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Approximate inference for latent spatial GLMs
Jo Eidsvik and Håvard Rue

Department of Mathematical Sciences, NTNU, Norway.

ABSTRACT

In this paper latent spatial generalized linear models are analyzed. A Bayesian model is used
with a stationary prior for the latent variable, priors for model parameters, and a likelihood model of
exponential family type, conditional on the latent variables. We consider the common geostatistical
special case with large latent variable and observations at only a few known registration sites.

The method of inference is based on direct approximations of the marginal densities for latent
spatial variable and model parameters using Newton-Raphson optimization and the Laplace ap-
proximation. For the geostatistical special case that we consider, optimization and evaluation can
be done very efficiently in the Fourier domain. The approximations are also useful as proposal
distributions in Monte Carlo simulations.

We study two examples; radionuclide concentrations on Rongelap Island and disease infec-
tions in Lancashire. For these examples the direct approach to inference is compared with time
consuming Monte Carlo methods. The results are similar and we hence recommend the faster
direct approximation for such spatial generalized linear models.

KEYWORDS: Approximate inference, spatial GLM, circulant covariance matrix, Newton-Raphson,
Metropolis–Hastings, MCMC.
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1. Introduction

Several statistical problems include the analysis of data acquired at various spatial locations.
In Bayesian geostatistical modeling one typically treats these data as indirect measurements of
a smooth latent spatial variable, with priors for the parameters of model. Among the popular
applications are geophysics, mining, meteorology and disease mapping, see e.g. Cressie (1991),
Diggle et al. (1998) and Banerjee et al. (2004). For Bayesian analysis of spatial data there are
mainly two objectives; i) inference of model parameters, for example the standard deviation (or
precision) and the range of the latent spatial variable, and ii) prediction of the latent variable at any
spatial location.

One topic that has received much attention lately is inference and prediction for the spatial
generalized linear model (GLM), see e.g. Breslow and Clayton (1993), Diggle et al. (1998) and
Christensen et al. (2006). This common model can briefly be described as follows: Let x repre-
sent a latent spatial variable on a grid of n regularly spaced gridnodes in two dimensional space.
Suppose that x has a stationary prior distribution specified by some model parameters θ. Suppose
next that observations y are made at k of the n nodes. These observations are modeled as an ex-
ponential family distribution with parameters given by the latent variable x at the sites where the
data is acquired. This hierarchical model is sometimes referred to as a spatial generalized linear
mixed model (Breslow and Clayton, 1993) to clarify the random latent effects, but we have chosen
to simply use spatial GLM here. Typical examples of this model include binomial proportions or
Poisson counts registrered at a some known locations in space, with the objective being predic-
tion of the underlying intensity or risk (log odds) surface across the spatial domain of interest,
and inference for model parameters. The most common case is probably the situation where one
wants to predict across a large spatial domain, but only a few locations with registrated data are
available, i.e. n � k. For example, this situation often occurs in spatial registration for weather
forecasting (Gel et al., 2004) and in reserve site selection for predicting the probability of presence
for a certain type of species (Polasky and Solow, 2001). Both examples in Diggle et al. (1998) are
also of this type with n � k.

Bayesian analysis of spatial GLMs have been considered difficult since the spatial problem is
of high dimension and because of the lack of closed form solutions. The current state of the art is
to generate realizations of parameters θ and latent spatial variables x using Markov chain Monte
Carlo (MCMC) algorithms. Since MCMC algorithms have grown mature over the last few decades,
see e.g. Liu (2001), there is a number of fit-for-purpose algorithmic techniques for doing iterative
Markov chain updates. Some of these algorithms are more relevant for spatial GLMs (Diggle
et al., 2003), but problems remain with convergence and mixing properties of the Markov chain,
which in some cases are remarkably slow. Because of these challenges fast techniques suitable for
special cases are needed, possibly avoiding the problems with sampling methods.

The main contribution of this paper is a fast direct approximate Bayesian solution to the com-
mon special case of spatial GLMs with n � k. In particular, this paper provides a recipe for
efficient calculation of the marginals π(θ|y) and π(xj|y), j = 1, . . . , n, i.e. the marginal poste-
rior density of the model parameters and the marginal density of the latent variable at any spatial
location. Via examples we show that the fast approximate method gives similar results as time
consuming Monte Carlo methods. This is important for general practitioners of geostatistics that
can possibly avoid iterative Monte Carlo simulations, which are hard to monitor, and rather do
the direct computations at almost no computational cost. Moreover, the direct method could quite
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easily be incorporated in standard softwares. Fast approximate inference for this model can further
help to expand the scope of geostatistical modeling. Possible applications include geostatistical
design (Diggle and Lophaven, 2006), and model choice (Clyde and George, 2004), in a geostatis-
tical setting. The outlined method of direct Bayesian inference and spatial prediction is based on
Newton-Raphson optimization and the Laplace approximation (Tierney and Kadane, 1986). The
dimension of n is typically very large, but nevertheless the approach becomes computationally
attractive because tasks can be solved efficiently in the Fourier domain.

