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CUDI is the extended Fortran code to calculate the electrodynamic and thermal behaviour of
any type of Rutherford cable subject to global and/or local variations in field, transport current,
and external heat release. The internal parameters of the cable can be freely varied along the
length and across the width, such as contact resistances, critical current, cooling rates etc. In
this way, all the typical non-uniformities occurring in a cable, e.g. broken filaments, strand
welds, cable joints, and edge degradation can be simulated. Also the characteristics of the
strands in the cable can be varied from strand to strand. Heat flows through the matrix, through
the interstrand contacts, and to the helium are incorporated, as well as the self-field and self-
and mutual inductances between the strands. The main features and structure of the program
will be discussed.
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1. Introduction 
  
 Modelling of the electrodynamic behaviour of Rutherford cables dates back to the early 1970s.  
Initially the modelling was focussed on the calculation of the inter-strand coupling currents (ISCCs) 
and coupling loss in case of a changing external (applied) field. First analytical calculations of these 
coupling currents were performed by Wilson in the case of unsaturated strands for fields parallel as 
well as perpendicular to the large face of the cable [1]. In this approach the cable was considered as a 
solid strip, in which wires spiral uniformly, an approach also followed by Walters and Krempasky [2], 
[3]. 
 
 In 1973 Morgan suggested calculating the ISCCs by modelling a Rutherford-type cable as a 
network of nodes interconnected by strands and cross-contact resistances Rc [4]. Such a discrete 
approach is more appropriate since the cable has a limited number of strands linked to each other 
through contact resistances with a spatial distribution. This network model could be applied to cables 
with unsaturated strands and with constant Rc and field-sweep rate perpendicular to the large cable 
face. The same type of network model is applied in 1980 to calculate the ISCCs for the ISABELLE 
cable [5]. Since 1988 other network models have been developed [6, 7, 8, 9, 10, 11, 12], that could 
also handle saturated strands, adjacent contact resistances Ra and field changes parallel to the large 
cable face. Later a full electrodynamic network model was developed, including as well the self-field, 
self- and mutual inductances, longitudinal fields, and possibilities for spatial variations in field, field 
sweep rate, contact resistances, and critical current [13]. Such local non-uniformities are likely to be 
present in many cables; for example, partial or complete strand breakage and filament damage in the 
cable edges due to the cabling process. Using this network model also the existence of Boundary 
Induced Coupling Currents has been demonstrated [14], as well as the sinusoidal field pattern these 
currents create in accelerator magnets wound with Rutherford cables. 
  
 Also other numerical models on often simplified structures of a Rutherford cable have been 
developed in recent years in order to study specific characteristics of the cable, such as Minimum 
Quench Energy (see for example [15]) or so-called ‘ramp-rate limitation effects’ (see for example 
[16]).  
 
 This paper describes the extension of a complete network model [13] with a thermal module, 
including heat flows along the strand, towards crossing strands, towards adjacent strands, and towards 
the helium. The result is a complete Thermal and Electrodynamic Network Model, called CUDI, that 
can be used to calculate many relevant effects in a Rutherford cable, such as inter-strand coupling 
currents, boundary-induced coupling currents, inter-strand and inter-filament coupling loss, current 
distribution, self fields, quench energy, stability, temperature margin, and UI-relation. User friendly 
interfaces are added to the program for entering the input parameters and visualisation of the results, 
and a copy of the program is now freely available.  
 
 Sections 2 and 3 deal with the geometry of a fully transposed Rutherford-type cable and how this 
geometry is modelled by means of a three-dimensional network of nodes, interconnected by 
resistances and strand sections. The equations that are used to solve the unknown currents are given in 
the next section. The thermal part of the model is discussed in section 5 and in section 6 it is shown 
how both the electrodynamic and thermal models are integrated, and which algorithm is used to obtain 
the solution for currents and temperatures. Section 7 concludes by giving an overview of the various 
input parameters, showing that the flexibility of the network model approach makes it possible to 
calculate with one model all relevant situations that can occur in a real cable.  



