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Abstract

The second order random walk (RW2) model is commonly used for smoothing data and for modelling
response functions. It is computationally efficient due to the Markov properties of the joint (intrinsic)
Gaussian density. For evenly spaced locations the RW2 model is well established, whereas for irregularly
spaced locations there is no well established construction in the literature. By considering the RW2 model
as the solution of a stochastic differential equation (SDE), a discretely observed integrated Wiener process,
it is possible to derive the density preserving the Markov properties by augmenting the state-space with
the velocities. In this note, we derive a computationally more efficient RW2 model for irregular locations
using a Galerkin approximation to the solution of the SDE without the need of augmenting the state-space.
Numerical comparison with the exact solution demonstrates that the error in the Galerkin approximation
is small and negligible in applications.
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1 Introduction

The second order random walk (RW2) model for regular locations has the density

π(x) ∝ exp

(
−1

2

n∑
i=3

(xi − 2xi−1 + xi−2)2
)

(1)

wherex =
[
x1, . . . , xn

]T
. The density is invariant under addition ofa+bi toxi for any constantsa andb, and

is therefore improper with rank deficiency two. The termxi+1 − 2xi + xi−1 can be interpreted as an estimate
of the second order derivative of a continuous time functionx(t) at t = i using values ofx(t) at t = i− 1, i,
andi+ 1. Hence, the RW2 model is appropriate for representing “smooth curves” with small squared second
derivative. We write “curves” to indicate that often in practice, a straight line is drawn (and is often implicit)
in-betweenxi andxi+1 as an interpolant.

The RW2 model (1) is much used in statistics, in basic tasks such as smoothing data and modelling
response functions, where semi-parametric regression, smoothing and penalised likelihood are methods used
(Fahrmeir and Tutz, 2001, Fahrmeir and Lang, 2001, Green and Silverman, 1994, Fahrmeir and Knorr-Held,
2000). All these tasks are important ingredients in many statistical models and are used in many areas in
statistics. Rue and Held (2005, Ch. 1) gives numerous examples and references.

The popularity of (1) can be explained by two reasons. The RW2 model is quite flexible due to its
invariance to addition of a linear trend, and also computationally convenient due to its Markov properties

π(xi | x−i) = π(xi | xi−2, xi−1, xi+1, xi+2) (2)

for 2 < i < n − 2, and with trivial changes near the boundary. Here,x−i denote all elements inx except
for xi. The Markov property allows both for fast calculations of the related full conditionals in Markov chain
Monte Carlo algorithms, but also, more efficiently, for using direct simulation algorithms based on the Kalman
filter, see for example (Kitagawa and Gersch, 1996). The RW2 model is also a Gaussian Markov random field
(GMRF) for which more general and very efficient simulation algorithms exist based on numerical methods
for sparse matrices, see Rue and Held (2005).

Although (1) is appropriate for regular locations, we often encounter situations where{xi} should rep-
resent a smooth “curve” at locations{si} where the distance between thesi’s are not constant. One such
example, is when (1) represents the effect of a covariate in a generalised linear model and the different values
of the covariate is not regularly spaced, see Rue and Held (2005, Ch. 4) for many such examples. An alter-
native approach in such cases, is to use regular locations and to use the value of the interpolant atsi. This
however, often leads to increased dimension of the RW2 model, which implies increased computational effort.
A better approach, is to extend the RW2 model (1) to deal with irregular locations.

Let s1 < s2 < . . . < sn be the set of (fixed) locations andxi be the corresponding response atsi, for
i = 1, . . . , n. There are two approaches to construct a RW2 model for irregular locations. The first is to use
a weighted version of (1) where the weights are selected by some ad-hoc argument, see Fahrmeir and Knorr-
Held (2000). The second is to consider the RW2 model as a discretely observed continuous time processx(t),
werex(t) is Gaussian and is the solution of

∆x(t) =
dW (t)

dt
, (3)

where∆ = d2

dt2
andW (t) is the standard Wiener process. Such an approach can be motivated using the

connection between smoothing splines and integrated Wiener processes (Wahba, 1978), and the construction
of the first order random walk for irregular locations, see for example Rue and Held (2005, Ch. 3).

