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Abstract

If there was a first order phase transition in the early universe, there should be an
associated stochastic background of gravitational waves. In this paper, we point out
that the characteristic frequency of the spectrum due to phase transitions which took
place in the temperature range 100 GeV – 107 GeV is precisely in the window that
will be probed by the second generation of space-based interferometers such as the Big
Bang Observer (BBO). Taking into account the astrophysical foreground, we determine
the type of phase transitions which could be detected either at LISA, LIGO or BBO, in
terms of the amount of supercooling and the duration of the phase transition that are
needed. Those two quantities can be calculated for any given effective scalar potential
describing the phase transition. In particular, the new models of electroweak symmetry
breaking which have been proposed in the last few years typically have a different Higgs
potential from the Standard Model. They could lead to a gravitational wave signature
in the milli-Hertz frequency, which is precisely the peak sensitivity of LISA. We also
show that the signal coming from phase transitions taking place at T∼ 1–100 TeV could
entirely screen the relic gravitational wave signal expected from standard inflationary
models.
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1 Introduction

Direct detection of gravitational radiation will hopefully soon become a reality, with the
operation of the first generation of interferometers such as (kilometer-scale, ground-based)
LIGO [1] and VIRGO [2] and (million-kilometer-scale, space-based) LISA [3]. Those in-
struments will allow us to probe gravitational waves produced by astrophysical objects at
relatively low red-shift (black hole binaries, neutron star binaries, white dwarf binaries, su-
pernovae, pulsars...) In addition, gravitational waves (GW) can provide information about
particle physics at unexplored high energies. The weakness of the interaction with matter
is a major obstacle for detection of gravitational waves but it also has the virtue that the
information they carry about the state of the universe at the moment of their production
has been unaltered. They are precious information on the very mechanism that produced
them. GW can be produced by core collapse of supernovae, first-order phase transitions,
vibration of cosmic strings, preheating, dynamics of extra dimensions. . .

Among those well-motivated but hypothetical cosmological sources of GW, there is at
least one that we are convinced exists: the GW produced during inflation. This signal is
expected to be very tiny. Quantum fluctuations in the inflaton field during inflation leaves
behind a residue in density perturbations observed in the Cosmic Microwave Background
(CMB). They also lead to a background of GW whose properties couple with those of
density fluctuations. As the CMB anisotropies are affected by GW, the WMAP constraint
on the energy scale of inflation fixes a bound on the size of the GW signal due to inflation
ΩGW h2 ∼< 10−15 − 10−14 [4]. This is several orders of magnitude below the best sensitivity
of the first-generation of interferometers. However, attempts to detect this relic primordial
background are very strongly motivated. This is a main goal of the second generation of
space interferometers, in particular, the Big Bang Observer (BBO) [5], the follow-on mission
to LISA, which would become a reality within twenty or thirty years (by comparison, LISA,
if funded, should be operational by 2014).

The present work focusses instead on the detectability of GW from first-order phase
transitions. The corresponding relic GW background encodes useful information on these
major symmetry-breaking events which took place in the early universe. In contrast with
the inflationary spectrum, the spectrum is not flat, with a characteristic peak related to
the temperature at which the phase transition (PT) took place. This signal can actually
be higher by several orders of magnitude than the signal expected from inflation and in
some cases can entirely screen it. One symmetry-breaking event which for sure took place
in the early universe is electroweak (EW) symmetry breaking. What we do not know yet is
whether it was a first order phase transition, in which case it proceeded through nucleation
of bubbles resulting in a large departure from thermal equilibrium. Bubble collision and
associated motions in the primordial plasma are sources of gravitational waves. The charac-
teristic frequency of the signal is close to the Hubble frequency at the time of the transition
H(TEW ) ∼ 10−14 GeV. Once redshifted to today, this corresponds to mHz frequencies, which
is precisely the frequency band that LISA is sensitive to. It is therefore very exciting that
LISA could help providing information on the EW scale, in particular on the nature of the
EWPT.

The GW spectrum resulting from first order PT was computed in the early nineties [6–9]
but this topic has not received much subsequent attention, as it was found out that there
is no first order EWPT in the Standard Model given the experimental bound on the Higgs
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mass [10]. It was realized ten years after the original calculation of [6–9] that turbulence
in the plasma could be a significant source of GW in addition to bubble collisions [11, 12].
Subsequently, the authors of [13] studied the GW signal due to a first order EWPT in
the Minimal Supersymmetric Standard Model (MSSM) and its NMSSM extension. Finally,
Nicolis [14] did a model-independent analysis for the detectability of GW with LISA.

