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Control variates for the Metropolis-Hastings algorithm

HUGO HAMMER AND HÅKON TJELMELAND 1

Abstract

We propose new control variates for variance reduction in the Metropolis–Hastings algo-

rithm. We use variates that are functions of both the current state of the Markov chain and

the proposed new state. This enable us to specify control variates which have known mean

values for general target and proposal distributions. We develop the ideas for both the stan-

dard Metropolis–Hastings algorithm and the generalized reversible jump version. We present

simulation results for four simulation examples. The variance reduction varies depending on

the target distribution and proposal mechanisms used, the typical relative variance reduction

is between 15% and 35%.

Key words: Control variate, Markov chain Monte Carlo, rejected states, variance reduction.

1 Introduction

Suppose we want to estimate the mean, µ, of a function f(x) when x ∈ Rn is distributed according
to a target distribution π(·). If x is of high dimension and π(·) is complex, Markov chain Monte
Carlo (MCMC) techniques are typically the only viable alternatives for evaluating µ. The most
commonly used MCMC algorithm is the Metropolis-Hastings algorithm (Hastings, 1970), in which
each iteration consists of two steps. Letting x denote the current state of the Markov chain, one
first proposes a new state y for the Markov chain. Second, one accepts the proposed state y with a
certain probability, otherwise keeping x as the current state of the Markov chain. After discarding
a burn in period, the current states are essentially from the target distribution π(·) and can be
used to estimate µ. The most natural and traditional estimator of µ is the empirical mean of f(x).

It is possible to do better than the empirical mean when it comes to variance of the estimator.
Liu (2001) points out some variance reduction methods. The antithetic variates method is due to
Hammersley and Morton (1956). The idea is to make samples with negative correlation. Then the
variance of the empirical mean is less than for independent samples. The Rao-Blackwellization is
based on the facts that E[E(f(x)|z)] = E(f(x)) and Var[E(f(x)|z)] ≤ Var(f(x)) for any random
variable z, implying that if we can compute E(f(x)|z) analytically, this is a better estimator for µ
then f(x). The control variates method construct estimators that are linear combinations of the
original unbiased estimator for µ and other random variables, called control variates. The control
variates have zero expectation and are correlated with the original estimator. In this way it is
possible to construct unbiased estimators with less variance.

Variance reduction techniques can also be used in a Metropolis–Hastings setting. Casella and
Robert (1996) develop the Rao-Blackwellization technique for this situation. However, to evaluate
the resulting estimator is quadratic in the number of Metropolis-Hastings iterations. Pinto and
Neal (2001) use the same sequence of random numbers for two Markov chains, one sampling
from the distribution of interest and the other from a Gaussian approximation, and the latter
chain is used to construct a control variate. This gives large variance reductions if the target
distribution can be reasonably well approximated with a Gaussian. Mira et al. (2003) use the
zero-variance principle introduced in the physics literature to construct another estimator f̃(x)
that is the sum of the original estimator f(x) and an additional term with expectation zero. Thus,
the additional term can be considered a control variate. The method is only examined for simple
low dimensional examples, so the potential is not known for more complicated problems. Atchadé
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and Perron (2005) construct control variates that is a function of all proposed states. However, to
be able to know the mean of the control variate they must limit the attention to the independent
proposal Metropolis–Hastings algorithm.

In the present paper we also use the control variate technique, but consider control variates
that are functions of both the current states, x, and the proposals, y. This enable us to define
several zero-mean control variates for general target and proposal distributions. We develop the
ideas both for the standard Metropolis–Hastings procedure and the generalised reversible jump
algorithm. The amount of variance reduction obtained varies depending on the target distribution
and the proposal distribution used.

The paper is organised as follows. In Section 2 we give a brief introduction to the Metropolis-
Hastings algorithm, and in Section 3 we describe the control variate technique. The new control
variates are developed in Section 4 and simulation examples are presented in Section 5. Finally,
in Section 6 we give some closing remarks.

2 MCMC simulation

Our aim is to make samples from a target distribution π(·). The idea behind MCMC algorithms
is to construct a Markov chain, with transition kernel P say, which have π(·) as it’s limiting
distribution, see for example Liu (2001). An MCMC algorithm typically consists of two steps in
each iteration. Letting x denote the current state of the Markov chain, one first proposes a new
state y for the Markov chain and, second, one accepts y with a certain probability, otherwise
one keeps x as the current state. Let x1, . . . ,xN and y1, . . . ,yN denote N states of the Markov
chain and corresponding proposals in the MCMC algorithm, respectively, after having discarded
a “burn-in” period. Then x1, . . . ,xN are samples from π(·). Thus, with

µ = E(f(x)) =

∫
f(x)π(x)dx, (1)

the most frequently used estimator for µ is the sample mean,

µ̂ =
1

N

N∑

i=1

f(xi). (2)

As discussed above, it is possible to construct better estimators than the sample mean by using
also the information in the rejected states and we return to this in Section 4. First we describe in
more detail some MCMC algorithms. We start with the standard Metropolis-Hastings scheme.

