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Abstract

The dynamic programming and branch-and-bound approaches are

combined to produce a hybrid algorithm for separable discrete

mathematical programs. The hybrid algorithm uses linear programming

in a novel way to compute bounds and is readily extended to solve

a family of parametric integer programs with related right-hand-sides.

Computational experience is reported on a number of linear and nonlinear

integer programs.
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1. INTRODUCTION

This paper presents a new approach to the solution of separable discrete

mathematical programs. The approach is a synthesis of dynamic programming (DP)

and branch-and-bound (B&B). Relaxations and fathoming criteria, which are

fundamental to branch-and-bound, are incorporated within the separation and

initial fathoming provided by the dynamic programming framework in order to

produce a hybrid DP/B&B algorithm.

The general separable discrete mathematical program we address is:

N

f (b) = max I r.(x.) (1.1)

l<i^

l<j^N

where S. = {0, 1, ..., K. } with K. a finite positive integer. To simplify the

motivation and exposition we shall begin by making a non-negativity assumption

on all of the problem data:

b.> Ui<M

r(xj)> l<jsN, X. £ S.

a.j(Xj)> l<i<M. l<j<N, X. e S...

This makes (1.1) a "knapsack type" resource allocation problem [1,5, 25, 34]

which can be given the following interpretation. The amount of resource i

available is b^. and if project j is adopted at level x. then a..(x.) is the

amount of resource i consumed and r.(x.) is the return. The non-negativity

assumption will remain in force until Section 7. We may further assume, without

loss of generality, that r.(0)=0 and a..(0)=0 for all i,j. Notice that if K.=l
J I J J

for all j, then (1.1) is the familiar zero/one integer linear program.

subject to
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The hybrid DP/B&B algorithm has grown out of the authors' earlier work

on a DP algorithm for knapsack type problems [21] and the observation that

bounding tests can be used to reduce the state space in DP [22]« Thus, ideas

from B&B can dramatically enhance the computational power of DP. The hybrid

algorithm may be viewed as a DP recursion which uses bounding tests at each

stage to eliminate (fathom) some of the states. Alternatively, it may be

viewed as a B&B tree search which uses elimination by dominance, as well as by

bound, and which employs the ultimate "breadth first" search strategy. The

partitioning of the problem into stages, which is inherited from DP, leads

directly to a new way of using linear programming to compute bounds. This is

called the resource-space tour and it has the attractive feature that each

simplex pivot yields a bound for every active node in the search tree. The DP

point of view also focuses attention on the optimal return function ffjCb) and

leads to a procedure for solving a family of parametric integer programs with

related right-hand-sides.

The plan of the paper is as follows. The hybrid approach will be developed

in Section 2, assuming the availability of an algorithm for solving some relax-

ation of problem (1.1) and of a heuristic for finding feasible solutions of

(1.1). Specific relaxations and heuristics will be discussed in Sections 3 and

4, respectively. The resource-space tour technique for computing bounds is

introduced in Section 3. Section 5 contains a summary of computational results.

The extension of the hybrid algorithm to solve a family of parametric integer

programs is done in Section 6. In Section 7, the modifications required for

the general case (positive and negative data) are indicated. Suggestions for

further research are given in Section 8.

Related work on the synthesis of branch-and-bound with dynamic programming

can be found in [ i, 4, 6, 7, 14, 15, 24, 31, 37],
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2. Development of the Hybrid Algorithm

Consider the following n-stage subproblem of (1.1)

n

f (b) = max y r.(x.) (2.1)
j=l J J

subject to

n

y a. .(x.) < b.

J=l

l<i<M

X. e S. l^i^n
J J

for n = 1, ..., N. Let X denote the set of feasible solutions of (2.1).
n

The feasible solution x e X is said to be dominated by the feasible solution
n

x' e X if we have both
n

I a (xO <
I a (X )

j=l "-J J j=l "-J J
l<i<M

and

n n

I r.(xr) >
I r.(x.)

j=l J J j=l J J

with at least one strict inequality. If x e X is not dominated by any

other element of X , then we say that x is efficient with respect to X
n -^ n

Q
Let X denote the set of efficient solutions of (2,1).

n

The set X^ of all efficient solutions of the complete problem (1.1)

can be constructed recursively by using the following relationships:

X£ c x^ c x: = S
1 "1





t-4t

and

n — n — n n-1 n

for n = 2 N where

^n = ^K Vl' V I ^\ Vl^ ' K-1' \ ' V

x' =:^ = {x € x" I y a.(x.) < b., 1 < i < M}
n n '

^^^ ij J i'

and

X = {x e X
I
X is efficient with respect to X } .

n n ' *^ n

_ N _ _ _
If X e X and V a^ .(x.) = B. for l<i<M, then x is an optimal solution

N j=i
iJ J i

of (1.1) with b replaced by 3. This follows directly from the definition

of dominance. Thus finding all efficient solutions of (1.1) for right-

hand-side b is equivalent to finding all optimal solutions for every right-

hand-side b' < b.

The procedure for obtaining X^ may be stated quite simply as follows:

DP Algorithm

Step 1. Set n=l, X = S^

Step 2. Construct X by eliminating all infeasible elements of X .

e f
Step 3. Construct X by eliminating all dominated elements of X .

e
Step 4. If n = N, stop. Otherwise set n=n+l, generate X = X ,

x S ,
' '' n n-1 n

and go to Step 2.

