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Abstract: We present numerical results for the location of the chiral critical line at finite

temperature and zero and non-zero baryon density for QCD with Nf = 2 + 1 flavours of

staggered fermions on lattices with temporal extent Nt = 4. For degenerate quark masses,

we compare our results obtained with the exact RHMC algorithm with earlier, inexact

R-algorithm results and find a reduction of 25% in the critical quark mass, for which the

first order phase transition changes to a smooth crossover. Extending our analysis to non-

degenerate quark masses, we map out the chiral critical line up to the neighbourhood of

the physical point, which we confirm to be in the crossover region. Our data are consistent

with a tricritical point at (mu,d = 0,ms ∼500) MeV.

We also investigate the shift of the critical line with finite baryon density, by simulating

with an imaginary chemical potential for which there is no sign problem. We observe this

shift to be very small or, conversely, the critical endpoint µc(mu,d,ms) to be extremely

quark mass sensitive. Moreover, the sign of this shift is opposite to standard expectations.

If confirmed on a finer lattice, it implies the absence of a critical endpoint for physical QCD

at small chemical potential, or another revision of the QCD phase diagram. We critically

examine earlier lattice determinations of the QCD critical point, and find them to be in no

contradiction with our conclusion. Hence we argue that finer lattices are required to settle

even the qualitative features of the QCD phase diagram.
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1. Introduction

Based on the property of asymptotic freedom, a fundamental prediction of QCD with three

flavours of quarks is the transition from the familiar hadronic physics at low temperatures to

a regime of “deconfined” quark gluon plasma at high temperatures. Whether this transition

is characterised by singular behaviour of the partition function corresponding to a first or

second order phase transition, or merely represents a smooth and analytic crossover between

different dynamical regimes, depends crucially on the choice of the quark masses and the

net baryon density specified by its chemical potential, µB. In the following we shall assume

the light quarks to be degenerate, mu = md = mu,d, and vary ms independently. We couple

the quark chemical potential µ = µB/3 to the light quarks only, except for the degenerate

case Nf = 3, where all quarks are coupled. The parameter space of the theory considered

here is thus four-dimensional, {mu,d,ms, T, µB}.

The first task in determining the phase diagram in this parameter space consists of

finding the (pseudo-)critical temperature T0(mu,d,ms, µB), defined e.g. by the peak of some

susceptibility, which represents the boundary between the hadronic and plasma regimes.
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Figure 1: Schematic phase transition behaviour of three flavour QCD for different choices of quark

masses (from [1]), at zero density.

The independent variables mu,d,ms, µB then span a 3d parameter space with regions of

first order phase transitions and analytic crossover separated by surfaces of second order

phase transitions. In order to identify the order of phase transitions, and the location of

the critical surfaces in particular, finite size scaling analyses are necessary.

Let us first discuss the situation for µB = 0, shown schematically in figure 1 (for

early references, see, e.g. [1]). Gauge invariant, local order parameters characterising the

transition only exist in the extreme cases of zero or infinite quark masses, namely the chiral

condensate and the Polyakov loop, respectively. These limiting theories thus must feature

singular phase transitions, and one may write down effective theories of the Ginzburg-

Landau type for the order parameters [2]. It is numerically well-established that the phase

transition is first order in the quenched [4] limit, and there is strong numerical evidence for

first order in the chiral [3] limit. Since first order phase transitions are robust against small

variations of the parameters of the theory, the first order regions must extend by a finite

amount into the quark mass plane. On the other hand, simulations have revealed smooth

crossover behaviour for intermediate quark masses, which implies second order boundary

lines between the first order and crossover regions.

In the case of heavy dynamical quarks, the relevant symmetry is the Z3 center symme-

try, and the weakening, by the dynamical quarks, of the first-order transition which occurs

in the Yang-Mills theory, is understood qualitatively [5] and to a large extent quantita-

tively. Simulations have determined the second-order line to correspond to a meson mass

of about 2GeV [6], and have confirmed the expectation that the universality class is that

of the 3d Ising model. In the case of light quarks, numerical simulations are more difficult,

and very little is known quantitatively about the location of the second order boundary

line. The only point computed to some accuracy with standard staggered fermions is the

chiral critical point1 mu,d = ms = mc(µ = 0) ≡ mc
0 on the Nf = 3 diagonal [7 – 9], which

1The superscript ”c” here and in the following refers to ”critical”, not to charm.
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Figure 2: The chiral critical surface in the case of positive and negative curvature. If the physical

point is in the crossover region for µ = 0, a finite µ phase transition will only arise in the scenario

with positive curvature.

also was determined to belong to the 3d Ising universality class [7].

While the statement about the universality class concerns infrared physics and thus

is stable against cut-off effects, the location of the critical point in the physical mass

plane turns out to be very strongly affected. To date calculations have been performed on

lattices with 4 time-slices only (Nt = 4, implying a lattice spacing a = 1
NtT

∼ 0.3 fm), but

simulations with improved actions indicate values for mc
0, and the associated pion mass,

which are considerably smaller than the standard action result [7]. Moreover, all these

simulations used the so-called R-algorithm [10], which has stepsize errors and therefore

gives only approximate results in the absence of a careful extrapolation to zero stepsize.

In any case, all current results are consistent with the physical point being in the crossover

regime.

In the presence of a chemical potential the second order boundary lines turn into

surfaces, as indicated in figure 2. The qualitative features of the (T − µ) phase diagram

now depend crucially on the curvature at µ = 0, d2mc/dµ2(0). The common expectation

is that this curvature is positive. Hence the physical point, once the chemical potential is

increased, will be closer to the critical line, and intersect it for a critical chemical potential

µc. For values larger than µc a first order phase transition is expected. Clearly, this is not

the case for negative curvature of the critical surface.

