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ERROR BEHAVIOUR OF EXPONENTIAL RUNGE-KUTTA METHODS

ANNE KVÆRNØ

Abstract. The error behaviour of exponential Runge-Kutta methods is studied by use of
a modification of the B-series theory. In the modified series the stiffness is isolated from
the elementary differentials and included into the coefficients of the series. This makes it
possible to study the stiffness dependence of each term separately, and thereby gain better
insight into how methods might behave when applied to stiff equations.

1. Introduction

The aim of this paper is to get a better understanding of the error behaviour of exponential
Runge-Kutta (RK) methods. Such methods are derived to solve semilinear problems of the
form

(1) y′ = Ly + f(t, y), y(t0) = y0

where L is a matrix and f(t, y) is some nonlinear term. We consider s-stage exponential
RK-methods defined by

Yi = ecihLy0 + h

s
∑

j=1

aij(hL)f(t0 + cjh, Yj), i = 1, 2, · · · , s,

y1 = ehLy0 + h

s
∑

i=1

bi(hL)f(t0 + cih, Yi).

(2)

for which the coefficients of the methods are given in a Butcher tableau as

c1 a11(z) · · · a1s(z)
...

...
...

cs as1(z) · · · ass(z)

b1(z) · · · bs(z)

or in matrix form as
c A(z)

bT (z)

Exponential integrators were originally introduced as a method to solve stiff problems by
use of explicit methods, without the familiar stability restrictions, see [4, 12, 14, 15]. The
recent wave of publications seems to be more directed towards time integration of spatially
discretized partial differential equations. A review of exponential integrators and related
methods can be found in [13].

Classical local order theory has been derived by several authors, e.g. [1, 8, 10], based on
B-series and rooted trees. Such analysis is crucial for proving consistency and convergence
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Figure 1. Stepsize versus error for the model equation (3).
Left: The effect of stiffness. Middle: The effect of initial values.
Right: How the error changes over the first few steps.

of the methods, but it is not able to describe how the error behaves for stiff problems using
reasonable large stepsizes. Stiff order conditions can be found in [8, 9, 10].

In [5] Cox and Matthew describe and develop exponential integrators in the context of a
simple model ODE for the evolution of a single Fourier mode, given by

(3) y′ = λy + f(t, y), y(t0) = y0, λ ∈ C
−, |λ| >> 1.

The extension of the methods to systems of equations is immediate. But if the methods are
applied to the simple problem (3), local error behaviour can be observed which can not be
completely explained by any of the order theories mentioned above. The following example
illustrates this.

Example 1. Consider the equation (3), with f(t, y) = y + sin(t) and t0 = π/4. The error
is measured after one step of the Cox and Matthews’ 3th order exponential RK method, see
Table 1, and the results are given in Figure 1. To the left, the effect of the stiffness parameter
λ is demonstrated. In this case, the initial value y0 = 1. The picture in the middle shows the
effect of using different initial values. In this case λ is constant, λ = −103. To the right, we
can see how the error changes over the first few steps, using y0 = 1 and λ = −103.

The aim of this paper is to derive a theory to explicitly describe these kinds of error
behaviour by rooted tree analysis. In the classical B-series theory, see [2, 6], the exact and
the numerical solutions are written as series of the form

∑

τ∈T

α(τ)h|τ |F (τ)(t0, y0).

When applied to (3) elementary differential F (τ)(y0) depends on powers of λ, making the
truncated series unsuiteable for describing the error behaviour when |λ| is large and h mod-
erate.

For the model problem (3), we show that this problem can be overcomed by using a
modification of the B-series, described roughly by

∑

τ∈T

ϕ(τ)(z)h|τ |F (τ)(t0, · ; y0), z = λh,

in which F (τ)(t0, · ; y0) is independent of λ, but the coefficients α(τ) are replaced by functions
of z, that is ϕ(τ)(z). The difference of these functions for the exact and the numerical solution
then gives a quite precise description of the error for different values of z.
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Table 1. Examples of exponential RK methods.

As an introduction, the idea is demonstrated on a linear problem in section 3. The main
results, that is the series of the exact and numerical solutions of (3) ,are derived in section 4.
In section 5, we study the series for the smooth solution, as well as situations when the initial
value is on or off the smooth solution manifold. Section 6 presents numerical experiments
to illuminate the relevance of the theoretical results. Some concluding remarks are given in
section 7.

2. Examples of exponential Runge-Kutta methods.

Before studying the error behaviour, we would like to present some exponential RK-
methods which will be used throughout the paper to illustrate the theoretical results. The
methods are all of classical order 3, they have been chosen because of their diverse error
behaviour when applied to the model problem. The methods are

CM3: The third order explicit method developed by Cox and Matthew [5].

Radau IIA: An implicit third order exponential integrator based on the Radau IIA quadra-
ture, constructed by Hochbruck and Ostermann [9].

CMO3: A third order explicit method constructed by Celledoni, Marthinsen and Owren [3].
Contrary to the methods above, CMO3 was derived not primarely for solving (1), but as a
Lie group method for solving ordinary differential equations on manifolds.

The tableaux of the methods are given in Table 1. The coefficients are expressed in terms of
the function φq(z), defined by

(4) φq(z) =
1

(q − 1)!

1

hq
eλh

∫ h

0
e−λσσq−1dσ =

1

zq

(

ez −

q−1
∑

j=0

zj

j!

)

, q = 1, 2, · · · ,

using z = λh.
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CM3 Radau IIA CMO3

q φq(z) ψq(z)

1 ez−1
z

ez−1
z

ez−1
z

ez−1
z

2 ez−1−z
z2

ez−1−z
z2

ez−1−z
z2

3e
2
3 z−3
4z

3
ez−1−z− z2

2
z3

ez−1−z− z2

2
z3

(4−z)ez−4−3z

6z2
e
2
3 z−1
4z

4
ez−1−z− z2

2
− z3

6
z4

(6−z)ez−6−5z−2z2

12z3
(13−4z)ez−13−9z

54z2
e
2
3 z−1
18z

5
ez−1−z− z2

2
− z3

6
− z4

24
z5

(14−3z)ez−14−11z−4z2

96z3
(40−13z)ez−40−27z

648z2
e
2
3 z−1
108z

Table 2. Weight functions for the linear problem

3. The linear case

As an introduction to the idea of this paper, consider the the linear problem

(5) y′ = λy + f(t), y(t0) = y0, λ ∈ C
−.

The exact solution is given by

y(t0 + h) = eλhy0 + eλh

∫ h

0
e−λσf(t0 + σ)dσ.

By using the series expansion of f(t0 + σ) and integrating each term separately we get

(6) y(t0 + h) = ezy0 +

∞
∑

q=1

φq(z)h
qf (q−1)(t0), z = λh.

where φq(z) is given by (4).
A similar series can be derived for the numerical solution,

(7) y1 = ezy0 + h

s
∑

i=1

bi(z)f(t0 + cih) = ezy0 +

∞
∑

q=1

ψq(z)h
qf (q−1)(t0)

where

ψq(z) =
1

(q − 1)!

s
∑

i=1

bi(z)c
q−1
i .

Table 2 lists the functions φq as well as ψq for the methods given in Table 1. The local
truncation error is given by

y(t0 + h) − y1 =
∞
∑

q=1

Eq(z)h
qf (q−1)(t0)

where the error functions Eq are given by

Eq(z) = φq(z) − ψq(z).

Obviously, the error is of order %+ 1 independent of the stiffness parameter λ if

Eq(z) = 0, q = 1, 2, · · · %,
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and for the three methods under consideration

%CM3 = 3, %Radau IIA = 2 and %CMO3 = 1.

But useful information can be achieved by detailed examination of the error functions in the
extreme cases, like the nonstiff, the strongly damped and the highly oscillatory case:

The nonstiff case. This situation is characterised by |z| small, such that the error functions
can be studied in terms of their series expansions. Since z = λh, the nonstiff order of the
local error is p+ 1 if

Eq(z) = O(zp−q+1), q = %+ 1, · · · , p.

We then get the following expansion for Eq(z):

q CM3 Radau IIA CMO3

2 0 0 1
216z

2 + O(z3)

3 0 1
72z + O(z2) − 1

72z + O(z2)

4 1
720z + O(z2) − 1

216 + O(z) 1
216 + O(z)

5 − 1
2880 + O(z) − 1

405 + O(z) 7
3240 + O(z)

which gives the following expressions for the errors:

y(x0 + h) − y1 =











(

λ
720f

′′′(t0) −
1

2880f
(4)(t0)

)

h5 + O(h6) for CM3
(

λ
72f

′′(t0) −
1

216f
′′′(t0)

)

h4 + O(h5) for RADAU IIA
(

λ2

216f
′(t0) −

λ
72f

′′(t0) + 1
216f

′′′(t0)
)

h4 + O(h5) for CMO3

.