This procedure is equivalent to an imbedded state space dynamic programming

algorithm [ 2l] and is similar to the approaches to capital budgeting problems

taken In [25] and [37]. The feasibility testing (Step 2) is straightforward

and the dominance testing (Step 3) can be done quite efficiently through the

use of (M+1) threaded lists, as described in [21]-
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Upon termination, X^ is at hand and the optimal solution of (1.1) for

any right-hand-side b' < b may be determined by inspection:

N N

f^(b') = max { I r (x ) |
x e X^ and I a (x ) < b' l<i<M} .

-1=1 J J i=l

Notice that optimal return function f (b') is a nondecreasing, upper semi-

continuous step function on 0<b'<b [ 12, 20, 21]. The set of points of dis-

continuity which, completely deteinuine this function is

N N

"^.,^13'V J., ^.j'V> I - ^
'S,

'•

The "pure" dynamic programming algorithm just presented produces all

of the optimal solutions for every right-hand-side b' < b. Let us now

restrict our attention to finding an optimal solution for the given b-vector

alone. This is done by incorporating elimination by bound into the DP frame-

work. In Section 6 we shall indicate how a parametric analysis on the

right-hand-side of (l-l) niay be performed.

Consider any x = (x, x ) e X and let
1 n n

B = I a^(x,)

j=l ^

where a (x.) = (a .(x.), ..., a^.(x.))'. We may interpret g as the resource

consumption vector for the partial solution x. The residual problem at stage

n, given x, is

N

^ (b-6) = max I r (x ) (2.2)

j=n+l J J

subject to

N

U. '^^'"j' ''^-'^ l<i<M

X. e S. n+l<j<N
J J
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Thus f , (b - 3) is the maximum possible return from the remaining stages,
n+1

given that resources 3 have already been consumed. For each < n < N-1,

'\,

let UB , be an upper bound functional for f ,,, i.e.
n+1 n+1'

li ^1 (b-B) < UB _^T (b-B) for all < 6 < b.
n+1 n+1

UB ,1 may be taken as the optimal value of any relaxation of the residual
n+1

problem (2.2). We assume that an algorithm is available for solving the

chosen relaxation. Different relaxations may be used at different stages

and UB may be taken as the smallest value obtained by solving several

alternative relaxations. (Let UB^^ = 0).

Any known feasible solution of (1.1) provides a lower bound on f (b)

.

The best of the known solutions will be called the incumbent and its value

denoted LB, so that LB < f^(b). At worst, x = is feasible with value LB = 0.

These upper and lower bounds can be used to eliminate efficient partial

solutions which cannot lead to a, solution that is better than the incumbent.

Tkat Is, If X e X^ and

4

I r (x ) + UB (b-
I ahx.)) < LB (2.3)

j=l ^ ^ j=l ^

then no completion of x can be better than the incumbent. In this event

we say that x has been eliminated by bound. The survivors at stage n will

be denoted X , where
n'

n ^
X^ = {x e X^

I
y T(x.)+\JB^(h-l aJ(x.)) > LB},

n n I

^^^ j j' n+1 ^^j^ J

The lower bound may be improved during the course of the algorithm by

finding additional feasible solutions. Assume that a heuristic is available

for finding good feasible solutions and let H ^ (b - B) denote the objective
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function value obtained when the heuristic is applied to the residual problem

(2.2). (Let H^ , =0). If (x' , , ..., x^) is the completion found by the

s
heuristic for (x, , .... x ) e X , then (x, x') is feasible for (1.1) and

1' ' n n'

becomes the new incumbent if

n n

I r.(x ) + H ,(b -
I

aJ(x
) ) > LB,

j=l J ^ ""^^ j=l J

i.e. if

n N

I r.(x,) + I r (x:) > LB.

j=l J J j=n+l - ^

As with the upper bounds, different heuristics may be used at different

stages and H ^ may be taken as the largest value obtained by several

competing heuristics.

At the end of stage n we know that f>j(b) falls between LB and the global

upper bound

n n
UB = max {7 r^(x.) + UB ^, (b - T a^(x.)) I x e X^ }.

J 1 J J n+1 ^ T J n
j=l J J j=l J

If the gap (UB-LB) is sufficiently small, then we may choose to accept the

incumbent as being sufficiently close to optimality in value and terminate the

algorithm rather than continuing to stage N.

To incorporate elimination by bound into the dynamic programming

f e
procedure we must redefine X and X as subsets of the feasible and efficient

n n

solutions, respectively, and redefine X as

X° - X% X s
n n-1 n

for n=2 N. Only the survivors at stage (n-1) are used to generate

potential solutions at stage n. The hybrid algorithm may then be stated as
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follows. In the terminology of [9], partial solutions are fathomed if they

are infeasible (Step 2), dominated (Step 3), or eliminated by bound (Step 5)

Hybrid Algorithm

Step 1. Set n = 1, X^ = S , LB = H (b) , UB = UB (b); choose e e [0,1)

and L > 1. Stop if LB = UB.

Step 2. Construct X by eliminating all infeasible elements of X .

n n
e f

Step 3. Construct X by eliminating all dominated elements of X .

n ° n

Step 4. If Ix^l < L, set X^ = X^ and go to Step 9.
n

'

n n

n n

Step 5. Construct X^ = {x e X®
|

)] r.(x.) + UB (b -
I a-^(x.)) > LB}.

