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Abstract

The Lotka-Volterra competition model has been extensively used in the study of tech-

nology interaction. It looks at the growth rate of a certain parameter of the interacting

technologies through coupled nonlinear differential equations. The interaction is then

modeled as a competition with a constant competition coefficient that adversely af-

fects the growth rate. Various studies, however, have suggested that the interaction is

not only pure competition and that other interactions are possible. These suggestions

have remained mostly conceptual and descriptive - lacking a definite mathematical

form of the interaction that can accommodate the suggested variations and the specif-

ic implication of those variations.

This thesis presents a specific form of the competition coefficient that depends on

the cost and benefit of the competition to a particular technology. The cost and benefit

functions are patterned after density-dependent (size) interactions in ecology. The re-

sulting competition coefficient is not a constant but varies as the density of the com-

peting technologies changes. Based on the variable coefficient, we extracted steady

states and derived conditions of stability to analyze the dynamics of the competition.

Results show that the model can provide a richer set of possibilities compared to the

constant coefficient. It accommodates different modes of interactions such as symbi-

osis and predator-prey aside from pure competition in the steady state coexistence be-

tween technologies. It allows for shifts from one mode to another during the evolution

of the technologies. Lastly, it provides modifications to strategies meant to achieve

"winner-take-all" scenario coveted in business.

Thesis Supervisor: James M. Utterback
Title: David J. McGrath jr (1959) Professor of Management and Innovation

and Professor of Engineering Systems
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Chapter 1

Introduction

"It is not the strongest of the species that survives, nor the most intelligent...

but the one most responsive to change."

- Attributed to Charles Darwin

1.1 Competition Between Technologies

The dynamics of interaction between or among technologies have been discussed ex-

tensively in the literature . The details of the dynamics can be overly complicated -

with numerous players, each able to pursue unique strategies at different time frames.

Different models have explained certain aspect of the dynamics of interaction. These

models range from linear ordinary differential equations to coupled nonlinear partial

differentials equations, discrete to continuous models and have yielded analytical and

computational results.

Many of these models treat the interaction as competition where two or more

technologies compete for the same general market and in the process inhibit each oth-

er's growth. Prominent among these models is the Lotka-Volterra competition model

which will be the subject of this thesis. It considers the growth rate of a particular va-

riable describing the evolution of the technology. This variable can be the number of

See for instance (Abernathy & Utterback, 1978), (Utterback & Suarez, 1993), (Christensen, Innovator's
Dilemma: When New Technologies Cause Great Firms to Fail, 1997), (Weil & Utterback, 2005)



units of the technology sold or the market size of the technology among other things.

The diffusion of the technology as denoted by the growth rate of this variable is dri-

ven by its intrinsic growth rate (or growth rate in the absence of competition) but li-

mited by its finite carrying capacity and by the extent of competition with other tech-

nologies. The interplay among these parameters is presented as coupled differential

equations. The solution to these Lotka-Volterra equations synthesizes the dynamics of

the interaction between or among the technologies.

The Lotka-Volterra competition model has been shown to be sufficiently general

to encompass different kinds of models. Linear, exponential, Pearl, Gompertz, substi-

tution models and oscillatory behaviors can all be matched by the competition model 2.

It is capable of depicting a wide range of dynamic behaviors such as the S-curve,

network effects and oscillatory behaviors. It has been used to model different technol-

ogies replacing or substituting another technology - lead-free cans replacing soldered

cans, tufted carpets replacing woolen carpets, ball point pens replacing fountain pens

and nylon tire cord replacing rayon tire cord3

For all its successes, the model has been criticized by ecologists for the constancy

of the competitive interaction as given by its constant coefficient4 . An effort towards

addressing this shortcoming is the introduction of the functional response in the inte-

raction depending on the density (size of the population) of the competitors5 . While

acceptable in ecology, the modification, however, fall short in explaining certain

technology interactions and business developments. The functional response can ad-

dress the extent of competition but does not change the nature of interaction (e.g. still

pure competition or predator-prey). This makes sense from the perspective of ecology

where the lions eat the zebras and never vice-versa. It is, however, limiting in under-

standing technology interactions where the roles in the competition may change in

time.

2 (Porter, Roper, Mason, Rossini, Banks, & Wiederholt, 1991)
3 (Farrell, 1993)
4 (Abrams, 1980)
5 (Holling, 1966)



Several researchers have presented examples where interaction between technolo-

gies is not necessarily purely competitive. Instances where one technology has a posi-

tive effect on the growth rate of another technology (symbiosis), or one technology

benefits at the expense of the other (predator-prey) have been cited6. The symbiotic

interaction between computer software and hardware is a classic example of the for-

mer. The substitution of the bias ply-tires by radial-ply tires illustrates the latter.

Within the context of the Lotka-Volterra equations, the interactions can be classi-

fied to different modes depending on how it affects the growth rates of the interacting

technologies. This classification is facilitated by changing the sign before the interac-

tion term (which is assumed to be always positive). Pure competition would have

negative signs for both (negative effect on both); predator-prey has a positive (preda-

tor - positive effect) - negative (prey - negative effect) combination; and symbiosis

has both positive signs (positive effect for both)7.

Not only are there different interactions possible aside from pure competition,

these interactions can change from one mode to another in time. These temporal shifts

can manifest in the technologies themselves, in the structure of the companies or in

the industries for which these technologies are a part of. Take for instance the devel-

opment of the hard disk drive for the personal computer market s . The incumbent

5.25-inch disk technology offered higher capacity while the 3.5-inch alternative was

smaller and more energy efficient. The former was used in the mainstream desktop

segment while the latter served the emerging market for portable computers. Thus, the

two technologies were initially growing together but each limited to serving consum-

ers in a different market segment. In time, however, the performance of the 3.5-inch

drives had expanded from the portable segment to capture the low-end of the desktop

segment.

Within the Lotka-Volterra context, such development can be modeled as symbiosis

and later predator-prey. The mechanism of switching from one mode to another, for

example from initially symbiotic relationship to eventually predator-prey, is, however,

6 See for instance (Pistorius & Utterback, A Lotka-Volterra Model for Multi-mode Technological
7 This classification scheme is borrowed from ecology (Odum, 1953)
8 (Christensen, Innovator's Dilemma: When New Technologies Cause Great Firms to Fail, 1997)



lacking. What is needed is a definite mathematical form of the interaction that can ac-

commodate the suggested transition.

Efforts have been made to consider variations in the Lotka-Volterra model. Varia-

tions of the parameters by considering sinusoidal dependency have been implemented

to approximate phenomenological substitution models 9. Effects of stochastic exten-

sions of the equations were also studied1 o. These variations, though important, are

confined to a particular mode. Examples beyond periodic variations or random fluctu-

ations have been made to suggest a more dynamic pattern of shifts in the relation be-

tween two technologies from one mode of interaction to another' 1

This thesis provides a mechanism that would allow for the shifting of the relation

between competing technologies. It presents a specific form of the competition coef-

ficient that depends on the cost and benefit of the competition to the technologies in-

volved. The cost and benefit functions are patterned after density-dependent (size)

interactions in ecology. The resulting competition coefficient is not a constant but va-

ries as the density of the competing technologies changes.

Based on the variable coefficient, we derived conditions of stability to analyze the

dynamics and the implications of the competition. We compare the results to the case

of constant coefficients. The results indicate that the model can provide a richer set of

possibilities and a more dynamic model of competition. It presents different modes of

coexistence and accommodates coexisting steady states with values larger than its car-

rying capacity. It allows for different forms of interactions such as symbiosis and pre-

dator-prey aside from pure competition during the evolution of the technologies. Last-

ly, it provides modifications to strategies meant to achieve "winner-take-all" scenario

coveted in business 12

9 (Bhargava, 1989)
10 (Solomon, Richmond, Biham, & Malcai, 2004)
" See for instance (Pistorius & Utterback, Multi-mode Interaction among Technologies, 1997), (Modis,
1997)
12 (Malhotra, Ku, & Murnighan, 2008)



1.2 Organization of the Thesis

Modeling the dynamics of a system of competing technologies involves three main

tasks: defining the mathematical functions that govern the appropriate variables of the

system; (2) collecting experimental data on these variables of the system; and (3) de-

ciding on the values for the adjustable parameters in the mathematical functions of the

model. The first two tasks are independent and would be sufficient for a separate the-

sis. They set the stage for the third task to provide specific predictions that can be ex-

tracted from the given mathematical formalism and the collected data set.

