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ABSTFACT

This paper atxeT.pts to provide the user of linear multiple regression

with a batter;/ of iiagncstic tools to determine which, if any, data points

have high leverage or irifluerice on the estimation process and how these

pcssidly iiscrepar.t iata points -differ from the patterns set by the majority

of the data. Tr.e point of viev; taken is that when diagnostics indicate the

presence of anomolous data, the choice is open as to whether these data are

in fact -unus-ual and helprul, or possioly hannful and thus in need of modifica-

tions or deletion.

The methodology/ developed depends on differences, derivatives, and

decompositions of basic re:gressicn statistics. Th.ere is also a discussion of

hov; these tecr-niques can be used with robust and ridge estimators, r^i exarripls

is given showing the use of diagnostic methods in the estimation of a cross

-

cou.ntr>' savir.gs rate model.
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1. -' .TP.ODUCT-io'. <

1.1 General r-^als

Econcrriists and other "ocel cuilders rave responded willingly to rr3.:cr

opporfunities that ha%'9 appeared in the past two decades - a rapidly grciving

datand for policy T^jidar.ce and fGrec-'":"t~ frcn ^cvernTient nnd busines", and

the p'urely intellectual goal of ad^'.arcinj^ the state of ]<ncv;ledge through

model develcprr.ent . Tr.e funda-nental enablLng condition has been the abilify

to produce mere intricate .T.odel3 at decreasing 'unit cost because of advances

in ccnputer technolog".'. A large econcnetric ncdel f.-;ent^/ years ago had

twenfy equations: tcday a large model has a thousand equations. It is not

only larger' .models, but also larger data sets and more sophisticated

f'unctional fcrr.s and estimators that have burgeoned.

The transition from slider^ule and desk calculator to the large scale

digital computer has happened v;ith startling speed. Th.e benefits ':3:^e, in

our opinion, been notable and at timie:-' exciting: we ]<now a great deal more

about the economy and can provide more intelligent g'aidance as a direct

result of increased com.putaticnal pc-.-'or. At the same trne, there are

hidden costs of c-urrent approaches to quantitative economic research via

computer which ought to be recognized

.

One major cost is that, today, the researcher is a great deal further

away from, data than he v;as
,
perforce , in the heyday of the desk calculator

.

If there ere a great many ecuations to estimate or thousands of observations

for a few equations, there is a narjr;-'l tendency to use the computer for what

it does well: process data, A tape arrives and after a frustrating day or

two is accessible by a ccmtuter oroer-.m. (often a regression package, plain or



fancy). Then estiriaticn and h^yporhe-, is testing gex underv;ay until some

satis factor"'/ conclusion is obtained. It is not T.isgijided nostalgia to

point out that it was rore li.kelv' , v/ith the more labor intensive tecrmology

of the past, for the researcher to uncover peculiarities in the data.

Nor do we counsel a ret^am to the golden past. V/hat concerns

us is that the "scrr.ething" which has heen lost in modern practice is

valuable and is net recoverable fr^m "tandard regression sratistics.

Our first major objective is to suggest procedures that exploit computer

brawn in new ways that will permit us to get closer to the character

of the data and its relation to h^'poth.esized and estimated models.

There is the related issue of reliability. Our ability/ to crunch

large quantities of numbers at lov; ccf.t maizes it feasible ro iterate

many -ci-mes with a given body of data 'ntil the estimated model meets

widely accepted performance criteria "n terms of statistical measures

such as t statistics, Durbin-Watson .^ratistics and m.ultiple correlations,

along with theoretically approved coefficient signs and magnitudes.

The iterative process is not what tht statistical theor^' er>ployed was

originally all about, so that it behooves us to consider alternative

ways of assessing reliability, 'which is a second major objective of this

paper.

.'Another aspect of reliability is associated v/ith questions of distance

from, the data that were mentioned at the outset. Specifically, the

closer one is to the data, the more l:>ely it is that oddities in the

data will be uncovered or fail'ure of ~he model and data to conform with

each ether will be discernible, so thrt reliabilify can be Lncreased



ti'e, xhis posses a dile.iTra, since the- researcher rray then be excessively

prone to devise theories from data. This -enptation, oftan referred to as

data mLning, should be restrained. Or.e sort of insurance against data

mining is to be a strict 3aysian and thus be guided by sensible rioles for

CCTiibining prior and posterior inforrrat ion . Alternatively the ntxiel

should be tested - repeatedly if possible - on bodies of data unavailable

at the time. 3eir.g a strict Eaysiari is not always practical nor is it

deemed to be universally desirable. As a general r-ile then, the most

practical safeguard lies with replication using previously unavailable data.

1.2 Regression Diagnostics arid Model Input Pertrurbations

This paper preser-s a different approach to the aralysis of linear

re^i^ression. V/hile we will sometimes use classical procedures, the

principal novelty is greater emphasis on new diagnostic techniques.

These proced-jres som.etimes lack rigorous theoretical support

,

but possess a decided advantage in that they will ser^/e as yet onmet

needs of applied research. A significant aspect of our approach is

the development of a comprehensive set of diagnostics.

An important underlying concept is that of perrarbLng regression model

inputs and examining the model output response. We view m.odel inputs broadly

to include data, param.eters (to be estimated), error rrodels and estimation

assumptions , f-urotional fcm and a data ordering in time or space or

over other characteristics. Outputs include fitted values of the

dependent \/ariable , estimated paramater values, .^siduals and functions

2
of these (R , standard errors, autocorrelations, etc.).

We plan to cevelco various t;/pes of ir.put perturbations tbat will reveal

where rrodel outputs are 'unusually sensitive. Parruroations can ":a<e tha



form of differ'entiation or differercing, deletion (of data), or a

ch»an?e in estirriaticn or error model arsijnptions.

The first approach to pert^jrlration is "differentiation" (in a

broad sense) of output processes with respect to input processes, in

order to find a rate of change. This will provide a first order rr.easure

of hov/ outtut is influenced by incut ; differences would be substituted

for derivatives in discrete cases. I" the rate of charge is large, it

can be a sign of potential trouble. 'Generally, one would like to have

srall in.Dut perturbations lead to small output deformations. We would

also use this idea to see how big a p-^rturbation can be before everythir.g

breaks dovm. Of course, a "good" model is generally responsive to anticipated

changes in input.

For example, one could "differer:':iate" the model with respect to its

oarameters to ascertain output sensitivity to small changes in the

parameters. (We could, for example, -valuate this param.eter sensitivity

runction at the estimated parameter viilues . ) This might indicate scmie

of the more critical parameters in th-^ model that deser'/e further

analysis

.

A second procedure is to perturb the input data by deleting or

altering one data point and obser^/e changes in the outputs . !-'ore generally

we car. remove random groups of data rcints or, for time series, secuences

of data points . This is one way to search for param.eter instability/

over time. 3y deleting individual da^a points or collections of points

one can obser^/e whether or not subset- of the data exert unusual influence

on the outputs. In particular, it is possible to establish if a minority

of rhe iaza beha'/e differentl'/ frc.T ~:e ra^rrit." of the claza. Th.e concr-c~



of iiscrepaTit behavior by a rlnori^;- :f the data is basic to the diagnostic

view elaborated in this paper.

The third atproac:: will be to ex.uTine output sensitivify to changes

in the error r.cdel. Instead of usinr least squares, estirators such as

least absolute residuals '.vould be art" ied which impute less influence

to lar?e residuals. A ~cre pronu.sin" altejrnati'.'e for diagr.ostic p'^poses

is the Huber t",t;e error r.odel Lll. '. "r'/in^ a oarajr.eter in the Huber model

ri>3vides a v.'av to exairdne sensitivitv to charges in the error asSur;ptions

.

Thiis area is related to recent resear^.h in robust statistics [17 ].

Another aspect of changed error issumpticns is specific to tine

series. Practicing eccncr.etricians are well aware that par.5jT:eter' estiirates

creins,e uhen the sairple period is alter^ed . 'Awhile this might orJIy

reflect expected sam^plLng fluct'uationr , the pcssibilit^y exists that the

population param.eters are tri-ly variable and should be m.odeled as a rar.don

process. It is also possible that th-j population param.eters are stable

but mispecification causes sam.ple estimates to behave as if they were a

random, process. In either case expli::it estimation methods for randomt

param.eters based on the Kal-r'an filter might reveal param.eter instabilify

of interest from a diagnostic point cf view.