'^ j=l J 3 ^
j=l 3

n n

Step 6. UB' = max {T r . (x.) + UB ^, (b - J a^(x.)) I x e X^}, and
• 1 2 2 n+1 'r T 1 n3=1 J J j=3^ J

UB = min {UB, UB'}.

n n
Step 7. LB = max {^ r.(x.) + H (b -

I a^(x.))
|
x e X^},

j=l ^ J " j=l J ^

LB = max {LB, LB'}, change the incumbent if necessary.

Step 8. If (UB - LB)/UB < e, stop. The incumbent is sufficiently close to

an optimal solution in value.

g
Step 9. If n = N, stop: either X^ contains an optimal solution of the incumbent

s
is optimal. Otherwise, set n = n+1, generate X = X . x S , and go

n n-1 n

to Step 2.

The parameter £ determines the approximation to optimality, with e=0

corresponding to exact optimality. For e>0 we have LB>(l-e)UB>(l-e)f (b) when
N
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termlnatlon occurs at Step 8. Note that an early stop at Step 8 may occur

even for the e=0 case if IJB=LB. To find all of the alternative optimal

solutions for right-hand-side b, use " >LB " rather than " >LB " at Step 5

and choose e=0.

If L=l, then upper and lower bounds will be computed at every stage.

Our empirical evidence indicates that the total amount of computation required

may be substantially reduced if these bounds are determined only inter-

mittently. This could be done at every k stage or, as shown here, whenever

the number of efficient partial solutions exceeds a specified limit L. As

long as this niimber remains less than L, we just use the trivial upper

bound (UB .^ E + =») and the trivial heuristic (H .^ =0) which yield
n+1 n+i

X" = X^ .

n n

It appears from the statement of Step 5 that UB
, , (b -

2,
a (x.)) must

e
"^ j=l J

be computed independently for each x e X . It will be shown in the next

section that this is not the case. In fact the attractiveness of this hybrid

approach stems largely from the ease with which information about the

UB .,(•) function can be shared among the elements of X .

n+1 n

The progress of the algorithm may be represented by a tree of partial

solutions. Figure 1 shows the first three stages of a problem with K =2

and K =K =1. None of the nodes at stage 1 are eliminated, so X = {x , ..., x },

If we suppose that x is infeasible, that x is dominated by x , and that x

is eliminated by bound, then X„ = {x ,x ,x ,x ,x }, X„ = {x ,x ,x ,x },

s 2 3 4
and the nodes at stage 3 are the descendants of X = {x ,x ,x }. All of

the nodes that must be considered at stage n are generated before any node

at stage (n+1). There is no backtracking. This is in marked contrast to

conventional branch-and-bound methods where one typically finds active nodes

at many different levels in the tree.





=

= 0.

Figure 1. Tree of partial solutions, first three stages,
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3. Relaxations for Upper Bounds

Our development of the hybrid algorithm has assumed the availability

of algorithms for solving relaxations of (2.2) and of heuristics for finding

feasible solutions of (2.2). In this section and the next we present some

of the relaxations and heuristics that are appropriate in this context

and that we have tested computationally.

Solving any relaxed version of the residual problem (2.2) yields a valid

upper boimd. The simplest relaxation is to drop all of the constraints.

This gives

N

UB„.i(b - B) =
I r (K ) (3.1)

^^^
j=n+l J J

which is independent of 3. A less drastic relaxation is to keep just one

constraint, say constraint i. The "best remaining ratio" for constraint i at

stage n is

BRR. ^, = max {max {r
.
(k) /a^ . (k) I k=l, .... K.}}

^'^'^
n+l<j^N J iJ

' ' * J

where the ratio is taken as + " if a (k) = 0. An upper bound based on

constraint i is:

UBi^l(b - 6) = (b^ - 6^) * BRR^^^^^

and if this is computed for each i=l, ...» M then we also have

UB ,, (b - B) = min UB^_^, (b - B). (3.2)
^"^^

l<i<M
"""^
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Note that the best remaining ratios can be tabulated in advance for l<i<M and

0^n<N-l so that the maximizations are done only once.

These upper bounds are useful and very simple to compute, but they are

a.

quite weak. They generally overestimate f (b - 3) by a wide margin. To

obtain stronger bounds we must resort to linear programming. Let us

consider first the case where (1.1) is a linear integer program, i.e.

r.(x.) = r.x. and a. .(x.) = a. .x. for all i,i. The continuous relaxation of

(2.2) is then a linear program whose value may be taken as UB (b - 3)

•

N
UB ^, (b - B) = max T r.x. (3.3)
^^^

j=n+l J J

subject to

N
y a. .X. < b. - B^ l<i<M

OSx.<K, n+l<i<N
J J

This linear program has a finite optimal solution for every 0<6<b since

x=0 is always feasible and all of the variables have upper bounds. By

linear programming duality, then, we may write

M N
UB .^(b - fl) = min y u.(b. - 6.) + y v.K. (3.4)

x=l J=n+1 -" -^

subiect to

M
y u, a^. + v^ > r. n+l<j<N

u > l<i<M

V. > n+l<iSN
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We propose to use linear programming in a way that is quite different

from the usual practice in branch-and-bound methods [ 8 ] • Our approach is

based on the fact that the residual problems corresponding to the partial

solutions in X are identical, except in their right-hand-sides. This makes
n

it possible to obtain bounds for all of these problems simultaneously , as will

now be demonstrated.

