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SUMMARY

Within functional genomics and systems biology, gene expression microarrays have become a
valuable tool, and a first step towards arriving at a complete understanding of the systems biology
of an organism is often to study lists of genes that are found to be statistically significantly dif-
ferentially expressed between two conditions. To aid in the further interpretation of such findings
gene class testing has become a popular and widely accepted analytical tool. Gene classes are
often based on Gene Onlology categories. The focus of this report is on statistical hypothesis test-
ing of association between two intersecting gene lists for a given class of genes, and we formally
state the null and alternative hypotheses for comparing the lists. We develop two new statistical
tests, the Unpooled Intersecting Asymptotic (UIA) and the Pooled Intersecting Asymptotic (PIA)
test, and in addition we adapt the test of Leisering, Alonzo and Pepe (2000) for comparing two
positive predictive values to the case of two intersecting gene lists. To compare the performance
of the three tests we have conducted a simulation study.

1 BACKGROUND

When analysing data from high throughput technologies, like microarray experiments, a common
aim is to arrive at lists of statistically significantly differentially expressed genes between different
situation. What may be more interesting is to understand which biological pathways that are active
in the situations under study. To do this we may consider groups of genes instead of single genes. In
this report we consider a group (which we call a class) of genes selected from a predefined set, i.e.
using the Gene Ontology (GO) vocabulary, The Gene Ontology Consortium (2000). Gene Ontology
is a vocabulary that describes gene products in terms of their associated biological processes, cellular
components and molecular functions in a species-independent manner.

eGOn1 (explore Gene Ontology) is a tool that facilitates use of biological background knowledge in
analysis of genes selected from high throughput analysis like e.g microarray analysis. Lists of genes
containing i.e. potentially differentially expressed genes are submitted through a web interface to

1eGOn is available from http://www.genetools.no and presented in Beisvåg, Jünge, Bergum, Jølsum, Lydersen, Günther,
Ramampiaro, Langaas, Sandvik and Lægreid (2006).
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the annotation database, and eGOn automatically translates the lists to GO-terms annotated to these
genes. In addition to powerful graphical displays eGOn offers statistical hypothesis testing to assess
the level of similarity between two different gene lists, list A and list B. We refer the reader to Khatri
and Dragici (2005) for an overview of statistical tests implemented in different Gene Ontology tools.

This report will focus on statistical hypothesis testing of association between two dichotomized gene
lists for a given class of genes. The results are also applicable to other situations, e.g. testing the
positive predictive value of two binary diagnostic tests or testing the difference in the prevalence of a
disease in two groups in the population.

2 THE NULL HYPOTHESIS

For a randomly chosen gene and a given gene class G, define the following three events:

A = the gene is on list A (e.g. has responded to treatment A)

B = the gene is on list B (e.g. has responded to treatment B)

G = the gene is a member of gene class G.

The complementary event of an event E is denoted by E∗.

As an example, consider a microarray experiment where the objective of the study is to compare the
differentially expressed genes from decidual and placental tissue between cases and controls where
the cases are women with pre-eclampsia and the controls are healthy pregnant women, Eide, Rolfseng,
Isaksen, Mecsei, Roald, Lydersen, Salvesen, Harsem and Austgulen (2006). In our example the list A
would be the list of differentially expressed genes between cases and controls in decidual tissue while
list B would be the differentially expressed genes between cases and controls in placental tissue. For
the given gene class G, we are interested in investigating whether the probability of belonging to gene
class G is different for genes on gene list A and genes on gene list B. For each gene on list A, there is
a probability P (G|A) of belonging to gene class G, and for each gene on list B, there is a probability
P (G|B) of belonging to gene class G. Under the null hypothesis these two probabilites are equal. We
formulate the following null hypothesis and alternative hypothesis.

H0 : P (G|A) = P (G|B) vs. H1 : P (G|A) 6= P (G|B) (1)

H0 : P (G|A) − P (G|B) = 0 vs. H1 : P (G|A) − P (G|B) 6= 0

Using the definition of conditional probability, the null hypotesis can be written equivalently as

P (A ∩G)

P (A)
=

P (B ∩G)

P (B)

P (A|G)

P (A)
=

P (B|G)

P (B)

P (A|G)

P (B|G)
=

P (A)

P (B)

This gives us the following additional interpretation. For a chosen gene class G, the ratio between the
probability of membership on list A and membership on list B, is the same as the ratio between the
probability of being a member of list A to the probability of being a member of list B for all genes.
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FIGURE 1: The number of genes that are on list A or B or on both lists

XA∩B∩G∗
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FIGURE 2: The events A, B and G, and random variables counting the number of genes in relevant
subsets.

Considering the pre-eclampsia example again, we want to test whether the probability that a gene
belongs to e.g. the gene class apoptosis given that it is on list A is equal to the probability that the
gene belongs to the apoptosis gene class given that it is on list B.

Figure 1 shows the notation for the number of genes that are on list A, B or both. Figure 2 shows how
the events A, B and G are related and the notation used for the number of genes in different subsets.
Table 6 in Appendix A gives a more detailed explanation of the notation used further in this report.
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One Gene List is a Subset Mutually Exclusive Intersecting
of the Other List Gene Lists Gene Lists

FIGURE 3: The three possible situations presented in the text: One Gene List is a Subset of the Other
List, Mutually Exclusive Gene Lists and Intersecting Gene Lists

3 STATISTICAL TESTS

We consider two lists, A and B, and a chosen class G. Our aim is to test the null hypothesis (1). In
the case of comparing two lists of genes, list A and list B, we assume that under the null hypothesis
the genes on the lists (or subsets of the lists) act independently within each list. When we are com-
paring positive predictive values of two diagnostic tests the observational unit is the individual and
we assume indepencence between the test results of different individuals. When testing for equality
of the prevalence of a disease in two groups in the population, again the the observational unit is the
individual and these are assumed independent.

Statistically we need to distinguish between three situations, to correctly handle the possible depen-
dencies between gene lists A and B due to the fact that the same observational unit may present on
both lists. An illustration of these situations is given in Figure 3.

• One Gene List is a Subset of the Other List: One of the two lists of genes compared is the list
containing all genes present in that gene class in the full experiment. (e.g. all genes assayed
on the chip in a microarray experiment) see the left column of Figure 3. For our pre-eclampsia
example list A would be a list of all the genes investigated on the microarray chip and the

4



other gene list, list B, could be the differentially expressed genes between cases and controls in
decidual tissue.

• Mutually Exclusive Gene Lists: Two gene lists, A and B, are compared, and there are no genes
that are on both lists, e.g. A is a list of genes associated with up-regulation and B is a list of
genes associated with down-regulation. In the pre-eclampsia example list A could be the list
of differentially expressed genes that are up-regulated between the cases and the controls in
decidual tissue, while list B contains the genes that are down-regulated between the cases and
the controls in decidual tissue. This situation is illustrated in the middle column of Figure 3.

• Intersecting Gene Lists: Two gene lists, A and B, are compared, and there exist genes that are on
both lists, e.g. A is a list of genes associated with treatment A, and B is a list of genes associated
with treatment B, see the right column of Figure 3. Considering our pre-eclampsia example,
list A could be the differentially expressed genes between cases and controls in the decidual
tissue while list B would be the differentially expressed genes between cases and controls in
the placental tissue.

3.1 TESTING INDEPENDENT BINOMIAL PROPORTIONS

The first two situations presented in Figure 3, “One Gene List is a Subset of the Other List” and
“Mutually Exclusive Gene Lists” have one important aspect in common; testing the null hypothesis
in (1) is equivalent to testing the following hypothesis

H0 : P (G|A ∩B∗) = P (G|B) vs. H1 : P (G|A ∩B∗) 6= P (G|B) (2)

The reason for this is as follows:

• When list A and list B are mutually exclusive, the null hypothesis in (1) is clearly equivalent to
hypothesis (2), since A ∩B∗ = A in this case.

• When list B is a subset of list A, then A∩B = B and a simple derivation of the equivalence of
the null hypothesis in (1) and (2) is given in Appendix B.

This situation can be presented as in Table 1.

Event G G∗ Total
1 B XB∩G XB∩G∗ nB

2 A ∩B∗ XA∩B∗∩G XA∩B∗∩G∗ nA∩B∗

A ∪B n(A∪B)∩G n(A∪B)∩G∗ nA∪B

TABLE 1: Crosstabulation of events for the situation when one gene list is a subset of the other or the
gene lists are mutually exclusive.

