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1. Nonperturbative Methods in QCD

For all its phenomenological success, QCD is still only under theoretical control in
the very peculiar kinematic domain where it is amenable to perturbative treatment. In
particular, whereas in perturbative QCD a systematic set of computational techniques is
available, in the nonperturbative domain only specific problems can be handled using an
array of heterogeneous methods. In these lectures we shall discuss a particular set of non-
perturbative computational tools, which have been now known for some time (usually in
the context of mathematical and condensed matter physics) having in mind their applica-
tion to the physics of strong interactions. These techniques provide a powerful method to
compute quantum numbers induced by the coupling to a classical (external) background;
they are particularly useful to understand the origin of quantum numbers of semiclassical
field configurations, such as the topologically nontrivial configurations which are believed
to control the physics of the QCD ground state (instantons), and those which are used
to describe baryons in topological soliton models such as the Skyrme model. A notable
reason why such techniques are interesting is that they provide a nonperturbative handle
on the physics of the axial anomaly: this allows to understand several subtleties related
to the renormalization of the anomaly, such as its infrared sensitivity, and to exploit the
peculiar features of anomalous effects, which link the high-energy properties of QCD with
its infrared (nonperturbative) dynamics.

In the next section we shall give a general introduction to the spectral asymmetry
method for the computation of induced quantum numbers, relate it to index theorems,
and apply it to the determination of quantum numbers of a skyrmion. In Sect. 3 we
shall work out in some detail a completely solvable 1+1 dimensional example: this will
allow us to derive the axial anomaly equation and the related charge-creation process; we
will take advantage of the spectral asymmetry approach to tackle some subtle issues of
infrared regularization of the anomaly. Finally, in Sect. 4 we shall apply the formalism
to anomalous particle creation in QCD, and in particular its contribution to the quantum
numbers of the nucleon.

2. Vacuum–induced quantum numbers and the spectral asymmetry

When a quantized field is coupled to an external classical background its elementary
excitations may acquire quantum numbers which are induced by the coupling. This effect
may have surprising consequences: for example it may turn out that in a purely bosonic
theory there exist states that carry half-integer spin, or that in a theory where all fields
carry integer fermion number some states have half-integer fermion number [1]. Because
the ground state of QCD is believed to be dominated by field fluctuations which may be
treated in the semiclassical approximation [2] (instantons [3]), this effect is of potential phe-
nomenological relevance for the computation of quantum numbers of strongly-interacting
physical states. Furthermore, it is closely related to the physics of the axial anomaly [4],
as we shall discuss in the next section.
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2.1. The spectral asymmetry method

Consider a system of Dirac fermions, described by the Lagrangian

L = ψ̄γ0

(
i
∂

∂t
−H

)
ψ ≡ ψ̄ D/ ψ, (2.1)

where the Hamiltonian H contains the coupling to an external field.1 In general, in the
presence of a coupling, the fermion number of physical states will receive a contribution
induced by the background, and it will differ from that which is naively given by its fermion
content: thus, for instance, the fermion number of the vacuum will not vanish.

This can be shown directly by computing [5] the canonical, normal ordered fermionic
charge

Q =
∫
d�x :ψ†(�x)ψ(�x): =

∫
d�x

1
2
[
ψ†(�x), ψ(�x)

]
. (2.2)

In the last step the normal ordering has been performed explicitly: indeed, taking the
commutator is the only choice of operator ordering such that Q is charge-conjugation odd.
Let us now expand the field over a Fock state basis of eigenstates of the Hamiltonian:

ψ(x) = lim
s→0

∫∑
k

(
bkuk(�x) + d†kvk(x)

)
|λk|−s/2, (2.3)

where uk are eigenstates of H with positive (negative) eigenvalues λk, we have symbolically
indicated with

∫∑
k

the summation over a continuous and/or discrete spectrum labelled by
k, and we have introduced an explicit ζ-function regulator |λk|−s/2 (which is eventually
removed) in order to regularize the spectral sum. The coefficients of the expansion are the
usual creation and annihilation operators; notice that these create eigenstates of the full
Hamiltonian H (which contains a coupling to external fields) and not free states.

Substituting the expansion Eq. (2.3) in the expression Eq. (2.2) of the fermion charge
gives

Q = Qc − 1
2

lim
s→0

ηH(s); (2.4)

Qc =
∫∑

k

(
b†kbk − d†kdk

)
, (2.5)

η(s) =
∑∫

k

signλk
|λk|s ≡ Tr

signH
|H|s . (2.6)

1 Although the considerations which follow would apply equally well to bosons, we consider

fermions both because they are phenomenologically of more direct interest, and because they are

somewhat simpler to handle.
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The first term on the r.h.s. of Eq. (2.4) is the “naive” one, which we would have found in
the absence of a background; it is equal to the canonical charge built out of creation and
annihilation operators. This term is supplemented with an extra contribution, proportional
to the quantity ηH(s) defined in Eq. (2.6), which is constructed from the eigenvalues of
the Hamiltonian and can thus be thought of as a functional of the background field. This
quantity is called the spectral asymmetry of the operator H, since, roughly speaking, it
measures the difference between the overall number of positive and negative eigenvalues
of H, or, a bit more precisely, it is a ζ-function regularization of it. In the last step in
Eq. (2.6) the spectral asymmetry has been symbolically expressed as a functional trace
over the spectrum of H.

The vacuum expectation value of Q can now be expressed in terms of the spectral
asymmetry: if the Dirac vacuum is defined as the state which is annihilated by the anni-
hilation operators bk and dk then

〈Q〉 = −1
2

lim
s→0

ηH(s). (2.7)

Notice that it is the requirement that Q has the correct symmetry properties (specifically,
that it is charge-conjugation odd) which fixes uniquely its vacuum expectation value.

The (generally nonzero) vacuum charge Eq. (2.7) can be understood physically [6] as
a charge carried by the Dirac sea: if the charge of the Dirac sea is defined to be zero when
no background is present, then the same definition implies that in general the sea has
charge given by Eq. (2.7). A rough and ready way to see how this works is the following:
call n+ (n−) the total number of positive (negative) energy states; of course, in general
such numbers will be infinite, but assume that there exists a suitable regularized definition.
Assuming further for simplicity that there are no zero modes (i.e., vanishing energy states)
the total number of eigenstates is n = n+ + n−. The total number of eigenstates does not
depend on the background, thus if n±

0 are the numbers of states when no background is
present, then

n = n+ + n− = n+
0 + n−

0 ; (2.8)

moreover, in the absence of a background the spectrum of H is symmetric about zero, so
that n+

0 = n−
0 , hence n = 2n+

0 = 2n−
0 . Now, the vacuum is defined by filling negative

energy states, hence the vacuum charge equas the number of negative energy states — the
charge carried by the Dirac sea. Since, however, the charge must vanish for a free theory,
we choose our operator ordering so that the vacuum charge is equal to zero in the absence
of background. This is accomplished by subtracting this quantity from the charge, thereby
regulating its divergence. Putting everything together we get thus

〈Q〉 = n− − n−
0 = n− − 1

2
(
n+

0 + n−
0

)
= n− − 1

2
(
n+ + n−) =

= −1
2
(
n+ − n−) . (2.9)
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The last step is recognized to be a crude form of the spectral asymmetry, properly defined
in Eq. (2.6). More precisely, Eq. (2.9) is correct when the number of states is is finite; in
such case it coincides with the spectral asymmetry Eq. (2.7), which however generalizes it
to the case of infinite n.

