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Recent developments in string compactifications in the presence of antisymmetric field backgrounds
suggest a new simple and predictive structure for soft terms in the MSSM depending only on two
parameters. They give rise to a positive definite scalar potential, a solution to the w-problem, flavor

universality and absence of a SUSY-CP problem.
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L. INTRODUCTION

The minimal supersymmetric standard model (MSSM)
[1] is one of the most prominent candidates for an exten-
sion of the SM addressing the hierarchy problem. Gauge
coupling unification is an important success in this scheme
[2] and electroweak symmetry breaking is naturally in-
duced as a consequence of SUSY breaking and a large
t-quark mass [3]. The weakest point of the MSSM is the
origin and structure of SUSY breaking. We know that after
the dust settles one can parametrize our ignorance in terms
of dim= 3 SUSY-breaking soft terms like gaugino and
scalar masses. Before SUSY breaking the globally SUSY
scalar potential has the form

Vsusy = | = uHy + hjQuU;> + | = wH, + hQ:D;
+ B/ LE}* + Y (IhjUH, + hi}D;H,|*
i

+ |REQH, P + |hQH > + WYL H,?

+ |RYEHgl?) + Vi tems (1.1)

where u is the SUSY Higgs mass and the Yukawa cou-
plings are complex matrices in generation space. Q and
U, D are the left and right-handed squarks, respectively,
whereas L, R are left- and right-handed sleptons. Upon
SUSY breaking the most general form of the SUSY break-
ing yields terms

1
L,= §ZM,,AaAa + h.c, (1.2)
a
Lmz = —m%_ld|Hd|2 - m%_,JHulz - szijQiQ;f - m%/”U,Uj
— mp _D;D; — mj L,L; — mg EE},
Lap = —A[Q;U;H, — AJQ,D;H, — ALL:E;H,

— BH,H, + h.c.

It is well known that the most general form of soft terms
has a variety of problems which include
(1) Lack of flavor universality (at least for the lightest
generations) may induce too large flavor violating
neutral currents (FCNC).
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(2) Arbitrary complex phases for the A, B, u and gau-
gino masses may lead to large CP-violating electric
dipole moments [4].

(3) For arbitrary soft terms the scalar potential is un-
bounded below and may lead to SU(2) X U(1)
breaking at the unification/string scale and/or
charge- and color-breaking minima.

(4) The w-problem [5]. We would like to understand
why a SUSY mass parameter like p turns out to be
of the same order of magnitude as the SUSY-
breaking mass terms.

The first problem is often solved by hand by postulating
universal scalar masses and A;; = h;;A parameters at the
large scale. This is what is done, for example, in the
popular mSUGRA scenario [6] in which there are just
five parameters m, M, A, B, . In this scenario SUSY is
broken in some hidden sector of the theory at a scale of
order Mz =~ 10'° GeV and it is transmitted to the observ-
able sector of particle theory by supergravity interactions.
The soft terms are then of order = M%B / Mpjaner =
10?> GeV. Concerning the second problem, again one can
postulate that all soft terms are real or else that there is
some (so far not very well motivated) phase alignment
taking place. Finally, in order to get a stable scalar potential
one usually restricts oneself to certain regions of soft
parameter space. Concerning the w problem, a natural
mechanism in the context of N = supergravity was pro-
posed in Ref [7].

It is clear that in order to find a satisfactory solution for
these problems we need a theory of supersymmetry break-
ing. It would be particularly interesting to have a well
motivated underlying theory in which SUSY breaking
takes place naturally and in which all the above problems
are addressed.

Here we are interested in gravity mediated models [6,8]
which naturally appear when combining N = 1 supersym-
metry with gravitational interactions. In this case the scalar
potential of the massless chiral fields is given by the
general expression [9] (we are using here Planck mass
units)

V = eX(g(D;W)(D;W) = 3|W[>) + D-term  (1.3)
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where the index run over all the chiral fields and K and W
are the Kahler potential and superpotential of the theory.
One also has for the Kahler covariant derivative

D,W = o,W + WK,. (1.4)

The general idea is that spontaneous supersymmetry break-
ing takes place in some hidden sector of the theory so that
the gravitino gets a mass mj3/, = exp(K/2)W. By taking
the limit Mpjyec — o while maintaining ms/, fixed one
generically obtains bosonic SUSY-breaking soft terms.
The gaugino masses are determined by the first derivative
of the gauge kinetic function, i.e. f, by

Ma = (ZRefa)ilFiaifa’ (15)

where the F' is the vev of the auxiliary field corresponding
to the chiral multiplet ¢;. The form of the so obtained soft
terms thus depend on the structure of K, W and f,, as well
as on which chiral (hidden sector) fields are involved in the
process of SUSY breaking (F' # 0). Thus within this
scheme a theory of soft terms correspond to a choice for
these functions and a minimization of the potential leading
to SUSY breaking.