 

 2

2. Cable geometry 
  
 The x-y-z coordinate system is given in Fig 1. The Rutherford cable with length Lcab is situated in 
the positive x-y quadrant and extends in the positive z-direction, with a transport current flowing in the 
z-direction of the cable. Also the direction of the self-field (for positive transport current) is shown. 
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Fig 1.   x-y-z coordinate system and definition of the applied field Ba1, cable transport current 
Icab and self field Bsf. The dotted cable contour represents the optional return lead. 

 
Two fields can be applied (Ba1 and Ba2) each with their own longitudinal distribution and direction 

given by: 

Ba1,x(z)=Ba1(z)sin(θ1)sin(φ1)    [T]  (1) 

Ba1,y(z)=Ba1(z)cos(θ1)   [T]  (2) 

Ba1,z(z)=Ba1(z)sin(θ1)cos(φ1)    [T] (3) 

The three field components are also referred to as the parallel, perpendicular and longitudinal field 
components respectively. Field Ba2 is defined in a similar way using the angles θ2 and φ2. The cable 
has a width w and a thickness Th1 on edge 1 and Th2 on edge 2, and consists of NS strands, having a 
twist pitch LP. A keystone can be implemented by choosing Th1≠Th2. The mid-thickness of the cable is 
given by Thav=(Th1+Th2)/2.  

 
 A ‘return lead’ can be added in order to take into account the self field generated by the other 
cable in a bi-filary cable sample geometry. The transport current in the return lead is opposite to the 
one in the simulated cable, and is assumed to be uniformly distributed among the strands. No coupling 
currents are present in the return lead. The return lead is oriented with opposite keystone with respect 
to the simulated cable (see Fig. 1). Additional stabilizer on the outside of the cable, for example in 
Rutherford cables with an aluminium jacket, is not taken into account. However its additional current 
carrying capacities and heat capacity can be handled in CUDI by artificially increasing the matrix 
volume of the wires, an approach which is probably valid if the electrical and thermal contact between 
the strands and the jacket is very good. 
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3. Electrodynamic network model of a Rutherford-type cable 
 
 The cable is modelled by a three-dimensional network of nodes interconnected by strand 
sections and resistances (see Fig. 2). The strands are represented by lines with an infinitely small 
diameter. This implies that the distance between the line currents at both edges is equal to w(1-2/NS) 
and the distance between the line currents in both layers varies between Th1/2 and Th2/2. At both 
edges of the cable the strands follow a skew path from one layer to the other. At edge 1 the strands go 
from the upper layer to the lower layer; at edge 2 the strands go from the lower layer to the upper 
layer. The length of each strand section is about LP/(2NS) except for the two sections at the edges that 
are twice as long. The resistances Ra and Rc represent the resistances between adjacent and crossing 
strands. A few of these resistances are shown in the figure. 
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Fig. 2.   Network representation of the electrodynamic model of a Rutherford cable, 
showing for one calculation cell the contact resistances Ra and Rc. Note that the strand 
resistance Rs and the self- and mutual inductances are not shown. 

 
The currents Ia and Ic are the (coupling) currents between the strands of the cable through the 

contact resistances Ra and Rc, which can have various spatial distributions, see section 6. The currents 
Is are the currents in the strands. A given strand section i has a resistance Rs

i, an inductance Mii, and 
mutual inductances Mij with all the other j strand sections of the cable. The length of the cable is 
defined by the number of bands NB. Each band corresponds to a part of the cable equal to LP/NS (see 
Fig. 3). The start of band 1 is positioned at z=0. The end of band NB is positioned at NBLP/NS, which is 
equal to the cable length Lcab. 
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Fig. 3.   Longitudinal representation of the 10-strand cable, showing the band numbering, the 
calculation cells (from 1 to 9), and the numbering of the strand sections (from 2 to 19). 
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Each band consists of (Ns-1) calculation cells (see Fig. 3) and has (5Ns-3) unknown currents, 

namely: 

− (2Ns-2) strand currents Is, 
− 2Ns currents between adjacent strands Ia, 
− (Ns-1) currents between crossing strands Ic.  