In this work we present a comprehensive numerical study mapping out the chiral critical

line in simulations of the standard staggered action on several lattices with Nt = 4. Upon

repeating the computation for the Nf = 3 chiral critical point with the rational hybrid

Monte Carlo (RHMC) algorithm [11], which is free of finite step size errors, we find that

the bare quark mass amc
0 is reduced by 25%, and the physical pion mass by 10%, compared

to the accepted values determined previously using the R-algorithm. We then extend our

simulations to cover a wide range of quark masses, mapping out the critical line up to the

neighbourhood of the physical point. In agreement with expectations, the physical point is

found to be on the crossover side of the boundary. Assuming O(4) behaviour for the Nf = 2

chiral limit, the fit to our critical line can be extrapolated to the mu,d = 0 axis consistently

– 3 –
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with the required O(4) scaling behaviour, putting the tri-critical point in that scenario

(see figure 1) around mtric
s /T ∼ 2.8. However, non-O(4) behaviour is not excluded by our

data. Our results should also provide a testing ground and input for analytic attempts to

determine the critical line from effective theories based on universality arguments [12] (for

a review, see [13]).

In a second set of simulations, we repeat the analysis for an imaginary baryon chemical

potential µB/(iT ) = 2.4 and determine the corresponding shift of the critical line, following

the strategy already used in [9]. Together with additional imaginary µ simulations for the

Nf = 3 case, this allows for a determination of the curvature of the critical surface at

µB = 0, which can be readily continued to real values of µB . We find this curvature to

be negative, as illustrated in figure 2 (right). In the (T − µ) phase diagram this implies

that the critical endpoint moves to smaller µ with growing quark mass, until it disappears

entirely for physical quark masses. This is contrary to customary expectations, and in

contradiction with the results of [14], obtained at the same lattice spacing and with the

same action, but using the R-algorithm and a different numerical approach. Clearly, a

careful study of systematic errors, due in particular to the very coarse lattice spacing, is

needed. Still, if the physical point of QCD is indeed in the crossover region at µB = 0,

our finding would imply that the transition will remain an analytic crossover also for any

finite µB <∼ 500 MeV, placing a possible QCD critical point at much larger values of µB .

Preliminary results to this extent have already been given in [15].

After summarising the properties of QCD at imaginary µ and introducing the Binder

cumulant as our observable for the order of the phase transition in sections 2, 3, respectively,

we begin our analysis in section 4 with a thorough discussion of step size effects for Nf = 3

and a comparison of results from the R- and RHMC-algorithms. The computation of the

chiral critical line for µB = 0 and µB/(iT ) = 2.4 is presented in section 5, which also

discusses the resulting new scenario for the (T − µB) phase diagram of physical QCD. An

assessment of systematic uncertainties is contained in section 6, along with our conclusions.

2. QCD at imaginary µ

In order to study the phase diagram figure 2 at finite baryon density, we employ simula-

tions at imaginary chemical potential µ = iµi, where the fermion determinant is positive,

followed by analytic continuation, as discussed in detail in previous work [16, 9]. To render

the paper self-contained, we briefly recall some points needed in the sequel. The QCD

partition function at finite baryon chemical potential µB = 3µ is even under reflection

µ → −µ. Moreover, it is periodic in the imaginary direction, with period 2π/Nc for Nc

colours [17], i.e. Z(µr/T, µi/T ) = Z(µr/T, µi/T + 2π/3). Because of the fermionic bound-

ary conditions, this symmetry implies that a shift in µi by 2π/3 is exactly compensated

by a Z(3)-transformation, so that Z(3) transitions take place between neighbouring centre

sectors for all (µi/T )c = 2π
3

(

n + 1
2

)

, n = 0,±1,±2, . . .. It has been numerically verified

that these transitions are first order for high temperatures and a smooth crossover for

low temperatures [16, 18], as in figure 3. Hence, the first of these transitions limits the

radius of convergence for analytic continuation to the first sector for most observables.
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Figure 3: Schematic phase diagram for QCD at imaginary chemical potential. The diagram is

periodically repeated for larger values of µi. The heavy lines indicate first order transitions, the

thin lines crossovers. The nature of the temperature-driven transition depends on the parameters

or the theory (Nf , quark masses).

With a pseudo-critical temperature of T0 ∼ 170 MeV, our accessible physics range is thus

µB <∼ 500 MeV.

Within this first sector, observables can be simulated at imaginary µ = iµi. The results

may be fitted by truncated Taylor series 〈O〉 =
∑N

n cn(µi/T )2n, whose convergence can be

tested by inspection. Analytic continuation of successful fits is then trivial.

A remarkable finding of previous work inspecting Taylor series is that, within

µB <∼ 500 MeV, convergence is rapid and screening masses [19, 20], the pressure [21] as

well as the pseudo-critical temperature [16, 9] are all well described by the leading term

∼ µ2. This becomes plausible by noting that at finite T the natural expansion parame-

ter is µ/(πT ) rather than µ/T [19, 20]. Hence we write the pseudo-critical temperature,

separating the hadronic from the plasma phase, and the critical quark mass marking the

boundary between first order and crossover behaviour, as

T0(mu,d,ms, µ)

T0(mu,d,ms, µ = 0)
= 1 + b1(mu,d,ms)

( µ

πT

)2

+ . . . (2.1)

mc
u,d(ms, µ)

mc
u,d(ms, µ = 0)

= 1 + c1(ms)
( µ

πT

)2

+ . . . (2.2)

The choice to treat mu,d as the independent variable parametrizing the critical line in

eq. (2.2) reflects our practical procedure, namely to fix ms and then scan in mu,d, because

the critical line is a steeper function of the latter. We shall determine the coefficients b1, c1

quantitatively and free of step size errors for the Nf = 3 theory, and provide the sign of c1

along the whole chiral critical line for Nf = 2 + 1.