A well motivated underlying theory would be string
theory. From the very early days of string theory phenome-
nology attempts were made to understand the possible
origin of SUSY-breaking soft terms [10]. It was also soon
realized that the Kahler moduli 73, dilaton S and complex-
structure M; fields which appear in string compactifica-
tions are natural candidates to constitute the hidden sector
of the theory. For certain classes of heterotic compactifi-
cations [i.e. Abelian orbifolds and certain large volume
limits of Calabi-Yau (CY) compactifications] it was pos-
sible to compute in perturbation theory the form of the
functions K, W and f, [11]. Two natural sources of SUSY
breaking were put forward: gaugino condensation and a
nonvanishing flux H,j; in compact dimensions for the two
index antisymmetric field B;; appearing in the heterotic
[10]. However the latter source did not look very promising
since those fluxes are quantized and give rise to too large
SUSY breaking of order the Planck scale. Gaugino con-
densation [12] may lead to hierarchically small SUSY
breaking, however specific models had two generic prob-
lems: first, there were to many moduli/dilaton fields to be
determined by the gaugino condensation potential; second,
the vacuum energy at the minima of the scalar potentials
was in general large and negative, leading to AdS space.

Another slightly more model independent proposal was
made in order to be able to compute soft terms [13-16].
The idea was to assume that the source of SUSY breaking
resides in the auxiliary fields of the dilaton/moduli fields,
e.g., F, Fr.. Even without knowing of what could be the
source of these nonvanishing auxiliary fields, knowledge of
the Kahler potential and gauge kinetic function in some
simple heterotic compactifications allowed (under the as-
sumption of a vanishing cosmological constant) for the
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computation of soft terms as a function of the auxiliary
fields. Two limits were particularly simple: in the case in
which the auxiliary field of the overall volume field T
dominates (F; # 0) one gets a ‘““no-scale structure” [17]
leading to a leading order vanishing cosmological constant.
This looks like a quite interesting starting point, however in
that limit no soft terms whatsoever were generated (to
leading order) [15]. In the dilaton domination case (Fg #
0) one obtains a set of appealing flavor-independent SUSY-
breaking soft terms [14,15]. However no microscopic
source for such Fg # 0 was found.

In the last nine years a number of developments have
taken place which suggests to revisit these problems. First,
it has been realized that type II and type I strings offer quite
promising possibilities for the construction of string vacua
close to the structure of the SM. A crucial ingredient in this
new model building are Dp branes, nonperturbative con-
figurations in string theory corresponding to (p + 1) di-
mensional subspaces inside the full 10-dimensional theory.
The crucial property of Dp branes is that open strings are
forced to have their boundaries on them. String excitations
of open strings on the Dp branes give rise to massless
gauge fields as well as fermions and scalars. Those fields
are then to be identified with the fields of the SM. In fact a
number of D-brane string configurations have been con-
structed using e.g. D branes at singularities [18] and/or
intersecting D branes [19] with a massless spectrum re-
markably close to the SM.'

A second new ingredient whose importance has only
recently been realized is the role played by antisymmetric
field fluxes in generic string compactifications [20—-22] .
The case of 3-form fluxes in type IIB CY (orientifold)
compactifications has been studied with particular inten-
sity in the last couple of years. It was realized in [21] that
such kind of fluxes in type IIB orientifold theories give rise
to a scalar potential which fixes both the dilaton and the
complex-structure moduli M;. Furthermore the hope exists
that, when including nonperturbative effects depending on
the volume moduli 7; all the moduli in these compactifi-
cations could be determined [22]. This would be an im-
portant result since the proliferation of undetermined scalar
moduli vevs has been for many years one of the outstand-
ing problems of string theory.

In a different development it has been recently shown
[23-27] that fluxes of this type give also rise to SUSY-
breaking soft terms on the world volume of D3 branes and
D7 branes. In particular it was noted [24,25] that fluxes
induce nonvanishing expectation values for the auxiliary
fields of the dilaton S and/or moduli 73, in this way making

'One can argue that the semirealistic perturbative heterotic
models studied up to now are S-dual to orientifold type IIB
compactifications with D9 branes. It is thus not surprising that
considering more general configurations with different Dp
branes lead to new model-building possibilities not previously
envisaged in perturbative heterotic compactifications.
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contact with the approach followed in Refs. [13—16] and
providing a microscopic explanation for the vevs of the
auxiliary fields. In particular in Ref. [26] certain classes of
soft terms for matter fields in the world volume of D7
branes and with potential phenomenological interest have
appeared. They are particularly interesting since, unlike
other previous attempts to compute soft terms from string
theory, they correspond to type IIB orientifold compactifi-
cations which solve the classical equations of motion. In
the present paper we try to obtain general patterns of
MSSM SUSY-breaking soft terms based on those recent
results.

II. A BOTTOM-UP MOTIVATION

The results suggested by flux-induced SUSY breaking
may be also motivated from a bottom-up approach. The
first (FCNC) problem of the MSSM suggests to start with
flavor-independent mass and trilinear terms for squarks and
leptons. Let us consider now the second of the MSSM
problems listed above which concerns complex phases in
soft terms. In a universal setting complex phases may
appear from u, B, M and A parameters. Physical phases
actually depend on the two linear combinations [1]

b1 =, t by~ Pp by =, + by — dp
Q2.1

where u = |ule!®«, M = |M|ei®n, A = |Ale'®s and B =
|Ble's. For ¢, , to vanish one needs to have
ba = du; b=, t du (2.2)
The simplest way to achieve this is having soft terms
related by
A= aM,; B =bMy., 2.3)
with a, b constant real parameters.