The generation of a vacuum charge induced by a background can also be understood
without invoking a canonical approach, directly from the path integral [7]. Indeed, the
vacuum charge can be obtained by functional differentiation of the generating functional
with respect to a source μ:

〈Q〉 =
δ

δμ
ln
∫
DψDψ̄ ei

∫
dxL+μ(x)ψ̄γ0ψ

∣∣∣
μ=0

=
δ

δμ
Tr ln[i D/ +γ0μ]

∣∣
μ=0

= Tr
1

i ∂∂t −H
.

(2.10)

Wick-rotating to Euclidean space, and rewriting the functional trace as an integration over
plane-wave eigenfunctions of the time-derivative operator, and a trace over the eigenstates
of H, leads to

〈Q〉 = −i
∫ ∞

−∞

dω

2π
Tr
(

1
ω + iH

− 1
ω + iH 0

)
, (2.11)

where in the last step we have regulated by explicitly subtracting out the charge in the
absence of background: H0 denotes the Hamiltonian when no background is present. Com-
puting the integrals by Cauchy’s theorem leads to

〈Q〉 = Tr [Θ(H) − Θ(−H0)] . (2.12)

If we use again the fact that the total number of states is left unchanged by the
presence of the background it follows that Tr[Θ(H) + Θ(−H)] = Tr[Θ(H0) + Θ(−H0)],
and Eq. (2.12) is recognized to provide once again an (unregulated) expression of the
spectral asymmetry — if we had been more careful in introducing a regularization from
the beginning, then the result Eq. (2.6) would have been recovered.

As the Lagrangian derivation suggests, this method is actually quite general, and may
be used to compute any vacuum-induced quantum number, and not only the vacuum in-
duced charge, by evaluating a suitably weighted spectral asymmetry. Thus, for instance,
the vacuum-induced angular momentum will be computed by weighting the spectral asym-
metry with the angular momentum operator J :

〈J〉 = lim
s→0

Tr
JsignH
|H|s , (2.13)

and likewise for the expectation value of other operators.
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2.2. An example: the quantum numbers of the Skyrmion

As a first example of application of the spectral asymmetry method, we sketch its
application to the computation of the baryon number and axial charge of a Skyrme soliton.
The quantum numbers carried by a soliton can be determined by coupling the fields which
carry the soliton excitation to a test fermion, and then determining the variation induced
by the background on the quantum numbers carried by the fermionic vacuum, i.e., the
state which contains no explicit excitations of the test fermion.

The fermion-Skyrmion coupling is dictated by the quantum numbers carried by the
Skyrmion, and has the sigma model form [8]

Ls = ψ̄
(
i ∂/ −μe 2i

fπ
iγ5π

aλa

)
ψ. (2.14)

When expanded in powers of the field U(x) this Lagrangian generates a quark mass term
with mass μ, and couplings to an increasing number of pions, with decay constant fixed
by fπ. The Skyrmion field is

U = e
2i
fπ
πaλa , (2.15)

and a soliton is obtained when the pion field πa(x), viewed as a mapping from space
to the group SU(2) (on which the isospin generators λa act) is topologically nontrivial.
This means the following: if the physical space is viewed as a sphere S3 (by considering
spatial infinity as one point, which is possible provided the fields fall off rapidly enough at
infinity), then, recalling that the group manifold of SU(2) (i.e. the space spanned by U) is
also isomorphic to a sphere S3, the field U(x) provides a map S3 → S3. Now, such maps
fall in equivalence classes; each class contains maps which can be deformed smoothly into
each other, but not into the maps in other classes. These classes, called homotopy classes,
form a group, π3[SU(2)]= ZZ . The field is nontrivial if it belongs to a class which is not
the same as that of the trivial map U(x) = 11 ; this happens when as x winds on the space
S3, U(x) also winds on the group manifold.

We can rewrite the Lagrangian of Eq. (2.14) in the general form of Eq. (2.1) by defining
the Hamiltonian

HS = −iγ0γi∂i + μγ0
[
UPR + U†PL

]
; PR =

11 + iγ5

2
PL =

11 − iγ5

2
, (2.16)

where PR, PL are chiral projectors2. The charge carried by the Skyrmion is then just
given by Eq. (2.7), with the spectral asymmetry which pertains the Hamiltonian Eq.(2.16).
This in turn can be easily computed from its representation Eq. (2.11), by expanding the

2 We define γ5 = γ0γ1γ2γ3 = −γ†
5.
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integrand in powers of the Skyrme field and its derivatives [9]. The leading order term is

found to be

〈Q〉 = −
∫
dω

2π
Tr
(

H

ω2 +H2
− H0

ω2 +H2

)
=

1
24π2

∫
d3x εijkTr

(
U−1∂iUU

−1∂jUU
−1∂kU

)
.

(2.17)

The expression Eq. (2.17) of the charge of the Skyrmion is recognized as an explicit

form of the winding number of U(x). This is a number which classifies the homotopy classes

of maps, by taking one and the same value for all maps in the same class, and can be chosen

to take (all) integer values by a suitable choice of normalization. The present calculation

shows that this number is actually equal to the fermion number (baryon number) of the

soliton field. Therefore, the 1-skyrmion (1-antiskyrmion) configuration is defined to be

that which has 〈Q〉 = 1 (〈Q〉 = −1).

Along the same lines we may compute the axial charge of the Skyrmion, namely

〈Q5〉 ≡ 〈
∫
d3xψ†iγ5ψ〉 = lim

s→0
Tr
iγ5 signHS

|HS |s . (2.18)

The result follows immediately from the observation that the spectral asymmetry satisfies

lim
s→0

ηH(s) = lim
s→0

ηHPR
(s) + lim

s→0
ηHPL

(s), (2.19)

i.e., the spectral asymmetry of the Hamiltonian decomposes into the sum of the spectral

asymmetries of its chiral projections (defined as in Eq. (2.16)). This in turn is a consequence

of the fact that

∫
dω

2π
Tr

1
ω + iH(PR + PL)

=
∫
dω

2π
Tr

H

ω2 +H2
(PR + PL). (2.20)

But since for the Skyrme Hamiltonian Eq. (2.16) lims→0 ηHSPR
(s) = lims→0 ηHSPL

(s),

then
〈Q〉 = η[HPR] + η[HPL] = 2η[HPR]

〈Q5〉 = η[HPR] − η[HPL] = 0,
(2.21)

where we denote for short with η[H] the s → 0 limit of the spectral asymmetry of the

operator H. Hence, the axial charge of the Skyrmion vanishes identically.
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2.3. The spectral asymmetry and the index theorem

The computation of the axial charge induced by background gauge fields is especially
instructive, since the relevant spectral asymmetry is then determined by an index theorem.
In view of the connection between induced quantum numbers and anomalies, this explains
the relation between the anomaly and the index theorem, as we shall see in detail in the
next section. Let us thus consider fermions minimally coupled to a background gauge
potential Aμ, which will be in general a matrix acting on the gauge group, i.e. a linear
combination Aμ = Aaμλ

a, where λa are generators of the gauge group, with Lagrangian
and Hamiltonian given respectively by3

L = ψ̄i D/ ψ; D/= γμ (∂μ +Aμ)

H = −iγ0γi (∂i +Ai) ,
(2.22)

in the A0 = 0 gauge, which we shall use throughout.