Given nB and nA∩B∗ , the two random variables XB∩G andXA∩B∗∩G are independent and binomially
distributed:

XB∩G ∼ binomial(nB, P (G|B))

XA∩B∗∩G ∼ binomial(nA∩B∗ , P (G|A ∩B∗)).
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In the hypothesis (2) we are testing if two independent binomial proportions are equal. Common ap-
proaches are Pearson’s asymptotic χ2-test and Fisher’s exact test for large and small samples, respec-
tively, see for example Agresti (2002). Fisher’s exact test is, however, conservative, and unconditional
tests as well as conditional mid-p tests have been increasingly advocated lately, see for example Hirji
(2006).

Fisher’s exact test is based on the following observation. Under the null hypothesis (2) XB∩G is
hypergeometric distributed with parameters nB , nA∪B and n(A∪B)∩G. That is,

P (XB∩G = xB∩G|nB, nA∪B , n(A∪B)∩G) =

( nB

xB∩G

)( nA∩B∗

n(A∪B)∩G−xB∩G∗

)
( nA∪B

n(A∪B)∩G

)

In the situation where one of the gene lists is a subset of the other, e.g. B ⊂ A, then
n(A∪B)∩G = nA∩G and when the two gene lists are mutually exclusive, XA∩B∗∩G = XA∩G, since
A ∩B∗ = A

By conditioning on the fixed marginals nB , nA∩B∗ , n(A∪B)∩G and n(A∪B)∩G∗ we can use Fisher’s
exact test to calculate the conditional p-value for the hypothesis (2). The p-value, P , is then the sum
of hypergeometric probabilities p(y) of all outcomes y of the random variable XB∩G for all tables
with the same marginals nB , nA∩B∗ and (XA∩B∗∩G + XB∩G) with probability less or equal to the
observed hypergeometric probability,

P =
∑

p(y)≤P (xB∩G)

p(y) (3)

Instead of the conditional hypergeometric probability, we may use the Pearson’s asymptotic χ2 statis-
tic, see Agresti (1996) Section 2.4.1, to calculate the p-value. Pearson’s asymptotic χ2 statistic is
given by

χ2 =
∑

i,j

(Oij −Eij)
2

Eij
=
nA∪B(XB∩GXA∩B∗∩G∗ −XB∩GX(A∪B)∩G)2

nBnA∩B∗n(A∪B)∩Gn(A∪B)∩G∗

where Oij is the observed frequency and Eij is the expected frequency in cell ij )i = 1, 2 and
j = 1, 2) in Table 1, and the other quantities are also found in Table 1. Under the null hypothesis (2),
χ2 is approximately χ2

1 distributed. When one gene list is a subset of the other, e.g. B ⊂ A, then

χ2 =
(XB∩G − nB · k1)

2

nB · k1
+

(XA∩B∗∩G − nA∩B∗ · k1)
2

nA∩B∗ · k1

+
(XB∩G∗ − nB · k2)

2

nB · k2
+

(XA∩B∗∩G∗ − nA∩B∗ · k2)
2

nA∩B∗ · k2

where k1 = nA∩G

nA
and k2 = nA∩G∗

nA
. When the gene lists are mutually exclusive, i.e. A ∩B = ∅ then

χ2 =
(XA∩G − nA · k1)

2

nA · k1
+

(XB∩G − nB · k1)
2

nB · k1

+
(XA∩G∗ − nA · k2)

2

nA · k2
+

(XB∩G∗ − nB · k2)
2

nB · k2
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where k1 =
n(A∪B)∩G

nA∪B
and k2 =

n(A∪B)∩G

nA∪B
.

The asymptotic p-value is the χ2
1 right tail probability above the observed value of the Pearson’s

asymptotic statistic, χ2
obs.

P = P (χ2
1 ≥ χ2

obs) (4)

3.2 INTERSECTING GENE LISTS

For the Intersecting Gene List case the test of the previous sections are not valid. When B ⊂ A or
A ∩B = ∅ we refer the reader to Section 3.1.

3.2.1 TEST STATISTIC

A natural estimator for P (G|A) is XA∩G/N
nA/N = XA∩G

nA
, and similarly for P (G|B) is XB∩G

nB
. We thus

start by looking at the statistic

D =
XA∩G

nA
− XB∩G

nB
. (5)

This statistic can be written as a linear combination of three random variables XA∩B∩G, XA∩B∗∩G

and XA∗∩B∩G.

D =
XA∩G

nA
− XB∩G

nB
=

XA∩B∩G +XA∩B∗∩G

nA
− XA∩B∩G +XA∗∩B∩G

nB

= (
1

nA
− 1

nB
)XA∩B∩G +

XA∩B∗∩G

nA
− XA∗∩B∩G

nB

Given the marginals nA∩B , nA∩B and nA∗∩B (see Table 2), the following three random variables are
independently and binomially distributed.

XA∩B∩G ∼ binomial(nA∩B , P (G|A ∩B))

XA∩B∗∩G ∼ binomial(nA∩B∗ , P (G|A ∩B∗))

XA∗∩B∩G ∼ binomial(nA∗∩B , P (G|A∗ ∩B))

Since we are conditioning on nA∩B , nA∩B∗ and nA∗∩B , we are also conditioning on the sums nA =
(nA∩B +nA∩B∗) and nB = (nA∩B +nA∗∩B). We may look at XA∩G ∼ binomial(nA, P (G|A)) and
XB∩G ∼ binomial(nB , P (G|B)), but unfortunately XA∩G and XB∩G are not independent.

Event G G∗ Total
1 A ∩B XA∩B∩G XA∩B∩G∗ nA∩B

2 A ∩B∗ XA∩B∗∩G XA∩B∗∩G∗ nA∩B∗

3 A∗ ∩B XA∗∩B∩G XA∗∩B∩G∗ nA∗∩B

A ∪B n(A∪B)∩G n(A∪B)∩G∗ nA∪B

TABLE 2: Crosstabulation of events for intersecting gene lists
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The mean and variance of our statistic, D, given in Equation (5), is under the null hypothesis (1) as
follows:

E(
XA∩G

nA
− XB∩G

nB
) =

nA · P (G|A)

nA
− nB · P (G|B)

nB
= P (G|A)− P (G|B) = 0

Var(
XA∩G

nA
− XB∩G

nB
) = (

1

nA
− 1

nB
)2Var(XA∩B∩G) +

Var(XA∩B∗∩G)

n2
A

+
Var(XA∗∩B∩G)

n2
B

= (
1

nA
− 1

nB
)2nA∩B · P (G|A ∩B) · [1− P (G|A ∩B)]

+
nA∩B∗ · P (G|A ∩B∗)[1− P (G|A ∩B∗)]

n2
A

+
nA∗∩B · P (G|A∗ ∩B) · [1− P (G|A∗ ∩B)]

n2
B

Under the null hypothesis, using the central limit theorem,

Z0 =

XA∩G

nA
− XB∩G

nB
− 0

√
Var(XA∩G

nA
− XB∩G

nB
)

(6)

is asymptotically standard normally distributed.

Unfortunately, in the denominator of Z0 three unknown probabilities are present. To simplify the
notation we define oi, pi, xi, and ni for i = 1, ..., 3 as presented in Table 3.

3.2.2 UNPOOLED INTERSECTING ASYMPTOTIC TEST (UIA)

The natural estimators for each of the three probabilities p1 = P (G|A ∩B), p2 = P (G|A ∩B∗) and
p3 = P (G|A∗ ∩B), are as follows:

p̂1 =
XA∩B∩G

nA∩B
=
X1

n1
(7)

p̂2 =
XA∩B∗∩G

nA∩B∗

=
X2

n2
(8)

p̂3 =
XA∗∩B∩G

nA∗∩B
=
X3

n3
(9)

and the statistic D can then be written

D =
X1 +X2

n1 + n2
− X1 +X3

n1 + n3
. (10)

A ∩B A ∩B∗ A∗ ∩B
o1 = P (A ∩B) o2 = P (A ∩B∗) o3 = P (A∗ ∩B)

p1 = P (G|A ∩B) p2 = P (G|A ∩B∗) p3 = P (G|A∗ ∩B)

X1 = XA∩B∩G X2 = XA∩B∗∩G X3 = XA∗∩B∩G

n1 = nA∩B n2 = nA∩B∗ n3 = nA∗∩B

TABLE 3: Definition of oi, pi, xi, and ni for i = 1, ..., 3, used to simplify the presentation.
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Define V̂ar(D) to be Var(D) inserted the estimators p̂1, p̂2, and p̂3. We define the test statistic ZU

from Equation (6) inserted V̂ar(D).

ZU =
D − 0√
V̂ar(D)

(11)

=
X1+X2
n1+n2

− X1+X3
n1+n3

( 1
nA
− 1

nB
)2n1 · p̂1 · (1− p̂1) + 1

n2
A

· n2 · p̂2 · (1− p̂2) + 1
n2

B

· n3 · p̂3 · (1− p̂3)

For moderate to large samples sizes we expect ZU to be approximately asymptotically standard nor-
mally distributed under the null hypothesis, and calculate the p-value of the test based on ZU as

2 · Φ(−|ZU |) (12)

where Φ is the cumulative standard normal distribution.