Given the time constraint within the SDM program, a conscious effort was made

to focus on the first task - defining the mathematical form of the model that would

best illustrate the competition between technologies. To go about this, we present the

results of the current competition model to highlight the need for a new model and

compare the results later. Chapter 2 presents the dynamics of the Lotka-Volterra com-

petition model and its steady state (long-term) implications. The Lotka-Volterra

framework, however, allows other interactions aside from pure competition. Chapter 3

discusses these interactions and serves as a reference of possible behavior that can be

covered in our new competition model.

The gist of the thesis is in Chapter 4 where we define the specific form of the

competition coefficient that can accommodate different types of interactions. The re-

mainder of the chapter attempts to deduce the dynamics of the resulting model. It

compares and contrast the results derived in Chapter 2 and Chapter 3. Chapter 5 con-

cludes the thesis with a summary of the results and implications of the model. An ef-

fort was exerted to cover in general terms the possible next steps that need to be taken

for the remaining tasks.
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Chapter 2

Lotka-Volterra Competition Model

"Winning isn't everything; it's the only thing."

- Henry Russell ("Red") Sanders

In this chapter, we are going to present the Lotka-Volterra competition model and re-

view the implications of the model. We will highlight the attributes of the model that

we would modify later, and cast the results of the model in a form that would facili-

tate comparison in succeeding chapters.

2.1 Competition Model

The Lotka-Volterra competition model looks at two or more technologies competing

for the same general market and inhibiting each other's growth' 3. It considers the

growth rate of a particular variable N1 describing the evolution of the technology T1.

This variable can be the number of units of the technology sold or the market size of

the technology. In the absence of competition, it is assumed that N1 grows exponen-

tially with intrinsic growth rate rl. The increase, however, is limited by its carrying

13 (Murray, 1989)



capacity denoted by K1 resulting in a logistic growth' 4. The competition with another

technology T2 decreases further the growth by an amount proportional to the interac-

tion of the defining variable of T1 with T2, i.e. oc N1N2. The proportionality constant is

denoted as the competition coefficient c12 on N1 due to N2. As such c12 is the rate at

which N1 loses in the competition with N2.

Similarly, T2would be described by the growth rate of N2 with intrinsic growth

rate of r2, carrying capacity K2 and inhibited by competition with T1 at a rate of c21.

With these attributes and parameters, the competition model then takes the form:

dN 1 N C12dN1  = r Nj N) -- NN2
dt K, K1

(2.1)
dN2 = N2 C21

dt K2 K2

As originally presented, the parameters ri, Ki, cij (i,j = 1,2) are positive constants. In

Chapter 4 we will make the case that the competition coefficient is not a constant, and

specifically present a form that can shift from negative to positive values and vice-

versa.

N.
Note that it is possible to rescale the parameters in (2.1) (e.g. ni = , i = rit) to

reduce the number of parameters and simplify the equations 15. However, we purposely

retained the explicit form of the equations since the parameters involved have real

physical significance as can be seen in the succeeding discussion. Note also that the

competition coefficient is scaled by the carrying capacity (i.e. K) so that the results

would be dimensionally consistent with the growth rate.

14 (Verhulst, 1838)
15 See for instance (Morris & Pratt, 2003)



2.2 Critical Dynamics

The Lotka-Volterra competition model is a nonlinear differential equation with no

simple closed-form analytic solution. However, one can completely understand the

dynamics of the model by investigating its evolution in the phase plane. To go about

this, we introduce some concepts that would be needed in our analysis. These con-

cepts would be used again when we present other models of technology interactions.

The details of these concepts are given in Appendix A.

These concepts include the equilibrium point, steady state, eigenvalues and sta-

bility. The points where there is no change in the growth rates of the pertinent varia-

ble N correspond to a steady state solution. These equilibrium points can be obtained

by equating the Lotka-Volterra equations to zero (i.e. Nl = 0, N2 = 0) to yield the

equilibrium. One can think of the equilibrium points as the pay-offs and the steady

state solution as the long-term end state of the competition. Stability (or asymptotic

stability) 16 is a characteristic of a system where small perturbations around the equili-

brium points have only small effects and vanishes for long periods of time. The ei-

genvalue (denoted by the symbol 2) provides a means of classifying the stability of

our system given the equilibrium points. For our purpose, we look for pay-offs of sta-

ble, lasting end states as opposed to transitory states. A necessary and sufficient con-

dition for stability is that the real part of the eigenvalue Re(A) < 0.

For the competition model, the equilibrium points, eigenvalues and conditions for

stability are given in Table 2-1:

16 We differentiate stability (asymptotic stability) with neutral stability. In the former, the perturbations
vanish and the system is attracted back to the equilibrium point after long time period. In the latter, the per-
turbations permanently disturbed the system, remaining close to the original equilibrium point but not at-
tracted to it.



Table 2-1. Equilibrium points and stability conditions: Competition model

Equilibrium Points Eigenvalues Stable if
(N*, N2)

(0,0) A 1 ,2 = 1, r 2  Never

(K, 0) c2 1 K1  C21 > 2 K2

;12 =2 KrK2

/1 = -r2

(0, K 2) c 1 2 K 2  C1 2 > LK
12 =r 1  K2

-B + VB 2 - 4C

r2 (Kr 1-cz12K2) 12  2

rTir 2 - C12C21 B= r  2 N

ri(K2r 2 - c2 1 K1) K K2 2 C12 C2 1 < r2

rl 2 - C12C21 C= 1 2 - C1 2 C21 NN

2.2.1 Case 1: Technologies are Similarly Situated

To understand the dynamics, let us consider the case where the competing technolo-

gies are similarly situated. This would correspond to two competing technologies with

similar growth attributes and capacity potential. This means that ri = r2 = r; K1 =

K2 = K and the competition coefficient is symmetric 17 i.e. c12 = c21 = c. We want to

examine now their dynamics as their competitive interaction increases.

The equilibrium points and stability conditions are given by Table 2-2:

17 In general, the competition coefficient is asymmetric, i.e. cyij cji. For example, with their difficulty in
adapting threatening technology, established technologies do not threaten emerging technologies as much
as other emerging technologies would.



Table 2-2. Competition equilibria and stability: r, = r 2 = r; K1 = K2 = K;c12 = C21 = C

Equilibrium Points Stable if
(NI , N 2*)

(0,0) Never

(K, 0) c > r

(0, K) c 2 r

C Kr Kr c<r
r + c'r + c)

For a given intrinsic growth rate r and competition coefficient c, the stability of the

equilibrium points would require the competition coefficient c to be less than or

greater than the growth rate r. It can be that for small values of c, c < r which would

(Kr Kr \
make the equilibrium point , r+c stable. This means that both technologies coex-

\r+c r+c'

Kr
ist with equal steady state values --. As the competition heats up, c increases, even-

tually becoming greater than the growth rate r. This makes the equilibrium points

(K, 0) and (O,K) stable. These equilibrium points, however, meant the extinction of the

other technology. This behavior is shown in the graph below:

I V orN2

N, and2

Figure 2-1. Equilibrium values for N as a function of the competition coefficient c

As Figure 2-1 shows, there is a sudden discontinuous transition at c = r. For low

competition coefficient, the competing technologies share the market equally. Howev-



er, for high competition, the market transitions into a "winner-take-all market" 18 con-

dition in which one competitor grabs all market share, whereas the other gets nothing.

Though we have presented only two competing technologies here, the condition has

been shown to persist also for the model with more competitors 19.