V.'hj.le classical statistical methods in most social science contexts treat

the sajnple as a given and then derive tests about model adequacy, we tai-ce the

more eclectric position that diagnostics might reveal weaknesses in the data,

the- model or both. Several diagnostic procedures, for example, are designed to

reveal 'unusual ro>:s or outliers in th>-' data matrix which by assiimption

has no formal distribution properties . If a suspect data row has been



to introduce a dummy variable, especially when subsequent examination

reveals that an "'unusual" situation ccnald nave ^enei'^ated that data row.

Alterratively the nodel may be respecified in a more complex way. Of

course the suspicious row might simpl'- be deleted or modified if found

to be in error. In summary, the diarnostic approach leaves open the

question of whether the model, the data or both should be modified.

In some instances described later on, one might discover a discrepant

rov; and decide to retain it, while at the sam.e time having acquired

a more complete understanding of the statistical estimates relative

to the data.

1 . 3 Modelip-g Research Ains and Diagnostics

We reiterate here several principal objectives that diagnostics can

serve, from the modeler's perspective, in obtaining a clearer 'understanding

of regression beyond those obtainable from standard procedures. Some of

these are of recent origin or are relatively neglected and ought to be

msore heavily emphasized. The tbree main modeling goals are detection

of disparate data segm.ents, collinearity, and temporally ijnstable regression

parameters . It will becom.e clear as this paper proceeds that overlaps

exist among detection procedures.

1.3.1 Leverage and Disoarate Data

The first goal is the detection of data points that have disproportionat

weight, either because error distributions ar-e poorly behaved or because

the explanatory/ variables have Crruitivariate ) outliers. In either case

regression statistics, coefficients in particular, may be heavily dependent

on si^sets of the iata. ("-".is iraf~ i? rrir-.cioallv concerner. with tbese



aspects of diagnosis: the other topics are of equal iTircrtar.ee. At this

stage of o\jir research we are ccrrJrig zo a better •andei^scar.dirjg of xhe

scope of regression diagriostics and v:e shall rely heavily on the work

of others in describLag these orher r.ethods .

)

1.3.2 Ccllinearitv

'.•.Tiile exact ILnear deoendencies are rare arong explanatory v'ariables

apart froin incorrect problem fomularion, the occurance of near dependencies

arises (all too) frequently in practice , VJhile some collinearity can be

moderated by appropriate rescaling, in rnany instances ill-conditionirig

remains. There are t'^'o separate issues, diagnosis and treatr.ent. Since

c'jr rain purpose is diagnosis, :-:e are not presently concerned with what

to do about it, except to note that the more collinear the data, the

more prior inforrrarion needs to be incorporated.

Collinear it\'' diagnosis is experimental toe , but the most satisfactci'y

treatment we ;<now of has been proposed by Ziavid 3elsley [2], who builds

on earlier work of Silvey [3]." B^y exploiting a technique of n^jmerical

analysts called the singular value decomposition, it is possible to

obtain an index of ill-conditioning ar.d relate thi.s to a decomposition

of the estimated coefficient variances. This relation enables the

investigator to locate which col'jmns of the explanatory/ variable matrix,

associated with the index of collinearity, contribute strongly to each

coefficient variance. 3y thus joining Silvey 's deccmposition of the

covariance n:H.trix to numierical measures of ill-conditioring, economists

now have an experinental diagnostic tool that enables an assessment of which

ccl'XTns cf ~'r.e data marrix are crime scurces of degradation in estima':3d

coefficient variances

.



1.3.3 Regression ParajTieter Vari:irilit>' in TJT.e

A third major goal is the detection of systematic parameter variation

in time, i-lany statistical models assume that there exist constant but

imobservable paramerers to be estimated. In practice, econometricians

often find this assumption invalid. Suspicions that there are more than

one set of popularion param.eters can be aroused for a large number of

reasons : the occarance of an exter:ial shock tha.t might be expected to

modify behavior significanxly (a war, hyperinflation, price-wage controls,

etc.) is one possibility. Another is that a poorly specified relation might

exclude imporliant variables which change abruptly. There is always the

possibility that aggregation weights [4] nHy change over time and thereby

introduce variability' in macro parameters even when micro parameters are stable.

An argument has been irade by Lucas [23] that anticipated changes in goverrjnent

policy will cause m.odifications in underlying behavior. Firially the parameters

may follow a random process and thus be inherently variable. When discrete

changes in parameters are suspected, and the sub-divisions of data where this

occurs is identifiable fron outside information, the analysis of covariance in

the form discussed in Gregory Chow [5] or Franklin Fisher [5] is an appropriate

diagnostic that has been frequently applied. When the break point of points have

to be estimated, maximum likelihood esrimators proposed by Quandt and Goldfeld

[7] [3] are available.

.-n alternative diagnostic procedure has recently been suggested by

Brown, Durbin and Evans [9]. They have designed two test statistics with

a time series orientation. From a regression formed by cumulatively ad-lir^

new obser'/ations to an initial subset of the data, one-step ahead

predictions =re rer.era~ed. 5orh the r-sscciaTed c^Jiralated recirsive rez-V^.= l:



ar.i Their suns of squares have well-t-''haved distributions on the null

h'.'Tothesis of naraiieter ccnstancy.

1.4- Motation

'.ve use The fcllot-"Lig notation:

Population Pegression

Y = XB + £

Y •" nxl col'jmn veotcr for dependent variable

X : nxp ratrix of explanatory/ variables

B ' pxl column vector of regression coefficient;

e : nxl colurn error vector

Additional notation

• th

.2

row of X rratrix

error variance

Estiiiated Pegression

Y = X3 + r

same

same

S : estiTiate of 8

r : residual vector

s estimatec error variance

g.-v p estimarec witn i-

row of data matri:< and
Y vector deleted.

Other notation is either obvious or ">;ill be introduced in a specific

context not so obviously tied to the generic regression Tcdel.
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2. LEVERAGE POIIuS Al'ffi DISR^'ME DATA

2 , 1 Introduction

At this stage in the development of diagnostic regression procedures,

we turn to analysis of the structure of the X matrix through perturbation of its

rows. In the usual case, the X's are assur.ed to be a .T=.trix of fixed n-rh-ers

and the rrvatrix to have full col-orpn rarx. Other'/zise, statistical theory

suggests we ought to have little interest in the X matrix, except when

experimental design considerations enter. In actual practice, reseajrchers

pay a great deal of attention to explanator'y variables, especially in initial

investigatory stages. Even when data are experimentally generated,

peculiarities in the data can impact s'obsequent analysis, but when data

are non-experimental, the possibilities for unusual data to influence

estimation is typically greater,

To be more precise, one is often concerned that subsets of the data,

i.e. , one or more rows of the X matrix and associated Y's might have a

disproportionate influence on the estimated parameters or predictions.

If, for example, the task at hand is estimating the mean and standard

deviation of a univariate distribution, exploration of the data will

often reveal outliers, skei-jness or multimodal distributions. Any one of

these might cast suspicion on the data or the appropriateness of the

mean and standard deviation as measures of location and variability.

The original model may also be questioned and transforrrations of the

original data consistent with an alternative mocel rray be suggested, for

instance. In the more complicated multiple regression contexl:, it is common

practice to look at the 'univariate distribution of each column of X as v.'ell

as Y, -o see if any oddities (outlier- or ^aps) 3tri-:e the eye. Scatte.
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diagrars are also exaTip.ed. V.^ile -r.ere are clear benefits frcm scrring

detect HT'jlti'.'ariate discrepant obser'/^.ticns. That weaJ-oiess is '-/hat we

hope to remedy.

The benefits frcr. isolating S'lb-sers of rhe dara thax might disproportion-

ately iTipact the esti.Tated para.T.eters are cleai^, but the sources of

discrepancy are diverse. First, theri is the Lnevitable cccurance of

i-nproperly recorded data , either at the so'-roe or in tran.scripticn to

computer readable forrr.. Second, obsei'^/ational errors are often inherent

in the data. V.Tiile more appropriate estimation procedures than least squares

ought to be used, the diagnostics we propose below may reveal "he lunsuspected

existance or severity of observational errors . Third , outlying data points

may contain valuable information that will improve estimation efficiency.