3.2.3 POOLED INTERSECTING ASYMPTOTIC TEST (PIA)

Under the null hypothesis we have the following constraint on p1, p2 and p3,

P (G|A) − P (G|B) =
P (A ∩G)

P (A)
− P (B ∩G)

P (B)

=
P (A ∩B ∩G) + P (A ∩B∗ ∩G)

P (A)
− P (A ∩B ∩G) + P (A∗ ∩B ∩G)

P (B)

=
p1 · P (A ∩B) + p2 · P (A ∩B∗)

P (A)
− p1 · P (A ∩B) + p3 · P (A∗ ∩B

P (B)

= (
1

P (A)
− 1

P (B)
) · P (A ∩B) · p1 +

P (A ∩B∗)

P (A)
· p2 −

P (A∗ ∩B)

P (B)
· p3

To simplify the notation we define weights w1 and w3

w1 = (
P (A)

P (B)
− 1) · P (A ∩B)

P (A ∩B∗)
(13)

w3 =
P (A)

P (B)
· P (A∗ ∩B)

P (A ∩B∗)
(14)

and using P (G|A) − P (G|B) = 0, we find the following formula for p2.

p2 = w1 · p1 + w3 · p3 (15)

We may use the maximum likelihood method for estimating p1, p2, p3 under the constraint (15).

The likelihood L(p1, p3;x1, x2, x3, n1, n2, n3, P (A), P (B), P (A ∩ B), P (A ∩ B∗), P (A∗ ∩ B)) is
given as the product of three conditionally independent binomial probabilities, inserted the expression
(15) for p2. The log likelihood can be written as follows,

l(p1, p3) = x1 · log(p1) + (n1 − x1) · log(1− p1) (16)

+ x2 · log(w1 · p1 + w3 · p3) + (n2 − x2) · log(1− w1 · p1 − w3 · p3)

+ x3 · log(p3) + (n3 − x3) · log(1− p3)

9



Unknown probabilies enter into the weights w1 and w3, and we use the natural estimators for P (A),
P (B), P (A ∩ B), P (A ∩ B∗), P (A∗ ∩ B) (given below) inserted into the weights in a numerical
optimization of the log likelihood.

w̃1 = (
P̂ (A)

P̂ (B)
− 1) ·

̂P (A ∩B)

̂P (A ∩B∗)

= (
n1+n2

N
n1+n3

N

− 1) ·
n1
N
n2
N

= (
n1 + n2

n1 + n3
− 1) · n1

n2

w̃3 =
P̂ (A)

P̂ (B)
·

̂P (A∗ ∩B)

̂P (A ∩B∗)

=
n1+n2

N
n1+n3

N

·
n3
N
n2
N

=
n1 + n2

n1 + n3
· n3

n2

When n2 = 0, A∪B = A, i.e. A ⊂ B and we refer to Section 3.1 and the tests for the situation when
one gene list is a subset of the other. Inserting the estimators into the log likelihood and maximizing
wrt. p1 and p3, we get the estimators p̃1 and p̃3. This log likelihood has no simple analytic solution,
and we use numerical optimization to maximize the log likelihood. Here p̃1 and p̃3 can not be written
in closed form, but p̃2 is found by inserting p̃1 and p̃3 in equation (15).

We defineṼar(D) to be Var(D) inserted the estimators p̃1, p̃2, and p̃3, and using Ṽar(D) in Equation
(6), we define the test statistic ZP ,

ZP =
D − 0√
Ṽar(D)

=
X1+X2
n1+n2

− X1+X3
n1+n3

( 1
nA
− 1

nB
)2 · n1 · p̃1 · (1− p̃1) + 1

n2
A

· n2 · p̃2 · (1− p̃2) + 1
n2

B

· n3 · p̃3 · (1− p̃3)
(17)

For moderate large sample sizes we expect ZP to be approximately asymptotically standard normally
distributed under the null hypothesis, and calculate the p-value of the test based on ZP as

2 · Φ(−|ZP |) (18)

where Φ is the cumulative standard normal distribution.

3.2.4 TEST OF LEISENRING, ALONZO AND PEPE

A more general approach to testing (1) is the test of Leisering et al. (2000) (which we denote the
LAP-test) for comparison of predictive values of two diagnostic tests, tests A and B, with respect to
a disease G. Every individual may have 0, 1 or 2 positive tests, i.e. every gene may be on 0, 1 or 2
of the gene lists A and B. The individuals are indexed by i and the (multiple) observations for each
individual are indexed by j = 1, ..., ni.

10



Leisering et al. (2000) use three binary random variables, Yij that denotes disease status, Zij that
indicates which test was used and Xij that describes the outcome of the diagnostic test.2

Yij =

{
0, nondiseased
1, diseased

Zij =

{
0, test 1
1, test 2

Xij =

{
0, negative
1, positive

To compare this to our situation, we have ni = 2 results for each gene i, and for now let j = 1 be the
result for test A and j = 2 be the result for test B. Then Yi1 = Yi2 would denote whether the gene is a
member of gene class G or not; Zi1 = 0 (for all i) since we assume that test A is performed for j = 1
and Zi2 = 1 (for all i) since we assume that test B is performed for j = 2. Finally Xi1 = 1 if the gene
is on list A and Xi2 = 1 if the gene is on list B.

Leisering et al. (2000) aim at comparing the positive predictive values (PPV) for the two tests, where
the positive predicted value is defined as P(disease | positive test).

The PPV for test 1 can be represented as PPV1 = P (Yij = 1|Zij = 0, Xij = 1) and the PPV for test
3 as PPV3 = P (Yij = 1|Zij = 1, Xij = 1). The null hypothesis tested is H0 : PPV2 = PPV2,
i.e. the probability that an individual is diseased given that test 1 is positive is equal to the probability
that an individual is diseased given that test 2 is positive. In our setting this means that we are testing
whether the probability that a gene is a member of gene class G given that it is on list A is equal to
the probability that the gene is a member of gene class G given that it is on list B. Thus, we have the
same null hypothesis as in (1).

Base on generalized estimation equations Leisering et al. (2000) fit a generalized linear model and
define the following test statistic for large samples;

TPPV =

{∑Np

i=1

∑mi

j=1 Yij(Zij − Z̄)
}2

∑Np

i=1

{∑mi

j=1(Yij − Ȳ )(Zij − Z̄)
}2 (19)

where

Z̄ =

∑Np

i=1miZiYi∑Np

i=1mi

which is the proportion of positive test 2’s among all the tests and

Ȳ =

∑NP

i=1miYi∑NP

i=1mi

is the proportion of diseased individuals among all the individuals. Further, mi is the number of
positive test results for individual i, NP is the number of individuals with at least one positive test
outcome.

2In Leisering et al. (2000) the letter D is used instead of Y , but to avoid confusion with our previous notation we have
chosen to use Y .
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In our situation
Z̄ =

nB

nA + nB

i.e. the proportion of genes on list B among all the genes, and

Ȳ =
XA∩G +XB∩G

nA + nB
,

the proportion of the genes that are members of gene class G. mi is the number of lists of which gene
i is present, and NP is the number of genes that are on at least one of the lists.

The test statistic in (19) is general and can be used even if it is possible that a gene may be in the gene
class G for some tests and not for other tests. However, in our case this is not possible, a particular
gene is either always in the gene class G or never. Then the test statistic can be simplified.

By defining Ti =
∑mi

j=1 Zij , the number of positive test 2’s individual i contributes to the analysis,
the statistic can be written

TPPV =

{∑Np

i=1 Yi(Ti −miZ̄)
}2

∑Np

i=1(Yi − Ȳ )2(Ti −miZ̄)2

In our situation, Ti is the number of lists at which the genes on list B are present. The numerator is

(X1 +X3 −
2X1 +X2 +X3

2n1 + n2 + n3
(n1 + n3))

2

which we interpret as the number of genes on list B that are in gene class G subtracted an estimate for
the probability of being in gene class G for all genes on the lists A and B multiplied by the number of
genes on list B.

If we rearrange the terms in the numerator and cancel out the common factors in the numerator and
denominator, the test statistic for large samples is given by

TPPV =
((n1 + n2)(X1 +X3)− (n1 + n3)(X1 +X2))

2

f(X1, X2, X3, n1, n2, n3)
(20)
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where

f(X1, X2, X3, n1, n2, n3) =

X1(n2 − n3)
2

(
1− 2X1 +X2 +X3

2n1 + n2 + n3

)2

+X2(n1 + n3)
2

(
1− 2X1 +X2 +X3

2n1 + n2 + n3

)2

+X3(n1 + n2)
2

(
1− 2X1 +X2 +X3

2n1 + n2 + n3

)2

+(n1 −X1)(n2 − n3)
2

(
2X1 +X2 +X3

2n1 + n2 + n3

)2

+(n2 −X2)(n1 + n3)
2

(
2X1 +X2 +X3

2n1 + n2 + n3

)2

+(n3 −X3)(n1 + n2)
2

(
2X1 +X2 +X3

2n1 + n2 + n3

)2

We see that the numerator in (20) is somewhat similar to our D statistic given in 5. If we multiply D
by (n1 + n2)(n1 + n3) and then take the square, we obtain the numerator in (20).