Thus for |λ| small, the methods Radau IIA and CMO3 will have approximately the same
error behaviour. However, the λ2 - term in the error of CMO3 will dominate for larger values
of |λ|. For the linear problem, CM3 is of nonstiff order 5.

Rapid decay. In this case we assume Re(z) << 0, such that all transients represented by
exponential functions are completely damped. The error functions can be written as

q CM3 Radau IIA CMO3

2 0 0 − 1
4z

+ O
(

1
z2

)

3 0 − 1
3z2 + O

(

1
z3

)

− 1
4z

+ O
(

1
z2

)

4 − 1
12z2 + O

(

1
z3

)

− 7
27z2 + O

(

1
z3

)

− 1
9z

+ O
(

1
z2

)

5 − 5
96z2 + O

(

1
z3

)

− 17
162z2 + O

(

1
z3

)

− 7
216z

+ O
(

1
z2

)

and the local truncation error is

y(t0 + h) − y1 =











− 1
12λ2h

2f ′′′(t0) + O
(

h
λ3 + h3

λ2

)

for CM3

− 1
3λ2hf

′′(t0) + O
(

1
λ3 + h2

λ2

)

for Radau IIA

− 1
λ
hf ′(t0) + O

(

1
λ2 + h2

λ

)

for CMO3

.

Only CM3 has a stiff local order of 2. Of the remaining methods, Radau IIA has an advantage
because of the 1/λ2 dependency.
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Figure 2. Local truncation error.

Rapid oscillations. At last we assume |z| large and λ imaginary. The exponentials will rep-
resent rapid oscillations in the error functions, which are dominated by the terms:

q CM3 Radau IIA CMO3

2 0 0 −3e
2
3 z+1
4z

+ O
(

1
z2

)

3 0 ez

6z
+ O

(

1
z2

)

− e
2
3 z+1
4z

+ O
(

1
z2

)

4 ez−1
12z2 + O

(

1
z3

)

2ez

27z
+ O

(

1
z2

)

− e
2
3 z+2
18z

+ O
(

1
z2

)

5 3ez−5
96z2 + O

(

1
z3

)

13ez

648 + O
(

1
z2

)

−2e
2
3 z+7

216z
+ O

(

1
z2

)

and the absolute value of the local truncation error is

|y(t0 + h) − y1| =















1
12|λ|2

Mh2f ′′′(t0) + O
(

h3

|λ|2
+ h

|λ|3

)

, with M ∈ [0, 2] for CM3
1

6|λ|h
2f ′′(t0) + O

(

h3

|λ| + h
|λ|2

)

for Radau IIA
1

2|λ|Mhf ′(t0) + O
(

h2

|λ| + 1
|λ|2

)

, with M ∈ [1, 2] for CMO3.

Radau IIA method is the only of the three methods that will demonstrate a significant different
error behaviour in the decaying and the oscillating case.

The theoretical results are confirmed by the following experiment:

Example 2. Consider the example given by Cox and Matthew [5]:

y′ = λy + sin(t), y(0) = y0

with exact solution

y(t) = y0e
λt +

eλt − λ sin t− cos t

1 + λ2
.

The equation is solved by each of the three exponential Runge-Kutta methods, starting from
t0 = π/4, and the error is measured after one step. Two real and two imaginary values of λ
have been used to represent the two stiff cases. The results are presented in Figure 2.

Even for this simple example, we observe that the error behaviour depends on both λ and
h. We also observe that the theory gives a quite precise description of the observed results.
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4. The semilinear case

We will now consider the semilinear scalar equation

(8) y′ = λy + f(t, y), y(t0) = y0, λ ∈ C
−.

Assuming f sufficiently smooth, (8) possesses a smooth solution which can be written as an
asymptotic series in powers of 1/λ:

(9a) ys(t) = ys,0(t) +
1

λ
ys,1(t) +

1

λ2
ys,2(t) + · · · .

By inserting the series of ys(t) into (8) and comparing equal powers of 1/λ, we obtain the
following expressions for the first three terms

(9b) ys,0(t) = 0, ys,1(t) = −f, ys,2(t) = −ft + fyf · · · ,

where the function f and its differentials are all evaluated in (t, ys,0(t)) = (t, 0). The solution
ys(t) is frequently referred to as the “smooth solution manifold” of (8). If Re(λ) < 0 solutions
are attracted to the smooth manifold, if λ is purely imaginary, solutions oscillates around it.
An initial value is called consistent if y0 = ys(t0).

As in the linear case, we would like to express the exact and the numerical solution as
power series of h, in which the coefficients of the series are functions of z. However, from the
Runge-Kutta theory, we know that each term corresponding to a certain power of h might
split into several terms, so that the exact and the numerical solution are better represented
by B-series, [2, 7]. These considerations motivate the following preliminary definition:

Definition 1. A GB-series is a formal series in h of the form

(10) GB(ϕ,Q0; z, h) =
∑

τ∈T

ϕ(τ)(z)h|τ |F (τ)(Q0),

where

• T is an index set.
• ϕ(τ)(z) is a function of z (elementary weight function).
• |τ | is a non-negative integer (order).
• F (τ)(Q0) is a differential operator on f (elementary differential), evaluated at some

point Q0.

Our aim is to construct GB-series of the exact solution y(t0 + h) of (8) as well as the
numerical solution y1 given by (2) using L = λ, that is

y(t0 + h) = GB(ϕe, Q0;hλ, h, y0) =
∑

τ∈T

ϕe(τ)(hλ)h|τ |F (τ)(Q0),(11)

y1 = GB(ψ,Q0;hλ, h, y0) =
∑

τ∈T

ψ(τ)(hλ)h|τ |F (τ)(Q0).(12)

such that the elementary differentials F (τ)(Q0) of f are independent on the stiffness parameter
λ.

Obviously, the exact and numerical solution of the linear equation, given by (6) and (7),
can both be considered as GB-series. In this case T is the set of all nonnegative integers
and Q0 = t0. In the semilinear case, it will be more convenient to let T be a certain set of
multicoloured rooted trees. As in (9) the elementary differentials will usually be evaluated at
(t0, ys,0(t0)) = (t0, 0). We will then use the notation Q0 = (t0, 0; y0) where y0 is the initial
value of the problem.
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The following lemma, which can be established with a minimum knowledge of the GB-
series, is a prerequisite for the construction of the series (11) and (12).

Lemma 1. Assume that ỹ(h) can be expressed as a GB-series around Q0 = (t0, 0; y0), that is
ỹ(h) = GB(ϕ,Q0; z, h). Then the function f(t+ γh, ỹ(h)) can be written as a formal series

(13) f(t0 + γh, ỹ(h)) =
∑

w∈W

αf (w)ϕf (w)(z)h|w|fFf (w)(Q0)

where the index set W and the terms α, ψf , | · |f and Ff are given as follows::

a) W is the collection of multisets of indices so that
– {∅} ∈W
– w = {•k, τ1, · · · , τm} ∈W if τ1, · · · , τm ∈ T .

Here • is one particular index, but • 6∈ T .

In the following, w = {•k, τ1, · · · , τm} ∈ W and among τ1, · · · , τm there are q distinct ele-
ments, each of multiplicity rj, j = 1, · · · , q. Then

b) αf ({∅}) = 1, αf (w) =
1

k!

q
∏

j=1

1

rj !
.

c) ϕf ({∅}) = 1, ϕf (w) = γk

m
∏

i=1

ϕ(τi).

d) |{∅}|f = 0, |w|f = k +

m
∑

i=1

|τi|.

e) Ff ({∅}) = f(t0, 0), Ff (w)(Q0) =
∂k+mf

∂tk∂ym
(t0, 0)

(

F (τ1)(Q0), · · · , F (τm)(Q0)

)

.

