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LOT SIZE DETERMINATION IN MULTI-STAGE ASSEMBLY SYSTEMS

In a multi-stage assembly system each stage requires inputs from

a number of immediate predecessor stages and it supplies, in turn, one

immediate successor stage. An efficient dynamic programming algorithm

for lot size determination at all stages is derived for the infinite

horizon case under the assumption of constant demand. For the finite

horizon case with deterministic demand, an application of Benders'

mixed integer programming algorithm is presented. For the special case

of one predecessor for each stage, a dynamic prograimning algorithm is

developed

.
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LOT SIZE DETERMINATION IN MULTI-STAGE ASSEMBLY SYSTEMS

Wallace B. Crowston and Michael Wagner

Sloan School of Management, M. I. T.

INTRODUCTION

The classical economic lot size model is used to determine the

lot size that minimizes the sum of production and inventory carrying

costs for a single stage system. Demand is assumed to be continuous

and constant with no stockout permitted. A number of extensions to the

basic single stage model have been devised [7] including provisions for

non-instananeous production, and for discrete, but constant, demands.

A further large class of extensions considers stochastic demands. A

distinguishing characteristic of all of these models is that the objective

is minimization of costs over an infinite horizon.

A different fundamental approach to determination of lot sizes is

based on the assumption of discrete known dem.ands occurring through a

finite horizon. Such an approach allows consideration of non-constant

demands and a time varying objective function. Manne [10] , Dzielinski

and Gomory [4], H. Wagner and Whitin [lA] , and H. Wagner [15] develop

results for a single facilitv. Dantzig [3] introduces the concept of

multi-facility systems in which production of items at one facility

requires inputs from other facilities, and obtains solutions for a linear





cost structure. Veinott [13] and Zangwill [16-19] consider extensions

to concave cost objectives including the important case of a production

set up charge with linear production and holding cost.

A multi-stage assembly system is a special case of Veinott 's

general multi-facility system in that each facility or stage may have

any number of predecessor stages but is restricted to at most a single

successor. Gorenstein [5,6] considers systems of this form in the

context of the finite horizon planning models of Manne [10], and

Dzielinski and Gomory [4]. In this paper we develop a finite horizon

model and present solution techniques for two cases: the multi-echelon

system with each stage having a single predecessor, and the more general

multi-stage assembly system. The former case has been treated by Zangwill

[19] for concave objective functions. We modify his dynamic programming

algorithm to take substantial advantage of the particular objective

function under consideration. In the latter case we investigate the

application of Benders' partitioning procedure [1] for mixed integer

problems, and discuss how the assembly structure can be exploited to

computational advantage.

For the case of an infinite horizon we show in this paper that the

optimal lot size at any stage is an integer multiple of the lot size at

the succeeding stage. Using this result a total cost model is formulated

and a bounded dynamic programming algorithm is presented for the optimal

solution of the problem. In a companion naper, the authors with Henshaw

[2] discuss heuristic solution methods for this problem and give comparisons

of computational times and solution values for the heuristic routines and

a version of the dynamic programming algorithm to be presented below.





Schussel [11] discusses the problem and develops a heuristic for a more

general criterion function than that described in this paper.

Problem Description

In a multi-stage system, the manufacture of final product requires

completion of a number of operations or stages. A stage might consist

of an operation such as procurement of raw materials, fabrication of

parts, or assembly. A fixed sequence of operations is assumed, so that

output from one stage serves as input to an immediate successor stage.

The final stage is an exception in that its output is a finished product

used to service customer demand. Output from any stage mav be stored

until needed in that stage's inventory.

A multi-stage assembly system is characterized by the restriction

that each stage has at most one immediate successor. We emphasize that,

in general, a stage may have any number of immediate predecessors.

Examples of multi-stage assembly systems are depicted in Figures 1 and 2.