Since there are two possible stable equilibria (i.e. (K,O) or (0,K)) in the "winner-

take-all market" above, the initial conditions determine which technology emerges the

victor and which ends up the vanquished. To determine which conditions result in

which scenario, a phase portrait can be constructed showing the trajectories for the

different initial conditions 2 . To assist in the sketching of the trajectories, vector fields

are drawn to indicate whether the flow is along the N1 axis or N2 axis. The trajectories

for the different initial conditions would be tangent to the vector fields. The set of ini-

tial conditions where the trajectory ends in common equilibrium point is called its b a-

sin of attraction. Figure 2-2 below plots the trajectories and the basin of attraction for

the conditions to a winner-take-all market with N1 as the winner:

Fio r . asi f at A# or (N , 0
I: 4' '4'" 0 '0 O e PP:.V

# 

(Frank & Cook, 1995)

(Maurer & Huberman, 2003)ounda

20 See Appendix A for details on how to create the phase pfor trait
.0,

Figure 2-2. Basin of attraction for (N1, 0)



The figure shows two distinct regions (demarcated by the dashed-line) for which

initial conditions lead to a different stable equilibrium (N1 or N2). In this situation, the

demarcation (called basin boundary) is a 450 line embodying the similarity of the pa-

rameters of the competing technologies. In general, however, this demarcation is a

curve owing to the differences in the parameters 21

For this case, the better the initial condition is, the better it would fare in the com-

petition. This is akin to the maxim that says "whoever has the deeper pocket wins".

Examples of the time evolution of N1(t) and N2(t) (red for N1 and green for N2) for

different initial conditions are illustrated in Figure 2-3:

2.0 o 20

1.5 ........

1.0 1. . .

(a) N, wins (N,o = 0.11, N2 =0.1) (b) N2 wins (No = 0.1, N2o=0.11)

Figure 2-3. Evolution of the competing technologies for different initial conditions
No. and N2z. (Parameter values: rl=r2=O.1, KI=K2=2, C12=c21=0.15)

An implication of the model is that the coexistence steady state is independent of

the initial conditions. The detailed evolution may differ in time, but the end state

would only depend on the carrying capacity and intrinsic growth rate. The initial con-

ditions would only matter for winner-take-all scenarios but is not a factor if the tech-

nologies are going to coexist. In Chapter 4 we are going to present a model where

there are different coexistence steady states and where the system would fall depends

on the initial conditions.

21 (Strogatz, 1994)



Another implication of the model that is worth capturing is that the steady state

values would never be higher than their respective carrying capacity. Figure 2-4 (a)

illustrates the time evolution of N1 (t) and N2(t) along with the carrying capacity

(dashed line). Note that the values for any time are less than their respective carrying

capacity. The coexistence steady state value is also less than its carrying capacity.

This can also be observed by looking at the nullclines for the Lotka-Volterra equa-

tions. The nullclines are the curves where either Nl = 0 or N2 = 0 and indicates

whether the flow is along the N1 axis or N2 axis. From Figure 2-4 (b), the nullclines

are lines slanted with negative slopes. Their intersection would provide the steady

state value for the coexistence of the two technologies. This intersection would be at

(Nj, N*) which would have values less than their respective carrying capacity (i.e.

Nj* < K1,N2* < K2). Later, we will encounter interactions that would result in higher

steady state value than the initial carrying capacity of all or one of the technologies.

3i 0 10 £2 = 2 00 1

L1
13

(a) Time evolution (b) Nullclines

Figure 2-4. Competition coexistence steady state value. (a) Time evolution (b) Phase
plane nullclines. (Parameter values: rl=rz=0.1, KI=K2=2, C12=c21 =0.05)



2.2.2 Case 2: Mature and New Technologies

Let us now consider a more general case where the incumbent technology T1 is al-

ready a mature technology with larger carrying capacity K1 = K but slower growth

rate ri = fr . fr is the fraction of the growth rate r2 = r of the incoming new tech-

nology T2. T2 has only a fraction fk of T1's carrying capacity, i.e. K2 = fkK. Let us

again assume that the competitive interaction is symmetric. The results of Table 2-1

reduces to:

Table 2-3. Stability condition for mature technology - new technology competition

Equilibrium Points Stable if
(NI*, N2*)

(0,0) Never

(K, 0) c > rfk

(0, fkK) c > fr

fk

rK(fr - cfk)
fr2 - C2

frrK(fk - c) C < T

frr
2 - C2

The strategies one can implement would be based on fr and fk. The combinations

of these parameters would result in different steady state outcomes. The options and

the corresponding pay-off(s) in terms of steady state values are illustrated in Figure

2-5. The N{ and N' shown in the diagram correspond to the non-trivial equilibrium

S rK(frr-cfk) frrK 2(fk-c)

fractional intrinsic growth rate fr while decreasing the fractional carrying capacity fk

(or increasing its carrying capacity K) would increase its chances of coveting the

"winner-take-all" scenario. Conversely, the new entrant technology T2 would benefit

from a smaller fr (or increased growth rate) and a large fk (or increased carrying ca-

pacity K2 ).



Technology T Technology T2

K 0

Figure 2-5. Strategy options and resulting steady state values for technologies T1 and
T2 based on fractional growth ratef, and carrying capacityfk

As can be seen in the diagrams, there is at least one stable equilibrium, but there

are never more than two. If there are two stable equilibria, the initial conditions de-

termine into which of the two the system will fall.

An observation however, is that competitive dynamics need not drive competitors

out of the market. Examples are available that show established technologies not nec-

essarily completely destroyed but surviving - albeit in niche markets or a market dis-

tinct from that threatened. The competition between the mainframes and the personal

computer did not result in the extinction of the mainframes 22. It has been driven to-

wards a niche market coexisting with the much larger personal computer market. This

attribute is something that a new model has to capture.

22 (Gilbert, 2003)
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Chapter 3

Lotka-Volterra Interaction
Framework

"If people do not believe that mathematics is simple, it is only because

they do not realize how complicated life is."

- John von Neumann

There are different models on the interaction of technologies 23 and the Lotka-Volterra

competition model is just but one of them. Implicit however, in the form of the Lotka-

Volterra model is a simple framework to define consistently other modes of interac-

tions. This chapter covers these modes of interactions and their representative dynam-

ics. The results will serve as a reference when we consider the variable competition

coefficient in the succeeding chapter.

23 See for instance (Agarwal, Sarkar, & Echambadi, 2002), (Lenox, Rockart, & Lewin, 2007) and the refer-
ences cited in there.



3.1 Classification of Interactions

A classification of the interactions possible can be made based on the effect of the in-

teraction on the growth rates of the interacting technologies. Implicit in this frame-

work is the positive nature of the coefficients c12 and c21 in the Lotka-Volterra

coupled differential equations. This assumption will be relaxed later when we develop

the variable competition coefficient in the succeeding chapter. Within this framework,

the effect can be readily discerned by noting the combination of the signs preceding

the interaction coefficients c12 and c21 (which were previously confined to competition

interaction), i.e.:

N = r1N1 1 -I C2 N1N2K, K,
(3.1)

( N2) C21
N2 = 2 N2  I - NN 2K 2  K 2

For example, pure competition mode would just be one of the interactions possible

wherein each technology has negative effect on the other's growth rate. This will be

shown in (3.1) as - c12 and - C21 respectively with C12, C21 > 0. A summary of the

possible modes of interactions is illustrated in Table 3-1:

Table 3-1. Mode of interaction based on the combination of the signs preceding the
interaction coefficient

Effect of Ni on Nj's Growth Rate

+cj +

Effect of Nj on N,'s + Symbiosis Predator(Ni) - Prey(Nj)
Growth Rate - Predator(N) - Prey(Ni) Pure Competition

Different dynamics can be obtained from the different modes of interactions24 . We

will review these dynamics to provide a reference for the results we are going to ob-

tain later.