Proof. Let z be fixed, and do a multivariable Taylor expansion of f around (t0, 0). Then

f(t0 + γh, ỹ(h)) =
∞
∑

p=0

∑

k+m=p

1

k!m!
fktmy(t0, 0)(γh)

k(ỹ(h))m

=
∞
∑

p=0

∑

k+m=p

1

k!m!
fktmy(t0, 0)(γh)

k

(

∑

τ∈T

ϕ(τ)(z)h|τ |F (τ)(Q0)

)m

=

∞
∑

p=0

∑

k+m=p

1

k!m!
fktmy(t0, 0)(γh)

k
∑

τ1,··· ,τm∈T

m
∏

i=1

ϕ(τi)(z)h
|τi |F (τi)(Q0)

The last sum is here taken over all possible ordered sets of τ1, · · · , τm. If this set consists of q
distinct elements, each of multiplicity rj, then the same term appear exactly m!/(r1! · · · rq!)
times. Using the multilinearity of the differentials fktmy we get

f(t+ γh, ỹ(h)) = f(t0, 0)

+
∑

{•k ,τ1,··· ,τm}∈W

1

k!r1! · · · rq!
γk

( m
∏

i=1

ϕ(τi)(z)

)

hk+
Pm

i=1 |τi|fktmy(t0, 0)(F (τ1)(Q0) · · ·F (τm)(Q0))

where •k represents the k times derivatives of f with respect to t. Comparing this with (13)
proves the lemma. �
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Remark 1. In the transient case it might be advantageous to do the expansions around (t0, y0)
rather than around (t0, 0). This can be done by writing the GB-series as

ỹ(h) = y0 + ϕ(?)(z)y0 +
∑

τ∈T\{?}

ϕ(τ)(z)h|τ |F (τ)(Q0), Q0 = (t0, y0; y0),

and ? is the index representing y0. In this case, all the elementary differentials is computed
in (t0, y0), but the lemma is not altered in any other ways.

The next step is to derive the GB-series of the exact solution, (11). In the following, we will
use Q0 = (t0, 0; y0). The series will be derived from the the variation-of-constants formula,
which gives the exact solution of (8) as

(14) y(t0 + h) = eλhy0 + eλh

∫ h

0
e−λςf(t0 + ς, y(t0 + ς))dς.

Immediately, we can conclude that one term in the series is ezy0, or more formally

(15) ? ∈ T, ϕe(?)(z) = ez, | ? | = 0 and F (?)(Q0) = y0.

We also have that f(t0 + τ, y(t0 + τ)) = f(t0, 0) + · · · , thus a second term is given by

ez

∫ h

0
e−λςf(t0, 0)dς =

ez − 1

z
hf(t0, 0)

so that

(16) ◦ ∈ T, ϕe(◦)(z) =
ez − 1

z
, | ◦ | = 1 and F (◦)(Q0) = f(t0, 0).

The complete GB-series of the exact solution is given by the following theorem:

Theorem 1. The exact solution y(t0 + h) of (8) can be written as a GB-series of the form
(11) around Q0 = (t0, 0; y0), with

a) ? ∈ T, ◦ ∈ T and [•k, τ1, · · · , τm] ∈ T if τ1, · · · , τm ∈ T .

In the following, τ = {•k, τ1, · · · , τm} ∈ T and among τ1, · · · , τm there are q distinct elements,
each of multiplicity rj, j = 1, · · · , q. Then

b) F (?)(Q0) = y0, F (◦)(Q0) = f(t0, 0) and

F (τ)(Q0) = fktmy(t0, 0)
(

F (τ1)(Q0) · · ·F (τm)(Q0)
)

,

c) | ? | = 0, | ◦ | = 1 and |τ | = k +

m
∑

i=1

|τi| + 1,

d) ϕe(?)(z) = ez, ϕe(◦)(z) =
ez − 1

z
. Otherwise, ϕe(τ)(z) is given by

ϕe(τ)(z) =
1

z|τ |
ez

∫ z

0
σ|τ |−1e−σΓ(τ)(σ)dσ,

where

Γ(τ)(z) = α(τ)
m
∏

i=1

ϕe(τi)(z), α(τ) =
1

k!

q
∏

j=1

1

rj!
.
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Proof. The theorem will be proved by induction. Assume that it is possible to write the exact
solution as some GB-series (11). Then the first two terms are given by (15) and (16). For the
remaining terms, replace y(t0 + ς) in the integral of (14) by its GB-series and use Lemma 1.
Thus (14) can be written as

∑

τ∈T

ϕe(τ)(z)h
|τ |F (τ)(Q0) = ezy0 + ez

∫ h

0
e−λς

∑

w∈W

αf (w)ϕf (w)(λς)τ |τ |fFf (w)(Q0)dς

(17)

= ezy0 +
∑

w∈W

(

ez

z|w|f+1

∫ z

0
σ|w|f e−σαf (w)ϕf (w)(σ)dσ

)

h|w|f+1Ff (w)(Q0).

Each term on the left hand side have a corresponding term on the right. Assume that
τ1, τ2, · · · , τm ∈ T and their corresponding functions F , | · | and ϕe are given by the theorem.
Then w = {•k, τ1, · · · , τm} ∈W , and there must be a corresponding term on the left hand side
represented by an index τ ∈ T , which conveniently will be denoted by τ = [•k, τ1, · · · , τm].
Comparing the terms on each side, we get

|τ | = |w|f + 1, F (τ)(Q0) = Ff (w)(Q0)

and ϕe(τ) =
ez

z|w|f+1

∫ z

0
σ|w|f e−σαf (w)ϕf (w)(σ)dσ.

Inserting the expressions for | · |f , Ff , αf and ϕf from Lemma 1 completes the proof. �

Remark 2. If the elementary differentials are evaluated in (t0, y0; y0) rather than in (t0, 0; y0),
then the GB-series for the exact solution can be written as

y(t0 + h) = y0 + (ez − 1)y0 +
∑

τ∈T\{?}

ϕe(τ)(z)h
|τ |F (τ)(Q0)

Thus ϕe(?)(z) = ez − 1, consequently one of the initial values for the recursion is changed,
but the reccurence formula itself is unaltered.

Using standard notation, an index τ = [•k, τ1, · · · , τm] ∈ T is associated with a rooted tree
obtained by connecting k •’s and the roots of τ1, · · · , τm by k +m branches to a new white
vertex ◦ which becomes the root of τ . In Table 3 the trees with less than four vertices are
listed, together with their corresponding terms.

The last step is to prove that the numerical solution can be written as GB-series similar to
those of the exact solution. The formula (2) applied to (3) can be written more compactly as

Y = eczy0 + hA(z)f(t0 + ch, Y ),

y1 = ezy0 + hbT (z)f(t0 + ch, Y ),
(18)

by using Y = [Y1, · · · , Ys]
T for the vector of stage values, ecz = [ec1z, · · · , ecsz]T and

f(t0 + ch, Y ) = [f(t0 + c1h, Y1), · · · , f(t0 + csh, Ys)]
T . Further

�
s = [1, 1, · · · , 1]T ∈ R

s.
The multiplication of a product of vectors by a matrix is defined by: If A is an s× s matrix
and di, i = 1, · · · ,m are vectors of dimension s, then

A
m
∏

i=1

di = A

(

m
∏

i=1

di

)

.
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That is, form the element-by-element product of the vectors before multiplying by A. We
now establish the following result:

Theorem 2. The stage vector Y as well as the numerical solution y1 given by (18) can be
expressed as GB-series similar to those of the exact solution of (8) , that is

Y = GB(Ψ, Q0; z, h), y1 = GB(ψ,Q0; z, h)

with Q0, T , F and | · | given by Theorem 1, and

Ψ(?)(z) = ecz, Ψ(◦)(z) = A(z)
�

s and Ψ(τ)(z) = α(τ) A(z)

(

ck
m
∏

i=1

Ψ(τi)

)

,

ψ(?) = ez, ψ(◦) = bT (z)
�

s and ψ(τ) = α(τ) bT (z)

(

ck
m
∏

i=1

Ψ(τi)

)

,

where τ = [•k, τ1, · · · , τm] ∈ T with q distinct subtrees τj, each of multiplicity rj,

and α(τ) =
1

k!

q
∏

j=1

1

rj !
.

Proof. Assume that the GB-series of Y and y1 exist. Insert those into (18) and use Lemma
1. We then get

∑

τ∈T

Ψ(τ)(z)h|τ |F (τ)(Q0) = eczy0 +A(z)
∑

w∈W

αf (w)Ψf (w)h|w|f+1Ff (w)(Q0),

∑

τ∈T

ψ(τ)(z)h|τ |F (τ)(Q0) = ezy0 + bT (z)
∑

w∈W

αf (w)Ψf (w)h|w|f+1Ff (w)(Q0).

