




ALFRED P. SLOAN SCHOOL OF MANAGEMENT

ON THE IMPLEMENTATION OF SOPHISTICATED

INTERACTIVE SYSTEMS

.
!<-

. yJiSL-y

D; N. NESS - C. R. SPRAGUE - G. A. MOULTON

506-71

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139





MASS. INST. TECH.

FEB 14 1371

DEWEY LiB?.ARy

ON THE IMPLEMENTATION OF SOPHISTICATED

INTERACTIVE SYSTEMS

D: N. NESS - C. R." s'pRAGUE - G^.' aTmOULTON

506-71



I

RECEIVED

MAR 1 1971

M. I. T, Lldi-WKltS



On the Implementation of Sophisticated

Interactive Systems

David Ness, Christopher R. Sprague and G. Allen Moulton

This paper defines "sophisticated interactive systems." It

then considers the characteristics of the computer system necessary

to support such a system. Finally it discusses some strategies which

we have found useful in developing such systems.

5r^(50!^q





On the Implementation of Sophisticated ^ -w

Interactive Systems /l/i^^^

David Ness, Christopher R. Sprague, and G. Allen Moulton

Over the past several; years we have been involved in the development of

several interactive systems. Among these are:

1) The OPS-3 system on M.I.T.'s CTSS (Ness with Greenberger, Jones and

Morris (1)).

2) The PRISM system on CP-67/CMS (Ness and Moulton with Martin and

Green (2,3)).

3) An Interactive Monitor for an IBM 1620 (Ness and Moulton).

4) An Interactive Engineering Information System operating on an IBM

360/50 under OS (Sprague and Moulton with Pugh).

5) An Interactive Marketing System operating on a DEC PDP-10 computer

(Sprague and Ness (4,5,6)).

6) An Interactive Budgeting System on M.I.T.'s CTSS (Ness (7)).

7) Several other (smaller)efforts using M.I.T.'s Multics system and

General Electric's Time-Sharing System (in Milan, Italy).

Some observations about these experiences have distinct implications for

the implementation of other sophisticated interactive systems. We will first des-

cribe some of the characteristics of the class of systems that we are concerned

with and then discuss the requirements imposed by such systems on the computer

environment. Finally we turn to questions specifically related to the strategies

of implementation.

Let us begin by describing some of the major characteristics of the systems

that are of concern to us here. First we are interested in systems , i.e., groups

of programs broadly speaking devoted to a common purpose, but each of which has,

in some sense, an independent existence.





Second, the systems we are concerned with are complex because:

1) Interactions among the components are sufficient in number and quality.

2) The systems are large enough (tens of thousands of statements) to often

require several programmers working independently.

3) There is often a necessity of managing a large data base.

We note, here, that having several programmers working on the project intro-

duces a new dimension of complexity, namely it requires that the development pro-

cess itself be managed (either formally or informally).

So far all of the things mentioned apply^ equal ly well to both interactive

and batch-processing systems. Let us now define what we mean by interactive .

An interactive system provides quick feedback after performing some (hope-

fully useful) task or sub-task as commanded by its user. Such systems are typically

designed for direct use (e.g., by a manager himself) without technical or clerical

intermediaries. Since such users value their time highly, it is important not only

that the system provides a quick response, but that the user >s able to express

his commands easily and efficiently. This implies a convenient problem-oriented

interface, which in turn makes the systems designer's problem more complex. It

is often important, for example, to be able to recognize rather complex patterns

which parallel the user's thought processes.

Since these systems are directly used another problem arises. They are likely

(if successful) to generate change in the users themselves, and thus create new

demands on the system. Thus they must be flexible and open-ended in order to ac-

commodate these changes and grow with the user's own understanding of his problems.

As a final note, it is important to say that we are concerned with systems

which will be developed interactively as well as used interactively.

The Computer Environment

We have found the following to be important characteristics of the kind of





computer enviornment required to Implement a sophisticated interactive system:

1) A Machine Language Programming Capability

2) Higher Level Languages

3) Good Input/Output Control

4) Several Editing (and String Processing) Languages

5) A Machine Language Level Debugging Package with a Higher Level

Language Interface

6) The Ability to Selectively Share Information and Programs

7) The Ability to Share Active Processes

8) A Means of Absolute and Reliable Cormiunication with Secondary Storage

9) Alternative Systems

None of the systems we have worked with have provided all of these facilities.