We believe that it is time to revisit this question for two reasons: The nature of the
EWPT will start to be probed experimentally at the LHC. Indeed, it depends essentially on
the Higgs sector of the theory or any alternative dynamics for EW symmetry breaking. In
the last few years, new models of EW symmetry breaking have been suggested (little higgs,
gauge-higgs unification, composite higgs, higgsless models ...) and the nature (smooth cross-
over or first-order) of the EWPT in these new frameworks remains unknown. Second, the
technology for gravitational wave detectors has made advances [15] and we think it is timely
to redo a model-independent analysis not only for LISA but also other devices.

LIGO is sensitive to much higher frequencies (from a few Hz to a few hundreds of Hz) thus
it is in principle sensitive to phase transitions which took place at much earlier epochs. For
instance, we will show that if there was a very strong first order PT at temperatures of order
107 GeV, the ultimate stage of LIGO (LIGO-III, correlated) could detect the corresponding
peak (as already pointed out in [6]). The second generation of interferometers will be able to
say much about the possible existence of early universe first-order phase transitions. Indeed,
BBO will be sensitive to signals from PT which would have taken place in the temperature
range T ∼ 100 GeV– 107 GeV, even if not necessarily exceptionnally strong.

In this paper, we start with some generalities on stochastic GW backgrounds including
the astrophysical background. We also recap what would be the observable redshifted signal
we would observe after the GW have propagated forward from the phase transition until
today. Section 3 reviews the key formulae used in the theoretical predictions of the GW
spectrum due to first-order phase transitions. There is nothing new in this part. However,
this formalism had so far only been exploited to study the detectability at LISA of GW due
to a first-order electroweak phase transition. In section 4, we apply it to any other phase
transitions taking place at higher temperatures and compare them with the sensitivities of
not only LISA but also LIGO and BBO. Predictions can be presented in a model-independent
way as a function of two quantities, namely α (∼ latent heat) and β−1 (∼ duration of the
phase transition), which can be computed for any given effective scalar potential describ-
ing the transition. For each temperature, we identify which values of α and β lead to an
observable signal. Particle model builders can then test their favourite scalar potential by
computing its corresponding values of α and β and see whether it can give rise to a detectable
GW signal. We comment on some specific examples of particle physics models.

2 Astrophysical versus cosmological GW background

Stochastic backgrounds are random gravitational waves arising from the incoherent super-
position of a large number of independent, uncorrelated sources that cannot be resolved
individually. They are discussed in terms of their contribution to the universe’s energy
density, over some frequency band:

ΩGW (f) =
1

ρcrit

dρGW

d ln f
(1)
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By their very nature, stochastic GW are indistinguishable from the detector noise. Ground-
based detectors look for them by coordinated measurements (comparing outputs of multiple
detectors to find sources of correlated noise) while LISA can extract the instrumental noise
power by combining the signals from its three spacecrafts. For technical aspects related to
the detection of a gravitational wave stochastic background, see Ref. [16].

2.1 Astrophysical foreground

Searching for GW waves of cosmological origin is an ambitious goal. There is a huge fore-
ground due to astrophysical sources which in principle makes detection impractical. Once
the signals from every merging neutron star and stellar mass black holes have been identified
and substracted, the primary sources of foreground signals are galactic and extragalactic
binaries. The galactic background produced by binary stars in the Milky Way is many
times larger in amplitude than both the extragalactic foreground and LISA’s design sensi-
tivity. However, it can be substracted because of its anisotropy, being mostly concentrated
in the galactic plane. Irreducible background comes from extragalactic binary stars and is
dominated by emission from white dwarves (WD) pairs. The corresponding GW spectrum
was estimated in Ref. [17] where limits are placed on the minimum and maximum expected
background signals. Ref. [17] points out that at frequencies f ∼< 50 mHz, there will be too
many individual WD–WD sources contributing in each resolution element to be completely
resolved and substracted source by source by missions with plausible lifetimes. However,
much of the flux comes from relatively nearby sources, and the WD–WD numbers drop
rapidly above 50 mHz. Thus it may be possible for future missions more sensitive than LISA
to substract this background at high frequencies [17]. In our figures, we plot this background
coming from unresolved compact white dwarf binaries assuming that it can be removed at
frequencies above 50 mHz. At higher frequencies, the dominant foreground GW sources
are inspiralling neutron star-neutron star, neutron star-black hole and black hole-black hole
binaries. These have to be individually identified and substracted. This problem is discussed
in [18] and in our BBO detectability analysis we optimistically assume that this foreground
can be substracted.