Vie all seek the "cracial experiment" , '.-.hich may provide indispensible

in-fcrmation and its ccunterv^art can be incoroorated in non-experimental

data. E'/en in this sitiuation, however', it is constructive to isolate

extreme points that indicare how much the param^eter estimates lean on these

desirable data. Fourth, patterns may emerge from the data that lead to

a reconsideration and alteration of the initial model in lieu of suppressing

or modifying the anomolous data.

Before describing multivariate diagnostics, a brief two dim.ensional

graphic preview will indicate what sort of interesting sit^aations might

be subject to detection. We begin by an examination of Figijre 1, which

portrays the ideal null case of 'jnifonnly distributed and, to avoid statistical

connotations, what might be called evenly distributed X. If the variance of
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standard test statistics contain the necessary infcrrretion.

In Figure 2, the pc^int o is ar.cmcdous , but since it occurs near the

mean of X, no adverse leverage effects are inflicted on the slope estijTate

although the intercept will be affected. The so'jrce of this discrepant

obser/ation might be in X, Y or e. If the latter, it could be indicative

of heteroscedasticity or thick-tailed error distributions ; clearly rrvcre

such points are needed to analyze those problems further, but isolating

the single point is constractive

.

Figure 3 illustrates an instance of leverage where a gap arises

between the main body of data and the outlier. While it constitutes a

disproportionate amount of v/eight in the determination of 3, it might

be that benign third source of leverage mentioned above which supplies

crucially useful information. Figure M- is a more troublesome configuration

that can arise in practice. In this situation the estimated regression

slope is almost wholly determined by the extreme point. In its absence,

the slope might be almost anything. Unless the extreme point is a crucial

and valid piece of evidence (which of course depends on the research

context), the researcher is likely to be highly suspicious of the estimate.

Given the gap and configuration of the main body of data, the estimate

surely has less than n-2 degrees of freedom: in fact it might appear that

there are effectively t/.vO data points altogether, not n.

Finally, the leverage displayed in Figijre 5 is a potential source of

concern since o and/or • will heavily iuluence 3 but differently than the

remaining data. Here is a case where deletion of data, perhaps less

drastic downweighting , or model reforr.ulaticn is clearly indicated.
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2.2 Residual Diagnostics

Traditionally the examinaticn of runctions of the residuals,

r. = y. - y., and escecially large residuals, has been used ro orovide

indications of suspect data that in t'.jrn niay unduly affect regression

results. It is test to have a scalar' covariance matrix, so rhat

detection of heteroscedasticity or autocorrelation (and later on, eliminating

the.Ti) is desirable.

Approximate normality is another desirable property in te2ms of estimation

efficiency and the ability to test hypotheses. Harmful departures fron normality

include pronounced skewness, multiple m.odes and rhick-tailed error distributions.

D/en moderate departures from normality can noticeably im.pair estimation

efficiency. At the sar.e tim.e, large outliers in error space will often be

associated v;ith m.cdest-sized residuals in least squares estimates since zhe

squared error ^criterion heavily weights extreme values.

It will often be difficult in practice to distinguish between

heteroscedasticity and thick-tailed error distributions ; to observe the

former, a number of dependent variable values must be associated with

(at least) several given configurations of explanatory variables. Othervv-ise,

a few large residual outliers could have been generated by a thick-tailed

error distribution or fragmients from. ^ heteroscedastic distribution.

Relevant diagnostics have three aspects, tx^ of wrJ.ch examine the

residuals and the third involving a change in error distribution assumptions.

The first is sim^l^- a frequency distribution of the residuals. If there

is eviaen't visual skewness, multiple modes or a heav^/ tailed distribution,

the graph vdll pr>ove infomative. It is interesting to note that econorists

o-'tsn look at time piers of residuals but saldcri at their frecuencv distrib^iticn.
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The second is the normal procarilit^,' plot, which displays the cjziula-

tive normal distribution as a straight line whose slope Pleasures the star.dard

deviation and whose Lntercept reflects the mean. Thus deparrures from

normality' of the cjr.ulative residual plot will show up in noticeable departures

fron a straight line. ^Outliers will appear itimediately at either end of the

cumulative distribution.

Finally, Denby and Fallows [17] and Welsch [18] have suggested plotting

the estimated coefficients and residuals as the error densiry or, equivalently

,

as the loss f'unction (negative logarithm of the density; is changed. One

family of loss functions has beer, suggested by K'uber [1]

;

/ ci t| -c^
I
t|>c

which goes from least-sc_uares (c=») to least absolute residuals (c=0). This

approach is attractive because of its relaxion to robust estiiration [1] , but

requires considerable computation.

For diagnostic use the residuals can be r.odified in v;ays that will

enhance our abiliry to detect problem data, 've first note that the r,.

-p -IT
do not have equal variances because if we let H = X(X"X) X , then

E[(Y-Y)(Y-Y)-] = ZC(I-H)'/Y-(I-H)"]

= (I-K) E(YY*)(I-H) = a^(I-H)

since (I-H)^ = I-H and (I-H)X = 0. (See Theil [10] and Hoagiin and Welsch [13]

tor a more detailed discussion.) Thus

where h. is the i-^ diagonal element of H.
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Consequently a number of authors [11] have suggested that instead

of studying r^. , we should use the standardized residuals

^si ' V^-^-'-i (2.2.2)

2 .

wnere s is tne esturated error variance.

For diagnostic p-jrposes we .Tight ;vanT to go further and ask

about the size of the residual cor:-'^? ponding to y^ when data point i has

been omitted from the fit, since this corresponds to a simple

perturbation of the data. That is, we base the fit on the remaining

n-1 data points and then predict the value for y^- . Tnis residual is

?i
- Yi - X, B^.^ (2.2.3)

and has been studied in a different context by Mien [12]. Similarly

St.. is the estimated e2rror variance for the "not i" fit, and the

standard deviation of r. is estirrated by s.-Vl + x. (X; • nX^ • > ) *x. .

We nov; define the studentized residual:

,v y. - X. 8.,.

r. = i ^^-±=1
.

(2.2.4)
1

=(i)'^^^¥-W-'(i)^"'^i

Since the numerator and denominator in (2.2.1+) are independent,

r. has a t distribution with n-p-1 degreees of freedom. Thus

we can readily assess the signi-ficance of any single sfadentized residual.

(Of course, r^. and r- will not be independent.) Perhaps even more

useful for cur ^'irrcses is the f=ct ^'-at

^\ - VC^(i)^^) ^-2.5)
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ar.d

(n-p-l)sj.^ = (n-,)s^ -
j3^

(2.2.5)

Tr.ese results are ::rc'."ed easily by using the rratrix idenrities ir. Appendix 1.

'^-c-.i'r2.5c^3 '.-."p t'.irj''' '^hat -3. ^c;cd 'y—.'j to ex3.T;jine residuals is

to look at the s'uder.tized residuals , heth because they have equal

variar.ces and because they are easil'/ relaxed to the t-distributicn.

Ho'.'.'e'.'er ~h-is dees net tell the vhcle story, since scr,e of the rrost

influential dara points can ha'/e relatively sirall studentized residuals

(and very STall r,- )

.

To illustrate "wath the simplest case, regression thjrc-'jgh the origin, we

have

r. = E xf ^^ (2.2.7)
^ i^i ^

L.. = x,r./ Z X? (2.2.3)

where (i> der.otes r-n estimate obtained by removing the i-^ ix)w

(data point) iron the computation. Tr.us the residuals are related to the .

crar.ge in the least-="uare esTirate caused by deleting one row. But each ccnzains

different inxorriation since large values of |S - S... | can be associated

with srall !r;[ and vice ver^a. T?i^r^jfor*? v/e arc: l^-nd to ^jonsider' row

deletion as an iTpcrtanr diagr.ostic tcol, to be treated on at least an

equal footing with the ar.alysis of residuals.

2 - 3^.^ = (::*::)"- x:r,/(l-h.

)

(2.2.9)



whera the h- are the diagonal eleir.ents of H, the least-squares

projection iratrix defined earlier, '//e v/ill call rhJ-S rhe ''har"' marri:-: since

HY = Y = X3 . (2.2.10)

Clearly the har xarrix plays a crucial role not only in the studentizec

residuals but also in row deletion and other diagnostic tools. We now develop seme

important results (based on the discussion in Hoaglin and Welsch [13]) relating to

this rratrix.

