
An interface solution at 53.76 Gb/s input band-
width to a single Xilinx Virtex-II Pro FPGA – a

practical challenge

A.D. Oltean Karlsson* and G. Tröger**
* CERN Geneva Switzerland and “Politehnica” University Bucharest, Romania

** Kirchoff Institut für Physik, Universität Heidelberg, Heidelberg, Germany

Abstract—When High Energy Physics meets high speed
electronics, and state of the art methods fail to deliver the
required performance, alternative methods have to be de-
veloped. This paper presents a novel solution for hardware
trigger processing. Analog signals from 112 inputs are con-
verted into high speed serial data with 12 bit resolution,
representing a bandwidth of 53.76 Gb/s of trigger data
streamed into a single Xilinx Virtex-II Pro FPGA node.
The system automatically corrects for clock phase mis-
alignments of 112 channels, each of those being received at
480 Mb/s. This solution has been implemented in the Trig-
ger Region Unit (TRU) of the ALICE Photon Spectrometer
(PHOS) detector, a highly integrated board for processing
analogue signals received via intermediate Front-End Elec-
tronics cards from a large matrix of PWO crystals.

I. PHOS TRIGGER REGION UNIT
The PHOS Trigger Region Unit is part of the trigger

system of a high energy physics experiment. It is perform-
ing local signal processing on input data from one of the
detectors, looking for specific trigger conditions. The re-
sults are then sent to the global trigger system, to be
merged with other information from other subsystems.
One of the key issues was receiving the amount of input
data in the single FPGA used for the processing. In the
following paragraphs we will introduce the full problem.

A. PHOS – ALICE’s Calorimeter
ALICE (A Large Ion Collider Experiment) is one of the

four experiments at the Large Hadron Collider (LHC)
hosted by CERN in order to study the physics of strongly
interacting matter at extreme energy densities. The PHOS
(PHOton Spectrometer) of ALICE is an electromagnetic
calorimeter which measures electromagnetic showers of
up to 100 GeV, by using a large matrix of 17920 lead
tungstate (PWO) scintillator crystals, grouped within five
PHOS modules. One PHOS module consists of eight trig-
ger region units (TRU), each of those regions covering a
matrix of 16x28 crystals.

B. PHOS Front-End and Trigger Electronics
The first ideas of PHOS were described in [6]. Particle

hits inside the PHOS detector generate light in the crystals
which is converted into analogue signals by Avalanche
Photo Diodes (APD) and amplified by charge sensitive
pre-amplifiers (CSP) located on a small PCB glued to the
end of each crystal. Inside of each TRU region, the ana-
logue signals coming from the crystals are passed to

PHOS’ Front End Electronics (FEE), represented by 14
FEE cards which perform the shaping, digitization, buffer-
ing and summing of analog signals from 2x2 crystals. 112
analogue sums generated by fast summing shapers on the
14 FEE cards are interconnected and transmitted via
equal-length differential cables to a central Trigger Region
Unit (TRU) card. The connectivity between crystals, FEE
and TRU is shown in Fig. 1.

Figure 1. Connectivity overview: crystals-FEE-TRU

C. Trigger Region Unit (TRU)
The TRU board itself contains 14 analog-to-digital

converters (ADCs) which digitize a total of 112 input ana-
logue signals, received from the FEE cards, and sends
them to a central Xilinx Virtex-II Pro (XC2VP50) FPGA.
The particle hit information, corresponding to a TRU re-
gion, is processed using a parallel algorithm inside the
FPGA, and as result, regional TRU level-0 and level-1
triggers must be generated within 300 ns (level-0), respec-
tively 5.5 us (level-1) latency in the FPGA [7]. For a faster
computation of the algorithm, the information received
from the ADCs, has to be first deserialized inside the
FPGA, as explained later in II.A.

D. Digitization Approach
Each of the 14 ADC devices on the TRU board is an

eight channel 12-bit Texas Instruments ADC (ADS5270)
working at a 40 MHz sampling rate [5]. The digitized out-
puts from each ADS5270 channel are sent to the
XC2VP50 FPGA as serial 12-bit double data rate (DDR)
bit streams, edge-aligned with a 90 degree shifted
240 MHz high-speed (lock) clock. In addition, the ADCs
transmit a delayed 40 MHz frame clock used for detecting
the start of the bit stream frame. Fig. 2 shows the timing
diagram of an ADS5270 channel.

