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I. INTRODUCTION AND SUMMARY

The purpose of this paper is to present a portfolio management

model which would bo applicable to the portfolio management problem

faced by institutional investors. The model developed extends previous

efforts of the author toward removing a number of limitations of existing

models which restrict their usefulness to institutional investors.

The major limitations of existing models which restrict their

applicability to practical investment problemis are: first, the single-

period nature of most portfolio selection models; second, neglect of

the securities transactions ' costs involved in modifying an existing

portfolio which is no longer optimal in terms of revised expectations

about security performance; third, neglect of a number of additional

considerations, such as differential tax effects and the possibilities for

portfolio leverage, which may have considerable significance in realistic

portfolio decision situations.

The model developed in this paper is inter-temporal as it

considers the portfolio management process as a multi-stage decision

problem rather than a series of single-stage unrelated decision problems.

As such it allows for the planned switching of funds among securities at

various decision points within a multiple period investment horizon.

Explicit consideration is given to the investor's expectations about the

transactions costs involved in moving from an existing non-optimal

1. See, Gerald A. Pogue, "An Extension of the Markowitz Portfolio
Selection Model to Include Variable Transactions Costs, Short
Sales, Leverage Policies and Taxes, " The Journal of Finance
(forthcoming).
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portfolio to one which is efficient in terms of the investor's revised

expectations regarding security performance. The model generates an

efficient set of portfolios which trade off between return over the invest-

ment time horizon (after transactions' costs) and the risk associated

with the level of return. Additionally, operational risk measures are

defined for use in ex ante decision making and ex post evaluation which

depend upon the information channels by which data were collected and

estimates formed.

Before proceeding with the development of the model, an overall

framework for the investment management process is developed and its

relationship to the model presented is discussed.

II. THE PORTFOLIO MANAGEMENT PROCESS

Portfolio management is a continuous process, rather than a

single "once and for all" decision problem. It can be structured as a

cyclical evaluation-action-reaction-reevaluation feedback control

process (see Fig. 1). The process begins with the selection (or revision)

of a universe of securities which are suitable for investment — suitable

being defined in conjunction with the investor's restrictions and

preferences. Given the universe of securities, historical data are

collected for the set of corporate and economic variables which are

hypothesized to be relevant for explaining observed security yields.

Expectations based on these historical data are combined with the

analyst's subjective expectations about future corporate performance

1. Consideration of short sales, portfolio leverage and differential
taxes within a single-period framework has been presented
elsewhere (op.cit.) The extension of the features to an inter-

temporal framework is straightforward and for reasons of

brevity will not be presented here.
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and economic conditions to prepare forecasts of the explanatory

variables. Expectations for these variables are then transformed

into estimates of- the future return and risk for each security in the

universe. Given estimates of the future performance of individual

securities, the existing portfolio is then revised to one which is more

optimal in terms of the current expectations. The criterion for opti-

mality is an expression of the investor's risk-return preferences.

At the end of the first review period, the existing portfolio is

evaluated in terms of its fulfillment of the investor's expectations.

The difference between the expected and actual performance now

provides a data base for reevaluating one's concepts about the

securities in the universe and of the mechanism by which future expecta-

tions are formed. With the new information obtained, new estimates are

adaptively generated, and the portfolio revision process is repeated to

produce a portfolio with optimal expectations over the investment time

horizon.

The model presented in the author's thesis attempts to deal with

this entire process. The model presented in this paper deals with a

limited subset of this process, primarily Part C — Portfolio Selection.

In addition, a development of risk measures for use in Part B (Security

Evaluation) and Part D (Performance Evaluation) has also been included.

1. "An Adaptive Model for Investment Management, " Unpublished
Doctoral Dissertations, Carnegie-Mellon University, June 1967.
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III. LIMITATIONS OF EXISTING PQRTP^OLIO SELECTION MODELS

The basic Markowitz Model for portfolio selection (from which

the current model derives) and variants, such as the index models of

Sharpe and Cohen and Pogue are only partially adequate for dealing

with the portfolio revision part of the process described above. Their

primary deficiencies involve the neglect of transactions costs and inter-

temporal effects.

(1) Transactions Costs

By not considering transactions costs, existing portfolio manage-

ment models implicitly assume that it is costless to modify an existing

portfolio to obtain another portfolio which is efficient in term.s of revised

expectations about security performance. In practical situations, since

transactions costs are significant, the investor's initial portfolio must

be taken into consideration by operational portfolio selection models.

Security transactions costs consist of two major parts: brokerage

fees which depend mainly on the price of the shares traded, and market-

ability related costs which are primarily dependent on the amount of

stock purchased or sold relative to the amount available or normally

traded.

1. Harry M. Markowitz, Portfolio Selection: Efficient Diversification
of Investnient , Cowles Foundation Monograph Number 16, (New York:
Wiley, 1959).

