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1. Introduction

It is well known that anti-de Sitter (AdS) gravity coupled to a scalar with mass at or slightly

above the Breitenlohner-Freedman (BF) bound [1] admits a large class of boundary conditions,

defined by an essentially arbitrary real function W , for which the conserved charges are well

defined and finite [2, 3, 4, 5, 6, 7].

Theories of this type have been called designer gravity theories [5], because their dy-

namical properties depend significantly on the choice of W . For example, one can essentially

preorder the number and masses of solitons or of black holes with scalar hair in these theo-

ries, simply by choosing the appropriate boundary condition function W . Designer gravity

theories also have interesting cosmological applications, because certain W admit solutions

where smooth asymptotically AdS initial data evolve to a big crunch singularity [8, 9]. In

supergravity theories with a dual conformal field theory (CFT) description one can study the

quantum nature of this singularity1 using the AdS/CFT correspondence [10].

The AdS/CFT duality relates W to a potential term
∫
W (O) in the dual CFT action,

where O is the field theory operator that is dual to the bulk scalar [13, 14]. This led [5] to

conjecture that (a) there is a lower bound on the gravitational energy in those designer gravity

theories where W is bounded from below, and that (b) the solutions locally minimizing the

energy are given by the spherically symmetric, static soliton configurations found in [5].

1See [11, 12] for recent work on this.
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Following these conjectures, the stability of designer gravity theories has been studied

using purely gravitational arguments. A lower bound on the conserved energy in terms of

the global minimum of W was established in [15] for a consistent truncation of N = 8 D = 4

gauged supergravity that has several m2 = −2 scalars. This bound was obtained by relating

the Hamiltonian charges to the spinor charges, which were shown to be positive for all W .

It was further conjectured in [15] that this result should generalize to all designer gravity

theories in d dimensions where the scalar potential V arises from a superpotential P , and

the scalar reaches an extremum of P at infinity. A more detailed derivation that seemed to

confirm this was subsequently given in [7].

In this paper, however, we present negative mass solutions in theories where V can be

written in terms of a superpotential P for boundary conditions specified by a positive function

W . These solutions are constructed by conformally rescaling spherical static solitons that

obey designer gravity boundary conditions which preserve the full AdS symmetry group.

Since the energy can be made arbitrary small, these findings suggest that only a subclass of

superpotentials have a stable (purely bosonic) ground state when W is bounded from below.

2. Designer Gravity

2.1 Tachyonic Scalars in AdS

We consider gravity in d ≥ 4 spacetime dimensions minimally coupled to a scalar field with

potential V (φ). So the action is

S =

∫
ddx

√−g
[
1

2
R− 1

2
(∇φ)2 − V (φ)

]
(2.1)

where we have set 8πG = 1. We require the potential can be written as

V (φ) = (d− 2)P ′2 − (d− 1)P 2 (2.2)

for some function P (φ). Scalar potentials of this form arise in the context of N = 1 supergrav-

ity coupled to N = 1 matter, in which case P (φ) is the superpotential. We are interested in

configurations where φ asymptotically approaches a positive local minimum of P at φ = φ0.

An extremum of P is always an extremum of V , and (2.2) implies that V0 = V (φ0) < 0.

Hence φ = φ0 corresponds to an anti-de Sitter solution, with metric

ds20 = ḡµνdx
µdxν = −(1 +

r2

l2
)dt2 +

dr2

1 + r2

l2

+ r2dΩd−2 (2.3)

where the AdS radius is given by

l2 = −(d− 1)(d − 2)

2V0
(2.4)

At an extremum of P one has

V ′′ = 2P ′′
[
(d− 2)P ′′ − (d− 1)P

]
(2.5)
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so a positive local minimum of P corresponds to a minimum of V only when (d − 2)P ′′
0 >

(d− 1)P0. This is a quadratic equation for P ′′, which has a real solution if only if

V ′′ ≥ −(d− 1)2P 2

2(d− 2)
=

(d− 1)V0

2(d− 2)
= −(d− 1)2

4l2
(2.6)

Hence we recover the BF bound m2
BF = − (d−1)2

4l2
on the scalar mass, which is required for the

AdS solution to be perturbatively stable.