2.1 Standard Metropolis-Hastings algorithm

Assume the target distribution to be continuous on Rn and let π(·) denote its density. A transition
kernel P will then define a Markov chain with π(·) as it’s limiting distribution if

∫

A

π(x)dx =

∫

Rn

P(A|x)π(x)dx ∀A ∈ F (3)

where F is the Borel σ-algebra on Rn. It is hard to construct a suitable kernel P directly from
(3). Instead it is common to restrict attention to time reversible chains, i.e. require the the
detailed-balance condition,

∫

A

π(x)P(B|x)dx =

∫

B

π(x)P(A|x)dx ∀A, B ∈ F . (4)

If the chain satisfies (4) then the chain also satisfy (3). The transition kernel in the Metropolis-
Hastings algorithm is given by

P(A|x) =

∫

A

q(y|x)α(y|x)dy + I(x ∈ A)r(x),
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where q(·|x) is a proposal density, α(y|x) is the probability for accepting a proposal y, I(·) is
the indicator function and r(x) the probability for remaining at x. Equation (4) is satisfied if
(Hastings, 1970)

π(x)q(y|x)α(y|x) = π(y)q(x|y)α(x|y), (5)

which has the most general solution

α(y|x) =
s(x,y)

1 + π(x)q(y|x)
π(y)q(x|y)

, (6)

where s(x,y) ≥ 0 can be any symmetric function s(x,y) = s(y,x), that gives α(y|x) ≤ 1 ∀x,y ∈
Rn. In terms of asymptotic variance, the optimal choice for the acceptance probability is given by
(Peskun, 1973)

α(y|x) = min {1, R(x,y)} where R(x,y) =
π(y)q(x|y)

π(x)q(y|x)
. (7)

2.2 Mode jumping algorithm

A variant of the Metropolis-Hastings algorithm is the mode jumping algorithm introduced in
Tjelmeland and Hegstad (2001). This algorithm uses two proposal densities q0(·|x) and q1(·|x).
Still letting x denote the current state of the Markov chain, the algorithm works as follows. First,
we draw k = 0 or 1 at random and generate a new state y for the Markov chain from the proposal
distribution qk(·|x). Second, we accept the proposed state y with probability

α(y|x) = min {1, R(x,y)} where R(x,y) =
π(y)q1−k(x|y)

π(x)qk(y|x)
. (8)

Otherwise we keep x as the current state. One should note that the acceptance probability in (8)
results from (6) for a specific choice of the function s(x,y).

2.3 Reversible jump algorithm

The reversible jump algorithm is a generalization of the standard Metropolis-Hastings algorithm
and is also based on the construction of a time reversible Markov chain. This short description is
based on Waagepetersen and Sørensen (2001). The reversible jump algorithm is most often used
when the target distribution have a sample space of varying dimension.

The target distribution π(·) is now the joint probability distribution of x = (m, z), where
m ∈ {1, 2, . . . , M} is a model indicator and z is a real stochastic vector of possibly varying
dimension. The vector z takes values in a set C defined as a union C = ∪M

m=1Cm of spaces
Cm = Rnm , nm ≥ 1. Given we are inside a model m, z can only take values in Cm.

Letting x = (m, z) with z ∈ Cm be the current state of the Markov chain, each iteration of the
algorithm works as follows. Propose a new state y = (m′, z′) with z′ ∈ Cm′ by first proposing m′

and a stochastic variable u ∈ Rn
mm′ from a proposal distribution q(m′,u|x) = pmm′qmm′(u|z),

where pmm′ is the proposal distribution for m′ and qmm′(u|z) the proposal distribution for u.
Note that u can be of varying dimension dependent on the value of m′.

Next, a one-to-one deterministic functional relation is assumed between (z,u) and (z′,u′) for
some u′. Write (z′,u′) = φmm′(z,u) ⇔ (z,u) = φ−1

mm′(z′,u′). The proposed new value of the
Markov chain is y = (m′, z′) and it is accepted with probability

α(y|x) = min {1, R(x,y)} where R(x,y) =
π(y)q(m,u′|y)

π(x)q(m′,u|x)
|J | (9)

and J is the Jacobi determinant for the transformation from (z,u) to (z′,u′). More details of the
algorithm is given in Appendix A.1.
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3 Control variates

Suppose we have samples from the target distribution π(·) generated using one of the algorithms
presented in Section 2 and we are interested in estimating µ defined in (1). We can then use the
control variates technique (Liu, 2001) to reduce the variance in our estimate. More generally we
can describe the control variates technique as follows. Let x1, . . . ,xN be samples from the target
distribution and suppose we use the sample to estimate µ with an unbiased estimator µ∗. Typically
µ∗ is the sample mean, equation (2). Suppose we have another random variable v, the control
variate, with known expectation δ and which is correlated with µ∗. Without loss of generality we
assume δ = 0. Then for any value c we can also use the unbiased estimator

µ̃ = µ∗ + c · v. (10)

This gives,
Var(µ̃) = Var(µ∗) + c2Var(v) + 2cCov(µ∗, v),

which is minimized for

c = −
Cov(µ∗, v)

Var(µ∗)
. (11)

For this optimal value of c, the relative variance reduction by using µ̃ in stead of µ∗ is

Var(µ∗) − Var(µ̃)

Var(µ∗)
= [Corr(µ∗, v)]2. (12)

Thus, the aim is to construct a control variate which has a high squared correlation with µ∗. Note
that it is possible to use more then one control variate. Suppose we have the control variates
v1, . . . , vm. Then we can use the estimator

µ̃ = µ∗ +

K∑

k=1

civi

and find constants c1, . . . , cm which minimizes the variance. In the next section we discuss ways
to construct control variates for Metropolis-Hastings algorithms.

Remark 1. Suppose we achieve a relative variance reduction a in the estimate of µ when we use a
control variate compared with the sample mean. Alternatively, we can obtain the same variance
reduction by running the chain for more iterations and estimate µ by the sample mean in the
longer chain. Suppose the original chain was run for N1 iterations and the longer chain for N2

iterations. Then the longer chain gives a relative variance reduction of a = (1/N1−1/N2)/(1/N1) =
(N2 − N1)/N1. Defining ra = N2/N1, we get

ra =
1

1 − a
. (13)

Thus, to get a relative variance reduction of a we need to increase the number of iterations with
a factor of 1/(1 − a).