In a representation of the Dirac matrices where iγ5 =
(

11 0
0 − 11

)
the Dirac Hamil-

tonian has the block-diagonal form

H =
(

i D/3 0
0 −i D/3

)
; D/3= σi (∂i + Ai) , (2.23)

where σi are two by two matrices which satisfy the Clifford algebra {σi, σj} = δij , such
as the usual Pauli matrices (and all unitary transformation thereof), and i D/3 may be
viewed as a Dirac operator in three dimensions (by considering the three space dimensions
as a Euclidean three-dimensional spacetime). It then follows immediately that the axial
charge, defined as in Eq. (2.18) [but with the Dirac Hamiltonian Eq. (2.23)] is

〈Q5〉 = −1
2
η[iγ5H] = −η[i D/3], (2.24)

while of course η[H] = 0. Otherwise stated, because the Hamiltonian is block diagonal with
respect to eigenstates of iγ5, and its projections over the two eigenstates of iγ5 (namely
±i D/3) are the opposite of each other, the spectral asymmetries of these two projections
are also the opposite of each other; hence

〈Q〉 = 0

〈Q5〉 = −η[i D/3].
(2.25)

3 We assume the normalization of λi to be chosen in such a way that they are antihermitian;

the potentials Aa
µ are then real vector fields
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The spectral asymmetry of the three-dimensional Dirac operator i D/3 can now be
expressed in close form as a functional of the gauge potentials A, using the powerful
mathematical methods of index theory. The relevant construction [10] starts by relating
i D/3 to a new Dirac operator i D/4, which acts on a 4-dimensional Euclidean spacetime.
This is defined as follows: first, given the gauge potential Ai(�x) on which i D/3 depends,
construct a one-parameter family of gauge potentials Ai(τ, �x), where 0 ≤ τ ≤ 1, such that
Ai(τ = 0, �x) = 0 and Ai(τ = 1, �x) = Ai. This is therefore an interpolation between the
vacuum and the given gauge potential. Then, construct the Dirac operator in 4 dimensions

i D/4= σ1 ⊗ 11 i
∂

∂τ
+ σ2 ⊗ i D/3, (2.26)

where σ ⊗ τ is the 4 × 4 matrix obtained replacing each of the elements τij of the 2 × 2
matrix τ with the 2 × 2 matrix obtained multiplying by τij the elements of σ. It is easy
to check that Eq. (2.26) defines a bona fide 4-dimensional Euclidean Dirac operator, in
the sense that it can be written as D/4= γμ(∂μ + Aμ), where {γμ, γν} = δμν . The four-
dimensional space on which this operator acts can be viewed as a cylinder, which has the
three-dimensional space we started from as a “basis” and the segment spanned by τ as
“height”; the three-dimensional space we started from is the boundary of this cylinder.

Then, the Atiyah-Patodi-Singer index theorem states that

− 1
2
η[i D/3] = −Ω0[A] + ind i D/4

Ω0[A] = − 1
8π2

tr
∫
d3x εijk

(
Ai∂jAk +

2
3
AiAjAk

)
,

(2.27)

where the trace is performed over the gauge group matrices λa contained in the potentials
Aμ. Here ind i D/4 is the index of the operator i D/4, and it is determined by the chirality
of its zero modes. Indeed, zero modes (eigenvectors with vanishing eigenvalue) of i D/4 are
right-handed or left-handed (i.e., they are eigenstates of iγ5 with eigenvalue equal to ±1),
because iγ5 anticommutes with i D/4; the index is defined as the difference between the
number of right-handed minus the number of left-handed zero modes. Thus, Eq. (2.27)
determines the spectral asymmetry as a functional of A, given by Ω0[A] (called the Chern-
Simons functional of A), up to an integer, equal to the index of i D/4.

The reason why Eq. (2.27) is called an index theorem is that it can be viewed, in
reverse, as a determination of the index of the operator i D/4. Indeed, note that

Ω0 = Q(x)

Q(x) = − 1
16π2

tr
∫
M4

d4x εμνρσFμνFρσ,
(2.28)

where Fμν is the field strength computed from the potential Aμ, and the integration is
extended to the four-dimensional (Euclidean) space M4 on which i D/4 acts. Observing
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that i D/3 is just the restriction of this operator to the boundary of M4, Eq. (2.27) is seen
to determine the index of i D/4 in terms of a functional of the gauge potentials, Q(x), and
a boundary correction, the spectral asymmetry η[i D/3].

4

The index theorem Eq. (2.27) can then be generalized to any manifold with or without
boundary by writing it in the form

ind i D/4= Q(x) − 1
2

∑
i

η[i D/i3], (2.29)

where the sum runs over all the disconnected components which the boundary will in
general have. The simplest example is the case of boundaryless manifolds, in which the
spectral asymmetry term is missing; this is then the original Atyiah-Singer index theorem
[11]. The meaning of the index of i D/4 can be clarified by considering a second example,
namely that when the operator i D/3 [τ ] is a function of a parameter τ which interpolates
between two potentials A(τ1) = A(1), and A(τ2) = A(2) [of which Eq. (2.27) is the special
case in which A(1) = 0 and A(1) = A]. Then, the boundary consists of two disconnected
components, i.e. the endpoints τ = τ1, τ2, and Eq. (2.29) gives

ind i D/4= − (Ω0[A2] − Ω0[A1]) − 1
2

(
η[i D/i3 [A2]] − η[i D/i3 [A1]]

)
, (2.30)

i.e. the index equals the variation of the combination on the r.h.s. of Eq. (2.27) as τ
varies. Furthermore, it can be shown5 [4] that i D/4 [τ ] has a zero mode if and only if,
diagonalizing i D/3 at fixed τ , there is an eigenvalue of i D/3 which changes sign as τ varies
from τ1 to τ2; if the zero mode is right-handed (left-handed) the eigenvalue changes from
positive to negative (negative to positive), provided a state is defined to be right-handed
(left-handed) if it is an eigenstate of iγ5 with eigenvalue +1 (−1). More in general, if we
define a signature si of the i-th level crossing as si = +1 (si = −1) if one level crosses
from positive to negative (negative to positive) then

ind i D/4= s

s ≡
∑
i

si,
(2.31)

where the sum runs over all level crossings. The quantity s also known as the spectral flow
of the family of operators i D/3 [τ ].