2. W. F. Sharpo, "A Simplified Model for Portfolio Analysis,"
Management Science , Vol.9, (January 1963), pp. 277-293.

3. K. J. Cohen and J, A. Pogue, "An Empirical Evaluation of Alternate
Portfolio Selection Models, " The Journal of Business , Vol.40,
(April 1967), pp. 166-193.





The brokerage fees on a 100-share transaction for securities at

various price levels are summarized in Table 1.

Table 1

New York Stock Exchange Brokerage Fee Schedules (1)





The second source of transactions costs is primarily of interest

to large institutional investors. These costs are associated with the

purchase or sale of large quantities of stock. The costs take the form

of either unfavorable price discounts or premiums that the investor may

have to pay (for example, when acquiring or disposing of a large block

of stock in the auction market) or additional fees that must be paid to an

intermediary to complete the desired transaction (for example, in the

case of a secondary distribution or acquisition).

The difficulty in purchasing or selling a given quantity of stock

in a specified period is generally considered to be related to the liquidity

of the auction market which, for a specific security, can be measured in

terms of the "normal" trading volume of the stock. A particular trans-

action which represents 10-20% of the average trading volume in a given

period can, in most cases, be more easily transacted than a trade which

represents many times the normal auction market volume. The additional

expense results from the costs of informing additional purchasers or

sellers about the current unusual opportunities that exist and offering

them inducements to rebalance their portfolios, which can consist of

favorable price spreads and/or payment of any brokerage fees resulting

from the trade. In addition, in relation to purchases of large blocks of

stock, some additional incentive may be required to induce individuals

with capital gains liabilities to provide their shares.

Special institutions and arrangements have evolved for dealing

with large block transactions. The New York Stock Exchange, for example.

(1) Such as broker dealers who specialize in block positioning.
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provides several special distribution methods. These are listed in

Table 2 along with data illustrating seller's cost experiences. The

techniques tend to occur in descending order as the size of the block

relative to normal trading volume in the stock increases. The cost

figures represent the sum of commissions paid plus the difference

between the previous auction market bid and the bid for the block of

stock.

Tabie 2

Composite Cost Ratios of Block Distribution Methods
to Minimum Commission

Method





The relevant problem is one of portfolio revision where the costs

associated with revising the portfolio are considered as well as the

expected gains.

(2) Inter-temporal Considerations

Given that transactions costs are significant factor for institu-

tional investors, it is no longer an optimal strategy to treat the portfolio

management process as a series of single-stage decision problems. An

inter-temporal structure is required to deal explicitly with the fact that

decisions take place in an inter-related way over a number of periods

of time, so that decisions which are made at the current time are not

just best for the current period, but are best for the entire planning

horizon. This can be contrasted with the static (single-period) models

which do not take into consideration the time path of changes over the

planning horizon. Thus, static models do not take into account the

interactions that result from conscious strategies involving tim.ing

considerations based on knowledge, perhaps imperfect, about the future

course of prices. This ability to evaluate current actions in terms of

longer run effects becomes vital for the large institutional investor for

whom transactions costs make the excessive volatility inherent in static

models prohibitively expensive.

Inter-temporal models are able to answer the question of how to

trade off between longer-term (several review periods) and shorter-run

(one period) effects. For example, the long-run expectation for a

particular security may be favorable although its short-run outlook may

be dim, while another security may be expected to provide handsome

short-term profits while its longer-run outlook is bleak. To handle

- 9 -





such situations, the Markowitz analysis must be extended beyond the

single-period formulation.

IV. INTER -TEMPORAL PORTFOLIO SELECTION MODEL

Portfolio revision is made necessary not only by changing

expectations about future price performance and risk of the securities

in the investor's security universe, but also by the need to optimally

invest cash inflows or disburse cash outflows from the portfolio. In

developing the model, consideration is given to typical constraints on

the decision process that would be relevant for institutional investors.

(1) The Investor's Objective Function

The investor's objective function which is to be maximized has

the general form

u(t) = u(m(1/t). .... M(T/t)J

where M(t/T ), t = 1, . . . ,T is the market value of the portfolio at the

end of the t period of the investor's planning horizon (i.e. , at time

r + t)

T = the number of periods in the planning horizon

T = the date of the portfolio revision

u(t) = the value of the objective function at time r

One of the following two assumptions will be made to obtain a

specific form of the above function.

(a) The investor has an objective function which is

quadratic in the variables M(t/T), t = 1, .... T.

- 10





The investor wishes to maximize the expected value

of this objective function,

(b) The distribution of future security market prices is

is such that the distribution of the market values of

feasible portfolios will be approximately normal.

This assumption is potentially less restrictive than (a).

It is most applicable in the case of large institutional

investors who hold many securities in their portfolios

(e.g., a hundred or more), none of which contributes

in a major way to the distribution of the total portfolio

(1)
return.

