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Abstract

In this work the study of Randall-Sundrum graviton decay into muon pairs has been performed. An
analysis based on full detector simulation and reconstruction was carried out to derive both the CMS
discovery potential for a graviton in the Randall-Sundrum scenario and the precision of a spin deter-
mination.
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1 Introduction
The Standard Model (SM) has been tested in many experiments at LEP and Tevatron with a high accuracy. In
particular, the yield of lepton pairs produced mainly via Drell-Yan processes, i.e. quark-antiquark annihilation by
exchange of photons or Z bosons, is predicted by the SM with a per mille precision in the mass range available to
the current experiments. So far, the experimental data have shown no significant deviations from SM predictions
for the Drell-Yan continuum up to TeV-energy-scale.

The high-order calculations of lepton pair production cross section in the mass region of 0.1−0.8 TeV are in good
agreement with LEP and D0 data [1, 2]. At present, however, there are many theoretical attempts to extend the
bounds of the SM in order to reach unification of strong and electroweak interactions or remove an arbitrariness
in values of coupling constants in some other way and also to get rid of the known disadvantages of SM like the
mass hierarchy problem, CP -violation problem etc. A quite new paradigm of gravity at TeV energies, as given in
the brane world scenarios with large or compact extra spatial dimensions (ED) [3, 4], which propose a solution of
the gauge hierarchy problem, has recently been discussed. In particular, these models give a set of new particles –
massive Kaluza-Klein (KK) modes of the graviton which can interact with the usual matter and contribute to the
SM processes causing some new interesting physics at the TeV energy scale (for more details and a phenomenology
review see e.g. [5, 6]).

In our consideration we touch only one of the possible ED scenarios, the Randall-Sundrum (RS1) approach [4].
The standard setup for this approach contains two three-branes embedded into the external curved five-dimensional
space-time, one (3+1)-brane with negative tension, −σ, (our world with all usual SM fields) and another one with
positive tension, σ, (Planckian brane) which is needed to reproduce the SM mass hierarchy. The usual assumption
is that all SM fields and fields from the Planckian sector are confined on the corresponding branes and effectively
four-dimensional. The graviton is the only really multidimensional field which can freely travel through the whole
space (the “bulk” space). Due to the nonzero curvature of the bulk space (which is represented by a slice of the
five-dimensional anti-de-Sitter (AdS) space bounded by two branes) and the specific space-time geometry some
new and very interesting physics can be realized on our brane.

In particular, in any model with compact extra spatial dimensions the graviton field will have an infinite tower of
massive excitations called Kaluza-Klein (KK) modes (four-dimensional “projections” of multidimensional fields
from our point of view). These modes can be visible at energies above the fundamental theory scale from energies
above one or a few TeV. Then our usual massless four-dimensional graviton can be treated as the zero mode from
the KK-tower. But the distinctive feature of the particular RS1 phenomenology is that excited massive graviton
states (RS1 graviton) are strongly coupled to ordinary particles (not suppressed below the Planckian scale like for
ordinary graviton in usual description of gravity) and can significantly contribute to the SM processes above the
fundamental scale. Mass splitting between KK-modes of graviton is of the order of ∆m∼ke−krc [5] (where k
is the curvature of the anti-de-Sitter space and rc is compactification radius), and values of masses start from the
TeV scale. So, at least the first Kaluza-Klein mode (called RS1 graviton below) can in principle be observed at the
LHC as individual heavy resonance. Thus, the distinctive experimental signature for these processes is a pair of
well-isolated high-pT leptons with opposite charges coming from the same vertex.

At this point it is interesting to note that there also exist some realizations of TeV-scale gravity models where
fields other than graviton can have Kaluza-Klein modes, see papers in Ref. [7]. In the papers interesting scenarios
based on superstring theory were proposed in which all gauge bosons and Higgses as far as their superpartners had
KK-excitations. We will not touch on such scenarios in our further discussion but we would stress that study of
phenomenological consequences of the existence of KK-modes of Z0 or photon can be done exactly in the same
spirit.

Such measurements can be addressed at the CMS experiment which is able to trigger and identify the hard muons
with the transverse momentum up to several TeV. The ability of the CMS experiment to detect the RS1 graviton
in the di-electron and di-muon mode was investigated at first with fast reconstruction software as described in
Ref. [8, 9, 10]. Full simulation and reconstruction studies in the di-electron channel were done in Ref. [11].

In this paper, the analysis of the CMS potential to observe the RS1-graviton states in the di-muon channel is
presented. The Note is organized in the following way: in Chapter 2 the tools used for signal and background
simulation are described, the cross sections are given. Chapter 3 is devoted to the detector response and trigger-
related issues of these studies. The detailed description of the CMS performance for off-line reconstruction of
di-muon pairs is also given. The main results on CMS discovery potential and analysis of angular distributions to
distinguish the spin-1 state from the spin-2 states are presented in Chapters 4 and 5, respectively. Possible sources
of systematic uncertainties, both theoretical- and detector-related, are discussed in Chapter 6.
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2 Signal and background simulations
In assumption of a five-dimensional space in the Randall-Sundrum approach with a curvature which is of the
order of Planck mass, k ∼ MPl ∼ 1019 GeV, a mass spectrum of graviton spin-2 excitations (Fig. 1) is given by
mn = kxne−krcπ, where rc is the compactification radius of the extra dimension and xn are roots of the J1 Bessel
function.

