
NORGES TEKNISK-NATURVITENSKAPELIGE

UNIVERSITET

Collapsed Blocks Approximations

by

Ingelin Steinsland and H̊avard Rue

PREPRINT

STATISTICS NO. 9/2005

NORWEGIAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

TRONDHEIM, NORWAY

This preprint has URL http://www.math.ntnu.no/preprint/statistics/2005/S9-2005.pdf

Ingelin Steinsland has homepage: http://www.math.ntnu.no/∼ingelins
E-mail: ingelins@math.ntnu.no

Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CERN Document Server

https://core.ac.uk/display/44130602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Collapsed Blocks Approximations

Ingelin Steinsland & H̊avard Rue,

Norwegian University of Science and Technology

October 28, 2005

Abstract

The collapsed blocks approximations (CBAs) are a class of approximations to
multivariate distributions based on full conditional distributions for blocks of vari-
ables. The CBAs are useful when the full conditional distributions are known and
computationally cheap to sample from and evaluate (i.e. for Markov models). In
addition knowledge about the dependence structure is needed (e.g. spatial models).
The CBAs can then computationally efficiently be sampled from and evaluated. An
one-block Metropolis-Hastings algorithm with CBA proposal is set up. This algo-
rithm is used to analyse functional Magnetic Resonance Imaging (fMRI) data mod-
elled as a latent Gaussian Markov random field (GMRF) with Gaussian likelihood
This model has more that 100000 variables. The methodology is also extended to
include cases where only sampling and evaluation from an approximation to the full
conditional distributions are possible. The CBAs aid balancing two often conflicting
requirements in MCMC; fast computations and fast mixing.

KEYWORDS: Markov chain Monte Carlo, Gaussian Markov Random field, prob-
ability density function approximation, blocking, functional magnetic resonance imag-
ing (fMRI).
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1 Introduction

For making inference from spatial and spatio-temporal models we often have data collected
at spatial locations which are indirect observations of the phenomena of interest. The
phenomena can in a Bayesian setting be modelled as a latent field x = (x1, x2, . . . , xn),
that is assumed to have a spatial dependence structure described by the prior density
π(x|θ) with hyper-parameters θ. Popular choices for the latent field are Gaussian random
fields (GRFs) and Gaussian Markov random fields (GMRFs). Let y denote the observed
data and assume the posterior density reads

π(x, θ | y) ∝ π(x | θ) π(θ)
∏

i

π(yi | xi), (1)

where π(θ) is the prior of θ, and π(yi|xi) is the likelihood for one observation. Except
in a few special cases where we can do analytical inference on (x, θ), we need to rely on
simulation based inference methods using Markov chain Monte Carlo (MCMC).

MCMC methods based on single-site updating schemes have traditionally been most
popular, see for example Diggle et al. (1998). In the recent years, there have been an
increasing concern about the extremely slow convergence and mixing single-site schemes
may have for such models, see for example Christensen et al. (2003), Knorr-Held and Rue
(2002) and Rue et al. (2004). A common remedy to improve mixing is to update several
variables simultaneously (Liu (1994), Liu et al. (1994) and Carter and Kohn (1996)). This
is known as blocking or grouping.

At first sight, a two-block Gibbs-sampler which updates θ and x in separate blocks,

θ ∼ π(θ | x, y), and x ∼ π(x | θ, y) (2)

seems appealing. However, even few hyper-parameters can slow down the convergence con-
siderably, see for example Papaspiliopoulos et al. (2003) and Rue and Held (2005, Ch. 4.1)
for theoretical results. Gelfand et al. (1995); Pitt and Shephard (1999); Papaspiliopoulos
et al. (2003) suggest using reparameterisation to weaken the dependency between θ and x,
an approach which must be specifically tailored to, and is only possible for certain models.
A simpler and more general approach was introduced by Knorr-Held and Rue (2002); the
acceptance of θ is simply delayed until x is updated as well, see also Wilkinson (2003).
This updating scheme is of the following form where xold and θold denote the current state
of the chain,

θnew ∼ q(θ | θold), xnew ∼ q(x | θnew, y, xold) (3)

and then (xnew, θnew) is accepted/rejected jointly with a Metropolis-Hastings (M-H) step.
Rue and Held (2005) name such a scheme the one-block algorithm. Empirical studies
for latent GMRF models (Knorr-Held and Rue (2002) and Gamerman et al. (2003)) have
demonstrated that a joint update of x and θ using the one-block algorithm give appro-
priate mixing, and is superior to the two-block scheme in (2). This is supported by some
theoretical results in Rue and Held (2005, Ch. 4.1). In (3), q(θ|θold) is often taken as
a simple (log-) random walk proposal, while x is updated from its full-conditional, i.e.



q(x | θ, y, xold) = π(x|θnew, y), or from some approximation to π(x|θnew, y). When the
dimension of x is large, sampling from a full dimensional field can be infeasible, and an
approximation based on full conditional distributions for blocks seems to be an appealing
alternative. Our scope is to construct such approximations.

For many problems we have random variables with known dependence structure and
positive dependency. E.g. for most spatial models variables close in space are more de-
pendent than variables further apart. In this paper we utilise our knowledge about the
dependence structure, to construct an approximation to π(x|θ, y) that can be sampled
from and evaluated. This enables one-block M-H algorithms for problems else too large.
In addition to a known dependence structure, our approach requires that sampling from
and evaluation of the full conditional distributions for blocks of variables (or an approxi-
mation to these) are possible.