Given one of the above assumptions, the investor's objective

function can be expressed as

T T T

Z(T) = xY] w° E(M(t/7)y^ ^ w^^, Cov(M(t/T) . M(t'/T)

t = 1 ^ t = 1 f= 1 .
^

'

where X, w , w, . , , t, t'= 1, ..., T are parameters of the objective

function.

In the following development a specialized form of the general

quadratic objective function will be used. This was done to provide the

parameters of the inter-temporal objective function with an intuitive

meaning to the institutional investor. The model developed, however, is

in no way dependent on this specialization and can be used to optimize a

general quadratic preference function. The investor's preference for a

1. This condition relies on a generalization of the central limit theorem
to random variables which are not identically or independently dis-
tributed. Because the conditions are complex, the question of port-
folio normality is probably best investigated via simulation.
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particular sequence of portfolio vectors to be held during the multi-period

planning horizon is assumed to be based on the expected value of a linear

average of future portfolio market values, M(t/T ), t = 1, . . ., T, and the

variance of the linear combination.

The objective function is given by

Z(t) = Xe(w^M(1/t) + ... + w^M(T/t)
j

- Var fw^M(l/T) + ... + w^M(T/t)]

where w,, . . . , w^ are weights indicating the relative importance of

portfolio market values during the planning horizon. X is a parameter

specifying the investor's desired tradeoff between increased expected

market values and the risk associated with the overall portfolio policy.

Without loss of generality we can assume that

T

E -t =1

t = 1

The weights can be considered in a number of ways. First, the

decision maker may be faced with the incompatible multiple goals of

providing superior performance in the short run at the cost of longer-run

performance as opposed to the complementary goal of maximizing long-run

gain independent of short-run considerations. The weights provide a means

of ordering these conflicting goals in terms of their importance to the

decision maker. Secondly, if terminal market value is of primary

1. The weights w could be specified as functions of r (i.e., w,(t)).
The reason for doing so would be that the relative tradeoffs
between short-run and long-run considerations could change over
time for an investment manager.
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importance, the weights can be selected such that the model will produce

a set of efficient tradeoffs between expected terminal portfolio market

value and tlie risk measure associated with the multiple-period portfolio

strategy.

(2) The Model

At each portfolio review period the investor is assumed to have a

joint prior distribution for security market values (market price plus

value of dividends paid during the period) at the end of each of the T periods

during the planning horizon. The mean of the investor's prior distribution

represents his estimate of future security values (price plus dividends)

and the covariance matrix of the prior distribution represents his estimate

of the variances and covariances of the errors involved in forecasting

(2)
future security values.

1. Two cases are possible

(i) w^ = t = 1, . . ., T - 1

w^ = 1.0

In this case, the investor is interested only in the risk
associated with his expected terminal portfolio.

(ii) w =0 t = l, ...,T-1 (See original notation)-t





Definition of Notation

X(t/T) = The number of shares of security i the investor

plans to hold (as of time t) during period t of

the planning horizon

i = 1. . . .. N; t = 0, . . . , T

(t = represents actual holding at beginning of

planning horizon.

)

V.(t/T) = The mean of the investor's prior distribution for

V.(t/T) — the total value of the security (market

price plus any dividends paid during the period)

at the end of period t of the planning horizon.

= P.(t/T) + D.(t/T)

0".-,,(t) = The investor's estimate of the variance of the
litt'

forecast error in his estimate of the value of

security i at the end of period t.

/^

^••ixxi(t) = The estimated covar lance between t period
II 'tt'

^

value forecast error on security i and the t'

period error on security i' .

- 14





For compactness of notation, the following vectors are

defined:

X (t/r)

X(T)

V (t/r)

.(t/r). i = l NJ

2i_(t/T). t = 1 T
j

V. (t/r). i = 1, .... N
j

p. (t/r) + D.(t/T), i = 1, ..., Nj

V(T) V(t/T), t = 1, ... T
j

P. (t/r ) + ^(t/r). t = 1. . . . , TJ

14a -





\/ (t) = the multi-period value forecasting error

covariance matrix

<r,,,..,(r)
ii'tt'

i, i' =1, .... N

As of the beginning of the planning horizon, the investor's ex ante

knowledge about security performance during the planning horizon is

contained in three matrices, P^(t), D(t), and 4](t).

The estimated portfolio market value at the end of period t of the

planning period is given by

N
M(t/T) = y^ X.(t/T)-V.(t/T)

i = 1

For a specified multi-period portfolio strategy, as represented

by X(''')- the weighted end of period portfolio market value is given by

T

E
t = 1

M(t) = y^ w^ M(t/T )

The expected weighted portfolio market value, M(t), is given by

T

M(t) = y^ w^ M(t/T)

t = 1

= W X'(t) V(t)

- 15





where W is a diagonal matrix

W =

w.

w^

The risk measure associated with this portfolio strategy is given by

the forecast error variance associated with M(t).