3. Universality and the Binder cumulant

There are different ways to investigate and exhibit critical behaviour of the theory along

the critical line, such as finite size scaling (FSS) of susceptibilities, of Lee-Yang zeroes or of

– 5 –
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the Binder cumulant. The Binder cumulant [22] offers various advantages for our particular

study. It is defined as

B4(m
c, µc) =

〈(δX)4〉

〈(δX)2〉2
, (3.1)

with the fluctuation δX = X−〈X〉 of some observable X around its mean value, evaluated

at the pseudocritical coupling (determined by a peak in 〈(δX)2〉 or a zero in 〈(δX)3〉). In

practice we study Xi = ψ̄iψi, i = 1, 2 for the two quark masses mu,d,ms. In the infinite

volume limit the Binder cumulant behaves discontinuously, assuming the values 1 in a first

order regime, 3 in a crossover regime and some critical value reflecting the universality class

at a second order critical point. On a finite volume the discontinuities are smeared out and

flattened, so that B4 passes continuously through the critical value. The location of the

critical point in parameter space will then be displaced by some finite volume correction.

In [7] the Binder cumulant was chosen as observable because its critical value for the

expected Z(2) universality class is distinct from those corresponding to other symmetries

like O(2), O(4) etc. In this way Z(2) scaling for the Nf = 3 chiral critical point was clearly

established in [7]. Once the universality class is ascertained, the Binder cumulant allows to

approximately map out the critical line on a fixed lattice size, by scanning the parameter

space for the line on which B4 is held constant at its critical value. In practice this is best

achieved by holding one quark mass fixed, and scanning in the other. In the small mu,d

regime the critical line turns out to be a steep function mc
s(mu,d), and thus we choose to

scan in the light quark mass while keeping ms fixed. In the neighbourhood of a critical

point B4 can then be expanded in a Taylor series,

B4(amu,d, ams, aµ) =
∑

n,m

bnm(ms)
(

amu,d − amc
u,d(ms)

)n
(aµ)m, (3.2)

with b00(ms) → 1.604 for V → ∞. For Nf = 3 there is only one mass variable mu,d =

ms = m in the above expression, and the mass dependence of the coefficients disappears.

For large volumes the approach to the thermodynamic limit is governed by universality.

Near a critical point the correlation length diverges as ξ ∼ r−ν , where r is the distance

to the critical point in the plane of temperature and magnetic field-like variables, and

ν ≈ 0.63 for the 3d Ising universality class. In practice, we first find the pseudo-critical

gauge coupling β0 for a given pair (mu,d,ms), and then compute B4 for those parameter

values. Since β is tuned to β0 always, we have r = |amu,d − amc
u,d(ms)|. B4 is a function

of the dimensionless ratio L/ξ, or equivalently (L/ξ)1/ν . Hence one expects the universal

scaling behavior

B4

(

(L/ξ)1/ν
)

= B4

(

L1/ν(amu,d − amc
u,d(ms)

)

. (3.3)

4. Nf = 3 without step size errors

The algorithm most widely used in simulations of finite temperature QCD in the staggered

formulation, both standard and improved, is the R-algorithm [10], which was also employed

in previous studies of the chiral critical point for Nf = 3 [7 – 9]. As pointed out in [10], the
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“correct” usage of the R-algorithm consists of performing simulations for various choices

of decreasing stepsizes, followed by an extrapolation to zero stepsize. However, in practice

usually a shortcut avoiding the extrapolation is applied: for some reference value of the

quark masses, choose a step size for which the step size error is smaller than the typical

statistical error of the simulation. The molecular dynamics of the R-algorithm then suggests

to keep the ratio of quark mass amq and step size δτ constant, i.e. adjust the stepsize

accordingly when the quark mass is reduced. A typical choice is δτ = 1
2
amq, although in

many cases 2
3
amq or even amq have been adopted.

While this procedure has been followed successfully in the intermediate quark mass

regime, it breaks down for small quark masses, where the linear relation no longer appears

to hold and the step size needs to be decreased faster than proportionally. Furthermore,

in a study of the QCD phase transition at finite isospin chemical potential it has recently

been demonstrated that a finite step size leads to a systematic underestimate of B4 [23].

Hence too coarse a stepsize can fake a first order transition, when the zero step size result

really represents a crossover behaviour.

4.1 The order of the transition: R- vs. RHMC algorithm

In order to control this important source of systematic error, we have returned to our in-

vestigation of the Nf = 3 critical point at µB = 0 [9], this time with the RHMC-algorithm.

This algorithm has no stepsize errors and is exact. For a discussion of the algorithm and

numerical test results, see [24]. Our numerical procedure to compute the Binder cumulant

is as follows. For each set of fixed quark mass and chemical potential, we determine β0

by interpolating from a range of typically 3-4 simulated β-values by Ferrenberg-Swendsen

reweighting [25]. For each simulation point 50k-200k RHMC trajectories have been accu-

mulated, measuring the gauge action, the Polyakov loop and up to four powers of the chiral

condensate after each trajectory. Thus, the estimate of B4 for one mass value consists of

at least 200k, and the estimate of the critical mass of at least 800k trajectories.

Figure 4 (left) shows results of this first study, comparing measurements of B4 from

the RHMC algorithm with those obtained from the R-algorithm at various step sizes. The

figure confirms the finding from [23] that decreasing the step size leads to an increase in the

values of the Binder cumulant. It also constitutes a useful test of the RHMC algorithm,

whose results indeed correspond to the zero step size limit of the R-algorithm. We note

that for our smallest quark masses studied, am = 0.005, the RHMC algorithm runs over 20

times faster than the R-algorithm at the commonly applied step size. Since the latter also

requires runs at several step sizes for the extrapolation, the RHMC is thus considerably

more economical in producing results free of step size errors.

4.2 The Nf = 3 critical quark mass at µ = 0

In order to eliminate step size errors, we now proceed to repeat the calculation of the

critical quark mass mc
0 in the three-flavour theory by means of the Binder cumulant, this

time with the RHMC algorithm. The result obtained on an 83 lattice is shown in figure 4

(right). Qualitatively the behaviour is the same as previously, with B4 growing from first

order behaviour through its critical Ising value to crossover with increasing quark mass,

– 7 –
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Figure 4: Left: Comparison of the Binder cumulant computed with the RHMC algorithm (leftmost

data) and the zero stepsize extrapolation of the R-algorithm. The solid lines represent a common fit

to all data, the vertical line marks the commonly used R-algorithm step size when no extrapolation

is performed. Right: Determination of mc(µ = 0) = mc
0 with the RHMC algorithm. The arrow

marks the result from the R-algorithm [9].

which can be fitted to leading order in the quark mass. However, the critical Ising value

is now obtained at a bare mass of amc
0 = 0.0260(5), which is about 25% smaller than the

value amc
0 ≈ 0.033 quoted by all previous work using the R-algorithm [7 – 9].