We will focus on positive extrema of superpotentials where

(d− 1)P0 < 2(d − 2)P ′′

0 < (d+ 1)P0 (2.7)

These correspond to tachyonic scalars in AdS with mass m2 in the range

m2
BF < m2 < m2

BF +
1

l2
< 0. (2.8)

Solutions to the linearized wave equation ∇2φ − m2φ = 0 for tachyonic scalars in an AdS

background, with harmonic time dependence e−iωt, all fall off asymptotically like2

φ− φ0 =
α

rλ−

+
β

rλ+
(2.9)

where α and β are functions of t and the angles and

λ± =
d− 1

2
± 1

2

√
(d− 1)2 + 4l2m2. (2.10)

When the scalar mass lies in the range (2.8) both modes are normalizable and hence should

a priori represent physically acceptable fluctuations. To have a well defined theory, how-

ever, one must specify boundary conditions at spacelike infinity. In general this amounts to

choosing a functional relation between α and β. The standard choice of boundary condition

corresponds to taking α = 0 in (2.9). Taking in account the self-interaction of the scalar field,

as well as its backreaction on the geometry, one finds this is consistent with the usual set

of asymptotic conditions on the metric components that is left invariant under SO(d− 1, 2)

[16]. In particular, writing the metric as gµν = ḡµν + hµν , the asymptotic behavior of the

gravitational fields is given by

hrr = O(r−(d+1)), hrm = O(r−d), hmn = O(r−d+3) (2.11)

where the indices m,n label the time coordinate t and the d − 2 angles. Furthermore, the

charges that generate the asymptotic symmetries ξµ involve only the metric and its deriva-

tives3. They are given by [16]

HG[ξ] =
1

2

∮
dd−2SiḠ

ijkl(ξ⊥D̄jhkl − hklD̄jξ
⊥) (2.12)

2For fields that saturate the BF bound, λ+ = λ− ≡ λ and φ = α

rλ
ln r + β

rλ
.

3There is a finite contribution to the conserved charges from the scalar field if this saturates the BF bound

[8].
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where Gijkl = 1
2g

1/2(gikgjl + gilgjk − 2gijgkl), hij = gij − ḡij is the deviation from the spatial

AdS metric ḡij , D̄i denotes covariant differentiation with respect to ḡij and ξ⊥ = ξ · n with

n the unit normal to the surface.

One can, however, choose different scalar boundary conditions, defined by α 6= 0 and

β = β(α) [2, 3, 4, 5, 6, 7]. Such asymptotic conditions in general break the AdS symmetry

to ℜ × SO(d − 1) - the asymptotic scalar profile changes under the action of ξr - but the

conserved charges associated with the remaining asymptotic symmetries are well defined and

finite. The dynamical properties of designer gravity theories, however, depend significantly

on β(α). Here we are primarily concerned with the positivity properties of the conserved

energy, or more generally with the conditions that the superpotential P and the boundary

condition function β(α) must satisfy for the theory to have a stable ground state. But first we

briefly review the asymptotics and the construction of conserved charges in designer gravity.

2.2 Asymptotics and Conserved Charges

The backreaction of the α-branch of the scalar field, as well as its self-interaction, causes the

metric components hrm to fall off slower than usual. A complete analysis of the asymptotics is

given in [6], where it is shown that the asymptotic behavior of the scalar and the gravitational

fields in designer gravity depends not only on the scalar mass m2, but in general also on

the cubic, quartic and even quintic terms in the scalar potential. It is also found that the

asymptotic fields generally develop logarithmic branches for ‘resonant’ scalars4, i.e. at integer

values of the ratio λ+/λ−.

