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A HEURISTIC APPROACH TO THE OPTIMIZATION OF

CENTRALIZED COMMUNICATION NETWORKS

ABSTRACT

In this working paper a heuristic optimization technique for centralized

communication networks will be described. The optimization procedure can

be used to determine: (1) the topology of one-level networks without

concentrators, (2) the topology, the number and locations of concentrators

in two-level networks, and (3) the topology of loop networks. Beside the

topology aspect, also the line capacities and line organization structures

(polling/contention; priorities of input or output on half-duplex lines

vs. full-duplex lines) are computed. By means of a feed-back technique

the model guarantees a solution which corresponds to the specified average

response time.
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1 . Introduction

The classification of computer communication networks into centralized and

distributed networks depends on the locations of the computers and the

data bases. In a centralized network all processing capabilities and data

bases will be located at a central site. A distributed network, however,

will have its processors and data bases spread over a set of locations.

In this paper we will focus on the optimization of centralized teleproces-

sing networks. In a forthcoming paper by J. Akoka and P. Chen (1) an

optimization technique for distributed systems will be presented. For a

more detailed survey on the issue of distributed communications networks,

see reference (2)

.

The problem of optimizing a centralized communication network can be viewed

as minimizing the overall network cost, provided that the response time

requirements at the various terminal sites are satisfied. Generally we

are given the location of the CPU, the locations of the terminals, the cost

of communication lines, the cost of concentrators, and traffic data from

terminals and central computer. The objective is to find an optimal com-

bination of the following design variables: (1) topology of the network,

(2) line capacities, (3) number of concentrators, (4) location of concen-

trators, (5) line organization structures (polling or contention), such

that the overall network cost is minimized and the response time require-

ment is not violated.





-3-

In view of the complexity of the problem it is practically impossible to

use exact techniques for generating the mathematical optimum. So, a

heuristic approach for solving the optimization of centralized communication

networks will be studied in this paper. In contrast with partial solutions

generated by various authors, this network procedure will cover all major

design elements.

2. The overall network procedure

The flow-chart in Figure 1 illustrates the three basic steps in the overall

network optimization procedure: optimization - analysis - evaluation.

r start
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posi- determine
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Figure 1: The overall network optimization procedure
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In the optimization step the topology will be determined, given a fixed

line capacity over the network. Three network types will be covered: one-

level multidrop networks without concentrators; two-level networks with

concentrators optimally located, and loop networks. The optimization

heuristics for one- and two-level networks are based upon MST (Minimal

Spanning Tree) type algorithms with inclusion of maximal performance con-

straints (line utilization).

The determination of the response times under several organization schemes

is the subject of the analysis part. For contention systems basic queuing

formulas under several traffic loads generally give good computation

results. However, for polling systems either an extensive analytical

model or simulation techniques have to be used.

In the evaluation section the computed response times are compared with

the response time objectives. When the computed response time is lower

than the objective, the line capacities of the high-level network (between

computer and concentrators) can be computed. However, when the computed

response time exceeds the objective, the optimization procedure has to be

recomputed with a lower performance ratio.

3. Optimization

In a first section (3.1) of this paragraph optimization techniques for

one-level multidrop networks without concentrators will be reviewed and

evaluated. In a second section (3.2) we shall deal with optimization

algorithms for networks with concentrators (the so-called two-level networks)

In section 3.3 a heuristic algorithm for loop networks will be presented.





-5-

3.1 One-level networks without concentrators

In the early days of teleprocessing, terminals were star connected (via

point-to-point lines) to the CPU. Since this was not the most economical

way of connecting a set of terminals to a single device, and because of

the enormous waste of computer ports, network designers built multidrop

networks using only one single channel for a set of terminals.

The problem of optimizing a multidrop network has been investigated by

many authors. Chandy and Lo (3) describe an exact method using the branch

and bound algorithm. This technique however, is only useful for the

solution of small size problems.

Heuristic methods for solving the multidrop optimization problem can be

based upon MST (Minimal Spanning Tree) algorithms, adapted to include a

performance ratio (in our case a maximum utilization rate of a link) . Some

of the major heuristics will be reviewed briefly.

Only the basic steps of the algorithms will be reviewed. For a more detailed

survey, see reference (6).