The solution of (3) does not have any Markov properties, meaning thatπ(xi | x−i) does not simplify; the
precision (the inverse covariance) matrixQ is dense. Refer to Rue and Held (2005, Ch. 2) for details on this
issue. The solution of (3) does however have a Markov property on an augmented space

x̃ =
[
x1, x

′
1, . . . , xn, x

′
n

]T
(4)
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where also the derivatives (velocities) at{si} are included. For this vector with2n elements, Jones (1981) and
Wecker and Ansley (1983) showed how to derive the joint density that does possess a Markov property, but the
computations takes about9/2 the time as for the RW2 model for regular locations; see Rue and Held (2005,
Ch. 3.5) for details. This fact, in addition to increased complexity, naturally requires a RW2 model for irregular
locations such that (2) holds, but where the precision matrix is such that whenn increases, we converge (in
some sense) to the solution of (3). In this note, we give such a formulation using a Galerkin approach (see
Thomée, 1984, in essence the commonfinite elementmethod) to solve the SDE, and demonstrate that this
approximation is more than appropriate to use in applications and that the error is quite small.

The plan for the rest of this note is as follows. First, the Galerkin method is used to construct a Markov
random field model approximation to the SDE (3). Second, some theoretical and practical convergence prop-
erties are discussed. Third, and finally, a simple time-series representation of the model is derived.

2 Construction

We seek solutions to the differential (or diffusion) equation (SDE)∆x(t) = dW (t)/dt. Let 〈f, g〉 denote
the inner-product

∫
f(t)g(t) dt. A key observation is that by the definition ofweak solutionsto the SDE, the

identity

〈φ, ∆x〉 = 〈φ, dW/dt〉 (5)

must hold, for all appropriatetest functionsφ(t). Now, letΩ be the space of all possible solutions to the SDE,
and let{ψi}i=1,...,n be a set of basis functions for some subspaceΩ̃ ⊂ Ω. A Galerkin approximatioñx to the
SDE is constructed as a linear combination of the basis functions,

x̃(t) =
n∑

i=1

ψi(t)yi (6)

such that the joint distribution of all scalar products〈ψi, ∆x̃〉 equals the joint distribution of all〈ψi, ∆x〉.
The problem is thus reduced to finding the distribution of the weightsy =

[
y1, . . . , yn

]T
.

Let s1 < s2 < · · · < sn be a sequence of discretisation points, and letdi = si+1 − si denote the distances
between these points. We construct a Galerkin approximation forΩ̃ as the set of continuous, piecewise linear
functions with derivative discontinuities atsi. A set of basis functionsψi ,i = 1, . . . , n, is given by

ψi(t) =


0, t < si−1, undefined fori ≤ 2,
t−si−1

di−1
, si−1 ≤ t < si, undefined fori = 1,

1 − t−si
di
, si ≤ t < si+1, undefined fori = n,

0, si+1 ≤ t, undefined fori ≥ n− 1.

(7)

The second order derivatives ofψ3, . . . , ψn−2 can be expressed as

∆ψi(t) =
1

di−1
δsi−1(t) +

(−1
di

− 1
di−1

)
δsi(t) +

1
di
δsi+1(t), i = 3, . . . , n− 2, (8)

whereδs(t) is a Dirac’s delta function ats. Similar expressions hold forψ1, ψ2, ψn−1, andψn, with the
exception that there are no terms containingδs−1 , δs1 , δsn , or δsn+1 .

Using the identity (5) for each basis functionψi, we obtain[〈ψi, ∆x〉]
i=1,...,n

=
[〈ψi, dW/dt〉]

i=1,...,n
, (9)

where the right-hand side has a Gaussian distribution, with expectation0 and tridiagonal covariance matrix
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B =
[〈ψi, ψj〉

]
i,j=1,...,n

with interior elements

Bi,i−1 =
di−1

6
, Bi,i =

di−1 + di

3
, Bi,i+1 =

di

6
, (10)

for 2 ≤ i ≤ n− 1, as well asB1,1 = d1/3,B1,2 = d1/6,Bn,n−1 = dn−1/6, andBn,n = dn−1/3.
For the Galerkin approximation, we obtain[〈ψi, ∆x̃〉]

i=1,...,n
=
[∑

j〈ψi, ∆ψj〉yj
]
i=1,...,n

= Hy, (11)

whereH is a tridiagonal matrix with non-zero elements

Hi,i−1 =
1

di−1
, Hi,i = −

(
1

di−1
+

1
di

)
, Hi,i+1 =

1
di
, 2 ≤ i ≤ n− 1, (12)

for 2 ≤ i ≤ n − 1. Note that rows1 andn are zero. The requirement that the collection
[〈ψi, ∆x̃〉]

i=1,...,n

should have the same distribution as
[〈ψi, ∆x〉]

i=1,...,n
is fulfilled by the random fieldy with precision matrix

Q = HTB−1H, which is a dense matrix. The following result (see the Appendix for a proof) states that this
Galerkin approximation is actually an exact solution to the SDE, possibly apart from at the boundaries. For a
numerical validation, see Section 3.2.