These expressions are similar to (17), which was used to generate the GB-series for the exact
solution. They only differ in the weight functions. We conclude that Y and y1 can be written
as GB-series similar to those of the exact solution, but with weight functions given by

Ψ(?)(z) = ecz, Ψ(◦)(z) = A(z)
�

s, Ψ(τ)(z) = A(z)αf (w)Ψf (w)

ψ(?)(z) = ez, ψ(◦)(z) = bT (z)
�

s, ψ(τ)(z) = bT (z)αf (w)Ψf (w)

where αf and Ψf are given by Lemma 1. �

Remark 3. If the elementary differentials are evaluated in (t0, y0) the theorem is still valid,
with the only difference that Ψ(?)(z) = ecz −

�
s and ψ(?)(z) = ez − 1, see the remark after

Theorem 1.

Table 3 lists the weight functions for the trees of less than four vertices. Error functions
E(τ)(z) = ϕe(τ)(z) −ψ(τ)(z) for the three methods of Table 1 can be found in Table 6 - 8 in
the appendix.

5. Solutions on the smooth manifold

In the introductory example we saw how the error behaviour did not only depend on h
and λ, but also on the initial value. The behaviour also changes over the first few steps.
In the rapid decay case, this is related to how the numerical solution approaches the exact
smooth solution ys(t), given by (9). In this section, we will first describe the solution ys(t)
in terms of GB-series. Further, we discuss the series for the numerical solution in the case of
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τ |τ | F (τ) Γ(τ)(z) ϕe(τ)(z) Ψ(τ)(z) ψ(τ)(z)

? 0 y0 ez ecz ez

◦ 1 f 1 ez−1
z

A
�

s bT
�

s

◦
? 1 fyy0 ez ez Aecz bT ecz

◦
• 2 ft 1 ez−1−z

z2 Ac bT c

◦
◦ 2 fyf

ez−1
z

ez(−1+z)+1
z2 A2 �

s bTA
�

s

◦
? ? 1 fyyy0y0

1
2e2z e2z−ez

2z
1
2Ae2cz 1

2b
T e2cz

◦
? • 2 ftyy0 ez ez

2 A
(

c · ecz
)

bT
(

c · ecz
)

◦
? ◦ 2 fyyfy0 ez ez−1

z

e2z−(z+1)ez

z2 A
(

(A
�

s) · e
cz
)

bT
(

(A
�

s) · e
cz
)

◦
◦
?

2 fyfyy0 ez ez

2 A2ecz bTAecz

◦
• • 3 ftt

1
2

ez−(1+z+ 1
2
z2)

z3
1
2Ac

2 1
2b

T c2

◦
• ◦ 3 ftyf

ez−1
z

ez(−1+ 1
2
z2)+(1+z)

z3 A
(

c · (A
�

s)
)

bT
(

c · (A
�

s)
)

◦
◦ ◦ 3 fyyff

(ez−1)2

2z2
e2z−2zez−1

2z3
1
2A
(

(A
�

s) · (A
�

s)
)

1
2b

T
(

(A
�

s) · (A
�

s)
)

◦
◦
•

3 fyft
ez−1−z

z2
ez(z−2)+(2+z)

z3 A2c bTAc

◦
◦
◦

3 fyfyf
ez(−1+z)+1

z2

ez(1−z+ 1
2
z2)−1

z3 A3 �
s bTA2 �

s

Table 3. Trees with less than 4 vertices and their corresponding terms, using
Q0 = (t0, 0; y0)

consistent initial value. At the end of the section, we will use these ideas to explain how the
error changes over the first few steps.

GB-series of the smooth solution. Consider again the GB-series of the exact solution
given by Theorem 1. From the construction of the trees τ and the weight functions ϕe(τ)(z)
we observe the following:

• The weight function ϕe(τ)(z) can be written as

ϕe(τ)(z) = ϕtr(τ)(z) + ϕs(τ)(z)

where ϕtr(τ)(z) includes all the terms involving ez, and the remaining term ϕs(τ)(z)
is a rational function in z.

• ϕs(τ)(z) = 0 for all τ ∈ T if (at least) one of the vertices in τ is a ?.

If Re(λ) << 0, ϕtr(τ)(z) quickly becomes negligible compared to ϕs(τ)(z) as z grows. Thus
the exact solution can be split into a transient and a smooth part,

y(t0 + h) = ytr(t0 + h) + ys(t0 + h),
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where the rapidly damped transient is given by

ytr(t0 + h) =
∑

τ∈T

ϕtr(τ)(z)h
|τ |F (τ)(Q0),

and the smooth solution, to which y(t0 + h) will be attracted, is

ys(t0 + h) =
∑

τ∈Ts

ϕs(τ)(z)h
|τ |F (τ)(t0, 0; ·).(19)

Here Ts ⊂ T is the subset of trees in T with no ? vertex. Elementary differentials F (τ)(Q0)
of trees τ with no ? vertex do not depend on the initial value y0, this is emphasised by using
Q0 = (t0, 0; ·) for GB-series over Ts.

In the remaining part of this section, we will use the subscript s to denote expressions for
which all exponentials ez has been removed, that is, set to zero.

For the smooth solution, we might be more interested in the dependency of λ than that of
h. It is then convenient to introduce the function Ps(τ)(z) = z|τ |ϕs(τ)(z). From Table 4 we
get

Ps(◦) = −1, Ps

(

◦
•
)

= −(1+z), Ps

(

◦
◦
)

= 1, Ps

(

◦
• •
)

= −1−z−
1

2
z2, Ps

(

◦
• ◦
)

= 1+z, · · · ,

and the smooth solution can be written as

ys(t0 + h) =
∑

τ∈Ts

1

λ|τ |
Ps(τ)(z)F (τ)(t0 , 0; ·)

(20)

= −
1

λ
f −

1

λ2

(

(1 + z)ft − fyf

)

−
1

λ3

(

(1 + z +
1

2
(z)2)ftt + (1 + z)ftyf −

1

2
fyyff + (2 + z)fyfyfy

)

+ O

(

1

λ4

)

.

To get an expression for the consistent initial value, keep λ fixed and let h→ 0:

ys(t0) =
∑

τ∈Ts

1

λ|τ |
Ps(τ)(0)F (τ)(t0, 0; ·)(21)

= −
1

λ
f −

1

λ2
(ft − fyf) +

1

λ3
(ftt − ftyf +

1

2
fyyff − 2fyft + fyfyf) + O

(

1

λ4

)

.

Since ys(t0) only depends on t0 and f , this approach gives a complete characterisation of
the smooth solution. (9).

For the numerical solution the situation is more complicated, since the behaviour of the
method depends significantly on whether the initial value y0 is on or off the smooth manifold.

Consistent initial value. Assume that the initial value is consistent, that is y0 = ys(t0).
This improves the error behaviour significantly, and not only for h large. To se why, consider
the GB-series of the numerical solution given by Theorem 2. For each elementary differential
of a τ ∈ T\Ts, y0 can be replaced by the series (21). As an example, consider the term
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corresponding to ◦
?:

ψ
(

◦
?
)

(z)hfy y0 = ψ
(

◦
?
)

(z)hfy

(

−
1

λ
f −

1

λ2
(ft − fyf) + · · ·

)

= ψ
(

◦
?
)

(z)

(

−
1

z
h2fyf −

1

z2
h3(fyft − fyfyf) + · · ·

)

= −
1

z
ψ
(

◦
?
)

(z)h2F
(

◦
◦
)

−
1

z2
ψ
(

◦
?
)

(z)h3F

(

◦
◦
•)

+
1

z2
ψ
(

◦
?
)

(z)h3F

(

◦
◦
◦)

+ · · ·

The term ◦
? contributes to the terms ◦

◦, ◦
◦
•
, ◦

◦
◦

etc. By replacing each y0 with the series (21),
the numerical solution y1 can be written as as a GB-series similar to (19), or

y1 =
∑

τ∈Ts

ψc(τ)(z)h
|τ |F (τ)(t0, 0; ·).

The subscript c is used to emphasise that the expression is only valid for a consistent initial
value. In this case each ψc(τ)(z) is the sum of ψ(τ)(z) and terms coming from some T\Ts.
To find ψc(τ)(z), the following lemma becomes useful:

Lemma 2. If y0 = ys(t0), then for each τ ? ∈ T\Ts the elementary differential can be expanded
into the series

F (τ?)(t0, 0; ys(t0)) =
∑

u∈U(τ?)

β(u; τ?)
1

λσ(u;τ?)
Q(u; τ?)F (u)(t0, 0; ·)

The set U(τ ?) ⊂ Ts is defined recursively by

a1) U(?) = Ts.
a2) If τ ? = [•k, τ?