It is remarkable that there is a very simple modification
of the SUSY scalar potential Eq. (1.1) which solves the first
three problems listed above. This amounts to making the
replacements>
Wy

I WH“ - CZuM*HZ, WH I WHd - adM*HZ,

(2.4)

d

u

where W; indicates derivative with respect to the ith scalar
and a,, a; are real parameters. The superpotential here
includes the bilinear —uwH, H,; as usual. Note that by
making these replacements one obtains a positive definite
scalar potential with soft terms

2As we will see below, from the N = 1 supergravity point of
view this replacement will correspond to going from the SUSY
auxiliary fields to the SUGRA ones.
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Au = _CluM; Ad :AL = —adM,

2,

m%{ = ai|M|% m%,d = a3|M|*; m}

2.5)
B = (a, + ay))Mp,

where m% are the masses of scalar partners of quarks and

leptons. In addition all phases in soft terms may be rotated
away. Particularly simple boundary conditions are ob-
tained in the case with a, = a,; = 1. In this situation all
soft terms are determined by a couple of parameters M and

M
myy =md, =IMPim2=0, A=-M, B=2Mp.
2.6)

Note that in principle one could make a similar substitution
for the rest of the chiral fields of the MSSM

Vsusy = D 19;WI* — Vg = >|9,;W — a;M* ¢ I
7 7
2.7)

with i = H,, H;, Q, Ug, Dg, L, Ez. Such a procedure
would give rise to universal mass terms for all squarks/
sleptons and Higgs fields, as well as trilinears. Indeed we
will see below that flux-induced SUSY breaking suggests
to make such universal replacement with all a; = 1.

III. FLUXES, D-BRANES AND SUSY-BREAKING
SOFT TERMS

The kind of string context that we are going to work on
here is that of type IIB orientifold compactifications. This
is one of the simplest contexts in which in the last few years
a number of chiral models with a particle content close to
the SM have been constructed [18,19]. In these theories
one compactifies type IIB strings on a CY manifold (or a
toroidal orbifold) and further modes out the theory by an
order-2 twist which includes the () operation which corre-
sponds to world-sheet parity. Consistency of the compac-
tification (RR tadpole cancellation conditions) requires the
presence of some particular set of Dp branes with p =
3,5,7, 9 in the setting. Depending on the particular form of
the orientifold operation one type or other of D p branes is
required. If we want to preserve one unbroken D = 4
SUSY either D3, D7 or alternatively D9, D5 sets may be
added. In the case in which the orientifold operation is just
) only D9 branes are required and the result is just a
standard compactification of type I string theory. Since
the latter is known to be S dual to the Heterotic string,
the effective actions are quite similar and the phenomenol-
ogy also is, so one does not expect to obtain results very
different from those previously found in heterotic compac-
tifications. We will rather focus in the case of orientifolds
in which D7 branes (and possibly additional D3 branes)
are present. The world volume of D7 branes is 8-
dimensional and it is supposed to include Minkowski space
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and a 4-cycle inside the compact CY manifold. If the
position of the D7 branes in the transverse dimensions is
sitting on a smooth point of the CY, there appears an N = 4
Yang-Mills theory in the effective 4-dimensional
Lagrangian. If D7 branes sit on top of some (e.g., orbifold)
singularity the symmetry is reduced and one may get chiral
N = 1 theories (see e.g. Ref. [18] for a description of this
type of models) of phenomenological interest.’

As we mentioned, in the last few years it has been
realized the importance of fluxes of antisymmetric fields
on the structure of type IIB orientifold compactifications
[20—-22]. Ten-dimensional type IIB theory has a couple of
antisymmetric tensors By, and Ay;, coming, respectively,
from the so called NS and RR sectors of the theory. They
can have (quantized) fluxes H;j, F;j; along the compact
complex dimensions i, j, k = 1,2,3

1
! Fy € 2wZZ;

H, € 2777,
2ma’ Jc,

2ma Je,

(3.1)

where Cj is any 3-cycle inside the CY. In SUSY compac-
tifications it is actually the complex flux combination
G3 = F3 - ZSH3 (32)
which naturally appears. Here S is the complex axidilaton
field. As long as the supergravity equations of motion are
obeyed this is a degree of freedom which is generically
there and should be considered.
It was realized in [21] that such type of fluxes give rise to
a scalar potential which fixes the vev of the dilaton and all
complex-structure (shape) moduli. Specifically, G5 back-
grounds of a certain class (i.e. imaginary self-dual fluxes,
ISD*) solve the equations of motion with a vanishing c.c. to
leading order. The origin of this dynamics is the generation
of a flux-induced superpotential of the form [29,30]

W= Kli()2 fM G(3) AQ, 3.3)
6

where k3, =1(2m7)"a’ is the D = 10 gravitational con-
stant and () the Calabi-Yau holomorphic 3-form (see e.g.
Ref. [21] for details). This superpotential depends on the
dilaton complex field S and the complex-structure moduli
(through Q) but not on the kahler moduli (7} fields). It can
be shown that upon minimization of the resulting D = 4
scalar potential the dilaton S and complex-structure moduli
fields are fixed with a vanishing c.c. (to leading order in
both the string coupling constant g, and the inverse string
tension a’).