4 Metropolis-Hastings and control variates

As in Section 2, let x1, . . . ,xN and y1, . . . ,yN denote the states of the Markov chain and the
corresponding proposals in an MCMC algorithm, respectively. In this section we construct control
variates for the Metropolis-Hastings algorithm.
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4.1 A first control variate

Consider a control variate of the form

v =
1

N

N∑

i=1

g(xi,yi) (14)

where g(·, ·) is a function to be specified. Recall the standard Metropolis-Hastings algorithm from
Section 2.1. The estimator µ̃ in (10) is then unbiased if E(g(x,y)) = 0 where (x,y) ∼ π(x)q(y|x).
Define the function

g0(x,y) = w1(x,y)f(x) + w2(x,y)f(y) (15)

where w1(·, ·) and w2(·, ·) are weight functions to be specified. We can then use g0(·, ·) as g(·, ·) in
(14) if

E(g0(x,y)) =

∫∫
[w1(x,y)f(x) + w2(x,y)f(y)]π(x)q(y|x)dxdy = 0. (16)

To find weight functions that satisfy (16), split the integral in two parts and change the order of
integration in the last integral. This gives the requirement

∫∫
w1(x,y)f(x)π(x)q(y|x)dxdy +

∫∫
w2(y,x)f(x)π(y)q(x|y)dxdy = 0 (17)

Thus a sufficient condition for E(g0(x,y)) = 0 is

w1(x,y)π(x)q(y|x) = −w2(y,x)π(y)q(x|y), (18)

which is satisfied for

w1(x,y) =
π(y)q(x|y)

π(x)q(y|x) + π(y)q(x|y)
and w2(x,y) = −w1(x,y). (19)

Substituting (19) into (15) gives

g0(x,y) =
R(x,y)

1 + R(x,y)
(f(x) − f(y)) (20)

which again can be substituted into equation (14) and we have defined a control variate that uses
all the accepted and proposed states in the Metropolis-Hastings algorithm. We end this section
with some remarks concerning the control variate just defined.

Remark 2. With similar calculations like above we get the same control variate for the mode
jumping and the reversible jump algorithms. In Appendix A.1 we give a proof of (20) in the
reversible jump setting.

Remark 3. The two weight functions in (19) may be multiplied with any function s(x,y) that is
symmetric in x and y and (18) will still hold. Note that this function corresponds essentially to
the symmetric function that can be chosen in Hastings (1970) original acceptance probability, our
equation (6). However, an important difference is that in (6) the choice of s(x,y) must ensure
that the acceptance probability is not larger than one, whereas no such requirement exists for the
weight functions.

Remark 4. The connection between the Metropolis–Hastings acceptance probability and the
weights in (15) can also be seen from the following. With (15) the estimator for µ becomes

µ̃ =
1

N

N∑

i=1

[1 + w1(x
i,yi)]f(xi) + w2(x

i,yi)f(yi).

Thus, the total weights given to the current state x and the proposal y are 1 + w1(x,y) and
w2(x,y), respectively. If we require these to sum to unity we get w2(x,y) = −w1(x,y). In turn
substituting this into (18) we get a requirement for w1(x,y) which exactly corresponds to (5) for
the Metropolis–Hastings acceptance probability. In particular, our choice in (19) corresponds to
the Barker (1965) acceptance probability.
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Remark 5. To calculate the estimate µ̃ all we need is the current state x, the proposal y and the
acceptance ratio R(x,y). This is quantities that are already calculated to run the Metropolis-
Hastings algorithm. Thus, to calculate µ̃ is essentally of the same computational complexity as
calculating µ̂.

4.2 Control variates including the acceptance indicator

Now we go one step further and define control variates not only depending on the current and
proposed states for each iteration but also the information whether we get acceptance or not.
Define the acceptance indicator γ ∈ {0, 1}. As before, let x and y denote the current state of the
Markov chain and the proposal respectively. We let γ = 1 if the proposal is accepted and γ = 0
otherwise. Thus

P(γ = r|x,y) = [α(y|x)]r [1 − α(y|x)](1−r), r = 0, 1. (21)

Consider control variates of the form

v =
1

N

N∑

i=1

g(xi,yi, γi), (22)

where g(·, ·, ·) is some function to be specified and γ1, . . . , γN are the acceptance indicators for
each iteration of the Markov chain. We then have the following result that holds for the standard
Metropolis-Hastings, the mode jumping and the reversible jump algorithms

Theorem 1. Let (x,y, γ) ∼ π(x)q(y|x)P(γ|x,y) and define the functions

g1(x,y, γ) =

{
α(y|x)f(x) if γ = 0,

−[1 − α(y|x)]f(x) if γ = 1,
(23)

g2(x,y, γ) =

{
α(y|x)f(x) if γ = 0,

−[1 − α(x|y)]f(y) if γ = 1,
(24)

g3(x,y, γ) =

{
α(y|x)f(y) if γ = 0,

−[1 − α(x|y)]f(x) if γ = 1.
(25)

g4(x,y, γ) =

{
α(y|x)f(y) if γ = 0,

−[1 − α(y|x)]f(y) if γ = 1,
(26)

Then E(gl(x,y, γ)) = 0 for l = 1, . . . , 4.

This is proved in much the same way that we calculated (20). A proof for the standard Metropolis-
Hastings algorithm is given in Appendix A.2. Then we can set g(x,y, γ) = gl(x,y, γ) for any of
l = 1, . . . , 4 in (22) and we have constructed four more control variates.