Other recent approaches to approximate inference for spatial GLMs include Breslow and Clay-
ton (1993) who studied penalized quasi likelihood, Ainsworth and Dean (2006) who compared
penalized quasi likelihood with a Bayesian solution based on MCMC computations, and Rue and
Martino (2006) who used the Laplace approximation that we consider here, but with a Gaussian
Markov random field for the latent variable. The above references all used examples with n = k
and n was of moderate size.

The outline is as follows: In Section 2 we define the special case of spatial GLMs considered in
this paper. The proposed methods of approximate inference and prediction are described in Section
3. Two numerical examples are provided in Section 4. We discuss and conclude in Section 5. The
computational aspects are postponed to the Appendix.

2. Spatial GLM

Let x = (x1, . . . , xn)′ represent the latent field on a regular grid of size n = n1n2, where n1 and
n2 are the grid sizes in the North and East directions. In an application with binomial proportions
data x would denote the latent / underlying risk or log odds surface, while it would denote the
latent intensity surface for Poisson count data. Suppose x has a stationary Gaussian prior with
π(x|θ, µ) = N [x; µ1n,Σ(θ)], where 1n denotes an n × 1 vector of ones, and Σ = Σ(θ) is
a positive definite, block circulant covariance matrix with θ indicating model parameters. For
example, θ could include σ; pointwise standard deviation, and ν; spatial correlation range. Block
circulant covariance structure means that the n1 ×n2 grid is wrapped on a torus. As an example of
a covariance function we use the exponential defined by

Σh(σ, ν) = σ2 exp(−δh/ν), h =
√

h2
1 + h2

2, (1)

where (h1, h2) are the (North,East) gridsteps between two nodes on the torus surface, while δ
specifies the spacing on the grid. We use this covariance function in the examples below, but
many others are possible, see e.g. Cressie (1991). The covariance function imposes dependence
in the latent variable, and in practice this means a smooth underlying risk or intensity surface,
as one could expect. A Bayesian view is taken here with priors π(µ) = N(µ; β0, τ

2) and π(θ)
for the parameters. The µ parameter can then be integrated out to obtain π(x|θ) = N(x; β, C),
β = β01n and C = 1nτ 2

1
′
n + Σ, a block circulant matrix. The fast Fourier transform is an

efficient tool for evaluating and sampling Gaussian fields with block circulant covariance matrices
since the eigenvectors of a circulant matrix are provided by the Fourier basis, see e.g. Chan and
Wood (1997), Rue and Held (2005), Gray (2006), and Appendix A.

Suppose next that measurements yi, i = 1, . . . , k, are conditionally independent with

π(yi|xsi
) = exp{[yixsi

− b(xsi
)]/a(φ) + c(φ, yi)}, i = 1, . . . , k, (2)
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where xs = (xs1
, . . . , xsk

)′ = Ax and the k × n matrix A has entries

Aij = I(si = j) =

{

1 if si = j
0 else

, i = 1, . . . , k, j = 1, . . . , n, (3)

i.e. si is the gridnode of measurement i. Assume that n � k and that the matrix A consists
mostly of 0 values, but it has one 1 value in each row / observation. For the exponential family
distribution in equation (2) we have simple functional relationships for b(x) and a(φ). For example,
the Poisson, Binomial and Gaussian distributions can defined by

Poisson Binomial Gaussian
b(x) m exp(x) m log[1 + exp(x)] x2/2
a(φ) 1 1 φ2

, (4)

where m is a fixed parameter and φ is a fixed standard deviation of the Gaussian likelihood model.
These relationships are commonly used in GLMs (McCullagh and Nelder, 1989). For example;
Poisson is a case of log link function for count data, while the Binomial likelihood is a case of
logit link function for proportions. The model treated in this paper is different from the standard
GLM setting because the data y are acquired at various spatial sites and because of the spatially
correlated latent variable x. Hence the term spatial GLM.

3. Approximate inference and prediction

We will now outline our methods for fast approximate analysis of Bayesian spatial GLMs with
n � k. The first step is to use a Gaussian approximation at the mode of the conditional density
π(x|y, θ). We next use this full conditional to approximate the densities of main interest; π(θ|y)
and π(xj|y). We have chosen to postpone the technical details to the Appendix.