*More general type IIB compactifications of this type are more
efficiently described in terms of F-theory compactifications on
CY 4-folds [28].

4Imaginary self-dual fluxes verify G(3y = —i *¢ G(3), where *¢
means Hodge dual in the compact six dimensions.
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Furthermore, in [22] it was pointed out that, when
combined with nonperturbative effects on the gauge cou-
plings (like e.g., gaugino condensation) fluxes may poten-
tially lead to a determination also of all the T-like volume
moduli. As we said, if true this would be important
progress, since fixing the dilaton moduli and complex-
structure fields in string theory has always been one of
the most outstanding problems.

As we mentioned it has also been recently shown that
fluxes of this type give rise to SUSY-breaking soft terms on
the world volume of D3 branes and D7 branes. In particu-
lar in Ref. [24] it was realized that certain particular
choices of G3 backgrounds give rise to soft terms corre-
sponding to the dilaton dominance or modulus-dominance
limits discussed in the heterotic literature [16]. This is
important since it provides for a microscopic explanation
of nonvanishing auxiliary fields for dilaton and moduli.
The obtained soft terms are proportional to the flux den-
sities G(3) which have a dependence for large radius G;3 =

g—;, with f an R-independent constant measuring the

amount of quantized flux. Thus one typically obtains
SUSY-breaking terms of order [24]

g’ fas* o fM?

=2 G
Mot \/5 (3) \/E R3 Mp

(3.4)

with M the string scale and M, = M{R> the Planck scale.
Thus a way to get soft terms of order the electroweak scale
is having the string scale at an intermediate scale M =
10'° GeV. However it would be consistent to have a high
string scale with M, ~ M, if the factor f in Eq. (3.4) is
sufficiently small, i.e., if the local flux in the brane position
is for some reason diluted. That is, for example, the case in
the presence of a large warping suppression [21,22]. In
what follows we will not deal with these issues but assume
that the resulting soft terms are of order the electroweak
scale, as phenomenologically required.

It turns out that the kind of fluxes which solve the
type IIB equations of motion (i.e., ISD ones) do not lead
to any soft terms to leading order for the fields on the world
volume of D3 branes. Thus if we try to embed the MSSM
on D3 branes we find no soft terms at all. From the
effective field theory point of view this happens because
the ISD fluxes considered correspond to ‘‘modulus-
dominance” SUSY breaking which has a no-scale struc-
ture leading to no soft terms to leading order [17].

The prospects change completely if one considers the
embedding of the SM inside D7 branes. As we said, this is
a natural thing to do in the context of type IIB F-theory
compactifications As recently emphasized in Ref. [26] ISD
fluxes do give rise to interesting SUSY-breaking soft terms
for the fields on D7 branes. We are not giving any details
here but we can summarize the results and later we will
motivate it from the effective field theory point of view.
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A stack of D7 branes gives rise at low energies to
charged chiral multiplets ¢; upon KK compactification.
A large class of those admit a geometric interpretation in
the sense that vevs for them parametrize the position of D7
brane in transverse space inside the CY manifold. What we
are going to discuss now refers to that particular class of
D7-brane charged fields.?

Two types of ISD G,,,, flux densities (which we take for
simplicity to be constant over the CY) are particularly
relevant. The first of them corresponds to (0,3) forms
(e.g., a tensorial structure Gyjs3 in tori) and gives rise to
SUSY-breaking soft terms. The second corresponds to
(2, 1) forms (e.g., a tensorial structure G,3 in the toroidal
case) and does not break SUSY but may give rise to a
M term if the symmetries of the CY compactification allow
for it (see Refs. [24,26]). In Ref. [26] (section 5.1) the soft
terms induced by these types of fluxes where computed in
some simple D7-brane settings. It was found that all the
bosonic soft terms arise from positive definite contribu-
tions to the scalar potential given by

Vﬂux = Zl - M*¢T + aiwlz, (35)
where 9; is the derivative with respect to ¢; and W is the
superpotential involving the field ¢;. Here M is the gau-
gino mass which is given in terms of the fluxes by