Remark 6. To calculate the control variates presented in this section we also only need the current
state x, the proposal y and the acceptance ratio R(x,y), similar to what we observed in Remark
5.

4.3 Calculation of the control variate estimate

When calculating the estimate µ̃ in (10) for one of the control variates defined in Sections 4.1 and
4.2 we want to use the optimal value for the constant c. The optimal value in (11) can not be
directly used as both Cov(µ∗, v) and Var(µ∗) are unknown. The two quantities may be estimated
via time series analysis methods, see Priestly (1981), Geier (1992) and Han and Green (1992). We
adopt a very simple method based on dividing the chain into batches. More precisely, we divide
the N iterations into M batches of equal lengths, where N and M must be chosen so that N/M is
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much larger than the correlation length of the simulated Markov chain. We estimate the optimal
value for c by

ĉ = −
̂Cov(µ̂, v)

V̂ar(µ̂)
= −

1
M

∑M
j=1(µ̂

j − µ̂)(vj − v)

1
M

∑M
j=1(µ̂

j − µ̂)2
, (27)

where µ̂j and vj are the sample mean and the control variate for batch number j, respectively,
and µ̂ = (1/M)

∑M
j=1 µ̂j and v = (1/M)

∑M
j=1 vj . Finally, we substitute ĉ for c in (10).

One should note that when using the same Markov chain run first to estimate the optimal
value for c and thereafter computing µ̂ with c = ĉ, the resulting µ̂ is no longer unbiased. If the
unbiasedness is considered really important, a better alternative is to do two independent Markov
chain runs, runs A and B say. One may then estimate the optimal value for c from each of the two
runs, getting ĉA and ĉB say, and thereafter computing µ̂A from run A with c = ĉB and µ̂B from
run B with c = ĉA. Then both µ̂A and µ̂B are unbiased estimators for µ, and so is 1

2 (µ̂A + µ̂B).

5 Simulation examples

In this section we try the control variates in four simulation examples. First we present the
results for a toy Gaussian example. The three other examples is based on previously analysed and
published data sets and we use our control variates with the exact same models and simulation
algorithms previously presented.

5.1 Toy Gaussian example

Let π(·) be a ten dimensional standard Gaussian distribution. We estimate the mean of the
function f(x) = x1, where x1 denotes the first component of the vector x, of course µ = E(x1) = 0.
We simulate using the Metropolis-Hastings algorithm and try two different proposal distributions.
The first is the normal random walk proposal (Liu, 2001)

qRW (y|x) = N10(y|x, σ2I), (28)

where Nn(·|ν,Σ) is the density function of an n-dimensional Gaussian distribution with mean ν
and covariance matrix Σ, σ2 is the proposal variance and I the identity matrix. The second is the
Langevin proposal (Roberts and Rosenthal, 1998)

qL(y|x) = N10(y|x +
σ2

2
∇ log{π(x)}, σ2I). (29)

We present results for the control variates defined by (20) and (23), and denote them v0 and v1,
respectively. We also tried the other control variates discussed in Section 4, but these produced
less promising results. We consider the two estimators

µ̃(0) = µ̂ + c · v0, (30)

µ̃(0,1) = µ̂ + c1 · v0 + c2 · v1. (31)

The results are summarised in Figure 1. The left and right columns contain results for the normal
random walk and Langevin proposals, respectively. For eight different values of σ, the first row
gives the correlation between the sample mean and v0, the second row the correlation between
the sample mean and v1, the third row gives the correlation between v0 and v1, and in the forth
row the upper and lower curves show the relative variance reduction using the estimators µ̃(0) and
µ̃(0,1) compared with the sample mean, respectively. The maximal relative variance reduction is
slightly above and slightly below 30% for the random walk and Langevin proposals, respectively.
This corresponds to an ra value of about 1.43, i.e. the variance reduction is the same as one
would have obtained by increasing the number of iterations by 43%. One can note that the largest
variance reductions are obtained when σ is close to the optimal values identified in Roberts et al.
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Figure 1: Toy Gaussian example: The left and right columns contain results for the normal random
walk and Langevin proposals, respectively. As a function of σ we have: First row, Corr(µ̂, v0).
Second row, Corr(µ̂, v1). Third row, Corr(µ̂, v0). Forth row, relative variance reduction using the
estimators µ̃(0) (upper curve) and µ̃(0,1) (lower curve) compared with the sample mean.
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(1997), for random walk proposals, and in Roberts and Rosenthal (1998), for Langevin proposals.
We also notice that the improvement using µ̃(0,1) is minimal compared with µ̃(0) even if Corr(µ̂, v1)
is significantly different from zero for large values of σ. This can be understood from the plots in
the third row. When Corr(µ̂, v1) is large, Corr(v0, v1) is also large in absolute value, so v0 and v1

are kind of similar and v1 do not give much additional information in the estimation.

5.2 Gaussian Markov random field example

In this section we consider a simple but much analysed binomial time series taken from Kitagawa
(1987). Each day during the years 1983 and 1984 it was recorded whether there was more than
one mm rainfall in Tokyo. We are interested in estimating the underlying probability pt of rainfall
at calendar day t = 1, . . . , 366. We use the likelihood function (Kitagawa, 1987)

f(d|χ) =

n−1∏

t=0

(
nt

dt

)
p(χt)

dt(1 − p(χt))
(nt−dt) (32)

where p(·) is the logit link and d = (d1, . . . , dn)T is the number of times it rained more than 1
mm on the different calendar days. Further, nt = 2 for t 6= 60 and n60 = 1 which corresponds to
February 29. We use two prior models for χ = (χ1, . . . , χn), circular Gaussian Markov random
fields with first and second order neighbourhood with precision κ ∼ Γ(a, b), the gamma distribu-
tion. The circularity in the priors is based on Rue and Held (2004) and they refer to the priors as
RW1 and RW2, respectively. With x = (χ, κ) the target distribution of interest is the posterior
distribution π(x|d) and as an estimator for pt we use E(p(χt)|d). Thus, in the notation introduced
in Section 2 we have f(x) = p(χt).

