of the Z`-action, one gets immediately that e(γ) restricts
to a generator of H2(BZ`;Z2) ∼= Z2

` (an element of order `).
By comparing with the linear model discussed at the beginning of this section, it

is straightforward to check that every pair (a, b) ∈ Z2
` generating an order ` element

can be realized as the torsion component of the Euler class of a linear Z`-equivariant
principal T 2-bundle on S3

0 with total space M̃0/Zk`. The torsion free part of e(γ)
is uniquely determined by its lifting to H2(EZ` × Σ0;Z2) ∼= Hom(Z2,Z2), which
is the Euler class of the forgetful principal T 2-bundle on Σ0, regarded as a non-
equivariant bundle. By Lemma 7.2 this Euler class is uniquely determined by the
total space M̃0/Zk, or equivalently, by the conjugacy class of the embedding of Zk

in T 2. This proves the desired result. ¤

Next let us consider the case where the holonomy ρ : π1(M) = Γ → Aut(T 2) is
non-trivial.

Lemma 7.4. Let M be as in Theorem 7.1. If the holonomy ρ : Γ → Aut(T 2) is
non-trivial, then the Γ-equivariant principal T 2-bundle M̃0/Zk → Σ0 is uniquely
determined by the total space M̃0/Zk up to weak equivalent.

Proof. By Lemma 6.6 the image ρ(Γ) ∼= Z3 ⊂ GL(2,Z) = Aut(T 2). Recall that
SL(2,Z) ∼= Z4 ∗Z2 Z6 has a subgroup of order 3, unique up to conjugation, which is
generated by [

0 −1
1 −1

]
.

The action of ρ(Γ) (regard an element of order 3 in Γ) on Σ0 is free. The quotient
group Γ/Zk acts effectively on Σ ≈ S3, and which is not free, unless Γ/Zk

∼= Z3.
By Theorem 6.1 it is easy to see that Γ/Zk

∼= Z3 only if Γ is cyclic. Therefore, by
[BLP] once again the reduced action on Γ/Zk on Σ ≈ S3 is conjugate to a linear
action on S3, unless Γ/Zk = Z3. In the latter case (if Γ/Zk = Z3) we may replace
the ”conjugation” by ”s-cobordism” (cf. Appendix), and everything goes through.
For the sake of simplicity we now assume that Γ/Zk acts on Σ ≈ S3 is a linear
action. It is easy to see that Γ/Zk is cyclic, since Γ is a spherical 5-group (Theorem
6.1), and the action on Σ is linear. Let us write Γ/Zk = Z3n (in the linear model
this is generated by the matrix B).

By Theorem 4.6 the affine (Z3n, T 2)-bundle M̃0/Zk → Σ0, is uniquely deter-
mined by the associated affine T 2-bundle with the above holonomy ρ : Z3n →
GL(Z, 2). The Euler class for this affine bundle sits in the local cohomology group
H2(EZ3n ×Z3n

Σ0;Z2
ρ). By the short exact sequence 1 → Z2

ρ → Z[Z3] → Z→ 1 we
can calculate the local cohomology group

1 → H2(EZ3n ×Z3n
Σ0;Z2

ρ) → H2(EZn ×Zn
Σ0;Z) → H2(EZ3n ×Z3n

Σ0;Z)

where the middle space EZn×Zn
Σ0 is the three fold covering of EZ3n×Z3n

Σ0. In the
above exact sequence, the middle term is isomorphic to Z2⊕Zn, and the last term is
isomorphic to Z3n. By transgression we see readily that the torsion part of the mid-
dle term goes injectively into the last term. Therefore, the local cohomology group
H2(EZ3n ×Z3n Σ0;Z2

ρ) is torsion free, and of rank 2. By the universal coefficients
theorem, H2(EZ3n ×Z3n Σ0;Z2

ρ) is given by Homρ(H2(Σ0),Z2) ∼= Homρ(Z2,Z2),
where Homρ denotes the ρ-invariant homomorphisms. Therefore the forgetful ho-
momorphism Homρ(Z2,Z2) → Hom(Z2,Z2) corresponds to the forgetful map from
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a Z3n-equivariant T 2-bundle on Σ0 to a principal T 2-bundle. This is clearly injec-
tive since the torsion freeness. The desired result follows. ¤

Proof of Theorem 7.1.
Let M be as in Theorem 7.1. By Theorem 6.1 π1(M) = Γ is a spherical 5-space

group. By Lemmas 7.3 and 7.4 we know that M̃0/Γ := M0 is diffeomorphic to
S5

0/Γ0. Since M is obtained by gluing three handles S1 ×D4 along the boundary
components S1 × S3. Because every self diffeomorphism of S1 × S3 extends to a
self homeomorphism of S1 × D4 (cf. [SW]), the homeomorphism type does not
depend on the gluing. Therefore, M is homeomorphic to S5/Γ0. The desired result
follows. ¤

8. Completion of the proof of Theorem E

After the works in Sections 6-7, we are ready to finish the remaining case in the
proof of Theorem E.