The p-value of the LAP-test is calculated as:

P (χ2
1 ≥ TPPV ) = 1− Fχ2

1
(TPPV ) (21)

where Fχ2
1

is the cumulative χ2 distribution with 1 degree of freedom.

3.2.5 TESTS BASED ON A ∩B = ∅

When one list is not a subset of the other list, the tests outlined in Section 3.1 is valid when A∩B = ∅.
When A∩B 6= ∅, but the size of A∩B is small, we may regard these tests as approximate strategies.
We will investigate the following two strategies further in the simulation study in Section 4.

• Genes inA∩B are deleted both from list A and list B, resulting inA∩B∗ and A∗∩B taking the
place of A and B in the test of Section 3.1. Fisher’s exact test or Pearson’s asymptotic χ2 test
is then used for the case of mutually exclusive gene lists. We call this strategy “Delete A ∩B”.
This strategy is to our knowledge used in the GO-tool FatiGO Al-Shahrour, Diaz-Uriarte and
Dopazo (2004), implemented using Fisher’s exact test.

• Another possible approach is to simply ignore the fact that there are genes that are on both lists
and use Fisher’s exact test or the Pearson’s asymptotic χ2 test in Section 3.1 as if the lists were
mutually exclusive. We call this strategy “Ignore A ∩B”.

4 SIMULATION STUDY

All analyses are performed using the R language, R Development Core Team (2005).
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4.1 METHODS

In Section 3 we presented two new tests, the unpooled intersecting asymptotic test (UIA) and the
pooled intersecting asymptotic test (PIA), for the situation of intersecting gene lists. In addition we
adapted the Leisering et al. (2000) (LAP) test for comparing two positive predictive values to the case
of two intersecting gene lists. To compare the performance of the three tests (UIA, PIA and LAP)
we have conducted a simulation study. For comparison, we have also included both small sample and
asymptotic versions of the tests (in the intersecting gene lists situation) presented in Section 3.2.5.
The methods under study are listed in Table 4.

4.2 CASES

In the simulation study we have investigated 10 situations designed to be under the null hypothesis (1)
and 9 situations under specific alternative hypotheses. These 19 cases are presented in Table 5.

For each situation six parameter values are set. These are

• o1 = P (A ∩B), o2 = P (A ∩B∗), and o3 = P (A∗ ∩B),

• p1 = P (G|A ∩B), p2 = P (G|A ∩B∗), and p3 = P (G|A∗ ∩B).

Here the parameters o1, o2, o3 are the probabilies that a randomly selected gene is a member of the list
(A ∩ B), (A ∩ B∗) or (A∗ ∩ B), respectively. We refer to these probabilities as o-probabilites. And
p1, p2, p3 are the probabilies that a randomly selected gene is a member of gene class G, given that
the gene is a member of (A∩B), (A∩B∗) and (A∗ ∩B), respectively. We refer to these probabilites
as p-probabilites.

Each situation is labelled using a code with four slots:

• o-probabilities,

• p-probabilites,

• expected length of A and B list,

• expected values of X1, X2, X3.

Test Distribution Section P -value
Unpooled intersecting asymptotic test (UIA) Asymptotic N 3.2.2 (12)
Pooled intersecting asymptotic test (PIA) Asymptotic N 3.2.3 (18)
Leisenring, Alonzo, Pepe test (LAP) Asymptotic χ2

1 3.2.4 (21)
Delete A ∩B test Fisher, hypergeometric 3.2.5 (3)
Delete A ∩B test Asymptotic χ2

1 3.2.5 (4)
Ignore A ∩B test Fisher, hypergeometric 3.2.5 (3)
Ignore A ∩B test Asymptotic χ2

1 3.2.5 (4)

TABLE 4: Overview of the hypothesis testing strategies applied in the simulation study of Section 4.
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Situations under the null hypothesis P (G|A) = P (G|B)

No. Code o1 o2 o3 p1 p2 p3 P (A) P (B) P (G|A) P (G|B)

1 e.e.600.30 0.010 0.010 0.010 0.100 0.100 0.100 0.020 0.020 0.100 0.100
2 e.e.300.15 0.005 0.005 0.005 0.100 0.100 0.100 0.010 0.010 0.100 0.100
3 e.e.60.3 0.001 0.001 0.001 0.100 0.100 0.100 0.002 0.002 0.100 0.100
4 b.e.600.45a135 0.005 0.015 0.015 0.300 0.300 0.300 0.020 0.020 0.300 0.300
5 b.e.600.15a45 0.005 0.015 0.015 0.100 0.100 0.100 0.020 0.020 0.100 0.100
6 b.b.600.45 0.005 0.015 0.015 0.300 0.100 0.100 0.020 0.020 0.150 0.150
7 b.b.600.75a27 0.005 0.015 0.015 0.500 0.060 0.060 0.020 0.020 0.170 0.170
8 u.b.10a30.1.8a1.2a7.2 0.00013 0.0002 0.001 0.450 0.200 0.277 0.0003 0.001 0.300 0.300
9 u.b.50a150.9a6a36 0.00067 0.0010 0.0043 0.450 0.200 0.277 0.002 0.005 0.300 0.300
10 u.b.250a750.45a30a180 0.0033 0.005 0.022 0.450 0.200 0.277 0.008 0.025 0.300 0.300

Situations under the alternative hypothesis P (G|A) 6= P (G|B)

No. Code o1 o2 o3 p1 p2 p3 P (A) P (B) P (G|A) P (G|B)

11 e.u.300.15a22.5 0.005 0.005 0.005 0.100 0.100 0.150 0.010 0.010 0.100 0.125
12 e.u.300.15a30 0.005 0.005 0.005 0.100 0.100 0.200 0.010 0.010 0.100 0.150
13 e.u.300.15a45 0.005 0.005 0.005 0.100 0.100 0.300 0.010 0.010 0.100 0.200
14 b.u.600.15a45a67.5 0.005 0.015 0.015 0.100 0.100 0.150 0.020 0.020 0.100 0.138
15 b.u.600.15a45a135 0.005 0.015 0.015 0.100 0.100 0.300 0.020 0.020 0.100 0.250
16 b.u.600.75a27a36 0.005 0.015 0.015 0.500 0.060 0.080 0.020 0.020 0.170 0.185
17 b.u.600.75a27a54 0.005 0.015 0.015 0.500 0.060 0.120 0.020 0.020 0.170 0.215
18 u.u.50a150.9a6a40 0.0007 0.001 0.0043 0.450 0.200 0.3077 0.0017 0.005 0.300 0.327
19 u.u.50a150.9a6a50 0.0007 0.001 0.0043 0.450 0.200 0.3846 0.0017 0.005 0.300 0.393

TABLE 5: Situations (cases) investigated under null hypothesis P (G|A) = P (G|B) and the alterna-
tive hypothesis P (G|A) 6= P (G|B).
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The following shorthand-notation is used:

1. The first slot gives a letter describing the relationship between the probabilities o1, o2 and o3,
and the letter “e” denotes “equality”, “b” denotes “balanced”, i.e. P (A) = o1 + o2 = P (B) =
o1 + o3, and “u” denotes “unbalanced”.

2. The second slot gives a letter describing the relationship between the probabilities p1, p2 and
p3, and the letter “e” denotes “equality”, and “b” denotes “balanced”, i.e. P (G|A) = P (G|B),
and “u” denotes “unbalanced”.

3. The third slot contains number(s) denoting the expected length of the A and B list (if the two
numbers are not equal, they are separated by the letter “a”).

4. The fourth slot contains number(s) denoting the the expected values of X1, X2, X3.

For the simulated situations under the null hypothesis there are four groups of combinations: e.e
(equal o and p probabilities), b.e (balanced o probabilites and equal p probabilites), b.b (balanced
o and p probabilites), u.b (unequal o-probabilites and balanced p probabilities). For the three first
groups the expected length of the A and B lists are equal. For the simulated situations under the
alternative hypothesis there are four groups of combinations: e.u (equal o probabilites and unequal p
probabilities), b.u (balanced o probabilites and unequal p probabilites), b.u (balanced o probabilites
and unequal p probabilites), u.u (unequal o and p probabilities). These situations are constructed by
starting with one situation under the null hypothesis and changing the probability p3.

