УДК 548.02

СТРУКТУРА И СВОЙСТВА КЕРАМИЧЕСКИХ СЕГНЕТОЭЛЕКТРИКОВ-РЕЛАКСОРОВ СИСТЕМЫ BiScO₃ – PbTiO₃ С ДОБАВКАМИ MnO₂ В ОБЛАСТИ МОРФОТРОПНОГО ПЕРЕХОДА

В.П. Сиротинкин¹, старший научный сотрудник, к. х. н. А.А. Буш^{1,@}, директор Института материалов твердотельной электроники, д. т. н. К.Е. Каменцев¹, начальник отдела, к. т. н. А.В. Степанов¹, аспирант А.Г. Сегалла², заместитель директора НПК-3, к. т. н.

¹Московский технологический университет (МИРЭА), Москва, 119454 Россия ²ОАО «НИИ «ЭЛПА», Москва, Зеленоград, 124460 Россия [@]Автор для переписки, e-mail: aabush@yandex.ru

Для керамических образцов системы $(1-x)BiScO_3 \cdot xPbTiO_3 \cdot yMnO_2$, x = 0.63 и y=0.0017 и 0.0118, проведен рентгеноструктурный анализ методом Ритвельда, который показал, что они состоят из двух близких по структуре фаз: тетрагональной (пр. гр. P4mm) и моноклинной (пр. гр. Cm). Для образцов с y = 0 - 0.0177 изучены температурные зависимости $\varepsilon(T)$ и tg $\delta(T)$ на частотах 0.1–200 кГц. При $y \le 0.002$ образцы являются сегнетоэлектриками с точкой Кюри T_c , лежащей в области 685 - 690 К. С увеличением содержания MnO₂ образцы приобретают свойства, характерные для сегнетоэлектриков-релаксоров. В частности, положение максимума на температурной зависимости их диэлектрической проницаемости смещается с частотой измерительного поля в сторону высоких температур.

Ключевые слова: керамика, сегнетоэлектрики, релаксоры, кристаллическая структура, диэлектрическая проницаемость.

STRUCTURE AND PROPERTIES OF CERAMIC RELAXOR FERROELECTICS OF THE SYSTEM BiScO₃ – PbTiO₃ WITH MnO₂ ADDITIVES IN THE FIELD OF THE MORPHOTROPIC TRANSITION

V.P. Sirotinkin¹, A.A. Bush^{1,@} K.E. Kamentsev¹, A.V. Stepanov¹, A.G. Segalla²

¹Moscow Technological University (MIREA), Moscow, 119454 Russia ²OJSC "Scientific Research Institute "ELPA", Moscow, Zelenograd, 124460, Russia @Corresponding author e-mail: myx.05@mail.ru X-ray diffraction analysis by Rietveld method was carried out for ceramic samples of the system $(1-x)BiScO_3 \cdot xPbTiO_3 \cdot yMnO_2$, x=0.63, and y=0.0017 and 0.0118. It was shown that they consist of two phases: tetragonal phase (space group P4mm) and monoclinic phase (space group Cm). The temperature dependencies $\epsilon(T) \ \mu \ tg\delta(T)$ were obtained for samples y = 0 - 0.0177 at the frequencies 0.1 - 200 kHz. The samples are ferroelectric with T_c 685-690 K when $y \le 0.002$. With increasing content of MnO₂ samples acquire the properties characteristic of ferroelectrics-relaxors. The position of the maximum of dielectric permittivity shifts depending on frequency of measuring field.

Keywords: nanostructures, gallium nitride, capacitance-voltage characteristics, piezoelectric effect.

Интерес исследователей к твердым растворам (1–х)BiScO₃·xPbTiO₃ (BS·PT) со структурой перовскита вызван наличием у них перспективных для применений пьезоэлектрических свойств. Пьезокерамика этой системы для составов, лежащих вблизи морфотропной фазовой границы (МФГ) (х \approx 0.64) между тетрагональной и ромбоэдрической формами твердых растворов, по величине пьезомодуля d₃₃ (~500 пКл/Н) сопоставима с широко применяемой пьезокерамикой Pb(Zr,Ti)O₃ (ЦТС), при этом она имеет более высокую точку Кюри (T_c~ 450°C) [1–5]. Для оптимизации пьезоэлектрических, диэлектрических и других свойств такой керамики и получения новых модифицированных пьезоматериалов на ее основе осуществляется синтез и исследование керамики (1–х)BS·хPT·уMO_x с добавками различных атомов M [3, 5].