24 See for instance (May, 1973)



3.2 Predator-Prey

3.2.1 Original Predator-Prey

One of the earliest ecological models used in the study of technological evolution

were inspired by the works of Volterra2 5. Volterra proposed differential equations for

the growth of predators and prey. He assumed that the absence of any prey for susten-

ance results in an exponential death rate of the predator. The presence of preys contri-

butes to the predator's growth rate by an amount proportional to the available prey as

well as to the size of the predator population. Denoting as NJ the population of the

predators and N2 that of the prey, this leads to the predator equation:

N1 = - rPN1 + C1 2 N1N2 , rl, C1 2 > 0 (3.2)

where rl is the death rate and c12 is a measure on the effect of the presence of the prey

N 2 to the predator NI.

For the prey, Volterra considered an unbounded growth in a Malthusian 26 way go-

verned by its intrinsic growth rate. The presence of predators reduces the growth rate

of the prey by an amount proportional to the predator's and prey's population. This

leads to the prey equation:

N2 = r2N2 - C2 1N1N2, r 2, C21 > 0 (3.3)

where r2 is a constant corresponding to the intrinsic growth rate and c21 is measure of

the effect of the predator N1 on the prey N2. The equations were also studied by

Lotka27 in the context of chemical kinetics and hence are called Lotka-Volterra model

for predator-prey interactions.

25 (Volterra, 1931)
26 (Malthus, 1798)
27 (Lotka, 1920)



3.2.2 Modified Predator-Prey

The original predator-prey equations as given by (3.2) and (3.3) were a model for

predator sharks and prey fishes. This analogy has serious limitations as a long-term

model for technological interactions 28. For one, the predator is dependent on the exis-

tence of the prey. For technology interactions, this is more of an exception than the

rule29. What is more prevalent is that technologies exist independent of other compet-

ing technologies though their growth may benefit or be inhibited by the interaction

with other technologies.

Another limitation is the neutral stability of the results 30. The results imply an os-

cillatory interaction where perturbations to the interaction would just move the system

to another orbit. This orbit can have larger or smaller amplitude than the original one

but in phase with it. If we are going to consider the growth of a technology in terms of

the number of units, this would be limited by the number of its eventual users. Data

on interaction between technologies have failed to provide an example of long-term

oscillations between technologies. It does not have the regularity of the oscillations or

the permanence of the interaction.

These limitations are addressed by considering positive intrinsic growth rates but

limited by their respective carrying capacities Kland K2. The resulting equations then

become:

( "N1  C1 2
N1 = r1N1  + -NN 2

(3.4)
( N2 C2 1  N2

N2 = r 2N 2  -1 2 (
S K2 I K2

From here on, predator-prey interaction would mean the modified predator-prey inte-

raction as given by (3.4). Evident from the form of the coupled differential equations

is that the predator technology T1 benefits from the interaction by an amount

28 (Samuelson, 1971)
29 One can cite the case for infrastructure vs. services base competition (Hayashi, 2005). In this case, ser-
vice providers use the infrastructure provided by the infrastructure providers while competing with them on
the delivery of services.
30 (Murray, 1989)



C-2NIN 2 . The growth of prey technology T2 on the other hand is inhibited by an
K1

amount - NN 2 .

3.2.3 Critical Dynamics

Given the coupled differential equations in (3.4), we extract the general dynamics for

predator-prey interactions. The equilibrium points and stability conditions are tabu-

lated in Table 3-2:

Table 3-2. Equilibrium points and stability conditions: Predator-prey interaction

Equilibrium Points Eigenvalues Stable if
(NI*, N2 *)

(0,0) 11,2 = r, r2  Never

(Kj, O) c21K1 c21 > TK2

12 rz KK2

A1 = -r2

(0, K2) C12K2  Never

K1

-B + /B 2 - 4C

r2 (r1K+cl12K2) 1,2 2

Tir 2 + C12 C2 1  B = rr N + r 2  2 K2

rl(r2K2 - c21K) K K22C2 K
Tir2 + C12 C21 TC = 2 +C12C21 NN

K K2

From Table 3-2 there are only two stable steady states: the extinction of prey tech-

nology T2 or the coexistence of both technologies. Comparison of the predation coef-

ficient c21 to the combination of the parameters r2, K2 and K1 determines which

steady state the system would fall into. This result is independent of the initial condi-

tions of the technologies.



Examples of the dynamics are shown in Figure 3-1. The first case (a) depicts the

time evolution of the coexistence of both technologies provided that the predation

coefficient c21 on T2 is less than . The second case (b) illustrates the instance
K1

where the predator technology extinguishes the prey technology.

2.0 2.0

0. 0.5

0.0 001 0 1 0 00............. go.....................

$ Mo 0 50 100 ISO 200

(a) (b)

Figure 3-1. Predator-prey sample dynamics: (a) Technologies coexisting; (b) Only
N1 Survives. Parameter values: r1=rz=0.1, KI=K2=2, C12=c21=c

The coexistence steady state for the predator-prey interaction provides a behavior

different from the competition model. Compared to the competition model, the

nullclines have opposite orientation of the slopes (positive for the red N1 and negative

for the green N2). The intersection of these nullclines is the coexistence steady state

value. Since each nullcline needs to pass through its carrying capacity, the intersec-

tion results in a value higher than the carrying capacity for the predator technology

(i.e. Nj > K1) but less than for the prey technology (i.e. N2 < K2 ). This is illustrated

in Figure 3-2 where the dashed line correspond to the carrying capacity (in this case

K1 = K2 = 2) which is less than the steady state value of 2.4. This means that the ben-

efit to the predator technology in the interaction with the prey technology accrues re-

sulting in greater carrying capacity than if there were no interaction present.
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Figure 3-2. Predator-prey coexistence steady state value. (a) Time evolution (b)
Phase plane nullclines. (Parameter values: r1 =r2=0.1, K1=K2=2, C12=C21=0.05)

3.3 Symbiosis

Symbiosis results when both technologies benefit from the relation. This means that

the respective growth rates of the interacting technologies are enhanced by the rela-

tion. If one looks at the context of mature and emerging technologies, mature technol-

ogies are often optimized with regard to its key parameters after a new technology

emerges. This "sailing-ship" effect has been observed in different instances and result

in the growth of the mature technology 31 . The emerging technology on the other hand,

may benefit from the infrastructure that was built for the mature technology or from

the efforts that have been made to open the market.

The Lotka-Volterra equations for the symbiotic interaction are given by:

N1 =iNI(1- ) 1 + NN 2
(3.5)

(N 2  C2 1
N2 = r2N2  + N1 N2

( f K2  K2

31 See for instance (Pistorius & Utterback, Multi-mode Interaction among Technologies, 1997)



3.3.1 Critical Dynamics

The equilibrium points and stability conditions for the coupled differential equations

given in (3.5) are tabulated in Table 3-3:

Table 3-3. Equilibrium points and stability conditions: Symbiosis

Equilibrium Points Eigenvalues Stable if
(N*, N2*

(0,0) A1,2 = r, r 2  Never

(K, 0) 2 r2 + 2 1 K1  Never

K2

/1 = -r 2

(0, K2) c12K2 Never

K1

-B + VB2 - 4C

r2 (Krli+C1 2 K2) / 1,2 = 2

Ti rr2 - C12C21 1 r2B = -Nj + -N
rl(K2 r2 + C2 1K) K K2 2 C12 C2 1 < r1r2

rT l
2 - C12 C2 1  1r2 - C1 2 C2 1C = N KjK2 )N N2

In the case of symbiosis, there is only one stable equilibrium point. This is

achieved when the product of the symbiotic coefficients are less than the product of

the intrinsic growth rates. When this condition is not met, the technologies grow

without bounds. Examples of symbiotic dynamics are shown in Figure 3-3:
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Figure 3-3. Symbiosis sample dynamics: (a) Technologies coexisting (
cz1 2c2 < rzr2 ); (b) Unbounded growth. Parameter values: r=rzO=0.1, K=K2=2,

C12=C21=c

Whereas only one technology benefits in the predator-prey interaction, symbiosis

has both technologies enhanced by their interaction. This is represented by nullclines

of positive slopes and an intersection at a point larger than their carrying capacity.