To introduce our approximation idea we consider a simple time series AR(1) process
of dimension three, x = (x1, x2, x3) with known auto-correlation 0 < φ < 1. Our aim is to
sample from π(x) using a M-H algorithm. Assume that only sampling and evaluation from
the full conditional for blocks of maximum two variables are possible. Given an initial field
xold, we can sample xnew

1 ∼ π(x1|x
old
2 , xold

3 ) and (xnew
2 , xnew

3 ) ∼ π(x2, x3|x
new
1 ). If φ is large,

xnew depends strongly on xold and

π(x1|x
old
2 , xold

3 ) · π(x2, x3|x1) (4)

is a poor approximation to π(x). The dependence on xold comes from π(x1|x
old
2 , xold

3 ).
Because of the time series structure, x1 depends most on x2, and by sampling xnew

1 ∼
π(x1|x

old
3 ), i.e. integrating out x2, the interaction is relaxed. We are able to sample from

π(x1|x
old
3 ) by sampling (xnew

1 , xbuffer
2 ) ∼ π(x1, x2|x

old
3 ), and simply through away xbuffer

2 . It
can be evaluated by using π(x1|x3) = π(x1, x2|x3)/π(x2|x1, x3) for any value of x2. The
dummy variable xbuffer

2 has a function as a buffer between the new and old field. Note that
only sampling and evaluation of full conditional distributions of dimension two are needed.
The resulting approximation is

π(x1|x
old
3 ) · π(x2, x3|x1) (5)

and it is a member in the class of approximation we will name collapsed blocks approxima-
tions (CBAs).

Using (5) as proposal of a M-H algorithm will improve mixing compared to using
(4). For the AR(1) process the improvement in convergence can be quantified. Assume
x = (x1, . . . , xn) with dimension n instead of three, and consider the approximation

π(x1 | xold
b+2, . . . , x

old
n )π(x2, . . . , xn | x1) (6)

where b determines the length of the buffer. This is a generalisation of (4) (for b = 0)
and (5) (for 1 ≤ b ≤ n − 2). It can be shown that the rate of convergence of an MCMC
algorithm using (6) as a proposal, is

(ξ2)(b+1)/L (7)



where L is the correlation length defined by |φ|L = ξ, commonly with ξ = 0.05. We observe
that the effect of collapsing a buffer here depends explicitly on the ratio of the buffer length
b and the correlation length L.

The main contribution of this paper is a generalisation of (5). This is our class of
CBAs which is introduced in Section 2. A Gibbs sampler approach is taken in Section
3. Further, in Section 4, an one-block M-H algorithm is set up with an alternative to
Peskuns acceptance probability, the opposite reverse acceptance probability. In Section 5
the properties of the CBAs are demonstrated through a simulation study. The practical
usefulness of CBA is demonstrated in Section 6. A time-series of functional Magnetic
Resonance Imaging (fMRI) data are modelled as a hidden GMRF model with Gaussian
likelihood. An one-block M-H sampler with CBA as part of the proposal is used for making
inference. The paper ends with some closing remarks in Section 7.

2 Collapsed blocks approximation

Consider variables with a spatial structure, e.g. on a lattice, with probability density func-
tion π(x). Assume we can sample from and evaluate the full conditional distribution for
blocks of variables, and that the dependency is decreasing with increasing distance. We
want to construct an approximation based on the full conditional for blocks and initial val-
ues xold, π∗(x; xold) ≈ π(x), that we can sample from and evaluate. We assume there are
reasonable initial values available for the field, e.g. the current state of a M-H algorithm.
Divide the study area into disjoint contiguous parts, and make blocks of variables corre-
sponding to this. Let S = {1, 2, . . . , n} be the indexes of the variables, and {b1, b2, . . . , bN}
the disjoint partition of S that corresponds to the blocks. Define −bi = S\bi, b<i = ∪j<ibj

and b>i = ∪j>ibj, i.e. all blocks but bi, all blocks with lower index that i, and all blocks
with higher index than i, respectively. We then have;

π(x) = π(xb1)π(xb2 |xb1) . . . π(xbN
|xb<N

) =

N
∏

i=1

π(xbi
|xb<i

). (8)

Exact sampling from π(x) is straight forward if these marginal conditional distributions
are known and possible to sample from. Though, in the situations considered here, it
is only possible to sample from the full conditional for blocks. We will make an ap-
proximation to π(x) by approximating each of the factors in (8), π(x) ≈ π∗(x; xold) =
∏N

i=1 π∗(xbi
|xb<i

; xold) where π∗(xbi
|xb<i

; xold) is an approximation to π(xbi
|xb<i

) that de-
pends on the initial values xold. If there are any spatial dependence in the field, the full
conditional distribution π(xbi

|xb−i
) = π(xbi

|xb<i
= xnew

b<i
, xb>i

= xold
b>i

) depends strongly on

xold and is a poor approximation to π(xbi
|xb<i

= xnew
b<i

). The approximation will improve
if we use distributions that depends less on the initial field. For each block we introduce a
buffer containing selected variables in xb>i

that the block variables, xbi
, depends most on,

i.e. those closest in space. If the buffer variables are collapsed, i.e. integrated out of the
full conditional distribution, we loosen the connection to the initial values.