В этой связи нами проведены работы по получению, изучению структурных и диэлектрических характеристик керамики BS-PT с добавками MnO₂. Выбор в качестве добавки диоксида марганца обусловлен недостаточной изученностью его влияния на характеристики керамики системы BiScO₃ – PbTiO₃. Следует также отметить, что подавляющее большинство структурных исследований образцов системы BS-PT ограничивается их рентгенофазовым анализом без детального определения кристаллической структуры присутствующих фаз.

Ранее при исследовании подобной системы (PbSc_{1/2}Nb_{1/2}O₃)_{1-x} – (PbTiO₃)_x было установлено, что для x ~ 0.43 (область морфотропного перехода) характерна моноклинная симметрия и пространственная группа *Cm* [6]. В [4] для состава твердого раствора (1–x)BiScO₃·xPbTiO₃, где x = 0.63 (область морфотропного перехода), сообщается, что он состоит из двух фаз: тетрагональной с пространственной группой *P4mm* и моноклинной с пространственной группой *Cm*. Исследование выполнено методом Ритвельда по рентгенодифракционным и нейтронодифракционным данным, однако не приведены сведения по координатам атомов и их тепловым факторам.

Целью настоящего исследования являлось установление диэлектрических свойств и уточнение структуры керамических образцов состава $(1-x)BiScO_3 \cdot xPbTiO_3 \cdot yMnO_2$, x = 0.63, с добавлением MnO_2 в количестве у = 0–0.0177 (или 0–0.51% масс.). Введение MnO_2 способствует лучшей спекаемости керамики и может оказывать влияние на ее структуру и свойства.

Экспериментальная часть

Синтез образцов проводили по обычной керамической технологии с использованием соответствующих оксидов металлов в качестве исходных реагентов. При помоле использовали аттритор с мелющими телами из стабилизированного иттрием диоксида циркония. Помол-смешивание шихт и помол синтезированных порошков осуществляли в течение 45 мин. Синтез вели при 780°С в течение 6 ч. Прессование заготовок размерами Ø14×10 мм осуществляли одноосным давлением 700 кг/см². Обжиг заготовок проводили в камерной печи в 30%-ной свинецсодержащей засыпке при температурах 1150 и 1200°С с выдержкой 2 ч. Обожженные заготовки шлифовали по диаметру, распиливали на диски толщиной 0.6 мм. Двусторонним доводочным шлифованием получали диски толщиной 0.5 мм, после чего их отмывали в дистиллированной воде в ультразвуковой ванне и высушивали при 400°С. Поверхность дисков для последующих диэлектрических измерений металлизировали с использованием серебросодержащей пасты. Полученные образцы представляли собой керамические диски диаметром 9 мм и толщиной 0.5 мм. Поляризацию полученных образцов проводили в полиэтилсилоксановой жидкости ПЭС-5 при температуре 100-120°С с выдержкой под полем 15-30 мин и охлаждением до 50-60°С под полем. Напряженность электрического поля составляла 4-6 кВ/мм. Режим поляризации подбирали таким образом, чтобы получить максимальные величины d₃₃ и других пьезоэлектрических параметров.

С использованием LCR-метра МТ-4090 фирмы Motech на частотах 0.1, 1, 10, 100 и 200 кГц при амплитуде измерительного напряжения 1 В определяли температурно-частотные зависимости диэлектрической проницаемости є и тангенса угла диэлектрических потерь tgδ образцов синтезированной керамики в области температур 290–800 К.