T T N N
Var (m(t)) =

x; y; e X"t ^i<^/^> ^ii'tt-<^> ^i'(^'/^
\ ' t =1 t^l i=l ~1

) w.

= W X'(t) t (T) X(T) W

The problem is now to maximize the investor's objective

function

Z(t) = X E [m(t)J - Var
[
M(t)

]
(X > 0)

given a starting portfolio X(0/t ) and the various investment policy

constraints discussed below.

The solution will produce an updated multi-period portfolio

vector, X(t ), of which only the first period portfolio, X{llr), is

actually implemented. The revision procedure will be repeated one

period later (t + l) when revised expectations about security returns

over a new T period planning horizon have been formed.
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(3) Transactions' Costs

For the purposes of our research, common stock transactions'

costs are assumed to be made up of two parts: brokerage fees and the

costs associated with marketability of the shares, that is, the price

spread resulting from large volume transactions.

On the basis of New York Stock Exchange data examined, and

discussions with practicing investment managers, a transactions ' costs

curve was defined to give an increasing marginal cost of transactions.

The total dollar cost per share for a transaction of a specific security

is assumed to be an increasing function of the percentage of the average

daily trading volume (for that security) accounted for by the purchase

or gale in question.

Figure 2a relates the total dollar transactions' costs for

security i to the number of shares purchased or sold. In Figure 2b

we have approximated the previous curve by a piecewise linear

representation. The change points for the marginal transactions'

costs rates (i.e., the slopes of the linear segments) occur when

the share purchases or sales amount to specified percentages of the

total trading volume for security i.

1. Since procedures for dealing with transactions ' costs have been
discussed elsewhere in detail for the single-period model, the
discussion here will be brief . See G. A. Pogue, "An Extension
of the Markowitz Model . . . ", op. cit.
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Figure 2a

TOTAL TRANSACTIONS' COSTS CURVE

X.-
1

Sales
(Shares)

Total Dollar Transactions
for Security j

Marketability
Costs

Brokerage
Fees

X.+
I

Purchase
(Shares)

Figure 2b

PIECEWISE LINEAR APPROXIMATION
TO THE TRANSACTIONS' COSTS CURVE

X.
1

Sales

Total Dollar Transactions

'

Costs for Security j

1

Purchased
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Let c = the percentage of the auction market price which
Ji

must be paid for transactions in the j linear segment

r.. = the expected dollar transactions' costs per share for

+h
purchases in the j linear segment for security i at

time t

= ct P.(t/T)
31 V ' '

X.. = the number of shares of security 1 which corresponds
J

to a specified fraction 6.- of the normal trading volume

of security i. x.. defines the upper limit of the j

purchase segment of the cost curve,

x.. = the number of shares of security i purchased in the j

linear segment of the cost curve during period t.

t+
X. = the total number of shares of security i purchased

I

during period t

tH

Similar quantitites can be defined for the sales segments of the trans-

actions ' cost curve.

We can now define the number of shares of security i traded in

terms of purchases or sales in the linear segments of the cost curve.

The number of shares of security i traded at period t

= X.(t/T) - X.(t - 1/t)

t+ t-
= X. - X.

1 1

1. It is assumed that the cost per dollar of purchases, for transactions
that occur between a fraction 5-j_i; and a fraction ot; of the period t

trading volume, are incurred at a constant rate, ^ c...

- 19 -





The transactions ' costs incurred

m+ m-

Et+ t+ , V^ t- t-
r.. X.. + > r.. X..

J=l 3=1

The transactions costs will be included in the budget equation

(described below), reducing the amount of resources available for

reinvestment in a revised portfolio.

Additionally, we require that each of the transaction's variables

X.. and X.. be upper bounded

t+ , ^+ . ,

X.. <x.. 3 = 1,«.", m+

t- ^ /^- .

X.. <x.. 1 = 1,..., m-

Because of the convexity of the transactions' cost curve, we

t+need not be concerned about the possibility that x., ^
. > while

X.. < X... This condition will not arise because higher segments of

the curve aremore costly in terms of transactions' costs.

A detailed study of transactions' costs data is required to estimate
the marginal costs per dollar of transactions k'^^. or c~j^) which are
associated with the various linear segments of the transactions'
costs curve. The study would require the analysis of many large
block transactions relating the total transactions' costs, as a
fraction of the normal auction market price, to the percentage of the
average daily trading volume of the security accounted for by the
transaction. The price spread component of the transactions' costs
is measured by comparing the normal auction market price (the
price prior to the block purchase or sale) with the price at which the
block was actually purchased or sold.

Transactions data could most likely be pooled for similar types of
securities to obtain a set of coefficients ct, cj which pertained to
that set of securities (for example, common stocks traded on the
New York Stock Exchange).

20





(4) Investor Restrictions and Policy Constraints

The maximization of the investor's objective function is carried

out subject to a number of constraints representing policy and legal

restrictions, as well as accounting identities.