We shall denote a stage F , where n is an index ranging from 1 to
n

N, and F is the final stage. Let a(n) be the index of the immediate

successor of F , A(n) the set of indices of all successors, b(n) the
n

set of indices for all immediate predecessors and B(n) for all

predecessors. In T^igure 2 for example

a(6) = [7], b(6) = [4,5], A(6) = [7,17],

B(7) = [1,2,3,4,5,6].
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For expositional convenience, we introduce the notion of a level, where

stages are assigned to levels according to: the final stage F is in

level L„, and F is in level L^, if its successor F . . is in L„, ,

•

M n M a(n) M+1

It is assumed throughout that demand is known with certainty.

The objective is minimization of the cost of satisfying all demand with

no backorders. Costs are assumed to depend upon the stage, F , there
n

being a fixed charge for production setup, s ($/setup) , and a linear

inventory holding cost, H ($/unit/time) . One unit at a stage is the

quantity required in one unit of final product.

We will find it convenient to refer to an incremental inventory

holding cost, h , defined by: h = H - E H . The concept of an
n n n , , , m

meb(n)

incremental holding cost is closelv related to that of 'value added" at a

production stage. In fact, the holding cost in many situations might

be: H = C I, where C = total value of a completed stage n unit and
n n n

I is a cost of carrying inventory and h = c I, where c = value per
n n n

unit added by the stage n process. We note that a direct per unit

production cost, p , can easily be added to the models discussed herein,

but such a term has no effect upon the lot size decision and simply

adds a constant to the total costs.





THE FINITE HORIZON MODEL

Introduction

A finite horizon model makes it possible to express non-constant

demand for final product and time varying objective functions. The

special case of a system with a single stage for each level, such as

that depicted in Figure 1, has been treated by Zangwill [19]. He develops

a dynamic programming algorithm under the assumption of a general concave

cost function. Under the more restrictive assumption of a time invariant

cost function, we present a characterization of the form of an optimal

solution to the multi-stage per level assembly system. Aoplication of

Zangwill 's algorithm is then discussed for the single stage per level

case with simplifications arising from our restricted objective function

noted. It is found that Zangwill 's algorithm cannot be simply extended

to the multiple stage per level case. We thus turn to a mixed integer

linear programming approach and describe application of Benders'

partitioning procedure.

Model Formulation

We assume that demand occurs at discrete points in time, production is

instantaneous and that we wish to minimize costs over a finite number

of time periods T. Then the problem of economic lot size determination

can be given a mathematical programming formulation which shall be





referred to as Problem I;

Let Q = Production quantity at stage n at time t
nt T 7 o

Y = Ending inventory at stage n at time t

d
nt





Form of an Optimal Solution

This model is an example of the multi-facility economic lot-size

model discussed by Veinott [11]. In this connection, we remark that

the objective function I.A is concave. Furthermore the constraint set

I.B is of the form Ax = b , where A is a Leontief matrix, that is, each

column of A has exactly one positive element. Following Veinott, we

obtain the following characterization of an optimal solution:

a) production at a stage does not occur if entering inventory already

exists; and b) production at a stage does not take place unless

production also occurs simultaneously at the immediate successor stage.

These results are summarized in Theorem 1.

Theorem 1: Form of the Optimal Solution. There exists an optimal

solution to Problem I with the properties that

a) Q ^ • Y , = for all n,t; and
^nt nt-1

b) Q • (1 - d , , ) = for all n,t,
^nt a(n)t '

A detailed proof is given in the Appendix. Approximately stated,

property a) is direct consequence of Veinott's Corollary 2 [13] which

characterizes extreme point solutions of Leontief substitution systems.

Property b) depends upon the time invariance of the cost functions

H and P . We start with a presumed optimal solution and show that
nt nt K f

it can be modified so as to satisfy the conditions of Theorem 1 with





identical setup costs and at no increase in inventory holdings costs.

Theorem 1 provides the basis for a dynamic programming algorithm for

solution of the single predecessor case.