Some of them have provided only a few. While this suggests that it is indeed

possible to implement a sophisticated system without all of these facilities, that

task is made much more difficult when some of the features are wanting. Let us

now consider each of them in detail.

Machine-Language Prograrming Capability

A machine langauge programming capability (along with good input-output

device control) allows the systems designer and implemented to develop programs

to perform necessary functions which are not covered by standard system software.

Such circumstances often arise in building a complex interactive system. We have

often been faced with the necessity of building a flexible input routine, some

special disk storage strategy handlers, user language compilers, etc. While it

might be possible to implement some of these procedures in higher level languages,

they tend to be machine specific anyway, and often a higher level language version

is less clear than an assembly version. In such circumstances machine langauge

implementation is the most direct route.





The order code of the machine is an important determinant of the difficulty

of machine language implementation. From a programmer's standpoint the PDP-10

order code, for example, is superior to the IBM System/360 or GE-645 order code.

As an example, the availability of symmetric forms of similar operations (such

as increment a counter and jump on any of the eight results of comparing to zero)

makes the coding of many common tasks much more natural . Some of the vehemence

of people who do not like machine language programming is surely due to the un-

necessary complexity of most machine languages.

Higher-Level Languages

It is clear, however, that a substantial proportion of the procedures in

most interactive systems are most easily expressed in a higher level language of

some sort. The detailed expression required by a machine langauge is inappropriate

to many of the problems that we have seen. In such circumstances a higher level

language (like FORTRAN, ALGOL, or PL/1) is not only easier and faster to write,

but also easier to understand. This means that it is a simpler task to modify and

adapt these procedures over time. The possibility of transferring a program to

another system also sometimes proves to be of substantial value.

Input/Output Control

The necessity of a good input/output interface was mentioned above in the

discussion of machine language. Interactive systems which support management

decision making may require a substantial data base. A tailor-made interface with

the user is also frequently important. An input-output system which allows the

user to select the actual source or destination of logical data streams is also

valuable. For example, the teletype can be used as an input device while a pro-

gram is being developed and debugged but in production the source device can be

redesigned as the disk. One may also want to take output which is normally sent





to the teletype, and send it instead to a disk file so that it can be manipulated

by another program (or, printed on a line printer).

Editing or String-Processing

A less obvious requirement is for editing and/or string processing languages.

It is clear that at least one editor is necessary. Why do we want more than one?

First, we recognize in implementing a sophisticated system that there will be at

least two classes of users: 1) the system designers, implementors, and adminis-

trators; and 2) the system users. In many cases the system users are not, them-

selves, prograrmiers. If it is going to be necessary for them to prepare and modify

files stored on the disk, a simple and straightforward editor is necessary.

At the same time, the system designers, implementors, and administrators

(and some of the users) need a powerful editing facility to assist with complex

problems which often show up in the course of their activities. The facility of

modifying parts of lines or of making a consistent global text rearrangment in a

file are common examples of the kind of operation required.

It is also useful, for system development, implementation, and maintenance

purposes to be able to write a "program" in the editing language. This essentially

turns the editor into a string-processor. The TECO (8) editor on the PDP-10 pro-

cesses this capability in a rather crude way. The QED (9) editor (implemented on

CTSS and MULTICS) is an even better example of this kind of flexibility. The use-

fulness of a programmable editing facility will be made clear when we discuss

program archives below.

Thus we want some sophisticated editing facilities for one class of user,

and some easy-to-use facilities for the other class of user. Most interactive

computer environments provide a simple editor. It is unusual for a sophisticated

editor to be provided.





Machine-Language Debugging

Another important capability involves being able to see exactly the "stage"

of the p>"0cess we are developing at any point in time. This is most easily ac-

complished by allowing access to the machine at the machine language or, better,

the assembler language level. This kind of facility also usually allows inter-

active modifications of a program. Trivial modifications may be made during a

debugging and testing run without necessitating a full cycle of editing, re-

assembling or recompiling, and reloading. Examples of this kind of facility are

FAPDBG(9) on CTSS, DDT(IO) on the PDP-10, and the Probe(ll) on Multics.

