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Abstract

The CLIC final focus system has been designed based on
the local compensation scheme proposed by P. Raimondi
and A. Seryi. However, there exist important chromatic
aberrations that deteriorate the performance of the system.
This paper studies the optimization of the final focus based
on the computation of the higher orders of the map using
MAD-X and PTC. The use of octupole tail folding to re-
duce the size of the halo in the locations with aperture lim-
itations is also discussed.

INTRODUCTION

The transfer map between two locations of a beam line
is expressed in the form

�xf =
∑

jklmn

�Xjklmn xj
0 pk

x0 yl
0 pm

y0 δn
0 (1)

where �xf represents the final coordinates (xf , pxf , yf ,
pyf ), the initial coordinates are represented with the zero
subindex and �Xjklm are the map coefficients of the corre-
sponding final coordinate. The MAD-X version including
PTC can provide �Xjklm up to the desired order.

The quadratic standard deviation of the final density dis-
tribution, σ2

x =< x2
f >, is derived in [1] as function of

the coefficients on the transfer map and the CLIC beam
density. The following sections discuss how to extract the
nature of the aberrations.

The order-by-order approach

By truncating the map at order q we only consider the co-
efficients Xjklmn such that j+k+l+m+n ≤ q. The resulting
beam size is represented by σq . Thus defined, σ1 corre-
sponds to rms size given by the linear Twiss functions, σ2

takes into account the effect of chromatic aberrations and
sextupoles, σ3 incorporates octupolar fields, etc. The final
finite size of the bunch is given by σq when q tends to infi-
nite. However there must be a finite order p that gives a sat-
isfactory approximation. The evaluation of σq−σq−1 gives
the contribution of the order q to the final rms beam size.
From this contribution the order of the most relevant aber-
rations is inferred and subsequently the appropriate multi-
polar correctors are chosen. However the optimum location
of the correctors still needs to be identified.

∗This work is supported by the Commission of the European Commu-
nities under the Framework Programme “Structuring the European Re-
search Area”, contract number RIDS-011899.
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Figure 1: Horizontal and vertical rms beam sizes at CLIC
Interaction Point as function of the maximum order consid-
ered in the transfer map. Both the nominal and monochro-
matic beams are considered.

Chromatic versus achromatic correctors

The recipe to decide if the correctors should be placed in
locations with or without dispersion is as follows. σq,Δδ=0

is defined as the rms size of an monochromatic beam,
Δδ = 0. If the contribution from the most relevant order q,
σq−σq−1, is much larger than its corresponding monochro-
matic contribution, the correctors should be placed in dis-
persive locations possibly together with achromatic correc-
tors to cancel the arising geometric aberrations. In the op-
posite case only achromatic correctors should be placed.

OPTIMIZATION OF THE CLIC BDS

The CLIC BDS consists of a collimation section and a
Final Focus System (FFS). The collimation section has a
length of about 2 km. The horizontal and vertical nor-
malized beam emittances are εx = 68 × 10−8 m and
εy = 1×10−8 m, with a relativistic gamma of γ = 3×106.
The full energy width of the beam is Δδ = 0.01. The rms
beam sizes at the IP are computed as described in [1] and
plotted up to the 9th order in Fig. 1. The nominal beam as
well as the achromatic beam (Δδ = 0) are shown leading to
the conclusion that most of the aberrations are chromatic.
Only octupolar geometric aberrations appear in the vertical
plane. The most relevant horizontal aberrations are the first
order dispersion and the chromaticity (of sextupolar order).
The total number of non-zero coefficients of the 9 th order
transverse map is 4002, of which 2070 are horizontal and
1932 are vertical. These large numbers make the evalua-
tion of the rms beam size very slow. A better approach for
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Figure 2: Horizontal and vertical rms beam sizes at the
CLIC IP for the nominal BDS and the one fully optimized.

an optimization of the beam sizes is to consider the colli-
mation section and the final focus separately.

The collimation section only needs a small adjustment
of the chromaticity sextupoles. In this context this is effi-
ciently achieved by matching the rms beam sigmas of order
2 to those of order 1 by varying the strengths of the chro-
maticity sextupoles. The code MAPCLASS [3] was written
with the purpose to minimise nonlinear aberrations. MAP-
CLASS uses an implementation of the Simplex method.

The remaining aberrations originate entirely in the FFS.
The CLIC FFS has been designed based on the local chro-
maticity correction scheme proposed in [2]. This scheme
basically consists of two pairs of sextupoles, one pair for
the horizontal plane and the other for the vertical. We as-
sume that the pairs of sextupoles are combined magnets
including octupolar and decapolar magnetic components.
Using all these non-linear elements (sextupoles, octupoles
and decapoles) in the FFS the rms beam sizes at the IP
are minimized with the Simplex method. The optimization
needs the map up to order 6th. The result of the optimiza-
tion of the FFS is shown in Fig. 2 together with the initial
configuration. This confirms the compensation of the aber-
rations up to the higher orders.