One may ask whether this change affects bare quantities only, while the R and RHMC

algorithms probe the same physics. To study this issue, we measured the zero-temperature

hadron spectrum at the parameters (βc, amc)RHMC using RHMC, and compared with the

same exercise performed in [7] at the parameters (βc, amc)R using the R-algorithm. For

the pion, which is the most accurately determined, the ratio mπ/T0 changes from 1.853(1)

(R [7]) to 1.680(3) (RHMC). This reduction of 10% in the pion mass corresponds to a

change of 20% in the renormalized quark mass, very near the observed 25% change in the

bare quark mass. Therefore, replacing the R by the RHMC algorithm corrects a large error

in the physical values of the critical parameters. The correction should be even larger for

smaller mu,d masses. We conclude that for the study of the QCD phase transition in the

region of physical quark masses, step size errors in the Monte Carlo algorithm can lead to a

qualitatively different picture at fixed parameter values, and the use of an exact simulation

algorithm is mandatory.

Our results so far have been obtained on a single spatial volume 83. The next task is to

study the FSS behaviour and uncover possible finite volume effects. This is particularly im-

portant since large finite size corrections were reported in a recent investigation of the chiral

critical point at finite density in the Taylor expansion of susceptibilities [26]. Figure 5 shows

data obtained for three lattice sizes with L = 8, 12, 16. According to eq. (3.3) and the cor-

responding discussion, in the scaling region near a critical point B4 should be described by

B4(m,L) = b0 + bL1/ν(m − mc
0), (4.1)

with b0 = 1.604 and ν = 0.63 for 3d Ising universality. We have checked for finite volume

– 8 –
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c00 = β0(0,m
c
0) c10, (µ

2) c20, (µ
4) c01, (m) χ2/dof

5.1369(3) 0.781(7) — 1.94(3) 1.28

5.1371(3) 0.759(22) 0.33(32) 1.95(4) 1.27

Table 1: Fits of the Taylor expansion β0(am, aµ), eq. (4.2), to our data in figure 6.

effects by fixing b0 to the Ising value and fitting for b, ν and mc
0. With a χ2 of 0.74

per d.o.f., we obtain amc
0 = 0.0263(3) consistent with our result from L = 8 only, and

ν = 0.67(13), which is consistent with the Ising exponent. We conclude that for Nf = 3

the Binder cumulant is close to thermodynamic scaling for lattice sizes L ≥ 8, and hence

finite volume effects are under control in this calculation.

4.3 The pseudo-critical temperature for Nf = 3 at finite µ

On the lattice, T0 is determined from the pseudo-critical gauge coupling, which we define

as the location of the peak of the plaquette susceptibility. On any finite volume it can

be expanded as a double series in mass and chemical potential around the three flavour

critical point mc
0,

β0(aµ, am) =
∑

k,l=0

ckl (aµ)2k (am − amc
0)

l. (4.2)

Figure 6 shows the measured values of β0(am, aµi) for four different imaginary chemical

potentials spanning the whole µi range up to the first Z(3)-transition. For each value of

aµi, four quark masses in the range 0.02 ≤ am ≤ 0.34 have been simulated. As in our

previous study, we obtain good fits retaining the leading terms only, as shown in table 1.

In particular, the term quadratic in the chemical potential is now sufficient to describe the

data all the way out to µ/T = 1, the quartic coefficient being consistent with zero. Using
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the two-loop beta function, this translates to a pseudo-critical temperature of

T0(m,µ)

T0(mc
0, 0)

= 1 + 2.111(17)

(

m − mc
0

πT0

)

− 0.667(6)

(

µ

πT0

)2

+ 0.23(9)

(

µ

πT0

)4

+ . . . (4.3)

Again, we note a shift of up to 10% in the coefficients compared to the R algorithm

results [9]. Eq. (4.3) has to be considered with some caution, since it is well known that

the two-loop beta function is rather inaccurate at our coarse lattice spacing. The effect

of the non-perturbative beta function is to increase the absolute values of the coefficients

A,B, perhaps by up to a factor of 2 [27].

4.4 Quark mass dependence of the critical point for Nf = 3

In order to detemine the order of the transition, we now repeat the previous procedure to

find how the critical bare quark mass mc(µ) changes with imaginary chemical potential. As

in the case of the pseudo-critical temperature, we express this by a Taylor series, eq. (2.2):

mc(µ)

mc(µ = 0)
= 1 + c1

( µ

πT

)2

+ . . . , (4.4)

in order to be able to continue to real µ. Inversion of this function will then give the

location of the critical point as function of the quark mass, µc(m). In practice, at a finite

lattice spacing we are dealing with the expansion in lattice units,

amc(aµ) = amc(aµ = 0) + c′1(aµ)2 + c′2(aµ)4 + . . . (4.5)

A crucial point is that, for fixed temporal lattice extent Nt, the lattice spacing entering the

dimensionless amc(µ) and amc(0) is different, since T0(mc(µ), µ) = 1/(Nta(µ)) depends on
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µ. The relation of the leading coefficient to its continuum counterpart is thus given by

c1 =
1

mc
0

dmc

d(µ/πT )2
=

π2

N2
t

c′1
amc

0

+
1

T0(m
c
0, 0)

dT0(m
c(µ), µ)

d(µ/πT )2
, (4.6)

or in terms of A = 2.111(17), B = −0.667(6) from eq. (4.3) and c′1 from eq. (4.5),

c1 =

(

π2

N2
t

c′1
amc

0

+ B

)(

1 − A
mc

0

πT

)−1

. (4.7)