4 Eq. (2.27) is correct only provided the fields fall-off at spatial infinity fast enough that the

three-dimensional space can be viewed as a sphere (i.e. at least as 1/x).
5 We will demonstrate this explicitly in Sect. 3.2 in a two-dimensional setting.
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Finally, it is interesting to notice that the gauge invariance of the spectral asymmetry

(which is manifest, since is computed from the gauge invariant spectrum of the Hamilto-

nian) is realized in a nontrivial way in Eq. (2.27). Indeed, the Chern-Simons functional

Ω0 is not, in general, gauge invariant, but rather it is only gauge invariant modulo inte-

gers: the same kind of topological structure that allows the existence of Skyrmion field

Eq. (2.15) also implies that in SU(2) or SU(3) gauge theories (in fact, for any SU(N) with

N > 1) there exist gauge transformations which cannot be continuously deformed into the

identity. Upon the action of such transformations, Ω0 varies by an integer, so that it can

be actually used to classify these transformations into equivalence classes, by putting in

the same class all transformations such that Ω0 changes by the same amount. But then

this means that ind i D/4 in Eq. (2.27) must also be gauge-noninvariant, in such a way

as to exactly compensate the gauge noninvariance of Ω0. Restricting instead to gauge

transformations which can be continuously connected to the identity (i.e., those which can

be obtained by exponentiating a linear combination of generators of the group), then it is

easy to verify [4] that Ω0 is gauge invariant (and the index is as well).6

These somewhat formal results are actually very powerful: they embody all the physics

of the axial anomaly, and they provide an easy computational approach to it. This is what

we will discuss in the next section, by working out an explicit two-dimensional example.

3. Induced quantum numbers and anomalies

In the previous section we discussed the quantum numbers induced by the presence

of a background field on a test particle (specifically a fermion). The presence of such

quantum numbers followed from symmetry requirements: for example a vacuum charge

Eq. (2.7) is induced by demanding that the second-quantized charge operator Eq. (2.2) be

odd under charge conjugation, and that the vacuum carry no charge. Likewise, imposing

symmetry requirements may force the generation of a time-dependent quantum number,

which in turn may signal the breaking of a symmetry. This phenomenon, where it is not

possible to maintain simultaneously a pair of classical symmetries in a quantized theory,

and enforcing one requires the other to be broken, is known as anomaly. We will study

it, as particular case of particle creation, in the simple setting of a completely solvable

two-dimensional model.

6 An explicit construction of one-dimensional homotopically nontrivial gauge transformations

will be discussed in Sect. 2.2 below.
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3.1. The axial anomaly in 1+1 dimensions

We consider massless fermions coupled to an electromagnetic field in 1+1 dimensions.
This is a special case of the Lagrangian and Hamiltonian Eq. (2.22), where the index i takes
one single value (corresponding to the single space coordinate), and the gauge potentials
Aμ are just functions, and not matrices. It is convenient to choose the representation of
the Dirac matrices where

γ0 = σ1, γ1 = iσ2; iγ5 = −σ3. (3.1)

It then follows that the Hamiltonian can be rewritten as (denoting with A the nonvanishing
component of the gauge potential, in the gauge A0 = 0)

H = −σ3

(
1
i

d

dx
− A(x, t)

)
= −

(
D1 0
0 −D1

)
; D1 =

(
1
i

d

dx
− A(x, t)

)
,

(3.2)

which has the same block-diagonal structure encountered in the four-dimensional case
Eq. (2.23); hence, the vacuum axial charge is again given in terms of the spectral asymmetry
by Eq. (2.25), with i D/3 replaced by D1 Eq. (3.2). Also, it is possible to derive a two-
dimensional index theorem of the form Eq. (2.27):

−1
2
η[H] = −Ω0 + ind i D/2, (3.3)

where now Ω0 is the one-dimensional Chern-Simons term

Ω0 =
1
2π

∫ L

0

dxA(x; t), (3.4)

and the index is that of the two-dimensional Euclidean Dirac operator

i D/2= σ1i
∂

∂τ
+ σ2D1. (3.5)

The theory with Hamiltonian Eq. (3.2) has classically both a vector and an axial
symmetry, leading respectively to the conservation of the vector and axial currents

jμ = ψ̄γμψ; jμ5 = ψ̄γμiγ5ψ (3.6)

and the associated charges Q and Q5. When the theory is quantized, however, the sym-
metry is spoilt (axial anomaly): an axial charge is induced in the vacuum, according
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to Eq.s (2.25), (2.27) [with Chern-Simons term (3.4)], but the induced charge is time-
dependent, so that Q̇5 �= 0.

In our model this can be seen explicitly since the spectrum of the Hamiltonian Eq. (3.2)
is trivial to determine. It is convenient to put the system in a (one-dimensional) box of
length L, in order to deal with a discrete spectrum. Antiperiodic boundary conditions are
imposed (it can be shown [12] that this is required by Fermi statistics); the eigenvectors
and eigenvalues of D1 are then just given by

ψk =
1√
L

exp i
(
xEk +

∫ x

0

dx′A(x′; t)
)

(3.7)

Ek =
(2k + 1)π

L
− 2π

L
Ω0(t) (3.8)

while the eigenvectors of H (3.2) are

ψ+
k =

(
0
ψk

)
ψ−
k =

(
ψk
0

)
, (3.9)

with eigenvalues ±Ek, respectively. Notice that the eigenvectors ψ− (ψ+) are right-handed
(left-handed), respectively, i.e. they are eigenstates of iγ5 with eigenvalue +1 (−1).

The origin of the non-conservation of Q5 can be understood along the lines of the
simple argument of Sect.2.2, in terms of the charge carried by the Dirac sea. Indeed,
consider the special case of a constant (in space) potential A. Then, the spectrum of
Eq. (3.8) reduces to E = ±(k − A), where k denotes the set of momentum eigenvalues of
the free problem. Now, choose A so that a constant electric field E is generated: A = Et.
If at t = 0 the Dirac sea is defined in the usual way, i.e. by filling all states with E < 0
(i.e. k > 0 for the + eigenvalues and k < 0 for the − eigenvalues), then at t = Δ all
states with k < EΔ will have the “wrong” filling prescription. That is, all + states with
k < EΔ will have E < 0 but will be empty (because they had E > 0 at t = 0 when
the filling prescription was defined), and analogously all − states with k < EΔ will have
E > 0 but will be filled. Otherwise stated, there is an induced charge due to the presence
of the background; this charge depends on time and therefore spoils charge conservation.
Because the right-handed and left-handed spectra are opposite to each other, the rate of
creation of the respective charges is the same, but with opposite sign. As a consequence,
the charge Q = QR +QL is still conserved, but the axial charge Q5 = QR −QL is not.