A related capability can allow us to see and interact with programs written

in higher level languages. In building a system involving programs written in

both higher level and machine language it is sometimes necessary to be able to

look intimately at this interaction. Even in some circumstances where only a higher

language is being used this kind of facility proves to be valuable. It is possible,

for example, to have the compiler for a higher level language produce an assembler-

like symbol table,, which can be used by a debugging language to give the impTemen-

tor access to the machine language program. Such simple things as using internal

tables which are directly related to the program writer's symbols make a vast

difference in this regard.

An example may clarify this point. In the PDP-10 system, DEC chose to have

their FORTRAN compiler generate assembly-like code which uses labels of the form

nP to identify lines of code generated from source language program statement n.

They also use source language names for variables. This makes it quite easy to

understand what source statements produced a given set of object statements.

Selective Sharing of Information

Selective sharing of information allows the system builder to differentiate

amongst classes of the user population. He may, for example, allow some users





(typically himself) to read and/or modify a given piece of information, while

other users (typically customers) can only read it, or even more stringently

can only read it by using some program which he makes available. Such facilities

are not always required in the initial design and use of an interactive system.

Nevertheless, the ability to share, and to control the sharing of, such informa-

tion often proves to be important in the long run. Consider, for example, the

problem of allowing many users to access a single data base with a common set of

programs. Incredibly, there are still newly designed commercial time-sharing

services where each user would need his own copy of both the data base and the

programs, at least while he was an active user of the information.

Closely related to this is the problem of protection . While we would want

all users to access a single data base, for example, we could not tolerate mali-

cious or inadvertent modification of either the data base or the common programs.

In some cases, theft of data and/or programs must also be prevented. Our key

requirement is selectivity , i.e., we wish to be able to give some users some

privileges, and to be able to differentiate amongst different classes of users.

It is also useful to be able to protect the user from himself, particularly

while a new program is being debugged. Many systems builders live in fear of a

program which "runs away" and proceeds to delete all of the currently active

files.

Sharing of Active Processes

The same consideration which requires selective sharing of information

and programs also argues for sharing of active processes. Here, however, the con-

cern is often even more visible at the outset. In a multiple user interactive

system it is likely that several different users will be performing the process

at the same point in time. If this is the case, then the opportunity to have

these processes share a common copy of the procedure may prove wery useful. If we





can divide a process into a sharable (of length S) and a non-sharable part (of

length N) then the total memory requirement for q active simultaneous users would

be:

qN + S

instead of

q(N + S) = qN + qS

which would be the amount required if the program were not separated into shar-

able and non-sharable segments. In the PDP-10 system, for example, FORTRAN is

divided in to 9K sharable and 2K non-sharable. This means that five active FORTRAN

compilations require 5'2K + 9K = 19K instead of 5'(9K + 2K) = 55K words of active

memory. This clearly implies a substantial saving for the system, both in terms

of active core requirements, and in terms of the amount of memory which must be

"swapped" back and forth between core and secondary storage.

Communication with Secondary Storage

A means of absolute and reliable communications with secondary storage (e.g.,

a "binary" editing facility) is also of great importance. We suggest, below,

that heavy use of secondary storage is often Mery important in making the design

effective. Interestingly enough, none of the systems that we have worked with

have provided this facility in other than rudimentary fashion.

This means of communication is important for several reasons. First, al-

though virtually all of the computer environments provide the facility to look

at the text information stored in a file, they often do things like eliminate

from the text any illegal or ill -formed characters. Such characters may be of

little interest when looking at the text visually, but of great importance in

terms of the effect they have on the operation of a program which processes the

text. Thus it may be very important to be able to detect the presence of such

characters in the file.





The ability to modify and/or generate such files also proves to be useful.

In the orocess of testing, a piece of the system may be ready for test before

the piece which generates its input is working properly. We thus need to be able

to modify this kind of information in a simple and direct way. We found this kind

of facility important enough to implement our own capability for performing these

operations on the 1620 and the PDP-10. CTSS already had a rudimentary version of

this kind of capability.

Alternative Suppliers

A final point to mention, in this catalogue of "necessary" features, is the

availability of more than one supplier of the computer environment. At the present

time the market place of time-sharing suppliers is highly volatile. This means

that new suppliers may come along and offer better prices, or old suppliers may

go out of business. Also systems may develop software bugs which may require moving

from one system to another if they cannot be quickly found and corrected.