The coefficients c′i are extracted from our data for B4 obtained at imaginary µ = iµi,

by fitting to a double expansion about the known critical point at mc(µ = 0),

B4(am, aµ) =
∑

n,l

bnl (am − amc
0)

n(aµ)2l . (4.8)

The leading coefficients c′i are then obtained as

c′1 =
d amc

d(aµ)2
= −

∂B4

∂(aµ)2

(

∂B4

∂am

)−1

= −
b01

b10
, (4.9)

c′2 =
d2 amc

d[(aµ)2]2
= −

∂2B4

∂(aµ)2

(

∂B4

∂am

)−1

+
∂B4

∂(aµ)2

(

∂B4

∂am

)−2 ∂2B4

∂(aµ)2∂am
= −

b02

b10
+

b01b11

b2
10

(4.10)

For the actual analysis it is thus convenient to reparametrise the second order expansion

of B4 as

B4(am, aµ) = 1.604 + b10

[

am − amc
0 − c′1(aµ)2

]

+ b20(am − amc
0)

2

−b10

[

(c′2 − c′1C)(aµ)4 + C(am − amc
0)(aµ)2

]

, (4.11)

with C = −b11/b10, and fit the data via the parameters mc
0, b10, b20, c

′
1, c

′
2, C.

Our data for five different values of imaginary chemical potential are shown in figure 7

(left). Remarkably, there seems to be negligible influence of the chemical potential. The

results of various simultaneous fits of all four curves are displayed in table 2. All fits are

good, and none of the next-to-leading terms is significantly constrained. This is corrobo-

rated by discarding all next-to-leading terms, which leads to a perfectly acceptable fit with

c′1 consistent with zero, as in the last line of table 2. Figure 7 (right) displays the error

band coming from a linear fit (table 2, line 3). Clearly, the slope c′1 is very nearly zero.

The final result is then obtained by employing eq. (4.7) to convert to continuum units.

The second factor in eq. (4.7) is 1.077(2), close to 1. In the first factor, the term B, which

describes the variation of T0(µ) with real µ and is thus negative, reinforces the negative

trend of c′1, to yield
mc(µ)

mc(µ = 0)
= 1 − 0.7(4)

( µ

πT

)2

+ . . . . (4.12)

Hence, we arrive at the surprising result that the first order region in the phase diagram

figure 2 shrinks when a real chemical potential is switched on. This is contrary to the

expected qualitative behaviour.
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Figure 7: Left: B4(am, aµ) for different imaginary chemical potentials. The lines correspond to

the simultaneous fit of all data according to eq. (4.11) and table 2, line 3. Right: One sigma error

band from a linear fit (table 2, line 3) of the critical quark mass as a function of imaginary µ.

mc
0 b10 b20 c′1 c′2 C χ2/dof

0.0262(7) 13.3(1.4) -91.6(143.5) -0.079(47) -1.6(1.0) -2.1(3.5) 0.90

0.0263(6) 13.9(0.6) — -0.075(42) -1.35(0.73) — 0.82

0.0270(5) 13.6(0.6) — -0.0024(160) — — 0.93

0.0271(3) 13.6(0.6) — — — — 0.88

Table 2: Fitting B4(am, aµ) to a Taylor expansion to different orders in the independent variables,

according to eq. (4.11). The numbers of d.o.f. are 14,16,17,18, respectively.

The reader will notice the large error on the coefficient in eq. (4.12). It is a conservative

estimate and stems entirely from the larger error on c′1. If one were to include a µ4-term,

the previous conclusion would only be strengthened: the leading term gets more negative

and a negative quartic term comes on top of it, cf. table 2.

However surprising, our findings agree with preliminary results for the same lattice

theory at finite isospin chemical potential, which indicate that there too, the transition

becomes weaker as the chemical potential is turned on [28]. Finally, let us note that the

same qualitative behaviour applies to the first order region in the heavy quark limit, which

has recently been shown to also shrink with real chemical potential [29].

5. The chiral critical surface for Nf = 2 + 1

Having removed finite step size errors from the Nf = 3 calculations, we proceed to map

out the chiral critical line for non-degenerate quark masses. All our simulations have been

performed with the RHMC algorithm. Since 83 × 4 lattices proved to be large enough for

our observable in the case of Nf = 3, we use that lattice size to trace out the critical line,

performing another check of finite volume effects at amu,d = 0.015 on a 123 × 4 lattice.

With two different quark masses in the theory, a technical question concerning the

Binder cumulant arises. Obviously, B4 can be constructed from the chiral condensate

of either mass flavour. Universality guarantees that, in the infinite volume limit, either
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Figure 8: Finite size scaling of the fits to B4 at fixed ams = 0.075, constructed from the light (solid

line) and the heavy (dotted line) flavour condensates for L = 8, 12. The light flavour observable

has much smaller finite volume corrections.

choice tends to the same universal value. However, in a finite volume there are corrections,

and they are different for different operators. The corrections are minimised for that

superposition of operators, which corresponds most closely to the mapping of the QCD

parameters onto the scaling fields of the effective 3d Ising model. It is well known that,

even for the case of three degenerate flavours, this is a superposition of the chiral condensate

and the plaquette [7], as well as higher dimension fermionic and gauge condensates.

Here, we do not attempt to construct an optimised observable by mixing in gauge

condensates, but simply compare the behaviour of B4 constructed from condensates of

different mass flavours, Xi = ψ̄iψi, as shown in figure 8. The observables B4(Xs), B4(Xu,d)

constructed from the condensates of the heavy and light flavours, respectively, are observed

to intersect the critical value at significantly different values of amu,d. Nevertheless, com-

parison of results obtained at L = 8, 12 shows that this difference is rapidly disappearing

on larger volumes. Moreover, the common intersection point to which the results converge

appears to be close to that obtained from B4(Xu,d) on L = 8, indicating that the latter

has far smaller finite volume corrections. This is not too surprising, as one would expect

the scaling field corresponding to chiral symmetry to be dominated by the lightest quark

flavour. Hence, in the following we will always work with B4(Xu,d) constructed from light

quark condensates.