2.2 Relic background from cosmological processes

The GW background due to early universe events is stochastic as the signal comes from
the superposition of incoherent sources originating from a huge number of different horizon
volumes. For instance, the size of the horizon at the time of the electroweak phase transition
was much smaller than today (10−14 GeV)

−1
, corresponding to a tiny fraction of degree on

the sky today. Even if we assumed that there were two bubbles per horizon volume (actually
there would typically be several hundreds of them as we will see later), we would be unable
to resolve the signal coming from their collision. The signal comes from bubble collisions
which took place in many independent universes.

We work in a standard Friedman–Robertson–Walker (FRW) cosmology, a(t) is the cos-
mological scale factor. At the energy scales considered, we assume a radiation-dominated
era. Gravity waves produced at T∗ with a characteristic frequency f∗ propagate until today
without interacting. Their energy density redshifts as a−4 and their frequency as a−1. The
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characteristic frequency we observe today is

f = f∗
a∗

a0
= f∗

(

gs0

gs∗

)1/3
T0

T∗

(2)

where we used the adiabaticity of the expansion of the universe (meaning that the entropy
per comoving volume S ∝ a3gs(T )T 3 remains constant).

gs(T ) =
∑

i=bosons

gi

(

Ti

T

)3

+
7

8

∑

i=fermions

gi

(

Ti

T

)3

(3)

gi counts the internal degrees of freedom of the i-th particle and the sum is over relativistic
species. Today, gs(T0) ≃ 3.91 (assuming three neutrino species) and T0 = 2.725K = 2.348×
10−13 GeV. It is convenient to express the frequency in terms of the Hubble frequency at the
time of GW production:

f ≈ 6 × 10−3mHz
(

g∗
100

)1/6 T∗

100 GeV

f∗
H∗

(4)

The remarkable fact is that for T ∼ 100 GeV and f∗/H∗ ∼ 102, (as expected for weak scale
processes as will be explained below), the peak frequency of the GW spectrum is in the
milliHertz, just in the band of LISA.

The fraction of the critical energy density in gravity waves today is

ΩGW =
ρGW

ρc
= ΩGW∗

(

a∗

a0

)4 (H∗

H0

)2

≃ 1.67 × 10−5h−2

(

100

g∗

)1/3

ΩGW∗ (5)

where we used

ρGW = ρGW∗

(

a∗

a0

)4

, ρc = ρc∗
H2

0

H2
∗

and H0 = 2.1332 × h × 10−42 GeV (6)

g∗ is the number of relativistic degrees of freedom at T∗ which enters the definition of the
energy density and not the entropy (it is given by Eq. (3) where the cubic power is replaced
by a quartic power). ΩGW∗ is the fraction of energy density of the universe at the time of the
transition which is in gravitational waves. The peak sensitivity of LISA would correspond to
detect ΩGW h2 ∼ 10−11. This means that to detect a signal at LISA, we need ΩGW∗ ∼> 10−6

while at BBO, we can probe smaller fractions, ΩGW∗ ∼ 10−12 − 10−9.
The remaining task is to estimate f∗ and Ω∗. Theoretical predictions of relic GW back-

grounds are subject to large uncertainties which depend on the cosmological mechanism.
However, we can get a reasonable estimate of the characteristic frequency, the form of the
spectrum and the typical intensity. We will now review the main results in the case of GW
produced during first order phase transitions.

3 GW from first-order phase transitions

Phase transitions are commonly described by the effective potential of the scalar field (ei-
ther elementary or composite) responsible for the dynamics. First-order phase transitions
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are triggered if there exists a temperature at which a barrier separates two degenerate min-
ima. This happens for instance if there are negative cubic or quartic self couplings for the
scalar field. In this case, phase transitions proceed via nucleation of bubbles of the low-
temperature phase within the high-temperature phase. Bubble nucleation occurs through
quantum tunneling and thermal fluctuations. These bubbles then expand and merge, leav-
ing the universe in the low-temperature phase (commonly the broken-symmetry phase). As
a bubble expands, part of the liberated latent heat raises the plasma temperature while
the other part is converted into kinetic energy of the bubble wall and bulk motions of the
fluid. Because of its spherical symmetry, a single expanding bubble produces no gravity
waves. Only after bubble collisions destroy the spherical symmetry is gravitational radia-
tion emitted. High velocities and large energy densities provide the necessary conditions for
producing gravitational radiation. There are two sources of gravitational waves: the actual
collision of bubbles and the turbulence in the plasma due to bubble motion. The resulting
spectrum of gravitational waves has been studied in details in [6–9, 11–14]. The turbulence
spectrum was recently revisited in Ref. [19]. Re-examination of the bubble collision spectrum
is underway [20].