C
E

R
N

-O
PE

N
-2

00
6-

03
2

01
/

02
/

20
06

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44129818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2. LVDS timing diagram per ADC channel

E. TRU Board Layout
112 analogue inputs from 14 ADCs, digitized to 12 bit

precision in 25 ns intervals, represent a continuous input
bandwidth for the Xilinx Virtex-II Pro of 53.76 Gb/s. This
vast amount of binary information is transmitted via 112
serial LVDS lines which interface the ADCs to the
XC2VP50 FPGA at a bit rate of 480 Mb/s.

The TRU board design and its 11-layer printed circuit
board (PCB) were finalized in autumn 2005. Particularly
difficult for the layout was the differential, matched im-
pedance routing of the LVDS lines between the 14 ADCs
up to the FPGA’s dense ball grid array of 1152 pins. In
order to preserve the original phase shift between the data
and the clock up to the FPGA, these traces have been ex-
tremely carefully designed and routed for having the same
length. A snapshot of the TRU board showing the top
layer with 7 ADC devices placed around the Xilinx FPGA
can be seen in Fig. 3. The other 7 ADCs are placed on the
bottom layer and they are arranged in a similar way
around the central FPGA.

Figure 3. TRU board layout

F. TRU – Aspects of the problem
At the FPGA, the incoming data bits should be regis-

tered at the right moment, in the middle of the clock pe-
riod. In practice, process variations such as temperature
and voltage, in addition to modifications in the final wa-
fers introduced by the PCB production process can easily
determine a different phase alignment between the clock
and the data at the arrival to the FPGA’s inputs. Without a
TRU board available yet, the real variation between clock

and data, defined as skew, is not known and cannot be
predicted a priori. It might be that clock and data arrive
correctly aligned, but we don’t have any definitive infor-
mation available and no possibilities to test prove.

To compensate and eliminate any unwanted skew, Xil-
inx recommends the use of Digital Clock Managers
(DCMs) when clocking an incoming stream of data at
very high frequencies into their FPGAs. A DCM allows
fine grained, fixed or dynamical, clock phase adjustments
so that the incoming data can be registered correctly.

The XC2VP50 on the TRU board contains a total of 8
such DCMs. As all 14 ADCs are clocked with the same
sampling frequency generated by the FPGA, we originally
thought that it would be enough to use a single DCM to
adjust only one of the 14 lock clocks and use this to regis-
ter all the 112 LVDS data streams. A major issue against
this idea arises from the ADC supplier, Texas Instruments,
which could not guarantee a fixed phase alignment be-
tween any of the two ADC’s PLLs, even though they are
both originally clocked from the same reference clock.
This meant that each bunch of 8 LVDS data streams from
an ADC must be registered using its individual lock clock.
This appeared to be an important problem and in the same
time a practical challenge to us, as we could not use state
of the art approaches presented in section II. However we
found a solution, hereby presented in section III., to prop-
erly connect all 112 high-speed 480 Mb/s channels to a
single XC2VP50 FPGA.

II. STATE OF THE ART

A. Single ADC Interface
An Application Note describing the interface of a single

Texas Instruments ADC from the family ADS527x to a
Xilinx Virtex-II Pro FPGA has been provided by Xilinx
[1] and it is summarized here.

To overcome any existing doubts on the data-to-clock
alignment, a DCM is used in dynamic phase shift mode to
register the serial data and the clock from the ADC into
the FPGA [2]. Once the data is provided with a known
phase shift relative to the 240 MHz lock clock, it is then
input to the deserializer, whose architecture is presented in
Fig. 4.

Figure 4. 12-bit single channel deserializer

The 12 incoming DDR bits are split into two sections –
odd and even – and the 0 (positive clock edge) and
180 degree (negative edge) of the lock clock are used for
their registration. When all the 6 bits corresponding to a
frame have been registered in the two flip-flop cascades,
an enabling signal is generated by the timing control mod-
ule, allowing the storage of the odd and even bit streams
in two separate parallel registers. To overcome any possi-
ble bit swapping, due to an earlier arrival of the negative
clock edge prior the positive one (with respect to the
frame clock), a multiplexer is used to correctly align in a
12-bit register the data. Once the bits are reordered, the
output of the multiplexer can be fed to a set of registers,
such as a Block SelectRAM FIFO or a memory.