5.1 The critical line for µB = 0

By fixing ms and scanning in mu,d (at least 4 values), the critical light quark mass for that

choice of ms is determined by interpolation, analogously to the three-flavour case. This

is repeated for other values of ms, resulting in the sequence of critical points mc
u,d(ms)

displayed in figure 9, left. As in the three-flavour case, every critical point appearing in

this figure consists of at least 800k RHMC trajectories.

– 13 –



J
H
E
P
0
1
(
2
0
0
7
)
0
7
7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.01  0.02  0.03  0.04

am
s

amu,d

Nf=2+1

physical point

ms
tric - C mud

2/5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.005  0.01  0.015  0.02  0.025  0.03

am
s

amu,d

µB=0
µB=i 2.4 T

Figure 9: Left: The chiral critical line in the bare quark mass plane at µB = 0. The heavy line

indicates the Nf = 3 diagonal. Also shown is the physical point according to [14], and a fit to

extrapolate the line to a possible tricritical point on the ms-axis. The arrows mark the points

where T = 0 simulations were performed to set the scale, section 5.2. Right: Comparison of the

critical line at µB = 0 and µB/(iT ) = 2.4.

There are several features of figure 9 worth discussing. An interesting observation

concerns the behaviour of the function mc
s(mu,d) in the neighbourhood of the three flavour

critical point. If B4 is constructed from gauge condensates and neglecting the change in the

pseudo-critical coupling β0(mu,d,ms) with the quark masses, a Taylor expansion around

the symmetric critical mass mc
0 yields for the line of constant (critical) B4 the leading order

result [7]

ms = mc
0 − 2(mu,d − mc

0), (5.1)

i.e. the critical line should pass through the symmetrical point with slope -2. In con-

trast, our data extracted from B4(Xu,d) exhibit a different slope, see figure 9 (left). This

underlines again the importance of choosing an appropriate observable for finite volume

computations. A Taylor expansion of B4 as in eq. (5.1) is only possible on finite volume, but

expanding B4(Xu,d) would yield additional non-perturbative contributions to eq. (5.1). We

thus conclude that eq. (5.1) does not describe the critical line, not even in the immediate

neighbourhood of Nf = 3.

Another interesting question is how the critical line continues to even smaller light

quark masses. If the chiral limit of the Nf = 2 theory exhibits O(4) universality, then the

critical line hits the axis mu,d = 0 in a tricritical point at some finite strange quark mass

value mtric
s [2]. Whether this scenario is realized or not is an issue not yet settled (cf. the

discussion and references in [15]). Among the most recent publications using staggered

fermions, one favors a first order scenario for the chiral limit [30] while the other supports

the O(4) scenario [31]. With our current data, we are unable to decide this question, but we

can check for consistency with the O(4) scenario, which implies mean-field exponents near

the tricritical point (mu,d = 0,ms = mtric
s ). Indeed our data support a fit to the ∼ m

2/5

u,d

approach to the chiral limit, as shown in figure 9, left, predicting the tricritical point to

be at amtric
s ∼ 0.7 or mtric

s /T ∼ 2.8. Note however that (i) our Nt = 4 lattice is very

coarse (a ∼ 0.3 fm), and (ii) our spatial volume becomes rather small as mu,d is reduced:
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(amu,d, ams) β amπ amK amρ mπ/mρ mK/mρ

(0.0265,0.0265) 5.1374 0.420(1) 0.420(1) 1.383(7) 0.304(2) 0.304(2)

(0.005,0.25) 5.1857 0.2109(1) 0.8915(1) 1.398(16) 0.151(2) 0.638(8)

Table 3: Parameters and meson masses for the low-temperature (123 × 24) simulations performed

to set the scale. The mass ratios of the second line imply that this point corresponds to ms =

(ms)phys, mu,d < (mu,d)phys.

for the uppermost point in figure 9, left, corresponding to the physical strange quark mass,

mπL ∼ 1.7 only. Thus, our systematic error might be rather large. Nevertheless, we have

strong indications that mtric
s is significantly larger than the physical strange quark mass.

5.2 The chiral critical line and the physical point

The most important question regarding the critical line is, of course, its location relative to

the physical point of QCD. So far, all known lattice data are “consistent” with the physical

point being in the crossover region. This is also the result found by a simulation at physical

quark masses in [14]. However, these results were obtained by the R-algorithm, and we

have seen in the three flavour case that significant shifts in the critical quark masses can

arise due to step size errors.

In order to estimate the location of our critical line in physical units, we have therefore

performed zero temperature simulations with bare quark masses corresponding to two

points on the critical line. One corresponds to the three flavour theory and the other to

the point with roughly physical strange quark mass, as indicated by the arrows in figure 9

(left). The parameters of the simulations are given in table 3, together with the measured

meson masses. In both cases, the lattice size was 123 × 24, and about 400 configurations

were analyzed.

Setting a physical scale along the critical line is a tricky problem. Neither of our sim-

ulation points matches the physical (mu,d,ms) point, so that strictly speaking one cannot

match to any real world observable. Doing so anyway, different observables inevitably give

different values for the lattice spacing. A measurement of the qq̄ force via elongated Wilson

loops gives r0/a = 1.85(2) and 1.87(2) respectively, where r0 = 0.5 fm is the Sommer scale.

This amounts to a(r0) ≈ 0.27 fm in both cases. On the other hand, matching the ρ-mass

to its physical value gives a lattice spacing which is by 20% larger. Note, however, that

a difference of similar magnitude has been observed in [14] on the physical point. This

suggests that the greater part of this difference is due to cut-off effects rather than to the

deviation from physical parameters.

It thus appears safer to avoid setting an absolute scale altogether, and instead compare

the meson mass ratios from table 3 with their values at the physical point, (mπ/mρ)phys =

0.18 and (mK/mρ)phys = 0.645. We thus conclude that our Nf = 2+1 point on the critical

line indeed corresponds to the physical Kaon mass and to pions lighter than physical. In

other words, the physical point is on the crossover side of the critical line.
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Figure 10: Comparison of our Nf = 2+1 meson masses aM (leftmost points) with those obtained

in ref. [14] with the R-algorithm. Good consistency is apparent.