Proof of Theorem E.
First, by Theorems 7.1 we only need to consider a non-pseudo-free T 2-action,

i.e. the T 2-action has a non-empty fixed point, a 3-dimensional stratum with circle
isotropy group, or a nontrivial finite isotropy group but without fixed point. In all
cases, π1(M) := Γ is cyclic (Lemmas 6.3 and 6.4). Recall that M̃ = S5 with an
action of T 2 oρ Γ.

Case (i). The T 2-action has a non-empty fixed point set;
Note that the fixed point set must be a circle (Theorem 4.2). By local isotropy

representation of T 2 at the fixed point set, there are two circle isotropy groups
with three dimensional fixed point sets, two totally geodesic S3. Observe that
the T 2-action on M̃ is free outside the union of the two 3-dimensional strata,
and the quotient space M̃/T 2 is homeomorphic to the 3-ball D3, whose boundary
S2 = D2

+∪D2
−, where D2

± is the image of the two 3-dimensional strata and D2
+∩D2

−
is the image of the fixed point set of T 2. We claim that the T 2-action and Γ-
action commute (equivalently, ρ is trivial). By Theorem 4.11 this implies that M
is diffeomorphic to a lens space.

Identify M̃/T 2 with D3. Observe that Γ acts isometrically on M̃/T 2 and pre-
serves the boundary ∂(M̃/T 2) = ∂D3. If the commutativity fails, Γ acts non-
trivially on M̃/T 2. By the well-known Brouwer fixed point theorem, Γ has at least
a fixed point in the interior of D3, which represents a principal orbit, say T 2 · x.
As in the proof of Lemma 6.5, Γ acts on T 2 · x with quotient a Klein bottle, since
ρ(Γ) is not trivial. Therefore, the same argument of Lemma 6.5 implies an element
t0 ∈ T 2 so that t0γ has a 3-dimensional fixed point set F in M̃ . By the Frankel’s
theorem, F intersects with the two 3-dimensional strata, of circle isotropy groups.
Clearly, F projects to the fixed point set of Γ in D3. Recall that F intersects with
a principal orbit in two circles. This together shows that the fixed point set of Γ
in D3 is a 2-dimensional, and so a disk, with non-empty intersections with both
D2

+ and D2
−. Therefore, the fixed point set F (Γ, D3) contains at least a point of

D2
+∩D2

−, the fixed point set of the T 2-action. For any such a point [x], its preimage
x ∈ M̃ satisfies γx = x. A contradiction, since Γ acts freely on M̃ .
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Case (ii). The T 2-action has no fixed point, but it has a 3-dimensional stratum
with circle isotropy group;

Let T 1 ⊂ T 2 denote the unique circle isotropy group with 3-dimensional fixed
point set. Since Γ preserves the strata, Γ preserves the isotropy group T 1, that is,
for any g ∈ Γ, ρ(g)(T 1) = T 1. Therefore, T 1oΓ acts on M̃ . We claim that the T 1-
action and Γ-action commute. Then M admits a T 1-action with three dimensional
fixed point set. By Theorem 4.11 again this implies that M is diffeomorphic to a
lens space.

It is clear that the T 1-action on M̃ is semi-free with fixed point set a totally
geodesic S3, and the orbit space M̃/T 1 is homeomorphic to D4. Note that Γ acts
freely on ∂(M̃/T 1) = S3. Therefore Γ acts on D4 with a unique fixed point in the
interior, saying 0 ∈ D4, which is a principal orbit for the T 1-action on M̃ . If the
commutativity fails, then there is a generator γ ∈ Γ such that ρ(γ) ∈ Aut(T 1) is
given by the inverse automorphism. Let T 1 · x0 denote the principal T 1-orbit over
0 ∈ D4. Since γ(x0) 6= x0, let t ∈ T 1 satisfy the equation t2x0 = γx0. Then x = tx0

satisfies the equation γx = γtx0 = ρ(γ)(t)γx0 = t−1γx0 = x. A contradiction, since
γ acts freely on T 1 · x0.

Case (iii). The T 2-action has only isolated singular orbits but has finite order
isotropy groups;

Assume that Zp ⊂ T 2 is an isotropy group of order p, whose fixed point set M̃Zp

is a totally geodesic 3-sphere. Note that Γ preserves Zp and it acts freely on M̃Zp .
By Theorem 4.4 the T 2-action has three isolated singular orbits, and the orbit space
M̃/T 2 is a homotopy 3-sphere. We first claim that the Γ-action and the T 2-action
commute and therefore T 2 acts on M . We argue by contradiction. Suppose not,
there is a nontrivial Γ-action on the orbit space M̃/T 2 acting transitively on the set
of three singular orbits (by Lemma 6.6). Therefore, there is an element γ ∈ Γ which
moves the three points transitively. Note that the image of M̃Zp/T 2 is an interval,
[0, 1], connecting two singular orbits. Let ρ : Γ → Aut(T 2) denote the holonomy.
By Lemma 6.6 ρ(γ) is non-trivial. Note that Zp, ρ(γ)(Zp), ρ(γ2)(Zp) are all isotropy
groups of the T 2-action on M̃ such that they have pairwisely different fixed point
set. However, since any two of Zp, ρ(γ)(Zp),ρ(γ2)(Zp) generate the same subgroup
isomorphic to Zp⊕Zp, of rank 2 in T 2, so the fixed point set of Zp⊕Zp is the union
of three isolated singular circle orbits in M̃ ≈ S5. A contradiction, by Theorem
4.3.