2.3 The Hat Matrix

Geometrically Y is the projection of Y onto the p-dimensional

subspa.ce of n-soace soanned by the col'jjnns of X. The element h.^ of H

has a direct interpretation as the amount of leverage or influence exerted

on y_. by y- . Thus a look at the hat matrix can reveal sensitive points

in the X space, points at which the value of y has a large impact

en the fit.

The influence of the response value y- on the fit is most directly

reflected in its leverage on the corresponding fitted value y^. , and

this is precisely the information contained in h^- , the corresponding

diagonal element of the hat matrix. V/hen there are two or fewer explanatory/

variables scatlrer plots will quickly reveal any x-cutliers , and it is

net hard to verify that they have relatively large h- values. 'ATien

p > 2, scatter plots may not reveal "'r-ultivariate outliers," which are

separated Ln p-space from the buLk of the x-coir.ts but do not appear as

outliers in a plot of ar.y single exTl^nator-y variable or pair of them
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yet •.-.-ill ie revealed by ar. e>:aTina-*:i:.:i of H . Lcoking at the diagonal

elaT.ents of H is net absolutely co:.clusive but pix)vides a basic iTarring

point. Even if there .-ere no hicder. "ultivariare outliers, ccrr.puting

and exairdning H (especially the h^- ) is usually less trouble than

lookir>g at all possible scatter plots.

9
As a pro;:ecticn .TaTri>:, H is s>7rr.etric and ideir.pctent (H~ = H)

.

Thus we can write

n 9 -J
r,

h. . = Z h:. = h:. + Z h:. (2.3.1)
^^ j=l ^^ " Pi 1]

and it is clear that G < h,. ,• < 1. Th.ese linits are useful in

understanding and iterpretLng h,.(=h,. ,-), but they do nor yet tell us

when h- is "large"'. It is easy to show, however, that the eigenvalues

of a projection matrix are either or 1 and that the nijmber of non-tero

eigenvalues is equal to the rank of the ratrix. In this case rank (K) =

rank (X) = p and hence trace K = p, that is.

Z h. = D . - (2.3.2)

i=l " "

The average size of a diagonal eleir.ent, then, is p/n. If v/e were designing

an exoeriment a desirable gcal would re to have all the data points be aboux

equally influential or all h,- nearly equal. SLnce the X data is given

to us and we canxio"*" design cur experiment to keep the h,- equal, we will follow [13]

and say that h,- is a leverage point if h- > 2p/n. we shall see later that

leverage points can be both harrnful and helpful.
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The quantity 2p/n has '.-rorked well in practice and there is some

theorexical justification for its use. When the explaratony variables are

multivariate Gaussian it is possible to compute the exact distribution of

certain fonc-cions of the h^- . Let X denote the nx(p-l) ruatrix obxained by

centering the e:<piar^tor2,' variables. Tlcw

Y - Y = HY - Y = .^lY (2.3.3)

and thus the diagonal elements of the centered hat matrix are

h. = h. - - . (2.3.U)
1 in

th ^
Let X,.. denote X with the i row removed and X/ • v denote the centered

version of X. . ^ , i.e. means based on all but the i observation rave teen

subtracted out. Finally note that

x.-x = — (x.-x. .,) (2.3.5)

and

Using (Al.l ) and (2.3.5)

h.= -l-
"i 1+Y

Where y = (^) (x.-x^
•

))( xj^ X^^)'^ ^V^(i))

Again using (Al.l ) and (2.3.6)

Y = (^)^ ^
n T,(n-1)1+

—

r— a
n
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-i
a = (:<i-x^.)) (XJ^ X^,,) 0<.-x^.^)* .

The distribution of (n-2)a is well rxcwn sLice it is the Mahalanobis

distap.ee bef.-/eer. obser^/aticn 1 and rhe rriean of the reTaining obser'/aticns

[13, p. 430]. Thus

n(o-l)
~(n-l)(n-p) "p-_,n-p

Reversing the above algebraic manipulations we obtain

n-1
h. =
1 n

n-1
+ a

and

, _ (n-l)a + 1

i (n-l)a + n

Solving for a gives

and from (2.3.7)

(2.3.7)

h.-l/n .

_i _ n-1
1-h .

" n n-p p-l,n-p
(2.3.3)

For moderate p and federate n the 95% point for ? is near 2. Therefore,

a cut-off point would be

n-p

(2.3.9)
h. >

2 (?-!)+

which is aporoxi^ated bv 2o/n.
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Fron equation (2.3.1) we can see that whenever h^- = or 1,

we have h .
. = for all j ^ i . Thes^ two extreme cases can be interpreted

as follows. If h- = 0, then y. rmist be fixed at zero - it is not affected

by y,. -or by anv other v.. A iX)int with x. = when the model is a

straight lL'^e rbrcugh the origin provides a simple example.

vVh.en h- = 1, v/e have y,- = y,- - the model always fits thi.s data

value exactly. This is equivalenr -c saying that, in seme coordinate

system, one parameter is determined ccm.pletely by y^^ or, in effect, dedicated

to one data point . The following theorems are proved in appendix 3

.

Theorem : If h,. = 1, there exists a nonsingular transformation, T ,

such that the least-squares estimates of a = T B have the following

. P
properties: a, = y- and {a.}._„ do not depend on y-.

-1. 1 J J - z 1

Theorem : If X is nonsingular, then

det(X^.,X, .,) = (1-h-) det(X^X) . (2.3.10)
(i) (i) 1

Clearly when h • = 1 the new matrix X.

.

. formed by deleting a row is singular

and we cannot obtain the usual least-squares estimates. -This is extreme

leverage and does not often occur in practice.
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To complete o'jr discussicn oz t'r.R r.at rratrix ^e give a fev; sinple

6X£jTipj.SS • tOV tl..5 3SjT.pj.S ru6an 3.a.^ Sj-—~6r.~3 Cf n ax~3 -i-/' n . "oTS

D = 1 and each h = r/r. , the rerfecrl" balapiced case.
1 - -

For a straight line through the origin

h.^ = x.x./ I X,; • (2.3.11)ij - J j,_^
•-

n
and clearly Z h •

= p = 1

.

i=l

Sirple linear regression is slightly more complicated but a fev;

steps of algebra give

(x- - x)(x. - x}

\-^ = ^ ^ —

^

' (2.3.12)
1] n n

I (X - x)^

k=l

n _
and I h • = 2 . '/."e can see from (2.3.12) how x-values far frcm x '.sdll

i=l
-

lead to large values of h,-

.

It is this idea in the multivariate case

that we attempt to capt7.jre by looking at elements of the hat matrix.

2.U Row deletion Diagnostics

V/e now return to The basic form:ula

8 - 8(-j = (X";-:) - x^ r^/(l-h^). (2.4.1)

-
. T -1 %

iince the variabxlity of 3- J-S m.easured by s((a X).r) , a more useful m.easiire

of change is .
^

^""-(i)^^

S^ . > i'a"'"X) ~.
.
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where we have replaced 3 tv 3 , ^ is. crcer to jTiaI<e the denominator stochastically

independent of the nurr.erator in rhe Gaussian case. To pzx;vide a

s-jjirrery of the relative coefficient changes we suggest

fJDFBETAS. = \| ^^-^ r DFBETAS^. . (2.4.3)

n-D
The term —^ rias been m.corpcrated to .Take ^iDFBETAS more ccr.parahle across

data sets which rray have different values of p and n. This norrralizing

value vjas chcsen because when X is an orthogonal matrix (but not necessarily

orthonorrral

)

X. . r.

DFBFTAS . . = ^^^ ^^

t=l
t3 1

and

7 h. ,. 2

Z DFBETAS . = t-^ r".

Since -the average value of h^. = p/n, a rough average value for h./(l-h^.

)

is p/(n-p). Clearly (2.i+.3) could be modified to reflect the fact t.hat

some coefficie.nts i-Tiay be more important thian others to the model builder

(e.g. , including only the main estimates of interesT),

Another obvious row deletion diagnostic is the change in fit

h.

DFFIT, = x.(S-3,.,) = T-^ V- . (2.4.4)
i 1 (1) 1-h- X

If we scale this by dividing by 3 , . s
^"^ we have

'—^ r'." (2. -.5)

1
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Fcr across data set norr^alizaticn we 111 rnultiply by v'^~P/o to cbtair.

A measure sinilar to rhis has been sup^ested by Cook [1^].

Clearly DFrlTS ar.c i'lLFBETAS agree in an orthogonal ccordirate syster:.