All the enabling signals for the deserializer logic are
generated inside a timing and control module, based on
the edge detection of the 40 MHz frame clock, which is in
phase with the first bit of the stream.

The major drawback of the deserializer solution, as de-
scribed above, stands in the use of one DCM per ADC. As
there are only 8 DCMs available in XC2VP50 and we
would need 14 of them only to implement the ADC inter-
faces, the solution cannot be applied such as it is. It would
exceed the available DCMs resources of the XC2VP50
FPGA on the TRU board by over 75%.

However, if we can provide the necessary clock and
data inputs, synchronized and correctly aligned, the dese-
rializer module can be possibly reused as explained later
in section III.C.

To achieve the clock phase control for the whole set of
ADC devices on the TRU board with a limited subset of
DCMs and to make possibly use of the proposed single
ADC interface, we analyzed several options.

One of these options was to dynamically switch them.
While in principle, the global clock buffers can be
switched between two different sources, we would require
input selection from several pre-set, phase-shifted sam-
pling clocks in addition to the calibration DCM which
would be used to determine the phase of the input clock in
the same way as in the existing solution. Even disregard-
ing all other problems of this approach, the number of
available global clock multiplexers (16) is far from the
number that would be required.

Another possible solution would be the use of Dynamic
Reconfiguration1. Since the clock multiplexers have two
inputs, it would be possible to re-route any global clock to
the currently unused input. This would limit the number of
required global clocks buffers to one per ADC, giving 14
for the ADCs, plus one each for the 40 and 240 MHz sys-
tem clocks, for a total of 16 – exactly the number which is
available. Unfortunately, additional clock buffers are
needed for the DCM feedback input. So again, this would
exceed the available resources. In addition, using Dy-
namic Reconfiguration for switching clocks itself is not
very well researched, and requires key information which
is not publicly available.

As none of the previous options could be used, we had
to come with a feasible solution to assure that the data
inputs are provided with a known phase shift relative to
the 240 MHz clock. We decided therefore to analyze the

1 Dynamic Reconfiguration is a method for changing the pro-

gramming of configurable architectures including FPGAs during run-
time. A closer discussion of it is far beyond the scope of this paper.

feasibility of using the over-sampling in order to achieve
the alignment of the clock with the data, as described in
the paragraph II.B.

B. Data to Clock Phase Alignment
Another Xilinx Application Note describes the ap-

proach to synchronize incoming data and clock signals
with an internal clock [3]. This method bases on sampling
the data on four phases of the same clock, each separated
by 90 degrees, as shown in Fig. 5.

Figure 5. Timing diagram (XAPP225)

The four sample points are then clocked by 4 separate
flip-flops (FFs) in 3 stages, as shown in Fig. 6. At the out-
put of the FFs’ columns, all four samples are synchronous
with the same clock edge.

Figure 6. FFs input stage

A decision stage is then implemented to detect the
clock phase which sees the first time a transition occurring
in the data, to select the sample point and to forward it to
the output of the over-sampling circuit.

The over-sampling design can be subject to instabilities,
which are due to the fact that data is not fixed in time,
moving slightly with temperature and voltage changes. It
can happen due to instabilities that the circuit will syn-
chronize with one time domain, but will resynchronize
later to another. The over-sampling module however is
designed to compensate for these issues. As the clock is
oscillating and the data moves from one domain to an-
other, a multiplexer is used to select the correct sample

from one of the four available time domains. If a “wrap-
around” occurs, i.e. the clock detection is oscillating such
that the samples come alternatingly from fourth to first
one (for example from clock domain D to A), the multi-
plexer automatically inserts one stage of delay prior to
selecting the first (next) sample as valid.

The AppNote stipulates a speed limitation due to the
maximum frequency that can be accepted by the FPGA’s
Data Locked Loop (DLL) in a mode where it is capable of
providing both a new clock and a clock shifted by 90 de-
grees. For XC2VP50 in speed grade -6, the maximum
frequency is 210 MHz. Despite that, personal and public
communication with Xilinx indicated that Xilinx Virtex-II
Pro devices can actually achieve, with proper use of
DCMs and careful design, sampling rates of up to 2 GS/s,
respectively 500 Mb/s at 4x over-sampling. The method
presented here is applicable for a single-data rate (SDR)
signal, while in our case there are 112 DDR signals which
have to be over-sampled. If the four points over-sampling
would be applied for a DDR data running at 240 MHz, the
final rate results at 1.92 GS/s, slightly below the 2 GS/s.