Для проведения рентгеноструктурного анализа использовали дифрактометр Ultima IV фирмы Rigaku (Япония). Экспериментальные данные для двух исследованных образцов (у = 0.0017 и 0.0118) получали в одинаковых условиях: рентгенооптическая схема по Брэггу–Брентано, диапазон углов по шкале 20 от 12° до 102°, непрерывный режим съемки, скорость сканирования 2 град/мин, шаг 0.01°, Си K_{α} -излучение, никелевый фильтр, полупроводниковый детектор D/teX, напряжение на трубке 40 кВ, ток 30 мА.

Результаты и их обсуждение

Рентгеноструктурные исследования. Зарегистрированные рентгенодифракционные спектры образцов 1 (у = 0.0017 или 0.05% масс.) и 2 (у = 0.0118 или 0.34% масс.) представлены на рис. 1. Как видно из рис. 1, при общей схожести спектров они имеют различия в деталях, точнее, в профилях и относительных интенсивностях дифракционных пиков. Из рис. 1 также следует, что образцы 1 и 2 не являются однофазными, основной фазой является фаза с тетрагональной симметрией. Предположив, что в образцах содержатся только две перовскитоподобные фазы с различными вариантами искажения исходной кубической ячейки, удалось смоделировать дифракционные пики образцов 1 и 2 (до максимальных значений положения пиков по шкале 20 около 67 градусов) с использованием программного пакета WinFit [7]. Одной из фаз (основной) везде была фаза с тетрагональной симметрией. Для других фаз были опробованы модели с кубической, ромбоздрической или моноклинной симметрией. Для модели с моноклинной симметрией рассмотрены случаи с примитивной и базоцентрированной решетками. Наилучшее соответствие между экспериментальными данными и модельными спектрами было достигнуто для варианта со второй фазой с базоцентрированной моноклинной решеткой. В качестве примера на рис. 2 представлены экспериментальные данные и модельные спектры для области вблизи 22 градусов по шкале 20.

Уточнение структур фаз, присутствующих в синтезированных керамических образцах 1 и 2, проведено методом Ритвельда по программе FullProf [8]. Уточняемыми переменными являлись: шкальные факторы; нулевая точка; профильные параметры пиков, для формы которых выбрана функция псевдо-Фойгта; коэффициенты полинома шестой степени, которым описывалась линия фона; параметры элементарных ячеек; координаты атомов в элементарных ячейках; величины тепловых факторов атомов свинца и висмута в изотропном приближении, в предположении их равенства. Для атомов титана, скандия и кислорода величины тепловых факторов были зафиксированы. Поскольку концентрации добавляемого MnO₂ очень малы, атомы марганца в структуры рассматриваемых фаз не вводили. При рассмотрении моделей, содержащих вторую фазу с кубической, ромбоэдрической и моноклинной примитивной решетками, не удавалось достичь значений фактора расходимости менее 8-9%. Выбор модели со второй фазой с базоцентрированной моноклинной решеткой привел к хорошему совпадению с экспериментальными данными (таблица, рис. 3). Структурные параметры образцов 1 и 2 хорошо согласуются с данными [4] (см. таблицу). Между собой образцы 1 и 2 имеют, хотя и небольшие, но отличия в значениях параметров элементарных ячеек соответствующих фаз. Имеются также небольшие отличия в количественном содержании фаз с тетрагональной и моноклинной симметрией, а также в значениях координат атомов. По-видимому, добавление MnO, вызывает изменения заселенностей кристаллографических позиций различными атомами, но выбранный метод исследования не позволяет определить эти изменения более детально.

Рис. 1. Рентгенодифракционные спектры образцов 1 (вверху) и 2 (внизу). На вставке показаны первые два пика в увеличенном масштабе.

Рис. 2. Участок рентгенодифракционного спектра образца 2 (крестики) и модельные спектры (сплошные линии): общий и составляющие (слева – направо, пики: (001) тетрагональной фазы, (001) моноклинной базоцентрированной фазы,

(110) моноклинной базоцентрированной фазы, (100) тетрагональной фазы).