This qualitative argument is made quantitative [13] by using the expression of the
induced charge in terms of the spectral asymmetry of Eq. (2.25). Indeed, the asymmetry
of the spectrum Eq. (3.8) of the operator D1 Eq. (3.2) can be easily computed by relating
it to the generalized Riemann ζ function ζ(s, z):

η[H] = lim
s→0

−
∞∑

k=−∞

(
2π
L

)−s ∣∣∣∣k + Ω0(t) +
1
2

∣∣∣∣−ssign
(
k + Ω0(t) +

1
2

)

= lim
s→0

−
∞∑

k=−∞

(
2π
L

)−s [
ζ

(
s,

{
Ω0 +

1
2

})
− ζ

(
s, 1 −

{
1
2
− Ω0

})]
,

(3.10)
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where ζ(s, z) =
∑∞
k=0(k + z)−s, and {x} is the fractional part of x, i.e

{x} ≡ x− [x] (3.11)

if [x] denotes the largest integer smaller than or equal to x (integer part of x). Noting that
ζ(0, z) = 1

2 − z the spectral asymmetry can be determined explicitly:

η(s = 0) = 2

(
1
2π

∫ L

0

dx′A(x′) −
[
Ω0 +

1
2

])
. (3.12)

If we relate the vacuum charge to the spectral asymmetry using Eq. (2.25), then Eq. (3.10)
gives the vacuum charge in terms of A, and thus in particular the variation of the charge
as A is varied as a function of time. This, however, determines the variation of the charge
carried by the system only provided the system does not change its state as A(t) is varied:
thus, for instance, if at t = 0 the system is in its vacuum state use of Eq. (3.12) in Eq. (2.25)
gives the charge at time t only if the system is then still in the vacuum state. This, in
general is not the case, because the system may actually jump to excited states as A is
varied. To understand this, and thus determine the rate of charge creation in general, it
is convenient to compare the result of the explicit computation Eq. (3.10)–(3.12) to the
index theorem discussed in Sect. (2.3).

3.2. The index theorem and the anomalous charge

The explicit evaluation of the spectral asymmetry given in Eq. (3.12) provides a re-
alization of the 1+1 dimensional version of the index theorem Eq. (3.3). This is obvious
if we recall that the index is equal to the spectrakl flow s Eq. (2.31) of the operator D1

as the field A is smoothly varied from the vacuum A = 0 to the final configuration A(t):
since the eigenvalues have the simple form Eq. (3.8), if ti ≤ t ≤ tf this is just equal to

s =
[
Ω0(t) +

1
2

]
= ind i D/2 . (3.13)

In the present 1+1 dimensional case it is also easy to see explicitly that each crossing
corresponds to a zero mode of the operator D/2 Eq. (3.5). Indeed, a zero mode ψ0 of i D/2

is a (normalizable) solution of i D/2 ψ0 = 0, i.e. of

i
∂

∂τ
ψ0(τ, x) = −σ1σ2D1ψ0(τ, x). (3.14)

This equation can be solved by rescaling the range of τ from 0 ≤ τ ≤ 1 to −∞ ≤ τ ≤ ∞,
so that the interpolation from A[τ = −∞] = 0 to A[τ = ∞] = A(t) is infinitely slow, and
Eq. (3.14) may be solved in the adiabatic approximation, which is exact in this limit. All
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solutions to Eq. (3.14) are then given in terms of the eigenvalues Ek(τ) and eigenvectors
ψ±
k (τ, x) [of the form (3.7)-(3.9)] of D1(τ) by

ψ
(k)
0 = e

±
∫ τ

0
Ek(τ ′)dτ ′

ψ±
k . (3.15)

But this solution is normalizable over the given range of τ if and only if λ(−∞) > 0
(λ(−∞) < 0) and λ(∞) < 0 (λ(∞) > 0) for the right-handed (left-handed) solutions ψ+

k

(ψ−
k ). Since the chirality of ψ(k)

0 is the same as that of ψ±
k it follows that indeed level

crossings of eigenvalues of D1 are in one-to-one correspondence with zero modes of i D/2,
and the signature of the crossing is equal to the handedness of the zero mode so that the
spectral flow is given by the index of i D/2 according to Eq. (2.31).

The interpretation of the two terms in the expression Eq. (3.12) of the spectral asym-
metry is now immediate: each time an eigenvalue changes sign from negative (positive) to
positive (negative) the spectral asymmetry varies discontinuously, increasing (decreasing)
by two units, in agreement with its definition as a regularization of the difference in number
of positive and negative eigenvalues. This discontinuous variation is given by the second
term on the r.h.s. of Eq. (3.12), i.e. by the index contribution to the spectral asymmetry.
When there are no level crossings, the asymmetry is a smooth function of the spectrum,
which in turn depends smoothly on the background field, and thus is a smooth function
of t if the background is. The corresponding continuous dependence of the spectral asym-
metry on the background is given by the first term on the r.h.s. of Eq. (3.12), i.e. by the
Chern-Simons term Ω0 in the index formula. Separating the spectral asymmetry in its
continuous and discontinuous parts we thus get

η = ηc + ηd

ηc = 2Ω0[A]

ηd = −2
[
Ω0 +

1
2

]
= −2 ind i D/2 .

(3.16)

We can now address the question we started from, namely, what is the charge created
as A(t) varies. Clearly, if one eigenvalue changes sign, a system which was prepared in the
vacuum jumps to an excited state: if a negative eigenvalue becomes positive the system is
left in a state where a positive eigenvalue is filled, and conversely. It follows that a system
prepared in the vacuum is left in an excited state with charge Q = −s, where s is the
spectral flow Eq. (2.31). In the present case, crossings always occur in pairs of opposite
chirality, hence, after n crossings, the charge Q is unchanged, but the axial charges is
given by Q5 = −2s. On top of this, the vacuum charge itself varies proportionally to the
spectral asymmetry according to Eq. (2.25). The total charge created as the background
varies between, say, A(t1) and A(t2) is thus given by the sum of two contributions, the
variation of the vacuum-induced charge, and the charge due to transition to excited states;

14



both contributions come in pairs of opposite handedness which cancel in the vector charge
but add in the axial charge. Whereas the former contribution is given by Eq. (2.25), the
latter is equal to the number of level crossings, hence

ΔQ5(t1, t2) =2
{
−1

2
(η[D1(t2)] − η[D1(t1)]) −

([
Ω0(t2) +

1
2

]
−
[
Ω0(t1) +

1
2

])}
=2 [ηc(t2) − ηc(t1)]

=
1
π

∫ L

0

dx [A(x, t2) − A(x, t1)] = −2Ω0.

(3.17)

In other words, the total charge created along the flow equals the continuous part of the
spectral asymmetry. This can be equivalently expressed as

ηc = η̃ ≡ − lim
s→0

(
2π
L

)−s ∞∑
k=−∞

∣∣∣∣k + Ω0 +
1
2

∣∣∣∣−s sign
(
k +

1
2

)
≡ Tr

sign (H0)
|H(t)|s, (3.18)

where H0 is the Hamiltonian in the absence of background; i.e., as a modified spectral
asymmetry defined using the vacuum filling prescription.