Dynamic Programming: One Stage per Level

We now consider the case in which each stage has no more than one

predecessor. This model has been analyzed bv Zangwill [19] for concave

cost functions. He develops the dynamic programming recursion:

F (a,B) = Min {P , . I R + F , . (a,n)
nt T T, a(n)t m a(n)t

a-l<Y<B m=a

(1)

+ C Z R + F ^,t(y+1,B)}
nt ,

1 m nt+1
m=Y+l

where F (a,B) is the optimal cost of sending I R^ units from node
k=a

(n,t) to final destinations (N.a), (N,a+1) , . . . , (N,B) ; and C ^(O and
nt

P ^(O are general concave holding and production cost functions,

respectively. Theorem 1, property b) allows simplification of this

recursion for the particular cost functions under consideration. Let

B
F (B) be the optimal cost of sending Z R, units through node (n,t) to
"^

k=t
^

final destinations (N,t), (N, t+1) , . . . , (N,T) given that production does

take place at (n,t). Then

B

F (B) = Min {S + F ..Ay) + H (y-t+l) (Z R ) + F (B)

}

t£Y£B ^^""^ "^"^^ " m=Y+l "* ""^^^

(2)





10

The simplification arises from the consequence of property b) that if

production occurs at any stage at time t, it must be partly to satisfy

final demand at time t. Thus ot = t, given that production occurs, and

the number of dynamic programming stages can be significantly reduced.

The recursions are computed in the usual dynamic programming

fashion, starting with F^^^(T,T), then
^^j^^-l

'^^"^''
' ^NT-l^"^^

' ' * ' '

^b(N)T^^^'*-''^Ol''^''" %' ^a(N)t*'^-*'
^^'^

^a(N) ^^^ ^^^^^ ^° ^^ ^^'^°

for all t and B, and a(0) is the first stage. Production must take

place at all stages for t = 1; hence F_ (T) is the value of the optimal

solution. The number of dynamic programming states required is

(N + 1)T • (T + l)/2.

FIGURE 3

Stage

a(n)

F (B)H (Y+l-t)(Z R ) F (B)
nt n

, -, m ny+l
m=Y+l

Q O-if-O—o—0-4-9

a(n)
\(n)r^^^

I '

; I

'

0-- -o-ii-d o— -6-11 --6

Y+1 Time

¥ (B) = Min {S , . + F . , (y) + H (Y+l-t) (E R ) + F ^, ( B)

}

""^ ^<-^^R a*-^) a(n)t n ' ' _ , i
m nY+1

t_<_Y_<_Jt> m=Y+l





11

Mixed Integer Programming

The dynamic programming recursions (1) , (2) , cannot be extended in a

straightforward fashion to cases in which stages have more than a single

predecessor. Attempts to accomplish this extension lead to a

computationally unreasonable number of dynamic programming states.

Since Problem I is a mixed integer linear programming problem it can be

solved by general methods. We discuss the application of the partitioning

procedure of Benders. We will show that the problem structure can be

exploited to computational advantage in the single stage per level case,

and that the multiple stages per level case decomposes usefully.

Benders' procedure requires repeated solution of two problems:

a pure integer linear problem formed from the integer variables of the

original problem, and a continuous linear problem which is the dual of

the linear programming problem defined by treating all integer variables

as constants in the original. Recasting Problem I with the integer

variables d treated as constants, we obtain Problem II
nt

Z = Z E S d + min E Z H • Y ^ II.

A

ntnnt ntn nt

subiect to Q^+Y^.-Y^-Q . . = for all n,t H'
nt nt-1 nt a(n;t '

Q,Y ^

where
'^a(N)t

" \ ^°^ ^^^ ^
^'^'^

*
For a description of Benders' procedure, see Hu [8]
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Associating the dual variables w with the constraint set II. B and
nt

V ^ with the constraint set II. C, the dual of Problem II is Problem III;
nt

Z = E E s d + max ERw +EEmdv III.

A

n t n nt t t nt n t t nt nt

subject to w-E w. -v<0 III.B
nt . , . s jt nt —

jeb(n) ->

w - w -, < III.C
nt nt-1 —

w ^, V ^ > for all n,t.
nt nt —

.