To simulate from the posterior distribution we use an algorithm from Rue and Held (2004).
We simulate from the posterior π(χ, κ|d) by first proposing a new precision value κ′ = fκ where
f has density π(f) ∝ 1 + 1/f on the interval [1/F, F ]. This conveniently makes

π(κ′|κ)

π(κ|κ′)
= 1. (33)

Next we propose a new value χ′ conditioned on κ′ for the Markov random field from a second
order Taylor approximation to the posterior distribution and simultaneously accept or reject the
proposal (χ′, κ′). We simulate using the library GMRFlib (Rue and Follestad, 2002).

We consider all the five control variates defined in Section 4. We denote the variates defined
by (20), (23), (24), (25) and (26) with v0, v1, v2, v3 and v4, respectively. We present results for the
corresponding five estimators,

µ̃(l) = µ̂ + c · vl for l = 1, . . . , 4. (34)

In the simulations we adopt the hyper-parameter values a = 1.0, b = 0.000289 used in Rue and
Held (2004). Further, we chose F = 7 which gave an acceptance rate around 30%. For each model,
we ran the algorithm for 300000 iterations (after convergence) and used the realisations to estimate
the relative variance reduction for each calendar day t = 1, . . . , 366. We also used bootstrapping,
the percentile method (Efron, 1981), to estimate corresponding confidence intervals. The results
are summarised in Figure 2 and Table 1. In Figure 2, the left and right columns show results for
the RW1 and RW2 priors, respectively. From top to bottom the five rows show, for each calendar
day, confidence intervals for the relative variance reduction when using µ(0) to µ(4). One can note
that the first control variate, v0, is the only one that substantially contribute to any variance
reduction. For v0 the reduction is between 20 and 30%. In Table 1 we give more details for three
arbitrary chosen calendar days, t = 64, 184 and 308. For each of the two models, the table give
confidence intervals for pt based on µ̂ and µ̃(0), respectively, together with corresponding estimated
standard deviations and ra. We note that the gain of using our control variates is somewhat lower
here than in the Gaussian toy example.
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Table 1: Gaussian Markov random field example: Confidence intervals, standard deviations for pt

and corresponding ra for t = 64, 184 and 308, when using the estimators µ̂ and µ̃(0).

RW1 Conf.int. using µ̂ Conf.int. using µ̃(0) Sd(µ̂) Sd(µ̃(0)) ra

p64 (0.21401, 0.21514) (0.21381, 0.21480) 2.89 · 10−4 2.30 · 10−4 1.30
p184 (0.41674, 0.41820) (0.41706, 0.41832) 3.72 · 10−4 3.22 · 10−4 1.33
p308 (0.17317, 0.17415) (0.17309, 0.17395) 2.51 · 10−4 2.18 · 10−4 1.33

RW2 Conf.int. using µ̂ Conf.int. using µ̃(0) Sd(µ̂) Sd(µ̃(0)) ra

p64 (0.23700, 0.23788) (0.23694, 0.23772) 2.25 · 10−4 1.97 · 10−4 1.30
p184 (0.48155, 0.48264) (0.48170, 0.48265) 2.77 · 10−4 2.42 · 10−4 1.31
p308 (0.18988, 0.19064) (0.18989, 0.19056) 1.93 · 10−4 1.70 · 10−4 1.29

Table 2: Mode jumping example: For the empirical mean, µ̂, and each of µ̃(0), . . . , µ̃(4), confidence
interval for the amount of probability mass contained in the smaller posterior mode, corresponding
standard deviation, estimated ra-value and confidence interval for the relative variance reduction.

Estimator Confidence interval Standard.dev. ra Var. red.
µ̂ (0.01477, 0.01891) 1.06·10−03

µ̃(0) (0.01489, 0.01795) 7.81·10−04 1.83 (0.407, 0.496)
µ̃(1) (0.01467, 0.01877) 1.05·10−03 1.02 (0.001, 0.053)
µ̃(2) (0.01467, 0.01874) 1.04·10−03 1.03 (0.007, 0.072)
µ̃(3) (0.01504, 0.01834) 8.43·10−04 1.57 (0.316, 0.411)
µ̃(4) (0.01470, 0.01809) 8.39·10−04 1.58 (0.325, 0.416)

5.3 Mode jumping example

In this section we reconsider the example in Section 4.2 of Tjelmeland and Hegstad (2001) where
a mixture model is used for a data set originally presented in Brooks et al. (1997) concerning fetal
deaths in litters of mice. The model is a mixture of beta-binomial and binomial distribution

p(λ|η) = γ

[(
η

λ

) λ−1∏

r=0

µ + rθ

1 + rθ

η−λ−1∏

r=0

1 − µ − rθ

1 + rθ

]
+ (1 − γ)

[(
η

λ

)
νλ(1 − ν)η−λ

]
, (35)

where λ is the number of deaths and η the number of implants or fetuses. The model parameters
are γ ∈ [0, 1], µ ∈ [0, 1], θ ≥ 0 and ν ∈ [0, 1], to which independent vague prior distributions are
assigned. The target distribution of interest is the posterior distribution of the parameters given
the data. This posterior turns out to have two distinct modes and our focus here is the probability
mass contained in the smaller mode.