The total axial charge created Eq. (3.17) appears thus to be a smooth function of
time. It is straightforward to calculate its derivative, which equals

d

dt
ΔQ5 = −2Ω̇0 = − 1

2π

∫
d2x εμνFμν ; (3.19)

as a consequence, the axial current Eq. (3.6) is no longer conserved in the quantized theory,
rather,

∂μj
μ
5 = − 1

π
∗F ≡ − 1

2π
εμνFμν . (3.20)

This, as advertized, is the two-dimensional axial anomaly equation [4].
It is interesting to check explicitly the gauge invariance of ΔQ5 Eq. (3.17). Upon

gauge transformation, the gauge potentials transform according to7

Ag(x, t) = A(x, t) + ∂xg(x, t) (3.21)

so that
Ωg0 = Ω0 +

1
2π

[g(L, t)− g(0, t)] . (3.22)

Because upon gauge transformation ψg = e−ig(x,t), if one requires that the boundary
conditions on fermions be preserved by the transformation (for example the antiperiodic

7 We consider transformation which preserve the condition A0 = 0. The more general case

does not bring in any new features.
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boundary conditions which follow from Fermi statistics) it follows that g must satisfy the
condition

g(L, t)− g(0, t) = 2πn; n ∈ ZZ , (3.23)

which in turn implies
Ωg0(t) = Ω0(t) + n; n ∈ ZZ . (3.24)

Otherwise stated, the functions g(x, t) for each t fall in equivalence classes labelled
by the integer n, associated to the boundary condition they satisfy. This is again a mani-
festation of a nontrivial topology (homotopy), just like that discussed in Sect. 2.2 for the
Skyrmion (in that case of the flavor group, in the present case of the color group, however).
Indeed, the gauge group is isomorphic to a one-sphere S1, i.e. a circle, and thus is infinitely
connected: maps g : S1 → S1 from a circle onto it fall into equivalence classes (homotopy
classes), which form a group, the fundamental group π1[U(1)], isomorphic to the integers
ZZ . Because space is compact (0 ≤ x ≤ L, with fixed boundary conditions) it may be
viewed as a circle, and then the functions g(x, t), viewed as functions of x for each fixed t
provide such maps. Furthermore, because n in Eq. (3.23) is constrained to be an integer,
functions g(x, t) associated to distinct values of n cannot be smoothly deformed into each
other. It follows that n must be independent of t, and thus the integer n actually classifies
equivalence classes of functions g(x, t).

Now, upon homotopically trivial gauge transformations (i.e. those which preserve the
boundary condition trivially, with n = 0) the two terms on the r.h.s. of the expression
Eq. (3.12) of the spectral asymmetry are separately gauge invariant, i.e., the index and the
Chern-Simons term on the r.h.s. of the index formula Eq. (3.3) are separately invariant.
However, if n �= 0 then, because of Eq. (3.24), the Chern-Simons is not gauge invariant,
but rather, it varies by an integer. However, the index, which is expressed by to Eq. (3.13)
in terms of the Chern-Simons term itself, varies by the same integer, so that the spectral
asymmetry (and thus the vacuum-induced charge) remains gauge invariant. What about
the total charge created at time t, ΔQ5(t) Eq. (3.17) ? The continuous part of the spectral
asymmetry, being proportional to the Chern-Simons term, is not gauge invariant, however,
because n is t-independent the created charge still is:

ΔQg5(t1, t2) = 2 [(ηc(t2) + n) − (ηc(t1) + n)] = ΔQ5(t1, t2). (3.25)

It is apparent that many of the simple results derived in this section rely crucially on
having considered massless fermions on a compact space. If either or both of these sim-
plifying assumptions are relaxed several subtleties arise, essentially because one has then
to deal with more complicated spectra, and suitably generalize the definition of induced
charge and spectral asymmetry. These complications are necessarily present in a realistic
treatment, and are related to the way the axial anomaly manifests infrared and ultraviolet
divergences of the theory. Tackling them will thus give us a handle on problems which are
present in realistic four-dimensional theories.
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3.3. Infrared regularization of the anomaly

The derivation presented in the previous section shows that ultimately the origin of
the anomaly can be traced to the definition of the charge operator through normal ordering
according to Eq. (2.2): a charge is generally induced by the presence of background fields
which distort the positive-negative energy symmetry of the vacuum spectrum, but the
corresponding contributions to the fermion charge actually cancel because of the U(1)
symmetry of the Lagrangian; however, this cancellation cannot be separately enforced for
right-handed and left-handed states, so that the axial charge is not conserved.8

If the theory had a finite number of states charge nonconservation would only be
manifest when an energy eigenstate changes sign; due however to the presence of an infinite
numer of states the need to regularize the ultraviolet divergence of the sum over states
Eq. (2.6) induces a nonvanishing spectral asymmetry and thus anomalous charge creation
even when no level crossings occur. If we consider a system defined on open, rather
than compact space, the spectrum is continuous (or at least in general it will have a
continuum component), and this divergence will be accordingly harder to handle. In
particular, it would seem superficially that the spectral asymmetry cannot be computed if
the Hamiltonian Eq. (3.2) is taken to act on open space, −∞ ≤ x ≤ ∞: if we let L→ ∞ in
Eq. (3.7) the eigenvectors are generic plane waves, with eigenvalues Ek = k, −∞ ≤ k ≤ ∞,
so that the spectral asymmetry reduces to

∫∞
−∞dk

signk
ks . This is ill-defined, because the

continuum spectrum extends all the way to vanishing energy: it will diverge in the infrared
if s ≥ 1, as required in order to regulate the functional trace in the ultraviolet.

We may, however, define the open space problem as the L → ∞ limit of the com-
pactified one. In such case, the continuous part of the spectral asymmetry (and hence the
anomalous charge) is given by

ηc = lim
L→∞

lim
s→0

(
2π
L

)−s ∞∑
k=−∞

∣∣∣∣k + Ω0 +
1
2

∣∣∣∣−s sign
(
k +

1
2

)
. (3.26)

In order for this definition to make sense we must check that the two limits commute. If
the s→ 0 limit is taken first, then, using Eq. (3.16) we get

ηc = lim
L→∞

1
π

∫ L

0

dxA(x, t) =
1
π

∫ ∞

0

dxA(x, t). (3.27)

8 It is of course possible to modify the definition of normal-ordering in Eq. (2.2) in such a

way that axial charge be conserved at the expense of violating vector charge conservation: it is

enough to define the normal ordering with opposite signs for the left-handed and right-handed

parts of the spectrum. This is equivalent to adopting an opposite filling prescription (positive

energy states filled and negative energy states empty) for, say, left-handed modes. Then, the roles

of vector and axial charges are interchanged. However, since with this choice the vector current

is not conserved, gauge invariance is lost and the theory cannot be meaningfully quantized.
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If we take the L→ ∞ limit first, we get instead

ηc = lim
s→0

lim
L→∞

−
(

2π
L

)[
ζ

(
s,Ω0 +

1
2

)
− ζ

(
s,

1
2
− Ω0

)]
. (3.28)

Now Ω0 grows with L (the average value of A being fixed), hence we may use the asymptotic
expansion ζ(s, x) ∼

x→∞
1

Γ(s)x
1−sΓ(s− 1) +O (x−s) to get

ηc = lim
s→0

lim
L→∞

−
(

2π
L

)−s 1
s− 1

2(Ω0)1−s = 2Ω0(t), (3.29)

in agreement with Eq. (3.27).
Hence, it is possible to define the spectral asymmetry (and thus the anomalous charge)

for a continuous spectrum, but then infrared and ultraviolet divergences of the spectral
asymmetry Eq. (3.26) must be regulated independently: the latter by the usual ζ-function
regulator, keeping s large, and the former by putting the system in a box of size L (so
that the spectrum is discretized) and recovering the continuum problem in the limit [13].
This regulates the infrared divergence because the lowest-energy modes are then lifted to
have energy of order ∼ 1