(a) Liquidity Constraints

The investor may require that whenever the portfolio is

revised a fraction, K, of the current market value of the firm be

allocated to cash (or "near" cash items such as treasury bills). If we

define the N security in the portfolio to be the cash position, then the

liquidity requirement can be expressed as a lower bound on X^(t/T),

the expected cash position during period t.

N
X^it/r) > K (^ X.(t/T) P.(t-1/T)j

i = 1

for t = 1 , . . . , T

where

P. (t - 1/t) = the expected price of security i at the end of

period t - 1 (and at the beginning of period t

when the portfolio is revised).

(b) Dividend Inconne Constraint

The investor may require that acceptable portfolios have

a specified expected dividend income during each of the periods of the

1. Since the N security is defined to be cash, P„(t/T) = 1,0 for all
t and T

.

.
^
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time horizon. This requirement can be specified as a series of linear

constraints of the following form:

V X.(t/T) D.{t/T) > D"'(t/T)

i = 1

where

D* (t/r ) = the required level of expected dividend income

D.(t/T) = the expected dividend paid on a share of security i

during the t period of the planning horizon

(c) Upper Bounds on Portfolio Holdings

In order that the portfolios generated be relevant for

institutional investors, they must conform to legal and policy restrictions

placed upon the portfolio manager by federal agencies and the management

of his financial institution. In practice, naany institutional investors

(e.g., common trust funds) have legal restrictions on the percentage of

their portfolio which can be invested in a single security, and the

percentage of the stock of any one company which can be held. Other

institutional investors (e.g., pension funds) adhere heuristically to such

restrictions to avoid becoming formally involved as major shareholders

in companies in which they invest. Thus, decision rules which recommend

that the portfolio manager, for example, invest 24% of his portfolio in

National Biscuit and 13% in American Airlines would probably be quite

unacceptable. The upper bound constraints also serve to alleviate

possible marketing problems by keeping the holdings of particular

companies to levels which allow some marketing flexibility. A further

use of upper bound constraints is to serve as a hedge against biases in

1. D (t/r) = for all t and T
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the input data by preventing portfolios from attaining radically un-

diversLfied postures at any point in time.

The above comments are included to emphasize the

requirement that a useful portfolio selection model must incorporate

upper bound constraints to handle legal and policy restrictions. Upper

bound constraints are incorporated into the portfolio management model

to apply to additional purchases only. It is not realistic, nor institutional

practice, to immediately sell sufficient shares of any security which has

become greater than the upper bound because of a shift in relative prices

in order to bring the percentage allocations back into line.

Let

u. = the percentage of the portfolio market value beyond

which no additional shares of security i are purchased

q. = the percentage of the capitalization of a firm beyond

which no additional shares of security i will be

purchased

X. (r) = the number of shares of security i outstanding at

revision time r

Now, it is required that

i = 1. .... N

X.{t/T) < min <

q. X°(t)

r

max<

v_

X. (t - 1/t )

u. M(t - 1/t)

^ P^a - 1/t)

t = 1, T
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This condition is achieved by defining additional non-negative variables

R^(t), R2(t), U^(t), U2(t), 0^(t) and 02(t) and requiring that

X.(t/T) < q. X°(T) (1)

X.(t/T) + R^(t) - R2(t) = X.(t-1/T) (2)

^i
X.(t/T) + UAt) - U„(t) = M(t-1/T) (3)

u. M(t - 1/t)
X.(t-1/T) - -^ = 0,(t) - 0„(t) (4)

'
P(t - 1/t)

^ "^

(U2(t)) (02(t))

t = 1, .... T

(5)

The above condition can be obtained in a quadratic programming

framework. The linear equalities (2) through (4) can be directly
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incorporated for each t. The nonlinear equalities (5) can be incorporated

via the addition of large penalty terms as the coefficients of these cross-

product terms in the objective function.

(d) Portfolio Budget Constraints

These relationships insure that expected sources of funds

(from security sales, dividend payments, and exogenous inflows) are

balanced against expected uses of funds (arising from security purchases,

transactions ' costs, and exogenous outflows) during each period of the

planning horizon.

The sources and uses relationships are given by

F(t/T) +^ X.(t - 1/t) D.(t - 1/t)

i = 1

- 2j[Xi(t/T) - X.(t - 1/t)] P.(t - 1/t)

i = 1

N - 1

E
i = 1

m+ m-

Zt+ t+ ^ V^ t- t-
r.. X.. + 7 r.. X..

3 = 1
3 = 1

for t = 1, . . ., T

where

F(t/T) = the estimated exogenous flow which is to be optimally

invested or disbursed at the beginning of period t

The second term represents the total dividends accumulated during the

previous period which is to be optimally invested at the beginning of

period t. The third term represents the cash flow associated with the

purchase or sale of securities. The final term represents the expected

25





transactions' costs incurred in revising the portfolio. The cash balance

after the portfolio revision, Xp^t/r), represents the net result of the

transactions specified by the difference in the portfolio vectors Xit/r)

and X(t - 1/t).