3.1. Gaussian approximation for π(x|y, θ) at the posterior mode

The full conditional density of the latent spatial variable is

π(x|y, θ) ∝ exp{−1

2
x′C−1x + x′C−1β +

k
∑

i=1

[yixsi
− b(xsi

)]/a(φ)}. (5)

A Gaussian approximation to this density is constructed by linearizing the GLM likelihood part of
equation (5) at a fixed location x0

s = Ax0. For each i = 1, . . . , k this involves

[yixsi
− b(xsi

)] ≈ [yix
0

si
− b(x0

si
)] + (xsi

− x0

si
)[yi − b′(x0

si
)] − 1

2
(xsi

− x0

si
)2b′′(x0

si
), (6)

where the first and second derivatives can be written in closed form using equation (4). Inserting
this into equation (5) gives a Gaussian approximation N [x; µx|y,θ(y, x0), V x|y,θ(x0)]. The
conditional covariance equals

V x|y,θ(x0) = C − CA′R−1AC, R = ACA′ + P , (7)

5



where P is diagonal with entries Pi,i = a(φ)/b′′(x0

si
), i = 1, . . . , k. The conditional mean is

µx|y,θ(y, x0) = [C−1 + A′P−1A]−1[C−1β + A′P−1z(y, x0)],

= β + CA′R−1[z(y, x0) − Aβ], (8)

where we use

zi = zi(yi, x
0

si
) = [yi − b′(x0

si
) + x0

si
b′′(x0

si
)]/b′′(x0

si
), i = 1, . . . , k. (9)

Rather than fitting a Gaussian approximation at any x0, the above process is iterated using the
Newton-Raphson algorithm for x. After a few iterations we have then fitted a Gaussian approxi-
mation π̂(x|y, θ) at the posterior mode which denoted by µx|y,θ, see Appendix B and C. These
Newton-Raphson calculations are similar to the traditional ones used for GLMs (McCullagh and
Nelder, 1989), but note that the dimension n of the latent variable x is large here and regular opti-
mization would often be impossible for spatial models, except in small situations such as a limited
number of counties (Breslow and Clayton, 1993). One of the main contributions of the current
paper is to demonstrate that the Newton-Raphson optimization can be done in a fast manner using
benefits of the Fourier domain. The effective method applies to our special case with n � k and
stationary prior density for the latent variable. This indicates that large problems of this common
type can be handled with modest cost. The quality of the Gaussian approximation depends on the
particular situation. Intuitively one would expect it to be quite good since n � k and hence the
Gaussian prior has much influence. If we have small Poisson counts or few Binomial trials, the
likelihood is far from Gaussian and the approximation might be worse.

We remark some relevant features of the Gaussian approximation π̂(x|y, θ). The computa-
tional details of these remarks are presented in the Appendix.
i) The latter expression in equation (8) involves the inversion of a k × k matrix R and is clearly
preferable in our case with n � k.
ii) Equation (8) can be computed efficiently in the Fourier domain using that C is block circulant.
iii) The Gaussian approximation π̂(x|y, θ) can be evaluated using Bayes theorem and benefits of
the Fourier domain.
iv) Newton-Raphson optimization involves iterative calculation of equation (8) and is hence also
available in the Fourier domain.

3.2. Parametric inference using π(θ|y)

The marginal density of model parameters θ is

π(θ|y) =
π(y|x)π(x|θ)π(θ)

π(y)π(x|y, θ)
∝ π(y|x)π(x|θ)π(θ)

π(x|y, θ)
. (10)

Equation (10) is valid for any value of the spatial variable x, for example x = µx|y,θ, the posterior
mode for a fixed θ. The challenging part of equation (10) is the denominator which is unknown.
We choose to approximate this denominator using the fitted Gaussian density from the previous
Section. The approximated density for the model parameters then becomes

π̂(θ|y) ∝ π(y|x)π(x|θ)π(θ)

π̂(x|y, θ)
. (11)
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Equation (11) is a Laplace approximation, see e.g. Tierney and Kadane (1986) and Carlin
and Louis (2000), since we approximate π(x|y, θ) by a Gaussian density at the posterior mode,
and next use this to find the marginal of the θ parameters. The relative error of this Laplace
approximation is O(k−3/2) (Tierney and Kadane, 1986). Relative error could be advantageous,
especially in the tails of the distribution. Equation (11) can be evaluated efficiently using Bayes
rule and properties of the Gaussian approximation, see Appendix D.