1 , · · · , τ
?
l , τl+1, · · · , τm] with τ ?

i ∈ T\Ts and τi ∈ Ts,

then u = [•k, u1, · · · , ul, τl+1, · · · , τm] ∈ U(τ?) if ui ∈ U(τ?
i ).

The remaining terms are given by

b) σ(u; τ ?) =

{

|u| if u ∈ U(?),
∑l

i=1 σ(ui; τ
?
i ) if τ? and u is given by a2).

c) Q(u; τ ?) =

{

Ps(u)(0) if u ∈ U(?),
∏l

i=1 Q(ui; τ
?
i ) if τ? and u is given by a2).

d) β(u; τ ?) =

{

1 if u ∈ U(?),
l!

r1!···rq !

∏l
i=1 β(ui; τ

?
i ) if τ? and u is given by a2).

In d) we have assumed that among u1, · · · , ul there are q distinct trees, each of multiplicity
rj, j = 1, · · · , q.

Proof. Obviously F (?)(t0, 0; ys(t0)) = ys(t0) and for this tree the result follows from (21). Let
τ? = [•k, τ?

1 , · · · , τ
?
l , τl+1, · · · , τm], and assume the statement of the theorem to be true for τ ?

i ,
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i = 1, · · · , l. From Theorem 1 we get

F (τ?)(t0, 0; ys(t0)) = fktmy(t0, 0)

( l
∏

i=1

(

∑

ui∈U(w?
i )

β(ui; τ
?
i )

1

λσ(ui;τ?
i )
Q(ui; τ

?
i )F (ui)(t0, 0; ·)

)

·
m
∏

i=l+1

F (τi)(t0, 0; ·)

)

=
∑

u∈U(τ?)

β(u; τ?)

( m
∏

i=1

1

λσ(ui;τ?
i )
Q(ui; τ

?
i )

)

F (u)(t0, 0; ·),

using the same argument for β(u; τ ?) as used in the proof of b) of Lemma 1. �

Remark 4. A simple intepretation of the lemma can be given as follows: Assume that τ ? has
k ?-nodes. A tree u ∈ U(τ ?) is found by replacing each of the ?-nodes by some ui ∈ Ts,

i = 1, · · · , k. Then σ(u; τ ?) =
∑k

i=1 |ui| and Q(u; τ ?) =
∏k

i=1 Ps(ui)(0). Unfortunately,
β(u; τ?) still has to be calculated recursively.

Example 3. Let

τ? = ◦
◦
? ?

◦
? ?

and u = ◦
◦
◦ ◦

◦
◦ ◦
•

.

Since Ps(◦) = −1 and Ps

(

◦
•
)

= −1 we have

σ(u; τ?) = 5, Q(u; τ ?) = 1, β(u; τ ?) = 4

We are now ready to present the main result of this section:

Theorem 3. Assume that the initial value y0 is consistent, thus satisfying (21). For a τ ∈ Ts,
let

S(τ) = {τ ? ∈ T\Ts, such that τ ∈ U(τ ?)}

where U(τ ?) is given by Lemma 2. Then the exact and numerical solution can be written as

y(t0 + h) =
∑

τ∈Ts

ϕs(τ)(z)h
|τ |F (τ)(Q0)

y1 =
∑

τ∈Ts

ψc(τ)(z)h
|τ |F (τ)(Q0)

with

ϕs(τ)(z) = ϕe(τ)(z)|ez=0

and

ψc(τ)(z) = ψ(τ)(z) +
∑

τ?∈S(τ)

ψ(τ?)(z)

z|τ |−|τ?|
β(τ ; τ?)Q(τ ; τ ?).

where β(τ ; τ ?) and Q(τ ; τ ?) are given by Lemma 2.
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Proof. The results for the exact solution is given by (9). For the results of the numerical
solution, use (12) and Lemma 2 so that the numerical solution can be written as

y1 =
∑

τ∈Ts

ψ(τ)(z)h|τ |F (τ)(t0, 0; ·) +
∑

τ?∈T\Ts

ψ(τ?)(z)h|τ
?|F (τ?)(t0, 0; ys(t0))

=
∑

τ∈Ts

ψ(τ)(z)h|τ |F (τ)(t0, 0; ·) +
∑

τ?∈T\Ts

ψ(τ?)(z)h|τ
?|

∑

τ∈U(τ?)

β(τ ; τ?)

λσ(τ ;τ?)
Q(τ ; τ?)F (τ)(t0, 0; ·)

=
∑

τ∈Ts

(

ψ(τ)(z)h|τ | +
∑

τ?∈S(τ)

ψ(τ?)(z)

(hλ)σ(τ ;τ?)
h|τ

?|+σ(τ ;τ?)β(τ ; τ?)Q(τ ; τ ?)

)

F (τ)(t0, 0; ·).

Using the fact that |τ ?| + σ(τ ; τ ?) = |τ | and z = λh we conclude the proof. �

The set S(τ) can be found by the following rule:

Partition rule: Given a τ ∈ Ts, and let w be a subtree of τ , in the sense that w is a connected
graph including the root of τ . Let τ\w be the “forest” collecting the trees left over when w
has been removed from τ . Make sure that w is chosen such that τ\w ⊂ Ts. For each w there
is an associated τ ?, that is the tree consisting of w and all the removed trees replaced by a ?.
S(τ) is then the set of all such possible τ ?’s.

Example 4. The partition of the 4th order tree τ = ◦
◦ ◦
•

is given by

◦
◦ ◦
•

◦
◦ ◦
•

◦
◦ ◦
•

◦
◦ ◦
•

◦
◦ ◦
•

thus

ψc(τ)(z) =
1

z4
ψ(?)(z)Ps

(

◦
◦ ◦
•)

(0) +
1

z3
ψ
(

◦
? ?
)

(z)Ps(◦)(0)Ps

(

◦
•
)

(0)

+
1

z2
ψ
(

◦
◦ ?
)

(z)Ps

(

◦
•
)

(0) +
2

z
ψ

(

◦
? ◦
•)

(z)Ps(◦)(0) + ψ

(

◦
◦ ◦
•)

(z).

The expressions for ϕs(τ) and ψc(τ) are given in Table 4. For the methods of section 2 the
lowest order error terms Ec(τ)(z) = ϕs(τ)(z) − ψc(τ)(z) becomes

Ec

(

◦
◦
•)

(z) = 4−5z+z2

z5 e2z − 8−4z
z5 e

3z
2 + 2+z2

z4 ez + 8+4z
z5 e

z
2 − 4+5z+z2

z5 for CM3

Ec

(

◦
• •
)

(z) = z2−4z+6
6z3 ez − z+3

3z3 for Radau IIA(22)

Ec

(

◦
•
)

(z) = 1
z2 e

z − 3
4z
e

2z
3 − 4+z

4z2 for CMO3

which is a significant improvement for all three methods. Notice that Theorem 3 is valid also
for small values of |z|.

Nonconsistent initial value. We now assume y0 to be different from, but close to ys(t0),
say ys(t0) − y0 = O(h). As for the exact solution, if Re(λ) << 0 the numerical solution y1

can be split into a transient and a smooth part, of which the smooth part can be written as

(23) ys,1 =
∑

τ∈T

ψs(τ)(z)h
|τ |F (τ)(t0, 0; y0)
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v ϕs(τ)(z) ψc(τ)(z)

◦ −1
z

−1
z
ez + bT

�
s

◦
• −1+z

z2 − 1
z2 e

z + bT c

◦
◦ 1

z2
1
z2 e

z − 1
z
bT ecz + bTA

�
s

◦
• • −

1+z+ 1
2
z2

z3 − 1
z3 e

z + 1
2b

T c2

◦
• ◦ 1+z

z3
1
z3 e

z − 1
z
bT (c · ecz) + bT

(

c · (A
�

s)
)

◦
◦ ◦ − 1

2z3 − 1
2z3 e

z + 1
2z2 b

T e2cz − 1
z
bT
(

ecz · (A
�

s)
)

+1
2b

T
(

(A
�

s) · (A
�

s)
)

◦
◦
•

2+z
z3

2
z3 e

z − 1
z2 b

T ecz + bTAc

◦
◦
◦

− 1
z3 − 1

z3 e
z + 1

z2 b
T ecz − 1

z
bTAecz + bTA2 �

s

Table 4. Weight functions when consistent initial values have been used.

where ψs(τ)(z) is the weight function ψ(τ) with all exponential functions set to 0. Usually,
ψs(τ)(z) 6= 0 for at least some τ ∈ T\Ts, in which case the numerical smooth solution depends
on the initial value y0. Fortunately the number of terms that has to be considered can be
reduced in two common cases:

a) If ci > 0, i = 1, · · · , s then Ψs(?) = ecz|Re(z)→−∞ = [0, 0, · · · , 0]T , thus ψs(τ)(z) = 0
for all τ ∈ T\Ts. In this case

ys,1 =
∑

τ∈Ts

ψs(τ)(z)h
|τ |F (τ)(t0, 0; ·),

the numerical solution do not depend on the initial values, and the comparision with
(19) is straightforward.

b) If the method is explicit and ci > 0, i = 2, · · · , s, then c1 = 0 and Ψs(?) =
ecz|Re(z)→−∞ = [1, 0, · · · , 0]T . Since the method is explicit, A(z) is lower triangu-

lar, and Ψs(τ)(z) = [0,×, · · · ,×]T for all τ ∈ T\{?}. Consider trees of the form

τ̃ = [•k, τ1, · · · , τl, ?
m] with τi ∈ T\{?}, i = 1, · · · , l, and k + l ≥ 1, m ≥ 1.