By quotient away the finite order isotropy group Zp, we obtain a T 2/Zp-action
on the quotient manifold M/Zp, and M̃/Zp. Without loss of the generality we
may assume that T 2/Zp is pseudofree on M̃/Zp (indeed, there are at most two
finite isotropy groups). Applying Theorem 7.1 to M/Zp we conclude that M/Zp is
homeomorphic to a lens space. Note that MZp is also a lens space whose compliment
is homotopy equivalent to the unique singular orbit outside MZp . Because the
branched covering of a 5-dimensional lens space along a 3-dimensional lens space
with compliment a homotopy circle is again a lens space (using the same fact about
the gluing along S1 × S3 we discussed in the proof of Theorem 7.1), the desired
result follows. ¤
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9. Proof of Theorem F

As we noticed in Section 3, Theorem 3.2 implies Theorem F. The goal of this
section is to prove Theorem 3.2. Recall that the algebraic conditions on the funda-
mental group π1(M) in Theorem 3.2 is essentially as follows:

(9.0.1) Any index ≤ 2 normal subgroup Γ / π1(M) has a center C(Γ) of index at
least w.

(9.0.2) Any index ≤ 2 normal subgroup Γ / π1(M) is not a spherical 3-space
group.

In fact (9.0.2) may be replaced by Γ is neither cyclic, nor generalized quaternionic
group, and binary dihedral group.

Lemma 9.1.
Let the assumptions be as in Theorem 3.2. Then

(9.1.1) Each singular stratum of the T 1-action is a circle and X̃ = M̃/T 1 is a
simply connected orbifold with only isolated singularities.
(9.1.2) H2(M̃ ;Z) is torsion free and has rank equal to b2(X̃)− 1.

Proof of Lemma 9.1.
(9.1.1) If there is a nontrivial subgroup Zp ⊂ T 1 with a fixed point component

Fix(Zp, M̃) of dimension 3, note that the fixed point set Fix(Zp, M̃) is invariant by
the free π1(M)-action. Thus π1(M) is isomorphic to the fundamental group of a
3-dimensional spherical space form, by Theorem 4.13, and therefore, it has a cyclic
subgroup of index at most two by [Wo]. A contradiction to the algebraic condition
(9.0.1).

(9.1.2) First, H2(M̃ ;Z) ∼= π2(M̃) (by the Hurewicz theorem). Let M̃0 denote the
union of all principal T 1-orbits. By (7.3.1) and the transversality, πi(M̃) ∼= πi(M̃0),
i = 1, 2. Because X̃0 = M̃0/T 1 is obtained by possibly removing some isolated
points, the exceptional T 1-orbits, by Lemma 2.5 X̃0 is simply connected. Since
every singularity in X̃ is a conical point whose neighborhood in X̃ is a cone over a
lens space S3/Zp, it is easy to see that H2(X̃;Z) = H2(X̃0;Z) ∼= π2(X̃0) (the last
isomorphism is from Hurewicz theorem). From the homotopy exact sequence of the
fibration,

1 → π2(M̃0) → π2(X̃0) → Z→ 1,

it suffices to show that H2(X̃0;Z) is torsion free. This is true because H2(X̃0;Z) ∼=
H2(X̃0, ∂X̃0;Z) (the Lefschetz duality) whose torsion is isomorphic to the torsion
of H1(X̃0, ∂X̃0;Z) = 0 (the universal coefficient theorem). ¤

b. Estimate the Euler characteristic of X̃.

To determine the topology of M̃ , we will first estimate the Euler characteristic
of X̃ using the constraint on the fundamental groups.

Proposition 9.2.
Let the assumptions be as in Theorem 3.2. Then χ(X̃) = 2 + b2(X̃) ≤ 5 or

equivalently, b2(X̃) = b2(M̃) + 1 ≤ 3.
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Let p : M̃ → X̃ = M̃/T 1 denote the orbit projection. Then π1(M) acts on X̃

by isometries. For γ ∈ π1(M), we will use γ̄ to denote the isometry on X̃ induced
by γ (cf. §2). By Theorem 4.8, F (γ̄, X̃) 6= ∅, if γ commutes with the T 1-action. To
estimate the characteristic of X̃, we will first estimate the number of isolated γ̄-fixed
points (see Theorem 4.1) via the technique of q-extent estimate ([GM], [Ya]).

The q-extent xtq(X), q ≥ 2, of a compact metric space (X, d) is, by definition,
given by the following formula:

xtq(X) =
(

q

2

)−1

max
{ ∑

1≤i<j≤q

d(xi, xj) : {xi}q
i=1 ⊂ X

}

Given a positive integer n and integers k, l ∈ Z coprime to n, let L(n; k, l) be
the 3-dimensional lens space, the quotient space of a free isometric Zn-action on S3

defined by
ψk,l : Zn × S3 → S3; g(z1, z2) = (ωkz1, ω

lz2)

with g ∈ Zn a generator, ω = ei 2π
n and (z1, z2) ∈ S3 ⊂ C2.