Let X = {x , X X } and let the corresponding resource consumption

12
vectors be g , g , . . . , 3 where

6? =
I a x^ for i=l, . . . , M.

j=l J -

The feasible region of the dual problem (3.4) is a non-empty, unbounded

polyhedron which will be denoted D . Let { (u , v ) |

t e '^^+1'^ ^^

the set of extreme points of D . Since 32b, (3.4) achieves its minimum at

an extreme point of D
^

and

3^^^(b - 6) = min I .[ (b^ - 3.) -H I vJk
i=l j=n+l -^

n+1

for 0<3<b. It follows that for q=l Q we have

M N
m .Ah - &^) ^ I u5 (b, - 6?) + y viK, (3.6)B„+i (b - B^) 2 I uj (b - bJ) + ^ v^K
n+1

i=l ^ ^ ^ j=n+l J J

for all t€T
,
, . This means that any dual extreme point can be used to perform a

n+1 —i-

bounding test on every element of X . Combining (2.3) and (3.6) we see that

x*^ is eliminated by bound if

j=l -^ -^ i=l J=n+1 -' '

for some teT
n+1
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To exploit this opportunity for sharing dual solutions among the elements

of X , we propose a parametric tour of 6-space which visits g , 6 , ... , B .

Suppose that (3.4) has been solved for 3=3 and that we are in the process of

2
obtaining an optimal solution for 3=3 by parametric linear programming:

1 2 1
3=3 + X (3 - 3 ) for 0<X<1. At each iteration (dual simplex pivot) we move to

2
a new dual extreme point and have a new opportunity to eliminate not only x

but also X , ..., X . If X is eliminated, then 3 may be dropped from the

itinerary of the tour. The details of such a strategy are spelled out in

the following "resource-space tour" procedure, which may be used at Step 5 of the

hybrid algorithm. Upon completion of the tour, X^ = {x^ e X | s(q) = 1} .

Resource-Snace, Tour

Step 1. Set s(q) = 1 for q = 1 Q. Solve (3.4) for 3 = 3 . If

n , ,

y r.x;: + UB ^, (b - 3 ) ^ LB

eliminate x bv settine s(l) = 0. Set p = 1.

Step 2. Set 3* = B^. 3* is the starting point for the next parametric segment.

Step 3. If p = Q or s(q) = for all q > p, stop. Otherwise set

c = min {q>p |
s(q) = 1}. 3 is the destination of the next

parametric segment.

Step 4. Use parametric programming on (3.4) with 3=3* + A(3 - 3*) to drive

X from to 1. At each basis change, A = A, use the dual solution

(u, v) to execute Steps 5 and 6.
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Step 5. For q = c, c + 1, ..., Q: if s(q) = 1 and

n M _ N _
I r x^ + I u (b -

bJ) + I V K < LB,

j=l ^ ^ i=l ^ ^ ^ j=n+l ^ ^

eliminate x by setting s(q) = 0.

Step 6. If T = 1, set p = c and go to Step 2. If X<1 but s(c) = 0, set

3* = B* + X (b'^ - B*) , set p = c, and go to Step 3. Otherwise

continue with Step 4.

2
Figure 2 illustrates the possible outcome of such a parametric tour for SeR •

2
The x's mark the successive basis changes. The path shown would result if x

were eliminated by the dual solution obtained at A and x were eliminated

by the dual solution obtained at B. We shall use the term direct hit to

2 2
describe the elimination of x , since 3 was the destination of the current

parametric segment, and indirect hit to describe the elimination of x .

The computational advantage achieved by the resource-space tour is primarily

because of the frequent occurence of indirect hits. The partial solutions

e
in X share dual solutions and therefore share the computational burden of

the simplex pivots.

e
In the results to be reported here, the elements of X were always

ordered according to their objective function value, i.e.

I r x^ <
I r xf^ for q = 1 Q - 1.

j=l - - j=l - -

We are not currently aware of any more compelling criterion. Notice

that an optimal LP solution is obtained for each survivor in X . If xeX
n n

and X* is the optimal LP solution for the corresponding residual problem, then

3
X may be dropped from X if x* is all integer. The complete solution (x, x*)

n

becomes the new incumbent.
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2
Figure 2, A typical resource-space tour in R .
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When problem (1.1) Is nonlinear, we may still use linear programming

to compute strong upper bounds. For each variable x., if K,>1 and some of

the functions r.(*). a, .(•)> •••» &.,.(•) are nonlinear, then we call x. a

nonlinear variable and "expand" it into the binary variables

\ if X. = k
^jk \

^
(3.8)

otherwise

for k=0, 1, ..., K.. The following multiple choice constraint on the y

will insure that x. assumes one of its permissable integer values:

K.

k=0 ^^

If all of the variables are nonlinear, then (1.1) is equivalent to the

following zero/one integer linear program with multiple choice constraints:

subject to

N K.

j=l k=0 ^^^ ^^ ^

K.

k=0 ^^

y., e {0,1} l^j^N, 0<k<K.

where r =r.(k) and a =a (k) . (In general only the nonlinear variables
jk J Ijk ij

would have to be expanded.)

When (3.10) is relaxed to a linear program, the simple upper bounds

(y <1) may be dropped since they are implied by the multiple choice constraints,

This is important since it means that we do not have explicit dual variables
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for them. The multiple choice constraints may be handled implicitly as

generalized upper bounds (GUB's). Thus in the nonlinear case we have:

M N
UB^_^^(b-6) = min I u^(b^-6.) + 1 v

i=l j=n-l-l -^

subject
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4. Heuristics for Lower Bounds

There are several effective heuristics which may be applied to linear

problems. These include Senju and Toyoda [35], Toyoda [36], and Petersen [28].