Remarquably, these predictions only depend on the grossest features of the bubble col-
lisions. Gravitational radiation is insensitive to the internal structure of colliding bubbles,
in other words, to the small scale configuration of the scalar field in the colliding region [6].
As confirmed by numerical simulations [7], the enveloppe approximation works very well. It
consists in neglecting the dynamics of the collision (overlapping) region. Kinetic energy is
supposed to be concentrated in the uncollided (but spherically asymmetric) bubble walls.
Once bubble walls collide, they stir up the plasma at a scale comparable with their radii at
the collision time, leading to turbulence which also induces gravitational emission.

3.1 Key parameters characterizing the GW spectrum

A crucial parameter for the calculation of the gravitational wave spectrum is the rate of
variation of the bubble nucleation rate, called β. This quantity fixes the characteristic scale
in the problem, the size of bubbles at the time of the collision, and therefore the characteristic
frequency f∗. The duration of the phase transition is given by β−1 and the size of bubbles
is typically Rb ∼ vbβ

−1 where vb is the velocity of the bubble wall. The initial size of the
bubble at the time of nucleation (of the order of T−1) is negligible compared to β−1 which
is of the order of the horizon size.

The second crucial parameter characterizing the spectrum of gravitational waves is α =
ǫ/ρrad, the ratio of the latent heat liberated at the phase transition (ǫ=latent heat) to the
energy density in the high energy phase, commonly being radiation energy density. ǫ is not
necessarily vacuum energy, see for instance [21]. α and β are evaluated at the nucleation
temperature and determine entirely the GW spectrum. They can be computed once we know
the effective action for nucleating bubbles (“critical bubbles”) which can be computed for
any scalar potential describing the phase transition. Therefore, given a scalar potential at
finite temperature, V (φ, T ), this is enough to derive the predictions for the GW spectrum.

The rate of bubble nucleation is

Γ(t) = A(t)e−S(t) (7)

The prefactor A(t) has units of energy to the fourth power, A(t) ∼ M4, where M ∼ T is the
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typical energy scale of the transition and S(t) ≈ S3/T is the euclidean action of the critical
bubble.

S3 =
∫

4πr2dr





1

2

(

dφb

dr

)2

+ V (φb, T )



 (8)

is the free energy of a critical bubble. φb is the bubble profile of the critical bubble obtained
by solving for the “bounce”:

d2φb

dr2
+

2

r

dφb

dr
− ∂V

∂φb

= 0, with
dφb

dr

∣

∣

∣

∣

∣

r=0

= 0 and φb|r=∞
= 0 (9)

Most of the time variation of Γ(t) is in S(t), and β is defined as:

β ≡ − dS

dt

∣

∣

∣

∣

∣

t∗

≈ 1

Γ

dΓ

dt

∣

∣

∣

∣

∣

t∗

(10)

where t∗ is the time when the transition completes. In a neighbourhood of t∗, Γ(t) grows
exponentially with time as S(t) = S(t∗) − β(t − t∗) + .... From the adiabaticity of the
expansion of the universe, dT/dt = −TH , where H is the expansion rate of the universe,
and we obtain

β

H∗

= T∗

dS

dT

∣

∣

∣

∣

∣

T∗

= T∗

d

dT

(

S3

T

)

∣

∣

∣

∣

∣

T∗

(11)

The temperature of the transition T∗ is defined as the temperature at which the probability
for nucleating one bubble per horizon volume per horizon time approaches 1. This guarantees
that bubbles percolate even if the universe is inflating. This translates into

Γ

H4
∼ O(1) → S = −4 ln

T∗

mP l
(12)

β/H is dimensionless and mainly depends on the shape of the potential at the time of
nucleation. According to (12), it depends only logarithmically on the energy scale. For a
phase transition at the weak scale β/H ∼ 102 and this justifies what we said after Eq. (4)
(where f∗ stands for β). While the size of the bubble increases by orders of magnitude
between nucleation and percolation (its initial radius R ∼ φ/

√
∆V at the time of nucleation

can be neglected; all what matters is the typical size at the end of the transition which is
given by Rb ∼ vb∆t ∼ vbβ

−1), T∗ (and thus α and β/H) is essentially unchanged between
nucleation and percolation.

Note that the ratio β/H also fixes the number of bubbles. The number density of bubbles
is roughly β−1Γ(t) so that the number of bubbles in one horizon volume is β−1Γ/H3, which,
at the end of the transition is of order H/β.