Given a current state x = (γ, µ, θ, ν), a potential new state y is generated as follows. First, a
vector ϕ is generated from a very wide Gaussian distribution and k = 0 or 1 is chosen with equal
probabilities. Second, a local optimisation algorithm is run, starting in x+ϕ if k = 0 and in x−ϕ
if k = 1. Third, a Gaussian or t-distribution is fitted to the local optimum located and, finally, the
potential new state y is generated from the fitted distribution. For more details of the algorithm
used, see the reference given above.

We consider the same control variates and estimators that we considered in Section 5.2. In
Table 2 we summarise the results. For the empirical mean, µ̂, and each of µ̃(0), . . . , µ̃(4) we give the
resulting confidence interval for the probability mass contained in the smaller mode, corresponding
standard deviation, the ra-value and confidence intervals for the relative variance reduction. The
confidence interval for the relative variance reduction is again obtained using bootstrapping. We
see that we obtain very satisfying results for three of the estimators, namely µ̃(0), µ̃(3) and µ̃(4).
However, v0, v3 and v4 are highly correlated so very little extra can be gained by using more than
one control variate.
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Table 3: Reversible jump example: Confidence intervals, standard deviation and corresponding ra

for P(m = 2), P(m = 5) and P(m = 8) for the enzyme and the acidity data using the estimators
µ̂ and µ̃(0).

Enzyme Conf.int. using µ̂ Conf.int. using µ̃(0) Sd(µ̂) Sd(µ̃(0)) ra

P(m = 2) (0.02312, 0.02387) (0.02349, 0.02415) 1.92 · 10−4 1.69 · 10−4 1.29
P(m = 5) (0.20807, 0.20950) (0.20815, 0.20950) 3.65 · 10−4 3.43 · 10−4 1.13
P(m = 8) (0.01590, 0.01632) (0.01582, 0.01621) 1.06 · 10−4 1.01 · 10−4 1.11

Acidity Conf.int. using µ̂ Conf.int. using µ̃(0) Sd(µ̂) Sd(µ̃(0)) ra

P(m = 2) (0.07549, 0.07663) (0.07550, 0.07655) 2.91 · 10−4 2.67 · 10−4 1.19
P(m = 5) (0.18158, 0.18254) (0.18142, 0.18230) 2.46 · 10−4 2.25 · 10−4 1.20
P(m = 8) (0.03598, 0.03655) (0.03603, 0.03658) 1.46 · 10−4 1.41 · 10−4 1.08

5.4 Reversible jump example

In this example we consider the model and data sets presented in Richardson and Green (1997).
For three different data sets, Richardson and Green (1997) use a mixture of Gaussian densities
with a stochastic number of mixture components. Thus, the resulting posterior is defined on space
of varying dimension and a reversible jump algorithm is used to generate samples from it. We use
the same three data sets as in Richardson and Green (1997) and also adopt exactly the same model
and simulation algorithm. The reversible jump algorithm used to simulate from the posterior uses
three groups of proposals. First, Gibbs updates is used for allocation of observations into the
different mixture components and for the model parameters. Second, reversible jump moves are
used either to split one mixture component into two or merging two mixture components into
one. The last update type is to propose to remove an existing or to add a new empty mixture
component. An empty mixture component is a component to which no data is allocated. For more
details on the model and the simulation algorithm used we refer to the reference given above.

Our focus here is on the number of mixture components, denoted by m, and in particular its
posterior distribution. Thus, for each possible value of m we let f(x) be an indicator function that
is one whenever the number of mixture components equals the specified value, and zero otherwise.
In the estimation process we only include updates of the two last types described above. The first
update type does not change the value of m and therefore does not give any additional relevant
information. We consider the same five control variates as in Sections 5.2 and 5.3. However, we
now define two control variates of each type, one for each of the two update types involving a
change in the value of m. For l = 0, 1, . . . , 4 let vl,2 be the control variate defined from equations
(20), (23), (24), (25) and (26), respectively, for the second update type described above, and let
vl,3 be the corresponding control variate based on the third update type. We then consider the
five estimators

µ̃(l) = µ̂ + c2vl,2 + c3vl,3 for l = 0, 1, . . . , 4. (36)

We ran the algorithm for 32 million sweeps (as defined in Richardson and Green (1997)) after
convergence and used the realisations to estimate the relative variance reduction for each value of
m. The results are summarised in Figure 3 and Table 3. In Figure 3, the left and right columns
show results for two different data sets, the "enzyme" and the "acidity" data sets. The results for
the third data set, the "galaxy" data, were less promising. From top to bottom the five rows show
95% confidence intervals for the relative variance reduction for each value of m, when using µ̃(0) to
µ̃(4). As in the previous examples, bootstrapping is used to generate the confidence intervals. The
first control variate is again the most effective one, but estimators µ̃(3) and µ̃(4) also give noticeable
variance reductions. Note that µ̃(3) and µ̃(4) are the same control variates that work well in the
mode jumping example. In Table 3 we give more detailed results for m = 2, 5 and 8. For each of
the two data sets considered, the table give confidence intervals for the posterior probability based
on µ̂ and µ̃(0), respectively, together with corresponding estimated standard deviations and ra.
One can note that the estimated posterior probabilities given in Richardson and Green (1997) fall
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outside our confidence intervals. This is not unreasonable as we are using a much larger number
of iterations.