Figure 1: Invariant mass distributions for RS1 process with Drell-Yan background at the LHC. From top to bottom,
the curves are for coupling values c = 1, 0.5, 0.1, 0.05, 0.01 (taken from [12]).

The ability to test experimentally the RS1 predictions depends on the model parameter c = k/M̄Pl which controls
the coupling of the RS1 graviton to ordinary particles and the width of the resonance:

Γ = ρmnx2
nc2, (1)

where the constant ρ is determined by the number of open decay channels and M̄Pl is the effective 4-D Plank scale.
In the following we use the mass of the first graviton resonance m1 as one of the parameters of the theory, another
one being the coupling constant c varied in the range 0.01 ≤ c ≤ 0.1. Graviton resonances can be produced via
quark-antiquark annihilation qq̄ → GKK as well as gluon-gluon fusion gg → GKK . The first of these processes is
identical to the Standard Model s-channel exchange by an intermediate γ? or Z vector boson, while the second one
has no SM analogue. The graviton production cross section is presented in Table 1 (obtained by Pythia 6.227S [13]
with CTEQ6M parton distribution functions). No K factor was used for the signal. Here, two extreme possibilities
for model parameter c were considered. The first one was the most optimistic scenario when c is equal to 0.1. The
second set of cross sections corresponds to the most difficult for experimental observation case when the coupling
constant has a value of c = 0.01. The width of the graviton is 1.43% for c = 0.1 and it is scaled as c2 in accordance
with Eq.(1). At small graviton masses (1 − 1.5 TeV) gluon-gluon fusion is responsible for the major part of the
cross section, whereas at large graviton masses (≈ 5 TeV) qq̄ annihilation gives the largest contribution to the cross
section.

Table 1: Leading-order cross section of GKK production in fb. The CTEQ6M parton distributions is used.

Contribution c = 0.01 c = 0.1

Mass, TeV 1.0 1.5 3.0 5.0 1.0 1.5 3.0 5.0
gg → GKK 6.8 0.7 0.006 0.00006 668 71 0.64 0.006
qq̄ → GKK 1.3 0.2 0.005 0.00008 134 23 0.51 0.008

Total 8.1 0.9 0.011 0.00014 812 94 1.12 0.014

The following samples have been generated using Pythia 6.227S: sixteen samples (about 10 000 events each) with
c = 0.01, 0.02, 0.05, 0.1 for the different graviton masses MGKK

= 1.0, 1.5, 2.0, 3.0 TeV, two samples with
c = 0.01 and 0.1 for the graviton mass MGKK

= 4.0 TeV and one sample for c = 0.1 and MGKK
= 5.0 TeV. All

events are pre-selected for reconstruction. The branching ratio of graviton for two muons is ∼ 3 %. The cross
sections of graviton production for RS1 scenario are given in Table 2.
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Table 2: Cross section of GKK production in fb. The CTEQ6M parton distributions are used.

Value of coupling constant c
Mass, TeV

0.01 0.02 0.05 0.1 0.2

1.0 8.1 33 203 812 3207
1.5 0.94 3.8 23 94 359
2.0 0.18 0.7 4.3 17 67
3.0 0.012 0.046 0.29 1.1 4.5
4.0 0.0012 0.0046 0.029 0.12 0.46
5.0 0.00014 0.00055 0.0035 0.014 0.057

The background considered is Drell-Yan muon pair production, vector boson pair production ZZ, WZ, WW ,
tt̄ production etc. Fourteen samples (each of ≈9000 generated events) are used for Drell-Yan background wit
di-muon invariant mass cuts of 100, 150, 200, 300, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500 and
5000 GeV. The simulation and pre-selection of background events was done using Pythia 6.227 with the same
cuts as for a signal above. The possible contributions from higher-order terms in the di-muon production cross
section were not taking into account, a K factor of 1 was used. The total cross-sections of Drell-Yan productions
for invariant masses greater than Mµ+µ− are given in Table 3. In the SM the expected leading-order cross section
of ZZ, WZ, WW , tt̄ events is negligible in comparison with Drell-Yan one. For example, the cross-sections for
di-bosons and t̄t production with effective invariant massed greater than 1 TeV are equal to 2.59 · 10−4 fb and
2.88 · 10−4 fb respectively. The contribution from these processes to di-muon production falls with an invariant
mass and is not taken into account in this study.

Table 3: The total leading-order cross sections of Drell-Yan production in fb. The CTEQ5L parton distributions are
used, we have checked that the Drell-Yan cross sections are about the same for CTEQ6M PDFs (2–3% difference).

Mµ+µ− , TeV 1.0 1.5 2.0 2.5 3.0 4.0
Drell-Yan 6.61 1.04 · 10−1 2.39 · 10−1 6.53 · 10−2 1.97 · 10−2 2.09 · 10−3

3 Detector response and reconstruction
To simulate the particle propagation inside the detector, the GEANT4-based OSCAR package [14] was used.
The digitization was performed with the CMS full-reconstruction ORCA package [15], both without a pile-up of
minimum-bias collisions and with it.

The trigger simulation is realized on the basis of the ORCA package using the on-line reconstruction algorithm.
For each event we have required the trigger condition for “double muon” or “single muon”. This means that at least
one muon candidates within the pseudorapidity region |η| ≤ 2.1 is required. The Level-1 trigger performs first
selection of the events, it passes only events containing two muons with a momentum greater than 3 GeV or one
inclusive muon with a momentum greater 14 GeV. The efficiency of the Level-1 trigger for the samples analyzed
is above 98 %.