It is interesting to compare our Nf = 2 + 1 meson masses, in lattice units, with those

of [14], which used the same strange quark mass, and the R-algorithm at almost the same

inverse coupling β = 5.19. The comparison is shown in figure 10, where the straight

lines are fits to the data of [14] only. Good consistency is apparent, showing that the

R-algorithm step size error for the meson masses is small, for the parameters considered

in [14].2 The figure also shows mK/mρ to be practically independent of mu,d, thus affirming

our conclusion above.

Finally, the fact that the lattice spacing varies little between our two simulation points,

implies that Tc itself does not change much as one moves along the critical (mu,d,ms) line.

This is in agreement with model calculations [13].

5.3 The critical line for µB/(iT ) = 2.4 and the critical surface

We have also run a second set of simulations with an imaginary chemical potential

µB/(iT ) = 2.4, in order to determine how the critical line shifts with baryon density.

These data are shown in figure 9 (right), in lattice units. We observe that the shift in

the critical line is very small, despite the sizeable value of the chemical potential. Within

two sigma the line is consistent with its µB = 0 counterpart. Moreover, to the extent

that there is a displacement, it shows a trend to lie to the right of the zero density line.

This qualitative observation is in accord with our earlier finding in the three flavour case

(eq. (4.5)) that c′1 ∼ 0 or slightly negative: in lattice units, the first order region tends to

expand slightly as an imaginary chemical potential is turned on (see figure 7 (right)).

Similarly to the Nf = 3 case, one expects the data along the whole line to be described

2Note also, that there are preliminary results by Z. Fodor and S. Katz (https://www.bnl.gov/sewm/)

using finer lattices and the exact RHMC algorithm, which confirm that the physical quark masses give a

finite-temperature crossover.
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c00 = β0(0,m
c
u,d) c10, (µ

2) c20, (µ
4) c01, (m) χ2/dof

5.1838(3) 0.572(9) — 1.75(13) 1.5

Table 4: Fit of the Taylor expansion β0(amu,d, aµ), eq. (4.2), to our data for fixed ams = 0.25

and amc
u,d ∼ 0.0064.

  QCD critical point DISAPPEARED
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∞

Real world

X
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Color superconductor

m > mc(0)

Tc

Figure 11: For dmc(µ)/dµ2 < 0, there is no critical point at all, the dotted line on the right is

merely a crossover. Any additional critical structure would not be continuously connected to that

at µ = 0.

by the leading term in the Taylor expansion,

amc
u,d(ams, aµ) = amc

u,d(ams, aµ = 0) + c′1(ams) (aµ)2 + . . . (5.2)

where now c′1 depends on ams. Conversion to continuum units proceeds as for Nf = 3,

by determining the equivalent of eqs. (4.3), (4.7) for Nf = 2 + 1. We do this for fixed

physical strange quark mass ams = 0.25 and scanning in mu,d, which now plays the role of

the variable quark mass, and find amc
u,d ∼ 0.0064. For the variation of the pseudo-critical

coupling, eq. (4.2), we obtain the coefficients given in table 4, leading to A = 1.90(13) and

B = −0.49(1) in this case. These are similar in magnitude to the three-flavour values.

Note that c′1 ≈ 0 means that mc
u,d/Tc remains constant as the chemical potential is turned

on. The decrease of the pseudo-critical temperature with real µ, given by B, is then the

dominant effect. It dictates that mc
u,d decreases when a real chemical potential is turned

on. In other words, the first order region shrinks.

While our data for Nf = 2 + 1 and small quark masses have larger errors which do

not yet allow to constrain c1(mu,d) quantitatively, figure 9 and eq. (4.7) leave little doubt

that this coefficient is going to be negative along the whole upper part of the line. We thus

arrive at the conclusion that, for the lattice spacing considered here, the curvature of the

critical surface at µB = 0 is negative, and the first order region is shrinking when a real

chemical potential switched on.

5.4 An alternative scenario for the QCD phase diagram

Let us take our results at face value for a moment and consider the implications if such a
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Figure 12: The Nf = 3 phase diagram as a function of quark mass. The critical endpoint now is

moving to smaller µc with growing quark mass, due to the negative sign of c1 in eqs. (4.12), (4.4).

qualitative result also holds in the continuum limit. This leads to a scenario for the (T, µ)

phase diagram which is at odds with common expectations. We find that the first order

region in a plane of constant µB is actually shrinking with growing real µB . If the physical

point is in the crossover region at µB = 0, then switching on a chemical potential will not

lead to an intersection with the critical surface as long as the latter is well described by its

curvature at µB = 0, i.e. for µ/T <∼ 1, or equivalently µB <∼ 500 MeV. In the absence of any

additional (and so far unknown) critical structure, there would then be no critical point or

first order phase transition at all. The (T, µ) phase diagram of physical QCD would then

only have the possible transition line separating the superconducting phase from nuclear

matter, as in figure 11 (right).

Note that this scenario is perfectly consistent with all universality arguments and the

known results for µ = 0. This can be illustrated in the three flavour theory by considering

the change of the (T, µ)-diagram with quark mass, as depicted in figure 12. All boundary

conditions are met, in particular there is a first order phase transition at µ = 0 for quark

masses smaller than mc
0. However, according to the negative sign for c1 in eqs. (4.12), (4.4),

the critical endpoint is now moving to the left with growing quark masses, until it disappears

entirely.

It is natural to ask how reliable this unexpected scenario is regarding systematic errors.

We have seen in section 5.2 that Nt = 4 lattices are very coarse, and we have discussed

the enormous sensitivity of the critical values of the mass parameters (mu,d,ms) to cut-off
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effects [32]. It is therefore expected that the values for mc(µi) shift once this analysis is

repeated on finer lattices and/or with improved actions. The crucial question is whether

the continuum extrapolated slope c′1 in figure 7(right) will be positive or negative and

how it will balance out against the contribution from the pseudo-critical temperature.