KRUSKAL'S ALGORITHM (7)

[1] Initially every terminal is treated as a separate component;

[2] Determine the minimum cost link between two components not violating
the performance constraint;

[3] Join those two components. If all terminals are connected: end;

otherwise return to [2].

Illustration: Figure 2.
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Data for illustrations 2, 3, 4, 5

Cost Matrix

1
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Illustration: Figure 2: KRUSKAL
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PRIM'S ALGORITHM (5)

[1] Initially {a} contains only the central node; {b} contains all other
nodes;

[2] Find the minimum cost link between any node of {b} and any node of {a}

not violating the performance constraint;

[3] Link the two nodes together. Remove the newly connected node out of

{b} and put it in {a} ;

[4] If { B } is idle: end; otherwise return to [2].

Illustration: Figure 3.

ESAU/WILLIAMS' ALGORITHM (8)

[1] The initial configuration is a star-structure with the CPU location c

as central node;

[2] Find two nodes i and j, not violating the performance constraint, and
yielding the greatest cost savings when removing (i, c) and replacing
it by (i, j);

[3] If this transformation does not exist: end; otherwise remove (i, c)

and add (i, j); return to [2].

Illustration: Figure 4.

VAM ALGORITHM (9)

The VAM technique (VOGEL APPROXIMATION METHOD) is usually used in Operations

Research for generating an initial solution for the Transportation Problem.

[1] Determine the trade-off values t.

.

where t. .
= trade-off value for link i ->

j

a. = the cheapest link leaving from node i

b. = the second cheapest link leaving from node i
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Illustration: Figure 3: PRIM
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Ulustration: Figure 4: ESAU-WILLIAMS
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Illustration: Figure 5: VAM
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g. = b. - a.

Cj, .
= the cost of a communication line between node i and i

[2] Determine t*^... = max t.. not violating the performance constraint;

[3] Add link i* -> j* to the network forming a new component;

[4] If all terminals are connected: end; otherwise return to [2].

Illustration: Figure 5.

COMPARISON

A first comparison has been made by executing the four algorithms on

simulated data. The solutions for 100-node networks, with a maximum utili-

zation rate of 0.7 are printed in Table I. The main results are summarized

in Table II.

KRUSKAL
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TABLE II: Survey of simulation results

relative
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Figure 6
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Figure 7
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k = 2

k = number of loops
L =
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We redefine g. used in the VAM algorithm, to be: (6)

g. = a[B X c^^ + (1-6) X D.]

where: a >^

constants
< B < 1

c.^ = cost of a direct link between node i and the
central site (node 1)

D. = b. - a.

.

1 IX
Note the very interesting properties of this rule:

a = 1 B = generates VAM-algorithm
g.=0 a=l 6=0 generates Esau/Williams

a = generates Kruskal

g. = a = °° generates Prim

According to the algorithm which has generated the minimum cost solution

in Step 3 of the design procedure, these initial values will be used to do

a parameterization of the g.-rule. New values of a and B are generated

until no further improvement can be achieved. At each step the VAM-algorithra

is recomputed.

For the data used in Table I the solutions are recomputed using the model

described above. The results are printed in Table III. In the first column

the best solution of Table I is repeated.
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Best Solution
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The problem of optimizing a network, with all terminals star-connected to

either the optimally located concentrators or the CPU, can be formulated

in a straightforward way:

Define: c. = cost of a direct link between node i and node j
^ (N nodes)

Location of central computer is node 1.

I ; I„; I^; ...I are m possible concentrator locations (m £ N)

G = cost of 1 concentrator.

The optimal solution will be indicated by the structure with the minimal

cost (D* = min D.)