'

Benders' procedure uses Problem IV to generate constraints for the

pure integer problem, Problem IV:

maximize z

subject to z > E R w™ + E E (S - M V™ )d™ m=l , . .
.
,M IV— ttNt ntn t nt nt ' '

m m thwhere there have been M iterations and w , v are obtained from the m

solution of Problem IV, <_ d <_ 1 integer for all n.

We also insist d , = 1 if R, > for all n. Problem IV returns values
nl 1

of the integer variables d for the next solution of Problem III.
nt

When Z = z, the procedure terminates.

The point we wish to make is that the continuous Problem III can be

solved with very little effort. In the case of single stages per level,

Problem III is a simple shortest path problem and can be solved by first

applying the recursion





13

w = min [w , + H ; w, , , ^] if d =1 (3)
nt nt-1 n b(n)f' nt

= w 1 + H
nt-1 n

if d =0
nt

where w = for all t, w _ = for all n,
ut nU

then , ^^=w^-w, ,,^
nt nt b(n)t

if d =
nt

V =
nt

if d = 1
nt

In the case of multiple predecessors, Problem III decomposes into

a series of problems which may be solved by the recursion (3) . The

procedure is soecified by replacing w, , - with w ' , = Z w. in (3).
^^") ^^"' jeb(n) J

Figure 4 illustrates the solution of Problem III for a two stage, single

stage per level assembly structure.

Q >Qh• ii; ^—*(S^ ^—T 1

3

r^2i .^^22) »(^23)

Given: d^^ = d^^ = d22 = ^

^12 = ^^13 = ^23 = °

"11 = °' "12 = ^1 + "l' ^3 = "^12 * "1

w = w + 0, W22 = min(w^2' ^21 "*" ^^2^ ' ^23 ^ ^''22
"*" ^2

^1 = ^21 = ^22 = °' ^12 = ^12' ^3 = ^3' ^23 = ^23 " "l3

FIGURE 4
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THE INFINITE HORIZON MODEL

Introduction

In this section we focus on the problem of determining the set of

optimal lot sizes in an N-stage assembly system under assumptions of

constant discrete demand and infinite production rates with no back-

orders. We shall refer to this as the Basic Problem. In addition to the

Basic Problem described above we briefly discuss the case of non-instanta-

neous production and the case of delivery delay between stages. We also

examine the implications of these models for the development of heuristic

solution techniques for more complicated multi-facility structures.

For the special case of a single predecessor for each stage, or

serial production, there are two recent contributions. The model of

Taha and Skeith [12] allows non-instantaneous production, delay between

stages and back-orders for the product of the final stage. They assume

that in an optimal solution the lot-size at a stage is an integer multiple

of the lot-size at the succeeding stage and suggest the problem be solved

by examining all combinations of such integer values. Jensen and Khan

[9] also allow non-instantaneous production but do not use the assumption

of positive integers. Instead they have constructed a simulation model

which evaluates the average inventory at a stage, given the lot size

at that stage and at the succeeding stage, along with the production

rate at both stages. A dynamic programming algorithm is then formulated in

which the simulation model is used in evaluation of each functional eauation.

They note that high average inventories result if the integer multiple
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assumption is not followed and discuss a problem for which non-constant

lot size is optimal.

For the multiple predecessor case Schussel [11] develops a simulation

model and heuristic decision rule which again assumes that integer

multiples are optimal. He adds a "learning curve" function so that

unit production cost decreases with lot size and allows costs to be

discounted over time. Crowston, Wagner and Henshaw [2] tested four

heuristic rules and compared them with a version of the dynamic programming

algorithm developed in this paper.

In this section we prove that under certain assumptions the "integer

multiple" assumption used bv others is correct. A particularly

simple model of the total cost structure is then formulated and a

dynamic programming algorithm is developed to find optimal lot sizes

for all stages in the system. It is shown that the cost structure may

be used to develop upper and lower bounds on all lot sizes and thus

increase the efficiency of the dynamic programming algorithm.