For our purposes, however, it will be sufficient to restrict attention to even scalar poten-

tials of the form

V (φ) = Λ +
1

2
m2φ2 +

1

4
Cφ4 + O(φ6) + ... (2.13)

with m2 in the range (2.8) and Λ = − (d−1)(d−2)
2 so that l2 = 1. C is taken to be a free

parameter for m2 < (d−1)2

16l2
, but C =

(d−1)λ2
−

8(d−2) otherwise. For these scalar potentials the

analysis of the asymptotics given in [4] applies. In particular, the asymptotic scalar profile,

when one takes in account its backreaction on the geometry, is given by (2.9), with β(α). The

corresponding asymptotic behavior of the metric components that allows the construction of

well defined and finite Hamiltonian generators is given by

hrr = − α2λ−
(d− 2)

l2r−2−2λ− + O(r−(d+1)), hrm = O(r−d+2) (2.14)

The expression for the conserved charges depends on the asymptotic behavior of the fields,

and is defined as follows. Let ξµ be an asymptotic Killing vector field. The Hamiltonian takes

the form

H[ξ] =

∫

Σ
ξµCµ + surface terms (2.15)

4See [17] for recent work in the context of the AdS/CFT correspondencen on resonant scalars with α 6= 0

boundary conditions.
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where Σ is a spacelike surface, Cµ are the usual constraints, and the surface terms should be

chosen so that the variation of the Hamiltonian is well defined. The variation of the usual

gravitational surface term (2.12) diverges as ∼ rd−(2λ−+1) if α 6= 0, but there is an additional

contribution to the variation of the surface terms that involves the scalar field

δHφ[ξ] = −
∮
ξ⊥δφDiφdS

i (2.16)

which exactly cancels the divergence of the gravitational term [4, 5, 6, 7]. The total charge

can therefore be integrated, which yields

H[ξ] = HG[ξ]+
λ−

(d− 2)
rd−(2λ−+1)

∮
α2dΩ+(λ+−λ−)

∮ [
λ−

(λ+ − λ−)
αβ +W (α)

]
dΩ (2.17)

where we have defined a smooth function

W (α) =

∫ α

0
β(α̃)dα̃ (2.18)

which specifies the choice of boundary conditions in designer gravity. For spherically sym-

metric solutions, therefore, a manifestly finite expression for the mass H[∂t] is given by

M = Vol(Sd−2)

[
(d− 2)

2
M0 + λ−αβ + (λ+ − λ−)W

]
(2.19)

where M0 is the coefficient of the 1/rd+1 term in the asymptotic expansion (2.14) of hrr.

2.3 Stability and Ground State

By generalizing Witten’s spinorial proof of the Positive Energy Theorem (PET) for asymp-

totically flat spacetimes [18], it has been shown [19] (see also [20]) that for the case of a single

scalar field and with standard α = 0 scalar boundary conditions, a potential V (φ) admits a

PET if and only if V can be written in terms of a ’superpotential’ P (φ), and φ approaches

an extremum of P at infinity.

This result obviously concerns the positivity properties of the energy as defined by the

spinor charge

Qξ =

∮
∗B (2.20)

where the integrand is the dual of the Nester 2-form, with components

Bab =
1

2
(ψγ[cγdγe]∇̂eψ + h.c.)ǫabcd (2.21)

ψ is taken to be an asymptotically supercovariantly constant spinor field and

∇̂aψ =

[
∇a −

1√
2(d− 2)

γaP (φ)

]
ψ (2.22)
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with P (φ) given by (2.2). This definition of the covariant derivative enabled [19] to express

the spinor charge (2.20) as a manifestly non-negative quantity, provided ψ satisfies the spatial

Dirac equation γiD̂i ψ = 0. In the context of N = 1 supergravity P is the superpotential,

but the argument of [19] applies to any gravity plus scalar theory, irrespective of whether it

is a sector of a supergravity theory.

Townsend’s Positive Energy Theorem [19] establishes the positivity of the Hamiltonian

generator (2.12), because this equals the spinor charge for α = 0. This is not the case

in designer gravity, however, where the α branch of the scalar modifies the expression of

the charges. Indeed it follows from the asymptotic expansion of the spinor field, and the

asymptotic expansions of the metric and the scalar field, that the Hamiltonian charges (2.17)

are related to the spinor charges (2.20) as [15]

Hξ = Qξ + (λ+ − λ−)

∮
W (α)dΩ (2.23)

where W (α) is defined in (2.18). The spinor charge, therefore, needs not be conserved in

designer gravity. Instead it depends on the choice of the cross section Sd−2 at infinity, because

α is, in general, time dependent. On the other hand, the above calculation that leads from

the Witten condition to the positivity of the spinor charge still applies. Taking ξ = ∂t +ω∂φ,

with |ω| < 1, this yields [15, 7]