All events accepted by the Level-1 Trigger are going to the High-Level Trigger (HLT). Muons are reconstructed
by the HLT algorithms in two stages – first of all, the Level-2 algorithm using information only from the muon
chambers is applied to re-evaluate the pT of muons coming from Level-1. At the next step, at Level-3 the tracker
hits are added to the muon tracks to refine the pT measurements. The thresholds used at the muon HLT selection
are 11 GeV for the HLT double muon trigger and 26 GeV for the HLT single muon trigger. Note that the trigger
efficiency is significantly reduced after applying the calorimeter isolation cuts (down to 15 %). The reason for
a such drop can be related with muon shower expansion with an energy due to electromagnetic radiation and
interactions of a muon with the calorimeter matter. In the following, the additional cuts on calorimeter and tracker
isolation are not applied at the HLT level.

The feasibility and overall performance of the muon trigger for RS1-graviton production and Drell-Yan processes
are summarized in Tables 4–5. The total efficiency of triggering including L1 and HLT cuts is above 96 %, details
can be found in [16]. The trigger cuts mentioned above correspond the low luminosity mode. However, values
of efficiencies from Tables 4–5 are valid for larger trigger pT cutoffs for high luminosity since the characteristic
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transverse momentum of muons in the considered processes is much greater than the cutoff values.

Table 4: Trigger efficiency for Drell-Yan events at a low luminosity of 2× 1033 cm−2s−1. The muons are required
to be in the fiducial acceptance of the detector.

Cut for invariant mass, TeV 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0
Level-1 + HLT 97.6 97.5 97.3 97.0 96.6 96.3 95.8 95.6

Table 5: Trigger efficiency for RS1 events at a low luminosity of 2 × 1033 cm−2s−1.

Graviton mass, TeV 1.0 1.5 3.0 5.0
Level-1 + HLT 97.1 96.7 95.1 94.0

For muon reconstruction, we have used a modified version of the Global Muon Reconstructor (GMR) algorithm
from the ORCA package [15]. The current implementation allows to choose between different sets of hits used
in the global track fitting (all the hits in the muon system, only hits in the first station, and hits in stations where
an electromagnetic shower did not appear to corrupt the measurement). An option to decide between these for
every reconstructed muon based on goodness-of-fit variables is also available. Studies have shown that optimal
performance for high energy muons is achieved by slightly altered code selecting between only two sets of muon
hits (first muon station or stations without showers). After muon reconstruction, photons in a 0.1 η − φ cone
around every muon track are searched for, and if found, the four-momentum of the closest one is added to that
of the muon. These photons come mainly from final-state radiation from the graviton decay vertex, and taking
them into account improves the determination of the graviton mass (see Fig. 8). At least two off-line reconstructed
muons with opposite charge signs were required, and the off-line reconstruction algorithm was applied only to
events which passed the trigger selection.

The two examples of the off-line reconstructed invariant-mass spectrum for signal plus background (graviton +
Drell-Yan) and background only (Drell-Yan events) are given in Fig. 2 b) and d) for Minv = 1.5 TeV with c = 0.01
and c = 0.1, respectively, the generated spectrum can be seen for comparison in left-hand plots a) and c). The
analogous plots for Minv = 3.0 TeV are given in Fig. 3. Figs. 23–28 present plots of reconstructed di-muon
invariant mass for various integrated luminosities and parameters of the model.

An example of fitted mass resolution plot for the RS1-gravitons with m = 1.5 TeV and m = 3.0 TeV for c = 0.1
is given in Fig. 4, the dependence on mass is shown in Fig. 5 a). For graviton mass interval 1 < m < 5 TeV the
mass resolution is between 3% and 5.6%. The curve for c = 0.01 practically coincides with the former one. The
off-line reconstruction efficiency for di-muon events after HLT is shown in Fig. 5b) as a function of the resonance
mass. Thus, the overall efficiency of fully-reconstruction procedure with taking into account an acceptance, trigger
and off-line reconstruction inefficiency is above 88 % for the the graviton mass up to 5 TeV.

An example of the main kinematic distributions of muons coming from RS1-graviton decay is shown in Fig. 6. One
observes that both the pseudorapidity and azimuthal angle reconstructed distributions are in a good agreement with
generated ones. For transverse momentum there is some smearing of muon near the narrow peak in its spectrum.

4 Analysis
In this section, the CMS reach for detection of RS1 gravitons and results for spin state discrimination are presented.

4.1 CMS Discovery Limit
Various significance estimators have been proposed in the literature [17, 18], ranging from the estimators counting
the number of the signal and background events in a certain mass range around the observed peak to estimators
using ratio of likelihoods of fits with a signal+background hypothesis and with a pure background hypothesis. Each
method has its advantages and drawbacks [17, 18], which is not discussed in this note, the official recommendation
for the usage in CMS PRS group was to use ScP (counting method) and/or SL estimator (likelihood fitting method).
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Figure 2: The reconstructed and generated invariant mass spectrum of the RS1 events over Standard Model contin-
uum for Minv = 1.5 TeV: a) generated events with c = 0.01, b) reconstructed events with c = 0.01, c) generated
events with c = 0.1, d) reconstructed events with c = 0.1.
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Figure 3: The reconstructed and generated invariant mass spectrum of the RS1 events over Standard Model contin-
uum for Minv = 3.0 TeV: a) generated events with c = 0.01, b) reconstructed events with c = 0.01, c) generated
events with c = 0.1, d) reconstructed events with c = 0.1.
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Figure 6: Examples of reconstruction of various kinematical distributions of muons (pT , φ, η) from RS1-graviton
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4.1.1 Counting methods