The latent heat is the sum of two contributions. The first one is the difference in free
energies between the stable and metastable minima (which vanishes at Tc) while the second
one comes from the entropy variation ∆s (which is non zero at Tc in a first-order PT). This
leads to the following formula for ǫ:

ǫ = −∆V − T∆s = (−∆V + T∂V/∂T )T∗

(13)

To conclude, for the analysis of gravity wave emission, the only two relevant quantities
are the amount of latent heat injected into the plasma, Eq. (13), and the nucleation rate,
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Eq. (7). So once the bubble action is computed (search for the bounce solution Eq. (9)),
everything is known. The fact that the phase transition is described or not by a fundamental
scalar field is irrelevant.

In practise, instead of solving Eq. (9), one can use either the thin wall or thick wall
limits to approximate the bounce solution. In the regime of large supercooling (which is the
one of interest as far as large signals of gravitational waves are concerned), the thick wall
approximation is adequate. In addition, if the temperature is decreasing and the ratio T/Tc

is getting low (Tc is the critical temperature at which the free energies in the two phases are
equal) one can use the 4D euclidean action S4 to evaluate the nucleation rate rather than
S3/T .

3.2 Scaling expectations

The energy density in gravitational waves coming from bubble collision can be estimated by
naive dimensional analysis as follows. The quadrupole formula for the power of gravitational

emission is PGW = G
5
〈(

...

Q
TT

ij )2〉 where G is the Newton’s constant and QTT
ij is the quadrupole

moment of the source which is T TT
ij , the transverse traceless piece of the stress tensor. We

can write

...

Q
TT

ij ∼ mass of system in motion × (size of system)2

(time scale of system)3
∼ kinetic energy

time scale of system
(14)

thus, PGW ∼ GĖ2
kin. Let κ be the efficiency factor which quantifies the fraction of the

vacuum energy which goes into kinetic energy of bulk motions of the fluid (as opposed to
heating):

Ekin ∼ κ α ρrad (vbβ
−1)3 (15)

Using G ∼ H2
∗
/ρtot∗ and ρtot∗ = (1 + α)ρrad we get (d/dt leads to a β2 factor) ρGW∗ =

EGW /(v3
bβ

−3) where EGW = PGWβ−1. Finally:

ΩGW∗ =
ρGW∗

ρtot∗
∼
(

H∗

β

)2

κ2 α2

(1 + α)2
v3

b (16)

To get a large signal, we need β/H∗ to be small and α to be large, in other words, the phase
transition should last as long as possible and the latent heat should be maximized. The
scaling obtained is very close to what a more rigorous calculation gives for the redshifted
value of the energy density evaluated at the peak frequency [9]:

Ωcoll h2(fcoll) ≃ 1.1 × 10−6κ2

[

H∗

β

]2 [
α

1 + α

]2
[

v3
b

0.24 + v3
b

] [

100

g∗

]1/3

(17)

while the peak frequency is [9]

fcoll ≃ 5.2 × 10−3mHz

[

β

H∗

]

[

T∗

100GeV

] [

g∗
100

]1/6

(18)

The scaling is slightly different in the case of GW from turbulence in the plasma (the analysis
of turbulent motions of [11] was generalized in [12, 14]):

Ωturb h2(fturb) ≃ 1.4 × 10−4u5
sv

2
b

[

H∗

β

]2 [
100

g∗

]1/3

(19)
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with [12, 14]

fturb ≃ 3.4 × 10−3mHz
us

vb

[

β

H∗

]

[

T∗

100GeV

] [

g∗
100

]1/6

(20)

The turbulent fluid velocities us are smaller than the bubble expansion velocities, unless
turbulence is extremely strong. As a result, according to (18) and (20), the peak for the
turbulence spectrum will be shifted to lower frequencies. Note that the peak frequency of
the collision signal does not depend on α. Because fturb ≈ fcoll × (us/vb) and (us/vb) is an
increasing function of α, as α increases, the collision peak gets hidden by the high-frequency
tail of the turbulence signal1 .