W'hen crthogonaliry does not hold these t^.-zo meas-jres provide somewhiat dirferent

infonration . Since we tend to enphjasize coefficients, our oreference is for

>rDFBEr.AS.

Deciding when a difference like
|
(3 - 8/-n)-| or other diagnostic

statistic is large will depend , in part , on how this inforrration is beir^

used. For exaiTtple, large changes Ln coefficients that are net of particular

interest aight not overly upset the Todel builder while a change in an

important coefficient may cause considerable concern even though the change

is small relative to traditional estiration error.

We have used ttvO approaches to measure the size of changes caused, by

row deletion. The first, called external comparison, generally uses Treasures

associated with the quantit^y whose changes are being studied. For example,

the standard error of a particular coefficient 3- v^ould be used with

The second n^.ethcd, called interr.al comparison, treats each set of

diagnostic values (e.g., {(S - S,- ^)^ )!,•_-, ) as a single data series

and then finds , for exam,ple, the standard deviation of trf.3 series as

a measure of relative size. As we ha\-e noted, all of the diagnostic measures

we rave discussed so far are functions of r.//l-h. and in view of cur discussion
1 1

of sfudentized residuals, it is rarural to divide thf.3 by s (-,••, to achie'/e a

re^iScnaDxe 3ca_—ng cezcre .Ta-<^j^.g p^cts, c-^.
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Once 3/-V has been used, the ter.ptation 'arises to try to perform forrral

statistical tests because v;e know the distribution of r. . In our ooinion

this is not a very prc.TjLsin^ prcced'ur-e because it puts too much emphasis

on residuals (although looking at sr'udentized residuals is better than

usir^g the raw residuals). We prefer to use external or internal

comparison to :?a}:e decisions about which data .points dese2rve f-orther

attention except, of course, when '.;e ^re locking specifically at the

studentized residuals as we did earlier. Using any Gaussian distributional

theory depends on the appropriateness of the Russian error distribution -

a topic we will return to later.

2. 5 Regression Statistics

Most users of statistics realize that estirrates li]<e B shculd

have some measure of variability associated with them. It is less

2
often realized that regression statistics ILke t, R and F should

also be thought of as having a variability/ associated with them.

One way to assess this variability is to examine the effects of row

deletion on these regjressicn sratistics. V/e have focused on thxee:

ATSTAT. = ^ ^^^Ar-

.e.(B.) s.e.(3..,).
J ^^y J

&FSTAT = FCall 3=0)- "(^jCall B = 0)

AR^ = R^ - R^
(i)
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.A^air. v.-e should ask '.vher. a difference is large enough to rr.erit attention.

For exterr.al cor.rarison we '.vculd ccr.pare to the standard deviation of

t, F, or R'':

Statistic Standard Deviation

./2

A(n-D)^(n-2) \l
\t(n-p-2)(n-p-uy

/2

r2 C '?-f ^
\(p+n-2) (p+n-1-J

However, v/e tend to view internal comparison as more appropriate for

regression statistics.

St^jcyin^ the changes in regression statistics is a good second order

diagnostic t'OCl because if a row appears to be overly influential on

other grounds, an examination of the regression statistics will show

if the conclusions of h//pothesis testing would he affected.

There is, of course, room for misuse of this proced'jre. Data points

could be reitjoved solely on the basis ~f their ability (when rem.oved) to

increase ?"" cr somie other measijre. ''.^.ile this darker exists we feel

that it is often offset by the abili~' to sfudy changes in regression statistic

caused by row deletion, .-^ain we war.t to emphasize thax changes in

regression s-atistics should not be used as a primar'y diagnostic tool.
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2.6 Irifluence y.nd Variarice uecri::'--

We r.cw '..'CiLd liks to consider per^-irbing our ascimpticns ir. a new

way. Consider the standard regression .T.odel (m) but with varCe,-)

replaced by a"/w,. for just the i^^ data point. In words, we are

perturbing the hcmoscedasticity assumption for this one data point.

In appendix 2 we she.'; th^at

>Wi

3w.
1

(X^X) xj;r.

(l-(l-w.)h^)"
(2.5.1)

and it xollov;s th^t

9w.
1

(X a) xir^ (2.5.2)

3^-
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Forrnula (2.6.2) can also be consicereu as a function which represents the

influeTice of the i
'"^

data point and .^ ui be linked lo rhe theory of rocusr

estimation [15] and the jackknife [15].

If we let

,2

w^. n-p ^^-j T -^t ^ w^ (2.5.5)

and

W = (2.6.5)

then in appendix 2 we show that

^ r s,^ (xHjx)'

-i (X^X) - 3^ (X^X) x:x.-(X"X)
n-p X i

(2.5.7)

Since we would like to remove scale we define

DBV/iJ^,. =

9 r T -1 ^ T -1|

i F-) x:x,(X-X) J.j (2.6.8)

(n-p)s' (.X-X)'

31

as the scaled infirLitesiral change in zhe variance of 3^ As a sumraary measure

over all of the coefficients we use

D

(2.6.9)

wnere the r./z- ~e; ;."r.!?ar-z:;ilxty across cata seis.
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If we used row deletion instead of deri'/'atives , our basic measure

would be

2 T ,
"^

2 T "^
3^ (XX).. - S,.XXt;y\,:.)^_^

DFBVARS.. = ^ II
^ /"^ ^-^ J^ (2.6.10)

13

with summary measure

MDF3VMS. =
^''^

Z IDFBV-APS..I . • (2.5.11)
1 P ^=1 ^3

Th^e measures so far discussed in this section include both the explanatory

variables and the response. If we wish to examine the X-matrix only, the second,

part of (2.5.3) provides a good way to do thds. We notice that

n rp -1 rn T ~- T -1

Z (X'X) x!_x.(X-X) = (XX)
i=l

and define

3ETAVRD
[_(X^X) ~x^x.(X^X)

]]

^^ (x^x)"t.

wirh summary measure

P
NBETAVRD. = Z 5ETAVRD..

^ j=l ^^

These measures provide a way to decompose the cross products matrix with respect

to the individual obser^/aticns

.

Again it is useful to look at th-:; orthogonal X case. When orthcgcPi^lity

holds



2
X. •

""""'"^ij
r

and

1 1

Since h- has a strcrg infji^i'/e a.'r^-'e.^l ir may be a betrer sunrrar"/ value even

when orrhogonali"ry dees not hold. We 'ra.\'e chosen not to nrultiply iIBETA\''RD

by n/c (the avei^age v^lue for h,- ) , sc it is not useful across data sets.

If we exanuLne the formula for DFBV.'VPS we see th^ar this C'ualiry could

be positive or negative. As .•;e might expect, in sorr.e cases dcv/nweighting a

data point can i-prcve cur estimate of the variance of a coefficient. (Dc-.n-

weighting corresponds ro placing a mir.us sign ir. frcnr of DF3VARS.) One of

-he best ways to exairiLne the tradeoffs of Dr BETAS and DFBVAJ'S (or- 5ETAV?L)

is to make a scatre^r plot. A high le'/erage point with sirall values of IFEETAS

may be a "good" obser^/aticn because it is helpir.g to reduce the v.ariance of

certain coefficients. The setting aside of all hj.gh leverage points is

generally rot an efficient procedure because it fails to take account of the

response data.

2.7 More Than One ?ov/ at a Time

It is nar_ral to ask if there right be groups of le^/erage pcir^ts r:-at-

we are failing to ciagncse because we are only locking at one row at a time.

There are easily constr'jcred examples where this can happen.

One approach is to proceed sequentially - re-tcve the "worst" leverage

poirit (based perhaps on both ilDFBETAS and IJBETAVED) , reexamine the diagnostic

measures and rerove the next "worst" ^bser^/ation, etc. This does not fully
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cope vdth the problan of groups of le\-erage poLnts and just as stepwise

regression cari te troubleso-e , so can sequential rev; deletion.

A straightfor'.vard induction argi^T;enr shows that

5. . - h. . (k, ,k„,. . .k )

1] 1] 1 2' t

= der (I-K).
i,k^ ,k^,. . .k^;j ,k, ,k^,.. .k^

det (I-H), T

where H is the hat matrix for all of the data, h,. . (k , . . . ,k ) denotes the

hat matrix for a regression with rows k-,,...k removed and the subscripts on I-K

denote a subraatrix formed by taking those rows and coljmns of I-H.