We evaluate the approximation in equation (11) for a finite set of parameter values θ l =
(σl1 , νl2), l1 = 1, . . . , L1, l2 = 1, . . . , L2, normalized so that

∑

l

∆σ∆νπ̂(θl|y) = ∆σ∆ν

L1
∑

l1=1

L2
∑

l2=1

π̂(σl1 , νl2 |y) = 1. (12)

In this equation ∆σ and ∆ν are the spacings in the defined grid for σ and ν values. The approximate
marginal densities are

π̂(σl1 |y) = ∆σ

L2
∑

l2=1

π̂(σl1 , νl2|y), π̂(νl2 |y) = ∆ν

L1
∑

l1=1

π̂(σl1 , νl2 |y). (13)

The density function π̂(θ|y) can also be approximated differently, for example by a parametric fit
to the density or by numerical quadrature, see e.g. Press et al. (1996), but we do not consider this
here.

For the case with a Gaussian likelihood in equation (2) we can evaluate π(θ|y) exactly on the
grid of θ values (Diggle et al., 2003), whereas for the non-Gaussian case we merely obtain an
approximation π̂(θ|y) on this set of parameter values. Note that constructing π̂(θ|y) can be done
using only xs = Ax, i.e. latent values at the registration sites, but in this presentation we have
chosen to use the entire spatial variable x because this brings together the inference and prediction
steps.

3.3. Spatial prediction using π(xj|y)

For spatial prediction it is common to use marginals after integrating out the parameters (Diggle
et al., 1998). Using that π(xj|y) =

∫

π(xj|y, θ)π(θ|y)dθ, j = 1, . . . , n, we can find the marginal
distribution for the spatial variables. Each term in the integral is here approximated using the
Gaussian approximation π̂(x|y, θ) and π̂(θ|y) in equation (11), respectively.

The approximate marginal means become

µxj |y ≈
∑

l

µ
xj |y,θl

π̂(θl|y), j = 1, . . . , n. (14)

The conditional means for fixed parameters θ, obtained on the last Newton-Raphson optimization
step and denoted µx|y,θ, are here weighted to obtain the marginal mean.

The approximate marginal variances are

Vxj |y ≈
∑

l

V
xj |y,θl

π̂(θl|y) +
∑

l

(µ
xj |y,θl

− µxj |y)2π̂(θl|y). (15)

In this equation V
xj |y,θ = V

xj |y,θ(µx|y,θ) denotes the condtional variance in equation (7) evalu-

ated at the posterior mode. For these terms we need to calculate the diagonal entries of CA′R−1AC
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in equation (7) given by

(CA′R−1AC)jj =
k

∑

i=1

k
∑

i′=1

Cj,si
R−1

ii′ Csi′ ,j
, j = 1, . . . , n. (16)

3.4. Approximations as proposal distributions in Monte Carlo sampling

Consider an independent proposal MH algorithm with proposals x′ from the Gaussian approx-
imation π̂(x′|y, θ), keeping θ fixed. The proposal x′ can be generated efficiently in the Fourier
domain, see Appendix B. We denote the current state of the Markov chain by x. The acceptance
rate is

min

{

1,
[
∏k

i=1
π(yi|x′

si
)]π(x′|θ)

[
∏k

i=1
π(yi|xsi

)]π(x|θ)

π̂(x|y, θ)

π̂(x′|y, θ)

}

, (17)

otherwise we keep the current value x. The acceptance probabilty in equation (17) can be evalu-
ated using Bayes rule and propoerties of the Gaussian approximation, see Appendix D. This MH
scheme might be effective since large changes are proposed at every iteration, see e.g. Liu (2001).
On the other hand one might run into problems as the chain can get stuck in a state x with large
posterior probability and relatively small approximate probability. The acceptance rate is then
close to zero for most proposals. This problem can be avoided by using the independent proposal
in conjunction with other MH samplers (Tierney and Mira, 1999). Simultaneous MH updates of
(x′, θ′) are also possible using the approximation π̂(θ′|y) followed by π̂(x′|y, θ′), and then check-
ing for acceptance. This is a one-block MH sampler, accepting (or rejecting) variables jointly (Liu
et al., 1994).

One can alternatively use importance sampling based on the approximations presented above.
This is done by generating xb, b = 1, . . . , B, independently from π̂(x|y, θ), keeping θ fixed.
Any expectation E[g(x)|y, θ] can then be estimated by a weighted sum (Shepard and Pitt, 1997).
The quality of the approximation can be monitored using effective sample size (ESS), see e.g.
Liu (2001). It is again possible to sample (xb, θb) using π̂(θb|y) followed by π̂(xb|y, θb) for joint
Monte Carlo estimation.

The Monte Carlo error of estimates based on B samples is additive and O(B−1/2). The error
can thus be reduced by increasing the number of samples, but the additive nature might cause
problems in the tails of the distribution, especially compared to the relative error of the Laplace
approximation.