The signal from turbulence is more promising than the signal from bubble collision due
to the different scaling with α. Indeed, the scaling with α of the velocities and the efficiency
factor are :

vb(α) =
1/
√

3 +
√

α2 + 2α/3

1 + α
[22] , us(α) ≃

√

κα
4
3

+ κα
[14] (21)

κ(α) ≃ 1

1 + 0.715α



0.715α +
4

27

√

3α

2



 [9] (22)

The formulae (17) and (19) for Ωh2 show that the amplitude of the signal does not
depend on the energy scale of the transition but only on the dimensionless parameters α and
H∗/β, in other words on the shape of the scalar potential at the time of nucleation. Very
roughly, taking β/H∗ ∼ S3(T∗)/T∗ ∼ O(100), it is clear that we need α ∼ O(1) if we want
Ωh2 ∼> 10−10 (to see something at LISA). Our experience with possible values of α and β/H∗

is based on the studies of potentials describing the electroweak phase transition. The values
of α and β/H∗ are related to the ratio φ(T∗)/T∗, another quantity characterizing the strength

of the phase transition, where φ is the vacuum expectation value of the Higgs. For instance,
in the Minimal Supersymmetric Standard Model (MSSM), α is typically smaller than 0.1
while β/H∗ is larger than 1000 [13]. On the other hand, in the NMSSM, the authors of [13]
found values of α ∼ O(1). Values of α larger than 1 correspond to a phase transition which
is so strong that it is at the borderline of not being able to take place because the free energy
of a critical bubble is too large: either the barrier separating the two minima is too large
(the barrier even exists at zero temperature) or the distance in field space between the two
minima of the potential is too big. The same applies if β/H∗ is smaller than O(100). This
situation is encountered not only in the NMSSM but also in effective theories with large
negative quartic couplings [23], as will be presented in [25]. Note that for a given scalar
potential, α and β/H∗ are actually correlated as a large value of α will be associated with a
small value of β/H∗. Indeed, α is proportional to the latent heat, which grows as ∆V , the
depth of the potential at the minimum, is getting bigger. On the other hand, S3/T (and
thus β/H∗) typically scales like 1/

√
∆V .

Let us make a few comments concerning the situation where α ∼ 1. In usual phase
transitions, this means that the vacuum energy is of the same order as the radiation energy
density, therefore inflation starts before bubbles percolate. However, if Eq. (12) is satisfied,
this guarantees that the phase transition can still complete. The number of e-foldings of

1Although the relation fturb ≈ fcoll × (us/vb) is likely to be revised in Ref. [20].
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inflation is ln(V 1/4/T∗), which is typically less than 1. However, if the transition is very
slow, i.e. β/H ∼< 1, one should take formulae (17) and (19) with caution as they are derived
neglecting the expansion of the universe, which is not a good approximation if β/H < 1.

Fig. 1 shows some GW spectra illustrating the predictions for various temperatures with
representative values of α = 0.4, 1 and β/H∗ = 100, 800, 3000. Those plots also exhibit two
examples of signals from inflation (and taken from [4]) for comparison. The scale of inflation
is constrained by the CMB to be EI ∼< 3.4 × 1016 GeV [4]. This fixes the largest signal we
could expect from inflation as ΩGWh2 ∝ E4

I . We also include the signal corresponding to
EI = 5 × 1015 GeV which could be observed at BBO.

4 Scanning the (α, β/H∗) plane

In our analysis below, we will use the formulae of the previous section as well as the fact
that the spectrum Ωcollh

2 is expected to increase as f 2.8 while at high frequencies it drops off
as f−1.8 and that Ωturbh

2 increases as f 2 while at high frequencies it drops off as f−7/2. This
is already all summarized in the letter [14]. However, Ref. [14] focuses on the detectability
at LISA of GW from a T = 100 GeV phase transition. We are now using this formalism
to look in more details at the detectability of GW coming from any other 1st order phase
transitions at future interferometers. We repeat that we are working at the level of an-
order-of-magnitude estimate. Magnetohydrodynamical effects could make the slope of the
turbulence high frequency tail smaller [14] and in any case, for a more precise analysis, the
calculation of the power spectrum should be revisited first. We compare the GW spectra
resulting from PT occurring at temperatures in the range [100 GeV, 100 PeV] with the
sensitivities of LISA, BBO and LIGO correlated third generation (and taken from [24]). The
BBO sensitivity is approximate and may change in the final design. We are actually using
the sensitivity of BBO Corr, its correlated extension, which correlates two detectors, namely
two LISA-like constellations (each LISA-like constellation orbits around the Sun at 1 AU and
consists in three spacecrafts in a triangular configuration) that will allow to do correlations
to measure the stochastic background. As discussed in Section 2.1, we take into account as
well the irreducible background due to extragalactic white dwarf (WD) binaries.

For each temperature, we are making a full scan of the (α, β/H∗) parameter space and
determine the regions where at least one of the peaks is observable. According to Eq. (17,
18,19,20), various situations can arise:

• For relatively low α, the turbulence and collision peaks are well separated and can be
observed. This is the ideal situation as the observability of these two peaks would be
a smoking gun for the phase transition origin of these GW. The ratio of the two peak
frequencies is a predicted function of α. In somes cases, the turbulence peak is at too
low frequency to be observed by LISA or BBO but the minimum separating the two
peaks is visible.