The latter two have been incorporated into the computer code for the hybrid

algorithm and their performance will be discussed in Section 5. We have also

obtained good integer solutions by rounding down LP solutions. These integer

solutions may then be improved by re-allocating the resources freed by

rounding down. That is, we may increase by one any variable that is currently

below its upper bound and that consumes no more than the leftover resources.

This may be repeated until there is no such variable remaining.

In the nonlinear case, heuristics may be applied directly to (1.1)

or to its linear representation (3.10). If y* is the optimal LP solution

of (3.10) and

K- *
X* = l^ ky l<j<N,
J k=0

^^

then rounding down x* may not result in a feasible solution of (1.1).

(The same is true for any residual problem.) In this event, the

components of x* may be reduced one at a time until a feasible solution is

obtained. At worst this will be x=0. Then a re-allocation procedure similar

to the one described above may be applied.
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For linear or nonlinear problems the following "myopic" heuristic

is useful. Consider the variables x ^, ..., x^ in order. For each one

determine the largest feasible value it can assume, given the values chosen

for the preceeding variables. That is

X ,1 = max {x .^eS ,T I a (x ,, ) < b - 3^}
n+1 n+1 n+1 ' n+1

and

p=n+l
X. = max {X.6S.

|
a^Cx.) < b - B^^ - J a^Cx^)}

for j = n+2 N. Then x is feasible for (2.2) and

N

H^, (b- B^) =
I r A). (4.1)

"+1 j=n+l J ^

Various "greedy" heuristics could also be used, see for example Magazine,

Nemhauser and Trotter {17].
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5. Computational Results

The hybrid algorithm has been tested on a set of capital budgeting

problems taken from the literature. Problems 1 and 2 are among those solved

in [28]. Problems 3 and 4 are problems 7 and 5, respectively, of Petersen

[27]. Problems 5 and 6 are constructed from^ parts of Problems 1, 2, 3,

and 4. (Problem 5 is a subset of Problem 6). Problems 9 and 10 are the

30x60 problem of Senju and Toyoda [35] with their right-hand-sides A and B,

respectively. (A is 60% of B.) Problems 7 and 8 have the first 30 columns

of the Senju and Toyoda problem and half of right-hand-sides A and B, respectively.

These problems are all of the zero/one knapsack type — i.e. they

satisfy the non-negativity assumption. The coefficient matrices are all at

least 90% dense in non-zero elements. All of the problems were solved to

exact optimality (e=0) . Prior to solution the columns were sorted into non-

increasing order of their objective values and renumbered. Thus:

r^.r^^ ... .r^.

Four heuristics were employed: Petersen [28j» Toyoda l36]> Rounding

and Myopic — the latter two as described in Section 4. The Petersen heuristic

gave the best results, but was also the most time consuming. (We used only

the First Search and Fitback procedures.) For this reason Petersen was used

only once on each problem, at the top of the search tree (stage 0) . Toyoda,

Rounding and Myopic were applied to every survivor of the resource space tour.

The resource space tour was made only when the number of partial solutions

exceeded the threshold L. (All of the LP computations were performed by sub-

routines of the SEXOP system [18].) The r(K)-bound, (3.1), and the BRR-bound,

(3.2), were used at every stage since they could be applied so cheaply.

Tables lA and IB summarize our experience with these zero /one problems.

The "Values" section of the table records the continuous and integer optimal

values as well as the initial lower bounds obtained by the Petersen and
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Rounding heuristics. The "Improvements" section gives the number of improved

feasible solutions discovered by each heuristic. The "Eliminations" section

records the number of nodes (partial solutions) eliminated by each of the

several techniques . Those eliminated by the resource-space tour are divided

into direct hits and indirect hits, as described in Section 3. The "LP & H"

row gives the number of stages at which LP and the heuristics were invoked,

i.e. the number of times there were more than L efficient partial solutions.

The threshold L was set at 100 for Problems 1-9 and at 200 for Problem 10.

"Projects selected" is the number of ones in the integer optimal solution.

The computation time is in CPU seconds for an IBM 370/168.

The Petersen heuristic was quite effective on these problems, usually

within 1% of the optimum. To see how the algorithm would fare without such

a good initial lower bound, we ran problems 5, 6, and 7 with and without the

Petersen heuristic. In the latter case the Rounding value was used as the

initial lower bound. The computation times were greater without Petersen,

but not dramatically so. The other three heuristics were able to bring the

lower bound up to or above the Petersen value very quickly. The results

illustrate the value of having a diverse collection of heuristics.

One of our chief surprises in experimenting with the hybrid algorithm

was that the LP bounds and heuristics would be invoked so few times. Table 2

summarizes a series of runs on Problem 2 which compare different values of the

threshold L. It is apparent that when LP is used only intermittently the

weaker bounds, and dominance, play a much larger role. Not using LP for

several stages causes us to accumulate a great many unattractive partial

solutions that would have been fathomed by LP. Some of them are so unattractive

that they can be fathomed by the weak r(K) and BRR-bounds. The ones that

survive are eliminated very efficiently by indirect hits when LP is finally

called in for a "clean up". This was our other chief surprise - the frequency





-21-

of indirect hits. Table 2 shows clearly that the relative number of indirect

hits increases with the threshold L as more and more unattractive nodes are

allowed to accumulate. It was quite common for the number of partial solutions

to drop from over 100 to less than 10 when LP was applied - with most of the

eliminations being by indirect hits.