Implementation Strategies

Before concentrating on those strategies especially appropriate to the im-

plementation of interactive systems, we should mention some strategies conven-

tionally pursued in batch environments and sitll valid in Interactive situations.

Higher-Level Languages Preferred

As much code as possible should be written in higher-level languages such

as FORTRAN, PL/1, ALGOL, etc. Usually, this means faster, easier coding; it al-

most always means code that is easier to read, document, modify, and understand.

A FORTRAN program for example, almost provides its own flowchart. There have been

higher-level languages in the past which were hard to read and understand (IPL-V

springs to mind), but most have vanished under the pressure of competitors with





some self-documenting features.

Of course, we sometimes choose assembly-level languages for parts of sys-

tems. As far as possible these should be kept to small closed subroutines whose

functions are microscopic and easily defined. When this is impossible, we find

it useful to first write in a higher-level language, and only after the system

is checked out, convert selected subroutines to assembly-level code by hand, re-

taining the higher-level copies as partial documentation.

Know the Machine

Although we strongly favor coding in high-level languages, we constantly find

ourselves debugging at the assembly language, or worse yet, machine-language level.

There are many reasons for this: disastrous errors often result in no more than

an absolute (or at best symbolic) dump; seemingly valid statements in a higher-

level language often produce what appears to be strange code, because of imple-

mentation restrictions, compiler idiosyncrasies, and the like; and miunderstand-

ings about the interface between the user program and operating system which can

often be resolved only at the machine-language level.

All this says that the programmers must be capable of dealing with the

machine at the lowest possible level. Some of our most mysterious bugs have

hatched out of a failure on this point. For example, we once had a situation where

some FORTRAN input/output fai'ed in some program spheres while it always succeed-

ed in others. We developed at least a dozen hypotheses to explain this, but the

trivial truth was long in coming - FORTRAN main programs call a set-up entry in

the operating system, while our assembly-level main program did not. All our prob-

lems came in phases with assembly-level main programs. We would still be wondering

about this problem if we had not been willing to debug at the assembly-language

level

.





Learning the Machine

One strategy for learning the machine has impressed us as especially

powerful. Early in development, define several subroutines which are expected to

be used often. Parcel these out to the programmers, to be coded in assembly lan-

guage. This will be a painful process, but everyone will learn the machine. The

odds are good that few if any of these subroutines will survive to the final sys-

tem, but they were not written to survive - their purpose was education.

Keep Statistics

It is easy to overlook the compilation of statistics about system operation.

Neglecting this portion of the system, however, means that locating bottlenecks

and opportunities for improvement is at best a matter of guesswork. If we wish to

follow the strategy of using higher-level language initially and later re-coding

in assembly-language, information about the costs of each small part of the system

is vital. There are other reasons for collecting such statistics, of course, but

the largest payoff is in locating areas of improvement.

Maintain Generality

We find it useful to program in as much generality as possible. For example,

the use of variable names and associated DATA statements (in FORTRAN) as a re-

placement for constants is very handy if a "constant" should change.

A far less trivial point is the use of such "list-processing" techniques as

threaded lists, free-space handlers, and arrays of pointers, even in those situa-

tions where array sizes and actual core size available are fixed. For one thing,

this may prevent extensive re-coding if a new algorithm or new class of problems

imposes a major change in the mix of data required. For another, if the program

is later moved to another system where the core bound is indeed adjustable, then

care exercised in the initial stages will result in greater flexibility and, often





enough, reduced costs. (For some of the dangers of pushing this argument too far

see Martin and Moses (12).)

Deletion is Easier Than Insertion

Our final point in this section is that it is far easier to delete state-

ments from a program than to add them. Therefore, we try to build our tracing and

debugging statements into our program initially, and remove them later. This also

gives us a good excuse for putting useful comnents into the code early. When in

doubt, put in a trace statement and a comment about it. Final results justify the

small extra effort.

We now come to those strategies especially useful when implementing complex

interactive systems.

Intermediate Files

We find it a useful practice to pass information from routine to routine by

means of intermediate files held in secondary storage called for above, helps in

at least two ways:

First, a calamitous failure of the program can be most easily diagnosed if

the outputs of and inputs to the various routines can be examined after the fact.

When such information is kept in core, it is all too often lost on program failure.