M = c(Gp3)" (3.6)

where ¢ = (gi/ 2/34/2), with g, the string coupling con-
stant. In addition, if the chiral field ¢; is vectorlike a
possible SUSY mass term appears given by the flux

u=—c(Gpp)" 3.7

As explained in Refs. [24,26] (see also [25]) these results
may be understood also from the effective N = 1 super-
gravity point of view. Indeed it may be seen that a non-
vanishing value for G induces a nonvanishing
expectation value for Fr, the auxiliary field of the overall
modulus field 7. A constant superpotential proportional to
G 0,3 is also induced. Now on D7 branes the gauge kinetic
function is simply given by f, =7 and hence from
Eq. (1.5) gauginos get a mass proportional to Fr [and
hence to G 3)]. The SUSY-breaking terms above may be
understood as arising from a ‘““modulus domination™
scheme. This may sound surprising for readers familiar
with heterotic compactifications, since in that case it is well
known that modulus domination leads to no soft terms at
all to leading order. Indeed that would be the case also in
type IIB orientifolds if e.g., one considers the charged
fields arising from D3 branes. Those do not get any soft

>In many F-theory compactifications all charged D7 zero
modes have this geometric character. In simpler less generic
compactifications (e.g. toroidal or orbifold orientifolds) some D7
zero modes rather parametrize e.g. values of continuous Wilson
lines. We will refer later to those.
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terms either from a G g 3) background. It is the fact that our
charged fields are living on D7 branes (which is the natural
situation in F theory) that makes the difference. The fact
that modulus dominance may lead to nontrivial soft terms
for branes different than D9 or D3 already appeared in
Ref. [31] in which the approach of Ref. [15] was applied to
D p-brane type I systems (see [26] for a description of its
connection with flux-induced soft terms).

From the N = 1 supergravity point of view it is easy to
understand the appearance of this positive definite SUSY-
breaking scalar potential. It is well known that if only the
auxiliary field of the overall modulus 7 is breaking SUSY,
the negative piece of the scalar potential Eq. (1.3),
—eX3|W|? is canceled by a positive contribution coming
from the T-field auxiliary field |D;W|? leading to a van-
ishing vacuum energy, this is the no-scale structure. On the
other hand one observes that it remains a positive definite
piece which is uncanceled and is given by

V = eX(g(D,W)(D;W)) 3.8)

where the sum now only runs over the matter fields (the
contribution of S vanishes identically since the fluxes
considered do not contribute to Fg). Now substituting
D;W = 9;W + WK;, normalizing canonically the fields
and recalling that both the constant superpotential and
gaugino masses are proportional to G 3), one obtains the
result (3.5). Note that this has the same form as the SUSY
scalar potential for matter fields with the only difference
that one replaces the usual derivative 9; by the covariant
Kahler derivative D;W. This is precisely the kind of sub-
stitution required from a bottom-up argumentation in the
previous section.

Note that sometimes some D7 charged fields may not
appear in this scalar potential. As we said, this is the case of
D7 chiral fields not corresponding to geometric D7-brane
moduli. A particular example appears in toroidal or orbi-
fold orientifolds in which some massless D7-scalars pa-
rametrize possible continuous Wilson lines. Those fields
have kinetic terms which depend only on 7 and then the
standard cancellation for soft masses characteristic of no-
scale models takes place. Thus in this toroidal case, scalars
&, ¢, corresponding to Wilson lines in the first and
second complex planes remain massless whereas s,
which parametrizes the D7 position is transverse space
get masses in the form described above (see [26]).
However, in generic CY compactifications at most discrete
(not continuous) Wilson lines may be added, so the pres-
ence of these type of D7-brane moduli is ungeneric.

IV. THE FLUXED MSSM

Although there has been important recent progress
in obtaining realistic models from type II orientifolds
[18,19], most of the examples considered assume vanish-
ing antisymmetric fluxes. Some preliminary steps on
realistic models with fluxes have however been given
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[24,26,32,33] . Still, although the D7 brane flux configu-
rations considered up to now are very simplified, it could
well be that similar structures could appear in more real-
istic type IIB orientifolds or F-theory compactifications. In
particular, the fact that the scalar potential including soft
terms is positive definite and involves the scalars parame-
trizing the D7-brane positions seems to be a general prop-
erty of SUSY breaking induced by ISD antisymmetric
backgrounds.

It seems then worth considering in which way such a
structure could appear in a theory including the spectrum
and interactions of the MSSM. A first simple option is to
assume that all the fields of the MSSM correspond to
geometric D7-brane moduli in some F-theory compactifi-
cation. We then assume that ISD fluxes of type G 3) are
present leading to modulus dominated SUSY breaking. In
addition, if a G, ;) background is present, the Higgs mul-
tiplets may generically get a u term, as explained above.
Then the full SUSY-breaking scalar potential will have the
form

Vemssm = ‘ —pHy = M*H,* + > h;0,U;
ij

2
+ | —pH,

2

— M*H; + Y hj0:D; + > hi LiE;
ij ij
+ 3 = M* Q¥ + hjUH, + hi}D;H,|*

+ | — MU + hQ,H, > + | — M*D*
+ hQ;H > + | — M"E™ + hfL;H,|

+ | = M*L* + h{EHy?) + Vpoerms. (4.1)
This potential gives rise to the following set of bosonic
SUSY-breaking soft terms for the MSSM:

4.2)

Note that all soft terms are universal and given by only two
free parameters M and p which are determined by the ISD
fluxes G(3) and Gy ) respectively. As a general remark
note that, since both the SUSY-breaking parameter M and
the w term arise from fluxes, it is natural for them to be of
the same order of magnitude. Thus flux SUSY breaking
solves naturally the p problem.