Denote the indexes for the buffer variables for block i by βi (⊂ b>i), and define Bi =
bi∪βi and −Bi = S\Bi. This collapsed distribution, π(xbi

|x−Bi
) =

∫

π(xbi
, xβi

|x−Bi
)dxβi

,
depends less on the initial values, and hence is a better approximation to π(xbi

|xb<i
). Using

this we get an overall approximation;

π∗(x; xold) =

bN
∏

i=1

π∗(xbi
|xb<i

; xold) =

bN
∏

i=1

π(xbi
|x<bi

= xnew, xB>i
= xold) (9)

where B>i = b>i\βi. We name this class of approximations the collapsed blocks approxima-
tion (CBAs). For each block we are able to sample from π(xbi

|xb<i
, xB>i

) by sampling from
the full conditional (xnew

bi
, xbuffer

βi
) ∼ π(xbi

, xβi
|x−Bi

) and only consider xnew
bi

. Evaluation
is possible from π(xbi

|x−Bi
) = π(xbi

, xβi
|x−Bi

)/π(xβi
|xbi

, x−Bi
) for any value of xβi

, e.g.
the sampled values. The numerator is the full conditional distribution sampled from, and
can in many cases be evaluated without much additional cost. The denominator is the full
conditional distribution for the buffer, and it has to be calculated from scratch.

We introduced dependency to xold because using full conditional distributions give large
computational benefits for Markov models. Further we have relaxed the dependency to xold

by collapsing selected variables of x>bi
. In this way we are able to balance our conflicting

requirements of fast computations and independence of xold / fast mixing.
For an illustration of the CBA see Figure 1, left. The blocks and buffers are here

chosen such that the computational cost is equal when sampling each block, i.e. the
number of variables in xBi

is constant. For the first block b1 = {d1}, β1 = {d2, d4, d5},
B1 = {d1, d2, d4, d5} and −B1 = {d3, d6, d7, d8, d9}. Given initial values xold, the first factor
of the CBA can be sampled by sampling from π(xB1

|x−B1
= xold

−B1
) and only update the

values for xb1 = xnew
b1

. Next a sample for xb2 , b2 = {d2, d3}, is obtained from π(xb2 |xb1 =
xnew

b1
, xB>2

= xold
B>2

) with B>2 = {d4, d7, d8, d9}.
If we are only able to sample from an approximation of the full conditional of blocks,

the corresponding approximation for collapsed blocks can be used. This can be seen
as two levels of approximations; first each factor in (8) is approximated, π(xbi

|xb<i
) ≈

π∗(xbi
|xb<i

; xold) = π(xbi
|xb<i

= xnew, xB>i
= xold), then the collapsed blocks are ap-

proximated, π(xbi
|xb<i

, xB>i
) ≈ π∗∗(xbi

|xb<i
, xB>i

; xold). We refer to the corresponding

simultaneous approximation π∗∗(x; xold) =
∏N

i=1 π∗∗(xbi
|xb<i

, xB>i
; xold) as the approxi-

mated collapsed blocks approximation (ACBA).

3 Collapsed- and overlapping blocks Gibbs samplers

The main aim of this paper is to construct a class of approximations, the CBAs, and to use
these in the one-block M-H algorithm. Though, the same ideas used for CBAs, can also
be used to improve mixing of block Gibbs samplers. In addition, insight of the opposite
reverse acceptance rate used in Section 4 can be gained from the resulting Gibbs samplers.

As in Section 2, consider a spatial field, e.g. a lattice, divided into contiguous disjoint
blocks. The realisation obtained by sampling each block from its full conditional often



depends strongly on the old values for the field, which causes slow mixing. If we sample
from a distribution for each block that depends less on the old field, the mixing will
improve. We now take the same approach as for the CBA: For each block the variables
in xb>i

that depend most on xbi
, i.e. those closest in space, are included in a buffer that

is collapsed from the full conditional distribution. The connection between the old field
and the distribution sampled from is now relaxed. This Gibbs sampler we refer to as a
collapsed blocks Gibbs sampler (CBGS).

Using the same notation as in Section 2, a conventional block Gibbs sampler draws from
the full conditional distribution xnew

bi
∼ π(xbi

|x−bi
), while the CBGS uses the collapsed

conditional distribution, xnew
bi

∼ π(xbi
|x−Bi

) =
∫

π(xbi
, xβi

|x−Bi
)dxβi

. Sampling can be
performed by sampling from the full conditional, (xnew

bi
, xbuffer

βi
) ∼ π(xbi

, xβi
|x−Bi

) and only
updating for xbi

. Figure 1, left, can also be seen as an illustration of the CBGS. The CBGS
is within the framework of MCMC based on conditional sampling in Appendix 2 in Besag
et al. (1995). The method can also be described as a combination of blocking (sampling
more than one variable at the time) and collapsing (integrating out variables), where our
knowledge about the dependence structure is used to set up blocks and buffers.

If also samples for the buffers are updated, we have an overlapping blocks Gibbs sampler
(OBGS); a block Gibbs sampler with blocks that overlap such that buffers are sampled at
least twice. See Figure 1, right. The OBGS can be set up as a special case of the general
Gibbs sampler in Appendix 1 in Carter and Kohn (1996).