Theorem 1. For circular topology,Q = HTB−1H is the pseudo-inverse of the covarianceΣ̃ for the SDE
conditionally on

∑n
i=1 x(si) = 0.

Because of the dense precision matrix, the Galerkin model is computationally expensive. However, by
approximatingB with a diagonal matrix,A, we obtain a sparse precision matrix, and thus a Markov random
field. We construct this diagonal matrix by distributing the off-diagonal values ofB to the main diagonal,
giving A with A11 = d1/2,Ann = dn−1/2, andAii = di−1+di

2 elsewhere.
Multiplying the factors ofQ, the non-zero elements of rowi are given by

Qi,i−2 =
2

di−2di−1(di−2 + di−1)
, Qi,i−1 =

−2
d2

i−1

(
1

di−2
+

1
di

)
, (13)

Qi,i =
2

d2
i−1(di−2 + di−1)

+
2

di−1di

(
1

di−1
+

1
di

)
+

2
d2

i (di + di+1)
, (14)

withQi,i+1 ≡ Qi+1,i, andQi,i+2 ≡ Qi+2,i due to symmetry. At the discretisation boundaries, we use the con-
vention that terms with non-existing components are ignored, or, equivalently,d−1 = d0 = dn = dn+1 = ∞.
This affects only the upper left corner ofQ, which becomes[

Q11 Q12

Q21 Q22

]
=

[ 2
d2
1(d1+d2)

−2
d2
1d2

−2
d2
1d2

2
d1d2

(
1
d1

+ 1
d2

)
+ 2

d2
2(d2+d3)

]
, (15)

and correspondingly for the lower right corner ofQ. It is straightforward but tedious to verify thatQ has
rankn− 2, with eigenvectors

[
1, . . . , 1

]T
and

[
s1, . . . , sn

]T
corresponding to the double eigenvalue0, which

means that the resulting field is invariant to addition of a linear trend. In the special case where alldi = 1, this
Q-matrix coincides with the precision matrix for the usual second order random walk,

Q =



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . . . .. .. . .. . . . .
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


, (16)
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which means that the model in (1) can be interpreted as an (approximate) Galerkin approximation of the SDE
in (3).

3 Convergence

3.1 Theoretical discussion

The covariance properties of the approximating GMRF converges to the continuous process as the density
of the discretisation time-points increases. This can be shown in the same manner as for the corresponding
random field on the sphere, see Lindgren and Rue (2004), via the following observation.

The matrixH can be factorised asH = AW , whereA is the diagonal matrix defined above, and
where each row ofW contain the coefficients for calculating local approximations of the Laplacian, with
exact results for quadratic polynomials. Then, the precision matrix can be writtenQ = W TAA−1AW =
W TAW , which is the same form used in Lindgren and Rue (2004), and the elements ofA can be interpreted
as integration weights. This form is closely related to the method ofdefininga solution to the SDE through
Stratonovich integration, i.e. as the limit of a trapezoidal integration scheme (see Arnold, 1974).

3.2 Convergence in practice

In order to evaluate the intrinsic stationarity and variance of the constructed intrinsic GMRF, we restrict the
field to a circle, looking only at periodic realisations. The variogramv(u, v) for a processx(t) on the circle,
0 ≤ t ≤ π, x(0) = x(t), is defined as the varianceV(x(u) − x(v)). For stationary processes, the variogram
depends only on the distance (on the circle) betweenu andv, τ = |u−v| ∈ [0, l], wherel is the circumference.

The theoretical variogram for the SDE restricted to the unit circle can also be calculated. The eigenvalues
of the Laplacian with respect to the orthonormal basis functionscos(kt)/

√
π, sin(kt)/

√
π, for k = 0, . . . ,∞

is (λcos,k, λsin,k) = (−k2,−k2), which gives the spectrumλk = k−4, k = 1, . . . ,∞, for the solutions to the
SDE. Through the spectral representation of the solutions, the variogram can be calculated as

v(τ) = 2
∞∑

k=1

1 − cos(kτ)
πk4

=
1

24π
τ2(2π − τ)2, 0 ≤ τ ≤ 2π, (17)

where the infinite series can be found in Gradshteyn and Ryzhik (1994).
The variogram for the sparse Galerkin intrinsic GMRF can be obtained for all pairs(si, sj) by computing

Vij = Cii + Cjj − 2Cij , whereC is the pseudo-inverse ofQ. A comparison between the true variogram
and the model variogram is shown in Figure 1, forn = 10, 20, and40, and for both regular and irregular
spacing. With regular spacing, the variograms are practically indistinguishable already forn = 20, whereas
the variogram deviation in the case of uniformly distributed discretisation points is larger, and about3 times as
many time-points are needed for the same maximal error as for regular spacing. The bulk of the error appears
to be a global scaling factor, and should only have a negligible impact in practical applications.