(5) Summary of Inter-Temporal Model

When new data become available at time r , the updated price and

dividend estinaate vectors, ]P(t) and D(t), and the estimated value

forecasting error covariance matrix, ^("^h provide a data base for

updating the existing portfolio vector X(0/''") to obtain another which is

more efficient when viewed in terms of the investor's revised expecta-

tions about security performance. The portfolio for the first period of

the planning horizon is implemented, and the procedure is repeated one

review period later when revised expectations about security returns

over a new T period planning horizon have been formed.

The updated portfolio vector X(t ) is selected to maximiize

Z = X W X'(-r) V(t)

T

- wx'(t) X](t) x^"^) w

- Y^ llR^(t)0^it) + Ugrt) 02(t) + 0j(t) 02(t)j

where X > and Y is a very large positive number (e.g. , lO''^^),

subject to the following constraints for each period t during the planning

horizon, t = l,...,T.
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(a) Transactions' Cost Curve Constraints

x.(t/T) - x^(t-i/T) = y; "ji 'E "ji

t+ , '^+
X.. -^ X. .

j = 1, . . . , m+

1=1, . . . , N

t- ^ ^-
X.. < X..

j = 1, . . . , m-

i = 1, . . ., N

(b) Liquidity Constraints

N

X^(t/T) > K ^X.(t/T) P.(t- 1/T)

i = 1

(c) Dividend Income Constraints

N
V" X.(t/T) D.(t - 1/t ) > D* (t/T

)

(d) Upper Bounds on Portfolio Holdings

X.(t/T) < q. xf(T)

X.(t/T) + R^(t) - B^it) = X.(t-1/T)

u. M(t - 1/t)

X.(t/T) + U^(t) - U2(t)

/s

X.(t - 1/t)

u. M.(t - 1/t)
I 1

P(t - 1/t )

P(t - 1/t )

= 0^(t) - 02 (t)
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(e) Budget Constraints

N

F(t/T) + ^ X.(t - 1/t) D.(t - 1/t)

k=l

V \^i(^/r - 1) - X.(t - 1/t)1 P.(t - 1/t)

i=l

N

z
i=l

m+ m-
V^ t+ t+ , V^ t- t-
> r.. X.. + > r .. X..

J=l j=l

By allowing the parameter X to vary in the range between and

00, a quadratic programming code can be used to generate the efficient

frontier after the transactions ' costs involved in revising the initial

portfolio, X(0/t), and in planned revisions at future review points prior

to the investment horizon. The set of portfolios obtained provide the

optimal tradeoffs between the selected measure of portfolio return over

the multi-period horizon and the risk associated with the portfolio policy.

The efficient frontier is illustrated in Fig. 3. It is convenient to

normalize the return and risk measures by the market value of the initial

portfolio, M(0/t), so that they are expressed in relative terms

W M (r)'

.(1)

1. Weighted Expected Return E

T

. M(0/t) .

s
M(t/T)

"^t M(0/t)

2. Portfolio Risk Measure Standard Deviation
r mr) -1

[-* M(0/t) J

[w' X'(T)^(T)X(T) wj

M(0/i

1/2

M(0/t)
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Figure 3

THE EFFICIENT FRONTIER AFTER TRANSACTIONS' COSTS

Portfolio
Risk
Measure

Efficient Frontier After an
Optimal Transition from

X^^(T - 1) to

Efficient Frontier
Neglecting Trans-
actions ' Costs

Revised Same
Risk Class
Portfolio

Weighted
Expected
R eturn Over
the Time Horizon

X (T)
A

< X < oo

(6) Ex Post Risk Measures

The ex ante risk measures used in the model are measures of

the investor's inability to predict future market prices. In the ex ante

case, where the risk estim.ates are used as decision parameters, the

risk measures for securities were based on weighted averages of past

squared forecasting errors. This was the result of the assumption that

the forecasting error variances were locally stationary. The decision-
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making requirements demanded that the estim^ates of forecasting

variances used be as representative as possible of the current

parameter values, without being overly sensitive to random

fluctuations. As a result, exponentially weighted estimation procedures

were used to discount past observations, which were becoming pro-

gressively less relevant in the formation of expectations about the

current values of the forecasting error variances.

In the ex post case, the risk measures are used for evaluation

of past performance rather than as a basis for future predictions. In this

case an unweighted measure of the observed forecasting errors provides a

measure of the total risk inherent in the projections of future portfolio

market values.