From an algorithmic point of view the difference between OBGS and CBGS is whether
the buffer variables xβi

are updated or not. While they are not used for the CBGS, also
the buffer variables are updated for the OBGS. Further, when the stationary distribution
is reached, each step of the OBGS produces a new sample from π(x), while a full scan is
needed for the CBGS. The two Gibbs samplers becomes identical if blocks and buffers are
set up such that temporary buffer samples are never conditioned upon, e.g. a time series
kind of blocking as in the AR(1) process in Section 1.

In a Gibbs setting it will be hard to argue that one should use CBGS instead of the
OBGS. Though, our main aim is to make an approximation, and in most cases the CBGS
is then the only feasible option. It is straight forward to construct an approximation based
on the OBGS that we can sample from. This approximation will in most cases be hard to
evaluated, as

π∗(x) =

∫

. . .

∫ NB
∏

i=1

π(xbi
, xβi

|x−Bi
)dxβ1

. . . dxβNb
(10)

as in each factor π(xbi
, xβi

|x−Bi
) we condition on x−Bi

which is a mixture of xnew, xold

and temporary buffer variables that are integrated out.
If the full conditional distributions for blocks can be evaluated, but sampling is only

possible from an approximation, Metropolised versions of CBGS and OBGS can be used.



4 One-block Metropolis-Hasting with CBA proposal

and opposite reverse acceptance rate

We will now set up an one-block M-H algorithm sampling from (1) with some simple
proposal for the hyper-parameters (e.g. random walk), and with a CBA as proposal for
x. We will not use Peskuns optimal acceptance probability. To motivate this, assume
fixed hyper-parameters (suppressed when assumed fixed) and that we have a sample from
π(x|y) as initial values. If the CBA or the approximation corresponding to a OBGS is used
as proposal, proposed samples are from the target distribution. Even though all proposed
samples are from the target distribution, a M-H algorithm with the optimal acceptance
probability of Peskun (1973) does not generally give acceptance rate one. This because
M-H algorithms are constructed such that a reversible Markov chain is produced. We
want to avoid this “unnecessary” low acceptance rate (in many cases the acceptance rate
is surprisingly low).

Using one scan of a OBGS as proposal acceptance rate one is achieved by a symmetric
scan, e.g. B1 → B2 → B3 → B4 → B3 → B2 → B1 for the blocks in Figure 1 (right). It
can also be achieved by using a mixture of proposals as a proposal. Let q0 be the proposal
distribution for updating scheme B1 → B2 → B3 → B4, and q1 for updating scheme
B4 → B3 → B2 → B1. Randomly choose which proposal to use, each with probability 0.5;
P (q0) = P (q1) = 0.5. This gives an overall proposal q(x

′

|x) = 0.5q0(x
′

|x) + 0.5q1(x
′

|x).
Both these proposals give acceptance probability one, but the computational cost is twice
the original one. We consider the mixture of proposals, but instead of using Peskun’s
optimal acceptance probability formulae;

α(x′|x) = min
{

1,
π(x′)q(x|x′)

π(x)q(x′|x)

}

(11)

we use the opposite reverse acceptance probability (ORAP) (Tjelmeland and Hegstad (2001))

αi,1−k(x
′|x) = min

{

1,
π(x′)q1−k(x|x

′)

π(x)qk(x′|x)

}

k ∈ {0, 1}. (12)

It does not give optimal convergence as a function of M-H iteration, but if the overall pro-
posal is computationally expensive to evaluate it may improve convergence as a function of
computation time. Here, calculating (12) is only half the computational cost of calculating
(11). It can be shown that for the OBGS α0,1 = α1,0 = 1. Acceptance probability one
is not achieved for the CBA since the opposite scans are generally not symmetric. But
they are nearly symmetric, and using the opposite reverse strategy gives an acceptance
rate close to one.

An one-block M-H with CBA and ORAP is set up in algorithm 1. For proposing x

we use CBAs π∗

k(x; xj, θnew), where xj and θnew indicates which initial field and hyper-
parameters the approximation is based upon. The index k gives the direction the blocks
xbi are sampled in; increasing is given by k = 0 and decreasing by k = 1. The ORAP used



Algorithm 1 One-block Metropolis-Hasting sampler with CBA and ORAP

• Given x0 and θ0

• for j = 0 : (niter − 1)

– Sample θnew ∼ q(θ|θj)

– Sample k ∼ Unif({0, 1})

– Sample xnew ∼ π∗

k(x; xj, θnew).

– Calculate ORAP and accept / reject

– if(accept)

∗ θj+1 = θnew and xj+1 = xnew

– else

∗ θj+1 = θj and xj+1 = xj

• Return (x1, x2, . . . , xniter) and (θ1, θ2, . . . , θniter)

is

α(θnew, xnew|θj, xj) = min

{

1,
π(y|xj)π(xj|θj)π(θj)q(θnew|θj)π∗

1−k(x
new; xj, θnew)

π(y|xnew)π(xnew|θnew)π(θnew)q(θj|θnew)π∗

k(x
j; xnew, θj)

}

Note that the target distribution π(x, θ|y) must be known up to a normalisation constant
not dependent on θ. Hence the prior π(x|θ) must be known (and possible to evaluate) also
as a function of θ. In Section 6 we find that π(x|θ) is computable for important classes of
GMRF priors.