Note that L(n; k, l) and L(n;−k, l) (resp. L(n; l, k)) are isometric (cf. [Ya]
p.536). Obviously L(n;−k, l) and L(n;n − k, l) are isometric. Therefore, up to
isometry we may always assume k, l ∈ (0, n/2) without loss of generality. The proof
of Lemma 7.3 in [Ya] works identically for L(n; k, l) with 0 < k, l < n/2 to prove

Lemma 9.3 ([Ya]).
Let L(n; k, l) be a 3-dimensional lens space of constant sectional curvature one.

Then

xtq(L(n; k, l)) ≤ arccos
{
cos(αq)cos πn−

1
2

− 1
2
{(cos πn−

1
2 − cos π/n)2 + sin2(αq)(n

1
2 sin π/n− sin πn−

1
2 )2} 1

2

}

where αq = π/(2(2− [(q + 1)/2]−1)).

Corollary 9.4.
Let L(n; k, l) be a 3-dimensional lens space of constant sectional curvature one.

If n ≥ 61, then xt5(L(n; k, l)) < π/3.

Corollary 9.5.
If the exponent of γ̄ is at least 61, then F (γ̄, X̃) contains at most five isolated

fixed points.

Proof. We argue by contradiction, assuming x̄1, ..., x̄6 are six isolated γ̄-fixed points.
Let X̄ = X̃/〈γ̄〉. Connecting each pair of points by a minimal geodesic in X̄,
we obtain a configuration consisting of twenty geodesic triangles. Because X̄ has
positive curvature in the comparison sense ([Pe]), the sum of the interior angles
of each triangle is > π and thus the sum of total angles of the twenty triangles,∑

θi > 20π. We then estimate the sum of the total angles in the following way, first
estimate from above of the ten angles around each x̄i and then sum up over the six
points. We claim that the sum of angles at x̄i is bounded above by 10·xt5(x̄i) ≤ 10π

3
and thus

∑
θi ≤ 6(10 · π

3 ) = 20π, a contradiction.
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Let x̃i ∈ M̃ such that p(x̃i) = x̄i, and let t̃ ∈ T 1 such that t̃ · γ fixes T 1(x̃i). Let
S⊥x̃i

denote the unit 3-sphere in the normal space of T 1(x̃i). If the isotropy group at
x̃i is trivial, then the space of directions at x̄i in X̄ is isometric S⊥x̃i

/〈t̃ · γ〉 which is
a lens space with a fundamental group of order |γ̄|. By Corollary 9.4, we conclude
that the sum of the ten angles is bounded above by

(
5
2

)
xt5(L) = 10 · π

3
.

If the isotropy group at x̃i is not trivial, then the above estimate still holds because
the 5-extent only gets smaller when passing to the quotient of S⊥x̃i

by the isotropy
group. ¤

Lemma 9.6.
Let the assumptions be as in Theorem E. Then the subgroup of π1(M) acting

trivially on H∗(X̃;Z) has order ≥ |π1(M)|/k0, where k0 is a universal constant
depending only on the Gromov constant b = b(4) (cf. 4.14).

Proof. Let ρ : π1(M) → Aut(H∗(X̃;Z)) denote the homomorphism induced by the
π1(M)-action on H∗(X̃;Z). As seen in the proof of Lemma 9.1, H∗(X̃;Z) ∼= Z`,
where ` = b2(X̃) + 2 = b2(M̃) + 3 ≤ b. Because the order of the torsion subgroup
of Aut(H∗(X̃;Z)) is bounded above by a constant depending only on b ([Th]), say
k0, the conclusion follows. ¤

Proof of Proposition 9.2.
Because X̃ is a simply connected orbifold with isolated singularities (Lemma 9.1),

we can apply the Poincaré duality on homology groups with rational coefficients to
conclude that χ(X̃) = 2 + b2(X̃). Let Γ0 be the principal isotropy group of π1(M)
on X̃. By 4.10 Γ0 is cyclic and belongs to the center of a certain index at most
two normal subgroup (the subgroup of orientation preserving isometries in π1(M)).
Under the assumption of Theorem 3.2, i.e., (9.0.1), the index [π1(M) : Γ0] ≥ w. By
Lemma 9.6, the normal subgroup G ⊂ π1(M)/Γ0, acting trivially on H∗(X̃;Z) has
order ≥ w/k0.

For any β̄ ∈ G, by Theorem 4.8 the fixed point set F (β̄, X̃) 6= ∅ and by The-
orem 4.13 we may assume that F (β̄, X̃) is a finite set (otherwise M̃ contains a
3-dimensional totally geodesic submanifold, and so Theorem 4.13 implies that it is
a homotopy sphere). If β̄ is of prime order and |β̄| ≥ 61, by Theorem 4.1

χ(X̃) = χ(F (β̄, X̃)).