An estim.ate of the coefficient of variation associated with t

period forecasts of portfolio m.arket value is given by

where

S(t/T) =

M{r-u)

1/2

-0 El
u=0

M{T-U/T-U-t) -M(t-u)

M(t-u)

the realized market value at time t-i^

MiT-u/r-u-t) = an estimate of M(t - P) made at time T-i^-t

T^ = the number of observations less one

The ex post risk measure must, however, take into consideration

the multiple-period nature of the ex post evaluation process. The

objective function for the ex ante selection process contained weighted
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estimat ed future portfolio market values for several (i. e. , T) future

periods. A weighted ex post risk measure can be constructed in a

manner analogous to the ex ante risk measure. Thus, a weighted

coefficient of variation of multiple-period forecasting errors is given

by

S(T) J2 2 ^t^fS(t.tVT)

1 1/2

t=l t'=l

where

S(t,t /t)

s(t,t7T)

Sit/rY

-^n 2^
1^ =

MJT-u/T-u-t) - M{t-u)

M{t-u)

MiT-u/T-v-t') - Mir-p)

M{t-u)

V. NUMERICAL EXAMPLES

In order to illustrate how the model might be utilized in a

practical situation, a numerical example will be presented. Two

situations are considered. First, the initial selection and the later

revisions of a portfolio in a particular risk class, X = 3000, are

shown (see Table 3 and Exhibits 1 and 2). Secondly, the ex post

evaluation of the 10-year performance of this managed portfolio is

compared with the performance of other managed portfolios (i.e. , other

X values) and unmanaged portfolios over the same time period (year end

1956 through year end 1965; see Table 4 and Fig. 4).
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(a) Portfolio Selection and Revision

A portfolio in a specified risk class was selected at the

end of 1956 and subsequently revised annually until the end of 1965 (see

Table 2 for parameter values used in run). At each revision the port-

folio was revised to the corresponding portfolio in the same risk class,

X = 3000. Projections of future security returns and risk were based

only on data that would have been available as of the simulated portfolio

revision date.

The historical security data used in the security evalua-

tion phase was obtained from the Standard and Poor's Annual Industrial

Compustat tape. The security evaluation model used to predict stock

prices was of the form

PjCt/T) = a^ + b^^E.(t/T)^+ c^ /c^v(E. R^/r)^

V(g3(t/T))

t = 1,

where

E.(t/T) = projected earnings per share

Cov(R.Rt,;,/t) = the covariance of the return on
] M'

security with the return on a market

index (S and P 500)

g.(t/T) = projected growth rate in earnings

a_ - b , c , and d = smoothed cross -sectional

regression parameters

Transactions' costs were ignored at the beginning of 1957 to obtain
a starting portfolio. The transactions' cost parameters used in
subsequent portfolio revisions (see Table 3) were selected for
illustration purposes only and do not represent the results of
empirical estimation.
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Table 3

Parameter Values for Numerical Example

Parameter





Table 3 (cont.)

Parameter
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Notes for Exhibit 2 — Explanation of Column Headings

»

Colunin Heading

YR

YR END MV

DVNDS

TRNS CSTS

1 YR YLD

5 YR YLD

Description

Year end at which portfolio revision takes place.

Year end market value, including dividends
(before revision)

Portfolio dividends accumulated during the
previous year

Transactions' costs incurred in revising
portfolio

Percentage growth in portfolio market values
during the previous year ~

rMV(t) - MV(t - 1) / MV(t - 1)1 • 1

Percentage increase in portfolio market value
during the previous five years —

[MV(t) - MV(t - 5)j / MV(t - 5) I
• 100

00

']

One-Year Expectation

MV





Notes for Exhibit 2 (Cont.)

Five-Ycar Expectation

I

MV

YLD

CVAR

Expected market value at the end of the five-year
planning horizon (including dividends) of portfolio
held durij:ig planning period 3 ( i.e., years 3, 4,

and 5).

Estimated percentage increase in portfolio value
over five-year planning horizon

The coefficient of variation associated with
expected five-year return

Weighted Expectations (Objective Function)

MV

YLD

CVAR

a weighted average of expected portfolio market
values

w^M(1/t) + W2M(2/t) + W3M(3/t)

^M(1/t) + w^M(2/t) + w^M{3/t)w.

M(0/t )

Var(w^M(l/T) + w2M(2/t ) + w3M(3/t ))

M(0/t )

1.0

1/2

100

100
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Table 4

Ex Post Portfolio Return* and Risk**

Number of Securities = 7

Purchase Upper Bound = 40%

Weight Vector (w^, Wg, w^) = (0.6, 0.3, 0.1)

Portfolio X Value
(Managed Portfolios)





Figure 4

Inter-Temporal Period Portfolio Management Model

Ex Post Annual Asset Growth and Risk Evaluation

16 --

14 --

12
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Exhibit 1 displays the optimal decision for the initial

portfolio selection at the beginning of 1957 and the revised multiple-

period portfolio vector obtained one year later. For each of the two

years, the exhibit shows the initial portfolio, the transactions' costs

involved in revising that portfolio as well as projections of the portfolios

which, on the basis of current data, are expected to be held during

Periods 2 and 3 of the planning horizon.