For such trees we get

Ψs(τ̃) = As(z)

(

ck ·
l
∏

i=1

Ψs(τi) · (Ψs(?))
m

)

= [0, 0, · · · , 0]T

and similar ψs(τ̃)(z) = 0. Thus for all τ ∈ T that is or has a subtree of the form τ̃ ,
ψs(τ)(z) = 0.

The weight functions of the first order “bushy” trees ◦
?, ◦
? ?, · · · are in this case given

by

ψs([?
k])(z) =

1

k!
bT (z)

(

Ψs(?)
)k

=
1

k!
bs,1(z).
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These terms together give the following contribution to the error
∞
∑

k=1

ψs([?
k])hF ([?k])(Q0) = hbs,1(z)

∞
∑

k=1

1

k!
fky(t0, 0)y

k
0

= hbs,1(z)
(

f(t0, y0) − f(t0, 0)
)

.

Radau IIA satisfies the condition of case a), CM3 and CMO3 those of case b).

Error behaviour over the first few steps. The influence of initial values are reduced as
the integration goes on. In this section we will explain why.

Assume that n steps are taken. We allow for variable step size, thus hk = tk+1 − tk and
zk = λhk, k = 0, · · · , n, However, each stepsize is assumed to be large enough to damp out
the transients. The numerical solution after one step is given by (23), or

ys,n+1 =
∑

τ∈T

1

λ|τ |
PN (τ)(zn)F (τ)(tn, 0; ys,n),

where PN (τ)(zn) = z
|τ |
n ψs(τ)(zn). If n ≥ 1, each ys,n in F (τ)(tn, 0; ys,n) can be replaced by

its series:

ys,n =
∑

τ∈T

1

λ|τ |
PN (τ)(zn−1)F (τ)(tn−1, 0; ys,n−1)

=
∑

τ∈T

1

λ|τ |
PN (τ)(zn−1)

∞
∑

k=0

1

k!

(

−zn−1

λ

)k ∂kF

∂tk
(tn, 0; ys,n−1),

where the elementary differential F (τ)(tn−1, 0, yn−1) have been replaced by its taylor expan-
sion around tn, using hn−1 = zn−1/λ. For simplicity, we will in this subsection use the
notation ys,0 = y0 even if y0 is not necessarily consistent.

Example 5. Consider the term in the GB-series of ys,n+1 given by

1

λ
PN

(

◦
?
)

(zn)fyyn =
1

λ
PN

(

◦
?
)

(zn)

(

1

λ
PN (◦)(zn−1)fy

(

f −
zn−1

λ
ft + · · ·

)

+
1

λ
PN

(

◦
?
)

(zn−1)fyfyyn−1 +
1

λ2
PN

(

◦
•
)

(zn−1)fyft

+
1

λ2
PN

(

◦
•
)

(zn−1)fyft +
1

λ2
PN

(

◦
◦
)

(zn−1)fyfyf + · · ·

)

.

The term corresponding to ◦
? thus contributes to terms of the trees

◦
◦, ◦

◦
•
, ◦

◦
?
, ◦

◦
◦
, · · ·

If n ≥ 2 then ys,n−1 can be expressed by its series, and so on. By this procedure it is
possible to write the GB-series for ys,n+1 as

ys,n+1 =
∑

τ∈T

1

λ|τ |
PN,i(zn, · · · , zn−i)F (τ)(tn, 0; ys,n−i)

=
∑

τ∈T

ψs,i(τ)(zn, · · · , zn−i)h
|τ |
n F (τ)(tn, 0; ys,n−i), i ≤ n,
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? 0

◦ ψs(◦)(zn)

◦
? 0

◦
• ψs

(

◦
•
)

(zn)

◦
◦ ψs

(

◦
◦
)

(zn) + zn−1

zn
ψs(◦

?)(zn)ψs(◦)(zn−1)

◦
? ? 0

◦
? • 0

◦
? ◦ 0

◦
◦
?

zn−1

zn
ψs

(

◦
?
)

(zn)ψs

(

◦
?
)

(zn−1) if i = 1, 0 otherwise.

◦
• • ψs

(

◦
• •
)

(zn)

◦
• ◦ ψs

(

◦
• ◦
)

(zn) + zn−1

zn
ψs

(

◦
• ?
)

ψs(◦)(zn−1)

◦
◦ ◦ ψs

(

◦
◦ ◦
)

(zn) + zn−1

zn
ψs

(

◦
? ◦
)

(zn)ψs(◦)(zn−1) +
z2
n−1

z2
n
ψs

(

◦
? ?
)

(zn)ψs(◦)(zn−1)
2

◦
◦
•

ψs

(

◦
◦
•)

+
z2
n−1

z2
n
ψs

(

◦
?
)

(zn)ψs

(

◦
•
)

(zn−1) −
z2
n−1

z2
n
ψs

(

◦
?
)

(zn)ψs(◦)(zn−1)

◦
◦
◦

ψs

(

◦
◦
◦)

(zn) + zn−1

zn
ψs

(

◦
◦
?
)

(zn)ψs(◦)(zn−1) +
z2
n−1

z2
n
ψs

(

◦
?
)

(zn)ψs

(

◦
◦
)

(zn−1) if i = 1

+ zn−1zn−2

z2
n

ψs

(

◦
?
)

(zn)ψs

(

◦
?
)

(zn−1)ψs(◦)(zn−2) if i ≥ 2

Table 5. Weight functions ψs,i(τ) for i ≥ 1

where z
|τ |
n ψs,i(τ) = PN,i(τ). The expressions for some ψs,i are given in Table 5, see also Table

9. We observe that the elementary weight functions do not change after a certain number of
steps. This number of steps is related to the height of the tree, defined by

H(τ) =

{

1 if τ ∈ {◦, ?},

1 + maxj=1,··· ,mH(τi) if τ = [•k, τ1, · · · , τm] ∈ T.

By the construction of ψs,i we can conclude that

ψs,i(τ)(zn, · · · , zn−i) = ψs,i+1(τ)(zn, · · · , zn−i−1) if i ≥ H(τ) − 1

and in particular

ψs,i(τ) = 0, if τ ∈ T\Ts and i ≥ H(τ) − 1.

Thus, the influence of initial the value is reduced for each step.
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6. Numerical experiments and discussion

In this section we discuss the results of the previous sections, and how they can be used to
explain observable phenomenas of the error behaviour. The discussion is illustrated by the
following simple example:

Example 6. Consider the equation

(24) y′ = λy + (y + sin(t)), y(t0) = y0, t0 = π/4.

thus f(t, y) = y + sin(t). The exact solution to this problem is

y(t) = Ce(λ+1)t +
cos(t) − (λ+ 1) sin(t)

(λ+ 1)2 + 1
.

Two different initial values are considered,

y0 = 1, (non-consistent),

y0 =
cos(t0) − (λ+ 1) sin(t0)

(λ+ 1)2 + 1
, (consistent).

We will use λ = −102,−104 to represent the rapid decay case, and λ = 102i, 104i for the
highly oscillatory case.

The problem is solved by the methods CM3, Radau IIA and CMO3. The error after one
step using different stepsizes is measured and presented in Figure 3 and 4. In the rapid decay
case, also the error after two and three steps are presented, using the same stepsize for all the
steps.

For the error functions of the three methods, we refer to the appendix.

Nonstiff case. We assume z to be sufficiently small to study the weight functions by their
series expansions in z. For a given τ ∈ T let q(τ) be

(25) ϕe(τ)(z) − ψ(τ)(z) = O
(

zq(τ)+1
)

.