In the first three situations under the null hypothesis (Case 1-3:“e.e”) in Table 5, both the expected
sizes of the subsets (A ∩B), (A ∩B∗) and (A∗ ∩B) are equal, and the expected sizes of the subsets
(A∩B∩G), (A∩B∗∩G) and (A∗∩B∩G) are equal. For Case 2 a contour plot of the log likelihood
(16) inserted the expected values of ni and Xi for i = 1, ..., 3, as functions of p1 = P (G|A ∩ B) on
the horizonal axis and of p3 = P (G|A ∩ B∗) on the vertical axis, is found in the upper left panel of
Figure 4. Cases 11-13 under the alternative hypothesis, are constructed from Case 2.

For the next two situations (Case 4-5:”b.e”) in Table 5, the expected sizes of the subset (A ∩ B),
(A ∩ B∗) and (A∗ ∩ B) are not equal, but the expected sizes of the subsets A and B are equal. The
expected sizes of the subsets (A ∩B ∩G), (A ∩B∗ ∩G) and (A∗ ∩B ∩G) are equal. For Case 5 a
contour plot of the log likelihood is found in the upper right panel of Figure 4. Cases 13-14 under the
alternative hypothesis, are constructed from Case 5.

For the next two situations (Case 6-7:”b.b”) in Table 5, the expected sizes of the subsets (A∩B ∩G),
(A ∩ B∗ ∩ G) and (A∗ ∩ B ∩ G) are not equal, but the expected size of the subsets A and B are
equal. The expected sizes of the subsets (A∩B ∩G), (A∩B∗ ∩G) and (A∗ ∩B ∩G) are not equal,
but the expected probabilities P (G|A) and P (G|B) are equal. For Case 7 a contour plot of the log
likelihood is found in the lower left panel of Figure 4. Cases 15-16 under the alternative hypothesis,
are constructed from Case 7.

In the last three situations (Case 8-10:”u.b”) in Table 5, the expected sizes of the subsets A and B are
not equal. For Case 9 a contour plot of the log likelihood is found in the lower right panel of Figure
4. Cases 17-18 under the alternative hypothesis, are constructed from Case 9.
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FIGURE 4: Contour plot of the log likelihood for cases 2, 5, 7 and 9 inserted the expected values of
ni and Xi for i = 1, ..., 3, as functions of p1 = P (G|A ∩ B) on the horizonal axis and of p3 =
P (G|A ∩B∗) on the vertical axis.
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4.3 SIMULATION ALGORITHM

The simulation study is devided into separate series of unconditional and conditional simulations. The
two strategies differ only in how the lengths of the list (A∩B), (A∩B∗) and (A∗∩B) are generated.
In the unconditional sampling these numbers are drawn from the multinomial distribution, while for
the conditional simulations we use the expected values of the lengths of these lists. The following
algorithm, with a unconditional or conditional choice at step 2, is used to generate one simulated data
set.

1. N = 30000 genes are under study.

2. The number of genes on lists (A ∩ B), (A ∩ B∗) and (A∗ ∩ B) are called n1 = n(A∩B),
n2 = n(A∩B∗), and n3 = n(A∗∩B).

UNCONDITIONAL: Let n4 = n(A∗∩B∗) denote the number of genes on the list (A∗ ∩B∗). The
numbers n1, n2, n3 and n4 are drawn randomly using the multinomial distribution and the
o-probabilities.

(n1, n2, n3, n4) ∼ multinomial(N, o1, o2, o3, (1− o1 − o2 − o3))

The value n4 is not used further.

CONDITIONAL: The values of n1, n2, and n3 are set to their expected values in the multinomial
model.

ni = oi ·N for i = 1, 2, 3

3. Given n1, n2, and n3, the number of genes that are members of a given gene class G, are called
X1,X2, andX3, and are drawn using three independent binomial models and the p-probabilites.

X1 ∼ binomial(n1, p1)

X2 ∼ binomial(n2, p2)

X3 ∼ binomial(n3, p3)

4. P -values for each of the methods in Table 4 are calculated based on (X1, n1, X2, n2, X3, n3).

This algorithm is repeated M = 30000 times, to produce M p-values for both the conditional and the
unconditional simulation strategies, for each situation in Table 5, and each statistical test presented in
Table 4.

4.4 EVALUATION STRATEGIES

The test situations under the null hypothesis will be used to study if each test preserves the test size,
i.e. that a specified nominal significance level equals the observed actual significance level. We will
look closely at significance levels within the interval [0.001, 0.1] and in particular to the values {0.001,
0.005, 0.01,0.05, 0.1}. The smallest values are motivated by the possible subsequent use of methods
for controlling multiple testing error rates.

For each stategy, situation, test and selected value of the nominal significance level α, let W be a
random variable counting the number of p-values smaller than or equal to α. Then W is binomially
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distributed with size M and probability α. An estimate of the significance level of the test, α̂ and a
100 · (1− γ)% confidence interval with limits α̂L and α̂U , are given as, Agresti and Coull (1998).

α̂ =
W

M
(22)

W̃ = W + 2

M̃ = M + 4

α̃ =
W̃

M̃

α̂L = α̃− z γ
2

√
α̃ · (1− α̃)

M̃
(23)

α̂U = α̃+ z γ
2

√
α̃ · (1− α̃)

M̃
(24)

The alternative hypothesis situations will be used to assess the power of the tests. Then α̂ in Equation
(22) is an estimate for the power of the test, i.e. P (reject H0|H1), at the specific value under H1

defined by the situation under study.

We also look at the distribution of the calculated p-values for the continuous tests (not the two dis-
crete tests). Under the null hypothesis this distribution (when the p-values are continuous) should be
uniform. The distribution of the p-values under the alternative hypothesis has not been investigated
theoretically for the different methods, but we expect that the distribution is skewed to the left and that
most p-values are small.

4.5 RESULTS

For each situation and each method the following is investigated:

• estimated significance level (or power) for nominal levels in within the interval [0.001, 0.1] and
in particular at the values {0.001, 0.005, 0.01,0.05, 0.1},

• 95% confidence intervals for the significance level (or power) for the above nominal levels, and

• distribution of p-values.

The results from the simulation study are presented in Figures 6-9 and Tables 7-10 in Appendix C. A
colour coded figure legend for the results from the simuation study is presented in Figure 5.

We summarize the results for the simuations under the null and alternative hypothesis:

• In the first three situations under the null hypothesis (Case 1-3:“e.e”) the general finding is
that in the conditional simulations the three intersecting tests UIA, PIA and LAP all perform
satisfactory (correct test size, approximate uniform distribution of p-values), but that the tests
based on A ∩ B = ∅ are conservative (i.e. estimated significance level below the nominal
level). The “DeleteA∩B” test using the Fisher-p-values is conservative, but using the Pearson’s
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asymptotic χ2-p-value the test performs satisfactory. The “Ignore A ∩ B” is by far the most
conservative.

For the unconditional simulations the results are the same as for the conditional simulations for
Cases 1-2, but for Case 3 (where the expected value forX1,X2 andX3 is 3 and thus very small),
the UIA test has higher observed significance level than the nominal level for significance levels
above 0.02. The PIA, LAP and “Delete A ∩ B” Pearson’s asymptotic χ2 tests have observed
significance level below the nominal level for the interval [0, 0.06] and observed significance
level above the nominal level for levels above 0.06. Results for Case 2 (together with Case 11)
are found in Table 7 and Figure 6 in Appendix C.

• The first three situations under the alternative hypothesis (Case 11-13:“e.u”) are slightly modi-
fied versions of Case 2, where the probability of p3 is changed. The general finding is that the
UIA-test has the highest power, followed by the PIA-test and the “Delete A ∩ B” Pearson’s
asymptotic χ2 test, and then the LAP-test. The ‘Ignore A ∩ B’ test has low power. For the
conditional simulations the PIA, LAP and “Delete A ∩ B” Pearson’s asymptotic χ2 tests have
nearly identical power. Results for Case 11 (together with Case 2) are found in Table 7 and
Figure 6 in Appendix C.

• For the Cases 4-5 (”b.e”) the results from the conditional and unconditional situations show
the same conclusions and are nearly numerically identical. Under the null hypothesis the three
intersecting tests UIA, PIA and LAP all performs satisfactory (correct test size, approximate
uniform distribution of p-values), and so does the “Delete A ∩ B” test using the Pearson’s
asymptotic χ2-p-value. The “Delete A ∩ B” test using the Fisher-p-value is conservative, and
the “Ignore A ∩B” is very conservative. Results for Case 5 (together with Case 14) are found
in Table 8 and Figure 7 in Appendix C.