Form of the Optimal Solution

We consider only solutions which can be characterized bv a single

lot-size for each stage. Let k = Q /Q , . and K = Q /Q., . A particular
n n a(n) n n N

solution is given by k^ = {k^ ,k^ , . . . ,k^_^, 1} and Q^ or by K^ = {kJ,K^,

. .
.
,K^_ , 1} and Q^. Then it can be shown that the ratio of lot sizes

between successor and predecessor stages, k , must be a positive integer.

This result is summarized in Theorem 2.
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Theorem 2 : Form of the Optimal Solution. If the set of all solutions

to the Basic Problem which can be characterized by a set of rational

lot size multiples k and final stage quantity Qjl, a minimum cost

solution exists with od, and k all positive integers.

A detailed proof is given in the Appendix. An expression is

derived for the costs associated with a lot size Q given . . . This
n "a(n)

function is shown to be minimized with k = Q /Q , v a positive integer.
n n a(n)

Proof then follows by induction over the levels of the svstem.

We wish to emphasize that the assumption of a time-invariant lot

size for each stage is quite strong. The possibility of cyclic lot

sizes, for example, is thus eliminated. The restriction may be

justified, in some cases, by the costs of administering changing lot

sizes. In any event. Theorem 2 leads to computationally powerful

algorithms for finding the optimum in a class of easily imnlemented

solutions. Given the results of Theorem 2, we now derive expressions

for the total costs of a particular solution k ,
Q~ .
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Development of the Model

If all lot sizes within the system were equal, then, given instanta-

neous production and no transfer delay, inventory would be held only at the

final stage. If Q ?^ Q / x then in-process inventory occurs at F and the
" n a(n) n

average level of such inventory is a complicated function of Q and

Q , - . The value of a unit of such inventory would be C = E c + c
a(n) n „, , m n^ meB(n)

and the carrying cost would be IC . In Figure 5 we show the inventory

at each stage of a 3-stage production process with K = 6 , K„ = 2 and

K3 = l.

As we have implied above, existing models have been based on a

determination of average inventory at a stage . A simpler but mathematically

equivalent formulation results from an expression of the inventory in the

total system that has undergone the activity of a particular stage.

Figure 6 illustrates such system-wide inventory for the 3-stage problem.

Since the demand on the system is assumed constant, the total system

inventorv of units that have undergone the activity of F will decline

at rate R between successive production of Q . Given the optimality
'^

n

condition of Theorem 2, and Q , . will be produced simultaneously.
n a(n)

Since this is true for all stages F , m e A(n) , at the instant before
° m

Q is produced the complete system inventory of units that have undergone

the activity of F will be zero. At that point in time a lot is
n

produced and the system inventory becomes Q with units possibly located

at F and F , m e A(n) . We observe that the system inventory of the
n m —

—

'

product of any stage has the familiar saw-tooth pattern of the basic

E.O.Q. model and thus the average inventory for the product of F would be





INVENTORY LEVELS AT EACH STAGE

KK
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Q^ - 1

assuming discrete demand. The value of this inventory will be

c per unit and therefore the holding cost will be
n

Q - 1 0-1

The total cost for the product of F , including set-up and inventory
m

carrying cost will be

RS 0-1
TC = -^ + (-^^—) h^ (4)

n Q In
and the total cost for the system, s, will be

N RS Q - 1

^
n=l ^n 2

N RS K Q„ - 1

n=l n N

Note that for a particular vector K-^ the optimal value of Q will be

(6)
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Simple Extensions of the Model

In this section we briefly consider a special case of non-instanta-

neous production and the case of transfer delay between stages. If we assume

production rate p at F and given p > v> / \ then the result of^ n n n — a(n)

Theorem 2 applies. The cost function for the product of F will be

TC = RS /K Q.. + [(K 0,, - 1)/2][1 - R/p ]h . (7)
n n n N n N n n

Finally we observe that a transfer delay between stages simply adds

a constant inventory term to either equation (4) or (7) and therefore

does not affect the optimal solution.