This results in non-trivial coexistence values greater than their respective carrying

capacity when there is no interaction (i.e. Nj > K1, N2 > K2). This is illustrated in

Figure 3-4:
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. . . s . .. t . . . . i . .

(b ulcie

Figure 3-4. Symbiosis coexistence steady state value. (a) Time evolution (b) Phase
plane nulclines. (Parameter values: rl=r2=0.1, KI=K2=2, c12=c2]=0.05)



3.4 Multi-mode Interaction

A multi-mode model has been proposed where the interaction changes from one mode

to another 32. This can facilitate description of dynamics where say initially the inte-

raction between technologies was initially symbiosis and later turned to pure competi-

tion. However, as mentioned early on, there was no mechanism presented to model

the transition from one mode to another and the proposal remained descriptive.

This thesis extends the competition model to capture different modes in the com-

petition between technologies. Instead of constraining the competition coefficient to a

constant, the coefficient can take on positive or negative values depending on some

conditions. The different interaction modes identified in the Lotka-Volterra classifica-

tion scheme are incorporated based on the combination of the sign of the competition

coefficients c12 and C21 in the competition model, i.e.:

S= rN 1  C1 2  ) N(1 C12 N2

(3.6)

2 = 1 N2 C21(N) NN2

where 12 (N2) and C21 (N1) can be positive or negative. The competition coefficient

cij (Nj) captures the impact of the competition with N on Ni. By comparing the sign

of the competition coefficient, the Lotka-Volterra interaction classification can be

modified in the context of competition as tabulated in Table 3-4:

Table 3-4. Lotka-Volterra classification framework based on the sign of the compe-
tition coefficient

Sign of C21(N 1)
+

+ Pure Competition Predator(N2) - Prey(N)
Sign of C12(N 2) - Predator(N1)- Prey(N2) Symbiosis

32 (Pistorius & Utterback, The Death Knell of Mature Technologies, 1995), (Pistorius & Utterback, A
Lotka-Volterra Model for Multi-mode Technological Interaction: Modeling Competition, Symbiosis, and
Predator-Prey Modes, 1996), (Pistorius & Utterback, Multi-mode Interaction among Technologies, 1997)



In the following chapter, we will provide a mechanism that would enable the

switching from one mode to another. Specifically, it presents a form of the competi-

tion coefficient that can switch from positive to negative values and vice versa de-

pending on the size of the variable N. We believe this is the first instance to imple-

ment the Lotka-Volterra multi-mode framework within the context of technology inte-

raction.
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Chapter 4

Variable Competition Coefficient

"The only constant is change."

Heraclitus

Whereas the previous chapter showed dynamics exclusive to a particular mode of in-

teraction, this chapter presents a Lotka-Volterra competition model with variable

competition coefficient that integrates the different dynamics. It uses the concept of

cost and benefit to model the variation of the competition coefficient. It then utilized

the results of the previous chapter to dissect the different modes of interaction possi-

ble in the evolution of the competition.

4.1 Variation in the competition

The assumption of a constant coefficient clearly simplifies the dynamics of competi-

tion between technologies. We posit that in reality, the competition between technolo-

gies changes from one mode to another depending on several drivers. These drivers

may include the elaborate strategy to enter a market segment, the constraints within a

technology, or the influence of regulation to enforce a particular interaction.

Broadly, what we are after is a competition that can exhibit variations in the inte-

raction. For simplicity, we can consider the competition between an incumbent tech-



nology and an emerging new technology. We contend that when an emerging technol-

ogy has a small size 33, the interaction with an incumbent technology is generally

symbiotic. However, as the emerging technology grows the interaction eventually

shifts to a more intense competition. A possible sketch of the behavior of the competi-

tion coefficient is illustrated in Figure 4-1:

COOPERA ~-\E

Figure 4-1. Varying competition coefficient (solid line) and constant coefficient
(dashed line)

It is no coincidence that the profile we have sketched is similar to a company life

cycle. The characteristic growth patterns of companies correspond to patterns of cash

generation and usage. However, instead of using time as the independent variable, we

take the size of the technology as the proxy. This has the added benefit of dynamically

moving "forward" and 'backward" whereas time can only move forward. We are

going to exhaust the analogy to these patterns when we weave the mathematical form

of the competition coefficient from the benefits the competition provides and the costs

it entails.

33 We liberally use "size" to mean any of the pertinent variables describing the evolution of the technology,
e.g. "market size", "number of units sold", etc.



4.1.1 Cooperative Competition

Figure 4-1 illustrates a case where initially the competition is cooperative but as the

size Nj of technology Tj increases, the competition switches to destructive competi-

tion. When the competition coefficient is negative, it shows up as a positive interac-

tion term in the Lotka-Volterra equation. This provides a "cooperative" effect where

the relation enhances the growth rate of the particular technology. Cooperative com-

petition may manifest when technologies work together for part of technology devel-

opment or access to marketplace. The concept has become popular and the new term

"co-opetion" has been coined to describe it34

The degree to which the market was expanded by an innovative technology is a

factor that affects the variation of the competition. It has been shown that disruptive

technologies that expand markets will almost always come from outside the indus-

try3 5. In industries where the market is not yet well established, symbiosis is often the

initial dominant interaction between technologies. When the market becomes well es-

tablished, symbiosis decreases and the companies aligned to a particular technology

become more competitive36

It is not uncommon for one proponent of a technology to be initially "cooperative"

to another company whose technology may be a competitor if in doing so provides

more benefit to it. An example that comes to mind is the relationship of Yahoo! and

Google with regards to search technologies. Yahoo was an early investor of Google

and used Google's search engine before it bought Inktomi and competed head-on with

Google3 7. Many traditional pharmaceutical companies collaborate with new entrants

to adapt the technology and build their competencies. The license of Humulin, a hu-

man insulin based on recombinant DNA, by Genentech to Eli Lily is an example of

this38

34 (Brandenburger & Nalebuff, 1996)
35 (Utterback, Mastering the Dynamics of Innovation, 1994)
36 (Tisdell, 2004)
37 (Iyer, Lee, & Venkatraman, 2006). An aside, though they have been fierce competitors since then, there
are rounds of talks for possible partnership in search advertising.
38 (Rothaermel, 2000)



4.1.2 Destructive Competition

On the other hand, when the competition coefficient is positive, the impact is destruc-

tive - it inhibits the growth of the technology. Within the Lotka-Volterra classification

scheme, the technology may be the prey in predator-prey interaction or one of the

competitors in the pure competition mode. Either scenario inhibits the growth of the

technology.

It was mentioned earlier the possibility of a lower performing (in the traditional

metric) technology to attack from below before competing head-on with the estab-

lished technology in the mainstream market 39. Such approach is not limited to an "at-

tack from below" (lower performance, lower cost, higher ancillary benefits) but other

combinations have resulted in one technology eroding the share of the other technolo-

gy40. The substitution of the vinyl album by the compact disc technology (higher per-

formance, lower cost, higher ancillary benefits), film camera by digital cameras (low-

er performance, higher cost, higher ancillary benefits) and the slide rule by the elec-

tronic calculator (higher performance, higher cost, lower ancillary benefits) are just

but a few of the examples. Taken together, these examples provide a picture of an in-

cumbent technology providing a new entrant with a market to grow and later preyed

by it in the mainstream market.

Destructive competition does not necessarily end in the complete destruction of

the technology. As long as the intrinsic growth rate is higher than its competition rate,

the technology will survive. What the previous competition model predicts, however,

is that the coexistence of both technologies would always result in a steady state value

less than their respective initial carrying capacities. We have shown earlier that in a

predator-prey interaction, there would be an "increase" in the carrying capacity of the

predator technology accrued from the interaction with the prey technology. The varia-

ble competition coefficient reflects this behavior.