• The two situations in Case 14-15 (”b.u”) are modifications of Case 5 (the probability of p3 is
changed). The findings are the same as for the Cases 11-13. Results for Case 14 (together with
Case 5) are found in Table 8 and Figure 7 in Appendix C.

• For the Cases 6-7 (”b.b”) under the null hypothesis the results differ for the unconditional and
conditional simulations. Case 7 involves smaller sample sizes than Case 6, and here the results
are more extreme than for Case 6. For the UIA and PIA tests, the observed significance levels
are significantly higher than the nominal level in the unconditional simulations, and the LAP
and the “Delete A ∩ B” test using the Pearson’s asymptotic χ2-p-value have correct level. For
the conditional simulations the UIA, PIA and “Delete A∩B” Pearson’s asymptotic χ2-test have
correct level, while the LAP-test has level below the observed level. Again the “Delete A ∩B”
Fisher test is conservative and the “Ignore A ∩B” test is very conservative. Results for Case 7
(together with Case 16) are found in Table 9 and Figure 8 in Appendix C.

• The Cases 16 and 17 (”b.u”) are modifications of Case 7. Since UIA and PIA have observed
significance level slightly higher than the nominal level for the unconditional simulations in
Case 7, they also have the highest power. Results for Case 16 (together with Case 7) are found
in Table 9 and Figure 8 in Appendix C.

• For Case 8 (“u.b”) all the intersecting tests have observed level slightly larger than nominal
level, with PIA as the least extreme. The conditional simulations are much less extreme than
the unconditional simulations. The “Delete A ∩B” and “Ignore A ∩B” tests are conservative.
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Cases 9-10 (”u.b”) have larger sample sizes than Case 8, and the (expected) lengths of lists A
and B are very different (50 vs. 150 for Case 9 and 250 vs. 750 for Case 10). The “Ignore
A ∩ B” tests are conservative, while the “Delete A ∩ B” tests do not preserve test size. The
observed significance levels for the “Delete A∩B” tests are very much higher than the nominal
levels (for example for nominal level 0.01 the observed level is 0.02 in Case 9 and 0.24 in Case
10, and for nominal level 0.1 the observed level is 0.2 in Case 9 and 0.62 in Case 10 for the
Pearson asymptotic test version of the unconditional simulations). For the intersecting tests the
observed levels are slightly larger than the nominal levels for the unconditional simulations with
UIA and PIA, while the LAP test preserves the test size. For the conditional simulations the
UIA and PIA have still slightly higher observed than nominal level (not significant for PIA for
Case 9 and not significant for UIA and PIA in Case 10). The LAP test has significantly lower
observed level than nominal level for Case 9 and 10. Results for Case 9 (together with Case 18)
are found in Table 10 and Figure 9 in Appendix C.

• Cases 18-19 (”u.u”) are modifications of Case 9. Since the “Delete A∩B” tests did not preserve
the test size these tests also have by far the highest power. Results for Case 18 (together with
Case 9) are found in Table 10 and Figure 9 in Appendix C.

4.6 CONCLUSIONS FROM THE SIMULATION STUDY

For Cases 1,2,4 and 5 (equal p-probabilites) all the intersecting tests (UIA, PIA and LAP) were found
to preserve the test size for both the conditional and unconditional simulations. For Case 3 (equal
p-probabilites, but very small expected lengths of X1, X2, X3) all intersecting tests performed satis-
factory in the conditional simulations, but for the unconditional simulations none of the intersecting
tests preseved the test size. For Case 6 (balanced o and p-probabilites, but also equal expected length
of X1, X2 and X3) the LAP test did not perform satisfactory for the conditional case, while the UIA
and PIA test did not perform satisfactory for the unconditional case. For Cases 7-10 (either unbal-
anced o-probabilites and/or very different expected value of X1, X2 and X3) the general finding is
that only the PIA test preserves the test size for all the conditional simulations, while only the LAP
test preserves the test size for all the unconditional simulations (except for Case 8 where none of the
intersecting tests preserves the test size in the unconditional simulations).

Thus, for the intersecting test the LAP test gave the best results for the unconditional simulations and
the PIA test gave the best results for the conditional simulations. This is not surprising, since the PIA
test is developed conditionally on observed values of n1, n2 and n3, while the LAP test is based on an
unconditional model. We may therefore conclude that we suggest that the PIA test should used when
the sampling strategy is conditional and the LAP test should be used when the sampling strategy is
unconditional.

For the case of two intersecting gene lists, we would assume that both sampling strategies could be
used. If e.g. lists of statistically significantly differentially expressed genes were based on a cut-off
on p-values or adjusted p-values using multiple testing criterias, we would assume that the sampling
strategy is unconditional. If instead “top 100” or “top 500” gene lists are produced (that is, cut-off
not dependent on p-values but instead of a desired length of the gene lists) the sampling would be
regarded as conditional.

For the tests based on A ∩ B = ∅ the “Ignore A ∩ B”-test did not preserve the test size in any of the
case tested (conservative) and had also very low power. This test should not be used in for intersecting
gene lists unless the intersection is close to the empty set. The “Delete A ∩B” Pearson’s asymptotic
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χ2 test was found to perform satisfactory when the expected lengths of the lists A and B were equal,
but did not preserve the test size when the expected lengths of the lists A and B were different. Thus,
the “Delete A ∩ B” Pearson’s asymptotic χ2 test may be used with caution only when the expected
lengths of the lists A and B are equal.

For the tests based on A ∩ B = ∅ we found that there were a substantial difference between using
the Fisher’s exact test and the Pearson asymptotic χ2 test. For test statistics having a continuous
distribution the distribution of the p-values under the null hypothesis is uniform. The expected value
for the p-values are thus 0.5. But, for test statistics having discrete distribution the distribution of the
p-values under the null hypothesis are not uniform and the expected value for the p-values are greater
0.5, Agresti (1996), p 43. For p-values that are based on discrete test statistics the average p-value
under the null hypothesis tends to be too large. Comparing the average of the p-values for the “Delete
A∩B” Fisher test and the “Delete A∩B” Pearson’s asymptotic χ2 test this was observed also in our
simulation study. However, the proportion of p-values below nominal significance levels presented in
the Tables 7-10 were found to be smaller for Fisher’s exact test than for the Pearson’s asymptotic χ2

test.

5 CONCLUSIONS AND FURTHER WORK

In Allison, Cui, Grier and Sabripour (2006) one of the important "consensus points" presented within
statistical inference is that gene class testing is desirable, and has become a popular and widely ac-
cepted analytical tool. However, one important problem they found with gene class testing is that the
null and alternative hypotheses often are not formally defined or poorly defined. By formally stating
the null and alternative hypotheses we have provided the researcher with an adequate and statistically
valid starting point for their analyses.

The focus of this report has been on statistical hypothesis testing of association between two gene lists
for a given class of genes. In the eGOn-tool, Beisvåg et al. (2006) three tests for comparing two gene
lists are implemented. The Fisher’s exact test is available in two versions for the “One Gene List is
a Subset of the Other List” and “Mutually Exclusive Gene Lists” situations, as presented in 3.1. In
the simulations study in Section 4 we found that the LAP test was found to perform the best among
the intersecting gene lists test when the sampling strategy was unconditional, while the PIA test was
the best for the conditional sampling strategy. We would assume that in most cases when comparing
two gene lists the unconditional strategy is used. The LAP test is thus implmented in eGOn. No other
GO-tool, to our knowledge, offers tests for the Intersecting Gene Lists situation. As noted in Section
4.6 the “Delete A ∩ B” Pearson’s asymptotic χ2-test may be used (with caution) for the Intersecting
Lists situation when the expected lengths of the list A and B are equal. The “Delete A ∩B” Fisher’s
exact test is implemented in FatiGO, Al-Shahrour et al. (2004).

Several interesting issues have not been adressed in this presentation, and may be explored in further
work.

The motivation for developing test for the null hypothesis in Equation (1) was the case of testing
for association between two intersecting gene reporter lists submitted to eGOn. Thus, the raw data
underlying the statistical analyses producing the gene reporter lists are not submitted to eGOn. This
means that eGOn may not offer permutation based methods for addressing the dependence structure
between the genes. The statistical tests developed in this report are thus based on the assumption that
under the null hypothesis the genes on the lists (or subsets of the lists in the intersecting gene lists
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situations) act independently. This is also commonly assumed in other GO-tools. When testing for
equality of the prevalence of a disease in two groups in the population, the observational unit is the
individual and the assumption of independence of test results between individuals are in most cases
not seen to be problematic. However, a possible extension of the methods developed in this report
could be to look at different dependence between the observational units.