To estimate the GKK discovery limit one can use significance ScP defined as probability from the Poisson dis-
tribution with mean NB to observe greater or equal than (NS + NB) events, converted to the equivalent number
of sigmas of a Gaussian distribution [19], where NS is the number of signal events passed through all kinematics
cuts and NB is the number of background events. This definition allows also to take into account statistical and
systematic uncertainties of the background [19], for zero uncertainties it is close to the significance function ScL

suitable for small event samples [17] ScL =
√

2((Ns + Nb) ln(1 + Ns/Nb) − Ns) which has been shown to give
practically the same numerical values as ScP estimator [19]. The distributions of various significance estimators
show that these estimators are valid for both regions of small (m = 1500 GeV) and large (m = 4000 GeV) mass:
the distribution for the case when a signal is present is Gaussian with the standard deviation close to 1, as well for
the tail of the distribution for a case of only Drell-Yan background.

Since it is foreseen that in the real experiment the analysis of a found peak in the dimuon mass spectrum will
be performed with fitting it with a hypothesis of Gaussian (or Gaussian-like) signal and an exponentially falling
background, we obtain the numerical values of NS and NB from a similar fit also for the case of reconstructed
Monte Carlo samples. The values of NS and NB are fixed according to the square under the corresponding
fit curves in a 2σ window around the fitted peak value. Since the Drell-Yan mass spectrum is not exactly an
exponential function, we use the sum of two exponentials (see Fig. 7)

fDY (m) = exp(a1) ·
[

exp
(

b1m + c1m
2
)

+ exp
(

a2 + b2m + c2m
2
)]

(2)

in a form which allows to vary the general background scale while fixing the shape of the distribution by releasing
the first parameter a1 and fixing the other ones. The values of the background parameters were obtained from fits
to the full background only sample and fixed during the fit.
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Figure 7: Reconstructed invariant mass distribution for the Drell-Yan background process, with the background-
only fit Eq.(2) overlayed.

4.1.2 Likelihood fitting method

A procedure to estimate the CMS discovery reach has been set up following the approach outlined in [17] and
applied in the nearly-identical case of Z ′ boson search in [18]. Signal observability was estimated by performing
binned maximum-likelihood fits to reconstructed dimuon invariant mass spectrum and calculating the significance
estimator

SL =
√

2 ln(Ls+b/Lb) (3)

where Lb and Ls+b are the best-fit likelihoods of the pdf’s corresponding to the null hypothesis H0 (no signal
present) and the alternative hypothesis H1 (signal plus background).
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According to Wilks’ theorem [20] in case of the absence of signal, the distribution of S2
L in the large statistics limit

is a χ2 with a number of degrees of freedom (ndof) equal to the difference in the number of free parameters in H0

and H1 pdf’s. If the difference in ndof is equal to one, SL is expected to follow a standard Gaussian distribution
with the mean in 0 and a standard deviation of 1. This allows one to directly interpret the value of SL as the
significance level of the test, given as the commonly used ”number of sigmas”. That is, a SL value of 5, often
referred to as the ”discovery limit” corresponds to a 2.9 × 10−7 probability that the signal is only a statistical
fluctuation in the background (probability of a type-1 error).

The pdf used in the fit

p(Mµµ; NS , MG, Γ, k) = NS · pG(Mµµ; MG, Γ) + NB · pDY (Mµµ; k) (4)

is a sum of signal and background pdf’s, the background-only hypothesis is simulated by fixing NS = 0.

The signal pdf pG is a convolution of a negative Landau distribution modeling the radiative tail with a Gaussian
accounting for the graviton width and mass reconstruction resolution (see Fig. 8):

pG(Mµµ; MG, Γ) = Landau(−Mµµ;−MG, τ)⊗ (r ·Gauss(Mµµ; MG, Γ1) + (1− r) ·Gauss(Mµµ; MG, Γ2))
(5)

where:

• MG is the mass of the resonance. In the fits it was fixed at a value obtained from a fit to the signal-only
distribution.

• Γ1 and Γ2 are widths of the two Gaussians, accounting for the resonance width and muon momentum
resolution tail. Currently they are also obtained from a fit to the full-statistics signal sample.

• r is the fraction of the two Gaussian parts.

• τ is the width of the Landau distribution modeling the radiative tail. Fits to generator-level pure signal
samples have shown that a value of 0.006 · MG is a good approximation.

The background pdf is given as a sum of two exponents – see Eq.2. The values of the background pdf parameters
were obtained from fits to the full background only sample and fixed during the fit. Other ways of determining
these parameters were also explored and are discussed below. Including and omitting the quadratic term b was
found to have a very small effect on the results of the fits, so the analysis was done with its value fixed at zero.

Toy Monte Carlo studies of the behavior of SL, for a 1500 GeV graviton with coupling c = 0.01, for many
simulated pseudo-experiments are shown in Fig. 9. Plots for other choices of Randall-Sundrum model parameters
are similar, in particular for all cases it can be noted that:

• The tail of the distribution for a case with no signal is consistent with a standard Gaussian.

• The distribution for the case when a signal is present is also Gaussian, with the standard deviation close to 1
and mean within 5% of the SL value obtained from fits to the full MC samples.