Note that the small sides of a band consists of four resistances Ra (numbers 1, 2, 2Ns-1 and 2Ns) but 
only two strand elements (numbers 2 and 2Ns-1), which are about twice as long as the other strand 
elements. 
 
 
4. Equations to solve the currents in the network model 
 
 Using Kirchhoff’s laws the (5Ns-3) equations, needed to solve the current distribution in one 
band, can be set up. The following symbolic notations demonstrate the implementation in the 
computer code. The (5Ns-3) equations consist of: 
 
• (2Ns-2) equations in the nodes: 
 0sca =++ ∑∑∑ III    [A] . (4) 

• (3Ns-2) equations for a circuit: 
 A

dt
dBURIRI A⊥=++ ∑∑∑ sccaa )()(    [V] , (5) 

with dB┴A/dt the component of dB/dt normal to the enclosed surface A of the circuit, and Us the 
voltage over a strand section. Note that the field is composed of the applied fields Ba1 and Ba2 and 
the self field BSF. 

• One constraint: 
 cabsa III =+∑∑    [A] ,  (6) 

stating that all the currents flowing through the cross-section of the cable add up to the cable 
transport current Icab.  

 
The voltage Us over a strand section consists of a resistive part UR and an inductive part Uind. Two 
types of transitions are implemented in CUDI, namely: 

• The power law: 
nIIUU )/( critsCR =    [V] , (7) 

with UC the voltage at the critical current Icrit. Small and large n-values indicate a gradual and sharp 
transition respectively.  

• A linear increase in the voltage for strand currents larger than Icrit assuming that the surplus current 
(Is-Icrit) flows through the resistive matrix, so that: 

0R =U   [V] for Is < Icrit , (8a) 

)( critsmatR IIRU −=    [V] for Is > Icrit , (8b) 

with Rmat the resistance of the magnetoresistive matrix:  
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with ls the length of the strand section, ds the strand diameter, ρmat the field-dependent resistivity of 
the matrix and η the volume fraction of superconductor in the strand.  

 
The inductive part of the voltage of strand section i is given by: 

∑
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with Mi,j the mutual inductance between strand sections i and j. The expression of the mutual 
induction between two wires of finite length placed in arbitrary positions, as given by Grover [17], is 
used in CUDI. The summation has to be made over all the strand sections of all the bands, so 
N=(2NS-2)NB.  
 

Simulation of time-dependent effects is performed at discrete time steps tm. The time derivative of 
the strand current is therefore represented by the difference in current between two time steps (tm and 
tm-1), with Δtm=tm-tm-1: 
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using Rs=UR/Is. The right-hand side of this equation is now known except for the (usually very small) 
time derivative of the self field (since the field is composed of the applied fields and self field). 

Boundary currents have to be defined for the first band and the last band. Defining all strand 
currents equal to 0 A is equivalent to a case without transport current, for example simulating a piece 
of cable placed in an alternating field in order to measure the AC losses. Defining all strand currents 
equal to Icab/NS is equivalent to the case with a uniform joint resistance to the current lead. A non-
uniform joint resistance can be simulated by defining different strand currents in the first and last 
bands. 
 
 
5. The thermal model 

 
The discretisation of the cable for the thermal model is the same as for the electrodynamic model, 

i.e. the strands are divided in sections with a length equal to ls=LP/(2NS), except for the two edge 
sections that are twice as long (see section 3). Contrary to the electrodynamic model, the strand 
sections in the thermal model have a given volume Vs=lsπds

2/4, with ds the strand diameter. So for 
most Rutherford cables, the typical discretisation volume is about 1 mm3. The assumption is made that 
the material properties, temperature, heating and cooling are uniform over this volume, which is in 
first approximation correct, especially for strands having a matrix with high thermal conductivity. For 
a single strand section a thermal model can be set up considering that the section is in direct thermal 
contact with the helium and the following five strand sections (see Fig. 4): 
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• Two neighbouring sections (with temperatures Tn1 and Tn2) of the same strand, with a contact 
area Astr, and a heat conductivity kstr(T) usually dominated by the heat conductivity of the 
matrix. 