4. Examples

In this section we analyze the two examples in Diggle et al. (1998). They are both special cases
with data made at only a few registration sites and with a large latent spatial variable modeled
using a stationary prior distribution.

4.1. Poisson distribution for concentrations on Rongelap Island

This dataset consists of k = 157 measurements of yi = radionuclide counts for various time
durations mi, i = 1, . . . , k. All 157 registration sites are displayed on the map of the island in
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Figure 1: Rongelap island with the 157 registration sites for observations of radionuclide concentrations.

Figure 1. The data are modeled as a spatial GLM with a Poisson distribution in equation (2). The
goal of the study is to assess the latent intensity surface and the model parameters. For the spatial
intensity variable we construct a grid with interval spacing δ = 40m covering the region from
(−4180,−6800) to (640, 700) in the (North,East) coordinates displayed in Figure 1. The gridsize
is then n1 = 103 (North) and n2 = 187 (East), in total n ≈ 23000. Following Christensen et
al. (2006) we use an exponential covariance function, see equation (1). We use a flat prior for σ
and ν, and as hyperparameters we use β0 = 1.5 and τ 2 = 1. Ten Newton-Raphson iterations are
used to locate the mode of the Gaussian approximation π̂(x|y, θ). After ten iterations the machine
precision is reached.

The grid of θ = (σ, ν) values defined in equation (12) covers σ ∈ {0.2, 1} and ν ∈ {50, 350}
with gridsize L1 = 50 and L2 = 50. The approximate density π̂(θ|y) obtained by equation (11)
and (12) is shown in Figure 2 (left) along with marginals π̂(σ|y) and π̂(ν|y) in Figure 2 (right,
solid curve). Figure 2 (left) seems similar to results obtained earlier by MCMC sampling, see e.g.

ν
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Figure 2: Rongelap dataset. Left) Direct approximation of joint density of parameters θ = (σ, ν). Right) Direct
approximation of marginal densities for standard deviation σ and spatial correlation range ν (solid). MH
approximation of marginal densities (dashed).

Christensen et al. (2006). This is also visible from Figure 2 (right, dashed curve) which displays
an estimate of the marginals using MH sampling with joint updating of x and θ, as described
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in Section 3.4. Since the solid and dashed curves in Figure 2 (right) are hard to distinguish, the
direct approximation appears to be very good. The quality of the direct approximation for these
parameter marginals is tied to the accuracy of the Gaussian approximation of the latent variable,
which in turn gives an approximate relationship in equation (11). We will get back to this topic
below.

In Figure 3 we show the marginal predictions in equation (14) and standard deviations given by
equation (15). We recognize the measurement locations in the standard deviations and see that the

Marginal predictions.

East (m)

N
or

th
 (

m
)

 

 

−6000 −5000 −4000 −3000 −2000 −1000 0

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

−1

−0.5

0

0.5

1

1.5

2

2.5

Marginal predicted standard deviations.

East (m)

N
or

th
 (

m
)

 

 

−6000 −5000 −4000 −3000 −2000 −1000 0

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 3: Rongelap dataset. Left) Predicted spatial variable. Right) Marginal standard deviation of spatial variable.

standard deviations climb to a level of about 0.6 as one goes about 500m away from measurement
locations. Similarly, the spatial predictions in Figure 3 (left) are near the prior mean as we go away
from the island with several measurement locations. The maximum radiation level is predicted
to be at location (−3140,−5560). The main trends are similar to the ones obtained by MCMC
sampling in Diggle et al. (1998).

We go on to check the Gaussian approximation that we use for the latent variable via π̂(x|y, θ).
For this purpose we use Monte Carlo sampling as described in Section 3.4 above. We choose to
evaluate all approximations (direct Gaussian approximation, MH method and importance sam-
pling) at spatial locations (−1800,−600), (−1650,−750) and (−1500,−1500). These three loca-
tions are chosen since they are at, near and far from registration sites, see Figure 1. We perform
the testing for parameter values θ = (0.6, 142), regarded to be a likely parameter value (Figure
2). In Figure 4 (solid) we show the approximate densities π̂(xj|y, θ), where j correponds to the
three spatial locations. Also displayed in Figure 4(dashed and dotted) are approximations based on
independent proposal MH (dashed) and importance sampling (dotted). The results of the various
approximations displayed in Figure 4 are very similar. Specifically we note that the results of direct
approximate inference are not too different from the two Monte Carlo approximations. When we
use Monte Carlo methods the mode seems shifted about 0.003 to the left at location (−1800,−600)
(top), shifted about 0.05 to the right in the middle plot, while there is no visible shift at the location
far from the Island (below) where the non-Gaussian influence is negligible. The small fluctuations
in Figure 4 (solid and dashed) are caused by Monte Carlo error.