We thus see that under the assumption that (1) our SM
fields are embedded as geometric D7-brane fields in a
general type IIB orientifold (or more generally, F-theory)
compactification and (2) that ISD fluxes are present we

°In the addendum we address a possible generalization which
includes the case in which the MSSM particles live at the
intersections of different stacks of D7 branes.
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obtain a rather simple structure of soft terms addressing the
four MSSM problems listed at the beginning of the paper.®

Most of the features of the above simplest choice of soft
terms may be also obtained from a simple N = 1 super-
gravity toy model. Indeed, consider the following string
motivated type of gauge kinetic function f, and Kahler
potential

fa=T,
K=— log(S + S* - |Hu + H2|2 - Z|¢l|2)

(4.3)

— 3log(T + T),
W(S) = aM2S + bM2,

where ¢; represents the squark and slepton fields. The
superpotential W(S) is modeling the general flux-induced
superpotential Eq. (3.3) and a, b are complex constants
related to the flux densities Hs), F'(3) integrated over the
CY space.7 We will however treat a, b as free constant
parameters. Readers familiar with string derived N = 1
models will note a number of differences from the standard
perturbative heterotic lore. First, the gauge kinetic func-
tions are not given by the axidilaton field S but rather by the
complexified volume field 7. A second difference is that
the MSSM fields appear in the Kahler potential combined
with the complex dilaton S field rather than the overall
modulus 7. However this is precisely the form of the gauge
kinetic functions and Kahler potential which appear when
considering simple toroidal/orbifold compactifications of
type IIB orientifolds with geometric (no-Wilson-line)
D7-brane matter fields [31,34]. In this toy example it is
easy to see that upon minimization of the scalar potential
one has Fg = 0, which fixes the value of the complex
dilaton field at S = (b*/a*). At the minimum a constant
superpotential is obtained at W, = M3[(a/a*)b* + b].
Because of the no-scale structure of the 7-field SUSY is
broken by a nonvanishing F7, with a vanishing vacuum
energy, leaving the 7-vev undetermined. Using standard
supergravity formulas (see e.g. Ref. [16]) it is an easy
exercise to show that precisely the simple choice of soft
terms (4.2) are obtained. This particular form of Kahler
potential leads to a contribution to the u term generated a
la Giudice-Masiero ug = M [7]. More generally the flux
analysis shows that the complete w term and gaugino
masses M depend on different fluxes and hence are in
general independent parameters. Thus one can reproduce
this more general case by considering an explicit p term in
the original superpotential.

Irrespective of its string theory motivation, the above
simple choice of Kahler potential, gauge kinetic term and
S-dependent superpotential constitute an interesting N = 1

"Note that this flux inspired superpotential has the form of a
simple Polony superpotential for the dilaton complex field.
However the “Polony field” here is S which does not have a
canonical metric as in the old supergravity models.
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supergravity model containing the MSSM spectrum. No
fine tuning is required to get a (tree-level) vanishing cos-
mological constant, still it gives rise to universal SUSY-
breaking soft terms.

Let us end with a number of comments. The above
simple universal result is obtained under the (reasonable)
assumption that all the MSSM fields are D7-geometric
moduli. We have mentioned, however that in certain cases
some D7 zero modes do not have a geometric meaning but
rather correspond to, e.g., the possible existence of con-
tinuous W.L. backgrounds on the D7-brane world volume.
Those may remain massless even in the presence of fluxes.
Thus one may perhaps consider other ways of embedding
the MSSM inside type IIB orientifolds in which some of
the MSSM chiral fields do not get masses. That may lead to
nonuniversal scenarios in which some of the MSSM fields
get soft masses and others do not. These mixed scenarios
seem however less natural that the universal one described
above, since, as we mentioned, the presence of continuous
Wilson lines is ungeneric in CY compactifications. Also,
from the phenomenological point of view many of those
nonuniversal possibilities are problematic due to FCNC
constraints. One possibility which would be quite simple
and universal would be one in which only the Higgs
multiplets correspond to D7 geometric moduli. In this
case the only source of scalar SUSY-breaking soft terms
would be those arising from the first two terms in Eq. (4.2)
which lead to soft terms of the form mj;, = mj; = |M|*;
m? =0; Ay =Ap=A, = —M, B=2Mu. There is fi-
nally a third possibility also leading to universal soft terms,
which is to assume that all chiral fermions correspond to
D7 geometric moduli, but not the Higgs fields. In that case
the obtained soft terms have my = M|?, Ay =Ap =
A; = —2M, and m%{ = m%,d = u?> = B = 0. Note that
soft terms like these two may be obtained from the toy
supergravity model above by having the squark and slepton
fields combined with the 7 field (S field) in the no-scale
fashion in Eq. (4.3) while maintaining the Higgs (squark/
slepton) fields combined with S respectively. Let us how-
ever emphasize again that these other nonuniversal possi-
bilities look less generic in the context of F theory.