• Two sections of adjacent strands (with temperatures Ta1 and Ta2) , with a contact area Aadj, and 
a heat conductivity kadj(T) dominated by the contact surface, as shown later on.  

• One section of the crossing strand (with temperature Tcr), with a contact area Across, and a heat 
conductivity kcross(T) which is also dominated by the contact surface.  

HHe

Hcross

Hadj

Hstr

Pext

 
Fig. 4.   Model of the thermal heat flows towards one strand section, with heat flows Hadj to adjacent 
strands, Hcross to the crossing strand, Hstr along the same strand, and HHe to the helium. The external 
heat input is represented by Pext. 

 
The contact surfaces Aadj and Across are a function of the cable geometry and vary over the width of 

the cable due to the cable keystone. Empirical data are available [18] on a few cables which are used 
to scale to other type of Rutherford cables. A given helium volume (VHe) is attributed to each strand 
section, which is for typical insulated cables about 5-10% of the strand volume Vs. Heat flow is 
possible between this helium volume and the strand section, but no heat flow is possible between 
different helium volumes. During the simulation it is assumed that the mass of helium in contact with 
each strand section remains unchanged, and that its temperature and pressure can vary.  

 
During a time step Δt=tm-tm-1, the temperature of the strand section will change by a factor ΔTs and 

the temperature of the helium volume by a factor ΔTHe. The heat balance for the strand section can 
then be written as: 

VsCp,sΔTs/Δt = Padj/4 + Pcross/4 + Ps + Pext  - Hstr - Hadj - Hcross - HHe (13) 

with Padj the resistive heat in Ra, Pcross the resistive heat in Rc, Ps the resistive heat in the strand, Pext 
the externally applied heat, Hstr the heat flow to the neighbouring strand sections, Hadj the heat flow to 
the adjacent strand sections, Hcross the heat flow to the crossing strand section, and HHe the heat flow to 
the helium. Note the factor 4 in Eq. (13) resulting from the fact that the heat that is generated in Ra and 
Rc is distributed over 4 different strand sections, as can be seen in Fig. 2. 
 

The heat balance for the helium volume attached to each strand section reads: 

VHeCv,HeΔTHe/Δt=HHe=hHeAHe (14) 

with AHe the surface in contact with the helium. Note that also VHe and AHe vary across the cable width 
for keystoned cables. Adiabatic cases can be studied by defining hHe=VHe=0, whereas open-bath cases 
can be simulated with VHe=∞ and ΔTHe=0. 
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The heat capacity of the strand is given by: 

Cp,s=ηCp,SC+(1-η)Cp,mat (15) 

with η the filling factor, Cp,SC=f(B, T, Icrit) the heat capacity of the superconductor, and Cp,mat=f(B, T) 
the heat capacity of the matrix. Accurate relations for Cp,SC, and Cp,mat are incorporated in CUDI for 
standard materials such as NbTi, Nb3Sn and Cu, as well as the heat capacity for helium at constant 
volume.  
 

The heat flow terms to the 5 other strand sections can be written as: 

Hstr=kstr(Ts-Tn1)Astr/ls+kstr(Ts-Tn2)Astr/ls (16) 

Hadj=kadj(Ts-Ta1)Aadj+kadj(Ts-Ta2)Aadj (17) 

Hcross=kcross(Ts-Tcross)Across (18) 

The longitudinal heat conduction in the strand is usually dominated by the matrix; e.g. the heat 
conductivity of copper is about 400 W/K/m, whereas for NbTi it is about 4 orders of magnitude 
smaller. Data for kstr are incorporated in CUDI for standard materials such as NbTi, Nb3Sn and Cu.  
 