Second, the intermediate files provide a convenient structuring mechanism

for the system designers. At an abstract level, the writing of such a file can

mark the logical end of a portion of the program - providing a basis for segmen-

ting one's thinking. More practically, actual programming tasks can be easily

separated into, say, preparation and use of such a file.

Text Intercommunication Where Possible

If intermediate files are used, and to a lesser extent even if they are not,





it is wise to pass intermediate information as text wherever the volume (and,

implicitly, the amount of effort required) is low enough to permit it. The costs

are not insignificant: both coding time and running time are required for format-

ting and translation. The benefits come primarily in the debugging stages, where

the difference between information passes as text (and therefore readable) and

information passed in internal format can save literally hours per bug. Many errors

which are very difficult to detect when only internal data formats are used become

obvious when the same data is passed as text.

When the volume of data is large enough to preclude text intercommunication

in the final system, it is often still useful to write and check out with text,

converting when the operation of each routine seems correct.

Archiving of Information

We usually try to keep closely-related source programs packed together into

single files in secondary storage. (Many time-sharing systems provide a facility

for combining and separating individual text files. When one is lacking, we typ-

ically write one.) Not only does this strategy result in more compact files, it

also makes it easy to find a specific source program, and it provides a sort of

automatic check-list of programs which need to be examined before a change is

made to any of them.

When a program is to be modified, a copy can be extracted from the archive

and worked on, while the definitive copy remains safe and untouched in the archive.

When modifications are checked out and complete, the old version can be moved to

an archive of obsolete code, while the new version replaces it in the definitive

archive. This strategy is especially appropriate where there are several programmers

working at once. While there is some cost associated with combining and extracting

files, it is insignificant compared to the cost resulting from one programmer wip-

ing out another's changes.





Phase Structure

It is often appropriate to divide a system into completely separate phases,

each 0^ which monopolizes (virtual) core storage for a time and then terminates

by directing the time-sharing system to initiate the next phase. Usually, such a

structure is required because of resource limitations or by the economics of the

situation. But even when there is no requirement for phase structure, it can be

very usefu"!, when combined with communication by intermediate files.

When an error is traced to a specific phase, it is relatively easier to

find and correct than if all code was potentially suspect. Even better, the use

of hand-built test files allows one to build, check out, and debug phases one by

one. They need not even bebuilt in "order".

As the system develops, it is very easy to insert a new phase between two

existing phases, to eliminate a phase, or to alter the order in which phases are

executed. Another powerful system-development tool which we will call the "alter-

nate-phase feature" can best be described by an example. Suppose there are mul-

tiple users B,C,D ... of a system which is contained in "user" area A. Each user

has a sm^H initiator program which directs the time-sharing system to execute a

program named PHASEl in area A. When PHASEl terminates, it directs the time-

sharing system to execute PHASE2 in area A, and so on through PHASE9. Each user

B,C,D ... has access to the entire system, but none has a copy.

Now suopose that user B is a prograrmer who is building a new and improved

version of PHASE2. Under normal circumstances, he will need a local copy of the

entire system, so as not to disturb other users. But, if all phases are programmed

to look for their successors first in the local user area (whatever it is) and only

on failure to look in area A, then all he needs is his own local version of PHASE2.

The initiate'" program will start the executor of PHASEl from A. When PHASEl ter-

minates, it will look for PHASE2 first in the local area (B). Finding one, it will

execute it, bypassing the (old) version in A. If PHASE2 terminates normally, it





will look for PHASE3 in area B. Not finding one, it will execute PHASES from A.

In this way, any user can have a private version of any phase without dis-

turbing other users and without the necessity for multiple copies of the entire

system. In this way new versions of the system can be extensively tested in con-

text before being "published" to the user community.

Direct Posting

In a multiple-phase system with communication by intermediate files there

are often alternative communication paths between phases. For example, if PHASEl

produces some data for PHASE2 and some for PHASES, one can either write two inter-

mediate files, one for each "destination" or alternatively a single file for

PHASE2, giving it the responsibility of passing along the data to PHASES.

Of the two strategies, we vastly prefer the former (direct posting), even

though it can result in a large number of intermediate files. The reason is simple:

unless we are '^ery careful, the latter strategy (pass-along) means that any modi-

fication to the output of PHASEl destined for PHASES requires modifying both PHASE2

and PHASES. Direct posting assumes that only the directly affected PHASES need

be modified.