39 (Christensen, Innovator's Dilemma: When New Technologies Cause Great Firms to Fail, 1997)
40 (Utterback & Acee, Disruptive Technologies: An Expanded View, 2005)



4.2 Form of the Competition Coefficient

An earlier section has alluded to the company life cycle as a pattern for the competi-

tion coefficient. A specific form of the competition coefficient can be obtained base

on the cost it entails to compete and the benefits or rewards the competition would

bring about. There might be different factors to consider for the cost and benefit but

for our purpose we consider the case where the cost and benefit varies depending on

the size N of the competing technologies. As in the earlier models, this size attribute

can be the number of units sold or the extent of its market share. The analysis follows

similar treatment in ecology where shifts from beneficial to detrimental roles in the

association between species have been observed based on their population density41

4.2.1 Benefit Function

For purposes of illustration, let us consider an emerging market. In the early stage of

an emerging market, the perceived opportunity is large. No technology is dominant

and there is substantial uncertainty in the market as well as in the technology. During

this fluid phase, the rate of experimentation and innovation grows 42. For the compet-

ing technologies there is not that much benefit for an intense competition at this early

stage. As the uncertainty on the technology and market potential are resolved, the

stakes become higher and the benefits clearer. This benefit grows as its size increases

reaching a threshold value where all the addressable market of technology T have

been captured. A function that would have these attributes is:

a N 2

Benefit for T competing with T = + 2 (4.1)

The coefficients ai and yi are properties of T that modulate the impact of competition

with Tj. ai is the maximum extent of the benefit Tj can derive in competing with Ti

while yidictates the value of N where the rate of increase of the benefits are increas-

41 (Hernandez, Dynamics of Transitions between Population Interactions: A Nonlinear Interaction alpha-
Function Defined, 1998), (Hernandez & Barradas, Variation in the Outcome of Population Interactions:
Bifurcations and Catastrophes, 2003)
42 (Utterback, Mastering the Dynamics of Innovation, 1994)



ing the fastest (at i). The behavior of the benefit function and its associated parame-

ters are illustrated in Figure 4-2:
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Figure 4-2. Benefit function and associated parameters

Increasing the value of a i results in higher loss to Ti in the interaction with T7. This

redounds to a higher benefit for T. Increasing yi on the other hand delays the full im-

pact of the competition at larger value of N.

4.2.2 Cost Function

In conjunction with the benefits, the competing technologies bear the costs of compe-

tition for a share in the market. Substantial risks are borne by the companies to ex-

plore the technology, develop the market and compete with other players. Relative to

the initial size of the technology, the cost of competition is high at its nascent stage.

This cost reaches a maximum when the size of the technology is yi. The cost then de-

clines as the technology increases its traction with the market. Similar observation has

been made where the advantage of size relates to greater market power and efficient

scale43. These attributes can be modeled by the function:

43 (Agarwal, Sarkar, & Echambadi, 2002)



fli N
Cost for Tj competing with i =2

Yj + N'
(4.2)

Similar to the benefit function, the coefficients fl i and yjare properties of technology

Ti related to competition with technology Tj. fli is proportional to the maximum cost it

would entail to compete with T in the market. yi on the other hand specifies the size

Nj where that cost is maximum. The behavior of the cost function and its associated

parameters are illustrated in Figure 4-3:
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Figure 4-3. Cost function and associated parameters

The larger fli is, the higher the cost impact to Tj the competition would T entails. In-

creasing yi would lessen the impact and at the same time delay to higher value of N.

4.2.3 Variable Competition Coefficient

The competition coefficient will be defined as the difference of the benefit and the

cost function. The competition would be cooperative as long as the cost to "aggres-

sively" compete is much higher than the benefit it provides. The competition coeffi-

cient would then take the form:



ci = Benefit for Tj competing with Ti

- Cost for Tj competing with Ti

yThe behavior of the resulting competition coefficient is given in Figure 4-4:

The behavior of the resulting competition coefficient is given in Figure 4-4:

(4.3)
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Figure 4-4. Variable competition coefficient

As can be seen from Figure 4-4, the competition coefficient would be equal to the

constant c; = ai as N -+ oo or as N grows very large. For N less than -, the impact
a1

of the competition is cooperative. For T the cost of competing with T outweigh the

benefits and hence is cooperative to it. Beyond , however, the attitude of T shifts to

destructive knowing that more benefits can be obtained in the competition with Ti.

Using the form of the competition coefficient, the Lotka-Volterra competition eq-

uations then take the form:



NN = rN 1 -(N -fl 1 N2 N1N2
R, = (Y2 + N K1

2 ) (4.4)

NV2 2 2 1 N2= r 1a2N12 - fl2N, N, N2
N2 - 2 K2

With the model given by the above coupled nonlinear differential equations, what re-

mains to be done is to deduce the dynamics of the model.

4.3 Critical Dynamics

Similar to the previous chapter, we are going to look into the dynamics of the model

by analyzing the behavior of the system at its equilibrium points. The equilibrium

points and their stability are given in Table 4-1:



Table 4-1. Equilibrium points and stability conditions: Variable Competition

Equilibrium Points Eigenvalues Stable if
(N*, N2*)

(0,0) 21,2 = r, 2  Never

(K, 0) (-K)  a2  2 K2  y22  2

SK1 - 2 +

(0, K2 ) A2 = K2(-K2a +  1 )  >  K2  1  ) + 12 +
A2 =rl + K2+y2 K2

Solution to the -B + VB2 - 4C r r2
equations: 21,2 = 2 K K2

1-) B = -N( + - N)(a2N2  B 2=2KN N 2 + c12)((acC21)N + C21)-aN2 -N- C- N

y 2 +N KK2 > 0

= 0 (( 2 2 )NC12 +

r2  N2) c12)(AiC21)N + where
K2  1

(a2N1 2 fl2 12 
2dN1taj

y2
2 +NN K2  d2 N!

=0

The trivial equilibrium points (those involving an extinction of at least one technolo-

gy) for the competition model are also present for the variable coefficient. The other

equilibrium points can be extracted as solutions to the nullcline equations written in

the table. These equilibrium points will be our entry towards understanding the beha-

vior of the model. We are going to tackle each of these sets of equilibrium points and

discuss the unique dynamics that becomes available with a variable coefficient.



4.3.1 Modification in the Condition for "Winner-Take-All"
Scenario

The equilibrium points (K1, 0) and (0, K2) pertains to a winner-take-all scenario where

one competitor grabs all market shares and the other gets nothing. The constant coef-

ficient model had similar results as well. The stability condition, however, differs by

an amount related to the cost and benefit the competition entails. A summary of the

comparison is tabulated in Table 4-2:

Table 4-2. Comparison of Winner-Take-All Conditions

Constant Coefficient Variable Coefficient

cij = constant cj i - fi
S(y + N )K,

Equilibrium Points Stable If Equilibrium Points Stable If

(K, 0) C21 > K (K, 0) a2 2> Y2
K KK,2 K,

(0,K2) C12 > KK (0, K2) a , > K 1 + +
C K2  K2  K2 K2

The constant coefficient consistently underestimates the condition for winner-take-all

scenario by an amount:

rj1Y 2 P
A, = K + (4.5)K? Kt

For simplicity, let us consider the case where the technologies are similarly situated,

which means r, = r2 = r, K, = K2 = K, Pfl =f2 = f, Yl =Y2 = y. For f = 0 and

y = 0, we revert back to the constant coefficient results where a > r. For non-zero

values however, it becomes a > r + A where the difference A = -Y2 + -. This means
K2  K

that for one to emerge a winner and at the same time obliterate the other, the competi-

tion coefficient (in the sense of constant coefficient) has to be larger than the intrinsic

growth rate r by an amount given by A. As such, if the competition between technolo-

gies behaves where the relation varies as we have described, the winner-take-all strat-



egies presented in Chapter 2 would fall short. This situation is illustrated in Figure

4-5:
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Figure 4-5. Comparison of Winner-Take-All scenario: (a) Constant coefficient (b)
Variable coefficient (c) Variable coefficient - modified. Parameter values: r=r2=0.1,

K=K2=2

The changes made to the competition coefficient results in a different dynamics.