Therefore, by Corollary 9.5 we conclude χ(X̃) ≤ 5.
Now we assume that |G| has all prime factors ≤ 60. Since there are at most

17 primes less than 60, there is a prime p ≤ 60 so that G has a p-Sylow subgroup
Gp of order ≥ w

17k0
. Let β̄0 ∈ Gp be an element of order p generating a normal

subgroup of Gp (by group theory it always exists), we may assume that β̄0 has only
isolated fixed points for the same reasoning as above, say p1, · · · , pn. By Theorem
4.1, n = χ(F (β̄0, X̃)) = χ(X̃). Observe that n ≤ b = b(4). Now Gp acts on the
fixed point set F (β̄0, X̃), thus we get a homomorphism h : Gp → Sn, where Sn is
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the permutation group of n-words. Therefore, the kernel of h has order at least
w

17k0·n! ≥ w
17k0·b! . By Gromov π1(M) may be generated by a bounded number of

generators, so is Gp, generated by c elements. Hence ker(h) contains an element,
say β̄1, of order at least 61, if w

17k0·b! is sufficiently large. Since β̄1 fixes the set
{p1, · · · , pn} pointwisely, by Corollary 9.5 n ≤ 5. Therefore, χ(X̃) = n ≤ 5. ¤

c. The completion of the proof of Theorem 3.2.

Lemma 9.7.
Let M be as in Theorem 3.2. Then the T 1-action on M̃ is free.

Proof. We argue by contradiction, assuming the T 1-action is not free. Then there
is at least a finite isotropy group Zp ⊂ T 1. By Theorem 4.13 we may assume that
dim(F (Zp, M̃)) = 1, since otherwise, M̃ contains a totally geodesic 3-manifold.
Then F (Zp, M̃) consists of at most two components (circles), if b2(M̃) ≤ 1, or
three components if b2(M̃) ≤ 2 (Theorem 4.2).

Let H denote the subgroup of π1(M) preserving all components of F (Zp, M̃).
Then H is a cyclic normal subgroup such that the quotient π1(M)/H acting effec-
tively on the set of exceptional orbits. If b2(M̃) ≤ 1, by counting the number of
components π1(M)/H has order at most 2. A contradiction to (9.0.1).

If b2(M̃) = 2, and F (Zp, M̃) has exactly three components, it is easy to see that
H acts on X̃ = M̃/T 1 has at most five isolated fixed points, three of them are the
exceptional T 1-orbits with isotropy group Zp. Because H is normal in π1(M), thus
π1(M) acts on the fixed point set and it sends an exceptional orbit to an exceptional
orbit. Therefore, π1(M) acts on the union of the rest at most two isolated T 1-orbits
fixed by H. This implies once again that π1(M) has an index ≤ 2 cyclic normal
subgroup. The desired result follows. ¤

Lemma 9.8.
Let M be a closed 5-manifold of positive sectional curvature which admits a π1-

invariant isometric T 1-action. If π1(M) satisfies (9.0.1), then the induced π1(M)-
action on M̃/T 1 is pseudo-free.

Proof. We need only to show that every singular point of the π1(M)-action is
isolated. We argue by contradiction, assuming an element γ ∈ π1(M) with a fixed
point component F of dimension two in M̃/T 2. By Lemma 9.7, the T 1-action is
free. Then its pre-image F̃ = p−1(F ) ⊂ M̃ , is a fixed point component of tγ of
dimension three, for some t ∈ T 1. Because F̃ ↪→ M̃ is 2-connected (Theorem 4.13),
π2(M̃) ∼= π2(F̃ ) = 0 and thus M̃ is a homotopy sphere. From the homotopy exact
sequence of the fibration, T 1 → M̃ → M̃/T 1, it is clear that M̃/T 1 is a homotopy
complex projective plane and thus homeomorphic to CP 2 ([Fr]).

Note that γ has a unique isolated fixed point x̄, because M̃/T 1. We claim that
(9.8.1) The normalizer of 〈γ〉 is cyclic, say 〈β〉.
(9.8.2) For any η ∈ π1(M), η−1γη commutes with γ and thus η−1γη ∈ 〈β〉.

Because 〈β〉 has a unique subgroup of order |γ|, (9.8.2) implies that 〈γ〉 is a
normal subgroup in π1(M), and thus by (9.8.1) π1(M) is cyclic since then π1(M)
acts freely on the unique circle orbit, a contradiction. Because the normalizer of 〈γ〉
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fixes x̄, this proves (9.8.1). Because η(F̄ ) ∩ F̄ 6= ∅ (Theorem 4.13), there is ȳ ∈ F̄
such that γ(η(y)) = η(ȳ) and thus η−1γη(ȳ) = ȳ, and this proves (9.8.2). ¤

Lemma 9.9.
Let M be as in Theorem 3.2. Then M̃ is a homotopy sphere.

Proof. Because the T 1-action on M̃ is free (Lemma 9.7), X̃ is a closed simply
connected smooth 4-manifold of positive sectional curvature. Because b2(X̃) =
b2(M̃) + 1 ≥ 1, by Proposition 9.2, 3 ≤ 2 + b2(X̃) = χ(X̃) ≤ 5.