A further comment concerns gaugino masses and gauge
coupling unification. If the relevant D7 branes containing
the MSSM fields have all the same geometry (i.e., wrap the
same 4-cycle in the CY compact space) and are located at
the same point in transverse space, gauge coupling uni-
fication at the string scale is expected. In that case there
will also be in general a universal gaugino mass parameter.
This has been our simplifying assumption above, although
generalizations without this property could be envisaged.

V. FINAL COMMENTS

We have argued that the presence of antisymmetric
fluxes in type IIB orientifolds with D7 branes (or, in
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general, F-theory compactifications in complex 4-folds)
give rise to an interesting class of soft SUSY-breaking
soft terms, Eq. (4.2). An important point to emphasize
is that the relevant class of fluxes studied (imaginary
self-dual 3-form fluxes) solves the classical equations
of motion for compactified type IIB string theory [21].
Thus the class of models discussed gives rise, to leading
order, to consistent N = 1 low-energy theories with softly
broken soft terms. To our knowledge, this is the first class
of classical string compactifications in which that is the
case.

From the low-energy N = 1 supergravity effective
Lagrangian point of view the presence of fluxes give rise
to modulus-dominance SUSY breaking. However, unlike a
type of SUSY breaking studied in perturbative heterotic
compactifications (or its type I dual with D9 branes), in the
present case interesting classes of soft terms do appear on
the massless fields coming from D7 branes after
compactification.

Assuming that the MSSM fields may be embedded as
geometric D7-brane moduli, we have argued that the rele-
vant MSSM soft terms depend only on two free parame-
ters, the gaugino mass M and a u term. Those are in turn
given by certain classes of flux densities. Thus one expects
both parameters to be of the same order of magnitude,
given the fact that they have a common origin, fluxes. The
SUSY-breaking scalar potential is positive definite and it is
simply obtained from the SUSY scalar potential by making
the replacement o;W — D;W, with i running over all the
chiral multiplets of the MSSM. The set of soft terms (4.2)
so obtained is universal and solves the SUSY-CP problem
due to the specific relationships obtained between the
A, B, M and p parameters.

A natural question to ask is whether one could find a
scheme in which M and w were related. In that case we
would be left with a single parameter describing all soft
terms. In principle the flux densities G(y3) and G, ) are
independent parameters. In fact, in generic CY compacti-
fications there are a number of different 3-cycles through
which fluxes can exist. The integral of the corresponding
RR and NS 3-forms over 3-cycles in the CY are quantized
[Eq. (3.1)] although the flux densities themselves are not.
Thus parametrically these densities G(g3), G(,1) g0 like =
N/(Vole), with N integers and Vol the volume of the
corresponding 3-cycle. In specific compactifications the
volumes of the different cycles could be related (e.g. equal)
and one would expect specific relationships (e.g. u = 2M)
depending on the different integers. To find this kind of
relationships would require however an specific example
of compactification yielding the MSSM.

A number of other interesting issues should be ad-
dressed. Of course, it would be important to have orienti-
folds or F-theory examples with a massless spectrum as
close as possible to that of the MSSM. Also it would be
important to realize specific examples (perhaps with some

055005-7



L.E. IBANEZ

large dimension transverse to D7 branes and/or warping or
other) in which the size of soft terms is naturally of order
the electroweak scale. We have also ignored in our analysis
the dynamics which eventually determines the volume
moduli T (see Ref. [35] for a recent discussion of this
issue). Another obvious point is to study the low-energy
spectrum of SUSY masses as well as the generation of
radiative electroweak symmetry breaking in this class of
theories. The latter will be presented elsewhere [36].
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APPENDIX: INTERSECTING D7 BRANES

Some of the most promising semirealistic type IIA string
orientifold models are based on intersecting D6 branes
[19]. Upon T duality this class of models may be equiv-
alently described as type IIB orientifold models with in-
tersecting D7 branes with magnetic fluxes in their world
volume (branes of other dimensions may also be present, in
particular, models). Thus it would be interesting to see
what kind of soft terms are induced by ISD fluxes in this
type of intersecting models. Most of those models are
toroidal (or orbifold) compactifications. So we will con-
sider here a case with a toroidal compactification on 72 X
T? X T? in which we have three classes of D7 branes, D7,,
i = 1,2, 3 which are transverse to the ith 2-torus, respec-
tively. Thus in addition to the fields coming from the world
volume of a stack of D7 branes D7; considered in the main
text, we will now have in general new chiral fields ¢;;
corresponding to open strings living at the intersections of
a pair of distinct stacks of branes D7; — D7;. Let us study
here what kind of soft terms appear for these extra fields
living at the intersections in the presence of ISD fluxes
(corresponding in field theory language to modulus domi-
nation). Using the effective Lagrangian approach for the
overall modulus-dominance in Refs. [31,34] as well as
[25,26] one can figure out what to expect. One finds that
the bosonic SUSY-breaking soft terms for all chiral fields
may be obtained as arising from a slight generalization of
the results in the main text, namely