The time evolution (top row) and phase portrait (bottom row) in Figure 4-5 illustrate

this. A constant competition coefficient of c = 0.15 is sufficient (c > r) to vanquish a

competitor as depicted in (a). Such effort, however, is insufficient when one considers

the cost and benefit of the competition. As (b) shows, for the given parameters, the

condition will instead be sufficient for the technologies to coexist at the same state!

Additional competitive effort has to be exerted to surmount the competition. Increas-

ing a to 0.3 (and satisfying the condition > r + A ) delivers the final blow.



4.3.2 Increase in the Number of Possible Coexistence Steady
States

Table 4-3 shows that the constant coefficient has closed-form coexistence steady

states. Coexistence equilibrium points for the variable coefficient on the other hand

are given as solutions to nonlinear equations for the nullclines. The mathematics be-

comes more involved and makes it more difficult to discern the detailed dynamics. In

any case, valuable insights can be obtained on the general dynamics of coexistence.

Table 4-3. Comparison of Coexistence Steady States

Competition Variable Coefficient

cij = constant ci N - fli Nj
S(y? + N )K

Equilibrium Points Stable If Equilibrium Points Stable If

ri N
K1

2 _' -fl 1N2aj N22 7- T
r2 (K1 1 -C 1 2 K2) 12 + 2  1N 2

Tr1r2 - C12 C21 2 0 2

r (K2r2 - C21K1) < Tr1 2  2 - ((a2C12)N2

r1r2 - 122 N2 + c12)(( 1c 21)Nv + c21)

a2N12 _ fl2N 1  > 0
- N

y22 + N1
=0

As discussed previously, the coexistence equilibrium points are intersection points

of the nullclines. For the constant coefficient, the nullclines are lines and their inter-

section results in only one coexistence steady state. The variable coefficient, on the

other hand, has curves as nullclines and has at most nine (9) coexistence steady

states44. Some of the behaviors, though not exhaustive, are illustrated in Figure 4-6:

44 Simplifying the equations results in a nonic equation(9th order polynomial), e.g. for NI: Nacr2(rlr2 -
aja 2) + N(-Klrlr2

a 2 + K2r2a2(-2rlr2 + 3aa 2) - a2(-3ala2f2 + r2(a2fl1 + 2rt 2))) +
N7(2KK 2rlr 2

2 a 2 + K2r22(rlr2 - 3ala 2) + 2K 2r2a2 f1 + 2Krlr2a2f2 - 3K2r2alc 2fl2 - K2 r 2 (-2rTr2 +
3ala2z)2 - 3ala2fl2 + lr y12 + r 2 (2a 2 1 fl+ 2 + + r1a2y2)) + N16(-KK2rlr3 + K ra 1 -

K? r?1 1 - 2KiK2ri 2 + 3K22r22t1j 2 - 2K2 12f2 - KrirT2r 22 + 3K 2r2af23 + L123 - Kirr21? -

2K 2rr 2y22 - Kir2j2 22Y2 + K2r2a2(-2rri2 + 3ala2) - r2(f132 + a2 (a2 2 1 + 2r/ 2)Y2)) +
Nls(K2rlr23y22 + 4KK 2rlr2 2y? + 2K2r2 (rr 2 - 3 a 2)y2 + 4K2 r2 a2f + 2K 2r r2 22 +
2Kirlr2a 2 12Y22 - 3K 2 r2 ala2 2

2
- K 2 r 2 (-2rlr 2 + 3a l a 2)fl 22 + r2 (2a2 /3 1f2 + r12 + r

2
1y?)Y2) +



(a) Linear: 1 intersection (b) Curve: 1 intersection (c) Curve: 3 intersections

Figure 4-6. Sample nullclines and coexistence steady states for variable coefficient

The negative and complex intersection points are not considered in our solution as

they do not have physical significance. Only positive and real intersections are

counted as viable stationary states. As such, the number of coexistence steady states

may be less than the maximum nine solutions that the equation offers. This however,

provides more possibilities than the single coexistence state offered by the constant

coefficient.

The increase in the number of coexistence steady states leads to another behavior

not covered in the constant coefficient. Whereas the constant coefficient has a coexi s-

tence state independent of the initial conditions, the initial conditions in the variable

coefficient model determine to which coexistence state the system would fall into.

N,4(-3KIK2 rr23y + 3K3r23aly22 - 3K22r23 l22 - 4K1 K2 rlr2 2 Y22 + 6K2222 2y2 - 4K22 12 2 -

Kl rlr2 fl2 y + 3K 2 r2 a 1f22y2 - r2fl22 y2 - 3Krr r23 yy22 - 2K2 rr2 2 1Y2 ) + N r(2K2Lrr y +

2K 1 K2 r1 r2a 2 y2 + K22r22(rr 2 - 3a1 a 2 )Y24 + 2K2 r 2 lY4 + 2K2 rr fl224 + 3r 124) +

Nj2 (-3K 1 Krlr23y24 + 3K23r23aly2 - 3K2223 y24 - 2K 1 K2rlr2 224 + 3K2r22a 1, 2 y - 2K2 r2 2f24 -

3Kirr2 y1 ) + N (K rr2326 + rr12 y 26) - K1 K rr23 y + K r a 1y26 - K22 r y26 - Krr23 y2y = 0



4.3.3 Support for Different Coexistence Modes

The curve nullclines provide another result for the variable coefficient which is not

possible for the constant coefficient. A simple summary of possible modes of coexis-

tence can be made for the Lotka-Volterra interaction framework by considering the

relation of the coexistence equilibrium points to its carrying capacity. A quadrant can

be created from the intersection of the lines perpendicular to the carrying capacities as

shown in Figure 4-7:

N

Predator (N.) Symbiosis
- Prey (NI)

Pure competition Predator(N)
- Prey (Nz)

Figure 4-7. Lotka-Volterra interaction framework coexistence steady states for con-
stant coefficient

For pure competition, the steady state values would be less than the respective

carrying capacities and fall in the lower left quadrant; for symbiosis it would enhance

both technologies and hence would have a steady state value higher than its carrying

capacity and pushing it to the upper right quadrant; for predator-prey modes, only the

predator is enhance at the expense of the prey, and they would be placed at the upper

left (predator N2) or at lower right (predator N1) depending on who the predator or

prey is. Since the constant coefficient can only accommodate one coexistence equili-

brium point, the coexistence mode of the interaction is limited to only one quadrant.

The variable coefficient, on the other hand, has multiple coexistence equilibrium

points. All of the equilibrium points may fall on one of the possible modes or may be

distributed to any of the possible modes. An illustration is provided in Figure 4-8.



Figure 4-8 (a) has all the equilibrium points lying in the pure competition quadrant

while (b) has equilibrium points in the symbiosis and predator-prey quadrants. One

notes however, that the actual coexistence steady state the system would settle into

would depend on the initial conditions and the specific parameters. Illustrated in (a) is

the competition steady state and (b) predator(N1 ) - prey(N2) steady state (lower right

quadrant).
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predator (N) - prey(N2 ) quadrants

Figure 4-8. Sample of possible modes of coexistence for the variable coefficient

4.3.4 Multi-mode Competition Dynamics

The extent of the competition can be discerned by computing the evolution of the

competition coefficients. Consider for instance the time evolution of the dynamics

that was depicted in Figure 4-8. The actual time evolution of the competition in Fig-

ure 4-8 (a) is shown in Figure 4-9 (a). From the values of Njand N2 in the time evolu-

tion, one can compute the variation of the coefficients. This is shown in Figure 4-9(b).

Though the extent of the competition changes as depicted by the changing values of



the competition coefficients, the nature of the competition did not. In this example

they are locked into a pure competition mode. Since the resulting competition coeffi-

cients are less than their respective intrinsic growth rates, both technologies coexist.

2.0

(a) Time evolution

ON.