5 Simulation experiments

Here we report some simulation studies done to explore OBGS, CBA and ACBA. In all
these studies our starting point is a GMRF on a lattice of 20×20 pixels that is a proxy to a
GRF with precision τ = 1.0 and exponential correlation with range r = 60 as described in
Rue and Tjelmeland (2002). Hyper-parameters are assumed known and fixed in all these
studies.

5.1 Experiment 1, OBGS

We first explore the overlapping blocks Gibbs sampler (OBGS). We sample from the GMRF
described above using a OBGS with four square blocks each of size (10× 10) (non overlap-
ping), (11×11), (12×12) and (15×15). For comparison we also ran an one-block sampler



which gives independent samples from the GMRF. All samplers had a sample from the
target GMRF as initial values, and ran for 10000 iterations. The estimated autocorrela-
tion functions (ACF) for pixel (10, 10) are plotted in Figure 2. We observe that the ACF
decreases faster with more overlap, and with blocks of size (15×15) (i.e. 10 pixels overlap)
the ACF is close to that of the one-block sampler, i.e. its samples are close to independent.

5.2 Experiment 2, CBA with Peskuns acceptance rate and ORAP

In this experiment we sample from our GMRF using an one-block M-H algorithm with
CBA proposals. We explore the CBA proposals corresponding to the OBGS considered
in Section 5.1. I.e. the blocks actually sampled from, xBi

, Bi = {bi ∩ βi}, are set up to
be squares each of size (10 × 10) (non overlapping), (11 × 11), (12 × 12) and (15 × 15)
(width of buffer 10). This corresponds to the situations illustrated in Figure 1. We also
explore two different proposal - acceptance probability configurations: 1) we use CBA as
proposal with Peskuns acceptance probability. And 2) we use a mixture of two CBA (with
opposite directions) as proposal and the ORAP. Approach 2 corresponds to Algorithm 1
with fixed/known hyper-parameters.

In Figure 3 the estimated ACFs are plotted for these simulation studies as well as the
acceptance rates for an extended study with all possible block sizes. From the ACF plots we
find that increasing buffers decreases the autocorrelation. Comparing the ACFs of the two
proposal-acceptance rate approaches indicates that approach 2 gives lower autocorrelation
for small buffer sizes while no difference can be seen for larger buffers. From the acceptance
rate plot we see that this is due to very low acceptance rate for approach 1 for small buffers.
When the buffers increase, the approximation becomes better, and for both approaches the
proposed samples depend less on xold. Hence, the direction of the CBA becomes invisible,
and the benefit of a symmetric proposal (as in approach 2) disappears.

5.3 Experiment 3, ACBA with Peskuns acceptance rate and

ORAP

In our last simulation experiment we explore using the ACBA as proposal in a hidden
GMRF model setting. Based on a sample x from our GMRF we simulate data for each pixel
from a Poisson distribution; yi ∼ Po(0.5 exp(xi)). We want to sample from the posterior of
the latent field, i.e. from π(x|y), which takes the form (1) (hyper-parameters are assumed
fixed). π(x|y) is non-Gaussian and to sample we use an one-block M-H algorithm with
ACBA as proposal for x. As approximated distribution for each block we use the classes of
approximations to non-Gaussian latent (or hidden) GMRFs introduced in Rue et al. (2004),
see Appendix A.1. for technical details. As in Simulation 2 two proposal - acceptance rate
configurations were explored: 1) ACBA as proposal with Peskuns acceptance rate. And 2)
a mixture of two ACBA (with opposite directions) as proposal and the ORAP. We use the
same blocks and buffers as in Simulation 2, and all simulations ran for 10000 iterations.

The estimated ACFs of the samples from the one-block M-H sampler with ACBA using
the A1 approximation are plotted in Figure 4. For comparison results from an independence



sampler with an one-block A1-approximation as proposal are also included. From the plot
we find that approach 1 without overlap gives high autocorrelation. The autocorrelation
rapidly decreases using approach 2 and/ or overlapping, and for approach 2 we can not
distinguish between the one-block approximation and the ACBA with xBi

of dimension
(11×11). For approach 1 we can not distinguish between the one block approximation and
the ACBA with xBi

of dimension (12×12). Hence we need smaller buffers in this study that
in simulation study 2. There are two reasons for this: First, each data point yi contain
much information about its corresponding latent field variable xi, and the other latent
variables are less important. Second, the M-H sampler with a one-block approximation as
proposal does not give independent samples (it is an independence sampler with acceptance
rate 0.61), and we therefore compare with something less ambitious than in simulation
experiment 1 and 2.

6 Functional magnetic resonance imaging

In this Section we demonstrate the applicability of CBAs in an one-block M-H algorithm
setting through an example. The model is so large that xold independent proposals for the
field is computationally impossible. We use GMRFLib for fast sampling of GMRFs, (Rue
and Follestad (2002)).