When analyzing the validity of the over-sampling
method for the TRU design, we have to consider issues
regarding available resources in the FPGA. It is manda-
tory that data and clock arrives at the over-sampling inputs
flip-flops with minimum skew and delay. In addition, a
tight timing control is required, inside the over-sampling
circuit, from the input pins up to the first column of the
input stage FFs. This is achieved by manually placing the
first column of 4 FFs corresponding to a single pin, in the
closest slices available next to the FPGA’s IOBs. For a
DDR registration, there are 8 corresponding FFs which
should be placed in the IOBs’ proximity.

Technologically, one slice can handle two inputs, as
long as they are registered on the same clock edge, so that
8 slices would be enough for two DDR inputs. The rele-
vant slices that can be use are maximum 8, located as
shown in Fig. 7: 2 top right, 4 middle right and 2 bottom
right (for an input located on the left side).

Figure 7. Available slices in the proximity of IOBs

However, due to the tight packing of the 112 LVDS
lines which occupies a large number of IOBs in the
XC2VP50, it can happen that more than two differential
inputs are situated next to each other. In those areas, there
would be simply more inputs than useful slices and sam-
pling the data on four separate clock domains within the
skew and delay requirements would be impossible.

C. Manual Place &Route
The flexible routing architecture of FPGAs provides a

varied selection of different routes from any source to any
destination. By carefully selecting the right route, one can
achieve combinations of routing delays in such a way as
to, for example, de-skew input buses or shift the phase of
an input clock relative to the data inputs.

Any such solution is very inflexible itself, however re-
adjusting one delay usually results in changed delays in
other paths, basically requiring a completely new solution
for at least part of the overall routing. And finding a rout-
ing solution in the first place is a Sisyphus job, as the
available tools do not provide any support to automati-
cally do this.

Therefore, while this is a possible approach for small
problems, involving only a few pins and routes, it is not
practical for our problem as the number of inputs and
routes involved is too high to make human calibration
practical, and any future change to the board would
probably invalidate it.

D. Virtex-4
Even though the board design is already finished, this

section would be incomplete without considering the pos-
sible benefits of a redesign using the new Virtex-4 de-
vices. Considering the delivery deadline for the system, a
preemptive redesign was not completely out of the ques-
tion.

The main problem with using approach (II.A) is the
number of available DCMs. From the Virtex-4 Family
Overview [8] we can find that there is exactly one device
that would have sufficient DCMs to accommodate all 14
ADC modules as per II.A: the V4FX140 offers 20 DCMs
and also has enough IOBs. However, from a practical per-
spective, this is the top of the line, ‘dream’ device that
might or might not get manufactured. It certainly will not
be available any time soon, and not at a reasonable cost
for the purpose of this project.

Beyond that, there are two new features specifically
aimed for applications like ours – the IDELAY and
ISERDES components. IDELAY is a configurable delay
cell, which provides 64 steps of 78 ps delays for each in-
dividual input pin. This does not only simplify the PCB
design, as it can be used to de-skew input buses, but it
would also allow us to shift the inputs relative to the clock
edge, either on a local (per-ADC) or global basis. The
maximum achievable delay is 5 ns, or more than one full
240 MHz clock cycle.

If we could statically calibrate the delays, as one would
do it for PCB de-skew, this would be the perfect solution.
However lacking a priori knowledge of the behavior of the
ADC PLLs (see I.F), a static calibration is not feasible,
and some form of dynamic calibration would need to be
done. The IDELAY cells do not offer any support for edge

detection to facilitate this calibration, only the adjustable
delay.

The second new and possibly useful component is the
ISERDES cells. There is one for each input pin, or two for
each differential pair. In master/slave mode, they can be
used to provide 10-bit SDR or DDR capability, but we
need 12 bits. They also provide some limited support for
bit shifting for word alignment. Even without these addi-
tional features, it should be simple to build a 480 Mb/s
deserializer using only one ISERDES cell in 6-bit mode2
with two simple 6-bit registers (in user logic) attached to
it.