This confirms the validity of using SL to estimate signal significance.
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Figure 9: Distributions of SL values obtained in fits to 10000 simulated pseudo-experiments for integrated lumi-
nosity of 100 fb−1. The case when only the Drell-Yan background was present is shown on the left plot, the right
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4.1.3 Results for CMS Discovery Limit

Fig. 10 displays curves of the CMS mass reach as a function of integrated luminosity required for a five σ discovery.
Here the four curves for the RS1 model parameter c = 0.01, 0.02, 0.05 and 0.1 (from top to bottom) are presented.
The results for the different values of an integrated luminosity are summarized in Table 6. The CMS experiment
allows to observe the RS1 graviton with mass up to 2.3 TeV using the first LHC data at

∫

L dt = 1 fb−1 if c is
equal to 0.1. For c = 0.01 the mass reach is not more than 2 TeV even for asymptotic regime of LHC operation
with

∫

L dt = 300 fb−1. The asymptotic reach limit for c = 0.1 is 4.5 TeV.

Table 6: The dimuon mass reach (in TeV) for the CMS discovery potential to observe the RS1 graviton in µ+µ−

channel (statistical uncertainties only).

Coupling constant c Estimator 1 fb−1 10 fb−1 100 fb−1 300 fb−1

ScP 0.75 1.20 1.69 1.95
0.01 ScL 0.77 1.21 1.71 1.97

SL 0.78 1.23 1.73 1.99
ScP 1.21 1.72 2.30 2.63

0.02 ScL 1.22 1.72 2.31 2.64
SL 1.22 1.74 2.34 2.68
ScP 1.83 2.48 3.24 3.67

0.05 ScL 1.85 2.49 3.26 3.71
SL 1.85 2.51 3.31 3.79
ScP 2.34 3.11 4.12 4.52

0.1 ScL 2.36 3.13 4.14 4.54
SL 2.36 3.16 4.23 4.73

A combined analysis [12] of the RS1 scenario shows that the value of the dimensionless coupling constant c
is strongly restricted (Fig. 11) due the theoretical constraints to assure that the model does not introduce a new
hierarchy (the scale parameter Λπ = MPle

krcπ < 10 TeV). Fig. 11 shows that a luminosity of 100 fb−1 is sufficient
to test the RS1 model everywhere in (c – Mgrav) space of model parameters. These conclusions, however, are not
definitive, since initial theoretical constraints are quite arbitrary.

The previous studies of the potential of the CMS experiment to detect a RS1 graviton in the di-muon channel were
based on the fast simulation program and give the following results for

∫

Ldt = 100 fb−1:

• The Notes [8, 9] shown that RS1 scenario can be probed at 95 % exclusion limit up to 1.7 TeV and 3.9 TeV
for c = 0.01 and 0.1, respectively. Signal and background events were selected inside ±2Γobs the mass
around the RS1 mass, where Γobs is defined as the observed width of the resonance state after smearing due
to the detector effects.

• In the analysis described in Ref. [10] the CMS potential to discover the RS1 graviton with the 5σ significance
is estimated at the level of 2.6 TeV for c = 0.01 and 4.8 TeV for c = 0.1. This analysis was done in
assumption of a Gaussian behaviour of events and using the S/

√
B estimator of the significance. To ensure

the statistical significance of the signal for low background the minimal number of signal events, Smin, equal
to ten has been required, i.e. Smin = max(5

√
B, 10). Instead of the ±2Γobs window the selection criteria

±3Γobs was used.

The difference between the current results and previous one can be explained by difference in statistical methods
used for analyses, differences in reconstruction and selection efficiency (in the pioneering work only acceptance
inefficiency was taken into account while the current study is based on the knowledge of the overall inefficiency
including acceptance, trigger and off-line reconstruction inefficiency).
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5 Distinguishing between a graviton and a Z
′

Once a new resonance has been discovered, its properties have to be determined, in order to establish its identity.
A characteristic feature of the graviton is its spin-2 nature. Other particles usually considered which give a similar
signature are spin-1 Z ′ extra gauge bosons [18]. The spin of the observed resonance manifests itself in the angular
distributions of its decay products (see also Fig. 12):

subprocess angular distribution
qq̄ → γ/Z0/Z ′ → ff̄ 3

8 (1 + cos θ∗2)

qq̄ → G∗ → ff̄ 5
8 (1 − 3 cos θ∗2 + 4 cos θ∗4)

gg → G∗ → ff̄ 5
8 (1 − cos θ∗4)

where cos θ∗ is the angle between the incident quark or gluon and the outgoing lepton in the dimuon center-of-mass
frame. In an experimental situation the transverse momenta of the incoming parton directions are not known, in
such a case optimal results are achieved by calculating cos θ∗ in the Collins-Soper frame [21]. In order to reduce
the contamination from the Drell-Yan background, only events in a ∼ 2σ mass window around the resonance peak
are considered in this analysis.

The problem of determining the spin of the observed particle is, as in the case of the mass reach, a problem of
rejecting one spin hypothesis H0, thus accepting the alternative H1. 1) In a search for a Randall-Sundrum graviton,
one is tempted to treat spin-1 as the null ”background-only” hypothesis and repeat the reasoning from Section 4.1.2
with angular distributions in the place of invariant mass spectra. This approach is, however, asymmetric in the
treatment of the two hypotheses: spin-1 exclusion with a given significance level, claimed on the basis of this
test, will only happen in a real experiment with a 50% chance. In other words, the probability of a type-2 error
(rejecting H1 when it is true) of such a test is 50%. This is so by construction, since the significance level SL is
the mean of the distribution of the expected values of this test statistic.