We have also investigated the effect of allowing the variables to

assume values in {0, 1, 2} or {0, 1, 2, 3}. The increase in computing time

can, of course, be very great. For a fixed level of resources, however,

there may be a great deal of elimination by infeasibility when K is increased

from 1 to 2 or 3. This is illustrated in Table 3. The first three columns

represent Problem 1 solved for K=l, 2, 3 respectively. The b-vector was the

same in each case. The fourth column is the K=3 case repeated with the

original b-vector doubled. To promote comparability the Petersen and Toyoda

zero/one heuristics were not used in the K=l case. A threshold of L=50 was

used in all 4 runs.

Table 4 reports the results of some experiments on nonlinear variations

of Problem 1. In each case the variables were allowed to assume values in

{0, 1, 2}. The convex objective for run 2 was r.(2)=4r (1) for all j; the

convex constraints for run 3 were a.
.
(2)=4a, , (1) for all i, j; and run 4 had

r.(2)=4r.(l)+10 and a (2)=4a (1)+10 for all i, j. The threshold was L=50

for all runs and only the Rounding and Myopic heuristics were used. The

computation time was increased by a factor of from 2 to 5 over the linear

case (run 1). This is due to a weakening of both the heuristics and the LP

bounds.
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TABLE 2. THE EFFECT OF THE THRESHOLD L ON PROBLEM 2 (5x45)
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6. Parametric Integer Programming

Parametric integer programming has only recently emerged as a topic

of research. The pioneering papers include Noltemeier [26], Roodman [32 .33 ] >

Piper and Zoltners [29], and Bowman [3 ]. Nauss [23] has reviewed this

earlier work and contributed many new results for parameterizations of

the objective function. The results of this section are a contribution

to the right-hand-side case. See also [2, 10, 30].

The hybrid algorithm of Section 2 can be extended to solve a family

of parametric integer programs whose right-hand-sides lie along a given

line segment. This family may be written as:

N

I

j
=

subject to

g(e) = f (b+6d) = max I r (x )
' (6.1)

1=1 -^ -^

N

I a,j(.j).b^^6d^ l<i<M

x^eS. l<j<N
i 2

where 0<e^l and d = (d , .... d^) is a direction vector. To "solve" (6.1)

is to obtain an optimal solution for each program in the family, i.e. for

each e e [0,1]. In solving (1.1) the hybrid algorithm eliminates partial

solutions for reasons of feasibility, dominance, and bound. In order to

solve (6.1), the feasibility and bounding tests must be modified.

A partial solution x*^ should be eliminated as infeasible only if it

is infeasible for all 0<e^l. If d2:0, then we simply use (b+d) rather than

b in the feasiblity test. In general (d ?= 0) , let 9^ and 6^ denote the

smallest and largest values of e€(- ", + •") , respectively, for which the

residual problem for x is feasible. Then:
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e^ = max {(3^ - b^)/d^
i

d^>0} (6.2)

e^ = min {(bJ - b^)/d^
1
d^<0} (6.3)

and X can be eliminated if 3!r>b for some constraint i with d.=0, or

e^>e^, or [e^, e^] n [0,1] = ((>. The partial solution x'^ is kept if [6^, 6^]

has a non-empty intersection with [0,1]. If 6^<b and d>0, then 6^^0,

e'' - + 00 , and the intersection is exactly [0,1].

A partial solution x should be eliminated by bound only if it

can be shown that none of its descendants is optimal for any ee[0,l]. In

order to make this kind of test the upper and lower bounds used by the

hybrid algorithm must be viewed as functions of 6. The relationship

between the incumbent value and the optimal value, LB<f (b) , must be

extended over the interval of parameterization: LB(0)Sg(9). It was

pointed out in Section 2 that f (b") is a nondecreasing step function on

b'eR . The g(e) function, since it is a "slice" of f (b'), is also a step

function and is nondecreasing if d^O. Each of the optimal solutions of

(6.1) determines one of the steps of g(6). The heuristic at Step 7 of

the hybrid algorithm can be used to construct the necessary lower approxim-

ation of g(6) . Instead of computing only H (b-g ) we shall compute

H
, ^ (b+ed-g") for several values of 9. Then LB(0) is defined as the maximum

n+i

return achieved by any known solution whose resource consumption vector

does not exceed (b+Od) . LB(9) is a step function (nondecreasing if dsO)

and LB(9)<g(9) on 0^9:21. The solutions which determine LB(9) are called the

incumbents. Each is incumbent for a particular interval of 0. (Note that

all of these step fimctions are upper semi-continuovis) .





-24-

Let us specify that the upper bounds at Step 5 of the hybrid

algorithm are to be computed by linear programming. Taking advantage

of LP duality once again, we have for 0<6<1:

f ^, (b+ed-e'^) S UB ^, (b+ed-B^)
n+l n+l

M N
^ I u^(b +ed -6^) + I v^K

i=l i=n+l ^ ^

for any teT
^

. The return that can be achieved by any descendant of x

is therefore bounded above by the linear function of 6:

M
h(e;q,t) =

[ I u d ] e

i=l

j=l ^ J 1=1^"-'- j=n+l J J

where (u , v ) is any extreme point of the dual feasible region D . The

tightest bounds for x would of course be those based on dual solutions

that are optimal for (b+ed-B*^) , Osesl. Notice that h(e;q,t) is nondecreasing

in if d>0 since u*'iO.