This brings us back to the calibration problem: If the
second ISERDES of each differential input pair remains
unused for data input, it could be used to do edge detec-
tion on the input, which can then be used to dynamically
adjust the IDELAY value. It is currently unknown
whether this is feasible. Xilinx specifies the ISERDES to
be useable as 1 Gb/s deserializer, based on 500 MHz fmax
for the highest speed grade and DDR operation. This
would leave us with only two samples per input bit, not
enough for reliable edge detection.

III. OUR SOLUTION

A. Outline of the General Idea
In section II we presented existing concepts imple-

mented by Xilinx which could be reused, we addressed a
possible manual approach for place and route (P&R) on
the FPGA in order to control any timing delays and fi-
nally, we discussed the advantages a Virtex-4 chip would
have had if used on the TRU board instead the actual
XC2VP50 FPGA. We have seen that the manual place and
route cannot be successfully applied in our case, and that
the use of a Virtex-4 would be an expensive, but feasible
solution in the case of a respin of the board. For the mo-
ment however, we have to make the best use as possible
of the existing TRU board design and its corresponding
resources.

We concluded on not having enough DCM and slice re-
sources available inside the FPGA for using the Xilinx
solutions (presented in II.A and II.B). We highlighted
however the possibility of reusing parts of those designs,
for example the ADC interface, in the case when data and
clock arrives phase aligned at the deserializer’s inputs. In
this order of ideas, we discussed to use over-sampling as
an equivalent to employing DCMs to achieve the clock
active phase alignment. Unfortunately, the over-sampling
implemented by [3] required more than available slices
into FPGA. We can adapt this method, by restricting it to
3 samples, each separated by 120 degrees, instead of
4 points sampled each at 90 degrees. Thus, fewer re-
sources (only 3 slices) will be actually used on the FPGA
compared to the previous over-sampling method. The
over-sampling design implemented by us is presented in
the section III.B.

The clock and data outputs from the over-sampling
module are aligned, so that they can be deserialized, as
described in section III.C. Once having all 112 data inputs

2 6-bit SDR would require the highest speed grade device, 6-bit

DDR should be fine in any speed grade

(hit information) in parallel format, the trigger algorithm
can be finally performed, as described in IV.D.

B. Over-sampling
The method we propose uses 3 samples instead of 4 for

a SDR signal registration, respectively only 6 sample
points (shifted by 60 degrees) instead of 8 for registering
DDR data. Thus it occupies a total of 6 adjacent slices,
one flip-flop used per input, or two slices less per pair
compared to the previous method. In this case if 3 LVDS
pairs of pins are situated next to each other, we still need
an extra slice over the available 8, but we found that we
could accommodate all inputs in the dense areas, as shown
in IV.C.

The ADC lock clock cannot be used directly for over-
sampling, as its phase relation to the incoming data is un-
known, and therefore the over-sampling clocks are gener-
ated locally on the FPGA from the 240 MHz reference
clock. A small disadvantage of the over-sampling on 6
different phases of the clock is that it requires extra 2
DCMs on the FPGA to generate the phase shifted 240
MHz clocks shown in Fig. 8.

Figure 8. DCMs used for the clock generation

In addition to the DCMs needed to de-skew the 40 MHz
clock in the FPGA (DCM1) and to generate the lock clock
with a 0 degree phase (DCM2), a third DCM is used to get
the lock clock shifted by 60 degrees and a fourth one is
employed to get the phase shift of 120 degrees. The
phases corresponding to 180, 240 and 300 degrees are
obtained as negative edges of the 0, 60 and 120 degree
clocks.

Using the locally generated 240 MHz clocks, all the in-
coming 112 data channels and theirs 40 MHz frame clock
are over-sampled and thus synchronized to the 0 degree
phase of the 240 MHz clock.

C. Deserializer
As mentioned in our conclusion to II.A, if we could

provide the necessary clock and data inputs, the deserial-
izer module from [1] could be reused.