E + ωJ ≥ (λ+ − λ−)

∮
W (α)dΩ (2.24)

and therefore

E ≥ Vol(Sd−2)(λ+ − λ−) infW + |J |. (2.25)

where J is the angular momentum. Hence it would seem to follow that the energy is bounded

from below in designer gravity theories (for scalar potentials that arise from a superpotential

P and with m2 in the range (2.8)) for all asymptotic conditions (2.18) that are defined by

a function W (α) that has a global minimum. Furthermore, the inequality (2.25) suggests

that theories where W is unbounded from below admit smooth solutions with arbitrary neg-

ative energy. Such solutions have indeed been shown to exist in certain theories [9]. The

only subtlety in the derivation of (2.25) is showing that with α 6= 0 boundary conditions,

asymptotically supercovariantly constant solutions to γiD̂i ψ = 0 exist. This was shown for

the consistent truncation of N = 8 d = 4 gauged supergravity studied in [15], but this has

not been demonstrated in general. We return to this point in the conclusion.

Finally we mention that in the case of supergravity theories with a dual field theory

description, the AdS/CFT correspondence indicates [5] that the true ground state of the

theory (when W is bounded from below) is given by the lowest energy spherical soliton. The

nature of the ground state has not been established yet, however, using purely gravitational

arguments5.

5The lowest energy soliton does not saturate the lower bound (2.25), because the actual soliton mass has

an additional positive contribution coming from the spinor charge.
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2.4 AdS-invariant boundary conditions

Designer gravity boundary conditions generally break the asymptotic AdS symmetry to ℜ×
SO(d − 1). The full AdS symmetry group is preserved, however, for asymptotic conditions

defined by

W (α) = kαd−1/λ− (2.26)

where k is an arbitrary constant without variation6. In this case the total charge (2.17)

becomes

H[ξ] = HG[ξ] +
λ−

(d− 2)
rd−(2λ−+1)

∮
α2dΩ + 2kλ+

∮
αd−1/λ−dΩ (2.27)

which yields the following expression for the mass of spherically symmetric solutions,

M = Vol(Sd−2)

[
(d− 2)

2
M0 + 2kλ+α

d−1/λ−

]
(2.28)

In the next section we use the conformal rescaling symmetry of this class of boundary condi-

tions to show there are superpotentials for which the energy bounds (2.25) do not hold.

3. Violation of Energy Bounds

3.1 Asymptotically AdS Solitons

Consider the following class of superpotentials in d = 4 dimensions,

P (φ) = (1 +
1

2
φ2)e−

A
4

φ4
(3.1)

where A > 0 is a free parameter. These yield scalar potentials with a negative maximum at

φ = 0, and with two global minima at φ = ±φm. The potential corresponding to (3.1) with

A = 1/4 is plotted in Figure 1. Small fluctuations around φ = 0 have m2 = −2, which is

above the BF bound and within the range (2.8). Hence asymptotically the scalar generically

decays as

φ =
α

r
+
β

r2
(3.2)

and the asymptotic behavior of the grr metric component reads

grr =
1

r2
− (1 + α2/2)

r4
+ O(r−5) (3.3)

We adopt AdS-invariant boundary conditions defined by W (α) = 0 everywhere. The

conserved mass, therefore, is simply given by the surface integral of the coefficient of the 1/r5

term in (3.3). According to the lower bound (2.25) this should be positive for all solutions

where φ asymptotically decays as φ ∼ α/r+O(1/r3). We now show, however, that for a wide

range of values of A there are negative mass solutions.

6We note that this defines AdS-invariant boundary conditions only for scalar potentials of the form (2.13).

The expression of conformally invariant asymptotics for other potentials is given in [6, 7].
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V

φ
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-4

-2

2

Figure 1: Scalar potential V that can be written in terms of a superpotential P with P ′(0) = 0.