• At larger α (∼> 0.64), the collision peak is hidden by the high frequency tail of the
turbulence peak. However, there is a characteristic change of slope in the high fre-
quency tail. Depending on the temperature of the transition, this change of slope can
be observed or not.
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Figure 1: Spectrum of gravitational waves expected from a first order phase transition (solid
blue line) for four temperatures and for some choices of (α, β/H) values. The dashed red lines
are the (approximate) predicted sensitivities of LISA, BBO, LIGO-III. The horizontal dashed
green lines are the gravitational spectra expected from inflation, for two scales of inflation,
for comparison. The black dashed curve is the estimate for the irreducible foreground due
to white dwarf binaries (from [17]). At large α, only the peak from turbulence can be seen
as well as a change of slope (shown as a circled cross) corresponding to the high frequency
tail of the bubble collision spectrum. For low α, it is possible to see the collision peak as
well.

Our contour plots show the region where the turbulence peak is observable and the region
where either the collision peak or the slope change is visible, at LISA (Fig. 3), BBO (Fig. 4)
and LIGO (Fig. 5). The vertical line separates the low α region where the two peaks are
well separated from the large α region where only the change of slope is visible. The lower
horizontal bound is due to the fact that we cut the sensitivity of both LISA and BBO at
10−4 Hz. Because of this frequency limit in the sensitivity, we cannot probe phase transitions
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Figure 2: Different configurations of the signal versus the instrument sensitivity to show the
qualitative dependence on parameters. The upper blue region is where the turbulence peak
is observable while the lower red one is the region where either the collision peak or the
point of slope change is visible. Precise locations of these different regions depend on the
experiment and the temperature of the transition as illustrated in Figs. 3, 4 and 5.

below a ∼ GeV and thus the QCD phase transition. In the BBO plots, we show the very
important effect of the WD foreground on the detectability at BBO.

Note that we could have also made contours corresponding to cases where none of the
peaks are observable but the high or low frequency tails can still be detected. This will
clearly enlarge the detectability region and this is work in progress.

4.1 T=100 GeV

LISA will be able to detect the peak of GW from a 100 GeV first order PT only if it is
extremely strong (α ∼> 0.5 or β/H ∼< 1000). The Higgs potential of the MSSM does not
satisfy this requirement but it can in the NMSSN [13]. Higgs potentials with negative quartic
couplings can also trigger strong EWPT as was shown in [23]. The corresponding prospects
for GW detection will be presented in details elsewhere [25]. There are also exciting large
signals expected from the high temperature behaviour of a warped extra dimension [21]. If T
is ∼ 500 GeV rather than 100 GeV, the GW peak will coincide with LISA’s best sensitivity
frequency and a larger region will be detectable. The prospects for detection of GW from
the 100 GeV EWPT are very good at BBO. At these low frequencies, the WD foreground
is lower. For instance, the turbulence peak for α ∼> 0.3, β/H ∼ 200, is above the WD
foreground and can be seen by BBO. Note also that at T = 500 GeV, values of β/H as large
as 104–105 can be probed.
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Figure 3: Contours delimiting the region in the (α, β/H) plane for which there is an ob-
servable peak at LISA. The upper blue region is for the turbulence peak while the lower red
one is the region where either the collision peak or the point of slope change is visible. Left
of the vertical green line, the collision peak is visible.
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Figure 4: Same as Fig. 3 but for BBO. The effect of including the constraint from the
irreducible WD foreground is displayed and limits the observable regions from the uncolored
ones to the ones in plain colors. As the temperature increases, the peaks are shifted to higher
frequencies, thus the effect of the WD foreground becomes less significant.
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Figure 5: Same as Fig. 3 but for LIGO-III.

Figure 6: Below each line (each one associated with the temperature of the phase transition),
the gravitational wave signal at BBO from 1st order phase transitions entirely masks the
signal expected from inflation. This plot strongly depends on the scale of inflation, which
was chosen here to be EI = 3.4 × 1016 GeV.