Основные результаты уточнения структур образцов 1 и 2 методом Ритвельда

	Образец 1	Образец 2	Данные из [3]
R _{wp} , %	6.56	6.82	10.69
Объемная доля тетрагональной фазы, %	71(1)	79(1)	
Объемная доля моноклинной фазы, %	29(1)	21(1)	
RB для моноклинной фазы, %	3.57	3.57	
RB для тетрагональной фазы, %	3.64	3.55	
Тетрагональная фаза (пр. гр. Р4тт)			
Параметры элементарной ячейки	3 0000(2)	3 0023(2)	3 0028(2)
<i>u</i> , A <i>c</i> , Å	4.0868(2)	4.0764(2)	4.0745(4)
Координаты атомов (x, y, z) и тепловые факторы (B, Å ²)			
Pb(Bi)	0; 0; 0; 2.4(1)	0; 0; 0; 2.8(1)	
Ti(Sc)	0.5; 0.5; 0.444(2); 0.1	0.5; 0.5; 0.447(2); 0.1	
01	0,5; 0,5; -0,068(5); 0.3	0.5; 0.5; -0.091(4); 0.3	
02	0.5; 0; 0.563(3); 0.3	0.5; 0; 0.557(3); 0.3	
Моноклинная фаза (пр.гр. Ст)			
Параметры элементарной ячейки			
<i>a</i> , Å	5.6643(9)	5.6853(5)	5.6815(5)
b, Å	5.6733(7)	5.6642(5)	5.6680(5)
<i>c</i> , Å	4.0666(5)	4.0384(4)	4.0369(4)
β	89.621(9)	89.546(5)	89.63(1)
Координаты атомов (x, y, z) и тепловые факторы (B, Å ²)			
Pb(Bi)	0; 0; 0; 1.6(1)	0; 0; 0; 1.23(7)	
Ti(Sc)	0.85(4); 0; 0.568(3); 0.1	0.494(5); 0; 0.574(3); 0.1	
01	0.555(7); 0; 0.114(7); 0.3	0.604(6); 0; 0.074(1); 0.3	
02	0.342(5); 0.604(5); 0.606(6); 0.3	0.359(5); 0.590(5); 0.604(6); 0.3	

Примечание: Атомы висмута и свинца занимают одну и ту же кристаллографическую позицию статистически в соотношении 37:63. То же самое относится к атомам скандия и титана.

Рис. 3. Графическое представление результатов рентгеноструктурного анализа образцов 1 (вверху) и 2 (внизу). Экспериментальные данные – кружки; смоделированные спектры – сплошные линии; разность между зарегистрированным и смоделированным спектрами показана в нижней части рисунка; положения дифракционных пиков, отвечающих выбранным моделям, отмечены вертикальными черточками.

Диэлектрические измерения. На температурных зависимостях диэлектрических проницаемости $\varepsilon(T)$ и потерь tg $\delta(T)$ наблюдаются выраженные максимумы в области 650–690 К (рис. 4). Положение максимума на зависимости $\varepsilon(T) - T_{m\epsilon}$ при у = 0–0.002 практически не зависит от частоты измерительного поля, при у = 0.006–0.018 положение $T_{m\epsilon}$ смещается с ростом частоты от 0.1 до 100 кГц в сторону высоких температур на 7–12 К (рис. 5). Эти данные свидетельствуют о том, что указанные максимумы на зависимостях $\varepsilon(T)$ и tg $\delta(T)$ вызваны происходящим в образцах сегнетоэлектрическим фазовым переходом. При этом, с ростом в образцах содержания MnO₂ они приобретают свойства, характерные для сегнетоэлектриков-релаксоров [9]. На низкотемпературном склоне зависимостей $\varepsilon(T)$ и tg $\delta(T)$ поляризованного образца наблюдается дополнительный пик в

виде «ступеньки», который отсутствует на деполяризованном образце (рис. 4). Положение дополнительного максимума T₂ = 633 К не зависит от частоты измерительного поля. По-видимому, такое поведение связано с переходом при поляризации сегнетоэлектрического-релаксорного состояния в сегнетоэлектрическое состояние, которое при нагревании переходит обратно в сегнетоэлектрическое-релаксорное состояние.