We begin by looking for static spherical soliton solutions of the theory (3.1). Writing the

metric as

ds2 = −h(r)e−2χ(r)dt2 + h−1(r)dr2 + r2dΩ2 (3.4)

the field equations read

hφ,rr +

(
2h

r
+
r

2
φ2

,rh+ h,r

)
φ,r = V,φ (3.5)

1 − h− rh,r −
r2

2
φ2

,rh = r2V (φ) (3.6)

χ,r = −1

2
rφ2

,r (3.7)

Regularity at the origin requires h = 1 and h,r = φ,r = χ,r = 0 at r = 0. Rescaling t shifts

χ by a constant, so its value at the origin is arbitrary. Thus solutions can be labeled by the

value of φ at the origin.

One can numerically integrate the field equations. For every nonzero φ(0) at the origin

in the range −φm < φ(0) < φm, the solution to (3.5) is asymptotically of the form (3.2).

The staticity and spherical symmetry of the soliton mean α(t,Ω) and β(t,Ω) are simply

constants. For A ∼ O(1) we find there is a ‘critical’ value φc(0) for which β = 0, and hence

φ ∼ α/r + O(1/r3) asymptotically. We plot this soliton solution φs(r) in Figure 2 for the

A = 1/4 potential. We have found a class of scalar potentials, therefore, that can be derived

from a superpotential and admit regular static spherical soliton solutions for AdS-invariant

boundary conditions.
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Figure 2: Soliton solution φ(r) with boundary conditions specified by β = 0.

3.2 AdS solitons imply negative energy

The existence of scalar solitons with AdS-invariant boundary conditions implies there are

negative mass solutions in these theories. This was shown, using scaling arguments, in [21]

for non-negative potentials and then generalized to potentials with a negative local maximum

in [9]. We emphasize the claim is not that the soliton itself must have negative energy (in

general it has positive mass), but only that negative energy solutions must exist.

To apply the scaling arguments of [21, 9] to our case we first need an explicit formula

for the mass of spherically symmetric (and time symmetric) initial data when the scalar field

has a profile φ(r). In this case, the constraint equations reduce to

3R = gijφ,iφ,j + 2V (φ) (3.8)

Writing the spatial metric as

ds2 =

(
1 − m(r)

r
+ r2

)−1

dr2 + r2dΩ2 (3.9)

the constraint (3.8) yields the following equation for m(r)

m,r +
1

2
m(r)rφ2

,r = r2
[
(V (φ) − Λ) +

1

2

(
1 + r2

)
φ2

,r

]
(3.10)

The general solution for arbitrary φ(r) is

m(r) =

∫ r

0
e−

1
2

∫ r
r̃

dr̂ r̂φ2
,r̂

[
(V (φ) − Λ) +

1

2

(
1 + r̃2

)
φ2

,r̃

]
r̃2dr̃. (3.11)
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Hence the total mass (2.17) is given by

M = 4π lim
r→∞

[
m(r) +

α2

2
r

]
(3.12)

Now suppose φs(r) is a static soliton and consider the one parameter family of configu-

rations φλ(r) = φs(λr). Because of the conformal rescaling symmetry these obey the same

boundary conditions as the soliton. Then from (3.11) and (3.12), it is easy to see that the

total mass of the rescaled configurations takes the form

Mλ = λ−3M1 + λ−1M2 (3.13)

where M2 is independent of the potential and is manifestly positive, and both Mi are finite

and independent of λ. Furthermore, because the static soliton extremizes the energy [22] one

has

0 =
dMλ

dλ
|λ=1 = −3M1 −M2 (3.14)

and hence M1 = −1
3M2 < 0. Therefore the contribution to the mass that scales as the

volume, which includes the potential and scalar terms, is negative. This means that rescaled

configurations φλ(r) with λ < 1/
√

3 must have negative total mass7, and hence violate the

energy bound (2.25). For the soliton solution shown in Figure 2 we find M1 = −1
3M2 = −1/4,

and hence M = 1/2.

The rescaled configurations are initial data for time dependent solutions. For sufficiently

small λ one has a large central region where φ is essentially constant and away from an

extremum of the potential. Hence one expects the field to evolve to a spacelike singularity.

This singularity cannot be hidden behind an event horizon, because the mass of all spherically

symmetric black holes is larger than the soliton mass. Instead, one expects initial data of this

type to produce a big crunch8 [9, 11].