*
θcos 
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0.2
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1

1.2 qq -> Z’ -> ff
qq -> G* -> ff
gg -> G* -> ff

Figure 12: Angular distribution shapes for spin-1 and spin-2 resonances.

In order to treat the two hypotheses on a more equal footing, following [22] we construct a test with equal proba-
bilities of type-1 and type-2 errors. In a case when the SL distribution is Gaussian for both H0 and H1 (with means
m0, m1 and sigmas σ0, σ1 respectively), this corresponds to finding x such that

m0 + x · σ0 = m1 − x · σ1 .

1) This is of course true only in a two hypotheses case. Since most current theoretical predictions for a very massive di-lepton
resonance are spin-1 or spin-2 particles, other options (for example spin-0) are not considered here.
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Figure 13: Angular distributions for 3000 GeV generated Z ′ (right) and graviton (left). Open histograms cor-
respond to generator-level data, while the coloured histograms show events after full detector simulation and
reconstruction. Theoretical curves fit to the Monte Carlo data are overlayed.

Note that this reasoning does not affect the interpretation of SL once data is in hand, it only applies to quantifying
the expected sensitivity of a planned experiment. Real data will give a certain value of our test statistic, and it
can/will be converted to the significance level.

The analysis closely follows the method described in [22], where an unbinned likelihood is calculated for the
graviton and Z ′, under the two hypotheses considered. The ratio of the qq̄ and gg graviton production processes
and signal-to-background ratio for the graviton are fixed, so there are no free parameters. The test statistic used to
distinguish the two hypotheses is the likelihood ratio:

−2 lnλ = 2 lnL1 − 2 lnL2 . (6)

In a case with no free parameters this is simply a sum of contributions from all the observed events. Fig. 14 shows
these contributions for the full sample of signal and background events reconstructed in the mass window, for a
1000 GeV graviton and Z ′. A real experiment corresponds to selecting the appropriate number of events N from
this distribution and adding the contributions. In such a case, the Central Limit Theorem implies that the value
of −2 lnλ should follow a Gaussian distribution with mean and sigma calculated by scaling the mean and RMS
values of the histograms in Fig. 14 by N and

√
N , respectively. This is indeed so, an example plot for 1000 GeV

resonance mass is shown in Fig. 15. The significance level can be calculated for each set of simulated model
parameters, either by running toy Monte Carlo taking the means and widths of the Gaussians for H1 and H2 from
fits to the distributions of −2 lnλ, or by simply rescaling the mean and RMS of histograms with all reconstructed
events in the mass window. The results agree within 5%, and so latter method was used. The CMS reach in the
MG – k/MPl plane is shown for different values of integrated luminosity in Fig. 16 and summarized in Table 7.

Table 7: The CMS mass reach for distinguishing the RS1 graviton and spin-1 states at 2σ level (in GeV).

Integrated luminosity 10 fb−1 100 fb−1 300 fb−1

c = 0.01 843 1128 1264
c = 0.1 1946 2524 3000
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6 Systematic uncertainties and treatment of real data
The above results were obtained assuming a perfectly aligned detector, precise knowledge of the detector perfor-
mance and ideal Monte Carlo. In this section we will relax the various assumptions made in the analysis and check
how this affects the final result.

6.1 Sources of systematic uncertainty
To extract correctly the signal events from the background we should understand the reliability of the calculations
of dilepton spectrum within the Standard Model to keep under control all possible sources of errors and systematic
uncertainties. These systematics can be related to a) the accuracy of the theoretical calculations, b) the accuracy of
the phenomenological determination of PDF’s and c) the experimental uncertainties – detector resolution, goodness
of fits etc. The main of them are:

• The QCD and EW radiative corrections. A possible theoretical ambiguity in such studies is induced by
incomplete accounting of contributions from QCD and electroweak higher-order quantum corrections to the
considered processes. As it was mentioned before, the current calculations of RS1 and Drell-Yan cross
section were done in the leading order for the CTEQ6M with the K-factor of 1.0. To take the systematic
uncertainty of the K-factor in the present study, we use the value of K = 1.30 ± 0.05. It is also expected
that the electroweak NLO corrections are of the order of 10 % [23]. The uncertainties of the hard process
scale [24] give the following modification of the results: for RS1 signal about 11–17% variation and for DY
background about 3–12% (the former numbers correspond to 1 TeV dimuon mass, and the latter ones to
5 TeV).

• PDF-related uncertainties. The phenomenological origin of the PDFs gives one another systematic error.
First of all, the cross section values obtained using different sets of structure functions are not quite equal.
These results are varying within ±7 % for Mll ≥ 1 TeV.

In addition, there are uncertainties within the bounds of the same set (so called internal uncertainties) coming
from an accuracy of the global analysis of experimental data and from experimental measurement errors. A
recently developed PDF building technique goes beyond the “standard” extraction of only one “best fit”. Last
versions of PDF contain a set of various alternative fits obtained by subjective tuning of specific degrees of
freedom for this PDF [25]. Applying standard statistical methods one can analyze internal uncertainties
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Table 8: The modification of summary results for CMS discovery potential invariant mass reach (in TeV) for
various misalignment scenarios and significance estimator ScL.