The details of the Monte Carlo algorithms were as follows: The independent proposal MH algo-
rithms were implemented for 100000 iterations. The acceptance probability of the MH algorithms
were about 0.7, which is large, indicating that the approximation is quite good. The largest number
of iterations with no accepted proposals was about 100 for the case with joint updating, indicat-
ing that mixing is acceptable and that no domains are likely to have been over- or undersampled.
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Figure 4: Rongelap dataset. Conditional density π̂(xj |y, θ) obtained by approximate inference at three spatial
locations and for parameter values fixed at (0.6,142). Solid is Gaussian approximation, dashed is approximation
obtained by MH sampling, and dotted is approximation from importance sampling.

Importance sampling resulted in ESS values about 75000, which is large and indicates that impor-
tance sampling works well in this case. For the plotting of Monte Carlo approximations in Figure
4 we split the sample space of xj into 100 disjoint regions in the interval µ

xj |y,θ ± 4
√

V
xj |y,θ, and

thus created the estimated density curve (dashed and dotted). We did not smooth this estimate in
order to visualize some of the Monte Carlo error.

4.2. Binomial distribution for records of infections in Lancashire

This dataset consists of k = 238 postal code measurements of campylobacter infection in
Lancashire district, see Figure 5. The observations yi = number of campylobacter infection out
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Lancaster county with 238 measurement locations.

Figure 5: Lancashire county with 238 measurement locations of campylobacter infection.

of enteric infections mi, i = 1, . . . , k. These data are modeled as a spatial GLM with a binomial
distribution in equation (2). The goal is to assess the latent risk surface for these data and the model
parameters. For the spatial latent variable a grid with interval spacing δ = 30m is constructed.
This grid covers the region from (31970, 47680) to (38660, 51700) in the (North,East) coordinates
displayed in Figure 5. Hence, the gridsize is n1 = 135 (North) and n2 = 224 (East), in total
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Figure 6: Lancashire dataset. Left) Direct approximation of joint density of parameters θ = (σ, ν). Right) Direct
approximation of marginal densities for standard deviation σ and spatial correlation range ν (solid). MH
approximation of marginal densities (dashed).

n ≈ 30000. Following Rue et al. (2004) and Steinsland (2006) an exponential covariance function
is used, see equation (1). We use a flat prior for θ, and as hyperparameters we use β0 = 0.35
and τ 2 = 1. Again, ten Newton-Raphson iterations are used to locate the mode of the Gaussian
approximation π̂(x|y, θ)

In Figure 6 (left) we display π̂(θ|y) obtained by equation (11), along with marginals π̂(σ|y)
and π̂(ν|y) in Figure 6 (right, solid). We see that the standard deviation is about 0.4 for this dataset
and that the density for the range parameter is very skewed with a mode near 80m. The grid of
θ = (σ, ν) values defined in equation (12) covers σ ∈ {0.1, 1.4} and ν ∈ {40, 500} with gridsize
L1 = 25 and L2 = 25. We also display the results based on independent proposal MH sampling
with joint updates for θ and x in Figure 6 (right, dashed). The Laplace approximation and MH
sampler give quite similar results, but for the standard deviation the MH results are slightly shifted
to the right. In the MH estimate for the range parameter we clearly notice the Monte Carlo error.

Figure 7 (left) shows the marginal predictions in equation (14), while Figure 7 (right) displays
the marginal standard deviations in equation (15). The spatial field fluctuates quite rapidly, also
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Figure 7: Lancashire dataset. Left) Predicted spatial variable. Right) Marginal standard deviation of spatial vari-
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indicated by the small correlation range. The largest predicted value is 0.9 at (49390, 35240),
corresponding to a probability of about 0.7 for campylobacter infection.

In Figure 8 (solid) we show plots of the Gaussian approximation π̂(xj|y, θ) for a fixed value of
θ = (0.26, 193) and for three different spatial locations j. The three locations are (49500, 35000),
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Figure 8: Lancashire dataset. Conditional density π̂(xj |y, θ) obtained by approximate inference at three spatial lo-
cations and for parameter values fixed at (0.26,193). Solid is Gaussian approximation, dashed is approximation
obtained by MH sampling, and dotted is approximation from importance sampling.

(50000, 36500) and (51000, 38000) , representing near, mid and far away from registration sites.
Also displayed in Figure 8 are the approximation based on a long MH simulation (dashed) and
the results obtained by importance sampling (dotted). We note that the Gaussian approximation is
quite close to the Monte Carlo approximations, but we see a bias to the right for the nearest location
(top), a very small bias to the left for the mid-distance location (middle), and hardly no bias for the
location far from observations (below). The latter two are possibly the most relevant cases since
predictions are typically carried out at locations where no data is available. Fluctuations caused by
Monte Carlo error are visible in Figure 8 (dashed and dotted).