The conductivity between two adjacent strands (kadj) can be written in first approximation by: 

kadj=kcont*kstr/(kcont+kstr/d) [19] 

with d the strand diameter, and kcont the heat conductivity of the contact between the two strand 
surfaces (in W/K/m2), given by:  

kcont=xTq [20] 

with typical values for x of 100-1000 W/m2/K(1+q) and q=1.5-2.5 [19], depending on the oxidation 
level of the strand surface. Using these values and taking kstr=400 W/K/m, d=10-3 m, and T=4 K, it is 
immediately clear that kstr/d>>kcont so that kadj=kcont*d , i.e. the thermal resistance is dominated by the 
contact surface. Only at much higher temperatures will kstr start to play a role. Similar equations can 
be set up for the heat conduction to the crossing strand. 
 

In CUDI the steady-state heat flow to boiling Helium I is defined by 3 regimes: 

Natural convection:  hHe=c1(Ts-THe) for hHe < hHe
* (21a) 

Nucleate boiling: hHe=c2(Ts-THe)2.5 for hHe
* < hHe < hHe

** (21b) 

Film boiling: hHe=c3(Ts-THe) for hHe > hHe
** (21c) 

where the parameters c1, c2, c3, hHe
* and hHe

** can be freely varied. Typical values are 500 Wm-2K-1, 
5·104 Wm-2K-2.5, 250 Wm-2K-1, 10 Wm-2, and 104 Wm-2 respectively [20,21]. A transient cooling 
regime, preceding the steady-state regimes, is defined by: 

Kapitza regime: hHe=c4(Ts
4-THe

4) for ∫ <
t

t
IHe qdtth

0
lim,)(

 (21d) 

where the parameters c4 and qlim,I can be varied by the user. This transient regime is present until the 
cumulative heat transfer from the conductor exceeds the critical energy qlim,I (in Wm-2). A typical 
value for c4 is 100-300 Wm-2K-1, depending on the surface coating and oxidation of the strand [22].   
 
The steady-state heat flow to subcooled Helium II is described by the following formulas: 

Kapitza regime: hHe=c5(Ts
p-THe

p) for Ts-THe < T*
 (22a) 
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Film boiling: hHe=c6(Ts-THe) for Ts-THe > T*
 (22b) 

where the parameters c5, c6, p and T* can be varied by the user. Typical values for c5 and p are 100-
1000 Wm-2K-p and 1-4 respectively, depending on the surface condition of the strand. In transient 
mode the Kapitza regime is present until the cumulative heat transfer from the conductor exceeds the 
critical energy qlim,II (which is also a parameter that can be varied by the user). Note that there are 
various formulas in literature defining the limiting energies qlim,I and qlim,II depending on the type of 
helium channels in the cable, and the heat flux. It is very likely that the real heat transfer from a strand 
towards the helium does not exactly follow the above given relations in all situations. Comparison 
between experimental data and calculated values, which is foreseen in the coming years, can possibly 
give better insight in the heat transfer. 
 

During the time step Δt the temperature of the strand and the helium can change considerably, and 
hence also the values of the critical current, strand resistance, and resistive powers. All terms in the 
heat balance equations are therefore averaged over the time Δt; for example, the heat capacity of the 
matrix is a function of both the temperature at the previous time step and the actual time step, so 
Cp,mat=f(Ts(tm-1), Ts(tm)).  
 
 
6. Solving algorithm 

 
Calculations are performed for any pattern in time of the applied field(s), transport current and 

external heat release. The time steps have to be defined by the user and the code will iteratively 
calculate for each time step the solution of currents and temperatures everywhere in the cable. At each 
time step a matrix with dimensions NB(5NS-3) by NB(5NS-3)+1 is set up, containing all the relations of 
eqs. (4)-(6). Many matrix components contain the resistance Rs, which is a function of the current Is, 
the critical current Icrit(B, T), and hence also of the strand temperature Ts. The solution of the currents 
and temperatures requires therefore an iterative algorithm with the temperature module nested inside 
the electrodynamic module, as briefly described in the following way (with the temperature module in 
bold): 
 

Estimate initial values for the currents and temperatures, based on the solution of previous time 
steps and on the increase in field and transport current of the actual time step. 