4.2 T=1 TeV

It is quite exciting that a 1 TeV PT with α ∼> 0.4, β/H ∼ 200 can be seen by LISA.
Recent radical proposals to address the hierarchy problem predict rich new phenomena at
the TeV scale. For instance, new dimensions at a TeV could give rise to observable signals at
LISA [21]. There was also a recent study of the high temperature behavious of Little Higgs
Theories where it was shown that EW symmetry was restored precisely at a temperature
of order ∼ 1 TeV [26]. This transition appeared to be first order. A more detailed analysis
would be required to determine whether this PT could be strong enough to lead to an
observable spectrum of GW at LISA. Unfortunately, this takes place in the regime where
the effective theory ceases to be under control. This is nevertheless an interesting prospect.
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If β/H ∼> 100, the turbulence peak is above the WD foreground for α ∼> 0.2, and thus
can be seen by BBO. In addition, BBO can see the high frequency tail of the collision peak
which covers good part of, if not entirely, the inflation signal.

4.3 T=10 TeV

At these temperatures, the peak cannot be probed by LISA, unless β/H < 102. On the
other hand, LISA can still probe the low frequency tail of these spectra and is therefore a
compelling tool to probe scales that LHC will not be able to reach. As the temperature
increases, the peaks are shifted to higher frequencies, thus the effect of the WD foreground
becomes less significant and quite weak first order phase transitions can be probed. And the
high frequency tail of the collision peak can entirely screen the inflation signal, depending on
the scale of inflation (see Fig. 6). If β/H ∼ 1000, it is possible to see both the turbulence and
the collision peaks for 0.1 ∼< α ∼< 0.64 and assuming that the inflationary scale is sufficiently
low. For β/H ∼ 200, the collision peak can be seen for α as low as ∼0.05 if the inflationary
signal is below the BBO sensitivity.

4.4 T=100 TeV

If β/H ∼ 200 and α ∼> 0.2 the inflation signal is for sure entirely covered. If the inflation
scale is below ∼ 5 × 1015 GeV, α as low as 0.05 could be detected at BBO. Two peaks can
be seen if 0.1 ∼< α ∼< 0.64 and β/H ∼ 200. At larger β/H only the turbulence peak will be
seen.

4.5 T=107 GeV

This is a particularly interesting case as the same signal could be observed by both BBO
and Ligo-III. Specifically, a phase transition with α = 0.8 and β/H ∼ 200 would give a
turbulence peak observable by Ligo-III while the low frequency tail would be observable by
BBO. In this example, the inflation signal would be hidden except in a very narrow frequency
range between 50 mHz and 80 mHz.

Interesting signatures end at this energy scale. Phase transitions at T∼> 108 GeV cannot
be probed by any of the planned interferometers.

5 Conclusion

We have shown that the GW background from early universe phase transitions may become
relevant for a second generation detector such as the Big Bang Observatory (BBO) which
is so far motivated to detect the GW background produced during inflation. LISA, LIGO
and BBO will be able to probe part of the history of the universe in the temperature range
100 GeV–107 GeV. The GW signal coming from particle physics phase transitions is directly
related to the scalar potential describing the evolution of the order parameter. Observation or
non-observation of GW will allow to put constraints on the parameters of these potentials.
The measurement of the GW spectrum (peak frequency and intensity) can discriminate
among different models (once combined with experimental measurement at colliders, for
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instance, once knowing the higgs mass) and put constraints on the model parameters. For
example, at LHC, we will be able to measure the Higgs mass but not the quartic or cubic self
coupling of the Higgs. Only a linear collider can provide this information, which timescale
could be beyond LISA. LISA could start constraining model parameters before a linear
collider. In addition, LISA is sensitive to the 10 TeV scale which is beyond the reach of the
near future collider experiments.

The gravitational wave signal from phase transitions at around 10–100 TeV temperatures
could entirely screen the signal from inflation, which detection is one of the main motivations
for building BBO.

We emphasize that our quantitative analysis can only be indicative given the uncertainties
both at the experimental and theoretical level. The sensitivities of LISA, LIGO-III and BBO
will certainly change during the next years. On the theoretical side, we use the estimate of the
GW power spectrum of [6–9,11,12,14] which is enough for the point of this paper. However,
it certainly deserves improvement. We do not venture into this aspect in this work and just
encourage that this question be re-examinated given the exciting experimental prospects for
GW detection from phase transitions we demonstrated in this analysis.

Note added

As this work was being completed, Ref. [19] appeared where they re-examined the calculation
of the gravitational wave background from turbulence. They disagree with and correct the
dispersion relation used for gravitational waves in [11, 12, 14]. This leads, in particular,
to a different prediction for the peak frequency as well as a different spectral dependence.
Re-examination of the bubble collision spectrum is underway [20]. These new results can
marginally affect the detectability regions of Figs. 3, 4 and 5 but the overall conclusions will
remain the same.
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