The Dynamic Programming Algorithm

The dynamic programming algorithm is written in terms of the simplest

cost structure although it is clear that it could be modified to include

the cost function for non-instantaneous production. Solution proceeds

from the raw material stage to F,, with the recurrence relation defined

as follows.
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Let L denote the set of all positive integers; u (O ) , the optimal
n n

cost at F and all prior stages F , m e B(n) given Q . Then
n in n

(Q^ - 1) RS^

u (0 ) = t; h + -— + Z minimum u (2.Q ) . (8)
n^n^ 2 n Q u/ ^ n t

m ^n
n meb(n) HeL

Optimal solutions for the system of Figure 2 have been obtained

with this algorithm in approximately ten seconds of computation time

on a time-shared GE 645 system [2].

We note that an inventory space constraint at F may be included
n

directly as an upper bound on Q . Other bounds are possible given the

form of cost function ( 4 ) . We will now develop both upper and lower

bounds on Q so as to improve the theoretical efficiency of the dynamic

programming algorithm.

If we assume a problem with cost structure (4 ) , then at F a

lower bound, b , on the cost of system inventory of that stage will be

RS /2RS h

" '2RS \l K 2

This assumes no interdependency between successive stages. Then a

lower bound for the complete system, B will be

N
= E b

n=l
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An upper bound on total cost B for the system may be derived from a

feasible heuristic solution [2] to the problem. Thus an upper bound

on the cost of the product of F will be

b + (B - B )n h s

Now setting expression ( A ) equal to the upper bound on cost, that

RS h
—^ + (Q - 1) -r^ = b + (B - B )

n z n h s

u a
we may solve directly for upper and lower bounds, Q and Q on Q

In addition, from Theorem 2,0 > / .. Therefore
n — "a(n)

Q max = min

Q , me B(m)

and

\ ^n

n^ • JQ min = max /

\ Q , me A(n)

Similar bounds may be calculated for the cost structure of equation

(7).
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Implications of the Model

A variety of heuristic rules have been suggested for problems

having a structure similar to that of the multi-stage assembly system

[2,9]. In addition in industrial applications heuristics such as

"constant lot size" at all stages, where the lot size is taken to be

= / , or "independent determination of lot size" at each stage

" V
"»

are used. For the cost structure of ( 4 ) the optimal "constant lot

'2RES

size" would be ,
/—=-r— although experimentation shows [2] that this

is a poor decision rule. If "independent determination of lot size"

2RS

is used, a common model is Q = / ., . This implies the carrying cost

" V
""

of a unit of in-process inventory of F is a function of the total value
^ n

of its components. Our model indicates that this results in double-

counting and that the use of the incremental carrying cost, that is

/2RS

Q = \ /—r— is appropriate.'"

" \\
Finally we would suggest that if heuristic decision rules are

constructed for the more complicated case of multiple successors,

incremental costs are again appropriate.
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APPENDIX

Theorem 1 : Form of the Optimal Solution (Finite Horizon) . There

exists an optimal solution to Problem I with the properties that

^> ^nt \t-l = «' -<^

b) Q ^ (1 - d . . ) = for all n,t.
nt a(n)t

Proo f ; We will give a procedure for modifying a presumed optimal

solution at no increase in cost to a solution satisfying the properties

of Theorem 1. First we state Lemma 1 which is a restatement of

Corollary 2 by Veinott [13].

Lemma 1. Let d = d for all n,t. Then the resulting system of equations
nt nt o y M

I.B with the column corresponding to Q removed if d = 9 is of the^ nt nt

form Ax = b, where A is a Leontief matrix. Furthermore, I. A is concave.

*
Thus, there exists an optimal solution to Problem I, given d = d ,

with the property Q,x (1-d,,) for all n,t.
^ ^ a(n)t a(n)t

* A A
Proof of Theorem 1 : Start with a presumed optimal solution (Q ,Y ,d )

.