:

jem ^

N
D = min [ I min (c , c )] + G

-^ I^eN k=2 ^^ ^ 1

N

^2 \ T M KK ™'''
^'kl' "kT ' =kl,^^ ^

2^

I ,I„ eN k=2 1 2

N

D^ = min
[J

min (c^^^, c^^ . \l'---\lj^ + ""^

I, ,I„, . . .1 £ N k=2 12 m12 m

The problem of optimizing two-level networks with terminals star-connected

to the concentrators is almost analogous to the "Warehouse Location" problem

of "Operations Research". Some authors propose exact methods for generating

the mathematical optimum: (10), (11), (12), (13) and (lA) ; others use

heuristic techniques for solving large-scale problems: (18), (15), (16) and

(17). In view of the impossibility of exact methods to handle problems of

reasonable size, we decided to use heuristics for generating the solution.
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The Kuehn & Hamburger algorithm (15) starts with no concentrators allocated

to the network. Then, step by step concentrators are added based on the

greatest cost savings which can be achieved. The Feldman/Lehrer/Ray

algorithm (16) works in the opposite direction. Initially all nodes are

concentrator locations; then step by step one of the concentrators is

deleted until no more cost savings can be accomplished. Comparison of

those two algorithms revealed that the Feldman/Lehrer/Ray algorithm

generates slightly better results than the Kuehn & Hamburger heuristic.

For large-scale problems, however, computing times for the Feldman/Lehrer/

Ray program can be excessive. Although this is a constraint we recommend

use of the Feldman/Lehrer/Ray algorithm in the optimization procedure.

When the terminals are multipoint connected to the concentrators the multi-

point design procedure can be incorporated in the Feldman/Lehrer/Ray

algorithm. However, for problems of reasonable size (N > 100, I > 50)

computing times can be too excessive. A more feasible way has been

described in (6), where after each deletion of a concentrator, terminals

are re-allocated to new concentrators according to the link with the

minimum cost, not violating the performance constraint.

3.3 Optimization of loop networks

The Vehicle Fleet Scheduling problems of Operations Research is analogous

to the optimization problem of loop networks. The heuristic which can be

used to determine a solution is <.lue to Clarke and Wright (19).





-21-

CLARKE and WRIGHT Heuristic

[1] Initially all nodes are located on an individual loop
(CPU -•- node ->- CPU);

[2] Find a pair of loops, resulting in the raaxiraum cost savings when
combined, and not violating the performance constraint. When cost
savings are zero or negative: stop. Let's assume nodes i and j

(located on loop i and j) generate the largest gain. The cost
savings can be defined as:

c + c ,, - c . .

.

il jl iJ

[3] Add link i ^ j; delete links i -»- CPU and j -> CPU; Return to [2].

Illustration: Figure 9.

4. Analysis

Although a performance measure has been used in the optimization heuristics,

this does not guarantee that the response time of the network will be lower

than the response time requirements. In the analysis section we have to

determine the response times of the channels under various organization

structures (polling or contention/half-duplex lines with either priority of

input or priority of output versus full-duplex lines).

Contention systems with either half-duplex lines or full-duplex lines can

be analyzed by simple queuing models (20), (6). The analysis of polling

structures is almost identical to the analysis of a series of queues

served in a cyclical way by one single server. Two possible disciplines

can be distinguished:

- the server makes cyclical scans of every queue, and idles the

consulted queue before addressing another queue;
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Illustration: Loop Networks: Figure 9

Cost matrix
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Iteration 1

Iteration 2

Iteration 3

Total cost: 101
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- the server scans every queue, service, however, is limited to
those messages which made up the queue at the arrival time of
the server.

A lot of articles have been published on polling structures: (21), (22),

(23), (24), (25). Chang (4) however, is the only one who analyses data

communications networks with sophisticated hardware technologies (Terminal

Control Units, Front-end Processors). Unless some minor changes, based on

empirical results, this analysis technique for polling systems has been

incorporated in the overall network procedure.

5. Evaluation

In the evaluation section of the procedure, the computed response times

are compared with the response time objectives. When the computed response

times exceed the requirement, the optimization has to be recomputed with a

lower maximum performance ratio. When the response times are lower than

the objective, the line capacities of the high-level network (between

computer and concentrators) can easily be computed.
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6. General Comments

The optimal solution for 30 small-size problems with 5 (125 possible

o

trees) and 10 nodes (10 different trees) has been computed by means of

an extensive enumeration method. The heuristic technique proposed in

this working paper generated in about 85% of all cases a solution within

2% of the computed optimum. The maximum deviation observed between

heuristic solution and optimum was 5.5%. The computing times for the

proposed procedure were very reasonable.

In a forthcoming working paper the method will be extended to deal with

STEINER trees and including research done on the reliability problem.
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