 LOOP 
  Calculate the self-field based on the calculated currents of previous iterations. 
  Calculate the resistances Rs based on the calculated currents and critical currents of 
previous iterations. 
  Calculate the powers based on the calculated currents and resistances Rs of previous 
iterations. 
  LOOP 
   LOOP 

Find the solution of Eqs. (13) and (14) using the most recently calculated 
temperatures of the other strand sections 

   UNTIL (the Ts and THe of one section have converged to the required accuracy) 
  UNTIL (all temperatures of all sections in the cable have converged to the required 

accuracy) 
  Calculate Icrit=f(B, Ts) and Rs=f(Is, Icrit) with the most recently calculated values of Ts and 

Icrit 
  Solve the matrix and obtain new values for Ia, Ic and Is. 
 UNTIL (all currents have converged to the required accuracy)  
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Note that the initial estimate of the expected currents and temperatures (before the outer iteration loop 
starts) is quite important, since a good estimate can reduce the number of iterations considerably, 
whereas a bad estimate can sometimes even lead to non-convergence. The inner loop requires an 
iterative approach not only because of the very non-linear behaviour of the relations for heat capacity, 
heat conductivity, and heat flow to helium, but also because all terms in the heat balance equations are 
averaged over the time Δt, and therefore also depend on the solution of currents and temperatures of 
the actual time step. The central loop is needed because all temperatures of the cables depend on each 
other through the thermal heat flows Hadj, Hcross, and Hstr. The required accuracies are typically 10-3 A 
for the currents and 10-4 K for the temperatures. 
 

Different cases can now be distinguished:  
1. Constant temperature and all currents much smaller than the critical current. In this case, 

ΔTs=ΔTHe=0 and UR=Rs=0, so that the temperature module is not used and the unknown currents 
Ia, Ic and Is are calculated by solving the matrix only once, if the effect of the self-field can be 
neglected. A few iterations of the outer loop may be needed if the self-field is not negligible.  

2. Constant temperature and one or more currents close to or larger than the critical current. In this 
case, ΔTs=ΔTHe=0 so that the temperature module is not used. In the transition Rs becomes a 
function of Is and Icrit and the unknown currents Ia, Ic and Is have to be calculated by iteration 
through the outer loop. The convergence speed depends strongly on the steepness of the transition, 
the values of the contact resistances, time step and ramp rate of the transport current. 

3. Variable temperature and all currents much smaller than the critical current, implying of course as 
well that all temperatures remain below the critical temperature. In this case the currents and 
temperatures can be solved independently. The temperatures are solved through iteration of the 
central and inner loops. Convergence speed depends strongly on the temperature, helium flow 
regime, time step and heating powers. The currents are solved in the same way as for case 1). 

4. Variable temperature and one or more currents close to or larger than the critical current. In this 
case Rs is also a function of the critical current and hence of the temperature. Furthermore, the 
temperature is a function of the heating, the cooling and the heat capacities and hence a function of 
the currents Ia, Ic and Is (i.e. the solution of the matrix), and the temperatures Ts and THe (i.e. the 
solution of the heat balance equations). Convergence speed now strongly depends on the steepness 
of the transition, the values of the contact resistances, time step, ramp rate of the transport current, 
temperature, helium flow regime, and heating powers. Currents and temperatures can in some 
cases not converge at all, especially if the time steps are badly defined by the user. In this case the 
program will add automatically intermediate time steps so that temperature and current variations 
are smaller, and the initial estimate of currents and temperatures is more precise. 