On-line Documentation

We have recently begun to experiment with interactive approaches to the

documentation of systems. One wery useful feature is a program which will read

a source file, display it line by line, and permit the insertion of comments.

It is often easier and useful to other readers, if comments are added after

a program is complete, rather than while it is being written.

Another approach involves a combination of three components: First, a

guided input program which serves as a checklist of items to be included in a





short document about a program (e.g., calling sequences, parameter descriptions,

functional descriptions, etc.); Second, an archive facility for managing docu-

mentation files so produced; and third, a printing facility to format such files

for easy reading and use.

Although our experience is still relatively sparse, the only obvious dis-

advantages of this approach are cost and the hazards of losing documentation in

process if the system fails.* There are several advantages. Documentation can be

done from the same console and about the same time as the programming itself.

Documentation files are machine-readable and can be sorted and selected by any

desired key. Last but not least, documentation is immediately available, system-

wide, once typed in.

Some Comments on Programmers Themselves

While we have learned something about the hardware and software requirements

for developing large interactive systems, we have also learned a good deal about

the desired characteristics of the people involved in such a development effort.

First, the combination of intelligence and understanding of computation is

far more important than experience with a specific machine (or language). It is

far better to pay the set-up cost of learning new material than to be saddled with

mediocre team members.

Second, the members of a development team should have diverse experience and

styles. The point here is that the wider the range of alternatives proposed for

any given problem, the better the final solution is likely to be. This does not

mean that development should be allowed to proceed helter-skelter, but that more

*So far, these costs have not proved severe. It costs us about lOtf worth of com-

puter time to document an average (50 line) program. Losses due to system fail-

ure have been non-existent.





than one point of view should be heard on nearly every question. One useful mech-

anism for communicating differences of approach is to force team members to debug

each other's code. One quickly learns the strengths and weaknesses of one's col-

leagues' styles. It also encourages well-annotated code.

The question of diversity of style can be tackled at a higher level: some of

our most successful collaborations have arisen from the tension between a team

member who wants to "do it right" and one who wants to "do it on time." Of course,

the tension can produce results that are neither right nor on time, but by and

large we find it useful to have one team member take on the role of the "idealist"

and another the "cynic."

Finally, it is not particularly necessary for team members to like one another,

but a good, healthy respect is absolutely indispensible. Blind faith, while touching,

is disastrous. What is required is the constant expectation that the other members

are capable of good work and are trying to deliver it, together with a willing-

ness to be wery frank with criticism when work is late or bad.





BIBLIOGRAPHY

1. Greenberger, M., M. M. Jones, J. H. Morris, and D. N. Ness,
On-line Computation and Simulation: The OPS-3 System , MIT
Press, 1965.

2. Ness, D. N., W. A. Martin, R. S. Green, and G. A. Moulton,
The Prism Primer .

3. Ness, D. N., R. S. Green, W. A. Martin, and G. A. Moulton,
"Computer Education in a Graduate School of Management,"
Communications of the ACM , Vol. 13, No. 2, February 1970.

4. Ness, D. N., and C. R. Sprague, "A Flexible System to Retrieve,
Manipulate and Display Information from a Stable, Questionnaire
Oriented Data Base," Part I. Forthcoming.

5. Sprague, C. R. , and D. N. Ness, "A Flexible System to Retrieve,
Manipulate and Display Information from a Stable, Questionnaire
Oriented Data Base," Part II.

6. , "A Flexible System to Retrieve, Manipulate and

Display Information from a Stable, Questionnaire Oriented Data

Base," Part III.

7. Ness, D. N., "Interactive Budgeting Models: An Example," MIT
Sloan School of Management Working Paper No. 345-68, 1968.

8. Digital Equipment Corporation, The TECO Text Editor and Corrector .

Crisman, P. A., The CTSS Programmer's Guide , Section AH, 3. 09.

Digital Equipment Corporation, DDT: The Dynamic .Debugging Technique .

The Multiplexed Information and Computing Service: . Programmers Manual

Martin, W. A., and J. Moses, "Why Programmers Make Bad Models of

the Real World," (to be published).



^x}(^^^
1%

aLULS __

..;;r/!«, /^_ ..^
-I _