L . In fact, in the large L limit the summation in Eq. (3.26) is well
approximated by an integral, so that the naive expression of the spectral asymmetry as an
integral over all k is recovered; however, the lowest-energy level has energy of order 2π

L
, so

that the spectral integration does not reach zero, which is enough to regulate the infrared
divergence:

ηc = lim
s→0

lim
L→∞

L

2π

[∫ Ω0−ε(L)

−∞
+
∫ ∞

Ω0+ε(L)

]
dk

sign k∣∣∣k − 2π
L

(
Ω0 − 1

2

) ∣∣∣s , (3.30)

where ε(L) = 2π
L {Ω0 − 1

2}. Of course computing the integral explicitly leads back to the
result Eq. (3.29). It is interesting to notice that in the L→ ∞ limit charge creation is due
to the fact that level crossings occur at all times; the infrared divergence which we have
been discussing is then related to the discontinuous behavior of the spectral asymmetry
when level crossings occur. The spectral asymmetry proper, i.e. η, obtained from ηc
Eq. (3.30) by the replacement sign k → sign (k − 2π

L

(
Ω0 − 1

2
)
)
, vanishes as 1

L
as L→ ∞.

A common alternative way of regulating infrared divergences consists of adding a mass
term to the Hamiltonian which will lift the lowest energy (and then taking m→ 0). This
case is also interesting to discuss per se since it leads us to evaluate the anomalous charge
for massive fermions. We thus replace the block-diagonal Hamiltonian Eq. (3.2) with

Hm =
( −D1 m

m D1

)
= H +mγ0, (3.31)
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whose eigenvalues and eigenvectors are

ψ̃mk
± =a±k ψ

+
k + b±k ψ

−
k (3.32)

Em±
k = ±

√
E2
k +m2, (3.33)

where a±k and b±k are functions of m and Ek which are easily determined by diagonalization
of the two by two matrix 〈ψ±

k |Hm|ψ±
k 〉. In the spectrum Eq. (3.33) level crossings never

occur: this suggests then that in the continuum limit the anomalous charge and the axial
anomaly would vanish for massive fermions. Indeed, if we now compute the axial charge
according to Eq. (2.24) we get

η[iγ5H
m] = lim

s→0
Triγ5

signHm

|Hm|s = lim
s→0

Triγ5
Hm

((Hm)2)s+
1
2

= lim
s→0

Triγ5
H +mγ0

(H2 +m2)s+
1
2

= lim
s→0

Triγ5
H

(H2 +m2)s+
1
2

= lim
s→0

2
∫∑

k

Ek√
E2
k +m2

1
(E2

k +m2)s
,

(3.34)
i.e. the result in the massive case is obtained from the massless expression (the spec-
tral asymmetry Eq. (2.25)) with the two replacements signEk → Ek√

E2
k
+m2

and E−s
k →(

E2
k +m2

)−s
. In the continuum limit this reduces to

η[Hm] = lim
s→0

lim
L→∞

(
L

2π

)−2s ∫
dk

k + 1
2
− Ω0[(

k + 1
2 − Ω0

)2 +m2
]s+ 1

2
. (3.35)

Now if we let m → 0 in Eq. (3.35) we recover the results discussed previously; however,
if we keep m > 0, then even in the limit there is no infrared singularity (which remains
regulated by m), and we may let L → ∞; however then we may shift the integration
variable and obtain

η[Hm] = lim
s→0

lim
L→∞

(
L

2π

)−2s ∫
dk

k

(k2 +m2)s+
1
2

= 0. (3.36)

Hence indeed the spectral asymmetry in the continuum limit vanishes for massive fermions;
furthermore, this implies that the chiral (m→ 0) limit does not commute with the contin-
uum limit. Finally, since in the massive case no level crossings may occur in the spectrum
Eq. (3.33) as Ω0 is varied, the spectral asymmetry is a continuous function of the back-
ground, i.e. η = ηc. This would seem to imply that charge creation and the anomaly
disappear for any m > 0 and are only present in the strict chiral limit, with the somewhat
paradoxical implication that the chiral limit of the axial charge and its time derivative is
not smooth.
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This however is not the case: the anomaly persists even with nonvanishing mass, and
the chiral limit is smooth. The resolution of the paradox is based on two observations:
first, in the massive case the axial charge is not conserved even at the classical level, and
furthermore, in the massive case the time dependence of the background induces transitions
of the system form the vacuum to excited states even in the absence of level crossings.

The first point is trivial: if we add a mass term to the Hamiltonian according to
Eq. (3.31) the chiral symmetry of the Lagrangian is broken explicitly; as a consequence
the classical axial current satisfies

∂μj
μ
5

cl = 2imψ̄γ5ψ. (3.37)

It follows that once the theory is quantized the time dependence of the vacuum charge will
be given by

〈Q̇5〉 = 〈imψ̄γ5ψ〉 + 〈Q̇an
5 〉, (3.38)

where the first contribution is due to charge nonconservation at the classical level according
to Eq. (3.37), and Qan

5 denotes a possible anomalous contribution induced at the quantum
level, which if m = 0 is given by the anomaly Eq. (3.19)-(3.20), and in the massive case
is still to be determined. Now, the spectral asymmetry η[Hm] Eq. (3.34) gives the total
vacuum charge: hence the vanishing of it in general does not imply that the anomalous
charge vanishes, i.e. that both contributions on the r.h.s. of Eq. (3.38) separately vanish,
but rather that, in general, they cancel.

Now, the first term on the r.h.s. of Eq. (3.38) can be computed through essentially the
same steps as performed in Eq. (2.10) to determine the vacuum charge, i.e. differentiating
the path integral with respect to a source for ψ̄γ5ψ, and then Wick-rotating to Euclidean
space:

〈imψ̄γ5ψ〉 = Trimγ5
1

i D/ +im
= im

∫∑
k

ψ̄γ5ψ

λk + im
, (3.39)

where i D/ is the (massless) two-dimensional Dirac operator of the theory, with eigenvalues
and eigenvectors i D/ ψk = λkψk, and the mass term is imaginary after Wick rotation.
Now, because {iγ5, γ

μ} = 0 it follows that {iγ5, i D/} = 0, and hence acting with iγ5 on an
eigenvector yields a new eigenvector with opposite eigenvalue: iγ5ψk = ψ−k, λ−k = −λk;
unless λk = 0 in which case iγ5ψ

±
k = ±ψ±

k . But eigenvectors associated to different
eigenvalues are orthogonal, hence only the contribution from zero modes to the trace
survives; the latter equals the number of zero modes weighted by their chirality, i.e., the
index of i D/:

〈imψ̄γ5ψ〉 = ind i D/ . (3.40)

In the continuum limit the spectral asymmetry η[D1] of the massless Dirac operator
vanishes, as it is clear letting L→ 0 in Eq. (3.12); the index theorem Eq. (2.27), (3.3) then
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implies ind i D/= Ω0. It follows that the vacuum charge Eq. (3.38) will indeed vanish in the
continuum limit, in agreement with Eq. (3.36), provided the anomalous charge is equal to
〈Q̇an

5 〉 = −2Ω0. But this is exactly the same as the anomalous charge in the massless case,
Eq. (3.17). We thus conclude that in fact the anomalous charge and its time dependence
as given by the anomaly equation are unchanged by the addition of a mass term; however,
in the presence of mass the anomaly equation generalizes to

∂μj
μ
5 = 2imψ̄γ5ψ − 1

2π
εμνFμν , (3.41)

i.e., it acquires an extra contribution which, when averaged over the vacuum in the contin-
uum limit, exactly removes the anomalous contribution so that the total vacuum charge
vanishes.