Vsusy = D 10;W]> — Vg
7
= Z(l — E)oW — M*¢i|* + Z§i|aiW|2,

(AD)
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where the T dependence of the metric of the field ¢, is
(T + T*)"%.® Thus the case considered in the previous
sections (geometric D7-brane moduli, no 7 dependence
in the kinetic term of the field) corresponds to &; = 0 and
the case of Wilson-line D7-fields (no S dependence in the
metric) would correspond to &; = 1, giving rise to no soft
terms. From section 7 in Ref. [31] (see also [25]) one can
see that the matter fields in D7; — D7; intersections have
metric proportional to ((S + $*)(T + T%))~'/2 and then
one has & = 1/2 for the fields. One can easily check
that Eq. (A1) with &, = 1/2 indeed reproduces the bosonic
soft terms in [31]. It is easy to understand qualitatively
these results. For fields with metric proportional to (7 +
T*)~! (corresponding to & = 1) the usual no-scale cancel-
lation gives zero soft terms for the fields. For fields with
metric proportional to (S + $*)~! there is no cancellation
at all and soft terms appear as in previous sections. On the
other hand the metric for the fields at intersections is in
some sense in between and there is a partial no-scale
cancellation of soft terms, giving rise to the & = 1/2
factor. Note that in more general intersecting D7-brane
models in which there are magnetic fluxes in their world
volume the T dependence of the metric of the fields at
intersections will in general depend on the (magnetic)
fluxes so that the &; will be model dependent and have to
be computed in each model.

Let us now apply these ideas to the MSSM. In order to
have universality the &;’s corresponding to different gen-
erations of the same quark or lepton should be equal. But in
fact in the class of models under discussion that is in
general the case, different generations of fields have the
same metric. Thus universality is a natural situation even in
these more general configurations. So apart from the flux-
induced parameters M and u, there will be a set of 7 model
dependent parameters &;,, i = Q,U,D,L,E,H,, H;. In
terms of all these and using Eq. (A1) one can write down
the following set of soft terms arising from ISD fluxes for
the MSSM:

m?>=(1—-§¢)M|? i=QUD,LEH,H,
Ay =-M@3 - fHu - fQ — &u),
Ap=—-M@3 - fHL, - fQ —&ép),
A= -M@3 - ‘fHd — &L — i)

B=Mu2 - fH,, - fHd)-

(A2)

It must be emphasized that in a given model the ¢; are
computable quantities determined by the T dependence of
the metric of the corresponding field and hence only M, u
remain as free parameters. Note that for all £ =0 we
recover the situation described in the previous sections,
Eq. (4.2). As in the simpler case discussed in the previous

8This may be considered as the type IIB analogue of the
modular weights of Refs. [13,15]).
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sections, these soft terms may be derived from a simple
N = 1 supergravity model with the same gauge kinetic
function and S-dependent superpotential as in Eq. (4.3)
but with a generalized Kahler potential in which the metric
of matter fields include the mentioned (7 + T*) ¢ depen-
dence (see [31,34,37]).

It would be interesting to compute the ISD flux-induced
soft terms in specific semirealistic compactifications. An
example of this is the type II intersecting D-brane configu-
ration yielding an MSSM-like spectrum proposed in [38].
This local D-brane configuration may be embedded into a
full N = 1 SUSY type 1IB orientifold [39] Z, X Z, com-
pactification [33] with additional ISD fluxes. In the latter
constructions the MSSM fields appear at the intersections
of 3 sets of branes D7;,i = a, b, ¢, very much as described
above. A stack of 8 D7 branes D7, give rise to the Pati-
Salam group SU(4) [which may easily be broken down to
SUB) X U(1)g_,, in the presence of Wilson-line back-
grounds]. Two parallel D7 branes D7,(D7.) give rise to
the gauge group SU(2);(SU(2)g). The D7, stack has in
addition magnetic flux in its world volume, giving rise to
the replication of generations. It is beyond the scope of the
present paper to give a detailed description of the soft terms
induced in a model like this (see Refs. [40,41] for recent
analysis). It may be however illustrative to figure out
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simple main features of the expected structure of soft
terms. In this particular model the stacks D7, and D7,
have no magnetic flux in their world volume. Thus the
fields at their intersection (one set of MSSM Higgs fields)
will simply have £, = &y = 1/2. The quarks and lep-
tons reside at intersections D7, — D7, and D7, — D7..
Given the symmetries of the brane configuration in this
model (and the built-in Pati-Salam symmetry) all quarks
and leptons are universal, o = §y = &p = &, = ép =
&. So all in all the general form of soft terms will be

2 _
My, = Mp, =~
m2Q =m} =m} =mi =m%=(1-9IM|

(A3)

For large T values the magnetic fluxes are diluted and one
expects to recover the case without fluxes with £ =~ 1/2. In
that limit one would have the universal result

MP o UD L EH.H
—Q s = ’ ’ y Loy Ly u p)
2 a (A4)
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