The error after one step will be

y(t0 + h) − y1 =
∑

τ∈T

(

ϕe(τ)(z) − ψ(τ))(z)
)

h|τ |F (τ)(t0, 0; y0) = O(λr+1hp+1)

where

p = min
τ∈T

(q(τ) + |τ |) and r = max
τ∈T

q(τ)+|τ |=p

q(τ).

To find p by computing q(τ) for all τ ∈ T is a formidable task because there is an infinite
number of even low order trees, that is the trees with ?-vertices. In this situation it is
advantageous to take the GB-series around (t0, y0).

y(t0 + h) = y0 +
∑

τ∈T

ϕ̄e(τ)(z)h
|τ |F (τ)(t0, y0; y0)

Y = y0
�

s +
∑

τ∈T

Ψ̄(τ)(z)h|τ |F (τ)(t0, y0; y0)

y1 = y0 +
∑

τ∈T

ψ̄(τ)(z)h|τ |F (τ)(t0, y0; y0)
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where ϕ̄e, Ψ̄ and ψ̄ are given by the reccurence formulas of Theorem 1 and Theorem 2 with
the modifications described in the respective remarks. Because

ϕ̄e(?) = ez − 1 = O(z), Ψ̄(?)(z) = ecz −
�

s = O(z) and ψ̄(?)(z) = ez − 1 = O(z),

the contributions to the weight functions corresponding to each ? is O(h), thus also trees in
T\Ts results in terms of order equal to the number of nodes. We get the following lemma:

Lemma 3. The local truncation error satisfies

y(t0 + h) − y1 = O(λr+1hp+1)

if

ϕ̄e(τ)(z) − ψ̄(τ)(z) = O
(

zq(τ)+1
)

with q(τ) ≥ p− |τ |, ∀τ ∈ T with less than p+ 1 vertices,

and r = max q(τ), the maximum taken over all τ such that q(τ) + |τ | = p.
If the initial value is consistent, the condition can be replaced by

ϕs(τ)(z) − ψs(τ)(z) = O
(

zq(τ)+1
)

with q(τ) ≥ p− |τ |, ∀τ ∈ Ts, |τ | ≤ p.

The statement for a consistent initial value is given by (19) and Lemma 2. Applying these
results to the example methods give

y(t0 + h) − y1 =











O(h4 + λ4h5) for CM3,

O(λ3h4) for Radau IIA,

O(λ3h4) for CMO3.

For CM3 the order 4 term do not depend on λ, the order 5 term might dominate the error
and is therefore included. Using consistent inital value we get:

y(t0 + h) − y1 =











O(h4 + λ2h5) for CM3,

O(λh4) for Radau IIA,

O(λ2h4) for CMO3.

These results are in perfect agreements with the results of Figure 3 and 4.

Rapid decay case. In this case we assume Re(λ) << 0 and |z| >> 1. Let us first consider
consistent initial values, in which case the error behaves as

∑

τ∈Ts

(ϕs(τ)(z) − ψc(τ)(z))h
|τ |F (τ)(t0, 0; ·).

The lowest order error terms are given by (22) ignoring all expontential terms. For the CM3
method there are also significant contributions from the fourth order terms:

◦
• • • : ϕs(τ)(z) − ψc(τ)(z)|ez=0 = −

z2 + 6z + 12

z4

◦
◦
• •

: ϕs(τ)(z) − ψc(τ)(z))|ez=0 =
z4 + 5z3 + 8z2 − 4z − 16

4z6

Using consistent initial value, the error after one step of the methods behaves as

y(t0 + h) − y1 =



















O
(

1
z3h

3 + 1
z2h

4
)

or O
(

1
λ3 + 1

λ2h
2
)

for CM3

O
(

1
z2h

3
)

or O
(

1
λ2h
)

for RadauIIA

O
(

1
z
h2
)

or O
(

1
λ
h
)

for CMO3.
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Figure 3. Local error: To the left, local error for different values of λ, with
and without consistent initial values. To the right, the local error measured
for the first three steps.

when y0 = yc(t0), which is exactly what we observe.
Using an inconsistent initial value, the error of both explicit methods will be dominated by

terms represented by the bushy trees, ◦
?, ◦
? ?, · · · . Since both methods satisfy the conditions of

case b), page 17, these terms together gives a contribution to the error of
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Figure 4. Local error, highly oscillatory case.

bs,1(z)h (f(t0, y0) − f(t0, 0)). For some arbitrary y0 the error after one step will behave
as

y(t0 + h) − y1 =







O
(

1
z2h
)

or O
(

1
λh

)

for CM3

O
(

1
z
h
)

or O
(

1
λ

)

for CMO3.

After one more step these terms disappear. The dominating error terms of the CMO3 method
is then represented by ◦

•, the same as for the consistent inital value case. The term corre-

sponding to ◦
◦
?

together with the fourth order terms discussed above dominates the error for
the CM3 method. Thus

y(t0 + 2h) − y2 = O
(

1
z4h

2 + 1
z2h

4
)

or O
(

1
λ4h2 + 1

λ2h
2
)

for CM3.

The 1/(λ4h2) term disappear in the next step and the error for the CM3 method behaves as
in the consistent initial value case.

The smooth solution of the Radua IIA method do not depend on the initial values.

Rapid oscillations. At last, we will consider the case of rapid oscillations, that is Im(z) large,
thus all the exponential represents oscillations. In this situation, assume that either y0 is
small, or f linear in y. For an arbitrary initial value y0 the error for all the methods will be
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dominated by the order one term represented by ◦
?, that is they are all dominated by a term

of the size ezh. For y0 = yc(t0) the picture is more diverse. From the tables in Appendix 1
we observe that

y(t0 + h) − y1 ∼











1
λ2he

z for CM3
1
λ
h2ez for Radau IIA

1
λ

(

3
4e

2z
3 + 1

4

)

h for CMO3

which again is an agreement with the observed results of Figure 4.

7. Conclusion

The main idea of this paper is to express the error of an exponential RK method applied
to a single Fourier mode, by use of a modification of B-series. In the modified series the
stiffness is isolated from the elementary differentials and included into the coefficients of the
series. This makes it possible to study the stiffness dependence on each term separately, and
thereby gain better insight into how methods might behave when applied to stiff equations.
Obviously, the study of a scalar equation (3) can not replace any of the order and convergence
results mentioned in the introduction. However, as we have seen, it gives a quite precise and
illustrative description of certain properties of the error which is not covered by previous
results, and is therefore a relevant supplement to the present literature. One example is the
dependence on the initial value, which can be precisely described using the presented theory,
but is not evident from classical error analysis.

The basic idea of the paper can easily be adopted to other one-step methods, e.g. the
implicit-explicit Runge-Kutta methods, see [11]. The extension to the system (1) is straight-
forward in the linear case. In the semilinear case the theory applies if L and f commute. But
at the moment the theory is not applicable for general semilinear systems.
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Table 6. The error functions ϕe(τ)(z) − ψ(τ)(z) and the error functions for
consistent initial value φs(τ)(z) − ψc(τ)(z) for the CM3 method.

τ φe(τ)(z) − ψ(τ)(z) φs(τ)(z) − ψc(τ)(z)

? 0 −

◦ 0 0

◦
?

−4+z

z3 e2z + 8−4z

z3 e
3z

2 + 6+z
2

z2 ez − 8+4z

z3 e
z

2 + 4+z

z3 −

◦
•

0 0

◦
◦

−4+z

z4 e2z + 8−4z

z4 e
3z

2 + 6+z
2

z3 ez − 8+4z

z4 e
z

2 + 4+z

z4 0

◦
? ?

−4+z

2z3 e3z + 12−z+2z
2

2z3 e2z − 12+z+2z
2

2z3 ez + 4+z

2z3 −

◦
? •

−4+z

z3 e2z + 4−2z

z3 e
3z

2 + 8+6z+2z
2+z

3

2z3 ez − 4+2z

z3 e
z

2 −

◦
? ◦ −4+z

z4 e3z + 16−2z+2z
2

z4 e2z + −8+2z

z4 e
3z

2

− 12+7z+2z
2+z

3

z4 ez + 8+2z

z4 e
z

2

−

◦
◦
?