Even though all of these differences are based on H, multiple row deletion

will involve large amounts of ccmoutation. It is instructive to note that

l-h^(k) =

(l_h.)(l-h^) - h^

-\

(1-h.) 1 -
(l-a^)(l-h.

)

(1-h.) [1 -cor (r^,rj^.)]

The term cor C^^j^t, ) also appears when more rows are deleted and, in place of

looking at all possible subsets of rows, an examination of th;e correlarion matrix

of the residuals for large correlations has provided useful clues to groups of

increases com.putational cost and perhaps storage requirements.
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2.3 Interface '-vith Rccusr ar.d ?-ldge regression

It is nafjral to ask hcv; the abcve diagnostics could or should be

used with so.T.e of the neu'er estiration r.ethods iLke robust and ridge regression.

The first question is whether 'we should do diagnostics or robust or ridge

first. There is no clear answer, but scr.e sort of iterative proced'ore is

probably called for.

However, it is possible to perfcm regression diagnostics after using

either a robust proced'ure or a ridge proced'..jra. In the robust 'Case we can

nake use of weights

P'

(Yi-x.S^)
(2.3.1)

where P is the robust loss function, S^ are the robust estimates of 3 and

s„ is a robust estirrate of the scale of the residuals, y.--:<-; 3^. (A complete

discussion of weights is co.ntaLned Ln [20].) We new ir-odify the data by for!?in.g

a diagonal riatrix of weights, W, and using )^Y, v'^"-:. Thd.3 revised data is

then the input to regression diagnostics. If the robust estinaticn procedure

has been allowed to converge

^ T "-^ T
B = iX\vj x\y
w

will be close to Sr, and our procedures will accurately reflect whjat would happen

to St^ locally. Cf course they do not reflect what '-vould happen if a data point

were deleted and then robust esti-naticn applied.

The ridge estimator [21] is given by

„ -1 ^

Lr. = (X^XtkJ)
"
X^Y . (2.3.2)

There are Tan'.' ger.rralizaiions but .~cst '.vill fit into the fcllcv/ing frara-

wcrk. V.'e ass'or.e ^"at k r^^^s been chosen b'.' sor.e .T.eans S'uch as z'::Z3e ILsz-zz.
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in C 21] . Then we forrr.

X

u^V

where G is a y'-<l '/ector of zeros (prior values tiries v^ in more general cases)

So we now have "new" data X, and Y. with nxp rows. Clearly

RD

T -1 -
(2.3.3)

We now perform regression diagnostics using X and Y. . VJhen we delete a

row with index n+i > n, it is equivalent to saying we do not want to "shrink"

that parair.eter estiTate toward zero (or its prior) . In the Bayesian context

dropoing such a row is like setting the prior precision of 6- to zero.

Plots of DFBETAS would then show the effects of such a process by looking

at those DFBET.'^^ values for index greater than n.

We can do scjne diagnostics to decide if a ridge estiiHtor is warranted.

If we differentiate (2.8.2) with respect to k, then

and

3k

T -1
(X"X +kl) 6,

RD

= (X^X) 3

(2.8.4)

(2.3.5)

Thus (2.8.5) provides information about infinitesiial charges about k=0.

T
If X X were diagonal then (2.8.5) has cairoonents 3 -/A. where X. are the

eigenvalues. So 3^ lai^e and/or A^ snail would lead to a large value of
J J

the derivative. Since the ridge estlT^tor depends heavily on the scaling

Ices (2.8.4) es.z. we reccimen

using this diagnostic measure.
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V/h.en dia.gr.osrics 'ru3.ve been car.ple-ec a few observ-aticns rray be suspect.

The rows can rhen be set aside and a new i-obust or ridge estirrate ccinputed.

Diagnostics can then be applied again. T.-ere are obvious liTO-ts of time and

money but we think that two passes through thiis process will ofteri be ;>?orth-

while

.
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2.9 An ExaT.ple: ri\ Inter-Country Life Oycle Savings Function

Arlie Sterling of MT has made available to us data he has

collected on fifty countries in order to undertake a cross-sectional

study of the life cycle saving hv'pothesis. The savings ratio

(aggregate personal saving divided by disposal income) is e:<plained

by per capita disposable income, the percentage rate of change in per

capita disposable inccm^e and rwo population variables : per cent less

that 15 years old ar;d per cent over 75 years old. The data are averaged

over the decade 196C-197Q to ramove the business cycle or other short-teiri

fluct^jations.

Accoirding to the life cycle hypothesis, savings rates should be

negatively affected if non-members of the labor force constitute a large

part of the population. Income is not expected to be important since

age distribution and the rate of inccne growth constitijte the core of

life cycle savings behavior. Tiie regression equation and variable

definitions are then:

SF^ = COEF.l + COEF. 2"POF15^ + CCEF.3-'-POF75^ + COEF. 4='= INC

.

+ COEF. 5=-INGR0^ (2.9.1)
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SR. = the average ag£re-^-e personal savir.Fs rate in

co'ir.try i '"rrAii lr'>1270

PCP15. - the average 'i of z':.-^ pcpulaticn '^-cer 15 years

of age frcn IScQ-lr"']

?0?75,- = the average % cf th= copulation over "^S years
of age from 1350-19"?

mC- = the average level of real per oapita disposable
income in co'jnrr-/ i fvcrr, 1960-1970 measured iri

U.S. dollars

IrlGRO-; = the a\-eraee ^3 grov.-h rate cf BIC^. from
1963-19707 "^ -^

A full list of countries, together with their numerical designation,

appear'S in Exhibit 1, arid the data ar" in Exhibit 2. It is evident that

a wide geographic area ar.d span of economic development are included. It is

also plausible to suppose that the qualiry of the ;inderl:/ir.g data is

highly variable, '.vith these obvious ::aveats, the 13 estirrates or (2.9.1)

2 • . ....
are showr. m Exhj.bit 3. To comment bi'ierly, the R is not 'ar:criaracteri3tica:..'.j

low for cross-sections , the pcpulaticn variables have correct negative signs -

CGEF 3 has a small t statistic but CCFF 2 does not - incom.e is statistically

insignificar.t , while income growth reflected in COEF 5 is signiricant at

the 5 per cent level and has a positive influence on the savings rata

as it should. Broadly speaking, these results az^e consistent with the

life cycle h'/pcthesis.

The rorainder of this section will be a giaided tour through som.e

of the diagnostics discussed previously. The computations were performed

using SSTSSYS (acronym for sensitivity- systemj , a TRCLL experimental subsystem

for regression diagnostics. Crrhcgcnal decompositions are used in the

of the diagnostic m.eas'ures in addition to tne usual LS results in less tran

twice the ccmcuter tim.e for the LS results alone.
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Tavid Jones and Steve Peters of the "."dEF. Corriputer Research Center have

prcgrarrr.ed SEi.'SSYS. Both hav3 acti'.-ely participated Ln anal:,^ical and

empirical asp'^cts of the research.

Only a selection of plots and diagnostics v;ill be shov.Ti for two reasons.

One is that to provide the full cattery of plots would be excessively tedious;

however, the irassing plots and tables are readily obtainable. The other

reason is that we foijr.d these diagr.ostics to be ainong the irore instr'uctive

from examiration of thj.s and several other prcblaTiS.

2.9.1 Residuals

The first plot, Exhibit 4, is a normal probability plot. Departure from

a fitted line (which represents a particular (3aussian distribution with mean

equal to the intercept and standard deviation equal to the slope) is not sub-

stantial in the main body of the data for these studentized residuals, but

Zam±)ia (46) is an ejctrame residual which departs fran the line. Different

information, an index plot of the r,- , appears in Exhibit 5 which reveals not

only Zambia, but possibly Chile (7) as well to be an outlier; each exceeds

2.5 times the standard error.