Рис. 4. Температурные зависимости ε(T) и tgδ(T) керамических образцов системы (1-х)BiScO₃·xPbTiO₃, x = 0.63 с добавлением 0.05% масс. (0.17% мол.) MnO₂, измеренные на частотах (кГц): 0.1 − *1*, 1 − *2*, 10 − *3*, 100 − *4* и 200 − *5*;
а) поляризованный образец, б) деполяризованный образец после нагрева до 720 К.

Рис. 5. Зависимости положения максимума на зависимости ε (T) образцов BS·PT·xMnO₂ от содержания MnO₂ (положение максимума ε определялось на частотах 0.1 кГц – кривая 1 и 100 кГц – кривая 2).

Выводы

Рентгеноструктурный анализ керамических образцов состава (1–х)BiScO₃·xPbTiO₃·yMnO₂, x = 0.63, y = 0.0017 и 0.0118, показывает наличие в них двух перовскитоподобных фаз. Основной является фаза, которая характеризуется нецентросимметричной тетрагональной пространственной группой *P4mm*, дополнительной – фаза, которая характеризуется моноклинной пространственной группой *Cm*. Изменение содержания введенной добавки MnO₂ приводит к небольшим изменениям в количественном соотношении вышеупомянутых фаз, параметрах их элементарных ячеек, а также координат атомов и тепловых факторов атомов.

Диэлектрические измерения показывают, что при низком содержании вводимых в керамику добавок MnO_2 (y ≤ 0.002) образцы проявляют обычные сегнетоэлектрические свойства с точкой Кюри, лежащей при 685–690 К. С увеличением содержания добавок MnO_2 образцы приобретают свойства, характерные для сегнетоэлектриков-релаксоров, которые проявляются в смещении положения максимума диэлектрической проницаемости с ростом частоты измерительного поля в сторону высоких температур. Выявленные структурные характеристики вышеуказанных керамических образцов не дают ответа на причину появления релаксорных свойств.

Литература:

1. Eitel R.E., Randall C.A., Shrout Th.R., Park S.-E. Preparation and characterization of high tem-perature perovskite ferroelectrics in the solid-solution $(1-x)BiScO_{3-x}PbTiO_3$ // Jpn. J. Appl. Phys. 2002. V. 41. P. 2099–2104.

2. Eitel R.E., Zhang S.J., Shrout T.R., Randall C.A., Levin I. Phase diagram of the perovskite system (1–x)BiScO₃–xPbTiO₃ // J. Appl. Phys. 2004. V. 96. P. 2828–2831.

3. Zhang S.J., Eitel R.E., Randall C.A., Shrout T.R., Alberta E.F. Manganese-modified BiScO₃–PbTiO₃ piezoelectric ceramic for high temperature shear mode sensor // Appl. Phys. Lett. 2005. V. 86. 262904 (3 pages).

4. Chaigneau J., Kiat J.M., Malibert C., Bogicevic C. Morphotropic phase boundaries in $(BiScO_3)_{1-x}(PbTiO_3)_x (0.60 \le x \le 0.75)$ and their relation to chemical composition and polar order // Phys. Rev. 2007. V. B76. 094111 (7 pages).

5. Chen J., Cheng J., Dong S. Review on high temperature piezoelectric ceramics and actuators based on $BiScO_3$ -PbTiO₃ solid solutions // J. Adv. Dielectrics. 2014. V. 4. No 1. 1430002 (14 pages).

6. Haumont R., Dkhil B., Kiat J.M., Al-Barakaty A., Dammak H., Bellaiche L. Cation-competition-induced monoclinic phase in high piezoelectric $(PbSc_{\frac{1}{2}}Nb_{\frac{1}{2}}O_{3})_{1-x}$ - $(PbTiO_{3})_{x}$ compounds // Phys. Rev. B. 2003. V. 68. 014114 (p. 1–10).

7. Krumm S. WinFit. V. 1.2, 1996.

8. Rodriguez-Carvajal J. FullProf Suite Program (1.0) Version Feb. 2007.

9. Bokov A.A., Ye Z.-G. Recent progress in relaxor ferroelectrics with perovskite structure // J. Mater. Sci. 2006. V. 41. P. 31–52.