Here we analyse functional magnetic resonance imaging (fMRI) data from a visual
stimulation experiment is analysed. These data are previously studied in Göss et al. (2000).
The stimulus was a 8 Hz flickering checkerboard, and the experiment lasted for 210 seconds
with four periods (of 30 seconds) rest and three periods stimulus. A crossection of the brain
(128×128 pixels) was observed every third second, hence a time series of 70 images. Images
of size 75 × 67 is enough to cover the brain and the analyses is based on these images.
Functional magnetic resonance utilise the different magnetic properties of oxygenated and
disoxygenated blood and is useful for observing blood oxygenation level dependent (BOLD)
effects. External stimulation is related to the BOLD effect and the aim of the experiment
was to detect areas activated by the visual stimulation.

Traditionally temporal and, if at all, spatial effects have been analysed separately. In
Göss et al. (2001) Bayesian hierarchic parametric and semi-parametric spatial and spatio-
temporal models for this problem are introduced. We introduce a space-time GMRF
model similar to the one in Göss et al. (2001). To make robust inference an one-block M-H
algorithm with CBA and ORAP is used.

We model the observations of pixel i at time t as yit = bi + ztait + εit, for i = 1, 2, . . . , N
and t = 1, 2, . . . , T , where b is the baseline image (of size N) and ait is the activation
effect of pixel i at time t (of size N × T ). A transformed stimulus, zt > 0, t = 1, 2, . . . , T ,
of the original stimulus is used. A common choice is to use a temporal shift of the orig-
inal stimulus x by a time-delay d and a convolution h, zt =

∑t−d
s=0 h(s, φ)xt−d−s with

h either Poisson or gamma density function. The parameters involved here, (d, φ), are
estimated by least square from similar data. The measurement errors εit are assumed inde-
pendent identically Gaussian distributed with common precision τData. The tempo-spatial



modelling is done through the priors of a and b, which both are given intrinsic GMRF
priors; π(b) ∝ exp(− 1

2
τB

∑

i
s
∼j

(bi − bj)
2) and π(a) ∝ exp(− 1

2
τA

∑T
t=1

∑

i
s
∼j

(ait − ajt)
2) ·

exp(−1
2
τT

∑N
i=1

∑

t
t
∼r

(ait − air)
2). Each non-boarder pixel has four neighbours in space

(both in a and b) and two in time (for a only). The priors for τA, τB and τT were all set
to independent Gamma distributed with expected value 5.0 and variance 100.

The posterior distribution of the hyper-parameters θ = (τA, τB, τT ), the baseline image
b and the activation effects a, π(b, a, θ|y) ∝ π(θ)π(a|θ)π(b|θ)

∏

i π(yi|a, b, θ) is our dis-
tribution of interest. In Appendix A.2 π(b, a|θ, y) is found to be multivariate Gaussian
with a conditional dependence structure as illustrated with the graph in Figure 5. Vi-
sual stimulation effects are only present in the mid-section of the brain, and this part is
analysed. This gives a dataset of 75 × 21 pixels ×70 time steps, or 110250 data points,
and {a, b} has dimension 111825. We are not able to sample exact from a GMRF of this
size. Further, the precision for the data was estimated from the part of the image not used
τData = 0.003.

We use the one-block M-H algorithm from Section 4 to make inference. A strategy for
calculating the normalisation constant of π(b, a|θ) is found in In Appendix A.3. Because
of the dependence structure (see Figure 5) the CBA is set up such that the baseline image
b is in every buffer. All but the last block consist of three activation images images with
the two succeeding a images and b as buffers. The last block consists of a and the last
five a images, see Figure 5. Further, hyper-parameters are proposed independently of each
other; τnew ∼ Unif([ 1

f
τ old, fτ old]). The one-block M-H algorithm ran for 20000 iterations.

Trace plots with cumulative mean after a burn-in of 2000 iterations are found in Figure 6.
We observe quite low spatial dependence (τA = 0.000070 and τB = 0.000009), though

reasonable values considering the values of the data. The precision in time is much higher
(τT = 0.17). The mixing of the smoothing parameters of a is quite slow, but the cumulated
means have stabilised. Figure 7 contains images of the mean estimate of the baseline image
and the activation for two stimulus time steps (t = 18 and t = 38) and one rest time step
(t = 28). We find activation areas in the upper part of the brain, which agrees with
previous studies of the same data. In Figure 8 data and mean estimates are plotted for
three pixels; one with high, one with moderate and one without stimulus activation. We
observe that the estimates are smooth and appears less noisy, but not smoothed too much,
-the stimulus activation is well kept.

7 Closing Remarks

In this paper we have introduced a new method for constructing approximations to high
dimensional distributions with known dependency structure that can be sampled from and
evaluated. The CBAs are based on full conditional distributions for blocks of variables, and
require that sampling from and evaluation of (an approximation to) these distributions are
feasible. Our knowledge about the dependence structure is utilised when setting up blocks
and buffers. The method is applied on latent GMRF models. Due to recent advantages in
computing the normalising constant for discrete Markov random fields (MRFs), Bartolucci



and Besag (2002) and Reeves and Pettitt (2004), it is possible to use our CBA for discrete
MRFs as well. However, each block cannot be larger than about 20 × 20 in the binary
case, because of computational requirements.