In this presentation we test the null hypothesis of association between gene lists in a given class of
genes. However, when using Gene Ontology to select gene classes, we are interested in testing a
hierarchy of gene classes. In eGOn the Benjamini and Hochberg step-up procedure, Benjamini and
Hochberg (1995) for controlling the False Discovery Rate (FDR), is implemented to handle multiple
testing. Other strategies with focus on the dependence between the gene classes in the GO-hierarchy
may be investigated further, including the FDR-trees of Benjamini and Yekutieli (2003).

Other issues for further research are developing small sample tests for interesecting gene list (not
asymptotic test) and to look at testing the null hypothesis of association of more than two gene list in
a given gene class.

UIA
PIA
LAP
DeleteFisher
DeleteChiSq
IgnoreFisher
IgnoreChiSq

FIGURE 5: Colour codes for Figures 6-9 from the simulations study.
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A NOTATION

The notation used in this report is presented in Figures 1 and 2, and in Table 6.
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Notation Explaination
N the number of genes tested, i.e. the number of genes on a microarray slide where

inference and annotation was possible.
nA the number of genes on list A, e.g. genes where event A has taken place.
nB the number of genes on list B, e.g. genes where event B has taken place.
nG∩(A∪B) the number of genes in gene class G that are on either gene lists A and/or B, e.g.

genes on either of the gene lists A and/or B where event G has taken place.
nA∩B the number of genes both on list A and B, e.g. genes where both events A and B

have taken place.
nA∪B the number of genes either on list A or B, e.g. genes where both of one of the

events A and B have taken place.
nA∩B∗ the number of genes on list A, but not on list B, e.g. genes where both events A

and B∗ have taken place.
nA∗∩B the number of genes on list B, but not on list A, e.g. genes where events A∗ and B

have taken place.
XA∩B∩G the number of genes in gene class G that are both on list A and B, e.g. genes where

events A, B and G have all taken place.
XA∩B∗∩G the number of genes in gene class G that are on list A, but not on list B, e.g. genes

where events A, B∗ and G have all taken place.
XA∗∩B∩G the number of genes in gene class G that are on list B, but not on list A, e.g. genes

where events A∗, B and G have all taken place.
XA∩G the number of genes in gene class G that are on list A, e.g. genes where events A,

and G have taken place.
XB∩G the number of genes in gene class G that that are on list B, e.g. genes where events

B and G have taken place.
XA∩B∩G∗ the number of genes not in gene class G that are both on list A and B, e.g. genes

where events A, B and G∗ have all taken place.
XA∩B∗∩G∗ the number of genes not in gene class G that that are on list A, but not on list B,

e.g. genes where events A, B∗ and G∗ have all taken place.
XA∗∩B∩G∗ the number of genes not in gene class G that are on list B, but not on list A, e.g.

genes where events A∗, B and G∗ have all taken place.
XA∩G∗ the number of genes not in gene class G that are on list A, e.g. genes where events

A, and G∗ have taken place.
XB∩G∗ the number of genes not in gene class G that that are on list B, e.g. genes where

events B and G∗ have taken place.

TABLE 6: Notation for the number of genes connected to different events.
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B DERIVATION OF EQUIVALENCE OF NULL HYPOTHESES

If one gene list is a subset of the other, i.e. B ⊂ A, then we have the following equivalence of null
hypotheses:

P (G|A) = P (G|B)⇔ P (G|A ∩B∗) = P (G|B).

PROOF: Since B ⊂ A, then B = A ∩ B and P (G|B) = P (G|A ∩ B). The null hypothesis
H0 : P (G|A) = P (G|B) can be written

P (G|A) = P (G|A ∩B)

and, thus G and B are conditionally independent given A. Hence, G and B∗ are also conditionally
independent given A, so P (G|A ∩B) = P (G|A ∩B∗) and

P (G|A) = P (G|A ∩B∗).

ALTERNATIVE PROOF:

P (G|A) = P (G|B)

P (G ∩A)

P (A)
= P (G|B)

P (G ∩ (A ∩B∗)) + P (G ∩ (A ∩B))

P (A)
= P (G|B)

P (G|A ∩B∗)P (A ∩B∗) + P (G|A ∩B)P (A ∩B)

P (A)
= P (G|B)

P (G|A ∩B∗)P (A ∩B∗) + P (G|B)P (B)

P (A)
= P (G|B)

P (G|A ∩B∗)
P (A ∩B∗)

P (A)
= P (G|B)[1 − P (B)

P (A)

P (G|A ∩B∗)
P (A ∩B∗)

P (A)
= P (G|B)

P (A ∩B∗)

P (A)

P (G|A ∩B∗) = P (G|B)

26



C DETAILS OF THE RESULTS FROM THE SIMULATION STUDY

Case 2: e.e.300.15, with P (G|A) = P (G|B) = 0.1
(p1 = p2 = p3 = 0.1)

Unconditional simulations, o1 = o2 = o3 = 0.005, P (A) = 0.01, P (B) = 0.01

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0007 0.0006 0.0006 0.0005 0.0005 0.0000 0.0000
0.005 0.0048 0.0043 0.0042 0.0035 0.0044 0.0000 0.0000
0.01 0.0100 0.0094 0.0092 0.0074 0.0095 0.0001 0.0001
0.05 0.0516 0.0503 0.0500 0.0398 0.0499 0.0040 0.0052
0.1 0.1025 0.1006 0.1000 0.0807 0.1003 0.0151 0.0201

Conditional simulations, n1 = n2 = n3 = 150

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0011 0.0009 0.0009 0.0006 0.0009 0.0000 0.0000
0.005 0.0057 0.0050 0.0050 0.0030 0.0050 0.0001 0.0001
0.01 0.0110 0.0097 0.0097 0.0063 0.0097 0.0002 0.0004
0.05 0.0508 0.0489 0.0489 0.0323 0.0489 0.0034 0.0066
0.1 0.1031 0.0977 0.0975 0.0644 0.0977 0.0133 0.0199

Case 11: e.u.300.15a22.5, variant of case 2 with P (G|A) = 0.1 and P (G|B) = 0.125
(p1 = p2 = 0.1, p3 = 0.15)

Unconditional simulations, o1 = o2 = o3 = 0.005, P (A) = 0.01, P (B) = 0.01

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0230 0.0199 0.0194 0.0180 0.0205 0.0003 0.0005
0.005 0.0680 0.0633 0.0627 0.0542 0.0627 0.0045 0.0059
0.01 0.1056 0.0998 0.0992 0.0872 0.0999 0.0112 0.0135
0.05 0.2626 0.2580 0.2567 0.2288 0.2568 0.0762 0.0908
0.1 0.3776 0.3747 0.3733 0.3380 0.3739 0.1609 0.1833

Conditional simulations, n1 = n2 = n3 = 150

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0237 0.0199 0.0198 0.0151 0.0199 0.0006 0.0009
0.005 0.0686 0.0624 0.0624 0.0460 0.0624 0.0047 0.0066
0.01 0.1073 0.0974 0.0974 0.0728 0.0974 0.0095 0.0136
0.05 0.2661 0.2617 0.2615 0.2133 0.2617 0.0651 0.0916
0.1 0.3749 0.3735 0.3735 0.3094 0.3735 0.1403 0.1820

TABLE 7: Case 2 e.e.300.15, under the null hypothesis P (G|A) = P (G|B), and Case 11
e.u.300.15a22.5 that is a modification thereof, under the alternative hypothesis P (G|A) 6= P (G|B).
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FIGURE 6: Unconditional simulations in the left column and conditional simulations in the right
column. The top row shows nominal vs. observed significance levels, α̂ for the seven methods for
Case 2. The middle row shows upper and lower confidence limits, α̂L and α̂U , for the intersecting
lists methods UIA, PIA and LAP, for Case 2. The bottom row shows the observed power at different
significance levels for the seven methods for Case 11.
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Case 5: b.e.600.15a45, with P (G|A) = P (G|B) = 0.1
(p1 = p2 = p3 = 0.1)

Unconditional simulations, o1 = 0.005, o2 = o3 = 0.015, P (A) = 0.02, P (B) = 0.02

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0008 0.0008 0.0007 0.0006 0.0008 0.0001 0.0001
0.005 0.0050 0.0048 0.0048 0.0042 0.0046 0.0009 0.0012
0.01 0.0098 0.0094 0.0095 0.0083 0.0095 0.0025 0.0029
0.05 0.0512 0.0507 0.0505 0.0442 0.0507 0.0202 0.0236
0.1 0.1030 0.1026 0.1023 0.0912 0.1025 0.0515 0.0595

Conditional simulations, n1 = 150, n2 = n3 = 450

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0012 0.0010 0.0010 0.0006 0.0010 0.0000 0.0001
0.005 0.0052 0.0052 0.0051 0.0038 0.0052 0.0007 0.0013
0.01 0.0109 0.0103 0.0103 0.0075 0.0103 0.0025 0.0034
0.05 0.0513 0.0500 0.0500 0.0388 0.0500 0.0186 0.0238
0.1 0.1020 0.1003 0.1003 0.0815 0.1003 0.0454 0.0577