The Binomial counts are small for this example (ranging from 0 to a maximum of 6), still the
Gaussian approximation and the resulting Laplace approximation in Figure 6 are quite accurate,
but not as accurate in the previous example with large Poisson counts. We also notice that the
marginal spatial predictive densities in Figure 8 are good as we move away from the registration
sites, but not that good when we are at the registration sites where there is much non-Gaussian
influence. As pointed out by other authors, see e.g. Diggle et al. (1998) and Steinsland (2006), the
data does not carry much information about the range parameter in this example, and an interesting
line of research is spatial placement of registeration sites for both prediction and reliable parameter
estimation (Diggle and Lophaven, 2006).

5. Conclusions

In this paper we have proposed a new approach to Bayesian inference and prediction for spatial
GLMs. Our new approach is based on direct approximation involving Newton-Raphson optimiza-
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tion and the Laplace approximation. The main contribution of this paper is that marginal posteri-
ors for latent variables and model parameters can be calculated efficiently for large spatial models
based on data at only a few known registration sites. In two examples we compare the results of
direct approximate inference and approximations obtained by Monte Carlo sampling. Results are
very similar, but the computational time of approximate inference is negligible compared to that of
Monte Carlo algorithms. Moreover, two Monte Carlo runs would give different results depending
on the random seed, while direct approximate inference returns one non-random answer.

The following arguments are relevant for the methods presented in this paper:
i) The geostatistical case with few data and large spatial variable with stationary prior is very
common in practice, but no closed form solutions exist.
ii) For this spatial model it has been hard to design MCMC algorithms that mix adequately.
iii) The direct approximate solutions are fast and easy to code and can easily be part of standard
softwares.
iv) Fast approximate inference can help to expand the scope of geostatistical modeling. Possible
applications of this method include geostatistical design (Diggle and Lophaven, 2006), and model
choice (Clyde and George, 2004), in a geostatistical setting.

We briefly discuss the computational costs and limitations of the direct approximation: Newton-
Raphson optimization to locate the posterior mode requires a matrix inversion of order O(k3) at
each iteration step, finding the conditional variances requires O(nk2), while the fast Fourier trans-
form requires the order of O(n logn). For the case that we consider with n � k, the variance
computation is the most computer intensive part. The limitation of our approach is the value of k:
If k becomes large, say k > 500, the calculation become intractable. At the same time the Gaus-
sian approximation of the full conditional for latent variable becomes less accurate because there
is more non-Gaussian influence in the model. Based on simple testing the computational limit is
reached before this Gaussian approximation becomes too poor.

The special case considered in this paper includes a stationary prior model for the latent vari-
able. This is a very common assumption in geostatistical modeling. Yet, this assumption is easily
violated in two ways; adding a trend in the prior mean or using a covariance matrix that is not block
circulant. One possible remedy to this problem is to include the trend parameters in the parameter
vector and do parametric inference on a larger sample space. Another solution is to use a Gaussian
Markov random field instead of a Gaussian random field, and then integrate the parameters as part
of the latent variable (Rue and Held, 2005).
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Appendix: Computational aspects.

A: Stationary prior distribution:
Let x = (x1, . . . , xn)′ be a Gaussian variable represented on a regular grid of size n = n1n2

with block circulant covariance matrix C. The matrix C might be a function of model pa-
rameters θ but this is suppressed here to simplify notation. We refer to the n1 × n2 matrix
xm = (xm

0,0, x
m
0,1, . . . , x

m
n1−1,n2−1

) as the matrix associate of length n vector x. The matrix C

is defined by the covariance between xm
0,0 and all other variables as they are positioned on a torus.

We arrange these n covariance entries in an n1×n2 matrix which we denote by cm. We can collect
the n eigenvalues of C in an n1 × n2 matrix λm = dft2(cm) (Gray, 2006). Here dft2 denotes the
two dimensional discrete Fourier transform;

dft2(cm)j′
1
,j′

2
=

n1−1
∑

j1=0

n2−1
∑

j2=0

cm
j′
1
,j′

2

exp[−2πι(
j1j

′
1

n1

+
j2j

′
2

n2

)], j ′
1

= 1, . . . , n1, j
′
2

= 1, . . . , n2, (18)

with ι =
√
−1. The determinant of C is the product of all entries in λm. We denote by idft2(dm)

the two dimensional inverse discrete Fourier transform of n1 × n2 matrix dm.
Consider first matrix C multiplied with length n vector v. The n1 × n2 matrix associate of