2.9.2 Leverage and Diagonal riat '-'atrix Entries

Exhibit 6 plots the h^ which, as diagnonals of the hat nstrix, are indicative

of leverage points. Most of the h. are small, but two stand out sharply: Libya

(49) and the uhiited States (^u). T-/.0 others, Japan (23) and Ireland (21) exceed

the 2p/n = .20 criterion (wrdch rapf.ens to be equal to the 95^ significance level

based on the F distribution), but just barely. Deciding whether or net leverage

is potentially detrimental depends on what happens elsewhere in the diagnostic

analysis, altnougn i~ sr.cj^c ze recalled ^hat It is '/alues near '^r.Lz'/ ~ha~ "'-^

the most severe problems, v.hich has .;ot rappened iiere.
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2.9.3 CoefficieriT Per~-^!:^~icn

.^n over'/iew of the effecTS cf individual rcw deletion (see E>±iibit 7)

is 'Z3.se-i en (2.4.3) :iZ:3EI--5 , the ^v^are root of the scaled s-om of the squarec

differences zer.veen the full oata set and row deleted ocefficients . The measure

usee is szalec apprcxl-tately as the t distribution so that values greatei'^ thiari 1

are a pctential source cf concern. T'.vO countries trat also snowed up as possiils

hi-gh leverage ca.ndidates, Libya (^5) ar.d Japan (23), also seem to have a hea'.y

influence on the coefficients vvhile Ireland (21), a rrarginal high leverage can.dic

is also a margLnal candidate for influencing coefficient b^ehavior. Individual p],

of DFBET.^^ ( 2 . Lf
. 2 ) follow next , fron which the followLng table has been construct

based on an e:<a':iination of Exhd.bits :-ll.

Noticeably Large Effects on B:: from ?cw Leleticn

^oo'u_ation <_c .-"ooulation >75 Licome Ir.come Grc^^rth

Japan (23) Ireland (21) Libya (49)

Japan (23) Japan (23)

The co'jntries that stand out Ln the individual coefficients are pernaps,

.not surprisingly, the t.-jo that appeared in the overall measure. Ireland, in

addition, appears once. Except on the income variable, the comparatively large

values are just about one LS standard error for each oarticular coefficient.

2.9.i4 Variation in Coefficient Standard E:-rrors

Exhibit 12 is a su-imary meas'ure of coefficient standard error variations

as a consequence of row deletions, designated as MDFBVARS in (2.6.9). Since

„ -1
..i:ie ata.
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iar-ge values indicate simulxanacus or individual extreraes in residuals cr

aiulrivariaxe outliers in the X ratrix. These q'oite n'JTierous candidates

iriclude

:

Index

7
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alone are considered as shov.n ir; Ix^".ibiT 7, Zainbia did not appear, while

j.r'ej.an*-. C<-x/ C2.c j.nus SGri"i&'//nat cxrreren"ti mz'ci'Tro.Tj.on z.s lonxaiTied Ui eacn.

It is now desirable to bring rcge-cher the inforraticn that has been

asser-bled thus bar, t? see vbiat it all adds up to. '>.e useful S'jrrrar'y plot

is sho-wTi Ln Zxhibir IS, which oIcts the suirrar"/ r.easure of S - B,-s, IDFBEIJ'S

against the correspondir^ hat rrarrix diagonal, h,-

.

The first point wrd.ch enierges is that Japan (23) and Libya (-9) 'r£.ve

both hd.gh le'/erage and a sign:ificanr Lnfluence on the estirated parameters

.

This is reason enough to view then as serious problens. (.-^.fter the analysis

had reached this point, we v/ere infcmed by Arlie Sterling zhat a data error

had been discovered for Japani. '.Jhen ccrrecred, he tells us trat the revised

data is more simdlar to rhe r.ajcri"cy of countries. T^-.ese diagnostics r^iwe

thus "proveri their v;orth" in 'oac data detection in a mccest way. Second,

Ireland is an in-betrween case, with moderately large leverage and a scjriewrat

disproportionate impact on tha coefficient estimates,

Trird, the 'jnjLted States has hi,;:; leverage ccmbiir.ed with only m.eager

differential effect on the estimated coefficients. Thus leverage in this

instance can be viewed as neutral or beneficial. It is important to note

that not all leverage points cause large changes in 3.

Exhibit 19 plots the summary of coefficient change, hlDFBETAS agair.st

the studentized residuals and vis'ually drives hom.e the point that large

residuals do not necessarily coincide with large changes in coefficients; all of

the large changes in coefficients are associated v/ith standardized residuals

less than 2. Thus residual analysis alone is net a sufficient diagnostic tool.
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Ar.other suinrary plot, that of carige in coefficient standard error,

liDFBVAPS a'^sinst leveri<^e as rr.eas'jr"^d by h. in E;-ihibit 20 indicates th.e

close anticipated association ceti-.'een leverage and estirrated paraT.eter

variability. This is clearly shoun by the diagonal line composed of (21) Ireland,

(23) Japan, i'-^^) Unired States arid (^9) Libya. Put residuals also can have

a large and separare influence, as evidenced by the low leverage, high

standard error crar.ges for (7) C;.;l:- end (1^6) Zambia.

A final S'dirrpary plot, EMnibit 21 of 'DFBETAS agaLnst ;DFEV/^i?.S, is revealing

in that all of the points noted outside the cutoff points (3,2) have been

spotted in the previous diagnostics as worth another look for one reason or

another. Thus about 15% of rhe observations have been flagged, not ar.

excessive fraction for many data sets.

2,9.7 One Fijrther Step

Since Libya (49) is clearly axi e>ctreme and probably deleterious influence

on the origLnal regression, a reasonable next step is to elimnate iz to find

out whether its presence has masked other problems or not. Exhibit 22 plots

the h.- when Libya (49) has been excluded Ln the data set. There is only one

noticeable difference since Ireland (21), Japan (23) and the United States (^^)

remain high leverage points. Southern Rhodesia (37) now appears as a

rrargira.lly significant leverage point, v;hereas it had previously been just

below the cutoff. The only really new fact is that Jamaica (4-7) now appears

as a prominen- leverage point.

Jamaica has f'uirthermore now become a source of parameter influence which

is perhaps mosr effectively obser^-'ec in the recalculation of scaled parameter

changes, MDFBETAS, in Exhibit 23 which reveals Jamaica as the sLngle largest
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This illustrates the proposition that per'/erse sxtreme points can mask the

iiT.'^vact or stzll other oer'/srse tcir.ts. Yet the original anaivsis did

ccnta±r. .-nC'St zf the pertiner.t irjforraticn atcut exceptional data hera.vior.

The correlation .tatrix of the residuals discussed in Section 2 . 7 provided

a clue, since the squared correlaticn her.-7een (^'^) and (^^9) was .173,

the hightest val^e. It is nevertheless a pr'udent step to reanalyze the data

v/ith suspect poi.nts re.T.oved, to is certain whether 3ne cr more extreme tr

suspect data points have obscured or danLnated others.

2.10 Final Ccnments

The question naturally arises as to whether the approach v/e have taJ<en

in detection of outliers is .tore effective than sinply examining each

individual column of the data to look for detached obser'/ations. We believe

the answer is yes. Detached outliers did appear in column 5 (CJGRO) of the

X matrix for Libya (4-9) and Jamaica (4-7), but not elsewhere. Libya, of

course, was "the villain cf the piece" in the prior analysis. But leverage

points for numerous other countries were revealed by row deletion diagnostics,

while Jamaica, as matters rurned out, was not a particularly troublesom.e -data

point. In addition we discussed how varicus leverage points affected oui'^

output - coefficiants , fit, or both. So we conclude at this early stage of

our investigation, th.at these new proced'ures nave merit in uncoveririg 'discrepant

data that is not possible with a high degree of confidence by just looking at

the raw data.
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Appendix 1. BASIC DI?FE?£:;C£ rO?l-::U-S

The fundar^ertal difference forrrjias are known as the SherTiHn-

iMorriscn-WoodbuT'/ Theorem [19, p. 29].

^ -1 ^ ^ -1

-1 T -1 CX X) x:x.(X'X)
(X^T^X^,^) = (X-0 '-T=K—^ ^Al.l)

T^ -"' T T ~^

(X^X) = (XJ.X,.,) -
^'-^ ^^^

^,
^ ^ ^r^^^^ . (.A1.2)

^^ ^^
l-x.(X ^ X )" y-".1 x^^A^^y.^^^; x^

From this comes

T ~1 T
(X^X) X. r^

'(i) 1-h^

and since

we get

(A1.3)

(n-p-1) s^.^ = ^l^ ^yt'^^t e(i))"

t?^i

2 " ^-i^.- ^^•

(n-p-1) s,:, = L (r^ + r^^) T

2
- 2r. n r. n ^

= (n-p)s^+ ^-^ J, r h • + /.^, o J, h". -
^ l-n- t=l t ti Q-n.)^ t=l zx

2
^?