A
Let d ^ = d ^ for n,t. Applying Lemma 1, obtain a new optimal solution,

nt nt ^^ -^ '^ ^

(Q , Y I d = d ), with property a) satisfied. Now suppose

0^(l-d /^)/0 for some n and t. In addition, assume for the
nt a(n)t

moment that d = for all j e b(n) . Then the cost change resulting

from transferring production one time unit in the future (i.e. Q' = 0,

d' = 0, Q' , = ,, + Q , d' , = 1) is given by Z' - Z = (E H. - H )Q ,

nt ^nt+1 -nt+l ^nt' nt+1 ^
'

ieb(n) ^
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If d! ^,, = for all j e b(n) and d , . .^ = 0, then the process can be
jt+1 -" a(n)t+l ^

repeated at the same change in cost. Thus, if Z' - Z <_ 0, production

can be transferred to a future time period t at a savings of

(t - t)(Z' - Z) until either d! = 1 for some j e b(n), or d , , =1.
jT a(,n;T

If Z' - Z >_ 0, then production can similarly be transferred forward

in time. In both cases, the resulting solution maintains property

a).

Define recursively a chain of predecessors, J , as a set of
nt

ordered pairs (i,t) where (n,t) e J and (i,t) e J if (a(i),t) e J
nt nt nt

Let P(J ) be the set of predecessors of J , that is, (i,t) e P(J )
nt nt nt

if (a(i),t) E J and (a(i),t) i P(J /) . We can now treat the entire
nt nt

chain of predecessors J as a single stage transferring production to

the future if H > E H., otherwise transferring production to"~ ieP(J J ^

nt

an earlier time period. The procedure must terminate since each

iteration reduces by at least one the number of cases where d ^ d , ,

nt a(n)t

for some n and t, and there is a finite number of these.

Theorem 2 ; Form of the Optimal Solution (Infinite Horizon) . Of the

set of all solutions to the Basic Problem which can be characterized

by a set of rational lot size multiples k and Q^, a minimum cost

solution exists with Q^ and k" all positive integers.

Proof ; We will use Proposition 1, Proposition 2, and Lemma 2.
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Proposition 1: An optimal solution to the Basic Problem with rational

lot size multipliers k is in phase, that is, for each stage n, there

is some point in time at which production occurs simultaneously with

production at the successor stage a(n) .

Proof: Since and Q / ^ are rational stage n inventory levels
n a(n) ^

cycle with period D where D=qQ =q/xQ/s and q , q , , relatively
n n a(n) a(n) ^n a(n)

prime integers. Let At be the smallest interval of time between

production at stage n and subsequent production at stage n + 1 during

the cycle. If At ^ 0, then all production at stage n (and stage n's

predecessors B(n)) can be transferred to the future by the amount

At with no increase in setup costs and reduced inventory costs.

Proposition 2: In a single stage system with constant discrete demand,

R, and with the system in phase in accordance with Proposition 1, the

total cost/unit time associated with lot-size Q^ is given by

Z(Q^) = S^/Q^ + h^(Q^ - l)/2 + RH^Cq^ - l)/q2

where q„ is defined by q-j/q-, = Q/R and q , q are relatively prime

integers.

Proof: There are three components of cost to consider:

1. The set-up cost— S R/Q .
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2. The familiar .inventory cost which arises from periodic addition to

the entire system of the amount Q , and the intermittent flow out of

the system of R units— ^ (Qi ~ l)/2' Note that the holding cost is

taken to be h. even though the physical product does not remain in

Stage 1 inventory. As will be discussed later, this approach is correct

so long as the holding cost h is taken to be the value added at F .

n n

3. The permanent Stage 1 inventory that must be maintained to ensure

that product is always available when required. Since Q^ and R are

assumed to be rational, we can find a cycle. The permanent component

of inventory is the amount which must be on hand at the beginning of

the cycle to insure that Stage 1 inventory remains non-negative. This

amount can be found assuming that Stage 1 inventory is zero at the

start of the cycle, and finding the minimum (most negative) level which

is attained during the cycle.