If χ(X̃) = 3, then b2(M̃) = b2(X̃) − 1 = 0. This together with (9.1.2) implies
that M̃ ≈ S5.

It suffices to rule out the cases χ(X̃) = 4 and χ(X̃) = 5.
Case (a) If χ(X̃) = 4;
Note that X̃ is homeomorphic to S2 × S2, CP 2#CP 2 or CP 2#CP 2, up to

a possible orientation reversing ([Fr]). By the classification of simply connected
5-manifolds (cf. [Ba]) M̃ = S2 × S3 or S2×̃S3. Because π1(M) preserves the
Euler class of the principal circle bundle T 1 → M̃ → X̃, the natural homomor-
phism given by the π1(M)-action on the second homology group, α : π1(M) →
Aut(H2(X̃;Z); I), where Aut(H2(X̃;Z); I) is the automorphism group preserving
the intersection form.

Let Γ0 (resp. Γ) be the principal isotropy group of π1(M)-action on X̃ (resp.
orientation preserving subgroup of π1(M)). Recall that Γ ⊂ π1(M) is a normal
subgroup of index at most 2, and Γ0 is in the center of Γ which generates a cyclic
subgroup with any element of Γ (cf. 4.10) Let G = Γ/Γ0. The homomorphism α

reduces to a homomorphism ᾱ : G → Aut(H2(X̃;Z); I). It is easy to see that the
image of ᾱ has order at most 2 (cf. [Mc2]).

Subcase (a1) If ker(ᾱ) has odd order;
Consider the action of ker(ᾱ) on X̃. Observe that the action is pseudo-free, and

every isotropy group is cyclic. By [Mc2] Lemma 7.5 and the first paragraph in the
proof of Lemma 4.7 [Mc2] (which identically extends to our case) it follows that,
ker(ᾱ) is cyclic of odd order. If Im(ᾱ) is not trivial and X̃ ≈ S2 × S2, by [Bre]
VII Corollary 7.5 there is an involution on X with a 2-dimensional fixed point set.
A contradiction by Lemma 9.8. If X̃ ≈ CP 2#CP 2 or CP 2#CP

2
, in the former

case every self homeomorphism of X̃ is orientation preserving, and for the latter
Im(ᾱ) = 0. Therefore, in either cases, π1(M) has an image in Aut(H2(X̃;Z); I)
of order at most 2, and by Corollary 4.10 it contains a normal cyclic subgroup of
index at most 2, a contradiction to (9.0.1).

Subcase (a2) If ker(ᾱ) has even order;
By [Bre] VII Lemma 7.4 any involution in ker(ᾱ) has 2-dimensional fixed point

set on CP 2#CP 2 and CP 2#CP
2
. Therefore, by Lemma 9.8 we may assume that

X̃ = S2 × S2. By [Mc2] Theorem 3.3 ker(ᾱ) is polyhedral. Therefore ker(ᾱ) is
either cyclic, dihedral, or is a non-abelian group of order of order 12 (Tec. and two
others) or ker(ᾱ) is Oct. (of order 24), or Icos. (of order 60). Thus, ker(ᾱ) is cyclic
or dihedral if the order |G| > 120. We may require our constant w in Theorem E
is larger than 120. By [Mc2] Theorems 3.9 and 4.10 G is listed as follows:

(9.9.1) a cyclic, or dihedral group;
(9.9.2) Q2km × Zn; where Q2km the generalized quaternionic group, m,n are

coprime odd integers;
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(9.9.3) D2km × Zn, where D2km = Zm o Z2k and Z2k acts on Zm by inverse
automorphism, m,n are coprime odd integers, and k ≥ 2;

(9.9.4) A non-splitting extension of a dihedral group by Z2.
Since Γ is a center extension of a cyclic group by G, by Lemma 9.10 below the

group Γ satisfies 2p-condition, i.e., for any prime p, a subgroup of order 2p is cyclic
(cf. [Mi]). By group extension theory, it is not hard to verify, the dihedral groups
in (9.9.1), (9.9.2) and (9.9.4) must be reduced from a quaternionic subgroup of Γ,
and the group D2km in (9.9.3) is reduced from D2k′m, where k′ ≥ 2. Moreover,
for G in (9.9.1), (9.9.2) and (9.9.3), Γ is isomorphic to a 3-dimensional spherical
space form group (compare [Mi] Theorem 2), and so π1(M) contains an index
at most 2 subgroup isomorphic to a 3-dimensional spherical space form group, a
contradiction by the assumption. If G is a group in (9.9.4), and [π1(M) : Γ] = 2,
there is a maximal cyclic subgroup 〈γ〉 of π1(M) of index 8. Therefore, π1(M) acts
on the 4 fixed points of γ on S2 × S2 without any even order isotropy group by
the maximality of 〈γ〉. A contradiction, since the permutation group S4 does not
contain cyclic subgroup of order 8. This shows that Γ = π1(M), and it contains a
quaternionic subgroup of index 2. A contradiction again to the assumption.