The new bounding test is of the form: eliminate x^eX^ if
n

UB^_^^(b+ed-B'^) <: LB(e) for O<0<1. (6.4)

A sufficient condition for eliminating x is therefore

h(e;q,t) i LB(e) for 056^1. (6.5)

for some teT -. Thus (6.5) is the appropriate generalization of the

single point test (3.7). Figure 3 illustrates a successful bounding test

in a case where d >0. If (6.5) is satisfied as a strict inequality for all 6,
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Figure 3. A successful bounding test.
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then X does not have any optimal descendants. If (6.5) is satisfied but

holds with equality for some 6, then one of the incumbents may be a descendant

of X and may be optimal for 6. We may safely eliminate x , however,

since it cannot have any descendant that is better than an incumbent.

Notice that, unlike ordinary integer programming (d=0) , an all-integer LP

solution for some 0e[O,l] does not in itself justify dropping x .

The test (6.5) may be strengthened by narrowing the interval over

Q e
which the inequality must hold. If x eX , then we know that the residual

n

problem for x is infeasible outside of the interval [6^, 69] »

where 9^ and 6^ are given by (6.2) and (6.3),

respectively. Since UB (b+ed-B*^) = - «= for 9f[e?, 6^] and this clearly

satisfies (6.4), the test (6.5) may be refined to : eliminate x eX if

h(e;q,t) ^ LB(6) for ee[e^, 9^] n [0,1] (6.6)

for some teT
n+1

The execution of the bounding tests at Step 5 can be organized in

several different ways. The simplest would be to solve each linear program

independently and make just one test for each one, the test for x being

based on the dual solution that is optimal for (b-g ) , or for (b+OM-g )

if 0< B^ Si. If this test did not succeed in eliminating x , then parametric

linear programming could be xised to generate some or all of the dual solutions

that are optimal for (b+ed-g*^) , Be [6^, 6^] n [0,1]. Let these be (u , v ) ,

t=l, ..., P. A stronger test can then be based on the pointwise minimum

q e
of the several linear functions: eliminate x eX if

n

min h(e;q,t) ^ LB(9) for 0e[e^, 6^] n [0,1]. (6.7)

t=l .. P 1 ^
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This pointwise minimum is the familiar concave piecewise linear function

of 6 associated with parametric linear programming.

As in Section 3, the idea of a €our through resource-space is

much more attractive than treating each linear program independently.

Since the h-functions are based on dual feasible solutions, the parametric

tour can be carried out exactly as in Section 3. Only the bounding test

(6.6) is different, in addition, if the tour arrives a 6^ without elimin-

ating X , then a parametric segment from g to (3-d) may be inserted into

the tour and test (6.7) performed. Figure 4 illustrates how the path

shown in Figure 2 might be altered by the introduction of daO. It is

2 5
again supposed that x is eliminated by a direct hit from A and that x

is eliminated by an indirect hit from B. Our computer implementation of

Step 5 has been organized in this fashion.

The modified hybrid algorithm may now be summarized as follows.

We shall sidestep the question of what constitutes an "approximate"

solution of (6.1) by assuming that an optimal solution must be found for

each ee[0,l].

Modified Hybrid Algorithm

Step 1. Set n=l, X = S , and choose L>1. Use the heuristic to construct

an initial LB(e) for 0<e^l.

Step 2. Construct X by eliminating all elements of X that are infeasible
n n

for every O^GSl.

e f
Step 3. Construct X by eliminating all dominated elements of X .

Step 4. If Ix^l ^ L, set X^ = X^ and go to Step 9.
' n' n n " ^

Step 5. Use linear programming to do elimination by bound according to the

tests (6.6) and (6.7). Let X denote the set of survivors.
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Figure 4. A typical resource-space tour in R when d>0.





Step 6. (omit)
~^^~

Step 7. Apply the heuristic to each of the surviving residual problems

for several values of 6. Use the results to improve LB(e).

Save all incxmbents.

Step 8. (omit)

Step 9. If n=N, stop: use the elements of X^ to improve LB(e); then

LB(e)=g(e) for 0<e<l and each incumbent is optimal for its interval

s
of e. Otherwise set n=n+l, generate X = X^_^ x S^, and go to Step 2.

The modified hybrid algorithm was tested on Problems 1, 4, and 6 from

Section 5. The results are summarized in Tables 5, 6, and 7 respectively.

In each run the direction vector d was taken as some percentage of the

initial right-hand-side b. For example, if d=5% b, then (6.1) has right-

hand-sides b+e(.05) b, for O<0<1. A 0% case from Section 5 is included for

comparison. The "Solutions" row gives the number of optimal solutions found,

or equivalently the number of steps in the g(0) function. The "H applied"

row gives the number of (evenly spaced) 9 values at which the heuristic

is applied at Step 7. (Petersen was used at Step 1 and Toyoda at Step 7.)

The other rows are labelled as in Section 5. Successful applications of

the (6.7) test are counted among the direct hits and also listed separately

as "(6.7) hits". A threshold of L=100 was used for all runs. The computation

times seem quite large in terms of the length of the interval of parameter-

ization (5, 10, or 15%). They are not unreasonable, however, in terms of

the number of optimal solutions found. In all cases the computation time

is considerably less than the number of optimal solutions found multiplied

by the computation time for finding npo r.TM-iTt\«l solution in the 0% case.