I(t) 3^

Examcle: Q^ = 3

R = 4

D = 12

Min I(t) = 1(9)
0<t<D

= -3

12 Time

FIGURE 7
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The level of inventory at any time t _> measured from the beginning of

the cycle is

I(t) = [t/Q + 1]Q - [t/R + 1]R where [ ] denotes integer part.

= ([t/0^] - R/Q^ [t/R])Q^ + Q^ - R

I(t) is clearly minimized for some t such that t/R is integral, that

is, immediately following a withdrawal to satisfy demand.

I(t) = min ([iiR/Q^] - R/Q^[£R/R] )Q^ + Q^ - R

a integer

min -(£R/Q^ - [£R/Q^])Q^ + Q^ - R

l integer

min -(dq^/q^ " [£q2/q^])Q^ + Q^ - R
a integer

min -()!-q2 mod q^) Q-^/q-,^ + Q^ - R.

£ integer

Since q„, q^ relatively prime, £q„ mod q takes on all the values

l,2,...,q -1. In particular, for some i, 2,q„ mod q = q^ - 1.

min I(t) = Q^(l - ci^)/q^ + Q^ - R = R(l - q^ + q^ - q2)/q2

= - R(l - qj/q^ .

*

Thus the permanent inventory component costs RH (1 - q )/q^.

k
This result was suggested by William M. Hawkins 5 Sloan School of Management.
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Lemma 2: A function

Z(Q) = C^/Q + C^CQ - l)/2 + Q2C2(q2 " l)/^2

where C , C ,Q„ are constants and q„ defined as in Proposition 2 is

minimized for q„ = 1, that is, with Q/Q„ an integer.

Proof: Suppose Q minimizes Z and (} /Q not integer. Define Q by

*
Q = Q + AQ with Q-, /Q2 an integer and < AQ <_ Q . This can be done

because Q is clearly not zero. Then

Z(Q*) = C^/(Q^ + AQ2) + C^iq^ + AQ2)/2 + Q2C2(q2 " ^^/°-2

since Q not integer, (q - l)/q„ 2. -^/^

Z(Q*) 2L ^i/CQi + AQ2) + C2(Q2 + AQ2)/2 + C2Q2/2

^ C^/(Q^ + O2) + C.^(Q^ + q^)/2 + C2AQ2/2 since Q2 >_ HQ^-

> C^/(0^ + Q2) + C2(Q^ + Q2) = Z(Q^ + Q^).

Thus Z(Q + Q ) _< Z(Q ), and (Q + Q2)/Q2 is integer bv construction.

Proof of Theorem 2 follows bv induction over the levels of the

A
multi-stage system. We assume we have an optimal solution and show

that it must be integer. Consider the stages belonging to the first

*
level, L, . If n e L, , then h = H . Substituting Q - , for R in

1 Inn a(n)
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Proposition 2, Z(0 ) = S /Q + ^ (Q - l)/2 + H ((q , , - l)/(q (n))Q^, ..^ n n n n n n a(.n; a a(,n;

Lemma 2 applies implying k is a positive integer.

Now suppose k. is integer for all stages F., i e L U L U ,...,UL._,.

Let n £ L . Then the total cost associated with the choice of lot size
J

Q is evidently

Z(Q ) = RS /Q + h (Q - l)/2 + , .H (1 - q , . /q . .^n n^n n ^n a(n) n a(n) ^a(n)

+ l Z(k.O )

leb(n)

Noting that (1 - q /.s)/q /.n = if k. is integral,
'' a(i) a(i) 1

Z(k.Q ) = S./k.Q + h.(k.O - l)/2 + E Z(k.k n )in 11 n 11 n nu/--\ Jiin

thus, Z(Q ) = R/Q .E S. + Q /2 Z h. + H , . (1 - Q,/ J/q,/„v
' ^n ^n . „, . 1 n . ^. . i n a(n) a(n) a(,n)

leB(n) leB(n)

Since, by definition, H = Z h. , Lemma 2 applies directly. The
^

ieB(n)
^

induction argument proves the theorem for all stages including the

final stage if Q ,.,. is taken to be R.
a(N)
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