= (n-D) s - -T-^
l-n.
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rmaiiy '.•.•e octam

- -1
(n-p) s^iX'X) (n-p-1) 5^.) (>:(^y';(i))

-I

h- ^-'(D-'ci)
) - (n-D)-'-

T -1 T T
(rX) x::<.(X.':r:o

. (.^.^)



a:.i

Appendix 2. DIFFERET^ITLATICN FC?J'!l"LA^

Let

W = (A2.1)

and

-1

^. = (X^'/K) X"V/Y, (A2 . 2

)

from (AJ..1) we obtain

(xVx) (X^X)
~ +

rn ""i i"*"^ r-p ^X
(l-w.)(X*X) xtx^CX'X)

l-(l-w^)h^
(A2.3)

and then

'^ T^ (X-i-^)
dW.

rp _]_ rr^ T -1
•(X^X) x^x^CX^X)

(AJ!.4)

Some algebraic .Tanipularion using (A2.2) and (A2.3) gives

. - -1 - (l-w.)

% - 3 -^;<-;^)
-I-i l-(l-w.)h.- 11

(A2.5)

where 3 and r- are the least-squares estirrates obtained when w^-=l. Thus

36w-

3w.

,, -1

(x-x)

(l-(l-w.)h.)'

(A2.5)
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cr ecuivalently (again using A2.3) .

= (x\'X)"^x^ (y,--x. l, ). (.A2.7)

It is also usef-jJL to look at the sGuared residual error

n .2
^SP,., = ^l, w (>•.-::_ &^-.) . (A2.8)

Jsing (A2.7) '.ve have

5SSR,.. n . 1 ^ .

^rr^ = -: ^i. "^ (y\-\ ^.v,) x^ (x'v-a) xt(y.-x. 3„ .

)

^^i-^i ^w.^

(v.-x- " )

2 —^ ^

^i^ t ^t r --1 t t 11

^ ^yi-^il.^'- (A2.9)

For the data y'v Y and v'^ X

-1

H^ = v^ XiX^vlX) X' /W and

^ ^w = °-

This implies that the sum in (A2.9) is zero so that

2
9SSR„^

2 2 ^i (A2.10)

^^ ^ '-"^
"-^'i

"
Cl-(l-..)h.)^

because of (A2.3),
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Putting (A2.4) and (A2.10) tcge-her gives

^ [SSR (x'l.'X)"-]

- 1

2
rp -1 r^ rp -1

r. „ , (X^X) x:x.(X'X)
(XVX) - SSR,,. i ^ . (A2.11)

(l-(l-w.)h-)^ ^^-
(l-(l-w.-)h.)^11 0. 1

When w. = 1 this is equivalent to

r^ (X^X) - (n-p)s'^ (x\') xTx.CX^X) . (A2.12)
1 ^ 11*
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Appendix 3. TnEOPE'IS 0:i TrZ HAT M^7?IX

In this appendix we forrally shov; that v;hen ^-^=1 (we cari take i=l

withcu" less of generality/ ), rhare exists a ncnsing^lar trar.sforration T,

such th-at ci, = (7 "3)^ = yi and a^,...,a^ do nor depend en y, . Thd.s iTiplies

that, in ~he transforrried cocrdirate sysrem, zr.e parar.erer a^ has been dedicated

to obser^/aticn 1.

>Jhen h- =1 we have fcr The ccordirate vector e-j_ = (1,3....,0)

since h, ^ = 0, ^^1. Let ? be any pxp nonsing'ala::^ matrix whose first corjnn

is (X"X)"^X*e . Th.en

1 a

A

where a is l>:(p-l) and j is (p-l)xl. -lew let

X -a

I

with I denoting zhe (p-l)x(p-l) identit-y matrix. Th.e transforrra-icn we seek

is given by T = FQ, which is nonsirig'ular because both F and have inverses.

Clearlv

XT =

1

A
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and the least-squares esti-nate of the parariet-er a = T 3 will have the first

residual, y-, -a, , equal to zero since a.^,...,a canrot affect this residual.

Thiis also ir.olies tra.t a^,...,a will not depend on •/-, .

2' ' p ^ '1

To prove the second theorem in Section 2 .

3

det(X,. Jx, .,) = (1-h.) det (X'X)

we need first to show that

T T
det (I-uv ) = l-v"u

where u and v are coluirn vectors. Let Q be an orthonormal matrix such that

Qu = i|u||e^ (A3.1)

where e^ is the first standard basis vector. Thien

det(I-uv^) = det QCl-uv"] Q^

= det [I-l |ul |e^v"Q-] = 1 - v^Q^e^
|

|u|

|

T
which IS just l-v*u because of (A3.1). Now

det •\i)^X(^) = det [(I-x^x^(X'X)"~) X'X]

T T -1 T ~- T
and letting u = x,- and v = x^CX X) ;cr.pletes the proof since x^(X*X) x:=h,.

.

(We are indebted to I^vid Gay fcr sirrplifying our original proof.)
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Appendix 4. SC-ilBITS FCR SZCTIO:i 2.5-

Exhibit .^o . Title

1 Assigrjrents of rcw Indices to Countries

2 Data

3 Ordinary least Tcuares "egression results

4- Nonral Probabiliry Plot of Stadentized Residuals

5 Sfudentized Residuals

6 Diagonal Elerp.ents of the Hat Matrix.

7 ITBFBETAS: Square Roots of the Sum of Squares of the
Scaled Differences of LS F'oll Data and Row Removed
Coefficients (DFBETA^)

8-11 DFBETAS (for individual coefficients)

12 Summary of Relative Changes in Coefficient Standard
Zrrxjrs : ICFBVt^IS

13 - 15 Individual Relative Change in Coefficient Standard
Errors : DF3VARS

17 Scaled Change in Fit

18 Scatter Plot :•£ NXF3ETAS versus Diagonal Elem.ents of

the Hat Matrix

19 Scatter Plot of MDFBET/^^ versus Studentized Residuals

20 Scatter Plot of ."CFSVAR^ versus Diagonal ElaTients of
the Hat Matrix

21 Scatter Plot of MDFBETA^ versus .'."DFBVARS

22 Diagonals of Hat Matrix with Obser/ation 4-9 Removed

23 NDFBETAS with Observation U9 Removed
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POSITION -ABEL

8

9

10
11
12
13
14

15
16
17
IS
19
20
21
?2

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
33
39
40
41
42
43
44
45
46
47
48
49
50

AUSTRALIA
AUSTF^IA
BELGIUM
BGLIUIA
BFv'AZIL

CANADA
CHILE
CHINA ( lAIUAN)
COLQHBIA
COSTA RICA
denmaf;k
ECUADOR
FINLAND
FRANCE
GERMANY F.R.
GREECE
GUATEMALA
HONDURAS
ICELAND
INDIA
IRELAND
ITALY
JAPAN
KOREA
LUXEMBOURG
MALTA
NORWAY
NETHERLANDS
NEW ZEALAND
NICARAGUA
PANAMA
PARAGUAY
PERU
PHILLIPINES
PORTUGAL
SOUTH AFRICA
SOUTH RHODESIA
SPAIN
SWEDEN
SWirZERLAND
TURKEY
TUNISIA
UNITED KINGDOM
UNITED STATES
VENEZUELA
ZAMBIA
JAMAICA
URUGUAY
LIBYA
MALAYSIA



(jiJSTRALIA

'JSTRIA
fi GIUM
Ol.iUIA

-AZIL
.^NADH
HILE
i-ir,",= A(TAIUAN>
OLGrtBJ^A

CiSTA RICA
LNhARK
CUADOR

ftAc^Lc:

,1 A K' f f' . R .

h.EEC.t.

UATEMALA
IDMDURAS
CL'LAND

NDIA
RcILAND
FALY
^PAN
•JRITA

JXEMDOURG
•^LTA

3RWAY
e:tmi;:rlanlis

u zealand
IELARAGUA
IsNAn A
I^RAi7lJAY

!:ru

MILL IF' I Nils

DRTUGAL
IDUTH AFRICA
DUTH RHOHESIA
[AIM
|JEDt'N

(JITZERLAND
I^RKEY

JHISIA
•J I TED KINbDGi'^i

UFED STATES
INEZUELA
fiib [A

^MATCA
"Ui.-ILIAY

::bya

LAr'oIA

11
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