Although developed in the special context of the hybrid DP/B&B

approach, the new bounding test (6.5) is of much wider applicability.

Through its use any LP-based branch-and-bound algorithm can be converted

to an algorithm for parametric integer programming. The extension of our

results to the general branch-and-bound context is the subject of a





TABLE 5. PARAMETRIC RESULTS FOR PROBLEM 1 (5x30)





TABLE 6. PARAMETRIC RESULTS FOR PROBLEM 4 (10x28)





TABLE 7. PARAMETRIC RESULTS FOR PROBLEM 6 (20x30)

0% 272% 5%

Solutions
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7. Dropping the Non-Negativity Assumption

Allowing negative objective function values does not require any

change to the hybrid algorithm. Allowing negative values in the constraint

functions and on the right-hand-side requires the feasibility test at Step 2

to be modified or abandoned. The non-negativity assumption insures that

every descendant of the partial solution xeX will consume at least as^ n

much of each resource as x does. This implies that x has no feasible

descendants whenever 3. > b, for some i. Without this assumption we must

either abandon the feasibility test, in which case we may redefine

X = {xeX I X is efficient with respect to X }
n n ' n

at Step 3, or else replace it with some weaker sufficient condition for

eliminating x. For example: x has no feasible descendants if for some i,

3 . > b . and
1 X

N

B^ + y min {0, min {a..(k) I k=l K.}}> b^

.

^ j=n+l
ij I

• J i

Even when Step 2 is omitted, some elimination by reason of infeasibility

takes place as a special case of elimination by bound. If xeX does not

have any feasible descendants, then its residual problem (2.2) is infeasible

and this may be detected when the LP relaxation (3.3) is solved. When

this happens x is eliminated by bound, provided we adopt the usual convention

that the optimal value of an infeasible maximization problem is ( - ")

.

The resource space tour must be modified to share extreme rays as well

e el Q
as extreme points among the members of X . Let X = {x , ..., x } and

consider the linear programs (3.3) for 6 = B , ..., B^. If one of these is

infeasible, then the corresponding dual (3. A) has an unbounded solution along
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an extreme ray (w, z) of D , , . As soon as this extreme ray is obtained it

can be used to perform what amounts to a feasibility test on each x , That

is, X has no feasible descendants if

N

y w. (b.-B?) + y z.K.
1=1 1=n+l -^ -^

. <

since this condition means that UB
, ^ (b-g^) = - ».

n+1

The most important consequence of dropping the non-negativity

assumption is that it becomes much more difficult to devise good heuristics.

Intuitive or common sense approaches to "knapsack type" problems break down

when negative data is admitted, and there is no easy way to round an LP

solution and obtain a feasible integer solution. Heuristics for general

integer programs, such as those of Hillier [13] and Kochenberger et. al.

[16 ]
, would have to be incorporated into the hybrid algorithm.
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8. Conclusion

This paper has presented a hybrid DP/B&B algorithm for separable

discrete mathematical programs and evidence of its computational viability.

If the hybrid algorithm is viewed as dynamic programming, then the intro-

duction of bounding arguments serves to reduce the size of the state space

at each stage and enables us to compute an optimal solution for one particular

right-hand-side vector, b, rather than for all 0<b'<b. If on the other hand

the hybrid algorithm is viewed as b ranch-and-bound, then the incorporation

of a DP framework has two main consequences. First, DP provides an addition-

al fathoming technique: dominance. Second, and of greater importance, DP

takes control of the search strategy. The B&B methodology achieves its

great flexibility by leaving its user with many different choices to make.

Among these are: how to separate a node that cannot be fathomed (e.g.

which variable to branch on) and which node to attempt to fathom next. (e.g.

depth first, breadth first, best bound, priority, etc). In the hybrid

algorithm, the DP framework dictates that the same branching variable be

used across each level of the search tree and that we attempt to fathom all

of the nodes at the current level of the tree before proceeding to the next

level. The only freedom left is in the choice of which variable to associate

with each level of the tree and in what order to consider the nodes at the

current level. This rather rigid structure leads directly to the surprisingly

effective "resource-space tour" technique for computing and sharing bounds.

Our ultimate breadth first search strategy is admittedly an extreme

one. It is quite possible, however, for a more conventional branch-and-

bound procedure to use the hybrid algorithm to fathom particular sub-trees

while retaining higher-level strategic control. We have not yet attempted

this but it appears to be an exciting avenue for further research.
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At the conceptual level, the central role of the optimal return

function in DP has lead to the discovery of a generalization of the usual

B&B bounding test which makes it possible to solve, in one s.earch, a family

of parametric integer programs whose right-hand-sides lie on a given line

segment. The idea may be readily extended to families whose right-hand-

sides lie in more general sets, for example a hyper-rectangle centered at

b [19].

It is our hope that, beyond its computational value, our work will

have further theoretical ramifications and will lead to a unifying frame-

work for discrete optimization. That is, this work may help to break down

the artificial barriers which exist between DP and B&B. We have made a

start in this direction by showing how bounding arguments may be used to

enhance any dynamic programming algorithm [22], not just the special one

considered here. Furthermore, we feel that the hybrid viewpoint will lead

to a deeper understanding of right-hand-side sensitivity. In view of the

intimate relationship between right-hand-side sensitivity and duality for

convex programs, this may ultimately result in new concepts of duality for

discrete programs.
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