Case (b) If b2(X̃) = 3;
Since the Euler characteristic χ(X̃) is odd, by [Bre] VII Corollary 7.6 any in-

volution on X has a 2-dimensional fixed point set. Therefore, by Lemma 9.8
we may assume that π1(M)/Γ0 has odd order. In particular, π1(M) = Γ, i.e.
any element of π1(M) preserves the orientation of X̃. For the homomorphism
ᾱ : G → Aut(H2(X̃;Z)), by [Mc1] the kernel G0 = ker(ᾱ) is an abelian subgroup
of T 2 with non-empty fixed point set. Therefore, G0 must be cyclic by combining
Lemma 9.8, otherwise, there exists a cyclic subgroup of G0 with a 2-dimensional
fixed point set. Therefore π1(M)/G0 is isomorphic to an odd order subgroup of
the automorphism group Aut(H2(X̃;Z)) = GL(Z, 3). By [Th] the finite subgroup
of GL(Z, 3), up to possible 2-torsion, is a subgroup of GL(Z2, 3) which has order
(23−1)(23−2)(23−4), which is coprime to 5. Note that π1(M) preserves the fixed
point set Fix(G0, X̃), which consists of 5 isolated points. Therefore π1(M)/G0 is
an odd order subgroup of S5 and π1(M)/G0 6= Z5. This implies that π1(M) fixes
at least 2 points among Fix(G0, X̃) and so π1(M) is cyclic. A contradiction. ¤
Lemma 9.10.

Let S2 × S3 → S2 × S2 be a G-equivariant principal T 1-bundle. If G acts freely
on S2×S3, pseudofreely on S2×S2. Then there is no order 2 element of G acting
non-trivially on S2 × S2 inducing the identity on homology groups.

Proof. If not, for an order 2 element β, its fixed point set F in S2 × S2 consists of
4 points (by Theorem 4.1). For such a fixed point [x] ∈ S2 × S2 with x ∈ S2 × S3,
there is an element t ∈ T 1 so that βx = tx. The freeness of T 1-action and β-action
implies that the order of t is the same as β, of order 2. Since T 1 has only one
element of order 2, say t0, this proves that βt−1

0 has fixed point set the union of 4
circles. A contradiction by Theorem 4.2. ¤
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Appendix: s-cobordism theory

In the proof of Theorem E for pseudofree T 2-action (Section 7) we assumed the
Poincaré conjecture holds. The goal of this appendix is to give an account how this
assumption can be removed by using the s-cobordism theory.

We call two closed n-manifolds M1 and M2 are s-cobordant if there is an (n+1)-
manifold W with boundary M1 t M2 so that the inclusions i1 : M1 → W and
i2 : M2 → W are both simple homotopy equivalences (cf. [Ke]). The manifold W is
called an s-cobordism. The deep s-cobordism theorem (originally due to Smale for
simply connected manifold, and extended to non-simply connected case by Barden-
Mazur-Stallings, cf. [Ke] for a detailed account) asserts that an s-cobordism is
diffeomorphic (or homeomorphic if manifolds are TOP.) to the product M1× [0, 1],
provided n ≥ 5. Hence, M1 and M2 are diffeomorphic (resp. homeomorphic).
The dimension assumption is crucial. In fact, counterexamples exist for n = 3, 4,
by Cappell-Shaneson, and Donaldson’s theory. An s-cobordism theorem for sim-
ply connected 4-manifold (i.e. n = 3) would imply the 3-dimensional Poincaré
conjecture.

It is a well-known fact that every simply connected 3-manifold is s-cobordant
(by terminology should be called h-cobordant) to S3. The key issue of our solution
in the proof Theorem E without assuming the Poincaré conjecture is to replace
the homeomorphism (equivalently diffeomorphism) by s-cobordism. If we could
obtain an s-cobordism between our 5-manifold M with a spherical space form, the
s-cobordism theorem applies to imply

our desired result. Note that the dimension shifting is important and this can
be obtained by using the additional π1-invariant T 2-action on the manifold.

Definition A.1.
Let M1 (resp. M2) be a closed 5-manifold with a smooth action by T 2 o G

where the T 2-action is pseudofree and the G-action is free. We call that W is an
s-cobordism between (M1, T

2 oG) and (M2, T
2 oG) if

(A.1.1) W is an s-cobordism between M1 and M2;
(A.1.2) There is an action by T 2 oG on W whose restriction on M1 (resp. M2)

gives (M1, T
2 oG)(resp. (M1, T

2 oG) ), and the T 2-action is pseudofree and the
G-action is free.

By the s-cobordism theory (cf. [Ke]), W is homeomorphic to the product Mi ×
[0, 1] when dim(Mi) ≥ 5. However, the induced T 2-action on Mi × [0, 1] may not
preserve the slice Mi × {t} (i = 1, 2), t ∈ (0, 1), so that one may not conclude that
(M1, T

2) is conjugate to (M2, T
2).

As we have seen before, if T 2 acts pseudofree on S5, the orbit space S5/T 2 is a
manifold homotopy equivalent to S3. Hence, if W is an s-cobordism between two
pseudofree T 2-actions on S5, obviously, the orbit space W/T 2 gives an s-cobordism
between the two orbit spaces (two homotopy 3-spheres) of the actions on S5. We
will show below the converse also holds.