Coupling constant c Scenario 1 fb−1 10 fb−1 100 fb−1 300 fb−1

No misalignment 0.77 1.21 1.71 1.97
0.01 Long Term 0.74 1.18 1.65 1.92

No misalignment 2.36 3.13 4.15 4.54
0.1 Long Term 2.34 3.09 4.03 4.43

First Data 2.03 — — —

using the master equation [24]

∆XC =
1

2

√

√

√

√

2d
∑

k=1

(Xk − X0)2 ,

where X0 is the cross section evaluated with the “best-fit” PDF (CTEQ6m) and Xk is the cross section
evaluated with the k-th PDF subset. The obtained uncertainties are about 10–46% for the RS1 signal and
about 3–18% for the DY background (the former numbers correspond to 1.5 TeV dimuon mass and the latter
ones to 5 TeV).

• Misalignment. There are two scenarios of misalignment of the Muon detector and Tracker for usage in the
CMS PRS studies: “First Data” scenario corresponding to the initial period of alignment (up to approxi-
mately 1 fb−1 integrated luminosity), and “Long Term” scenario corresponding the nominal CMS operation
(see details in [26]). The full simulation of the misalignment process in ORCA [15] for the RS1 events
shows an increase of the dimuon mass residuals by around 30% for the long term misalignment and by a
factor around 3–4 for the first data misalignment (see Fig. 17). The corresponding modification of the re-
quired integrated luminosity as a function of graviton mass for 5σ discovery is demonstrated in Fig. 18. The
required CMS invariant mass reach for various misalignment scenarios is shown in Table 8. One can see that
induced misalignment effects lead to decreasing the CMS discovery potential invariant mass reach by up to
0.1 TeV for the Long Term misalignment scenario and a substantially worse degradation for the First Data
scenario.

• Pile-up. The results in Section 4.1.3 were obtained using events simulated without pile-up of minimum-bias
collisions (corresponding to the conditions of the initial data taking). Simulation with pile-up corresponding
to the high-luminosity scenario with 25 collisions per bunch crossing at L = 1034 cm−2s−1 shows that
the widths of dimuon mass residuals increase by around 0.1 − 0.2% (compared to 3 − 5% without pile-
up), therefore the whole effect is much smaller than the influence of the misalignment for the Long Term
scenario.

• Magnetic field uncertainty in the muon chambers can cause a scale shift in the dimuon mass resolution
by 5–10% [27]. But since magnetic field uncertainty in the tracker is expected to be small (Ref. [28] quotes
0.03%), the uncertainty in the muon chambers should give only a small impact for the overall dimuon mass
determination. Besides, if we choose 3% scale uncertainty [27], that will shift the mass equally for signal
and background, and the significance will not change much, but the mass measured in the peak will move.
So the corresponding shifts in the mass reach values are negligible.

• Variations of the background shape in the fits produce a drop of about 10–15% in the significance
values. The possible variations of the background shape were studied by applying an additional factor
exp(α(m − m0)) in the fit with an additional free parameter α to the function Eq.(2) describing the Drell-
Yan Background with fixed coefficients a2, bi, ci.

• Trigger and reconstruction acceptance uncertainties do not cause significant variations of the mass reach
values since we fit the signal and background shape with a free normalization.

Taking these uncertainties into account, Fig. 19 displays curves of the CMS mass reach as a function of integrated
luminosity required for a five σ discovery. The modified plot of theoretical and experimental constraints on the
RS1 scenario parameter in the k/MPl and m1 = mG? plane is shown in Fig.20.
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Figure 18: The influence of misalignment in various scenarios for the discovery limit for RS1 graviton with µ+µ−

decay mode for different values of RS1 coupling constant c = 0.01, 0.1 (the curves from top to bottom). The
curves correspond to the case of the ideal alignment (solid lines), First Data scenario (dotted line) and Long Term
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6.2 Likelihood fitting estimators
In order to keep the difference in the number of free parameters between the signal+background and background
only pdf’s equal to one, the mass and width of the resonance were fixed in the fit. The logic behind this is
different in each of the two cases: the mass of the new particle can be determined by ”scanning” the Drell-Yan
continuum with fits with different mass hypotheses (this is essentially equivalent to doing a fit with the mass as a
free parameter). The value of MG maximizing the signal likelihood corresponds to a hypothetical particle which is
least probable to be a background fluctuation. The mass is then fixed at that value and the resulting SL is interpreted
as the significance level for rejecting H0 and claiming the existence of a resonance with mass MG, determined
this way. The precision of the mass fit is illustrated on Fig. 21, where the values obtained in 1000 simulated
pseudo-experiments are shown, along with a Gaussian fit to the distribution. Fig. 22 shows the distributions of the
significance estimator for 1000 toy Monte Carlo experiments, in the case where the graviton mass in each pseudo-
experiment is obtained as described above. No significant differences from the case with the mass fixed at the true
value (Fig. 9) appear.
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Figure 21: Reconstructed graviton mass distribution for a graviton with mass equal to 1500 GeV and c = 0.01.
The plot shows results from 1000 toy Monte Carlo experiments, with a Gaussian fit overlayed.

The reason for fixing the resonance width is different – it is simply assumed to be known with sufficient precision.
In the fit, there are two parameters governing the resonance width: the width of the Landau function and the
FWHM of the Gaussian. The Landau function accounts mainly for the radiative tail, fixing the Landau width at
zero affects only the mass fit – the mean reconstructed graviton mass is lower by ∼2% and the significance remains
unchanged.