The over-sampling solution from the previous section
(III.B) solved that problem and once having data informa-
tion 90 degrees phase aligned with the lock clock, the 112-
fold deserializer was implemented in XC2VP50 FPGA.
We basically reused most of the existing solution pre-
sented in III.A after replacing the first flip-flop of the input
shift register with the output from the over-sampling, as
well as replacing the timing and control module with new
logic. From the standard solution we did not use any set of
registers, such as FIFO or memory, to output the data
from the deserializer. A 12-bits parallel register is placed
instead to synchronize the data to the 40 MHz LHC refer-
ence clock, on which is running the whole trigger algo-
rithm from now on.

IV. IMPLEMENTATION ASPECTS

A. Outline of the hierarchy
As highlighted throughout the paper, there are in total

112 LVDS lines from the 14 ADCs on the TRU board
which arrive with an individual data rate of 480 Mb/s to a
single XC2VP50 FPGA. Our goal was to provide a practi-
cal interface solution for the deserialization of all those
data which inputs the FPGA with 53.76 Gb/s bandwidth.

The interface has been written in Verilog and has been
built as a hierarchy of 14 instances of a single ADC inter-
face, each of these instances including an over-sampling
and a deserializer module. The over-sampling module
contains the generation of a local 240 MHz clock, whose 6
different phases are used to align the frame clock and the
8 LVDS data channels received by the FPGA from one
ADS5270 device. The deserializer includes 4 identical
receiver modules, which handle 2 channels each, and a
timing module, which based on the edge detection of the
aligned frame clock, generates the enabling and the vali-
dation signals for the deserializer logic. The 112 outputs
of the ADC interfaces are updated each 25 ns, synchro-
nously to 40 MHz LHC clock and they are further used in
computing and generating of the TRU trigger, as ex-
plained in IV.D.

B. Single ADC interface implementation
The interface to a single ADC has been implemented3

using Xilinx ISE (Integrated Software Environment) tools.
In addition to the Verilog description of the ADC inter-
face, there are some constraints or attributes which should
be defined for the design and which are used by the tools
during the implementation to achieve a better placement
of the logic in the FPGA and a faster (tighter) trace rout-
ing between components.

The simplest constraints that must be applied are related
to information about the frequency and the phase of the
clocks involved in the design. There are however some
other practical constraints which need to be considered in
order to achieve a high-frequency for the running design
on the FPGA. For the design on the TRU board, it is im-

3 Design Implementation is the process of translating, mapping,

placing, routing, and generating a BIT file for the design

portant to have a tight timing control i.e. equal minimum
delay and minimum skew from input pads to the first col-
umn of 6 FFs in the over-sampling module. A minimum
delay with equal propagation times is obtained by ‘forc-
ing’ the 6 FFs placement in the closest slices available
next to the inputs (as shown in Fig. 7). Regarding the
skew values, the maximum allowed for a signal sampled
to 1.44 GS/s should not be more than 350 ps, which is half
of the corresponding period. We tried however to use
more restrictive values than that and found out that a sin-
gle interface design can be achieved within 250ps skew.

Among the 14 ADCs interconnected to the XC2VP50,
some have the inputs in the FPGA located in the left, oth-
ers in the right or in the bottom side of the chip. We im-
plemented the single interface design for all of the indi-
vidual ADCs instances and verified for all these cases, by
checking the post P&R reports generated by the tool if the
implementation was achieved, the design was working
fine and the constraints have been all met.

C. Full system integration – 14 ADCs
After the successful implementation of the single ADC

interface module was finished, full system integration was
put forth. As to be expected, problems soon started show-
ing up. Our carefully laid out constraints, set to ensure
proper timing on all input pins, failed to be met when the
interface to all 14 ADCs was implemented.

The reason for this was clearly to be searched within
the tools, or rather the nature of the commonly used P&R
algorithms. Since the exact solution of a given P&R prob-
lem is non-polynomial (NP)-strong, the regular tools use
heuristical approaches, so for all but simple problems they
can not be expected to find the optimum solution. This
was made worse by the fact that the inputs from different
ADCs were not clearly separated, but rather sometimes
interleaved.

However, after looking through all the failed con-
straints, due to the tight placement of the IOBs, and know-
ing our previous good results for each individual ADC, we
were certain that he timing was achievable. Therefore we
first decided to manually place all the first stage input flip-
flops for the critical regions, and later just locked them all
to prevent any further mishaps.

The actual placement problem is made difficult by the
fact that we have six clock phases, and only eight possible
placement options (slices) for the first stage FFs for each
input. With several inputs next to each other, both FFs of
each relevant slice must be used, and an arrangement must
be found such that all inputs can have their 6 FFs placed
within their corresponding 8 locations, sharing space with
the others.