−8+2z

z4 e
5z

2 + −4+z

z4 e(2z) + 24+2z
2

z4 e
3z

2

+ −32+4z−2z
2+z

4

2z4 ez − 16+10z+2z
2

z4 e
z

2 + 12+7z+z
2

z4

−

◦
• •

0 0

◦
• ◦

−4+z

z4 e2z + 4−2z

z4 e
3z

2 + 8+6z+2z
2+z

3

2z4 ez − 4+2z

z4 e
z

2 0

◦
◦ ◦ −4+z

2z5 e3z + 20−3z+2z
2

2z5 e2z + −8+4z

z5 e
3z

2

− 12+13z+2z
2+2z

3

2z5 ez + 8+4z

z5 e
z

2 − 4+z

2z5

0

◦
◦
•

−4+z

z4 e2z + 8+2z
2

z4 ez − 4+z

z4

4−5z+z
2

z5 e2z − 8−4z

z5 e
3z

2 + 2+z
2

z4 ez

+ 8+4z

z5 e
z

2 − 4+5z+z
2

z5

◦
◦
◦

−8+2z

z5 e
5z

2 + 8−2z

z5 e2z + 16+4z+2z
2

z5 e
3z

2

+−32−8z−2z
2
−2z

3+z
4

2z5 ez − 8+6z+2z
2

z5 e
z

2 + 8+6z+z
2

z5

0
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Table 7. The error functions ϕe(τ)(z) − ψ(τ)(z) and the error functions for
consistent initial value ϕs(τ)(z) − ψc(τ)(z) for the Radau IIA method.

τ ϕe(τ)(z) − ψ(τ)(z) ϕs(τ)(z) − ψc(τ)(z)

? 0 −

◦ 0 0

◦
?

−3+z

2z2 e2z + 3−3z

2z2 e
4z

3 + 3+2z+2z
2

2z2 ez − 3
2z2 e

z

3 −

◦
•

0 0

◦
◦

−3+z

2z3 e2z + 3−3z

2z3 e
4z

3 + 3+2z+2z
2

2z3 ez − 3
2z3 e

z

3 0

◦
? ?

−3+z

4z2 e3z + 3+4z

4z2 e
2z + 3−3z

4z2 e
5z

3 − 1
2z
ez − 3

4z2 e
2z

3 −

◦
? •

−3+z

2z2 e2z + 1−z

2z2 e
4z

3 + 3+2z+z
2

2z2 ez − 1
2z2 e

z

3 −

◦
? ◦ −3+z

2z2 e3z + 6+3z

2z3 e
2z + 3−3z

2z3 e
5z

3 + −3+3z

2z3 e
4z

3

− 3+4z+2z
2

2z3 ez − 3
2z3 e

2z

3 + 3
2z3 e

z

3

−

◦
◦
?

−9+6z−z
2

4z4 e3z + 9−12z+3z
2

2z4 e
7z

3 + 9+15z−4z
2

4z4 e2z + −9+18z−9z
2

4z4 e
5z

3

+ −9−3z+6z
2

2z4 e
4z

3 + −6−2z+z
2

2z3 ez + 9−9z

4z4 e
2z

3 + 3
z3 e

z

3

−

◦
• • 6−4z+z

2

6z3 − 3+z

3z2

z
2
−4z+6
6z3 ez − z+3

3z3

◦
• ◦

−3+z

2z3 e2z − 1−z

2z3 e
4z

3 + 3+2z+z
2

2z3 ez − 1
2z3 e

z

3 0

◦
◦ ◦ −3+z

4z4 e3z + 9+2z

4z4 e
2z + 3−3z

4z4 e
5z

3 + −3+3z

2z4 e
4z

3

− 3+3z+2z
2

2z4 ez − 3
4z4 e

2z

3 + 3
2z4 e

z

3

0

◦
◦
•

−3+z

2z4 e2z + 3−3z

2z4 e
4z

3 + 3+2z+2z
2

2z4 ez − 3
2z4 e

z

3 0

◦
◦
◦

−9+6z−z
2

4z5 e3z + 9−12z+3z
2

2z5 e
7z

3 + 9+21z−6z
2

4z5 e2z + −9+18z−9z
2

4z5 e
5z

3

+ −9−6z+9z
2

2z5 e
4z

3 + −9−4z−2z
2+z

3

2z4 ez + 9−9z

4z5 e
2z

3 + 9
2z4 e

z

3

0
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Table 8. The error functions ϕe(τ)(z) − ψ(τ)(z) and the error functions for
consistent initial value ϕs(τ)(z) − ψc(τ)(z) for the CMO3 method.

τ ϕe(τ)(z) − ψ(τ)(z) ϕs(τ)(z) − ψc(τ)(z)

? 0 −

◦ 0 0

◦
?

− 9
8z
e

4z

3 + −1+z

z
ez + 9

4z
e

2z

3 − 1
8z

−

◦
• 1

z2 e
z − 3

4z
e

2z

3 − 4+z

4z2

1
z2 e

z − 3
4z
e

2z

3 − 4+z

4z2

◦
◦

− 9
8z2 e

4z

3 + −1+z

z2 ez + 9
4z2 e

2z

3 − 1
8z2 0

◦
? ?

− 1
16z

e2z + 9
16z

e
4z

3 − 1
z
ez + 9

16z
e

2z

3 − 1
16z

−

◦
? •

− 3
4z
e

4z

3 + 1
2e

z + 3
4z
e

2z

3 −

◦
? ◦

− 1
8z2 e

2z + 9
4z2 e

4z

3 − 1+z

z2 e
z − 9

8z2 e
2z

3 −

◦
◦
?

− 9
8z2 e

5z

3 + 9+2z
2

4z2 ez − 9
8z2 e

z

3 −

◦
• • 1

z3 e
z − 1

4z
e

2z

3 − 4+4z+z
2

4z3

1
z3 e

z − 1
4z
e

2z

3 − 4+4z+z
2

4z3

◦
• ◦

− 3
4z2 e

4z

3 + −2+z
2

2z3 ez + 3
2z2 e

2z

3 + 4+z

4z3 − 1
z3 e

z + 3
4z2 e

2z

3 + 4+z

4z3

◦
◦ ◦

− 1
16z3 e

2z + 27
16z3 e

4z

3 − 1
z2 e

z − 27
16z3 e

2z

3 + 1
16z3 0

◦
◦
•

− 3
8z2 e

4z

3 + −2+z

z3 ez + 3
4z2 e

2z

3 + 16+5z

8z3

9−3z

8z3 e
4z

3 − 1
z3 e

z + −18+6z

8z3 e
2z

3 + 17+5z

8z3

◦
◦
◦

− 9
8z3 e

5z

3 + 9
8z3 e

4z

3 + 13−4z+2z
2

4z3 ez − 9
4z3 e

2z

3 − 9
8z3 e

z

3 + 1
8z3 0
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Table 9. The error functions ϕs(τ)(z) − ψs,i(τ)(z) for the first three steps.

CM3

τ ϕs − ψs,0 ϕs − ψs,1 ϕs − ψs,2

◦ 0 0 0

◦
? 4+z

z3 0 0

◦
•

0 0 0

◦
◦ 4+z

z4 0 0

◦
? ? 4+z

2z3 0 0

◦
? •

0 0 0

◦
? ◦

0 0 0

◦
◦
?

12+7z+z
2

z4 − (z1+4)(z0+4)
z
4

1
z
2

0

0

◦
• •

0 0 0

◦
• ◦

0 0 0

◦
◦ ◦

− z+4
2z5 0 0

◦
◦
•

− z+4
z4 − 4+5z1+z

2

1

z
5

1

− 4+5z2+z
2

2

z
5

2

◦
◦
◦

8+6z+z
2

z5 − (z1+4)(z0+4)
z
5

1
z
2

0

0

CMO3

τ ϕs − ψs,0 ϕs − ψs,1 ϕs − ψs,2

◦ 0 0 0

◦
?

− 1
8z

0 0

◦
•

− 4+z

4z2 − 4+z1

4z
2

1

− 4+z2

4z
2

2

◦
◦

− 1
8z2 0 0

◦
? ?

− 1
16z

0 0

◦
? •

0 0 0

◦
? ◦

0 0 0

◦
◦
?

0 − 1
64z

2

1

0

◦
• •

− 4+4z+z
2

4z3 − 4+4z1+z
2

1

4z
3

1

− 4+4z2+z
2

2

4z
3

2

◦
• ◦ z+4

4z3

z+4
4z3

z+4
4z3

◦
◦ ◦ 1

16z3 0 0

◦
◦
•

5z+16
8z3

64+20z1−z0

32z
3

1

− 4+5z2−z
2

2

z5

◦
◦
◦

1
8z3 − 1

64z
3

1

0