3.3 Further Examples

Finally we show that W = 0 is not an isolated example of boundary conditions for which the

bounds (2.25) do not hold. Consider AdS gravity coupled to a scalar with m2 = −27/16 in

four dimensions, with AdS-invariant boundary conditions defined by

W (α) =
k

4
α4 (3.15)

7We have verified that the rescaled configurations φλ(r) are regular initial data for small λ, i.e. hλ(r) =

r2 + 1 −
mλ(r)

r
is strictly positive everywhere.

8Initial data for which this can be shown rigorously can be constructed from Euclidean O(4)-invariant

instanton solutions of the form ds2 = dρ2

b2(ρ)
+ρ2dΩ3. The slice through the instanton obtained by restricting to

the equator of the S3 defines time symmetric initial data for a zero mass Lorentzian solution. With conformally

invariant boundary conditions, the evolution of these initial data is simply obtained from analytic continuation

of the instanton geometry. One finds the spacetime evolves like a collapsing FRW universe [9, 11]. For the

A = 1/4 potential of the form (3.1) we have considered here, the instanton that obeys W = 0 boundary

conditions has φ(0) = .652.
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-30

-20

-10

Figure 3: The dashed line corresponds to a critical scalar potential V that is on the verge of violating

the Positive Energy Theorem for standard scalar AdS boundary conditions. The full line gives a

potential that arises from a superpotential, yet violates the PET withW > 0 designer gravity boundary

conditions

where k is an arbitrary constant. According to (2.25) the theory should satisfy the PET when

k ≥ 0. We find below, however, that negative mass solutions exist for all k.

We concentrate on the following class of potentials,

V (φ) = −3 − 27

32
φ2 − 27

256
φ4 − 3

4
φ6 +Bφ8 (3.16)

where B is a free parameter. For positive B these are qualitatively similar to the potentials

we considered above, with a negative maximum at φ = 0 and global minima at φ = ±φm.

But scalar fluctuations around φ = 0 now have mass m2 = −27/16, so the scalar generically

decays as

φ =
α

r3/4
+ k

α3

r9/4
. (3.17)

Townsend’s result [19] says that potentials of this form admit the PET for solutions that

asymptotically behave as φ ∼ 1/r9/4, if (and only if) V can be derived from a superpotential

P with P ′(0) = 0. To construct the corresponding superpotential one needs to solve

P ′(φ) =
1√
2

√
V + 3P 2 (3.18)

starting with P (0) = 1.

A solution to (3.18) exists unless the quantity inside the square root becomes negative.

As we integrate out from φ = 0, P is increasing and the square root remains real because the

scalar satisfies the BF bound. For sufficiently large values of B the global minima at ±φm

will not be very much lower than the local maximum at φ = 0, so a global solution for P
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Figure 4: The function βs(α) obtained from the solitons.

will exist and P ′(φm) > 0. This is expected, since the PET (for α = 0) holds for potentials

of this form. If the global minima are too deep, however, the quantity under the square root

will become negative before the global minimum is reached, and a real solution will not exist.

Clearly the critical potential corresponds to one where V + 3P 2 just vanishes as the global

minimum is reached. In other words, the condition for a potential V to be on the verge of

violating the PET is simply P ′(φm) = 0. We find that the critical potential of the form (3.16)

has Bc = .1138. For B < Bc the PET does not hold for solutions where φ → 0 at infinity,

whereas scalar potentials (3.16) with B ≥ Bc can be written in terms of a superpotential,

and hence admit the PET for solutions where φ ∼ 1/r9/4 asymptotically. We plot the critical

potential in Figure 3 (dashed curve), as well as the B = .125 potential whose properties we

discuss in more detail below.

In the regime where a superpotential exists, the lower bounds (2.25) would imply that

the theory should satisfy the PET not only for α = 0, but also for generalized AdS-invariant

boundary conditions (3.15) with k ≥ 0. We now show, however, there are B > Bc for which

(3.16) admits exactly one regular static spherical soliton solution for all k ≥ 0. This means

the bounds (2.25) cannot hold, because one can again conformally rescale the asymptotically

AdS solitons to construct negative mass initial data.