We worked out an extendable pattern that would pro-
vide such a placement for all our areas. The solution we
proposed is illustrated in Fig.9 for some of the IOBs situ-
ated in the left side of the FPGA. Rotated appropriately,
the pattern illustrated in Fig. 9 can also be applied to the
top, bottom and right side IOB banks.

interconnect
(switch box)

used IOB

unused IOB

slices
(4x2 flip-flops)

240
120

300
0

60
240

180
300

0
60

120
180

180
300

60
240

-
120

-
0

Figure 9. Placement pattern for the first stage input flip-flop and their

corresponding clock phases

Each slice input uses the four slices available to the
right next to it, as shown for the top most one. In addition,
it needs two slice flip-flops above or below its own row –
those are show for each IOB. The numbers indicate the
clock (phase) used in each slice.

As already mentioned, we first placed all areas that
failed the constraints. After running through a few itera-
tions of locking down FFs and running the tools to place
and route the rest of the design, resulting in new failures in
other areas, we decided to fix the placement of all the first
stage FFs. After we had done this, the tools successfully
and reproducibly were able to place the remaining parts of
the design, as well as route the inputs meeting the con-
straints, thus saving us the Sisyphus work mentioned in
II.C, which would have been the last..

Once having successfully implemented the interface to
all 14 ADCs, the primary problem of inputting the data
into the FPGA was solved, and work could continue on
the actual application which was the PHOS level-0 and
level-1 trigger generation.

D. Trigger logic
A trigger decision processed by the TRU board for a

TRU region of 16x28 crystals requires that the hit infor-
mation to be summed up across 4x4 crystal windows and
over 4 consecutive ADC samples [7]. The algorithm is
implemented in parallel logic running at 40 MHz LHC
machine rate and there are in total 91 simultaneously
summing combinations corresponding to a 4x4 kernel
size, which results every 25 ns. All 91 sum values are
compared against individually programmable thresholds
and the comparison’s results are OR’ed such as that a sin-
gle positive comparison counts as a trigger. All trigger
information is output synchronous to the LHC clock: the
level-0 trigger is output as a single non-return-to-zero
(NRZ) signal, whilst the level-1 trigger has 3 NRZ outputs
of different thresholds.

The trigger algorithm is implemented across 3 Verilog
modules. First module performs the summing across a
space of 4x4 ADCs input data. The second module pipe-
lines the 4 consecutive previous sums from each of the 91
instances, sums them over time and compares the results
against programmable thresholds. If any of those thresh-

olds is exceeded, it means a trigger has been detected and
finally, the third module outputs this synchronous to the
LHC 40 MHz clock.

The entire trigger system is subject to external timing
constraints. For example a level-0 trigger must be output
from the FPGA with exactly 600 ns delay from the initial
moment of the particle interaction. By subtracting the light
time of flight, the conversion time in the APDs, the sum-
ming in the FEE cards (see I.B) and the digitization in the
ADC on the TRU (see I.D), it remains not more than
300 ns for processing the level-0 trigger inside the
XC2VP50.

V. PERFORMANCE
Without a TRU board available, we had to rely on the

post P&R timing report generated by Xilinx ISE software
for the design performance. In addition, we performed
post P&R simulations in Cadence NClaunch to check if
the implementation behaves as required.

After the initial good results meeting our timing con-
straints for all 14 ADC input modules, and the solution for
the placement problems encountered during their integra-
tion into the full system, the final design again meets the
required timing for the 1.44 GS/s over-sampling and the
480 Mb/s deserializers. Specifically, all skews matched
the 250 ps target we had set, and all delays were roughly
equal.

On the other side, we verified the correct functionality
of the trigger algorithm with simulations and tested if the
level-0 trigger can be implemented with 300ns delay in
the FPGA. We first simulated the over-sampling module
alone, to see if it works with different phase clock align-
ments and then, we added the deserializer logic to check if
the enabling signals generated by its timing module are
computed to output at the correct moment the parallel
data.