Exhibit 2 displays summary data for the ten-year port-

folio management trial. Part (a) contains year-end performance and

expectations data. Part (b) lists the portfolio that would have been

held if the procedure had been applied in practice.

(b) Ex Post Evaluation

The model was used (with different values) to obtain the

same type of data for several other "managed" portfolios. Also, two

market index portfolios were set up at the beginning of 1957 and managed

over the ten-year period with dividends re-invested and transactions'

costs deducted. These portfolios correspond to first, an equal dollar

investment portfolio in the common stock universe considered, and

second, a market value proportions portfolio in which the securities are

1 . The quadratic programming code used in obtaining the optimal
portfolios was originally written at the Rand Corporation (QP4 —
Wolfe Algorithm — Fortran 4) and converted at MIT for the
IBM 360 computer.
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weighted according to the total market value of their outstanding shares.

In addition, sixteen random portfolios were chosen. The random port-

folios were not revised during the ten-year test. The initial capitali-

zation of each comparison portfolio was twenty-five million dollars.

The ex post results for the ten-year trials are

sumnnarized in Table 4, showing the achieved returns and volatility

measures for the managed and market index portfolios. Data from

Table 4 and the results from the random portfolio tests are plotted in

Fig. 4. The evaluation period in this exhibit is one year. The ex post

results for all review intervals ( 1-year, 5-year, and weighted) show a

high correlation between ex ante risk and return expectations and

ex post realizations.

VI. CONCLUDING REMARKS

In this paper the author has extended his previous work on

single-period portfolio selection models to include consideration of

inter-temporal effects. The model presented retains the important

practical property of simpler models of computational feasibility for

security universes of size relevant to institutional investors. The compu-

tational technology currently exists for handling security universes of

practical size. The solution procedure is a modified version of the simplex

method used for solving linear programming problems. The number of

constraints in the resulting modified linear programming problem is

23N-8, where N is the number of securities in the selection universe.

1. Modified to enforce restricted basis entry requirements,
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For universes of practical size (e.g., 200 securities), the resulting

modified linear programming problem would have approximately 4600

rows, which is well within the capabilities of existing large-scale

linear programming codes. The author has treated up to 30 stock

universes in tests of the model. In these trials, approximately ten

minutes of IBM 360-65 computation time was required for a ten-year

example, including the initial security evaluation and final ex post

reporting phases.
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APPENDIX

A HEURISTIC PROCEDURE FOR DEVELOPING

EX ANTE RISK MEASURES

Given the investor's estimates of security prices and dividends

for each period during the multiple-period planning horizon, smoothing

techniques can be used to obtain estimates of the current value forecasting

error variances from the errors observed in past value forecasts.

Weighted estimation techniques are used to allow for the inherent non-

stationary nature of the forecast error time series.

Let V.(t/T) = the investor's estimate of the future value of

security i (i = 1, ..., N) at time periot t (t = 1, ..., T). during the

planning horizon based on information up to the beginning of the planning

horizon (time r). We require estimates of the forecase error variances

associated with the current value level projections. This will entail

estimation of a covariance matrix ^ (t ) whose elements are the fore-

casting error variances and covariances associated with the multi-period

prediction errors for all securities and all forecast intervals.

Assuming the series of forecasting errors to be locally

stationary, an exponentially weighted estimator of the t period fore-

casting error variance for security i, based on data up to period r, is

given by

o" (T) = > ail - af (V.(T - u) - V.(t . i^/t - u - t)
]

iitt ^ \ /u=

+ (1- a)*^"^^ (t(0)
iitt
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where

a = a. smoothing parameter (0< ex < 1)

^(0) = the initialization value of the t period forecast
litt

error variance for security i

A relationship which is useful for updating the estimate of the forecasting

error variance when a new observation V.(t) becomes available is easily

obtained from the above expression:

= afv.(T) - V^(t/t - t)\
^iitt^^^ = «(V.(T) - V.(T/T-t)) + (1-a)

o^iitt(T - 1)

The above expressions can be generalized to obtain estimated forecasting

error variances for all periods (t = 1, . . . , T) of the planning horizon

for all securities (i = 1, .... N).

Let <T.-,.. i(t) = the covariance between the t period forecasting

error for security i and the t' period error for security i' at time T and

let cr.
I 1

(t ) be an exponentially weighted estimator of <r. .,,, ,(t). The

updating relationship for cr. ., ,(t) is given by

^iftt'^^>
a(v.(T) - V.(t/t - t)jfv.,(T) - Y^At/ T - t'lj

+ (1- «) ^ii,tt.(r)

where

i, i' = 1, ..., N

t, t' = 1, .... T

An ex ante "risk matrix" /(_^(t ) can now be defined by

t i-r) - II #„,„,

45
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The above expressions permit the elements of the forecasting error

covariance matrix to be generated adaptively as new security price

and divident data become available during the continuing portfolio

management process.
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