vector w = Cv can be evaluated by

wm = Re{dft2[dft2(cm) � idft2(vm)]}, (19)

where � represents elementwise multiplication. Further, w = Cav is given by

wm = Re{dft2[dft2(cm)?a � idft2(vm)]}, (20)

where (cm)?a means taking every element of cm to the power of a. This last relation is useful for
evaluation and sampling (Rue and Held, 2005). For evaluation of the quadratic form we use that
v′C−1v = v′w, where wm is evaluated in equation (20) with a = −1. For sampling we let vm

denote a n1 × n2 matrix of complex independent variables with mean zero and standard deviation
1 for both real and imaginary parts, and with vector associate v. A variable x ∼ N(x; 0, C) can
be obtained via its matrix associate using (20) with a = 1/2 (Chan and Wood, 1997).

B: Conjugate Gaussian posterior distribution:
Suppose we have prior distribution π(x) = N(x; β, C) and likelihood π(z|x) = N(z; Ax, P ),

z = (z1, . . . , zk)
′, where A is the sparse k × n matrix of 0s and 1s in equation (3) and assume

that n � k. The posterior is π(x|z) = N(x; µx|z; V x|z), where the conditional mean and
covariance are

µx|z = β + CA′R−1(z − Aβ), V x|z = C − CA′R−1AC, R = ACA′ + P . (21)

For evaluation of this posterior we use that

π(x|z) =
π(z|x)π(x)

π(z)
, π(z) = N(z; Aβ, R). (22)

The prior is evaluated using the relationship following equation (20), while the other expressions
only involve k × k matrices and with small k these are fast to evaluate. We can sample from the
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posterior as follows: i) Draw a sample from the unconditional density, v ∼ N(v; β, C) using the
relationship following equation (20). ii) Draw a sample w ∼ N(w; z, P ). iii) Set

x = v + CA′R−1(w − Av) = v + u, um = Re{dft2[dft2(cm) � idft2(tm)]}, (23)

where we use equation (19) and tm is the matrix associate of t = A′R−1(w − Av) calculated by

tj =

{

∑k
i′=1

R−1

i,i′(wi′ − vsi′
) if si ∈ j

0 else.
, i = 1, . . . , k, j = 1, . . . , n, (24)

using the properties of k × n matrix A. The matrix inversion in equation (24) is for k × k matrix
R and we assume that k is of moderate size.

C: Newton-Raphson optimization:
Consider our linearization of the GLM likelihood part in equation (6). For this non-Gaussian

case we find the posterior mode of π(x|y, θ) for fixed θ by iterative linearization using the Newton-
Raphson algorithm. Note first that by setting v = β in step i) and w = z in step ii) of the sampling
step in Appendix B, we obtain the posterior mean in step iii) using equation (23). For the approx-
imate Gaussian case we have that z = z(y, x0) as in equation (9), for some initial linearization
point x0. Let next x1 denote the approximate posterior mean in equation (21) obtained by one
application of Newton-Raphson in equation (23). This process can then be iterated, getting a new
transformed measurement z = z(y, x1) as in equation (9), then a new posterior mean x2, and so
on, until the posterior mode µx|y,θ is located.

D: Evaluation of the Laplace approximation and the acceptance rate:
Let us now bring θ into our notation and study the computational aspects regarding the Laplace

approximation and the acceptance rate of the MH algorithm. We can evaluate the approximate
Gaussian posterior using Bayes formula in a similar manner as in equation (22). This gives

π̂(x|y, θ) = N(x; µx|y,θ, V x|y,θ) =
π(z|x)π(x|θ)

π(z|θ)
, z = z(y, µx|y,θ), (25)

where π(z|θ) = N(z; Aβ, R), π(z|x) = N(z; Aβ, P ). The k × k matrices R and P are
now evaluated at the posterior mode µx|y,θ from the last Newton-Raphson step. For the Laplace
approximation in equation (11) this means that

π̂(θ|y) ∝ π(y|x)π(x|θ)π(θ)

π̂(x|y, θ)
=

π(y|x)π(z|θ)π(θ)

π(z|x)
, z = z(y, µx|y,θ). (26)

The expression only involves k × k matrices and with small k these are fast to evaluate. For the
acceptance rate in equation (17) this means that

min

{

1,
[
∏k

i=1
π(yi|x′

si
)]π(x′|θ)

[
∏k

i=1
π(yi|xsi

)]π(x|θ)

π̂(x|y, θ)

π̂(x′|y, θ)

}

= min

{

1,
[
∏k

i=1
π(yi|x′

si
)]π(z|x)

[
∏k

i=1
π(yi|xsi

)]π(z|x′)

}

, (27)

which again only involve k × k matrices and the expression is fast to evaluate.
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