Case 14 b.u.600.15a45a67.5: variant of case 5 with P (G|A) = 0.1 and P (G|B) = 0.1375
(p1 = p2 = 0.1, p3 = 0.3)

Unconditional simulations, o1 = 0.005, o2 = o3 = 0.015, P (A) = 0.02, P (B) = 0.02

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.1597 0.1549 0.1548 0.1454 0.1547 0.0688 0.0737
0.005 0.3018 0.2979 0.2974 0.2818 0.2971 0.1736 0.1857
0.01 0.3874 0.3832 0.3828 0.3644 0.3828 0.2467 0.2620
0.05 0.6253 0.6239 0.6234 0.6038 0.6244 0.5052 0.5253
0.1 0.7395 0.7384 0.7383 0.7215 0.7384 0.6429 0.6625

Conditional simulations, n1 = 150, n2 = n3 = 450

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.1579 0.1542 0.1542 0.1344 0.1542 0.0614 0.0730
0.005 0.3035 0.2980 0.2976 0.2670 0.2980 0.1620 0.1863
0.01 0.3890 0.3814 0.3814 0.3485 0.3814 0.2343 0.2640
0.05 0.6296 0.6271 0.6260 0.5874 0.6271 0.4882 0.5253
0.1 0.7385 0.7379 0.7379 0.7058 0.7379 0.6271 0.6616

TABLE 8: Case 5, b.e.600.15a45, under the null hypothesis P (G|A) = P (G|B), and case 14
b.u.600.15a45a67.5 that is a modification thereof, under the alternative hypothesis P (G|A) 6=
P (G|B).
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FIGURE 7: Unconditional simulations in the left column and conditional simulations in the right
column. The top row shows nominal vs. observed significance levels, α̂ for the seven methods for
Case 5. The middle row shows upper and lower confidence limits, α̂L and α̂U , for the intersecting
lists methods UIA, PIA and LAP, for Case 5. The bottom row shows the observed power at different
significance levels for the seven methods for Case 14.
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Case 7: b.b.600.75a27 with P (G|A) = P (G|B) = 0.17
(p1 = 0.05, p2 = p3 = 0.06)

Unconditional simulations, o1 = 0.005, o2 = o3 = 0.015, P (A) = 0.02, P (B) = 0.02

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0025 0.0022 0.0008 0.0009 0.0009 0.0000 0.0000
0.005 0.0104 0.0099 0.0044 0.0041 0.0051 0.0000 0.0000
0.01 0.0195 0.0188 0.0092 0.0088 0.0102 0.0000 0.0000
0.05 0.0750 0.0744 0.0495 0.0414 0.0491 0.0010 0.0013
0.1 0.1353 0.1345 0.0992 0.0853 0.0988 0.0050 0.0063

Conditional simulations, n1 = 150, n2 = n3 = 450

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0009 0.0009 0.0003 0.0008 0.0009 0.0000 0.0000
0.005 0.0043 0.0043 0.0018 0.0031 0.0043 0.0000 0.0000
0.01 0.0093 0.0089 0.0039 0.0061 0.0089 0.0001 0.0001
0.05 0.0488 0.0482 0.0289 0.0339 0.0482 0.0002 0.0004
0.1 0.1011 0.1011 0.0677 0.0727 0.1011 0.0018 0.0026

Case 14: b.u.600.75a27a36, variant of case 7 with P (G|A) = 0.17 and P (G|B) = 0.185
(p1 = 0.05, p2 = 0.06, p3 = 0.08)

Unconditional simulations, o1 = 0.005, o2 = o3 = 0.015, P (A) = 0.02, P (B) = 0.02

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0242 0.0234 0.0125 0.0143 0.0161 0.0000 0.0000
0.005 0.0643 0.0627 0.0397 0.0438 0.0488 0.0006 0.0007
0.01 0.0960 0.0947 0.0645 0.0691 0.0770 0.0014 0.0016
0.05 0.2383 0.2374 0.1874 0.1954 0.2147 0.0187 0.0212
0.1 0.3381 0.3372 0.2911 0.2953 0.3212 0.0540 0.0611

Conditional simulations, n1 = 150, n2 = n3 = 450

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0164 0.0158 0.0067 0.0116 0.0158 0.0000 0.0000
0.005 0.0500 0.0500 0.0291 0.0396 0.0500 0.0001 0.0001
0.01 0.0784 0.0775 0.0504 0.0618 0.0775 0.0003 0.0004
0.05 0.2210 0.2164 0.1698 0.1795 0.2164 0.0089 0.0129
0.1 0.3304 0.3304 0.2773 0.2820 0.3304 0.0363 0.0473

TABLE 9: Case 7, b.b.600.75a275, under the null hypothesis P (G|A) = P (G|B), and case 16
b.u.600.75a27a36 that is a modification thereof, under the alternative hypothesis P (G|A) 6= P (G|B).
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FIGURE 8: Unconditional simulations in the left column and conditional simulations in the right
column. The top row shows nominal vs. observed significance levels, α̂ for the seven methods for
Case 7. The middle row shows upper and lower confidence limits, α̂L and α̂U , for the intersecting
lists methods UIA, PIA and LAP, for Case 7. The bottom row shows the observed power at different
significance levels for the seven methods for Case 16.
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Case 9: u.b.50a150.9a6a36 with P (G|A) = P (G|B) = 0.3
(p1 = 0.450, p2 = 0.200, p3 = 0.277)

Unconditional simulations, o1 = 0.00067, o2 = 0.001, o3 = 0.0043, P (A) = 0.00167, P (B) = 0.005

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0036 0.0013 0.0014 0.0032 0.0016 0.0001 0.0001
0.005 0.0098 0.0068 0.0058 0.0142 0.0126 0.0010 0.0014
0.01 0.0171 0.0127 0.0106 0.0288 0.0267 0.0022 0.0031
0.05 0.0641 0.0573 0.0506 0.1026 0.1206 0.0176 0.0231
0.1 0.1197 0.1114 0.1022 0.1725 0.2127 0.0428 0.0558

Conditional simulations, n1 = 20, n2 = 30, n3 = 130

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0026 0.0006 0.0011 0.0043 0.0018 0.0001 0.0001
0.005 0.0085 0.0052 0.0045 0.0137 0.0122 0.0005 0.0007
0.01 0.0156 0.0105 0.0088 0.0283 0.0256 0.0014 0.0021
0.05 0.0590 0.0530 0.0474 0.1012 0.1239 0.0152 0.0203
0.1 0.1103 0.1032 0.0944 0.1733 0.2082 0.0395 0.0532

Case 18: u.u.50a150.9a6a40, variant of case 10 with P (G|A) = 0.3 and P (G|B) = 0.3267
(p1 = 0.450, p2 = 0.200, p3 = 0.385)

Unconditional simulations, o1 = 0.00067, o2 = 0.001, o3 = 0.0043, P (A) = 0.00167, P (B) = 0.005

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0073 0.0013 0.0031 0.0085 0.0054 0.0002 0.0002
0.005 0.0202 0.0073 0.0114 0.0331 0.0304 0.0015 0.0016
0.01 0.0316 0.0158 0.0201 0.0558 0.0551 0.0036 0.0043
0.05 0.0959 0.0725 0.0767 0.1729 0.2018 0.0265 0.0332
0.1 0.1585 0.1348 0.1371 0.2701 0.3166 0.0610 0.0765

Conditional simulations, n1 = 20, n2 = 30, n3 = 130

level UIA PIA LAP DeleteFisher DeleteChiSq IgnoreFisher IgnoreChiSq
0.001 0.0071 0.0013 0.0024 0.0093 0.0049 0.0001 0.0001
0.005 0.0184 0.0072 0.0104 0.0312 0.0290 0.0012 0.0014
0.01 0.0288 0.0140 0.0181 0.0558 0.0569 0.0024 0.0029
0.05 0.0888 0.0657 0.0698 0.1668 0.2036 0.0254 0.0295
0.1 0.1485 0.1272 0.1267 0.2727 0.3110 0.0526 0.0661

TABLE 10: Case 9 u.b.50a150.9a6a36, under the null hypothesis P (G|A) = P (G|B), and case
18 u.u.50a150.9a6a40 that is a modification thereof, under the alternative hypothesis P (G|A) 6=
P (G|B).
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FIGURE 9: Unconditional simulations in the left column and conditional simulations in the right
column. The top row shows nominal vs. observed significance levels, α̂ for the seven methods for
Case 9. The middle row shows upper and lower confidence limits, α̂L and α̂U , for the intersecting
lists methods UIA, PIA and LAP, for Case 9. The bottom row shows the observed power at different
significance levels for the seven methods for Case 18.
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