Or, equivalently, how the ordering of the zero and finite µ critical lines in figure 9 turns

out in the continuum limit once physical units are used. In particular, our continuum

conversion is sensitive to the non-perturbative beta function. A look at eq. (4.7) gives a

quick estimate of what is needed for a positive c1. Either c′1 would have to be positive

of the order ∼ amc
0N

2
t /π2, or A has to grow by a factor larger than 10 on the way to

the continuum. Thus, while we presently cannot rule out that the picture reverts back

to the standard scenario in the continuum limit, the opposite is obviously also possible as

suggested by our data.

Finally, all of our arguments are based on the simplest scenario, in which the finite µ

critical point of physical QCD is continuously connected to a critical point for some other

mass values at µ = 0. We cannot exclude a more complicated possibility, where the phase

boundary of the color superconducting phase (see figure 12) would distort as a function of

the quark masses, and give birth to a critical point distinct from the one we study, and

which would survive for physical quark masses. This would correspond to a scenario with

an additional critical surface in figure 11 (left) above the one we studied here. We thus

conclude that even the qualitative features of the QCD phase diagram cannot be regarded

as settled yet.

5.5 The finely tuned critical end point

While based on our present data we are unable to make a reliable quantitative prediction

for the location of the critical point for physical QCD, we have obtained important qual-

itative information regarding its quark mass dependence. Irrespective of the continuum

extrapolated sign, all our evidence is that the absolute value of c1 in eq. (2.2) will be ∼ O(1)

as naturally expected, while the effect of subleading terms is small up to µB ≈ 500 MeV.

This means that the critical quark masses are very weakly varying functions of the chemical

potential, which is in line with the corresponding behaviour of the pseudo-critical temper-

ature or, indeed, the equation of state. Consequently the inverse function µc(mu,d) is very

strongly varying with quark mass, i.e. the finite µ critical surface emerges very steeply from

the µ = 0 critical line in figure 2. Hence, even if in the continuum limit the conventional

scenario with positive curvature is realized, the precise location of the critical end point

will be exceedingly quark mass sensitive. A simple estimate using c1 = 1 shows that, in

order to have µc
B

<∼ 400 MeV, the physical point has to lie within <∼ 5% of the chiral critical

line, i.e. the physical quark masses would be fine tuned. While there is nothing forbidding

such a situation, it appears rather unnatural. Moreover, if realized in nature, it would

make a quantitative determination of µc
B through simulations exceedingly difficult. (For

example, one might even need to treat the u- and d-quarks as non-degenerate).
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6. Discussion and conclusions

As we have demonstrated in the preceding sections, step size errors are eliminated from

our calculations. Finite volume effects are under control in the Nf = 3 theory and for

amu,d ≥ 0.015 in Nf = 2 + 1, where we have performed our finite volume check. Note that

this corresponds to pion masses larger than physical. For the point on the critical line with

the lightest quark mass considered, we only have mπL ∼ 1.7, and finite volume effects are

to be expected. Ideally the part of the critical line in the neighbourhood of the physical

point should be checked on a larger lattice.

However, by far the largest source of uncertainty is due to the coarse lattice spacing

a ∼ 0.3 fm, as evidenced by several aspects of these computations. Strong cut-off effects

reveal themselves when attempting to set a physical scale for the problem. Moreover, a

change in the discretization of the Dirac operator on a lattice this coarse can change the

pion mass corresponding to the second-order transition by a factor ∼ 4 [7, 32] at µB = 0.

Finally, it has recently been pointed out that staggered simulations at finite µB suffer

from additional discretization errors compared to µB = 0 [33] when Nf 6= 4, due to the

eigenvalue structure when taking the fourth root of the determinant. For simulations at

imaginary µB, the eigenvalues are pure imaginary, and this additional error is of O(a2),

with possibly a large coefficient. A safe strategy thus is to first take the continuum limit

of imaginary µB simulations, and then continue to real µB . For reweighting approaches at

real µB one even expects O(a) errors.

In interpreting our findings and comparing with other work, it is important to take

systematic uncertainties into account. Given the cut-off effects, the sensitivity of the crit-

ical point to step size errors and, most notably, to the quark mass, it is clear that the

discrepancy between our findings and those of [14] is nothing remarkably unusual, but

merely reflects the large and different systematic uncertainties afflicting these calculations.

In particular, in [14] the quark masses amq were held fixed in lattice units while aµ was

increased. Equivalently, mq/T0 was kept fixed. However, T0 decreases under the influence

of a chemical potential, in a manner similar to eq. (4.3), so that the quark masses at the

critical endpoint in [14] are about 5-10% smaller than physical. This small deviation from

a line of constant physics has a large impact on the location of the critical point, because

of the high sensitivity of the latter on quark masses.3 The effect is to artificially move the

critical point to smaller chemical potentials. The shifted masses may even reside in the first

order region, causing a critical point to be found even if in fact there is none, consistently

with the scenario discussed here.

Our study of the chiral critical surface also suggests that one cannot draw conclusions

for physical QCD from simulations of the critical point in Nf = 2 QCD [26, 21]. This

becomes clear when considering figure 1, which describes the µ = 0 expectations. If

one moves from the physical point upwards by increasing ms to infinity, the distance to

the critical line increases considerably. Given the high sensitivity of the critical chemical

potential µc to this distance (i.e. the small curvature of the chiral critical surface in figure 2)

3In our approach, the conversion from lattice units eq. (4.5) to physical units eq. (4.4) changes the

coefficient c′1, which is nearly zero, to c1, which is negative.
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which we observe, one should expect large differences for µc between the Nf = 2 + 1 and

Nf = 2 theories.4

Resolving these various systematic issues and deciding which scenario for the (T − µ)

phase diagram is realized in nature thus urgently requires further investigations of the Nf =

2+1 theory with exact algorithms on finer lattices. Among the various finite µ approaches,

our imaginary µ simulations require comparatively moderate computer resources to achieve

this goal.
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