6 Closing remarks

In this paper we introduce five new control variates that can be used together with the Metropolis-
Hastings algorithm. We consider functions of both the current state of the Markov chain and the
proposed new state, and this enables us to construct control variates with known mean values for
general target and proposal distributions. We work out the ideas for both the standard Metropolis–
Hastings setting and for the more general reversible jump situation.

To apply the new control variates require very little extra effort, both in terms of implemen-
tation and computation time. The use of the control variates is best implemented as a program
post-prosessing the simulation output. The only change necessary in the simulation code is to
store the proposed new value y and the acceptance ratio R(x,y) in addition to the current state
x. The post-processing step can be implemented as a general program, the only part that need
to be recoded for each problem is the function of interest, f(x). The extra computation time
is proportional to the number of iterations run and will usually be neglectable compared to the
simulation time. In contrast, using the Rao-Blackwellization method in a Metropolis–Hastings
setting give an extra cost that goes as the square of the number of iterations and will therefore
dominate the total compution time when the number of iterations is large.

In four simulation examples we have explored what variance reduction can be obtained by
using the new control variates. Two of the variates, v1 and v2 seem to be of little practical use.
The best results are consistently obtained for the simplest control variate, v0, but also v3 and v4

give promising results in two of the examples. However, as v3 and v4 typically seem to be highly
correlated with v0, we expect it to be most reasonable to use only v0.

The relative variance reduction obtained varies significantly depending on both the target
distribution of interest, the proposal distributions used, and the expectation of interest. The
largest reduction in our examples was 45%, which corresponds to ra = 1.83. Thus, to obtain a
similar variance reduction, the run length would have to be increased by 83%. This number is
from our mode jumping example where the simulation run took several days of computation time,
so in this situation such a variance reduction is definitely of practical use.

Comparing the variance reductions in our four examples, the largest reductions seem to be
obtained with proposal distributions that propose large changes. This is certainly true for the
mode jumping example. In the Gaussian toy example the variance reductions are also largest
when σ is reasonably large, but not too large as then most of the proposals will be far out in
the tail of the distribution. The variance reductions are smaller for the reversible jump example
where, loosely speaking, the proposed changes are rather small. This conclusion is also intuitively
reasonable, with an algorithm proposing very small changes the correlation between x and y

becomes very high and one can not expect to gain much by using also the rejected proposals.
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A Some proofs of the control variates in Section 4

A.1 Proof of the first control variate for the Reversible jump algorithm

Recall the algorithm described in Section 2.3. Here comes some more details related to the
algorithm which is needed to prove the first control variate. The functional relation between (z,u)
and (z′,u′) can in more detail be written as

(z′,u′) = φmm′(z,u) = (φ1mm′(z,u), φ2mm′ (z,u))

and
(z,u) = φ−1

mm′(z
′,u′) = (φ1m′m(z′,u′), φ2m′m(z′,u′)).

The deterministic mappings must be of dimension φ1mm′ : Rnm+n
mm′ → Rn

m′ and φ2mm′ :
Rnm+n

mm′ → Rn
m′m . When considering a move from state (m, z) to (m′, z′) = (m′, φ1mm′(z,u))

and the reversed move (m′, z′) to (m, z) = (m, φ1m′m(z′,u′)) the crucial so called dimensional
matching condition nm + nmm′ = nm′ + nm′m must be satisfied to obtain reversebility. It means
that the vectors (z,u) and (z′,u′) must be of the same dimension. We write the Jacobi determinant
in (9) as

J =

∣∣∣∣
φmm′(z,u)

∂z∂u

∣∣∣∣ .

Remember that we have x = (m, z), y = (m′, z′) and z′ = φ1mm′(z,u). Thus, g(x,y) defined
in (15) can be written on the form

g(x,y) = w1(m, z, m′,u)f(m, z) + w2(m, z, m′,u)f(m′, φ1mm′(z,u)). (37)

This gives

E(g(x,y)) =
∑

m

∑

m′

∫∫
[w1(m, z, m′,u)f(m, z) + w2(m, z, m′,u)f(m′, φ1mm′(z,u))]

π(m, z)pmm′qmm′(u|z)dzdu

=
∑

m

∑

m′

∫∫
w1(m, z, m′,u)f(m, z)π(m, z)pmm′qmm′(u|z)dzdu

+
∑

m

∑

m′

∫∫
w2(m, z, m′,u)f(m′, φ1mm′(z,u))π(m, z)pmm′qmm′(u|z)dzdu

Performing the substitution (z′,u′) = φmm′(z,u) in the last term above, and thereafter inter-
changing the variable symbols (m, z,u) and (m′, z′,u′) in the same term we get

E(g(x,y)) =
∑

m

∑

m′

∫∫
w1(m, z, m′,u)f(m, z)π(m, z)pmm′qmm′(u|z)dzdu

+
∑

m

∑

m′

∫∫
w2(m

′, φ1mm′(z,u), m, φ2mm′(z,u))f(m, z)π(m′, φ1mm′(z,u))

pm′mqm′m(φmm′(z,u))

∣∣∣∣
φmm′(z,u)

∂z∂u

∣∣∣∣dzdu.