 
In order to reduce the computing time, especially for long cables, the mutual inductances are 

included only for strand sections spaced apart by less than NB,mut bands (where NB,mut can be set by the 
user). By doing so the matrix will contain large areas of zeros in the lower left and upper right areas 
(see Fig. 5, matrix A), and computing time will be reduced significantly. Another advantage is that the 
equations in the square matrix A can be rewritten into a rectangular matrix B, which strongly reduces 
the use of internal memory. Only taking into account part of the mutual inductances is surely valid if 
the time derivative of the applied field is much larger than that of the self-field, because the twist of 
the strands reduces the inductive coupling. However, for a relatively large changing self-field, the 
transposition has basically no effect on the reduction of the coupling, and a large value for NB,mut could 
be required. In the latter case a good and faster alternative is by using a small NB,mut and calculating all 
the currents by solving the matrix iteratively, where the inductive component of the sections that are 
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far away are added to the right hand side of eq. (12). Convergence is usually fast because this 
inductive component has only a minor effect on the current distribution.  

 

Zeros

Zeros

non-Zeros

0

0

A B

More mut. ind.

More mut. ind.

 
 

Fig. 5.   Effect of the use of NB,mut on the number of zeros in the matrix. By neglecting the mutual 
inductances between strand sections that are spaced far away, one can rewrite matrix A into matrix 
B, thereby reducing the use of internal computer memory. 

 
 
 
7. Conclusions 
 
 With the recent implementation of a thermal module, a complete code, called CUDI, is now 
available for calculation of electrodynamic and thermal effects in Rutherford cables. Any type of 
Rutherford cable geometry can be simulated, including cables with partially superconducting and 
partially normal conducting strands. The additional stabilizer of jacketed Rutherford cables is not 
taken into account, although its additional current carrying capacity and heat capacity can be handled 
in CUDI by artificially increasing the matrix volume of the wires. The critical current, n-value, RRR, 
and contact resistance can be defined per strand, which is realistic since the wires of a multi-strand 
cable are often not made in the same production batch, and hence have slightly different 
characteristics. Any type of Icrit(B, T) surface can be defined, as well as any type of relation for the SC-
to-normal transition. Furthermore, many parameters can be varied along the length of the cable, to 
take into account realistic field maps and variations in contact resistances due to variation in pressure, 
soldering etc. Resistances Ra and Rc can also be varied across the width, which is likely to occur in 
keystoned cables, and can be given additional random distributions. Resistive cores/barriers can be 
simulated by increasing Rc in the cable centre. Also local variations in critical current and contact 
resistance can be programmed, in order to simulate, for example, current degradation in the cable 
edges (due to the cabling process), cold welds, broken strands, punch-throughs of the core etc.  
 
 Calculations are performed for any pattern in time of the applied field(s), transport current and 
external heat release. The transport current at the ends of the cable can be set uniform or non-uniform, 
simulating homogeneous respectively non-homogeneous joints with the current leads. The time steps 
have to be defined by the user and the code will iteratively calculate for each time step the solution of 
currents and temperatures everywhere in the cable. Calculation of the actual iteration step takes into 
account the results of temperatures and currents found in previous iteration steps, so as to converge 
faster to the required accuracy. Convergence is usually rather fast if the temperature rise is negligible 
or if the currents are smaller than the critical current. However, calculations in the resistive transition 
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along with a temperature variation can converge slowly or in some cases not converge at all, 
especially if the time steps are badly defined by the user. In the latter case the program will add 
automatically intermediate time steps so that temperature and current variations are smaller and give 
automatically a more stable iteration process. 
 
 A free public version of the code is available, together with a user friendly input module and a 
special routine for visualization of the output data. The electrodynamic part of the program was 
validated in the past, see especially [13], mainly by means of measurements on cables and magnets of 
inter-strand and boundary-induced coupling currents and their characteristic times. The thermal part of 
the program is not yet validated. For adiabatic conditions (e.g. in case of impregnated cables) the 
simulations are very likely to be correct. However, the simulation of the heat exchange with helium in 
the thermal module of the program is probably still too simple. At present, the program assumes 1) 
fixed helium volumes ‘attached’ to each strand section, 2) no helium flow between different helium 
volumes, and 3) no heat transfer between different helium volumes. Stability measurements on 
Rutherford cables at 1.9 K and 4.3 K with external heat pulses are currently performed to compare 
CUDI calculations with experimental data.  
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