Fixing the parameters of the background pdf does not in principle affect the interpretation of SL since this pdf
appears in both H0 and H1 fits and the difference in the number of free parameters is not affected. Freeing
the background parameters is however not a good choice since it makes the fit unstable and reduces the signal
significance by ∼ 20%. In a real experiment it might be necessary to extract some or all of the background shape
parameters from the data, depending on the level of relying on the Monte Carlo estimates. This is best done by
fitting the background pdf in signal-free regions. The exact strategy depends on the graviton mass and on the
amount of data available. For low-mass resonances (of the order of 1 TeV), the background can be approximated
with a single exponent, and the slope can be obtained from a fit to the left sideband of the invariant mass spectrum.
For large integrated luminosity, information can also be extracted from the region to the right of the resonance.
For gravitons with masses above 2 TeV fits in the left sideband give a good approximation of the background
parameters.

Such a procedure has the advantage of being largely independent of Monte Carlo simulation – if in reality the
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Figure 22: Distributions of SL values obtained in fits to 1000 pseudo-experiments with 100fb−1 integrated lu-
minosity. In each pseudo-experiment the graviton mass was obtained by finding the value maximizing signal
significance. The background only case is shown on the left plot, the right plot shows the results for a 1500 GeV
graviton with c = 0.01. The curves represent Gaussian fits to the histograms.

background has a different slope or normalization than assumed in the present analysis, the results will be different,
but will remain valid. The price to pay for this is a ∼ 10% reduction in signal significance (with respect to the
ideal case where background shape is taken from MC) and additional statistical uncertainty – the FWHM of the
SL distribution changes to a value of ∼ 1.5, from ∼ 1 in the ideal case.

7 Summary
In this work, the study of Randall-Sundrum graviton decay into muon pairs has been performed. A full simulation
and reconstruction analysis was carried out to derive both the CMS discovery potential for Randall-Sundrum
graviton and spin determination in this channel. Systematic uncertainties are taken into account. These results are
summarized in Fig. 19, where the two mass reach limit curves as a function of integrated luminosity are presented
for the coupling constant c = 0.01 and c = 0.1. About 1–2 TeV mass region is available for exploration during
the LHC startup run with

∫

Ldt = 1 fb−1. For higher statistics,
∫

Ldt = 100 fb−1, a RS1 graviton can be observed
with a 5σ limit up to the mass values of 1.7 TeV for c = 0.01 and 4.1 TeV for c = 0.1. And finally, the asymptotic
regime of LHC operation

∫

Ldt = 300 fb−1 allows to extend these limits up to 1.9 TeV and 4.5 TeV, respectively.
For an integrated luminosity of

∫

Ldt = 100 fb−1, the spin-1 and spin-2 hypotheses can be discriminated at 2σ
level for gravitons with mass up to 1.1 TeV for c = 0.01 and 2.5 TeV for c = 0.1.
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A Plots for the dimuon mass spectra for RS1 model
In this appendix examples of plots for the dimuon mass spectra for RS1 model are shown for the values of RS1
graviton masses between 1 and 3 GeV and integrated luminosities between 0.01 and 100 fb−1.
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Figure 23: Reconstructed invariant mass distributions for RS1 graviton decaying into µ+µ− pair. An example
of Monte Carlo experiment is shown for integrated luminosity of 0.01 fb−1 and c = 0.1: the signal events are
displayed for m = 1000 (left) and 1500 GeV (right). This example of Monte Carlo experiment does not contain
background events. Curves show the limit of large statistics for the same integrated luminosity.
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Figure 24: Reconstructed invariant mass distributions for RS1 graviton decaying into µ+µ− pair. An example of
Monte Carlo experiment is shown for integrated luminosity of 0.1 fb−1: the signal (red dark area) is displayed over
the background (green light area) for m = 1000 GeV. Left and right plots correspond to c = 0.1 and c = 0.01,
respectively. Curves show the limit of large statistics for the same integrated luminosity.
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Figure 25: Reconstructed invariant mass distributions for RS1 graviton decaying into µ+µ− pair. An example of
Monte Carlo experiment is shown for integrated luminosity of 1 fb−1: the signal (red dark area) is displayed over
the background (green light area) for m = 1000 (top) and 1500 GeV (bottom). Left and right plots correspond
to c = 0.1 and c = 0.01, respectively. Curves at the right plots show the limit of large statistics for the same
integrated luminosity.
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Figure 26: Reconstructed invariant mass distributions for RS1 graviton decaying into µ+µ− pair. An example of
Monte Carlo experiment is shown for integrated luminosity of 10 fb−1: the signal (red dark area) is displayed over
the background (green light area) for m = 1000 (top) and 1500 GeV (bottom). Left and right plots correspond to
c = 0.1 and c = 0.01, respectively. Curves at the last plot show the limit of large statistics for the same integrated
luminosity.
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Figure 27: Reconstructed invariant mass distributions for RS1 graviton decaying into µ+µ− pair. An example of
Monte Carlo experiment is shown for integrated luminosity of 30 fb−1: the signal (red dark area) is displayed over
the background (green light area) for m = 1500 GeV. Left and right plots correspond to c = 0.1 and c = 0.01,
respectively.
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Figure 28: Reconstructed invariant mass distributions for RS1 graviton decaying into µ+µ− pair. An example of
Monte Carlo experiment is shown for integrated luminosity of 100 fb−1: the signal (red dark area) is displayed
over the background (green light area) for m = 1500 GeV. Left and right plots correspond to c = 0.1 and c = 0.01,
respectively.

28