(38)

Thus, we get a sufficient condition for E(g(x,y)) = 0 by setting the sum of the two integrands
identical to zero. This gives

w1(m, z, m′,u)

=
π(m′, φ1mm′(z,u))pm′mqm′m(φmm′(z,u))

∣∣∣φ
mm′(z,u)

∂z∂u

∣∣∣

π(m′, φ1mm′(z,u))pm′mqm′m(φmm′(z,u))
∣∣∣φ

mm′ (z,u)
∂z∂u

∣∣∣ + π(m, z)pmm′qmm′(u|z)
(39)

w2(m, z, m′,u) = −w1(m, z, m′,u) (40)

and we get the first control variate for the reversible jump setting by substituting (39) and (40)
into (37). Finally, we get (20) using the expression for the acceptance ratio R(x,y).
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A.2 Proof of theorem 1 for the Metropolis-Hastings algorithm

Let g(x,y, γ) = w1(x,y, γ)f(x) + w2(x,y, γ)f(y). To construct control variates we must be able
to evaluate

E(g(x,y, γ)) =

∫∫
[w1(x,y, 0)f(x) + w2(x,y, 0)f(y)]π(x)q(y|x)(1 − α(y|x))dxdy

+

∫∫
[w1(x,y, 1)f(x) + w2(x,y, 1)f(y)]π(x)q(y|x)α(y|x)dxdy

(41)

Split each of the integrals in (41) in two integrals and change the order of integration in the
integrals containing w2 to get

E(g(x,y)) =

∫∫
w1(x,y, 0)f(x)π(x)q(y|x)(1 − α(y|x))dxdy

+

∫∫
w2(y,x, 0)f(x)π(y)q(x|y)(1 − α(x|y))dxdy

+

∫∫
w1(x,y, 1)f(x)π(x)q(y|x)α(y|x)dxdy

+

∫∫
w2(y,x, 1)f(x)π(y)q(x|y)α(x|y)dxdy.

Thus, a sufficient condition for E(g(x,y)) = 0 is

w1(x,y, 0)π(x)q(y|x)(1 − α(y|x)) + w2(y,x, 0)π(y)q(x|y)(1 − α(x|y))+

w1(x,y, 1)π(x)q(y|x)α(y|x) + w2(y,x, 1)π(y)q(x|y)α(x|y) = 0.
(42)

There are six natural ways to fulfill this requirement and in the following we discuss each in turn.
(i) Equating to zero the sum of the first two terms in (42) and setting w1(x,y, 1) = w2(x,y, 1) = 0.
This gives g(x,y, 0) = w1(x,y, 0)f(x) + w2(x,y, 0)f(y) and g(x,y, 1) = 0, where the weight
functions must fulfill

w1(x,y, 0)π(x)q(y|x)(1 − α(y|x)) = −w2(y,x, 0)π(y)q(x|y)(1 − α(x|y)). (43)

However, whenever y is rejected, i.e. γ = 0, we must have α(y|x) < 1 and thereby we also have
α(x|y) = 1. Thus, the right hand side of (43) is always zero when γ = 0 and thereby the same
equation imply w1(x,y, 0) = 0 and we get g(x,y, γ) ≡ 0. So this choice is of no interest.
(ii) Equating to zero the sum of the first and third terms in (42) and setting w2(x,y, 0) =
w2(x,y, 1) = 0. Equation (42) is then fulfilled by setting w1(x,y, 0) = α(y|x) and w1(x,y, 1) =
1 − α(y|x) which gives the g(x,y, γ) function in (23) in Theorem 1.
(iii) Equating to zero the sum of the first and last terms in (42) and setting w2(x,y, 0) =
w1(x,y, 1) = 0. Equation (42) is then fulfilled by setting

w1(x,y, 0) =
π(y)q(x|y)α(x,y)

π(y)q(x|y)α(x|y) + π(x)q(y|x)[1 − α(y|x)]
,

w2(x,y, 1) = −
π(y)q(x|y)[1 − α(x|y)]

π(y)q(x|y)α(x|y) + π(x)q(y|x)[1 − α(y|x)]
,

which can be simplified to w1(x,y, 0) = α(y|x) and w2(x,y, 1) = −[1 − α(x|y)]. This gives the
g(x,y, γ) function in (24) in Theorem 1.
(iv) Equating to zero the sum of the second and third terms in (42) and setting w1(x,y, 0) =
w2(x,y, 1) = 0. Equation (42) is then fulfilled by setting

w1(x,y, 1) =
π(y)q(x|y)[1 − α(x|y)]

π(y)q(x|y)[1 − α(x|y)] + π(x)q(y|x)α(y|x)
,
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w2(x,y, 0) = −
π(y)q(x|y)α(x|y)

π(y)q(x|y)[1 − α(x|y)] + π(x)q(y|x)α(y|x)
,

which, corresponding to case (iii) above, can be simplified to w1(x,y, 1) = −[1 − α(x|y)] and
w2(x,y, 0) = α(y|x). This gives the g(x,y, γ) function in (25) in Theorem 1.
(v) Equating to zero the sum of the second and last terms in (42) and setting w1(x,y, 0) =
w1(x,y, 1) = 0. Equation (42) is then fulfilled by setting w2(x,y, 0) = α(y|x) and w2(x,y, 1) =
−[1 − α(y|x)] which gives the g(x,y, γ) function in (26) in Theorem 1.
(vi) Finally equating to zero the sum of the third and last terms in (42) and setting w1(x,y, 0) =
w2(y,x, 0) = 0. This gives g(x,y, 0) = 0 and g(x,y, 1) = w1(x,y, 1)f(x) + w2(x,y, 1)f(y), where
the weight functions must fulfill

w1(x,y, 1)π(x)q(y|x)α(y|x) = −w2(y,x, 1)π(y)q(x|y)α(x|y). (44)

Equation (44) can be simplified to w2(x,y, 1) = −w1(y,x, 1), which gives that g(x,y, 1) =
w1(x,y, 1)f(x) − w1(y,x, 1)f(y). Inserting this in (22) we see that the resulting control vari-
ate is defined by a telescope sum. So, as for case (i), this case is of no interest.
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