If we identify the vacuum charge with the charge induced by the background on the
system, this would still imply a non-smooth behavior of the charge in the chiral limit.
But this is not the case since, as we already mentioned, when the mass is unequal to
zero the background induces transition of the system from the vacuum to excited states
even in the absence of level crossings. This can be seen immediately by inspection of the
expression Eq. (3.32) of the eigenvectors of the massive Hamiltonian: the eigenvectors are
linear combinations of pairs of eigenstates of the massless Hamiltonian ψ±

k with coefficients
which depend on Ek and thus on the background. If the latter is time dependent, the
coefficients also are, thus the, say, positive energy eigenstate ψ+

k (t) will be in general a
linear combination of the two states ψ±

k (t′) at a different time t′ �= t. Therefore, a system
such that all states Em− are filled at time t0 will have nonvanishing overlap with the state
at time t where also states Em+ are filled, and will thus in general undergo transitions to
this state with a nonzero rate.

This rate can be computed exactly [14], and will depend in general on the rate of
time variation of the potential A ( i.e., on the strength of the electric field ∂0A). If the
transition is very slow on the scale set by the mass m then we may neglect it: this is
the adiabatic approximation, which consists of assuming that the system remains in the
state in which it has been prepared. In this limit the rate of charge creation is given by
Eq. (3.38), i.e. it vanishes. The opposite limit obtains when m is small on the scale set
by the transition rate, i.e. compared to the size of the electric field (in natural units). We
know already the result in such case, because in this limit we may neglect the mass term,
so that the problem reduces to that discussed in sect. 2.2: there is only one contribution
to charge creation, which is determined by the continuous part of the spectral asymmetry
Eq. (3.18).

We may, however, check this explicitly by computing the contribution to the charge
due to transitions to excited states in this case. This turns out to be quite easy, because
in the limit of very rapid transitions we may use the sudden approximation, which is the
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opposite extreme as the adiabatic approximation. Whereas in the adiabatic limit one
assumes that the system remains in the state in which it was prepared in the sudden
limit the system is assumed to undergo with unit probability transitions to all states with
which the initial state has nonvanishing overlap, so that the probability of each of these
transitions is given by the overlap itself. In our case, this means that if the system is
prepared at t = t0 by filling all negative-energy states ψ̃mk

− [as given by Eq. (3.32)with
a−k = a−k (t0)] then at time t it will undergo transitions to states in which the positive
energy states ψ̃mk

+ are filled with a rate given by a+
k (t)a−k (t0) + b+k (t)b−k (t0) (and likewise

for negative energy states). It follows that the charge of the system at time t — the charge
of the Dirac sea — is actually not the number of negative energy states: rather, it is given
by summing over all states (positive and negative energy), with a weight given by the
transition probability from filled states (i.e. those which had negative energy at time t0).
That is, by replacing in Eq. (2.9) n− → Q−, where Q− is the charge of the filled states:

Q−(t0, t) =
∫∑

k

|〈ψ̃mk (t)|ψ̃mk −(t0)〉|2 = Tr
(∫∑

k

|ψ̃mk −(t0)〉〈ψ̃mk −(t0)| =
)

= Tr [Θ(−H(t0))] ,
(3.42)

where the sum extends to all states Eq. (3.33). This is recognized to be the same as the
expression [Eq. s (2.12), (2.9)] of the charge in terms of a spectral asymmetry Eq. (2.6),
but with the replacement H(t) → H(t0). A rerun of the steps which lead from the charge
of the Dirac sea to the spectral asymmetry thus shows that Q−(t0, t) is simply found
by evaluating evaluating the spectral asymmetry with the sign function computed with
respect to the initial Hamiltonian H(t0).

Hence in the sudden approximation the expression for the axial charge created in the
massive case becomes

ΔmQ5(t1, t2) = − (ηt0 [D1(t2)] − ηt0 [D1(t1)]) (3.43)

where ηt0 denotes the spectral asymmetry defined from the filling prescription at time t0
as discussed above:

ηt0 [D1(t)] = lim
s→0

Tr
signHm(t0)
|Hm(t)|s = lim

s→0

∫∑
k

Ek(t0)√
E(t0)2k +m2

1
(E2

k(t) +M2)s
. (3.44)

We may evaluate this explicitly, by assuming e.g. that at t0 no background is present,
A(t0) = 0. We then have

ΔmQ5(t0, t) = − lim
s→0

lim
L→∞

(
L

2π

)−s ∫ ∞

−∞
dk

k√
k2 +m2

1[
(k + +1

2 − Ω0)2 +m2
]s

= − lim
s→0

lim
L→∞

(
L

2π

)−s ∫ ∞

0

dt

Γ(s)
ts−1

∫ ∞

−∞
dk

k√
k2 +m2

e−t[(k+
1
2−Ω0)

2+m2]

= − lim
t→0

lim
L→∞

∫ ∞

−∞
dk

k√
k2 +m2

e−t[(k+
1
2−Ω0)

2+m2].

(3.45)
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In the last step we have used the fact that since Γ(s) has a simple pole with residue
equal to one at s = 0, in the limit s → 0 only the residue of the pole of the t integral
survives; this in turn comes from the lower end of the integration range

∫ ε
0
dt ts−1e−tλ =

1
s limt→0 e

−tλ[1 +O(s)]. The last integral is easily evaluated in the limit and gives

ΔmQ5(t0, t) = lim
L→∞

2
(

Ω0 +
1
2

)
= 2Ω0. (3.46)

This is what we set out to prove: the result of a calculation in the massive case in the
sudden approximation is the same as the massless result Eq. (3.17).

In summary, we have shown that the rate of charge creation in the massive case
depends on the relative size of the mass and the electric field (the time derivative of the
gauge potential). If the mass is very large, then charge creation is suppressed, if it is very
small it is given by Eq. (3.17). The result in the limit of small mass can be found using the
sudden approximation, and reproduces that found in the massless case, thereby showing
that the massless limit is smooth. The result in the case of large mass can be found in
the adiabatic approximation, and shows that there is no charge creation. In fact, in the
massless case the adiabatic approximation is exact (since there are no scales); the charge
created is then given by the modified spectral asymmetry according to Eq. (3.17). If we use
the mass as an infrared regulator we are interested in taking m → 0 eventually. In order
to obtain a correct result, we must then either use the sudden approximation, or introduce
an extra infrared regulator (such as box-quantization), and then let m→ 0 before we use
the adiabatic approximation.
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