The variogram for the complete Galerkin approximation turns out to be numerically equivalent to the
true solution, as anticipated by Theorem 1; The maximal variogram deviation forn ≤ 40 is less than10−11

for regular locations and< 10−6 for irregular locations. Additionally, this is smaller than for the exact
discretisation using an augmented state space mentioned in Section 1, which can typically have a maximal
deviation of10−3 for irregular locations, due to numerical issues.

4 Time-series representation

In addition to the random field representation derived in Section 2, where the full conditionals are specified,
it is sometimes convenient to have a time-series representation of the random walk model, specifying the
distribution ofyi|yi−2, yi−1. This can be obtained by moving the future time-points,si+1 andsi+2, toward
infinity (di → ∞), in the limit removing their influence onyi. Evaluating the limits of the conditional mean
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sk = 2π(k − 1)/n

n
=

10

sk ∼ Unif(0, 2π)

n
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20
n

=
40

τ τ
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Figure 1: Left: The variogramV1,j for the sparse Galerkin model (circles) compared to the exact SDE vari-
ogram (solid line) on the unit circle. Right: The maximum variogram deviation across the entire domain with
regular spacing (solid line) for10 ≤ n ≤ 40. The mean maximum deviation for uniformly random spacing
(dashed line) was estimated using1000 replicates for eachn. The dash-dotted lines show the5%- and95%
quantiles.

and variance asdi → ∞, yields

E(yi|yi−1, yi−2) =
(
di−1

di−2
+ 1
)
yi−1 − di−1

di−2
yi−2, V(yi|yi−1, yi−2) =

d2
i−1(di−2 + di−1)

2
. (18)

The conditional expectation is the same as given by Fahrmeir and Knorr-Held (2000), but the variance is
different.
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Appendix: Proof of Theorem 1

Let Σ be the covariance of the SDE sampled ats1, . . . , sn with circular topology of lengthl, condition-
ally on

∫ l
0 x(t) dt = 0. From the spectral representation of the SDE,Σij = l3/720 − τ2

ij(l − τij)2/(24l),
where τij = (sj − si) mod l. Using the intrinsic property of the SDE, the covariance conditionally on∑n

i=1 x(si) = 0 is given byΣ̃ = JΣJ , whereJ = I − 11T/n. Recall thatQ = HTB−1H.
First, we need to show thatQΣ̃Q = Q. For any circular topology,H andB are symmetric circulant

matrices, and direct calculation shows that

−24l
[
ΣH

]
ij

=


dj−1(l − dj−1)2 + dj(l − dj)2, i = j,

dj−1((2τij − l − dj)2 − 2τij(l − τij))
+dj((2τij − l + dj)2 − 2τij(l − τij)), i 6= j.

(19)

andHΣH = B − ddT/l, whered = B1, so that

QΣ̃Q = QJΣJQ = QΣQ (20)

= HB−1(B − ddT/l)B−1H = HB−1H − H11TH/l (21)

= HB−1H = Q, (22)

where we use that1 is an eigenvector of bothH andQ, with eigenvalue0.
The second part is more difficult. We need to show thatΣ̃QΣ̃ = Σ̃. Expanding and simplifying the

left- and right-hand sides yieldsJΣHB−1HΣJ = JΣJ . DefineF̃ =
[
τij(l − τij)/(2l)

]
i,j=1,...,n

and

F = 1a + F̃ , for some row vectora. We will verify that F = ΣHB−1 by comparingΣH, calculated
above, toFB. The reader may not want to verify by direct calculation that

[
ΣH − F̃B

]
ij

= 1b, where

bj =
(
dj−1(l2 − d2

j−1) + dj(l2 − d2
j )
)
/(−24l). Thus,ΣH = FB is fulfilled for a = bB−1.

Finally, direct calculation of̃FH yieldsF̃H = I − 1dT/l, so that

JFH = J(1a + F̃ )H = JF̃H = J(I − 1dT/l) = J (23)

and we are done.
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