Exactly the same algorithm can be used to optimize the
linear parameters. The rms beam sizes up to order 5 are
minimized again using the Simplex method as before but
only varying the strengths of the quadrupoles. The result
is shown in Fig. 3 together with the initial configuration.
Both the horizontal and vertical beta functions have been
reduced at the IP as can be seen at the first order of the
plot. The horizontal non-linear aberrations stay well com-
pensated while in the vertical plane small aberrations have
arisen as a consequence of the focusing. This implies that
for further reduction of the beam sizes more iterations cor-
recting non-linear and linear orders are required.

The real benefit of reducing the rms size at the IP is lu-
minosity and therefore it has been computed for all the for-
mer stages of the optimization. Bunches of 10000 macro-
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Figure 3: Horizontal and vertical rms beam sizes at the
CLIC IP for the nominal BDS and the one linearly and non-
linearly optimized.

particles have been tracked trough the CLIC BDS using
PLACET [4]. The same beam parameters as mentioned
above have been used and the effect of synchrotron radi-
ation has been included, which is not taken into account
by the described optimization procedure. The luminosity
has been computed using the code GUINEA-PIG [5], see
table 1 for the nominal values. The relative reduction of
the beam sizes with and without radiation together with the
relative luminosity increase is shown in table 2. The total
luminosity (Ltot), the luminosity coming from the colli-
sions with energy larger than 99% of the maximum energy
(L1%) and their ratio (L1%/Ltot) are shown in the table.
Both the total luminosity and the luminosity in the energy
peak increase as the rms beam sizes get smaller.

OPTIMIZING DISPERSION IN THE FFS

In order to use the bending angles as variables in the
minimization procedure it would be mandatory to intro-
duce analytical penalty functions that account for the ef-
fect of radiation in the final beam sizes. Instead another
approach for the optimization of bending angles in the FFS
has been used. The starting point is the above FFS con-
figuration with the best performance. It is well known that
the lower the dispersion is the less radiation is produced
and the stronger the sextupoles need to be powered. There
must be an optimum dispersion for which the combined ef-
fects of radiation and sextupoles are minimum The FFS is
optimized using MAPCLASS for different levels of disper-
sion reduction and the luminosities are computed for the
different cases as done above. Fig. 4 shows the resulting
total and peak luminosities together with the required in-
crease of sextupolar strength for the different levels of dis-
persion reduction. A table containing the numerical values
of the relative variation of the rms beam sizes and lumi-
nosities can be found in [1]. The figure shows a peak in
the luminosities at about a 20 The sextupole strength is not



Table 1: CLIC nominal rms beam sizes and luminosities.
Case σrms

x [nm] σrms
x [nm] σrms

y [nm] σrms
y [nm] Ltot[cm−2/s] L1%[cm−2/s]

(no rad) (rad) (no rad) (rad)

Nominal 55 88 0.87 5.3 6.15 1034 2.65 1034

Table 2: CLIC relative differences of beam sizes and luminosities for the different optimizations stages. All numbers are
in percent units.

Case − Δσx

σrms
x

− Δσx

σrms
x

− Δσy

σrms
y

− Δσy

σrms
y

ΔLtot

Ltot

ΔL1%
L1%

L1%
Ltot

(no rad) (rad) (no rad) (rad)

Nominal 0 0 0 0 0 0 43
Corrected collimation section 12 30 14 58 9 6 42
Corrected FFS non-linearities 20 35 35 69 31 19 39
Lower βx and βy at IP 27 37 34 64 45 29 38
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Figure 4: Relative luminosity versus dispersion reduction
through the FFS.

linear with the dispersion reduction, as could be predicted
in a first approximation. The ratio L1%/Ltot is reduced to
0.36 at the luminosity peak. The maximum gain of 72%
in total luminosity confirms the usefulness of the presented
algorithm for the optimization of beam lines.

OCTUPOLE TAIL FOLDING IN CLIC

The concept of octupole tail folding was introduced
in [6]. By placing octupole doublets before the quadrupoles
of the FFS the tail of the halo can be folded in leading to
a larger required collimation aperture. This is of interest
to reduce the effect of the wake fields in the collimators.
In this section we briefly assess the possibility of applying
the octupole tail folding to CLIC. The Twiss functions be-
fore the FFS quadrupoles in CLIC are not well suited for
octupole tail folding for two reasons: 1. The ratio βy/βx

has a maximum of 4 when optimum values would be about
20 due to the shape of the halo. 2. The divergence of the
beam is not low enough for the best performance of the oc-
tupole doublets. Two octupole doublets have been placed
in front of the FFS quadrupoles. Its parameters have been
optimized to give as best a tail folding and luminosity as
possible. The performance of the ODs is shown in Fig. 5.
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Figure 5: Performance of octupole doublets in terms of oc-
tupole tail folding and luminosity. The tail folding curve
corresponds to the ratio between the halo size with ODs
and without ODs at the quadrupoles.

The tail folding curve corresponds to the relative change of
the halo size at the quadrupoles with and without ODs. The
halo reduction by a factor of two implies a luminosity loss
of 30%. Also the size of the halo in the low beta region
increases by a factor 2. The use of ODs in CLIC would
require a new optics (and probably a longer FFS) for an ac-
ceptable tail folding performance without luminosity loss.
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