How large buffers that are needed depends on the variance of and dependency within the
field. Smaller variance and stronger dependency between variables imply that more buffer
variables are required to achieve the same accuracy. In many applications the variance and
within field dependency is determined by hyper-parameters which also are to be estimated.
Hence, it depends on the dataset under study, and, if the CBA is used as part of a proposal
in an one-block M-H, the proposed value of the hyper-parameters. We have tuned buffer
sizes from preliminary runs.

The computational complexity of CBAs depends on how the increased number of vari-
ables influence the dependency. Consider a lattice covering a study area: If the number
of variables increases because it should cover a larger area and the dependency between
neighbouring variables is fixed, the complexity is linear as only the number of blocks in-
creases. On the other hand, if the field gets denser; e.g. more locations in a fixed area,
the dependency between neighbouring variables increases. The blocks and buffers needs to
cover the same physical area as before to give the same accuracy, and the computational
complexity equals the cost of the sampling method.

Through examples the CBA has proved to be a powerful method for constructing
proposals for the latent field when evaluating spatial and tempo-spatial latent models using
one-block M-H algorithms. The CBAs enable us to apply one-block updating schemes for
problems else to large.
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A Appendix

A.1 Evaluation of ACBA

In Rue et al. (2004) latent GMRF models with mutually independent likelihoods are con-
sidered, and approximations to π(x|y, θ) also known as a hidden GMRF (HGMRF), are
constructed. We will use these as approximations for π(xBi|x−Bi, y, θ), as also the con-
ditional distribution for blocks are HGMRFs. For simplicity we suppress θ and y in the
following. The approximations in Rue et al. (2004) are done in three stages: The first
stage is to find a Gaussian approximation in the mode of π(x). Denote this approximation



πA1(x). As a first improvement, πA2, non-Gaussian corrections for the likelihood term
for the corresponding data point (correct for yi when xi is sampled) are done. The third
approximation, πA3, also correct for non-Gaussian likelihood terms from other locations
through sampling.

We denote approximation Aj to π(xBi
|x−Bi

) πAj(x; x−Bi
), and suppress the method

number j in expressions valid for all methods. The ACBA can be written as

πA(x; x′) =

N
∏

i=1

πA(xbi; xBi−, x′

Bi+) (13)

Note that πA(xBi; xBi−, x′

Bi+) is the marginal distribution of xbi of the approximation;
πA(xbi; xBi−, x′

Bi+) =
∫

πA(xbi, xβi; xBi−, x′

Bi+)dxβi. This proposal requires evaluation of
the transition density (13):

Evaluation of πA1(x|x′)

The first approximation, πA1(xB; x−B), is made by finding the mode of π(xB|x−B) and a
Gaussian approximation in the mode. Hence it is Gaussian, and evaluation can be done
as described in Section 2.

Evaluation of πA2(x|x′) and πA3(x|x′)

The approximations A2 and A3 are refined versions of A1 and the refinements are done
sequential. It can be written as πA2(x) = πA2(xk)π

A2(xk−1|xk) . . . πA2(x1|x2, x3, . . . , xk)
where πA2(xk) is an approximation to the marginal distribution of xk, πA2(xk−1|xk) an
approximation to xk−1 conditioned on the xk sampled in the previous step and so forth
(similar for A3). Since the approximation for π(xi|xi+1, . . . , xk) is only done for the sampled
(xi+1, xi+2, . . . , xk) evaluations of πA2(x) and πA3(x) are not straight forward and generally
not easily obtained.

If the sampling of x is stopped when p − 1 steps remain the density of the obtained
sample is given as πA2(xk)π

A2(xk−1|xk) . . . πA2(xp|xp+1 . . . , xk) This is the marginal density
for (xp, . . . , xk) of πA2(x). If the ordering within each block is done such that the buffer
elements have the lowest indexes, xB = (xβ, xb), we can both sample from and evaluate
πA2(xbi; x−Bi) simply by stopping the sampling process when xbi is sampled.

A.2 Calculating π(b, a|τData, τA, τB, τT , y)

The distribution is given by the likelihood π(y|b, a, , τData) and the priors of a and b;
π(b, a|τData, τA, τB, τT , y) ∝ π(y|b, a, τData)π(b|τB)π(a|τA, τT )) The likelihood is multivari-
ate Gaussian, and can be written as: y|a, b, τData ∼ N(1T ⊗b+(diag(z)⊗IN )a, τDataINT ),
where 1T is a column vector of size T containing ones, and Im is an identity matrix of size
m×m. The priors for a and b are intrinsic Gaussian as given in Section 4.1, and we denote
the corresponding precision matrices Qa and Qb. Hence, also π(b, a|τData, τA, τB, τT , y) is a



GMRF, and can be written as π(b, a|τData, τA, τB, τT , y) ∝ exp(1
2
[b, a]Q[b, a]T + cT [b, a]T )

with

Q =

[

TτDataIN + Qb τData(z
T ⊗ IN )

τData(IN ⊗ z) τData(diag(z2) ⊗ IN ) + Qa

]

where diag(z2) is a diagonal matrix with elements z2
i . And

cT =

[ T
∑

t=1

y1t,
T

∑

t=1

y2t, . . . ,
T

∑

t=1

yNt, y11z1, y21z1, . . . , yN1z1, y12z2, . . . yNT zT

]

A.3 The normalisation constant for the prior

The precision matrix for the space-time prior for a in Section 6 is non-positive definite,
and its determinant is 0. We still need to know the normalisation constant as a function of
τA and τT . A fruitful approach is to define the determinant det* of a non-negative matrix
as the product of its non-zero eigenvalues, det*(Q) =