The set of soliton solutions of a particular potential with a negative maximum is found

by integrating the field equations (3.5)-(3.7) for different values of φ at the origin. For φ(0)

in the range −φm < φ(0) < φm the scalar asymptotically behaves as (3.17) so we get a point

in the (α, β) plane. Repeating for all φ(0) yields a curve βs(α). Given a choice of boundary

condition β(α), the allowed solitons are simply given by the points where the soliton curve

intersects the boundary condition curve: βs(α) = β(α).

A section of the soliton curve βs(α) for the B = .125 potential is plotted in Figure 4.
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Along the curve φ(0) increases from φ(0) ≈ 1.32, which corresponds to βs = 0, to the global

minimum at φm = 2.16 where βs → ∞. One sees that for all k ≥ 0 the soliton curve βs(α)

has precisely one intersection point with the boundary condition function β = kα3. Hence

the conformally rescaled configurations φλ(r) = φs(λr) provide, for λ < 1/
√

3, examples of

negative mass initial data.

When φ→ φm one has α→ .2 in the B = .125 theory. This limiting value of α decreases

towards zero, however, for B → Bc. Furthermore, when B < Bc the soliton curve intersects

the α = 0 axis at finite β, yielding a regular asymptotically AdS soliton solution for standard

α = 0 boundary conditions. This is not surprising, because the potential cannot be derived

from a superpotential when B < Bc, and hence the PET cannot hold [19].

4. Conclusion

We have studied the stability of designer gravity theories, where one considers AdS gravity

coupled to a scalar field with mass at or slightly above the BF bound and with boundary

conditions specified by an essentially arbitrary function W .

By conformally rescaling spherical static solitons that obey AdS-invariant boundary con-

ditions specified by a non-negative function W , we have constructed solutions with arbitrary

negative mass in a class of theories where the scalar potential V arises from a superpotential

P , and φ reaches an extremum of P at infinity. These solutions violate the lower bounds

(2.25) on the conserved energy that were obtained in [7], and they indicate that this class

of theories does not have a stable ground state. We expect that similar instabilities can be

found in designer gravity theories in d > 4 dimensions, and for boundary conditions W that

break the asymptotic AdS symmetry to ℜ× SO(d− 1).

The derivation of the lower bounds (2.25) relies crucially on the positivity of the spinor

charge in designer gravity. Our findings suggest, therefore, that superpotentials for which

these bounds do not hold, do not admit asymptotically supercovariantly constant spinor

solutions to the spatial Dirac equation, at least for some designer gravity boundary conditions.

This argument has been advanced long ago in [23]. It would be interesting to clarify this

point, and to identify the precise criteria that P and W must satisfy in order for these spinor

solutions to exist.

In this context we should mention that we have found no examples of supergravity theories

that violate the energy bounds and that have a dual description in terms of a field theory

which is supersymmetric for W = 0. Hence the positive energy conjectures of [5] appear

to be correct when restricted to this class of theories with an AdS/CFT dual. In fact, the

lower bounds (2.25) seem rather natural from the point of view of the dual field theory.

Remember that imposing W 6= 0 boundary conditions on one (or several) tachyonic bulk

scalars corresponds to adding a potential term
∫
W (O) to the dual CFT action, where O is

the field theory operator that is dual to the bulk scalar [13, 14]. The change in the energy by

this deformation is
∮
< W (O(x)) > dΩ, which leads in the large N limit - which corresponds
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to the supergravity approximation - to
∮
W (< O >)dΩ. This clearly leads to (2.25) provided

all configurations in the dual CFT with W = 0 satisfy E ≥ |J |.
The AdS/CFT correspondence even suggests one should be able to generalize the bounds

(2.25) to certain classes of W that are unbounded from below. Indeed, the precise correspon-

dence between solitons and field theory vacua is captured by the following function [5],

V(α) = −
∫ α

0
βs(α̃)dα̃+W (α) (4.1)

where βs(α) is the function obtained from the set of soliton solutions. It can be shown [5] that

for any W the location of the extrema of V yield the vacuum expectation values 〈O〉 = α, and

that the value of V at each extremum yields the energy of the corresponding soliton. This

suggests there should be a lower bound on the energy in all designer gravity theories where

V(α) has a global minimum. For this it is sufficient that βs < W ′ at large α. This includes

a class of boundary condition functions W that are unbounded from below, since βs(α) < 0

for α > 0 in theories where (2.25) holds.
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