Once the desired functionality was proven, timing in-
formation about the design performance have been ob-
tained from the post P&R simulations. The over-sampling
circuit was taking 3 cycles of the 240 MHz clock, which
corresponds to 12.5 ns. The deserializer logic outputs par-
allel data, sync to the local 240 MHz clock, every 25 ns.
To sync this data with the 40 MHz clock on which runs
the trigger algorithm, a parallel register is used; this intro-
duces between minimum 1 and maximum 6 cycles of de-
lay, depending on the original alignment between the
240 MHz and the LHC clock. In total, the over-sampling
approach together with the deserialization consumes in the
XC2VP50 FPGA between 10 and 15 cycles of the
240 MHz clock (41.67 ns to 62.5 ns). So, there is still
enough time left to process the trigger level-0 algorithm,
which is the main timing constraint for PHOS. The timing
sequence obtained for the level-0 trigger is shown below
in Fig.10.

Following the deserialization of the 112 lines, the 4x4
sliding window algorithm is computed in one 40 MHz
clock cycle. Pipelined 40 MHz sample sums are achieved
in 5 clock cycles and between 3 and 6 extra clock cycles
were used to detect a trigger and to output it. The compu-
tation of trigger level-0 was done in less than 300 ns, so
that in order to output the level-0 trigger at exactly 600 ns
from the initial moment when particles hit the crystals, we
still needed to introduce some extra delays.

VI. CONCLUSIONS
In this paper we presented a practical solution for the

interface of a continuous input bandwidth of 53.76Gb/s to
a Xilinx Virtex-II Pro FPGA, realized on the TRU board
on the TRU board used by PHOS electronics at CERN. In
addition to presenting this solution, we reported practical
implementation problems which appeared during the de-
velopment. We continued with showing the manual
placement approach undertaken for accommodating the
interfaces to 14 ADCs in a single FPGA and we high-
lighted the implementation performances.

We also outlined in this paper the general context of the
trigger algorithm (focus being put on level-0 trigger)
within the PHOS, as this is the main purpose for which the
TRU board is used and the main reason of deserializing
the data inputs to the FPGA. Post P&R simulations have
been performed for the implemented interfaces, but for the
whole trigger level-0 design and they have shown that the
required overall timing performance can be well achieved
with the given resources.

VII. OUTLOOK
With the TRU board coming some time soon, we have

to verify the implemented solution under real operating
conditions, identify possible problems not shown by the
tools and be ready to improve the existent development to
make it work in practice.

ACKNOWLEDGMENT
The TRU project is financed by the Norwegian Re-

search Council and INTAS project 03-5747. The TRU
board design was designed at CERN by Hans Müller and
Rui Pimenta and the layout of the board has been achieved
at HUST Wuhan China.

REFERENCES
[1] M. Defossez, “Connecting Xilinx FPGAs to Texas Instruments

ADS527x Series ADCs”, Xilinx Application Note 774, November
2004; see http://direct.xilinx.com/bvdocs/appnotes/xapp774.pdf.

[2] N. Sawyer, “Active Phase Alignment”, Xilinx Application Note
268, December 2002; see
http://direct.xilinx.com/bvdocs/appnotes/xapp268.pdf.

[3] N. Sawyer, “Data to Clock Phase Alignment”, Xilinx Application
Note 225, April 2002; see
http://direct.xilinx.com/bvdocs/appnotes/xapp225.pdf.

[4] “ALICE - A Large Ion Collider Experiment at CERN LHC”, see
http://aliceinfo.cern.ch.

[5] “8-Channel, 12-Bit, 40MSPS Analog-to-Digital Converter with
Serial LVDS Interface”, Texas Instruments ADS5270 Data Sheet
and Documentation, Rev. E, September 2005; see
http://focus.ti.com/docs/prod/folders/print/ads5270.html.

[6] H. Müller et al., “Front End Electronics for the PHOS electromag-
netic calorimeter”, Alice Note, 2004-2005; Alice 2005-XXX, Rev.
6a.

[7] H. Müller, A. Oltean et al., “Trigger Region Unit for the ALICE
PHOS calorimeter”, 11th Workshop on electronics for LHC and fu-
ture experiments, Heidelberg, , pp. 384-387, September 12-16
2005.

[8] "Virtex-4 Family Overview", Xilinx Data Sheet 112, February
2006; see http://www.xilinx.com/bvdocs/publications/ds112.pdf

Figure 10. Timing sequence for the level-0 trigger