∏m
i=1 λi, where λi, i = 1, . . . , m is

the non-zero eigenvalues of Q. If Q is positive definite is det*(Q) = det(Q). For definitions
and proofs of linear algebra results used in this appendix, see Strang (1987) and Harville
(1997). First we notice that the precision matrix can be written as Q = τSQS + τT QT ,
where QT is the precision matrix for the time dependence with τT = 1, and QS for the
spatial dependence with τA = 1. Furthermore, QT and QS can be written as Kronecker
products. Let RT be the precision matrix (with τT = 1) for one region, and RS the
precision matrix for one time-step (with τA = 1); QT = RT ⊗ IN and QS = IT ⊗ RS,
where IN and IT are identity matrices of dimension N × N and T × T . The spectral
theorem gives that symmetric real matrices can be decomposed as QS = VSΛSVS and
QT = VT ΛT VT with orthonormal eigenvectors of Q

�
in V

�
and eigenvalues in Λ

�
. Two

diagonalisable matrices A and B share eigenvector matrix V if and only if AB = BA. We
have that QSQT = (IT ⊗ RS)(RT ⊗ IN ) = (IT RT ) ⊗ (RSIN) = RT ⊗ RS and QT QS =
(RT ⊗ IN )(IT ⊗ RS) = (RT IT ) ⊗ (INRS) = RT ⊗ RS, hence QT and QS share eigenvector
matrix V , and QS + QT = V ΛSV T + V ΛTV T = V (ΛS + ΛT )V T . The eigenvalues and -
vectors of the factors in a Kronecker product gives eigenvalues and -vectors of the product:
If A has eigenvalues (λA1, λA2, . . . , λAN) and eigenvectors (eA1, eA2, . . . , eAN), and B has
eigenvalues (λB1, λB2, . . . , λBT ) and eigenvectors (eB1, eB2, . . . , eBT ), A⊗B has eigenvalues
and vectors given by λAiλBj and eAi ⊗ eBj ∀i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , T}.
Since the identity matrix has eigenvalues 1 and eigenvectors equal the standard basis
we see that; diag(ΛT ) = (λT1, λT1, . . . , λT1, λT2, . . . , λT2, . . . , λTT , . . . , λTT ) and diag(ΛS) =
(λS1, λS2, . . . , λSN , λS1, . . . , λSN , . . . , λS1, . . . , λSN). Further, det(QS + QT ) = det(ΛS +
ΛT ) =

∏N
i=1

∏T
j=1(λSi +λTj) or for us det*(QS +QT ) = det(ΛS +ΛT ) =

∏N
i=1

∏T
j=1 f(λSi +

λTj), where f(x) = x for x > 0 and f(x) = 1 for x = 0. We observe that det*(κQS +

τT QT ) =
∏N

i=1

∏T
j=1 f(κλSi + τT λTj) and hence can be calculated from the eigenvalues of

RT and RS .
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Figure 1: Left: Illustration of the blocks of CBA and CBGS. In each step the gray area
is sampled from its conditional distribution with the hatched area integrated out. Right:
Illustration of the blocks of an OBGS. In each step the gray area is sampled from its full
conditional distribution.
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Figure 2: Simulation experiment 1. Dashed lines; autocorrelation function (ACF) for
OBGS with four blocks each of size b × b. Solid line; ACF for independent samples.
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Figure 3: Simulation experiment 2. Left: ACF for samples from one-block M-H with CBA
proposal with four blocks each of size (b×b). Dotted lines; CBA and Peskun. Dashed lines;
mixture of CBAs and ORAP. Solid line; ACF for independent samples. Right: Acceptance-
rates for M-H samplers with CBAs proposals as a function of block sizes. Dotted line; CBA
and Peskun. Dashed line; mixture of CBAs and ORAP.
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Figure 4: Simulation experiment 3. ACFs for samples from one-block M-H with ACBA
proposal with four blocks each of size (b×b) . Dotted lines; CBA and Peskun. Dashed lines;
mixture of CBAs and ORAP. Solid line; ACF for samples from an independence sampler
with corresponding one-block approximation.
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Figure 5: fMRI example: The dependence structure of π(a, b|y, θ) and the first block of
the CBA. The darker gray nodes b1 = {a1, a2, a3} are sampled from their conditional
distribution with the brighter gray nodes, β1 = {b, a4, a5} integrated out.
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Figure 6: fMRI example: Trace plots (doted lines) and cumulative means (solid lines) for
τA, τB and τT after a burn-in of 3000 samples.



t=38

5 10 15 20

10

20

30

40

50

60

70

t=18

5 10 15 20

10

20

30

40

50

60

70

b

5 10 15 20

10

20

30

40

50

60

70

0

200

400

600

800

1000

1200

1400

1600

1800

t=28

5 10 15 20

10

20

30

40

50

60

70

−40

−20

0

20

40

60

80

100

Figure 7: fMRI example: The posterior mean for the baseline image b and the activation
effect zta·t for time step t = 18, t = 28 and t = 38
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Figure 8: fMRI example: The observed values and the posterior mean for pixels (24, 10),
(5, 5) and (5, 15).