Lemma A.2.
A pseudo-free T 2-action on S5 is s-cobordant to a pseudo-free linear T 2-action.

Proof. As in Section 7 we make use the convention that T 2
0 indicates a linear T 2-

action on S5. Let V be an s-cobordism of the homotopy 3-sphere S5/T 2 := Σ
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and S5/T 2
0 = S3. By Theorem 4.4 T 2 (resp. T 2

0 ) has three isolated circle orbits,
denoted by T 1

i × D4 (resp. T̂ 1
i × D4) respectively. Let pi (resp. qi) denote the

projections of these circle orbits in S5/T 2 (resp. S5/T 2
0 ), i = 1, 2, 3, respectively.

Connecting pi and qi by a simple disjoint paths in V , i = 1, 2, 3, let V0 denote the
complement of the three simple paths. Observe that V0 is homotopy equivalent
to S3

0 = S3 − q1 ∪ q2 ∪ q3 (resp. Σ0 = Σ0 − p1 ∪ p2 ∪ p3). It is easy to see that
H2(S3

0 ;Z2) ∼= Hom(Z2,Z2). Consider the Euler classes of principal T 2-bundles on
Σ0 and S3

0 as 2 × 2 matrices in the above group. Hence, the determinants of the
matrices are ±1 because the 2-connectedness of the complement of the singular
orbits. Therefore, modifying by an automorphism of T 2 if necessary (in other
words, up to weak equivalence), we may assume that the two Euler classes are
homotopic, regarded as maps to the classifying space BT 2. The homotopy gives a
map h : V0 → BT 2 whose restrictions on S3

0 and Σ0 correspond to the classifying
maps of the principal T 2-bundles. Let W0 denote the total space of the T 2-bundle
over V0, which is a 6-manifold with boundary.

Finally, we can attach equivariantly three copies of T 1×D4× [0, 1] to W0 along
the boundaries, so that the three copies of T 1 × D4 × {0} fill the three singular
orbits in S5. This gives a T 2-manifold W with boundary S5 t S5, which yields the
desired s-cobordism between (S5, T 2) and (S5, T 2

0 ). ¤

In Lemmas 7.3 and 7.4 the induced Γ-action on the homotopy 3-sphere Σ (the
orbit space) may not be trivial. We need to find an equivariant s-cobordism between
(Σ,Γ) with a standard linear action on (S3,Γ). Recently, a deep result (cf. [BLP])
on 3-orbifold implies that every finite group acting non-freely on S3 is conjugate to
a linear action. Let Γ be a finite group. For a smooth or locally linear nonfree

Γ-action on a homotopy 3-sphere (possibly reducible) Σ, the result of [BLP]
implies that (Σ,Γ) is Γ-equivariantly diffeomorphic to (S3,Γ)#(|Γ| · Σ0,Γ), where
Γ acts linearly on S3, and acts freely on |Γ| · Σ0 and Σ0 is a homotopy 3-sphere
(we thank Porti for pointing out this fact to us). Therefore, it is easy to get
a 4-dimensional s-cobordism (V, Γ) between (Σ,Γ) and (S3,Γ). Indeed, we may
take (V, Γ) = (S3 × [0, 1],Γ)\(|Γ| · B0,Γ), where B0 is a contractible 4-manifold
with boundary Σ0, and \ is the boundary connected sum along the boundary piece
S3 × {1}. An exceptional case is Γ = Z3 which acts freely on the homotopy 3-
sphere Σ. In this case the main result of [BLP] does not apply. However, it is easy
to see that Σ/Z3 is simple homotopy equivalent to the lens space S3/Z3 (unique),
because that the Whitehead torsion Wh(Z3) = 0 (cf. [Coh]). Hence, there is
an s-cobordism between S3/Z3 and Σ/Z3, which gives exactly a Z3-equivariant
s-cobordism between (S3,Z3) and (Σ,Z3).

Lemma A.3.
The Γ-equivariant principal T 2-bundle over Σ0 in Lemmas 7.3 and 7.4 is Γ-

equivariantly s-cobordant to a linear principal T 2-bundle over S3
0 . Hence, M0 is

diffeomorphic to the linear model S5
0/Γ0.

Proof. Because the proofs of Lemmas 7.3 and 7.4 involve only homotopy theory,
using the Γ-equivariant s-cobordism V defined above, there is a well-defined Γ-
equivariant principal T 2-bundle over V0, where V0 is obtained by removing certain
Γ-equivariant three simple paths, e.g., in the case Γ acts non-freely on Σ, just take
the product (p1 ∪ p2 ∪ p3) × [0, 1] ⊂ V ; in the case Γ acts freely on Σ, take the
preimage of any simple path joining the singular point of S3/Z3 and Σ/Z3. The
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total space of the principal T 2-bundle over V0 gives a Γ-equivariant s-cobordism
between (M̃0,Γ) and (S5

0 ,Γ0), which implies the diffeomorphism between S5
0/Γ0

and M0. ¤
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