1n0 40 no s 5

(b) Evolution of the competition coefficients

Figure 4-9. Evolution of the competition coefficient. Parameter values: rl=r2=0.1,
KI=K2=2, al=a2z=1, fi=2=0.5, ';=7'=6 .9

For different conditions, however, a more dynamic competition ensues where dif-

ferent modes of interaction are accommodated in the evolution of the competition.

From the perspective of the competition model, these modes of interaction are dis-

cerned based on the sign of the competition coefficients as specified in Table 3-4. The

time evolution for the case in Figure 4-8(b) is depicted in Figure 4-10 (a):
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Using the recipe of Table 3-4, one can decompose the different modes of interaction

in the evolution of the competition. From Figure 4-10 (b), the competition started off

as symbiotic where both experienced rapid growth; then for some time, it shifted to

predator-prey where N1 preyed upon N2 and slowing its growth rate; pure competi-

tion then ensued where both growth rates were further slowed (N1 ) or reversed (N2);

finally they settled into a predator (N1)-prey (N2) mode. Since the predation coeffi-

cient is less than the intrinsic growth rate, the prey technology (N2) coexists with the

predator technology (N1).

The decomposition of the competition to more specific modes of interaction is

important in that it allows for a more focused response. Appropriate strategies specific

to the prevailing mode of interaction can be planned and implemented accordingly.

For example, advertising and image-building strategies would be different when one

is the predator or prey in a predator-prey mode45. Knowing which role one is in would

result in a more targeted and effective response than a blanket strategy.

45 (Modis, 1997)
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Chapter 5

Conclusion and Recommendations

"Essentially all models are wrong, but some are useful."

- George Box and Norman Draper

In this chapter, we summarize the main results derived in earlier sections. We then

conclude our discussion with a synthesis of the results and implications of the model.

Lastly, we provide a general outline of steps that can be taken to further develop the

model.

5.1 Summary of Results

At the onset, we set-out to construct a model that can accommodate shifting modes of

interaction in the evolution of a competition. Essential to the goal is defining the ma-

thematical form of the model that would best explain the stylized facts in the competi-

tion between technologies. To go about this, we present the results of the competition

model with constant coefficient and the other interaction modes accommodated in the

Lotka-Volterra framework. We then define a variable competition coefficient that can

integrate the different modes observed. The variable coefficient was based on the cost

and benefit the competition would entail on the competitors. We assumed specific ma-

thematical form of the cost and benefit function and then studied the dynamics of the

resulting model. A summary of the results is tabulated in Table 5-1:



Table 5-1. Summary of results of constant and variable competition coefficient

Competition Coefficient (cij)

( N C12N = r N, 1 i - -2 NI N2

2 = r2 N2(1 N2) - C21 2
K2 K2

Variable Coefficient
Constant Coefficient

Attributes ajN 2 _ fiN
ci = constant = ( + 2)

Ci ( - (y2 2+ N2

Number of possible end At most 12
states

Yes with modifications onWinner-take-all scenarios? Yes Yes with modifications on
the conditions

Number of coexistence
equilibrium points

Can have values less thanCoexistence steady state Less than the carrying ca-
value pacity or greater than the carrying

capacity
Can accommodate preda- No Yes
tor-prey interaction?
Can accommodate symbi- No Yes
otic interaction?
Can accommodate shifting No Yes
modes of interaction?

The variable competition coefficient was constructed to be able to reflect some of the

observed dynamics in the competition between technologies. Analysis of its dynamics

shows that it can cover aspects of competition not possible with constant coefficient

model. The model provides a richer set of possibilities with at most 12 possible steady

states compared to 4 for the constant coefficient. It can accommodate different modes

of interactions in the steady state coexistence between technologies. These modes

may be symbiosis or predator-prey aside from pure competition. Not only does it al-

low different modes of coexistence, it provides mechanism for shifts from one mode

to another during the evolution of the competition between technologies.



5.2 Conclusion and Recommendations

The mathematical functions and framework that we have defined to model the dynam-

ics of competition have so far been successful in terms of integrating results from the

previous model. Known results like winner-take-all scenarios and coexistence be-

tween competitors are accommodated in the model. Appropriate modifications in the

conditions are provided as well to cover the variations in the competition.

A unique contribution of the model, however, is that it allows for different coexis-

tence modes. Competition may end up as symbiotic or predatory aside from purely

competitive. Not only does it allow for different coexistence modes, but more impor-

tantly, it also accommodates shifts from one mode to another in the evolution of the

competition. It provides a mechanism where the competition can be broken up to dif-

ferent modes of interaction. This information is crucial in the management of technol-

ogy where appropriate strategies need to align with prevailing condition.

The model and its results open up the study of the dynamics of competition to

closer scrutiny. The analytical form of the model requires an exhaustive and systemat-

ic study to understand its implications. With nonic equations (9 th order polynomial) to

play with, there might be more interesting dynamical outcomes. The conditions for

stability for other practical cases need to be worked out to provide appropriate strate-

gies in the management of technology. Generalizations to multiple competitors would

add more relevance to the model.

But before the detailed analytical work can proceed in earnest, data on the perti-

nent variables of the competing technologies need to be collected. This is essential to

ascertain that the interaction effects between competing technologies are substantial.

Fitting the collected data to the model requires estimating the parameters of the model

that would agree with the data. Parameter estimation, as this task is known, is not a

trivial endeavor - especially for nonlinear coupled differential equations 46.

Once these tasks are accomplished, the model would be on firmer ground to pro-

vide valuable insights and predictions on the dynamic outcomes of competition.

46 (Walmag & Delhez, 2005)
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Appendix A

Nonlinear Phase Plane Analysis

We consider in here the phase plane analysis of our models47. We can cast the models

to the form:

d = N1  = N f, (N, N2 )dt
d2  (6.1)

2 = N2 = 2 f 2(N1, N 2 )dt

The nullclines are the curves where either fi (N1, N2) = 0 or f2(N 1, N2) = 0. They in-

dicate whether the flow is along the N-axis or N2-axis. In general these nullclines are

curves but for constant coefficients, these would be lines. Example of nullclines are

shown in Figure A-0-1:

47 We pattern the discussion after (Strogatz, 1994)



.0.

(a) Linear nulline (b) Curved nulicline

Figure A-0-1. Nulllines

The blue points shown in the figure above are the points where there are no change in

the growth rates of N1 and N2 and correspond to a steady state. These equilibrium

points are obtained by equating N1 = 0 and N2 = 0. The solutions would be the "trivi-

al" solutions involving the origin (N1 = 0, N2 = 0) and the intersection of the

nullclines with the axes (N1 = 0 and f 2 (N1,N 2), N2 = 0 and fi (N1 , N2)). The "non-

trivial" solutions would be the intersection of the nullclines which correspond to

the coexistence steady states.

These equilibrium points can be classified according to their stability. To clas-

sify them, we compute the Jacobian given below:

aN, aab
A= N c N2  d= (6.2)

\aN1  aN2 / (N ,N )

We then consider each equilibrium point and compute for its eigenvalues. The eigen-

values are obtained from the characteristic equation:

A i -i =b (6.3)c d-A

The solution is given by:



ri +/ 2 - 4A
21,2 2 

(6.4)

where - = Trace(A), A = detIA)

The general solution of (6.1) for the specific equilibrium point then becomes

N(t) = cleAltv 1 + c2eA2tv 2  (6.5)

Where v1,2 are the eigenvectors of A corresponding to A1 and A2 respectively. The

combination of z and A determine the specific value of A1 and 22. General characte-

ristic of the solution can be obtained based on the sign of the eigenvalue. We are in-

terested in steady state solutions where N(t) does not approach +00 as t - oo. A suf-

ficient condition would be to have Re(X) < 0. This would happen if T < 0 and A > 0.

Equilibrium points that would satisfy these conditions are called stable nodes. The

different combinations of r and A and their corresponding classification is given in

Figure A-0-2:

unstable nodes
T2-4A0

saddle points

non- isolated ,
fixed points

Figure A-0-2. Stability classification of equilibrium points

The solutions can be visualized along the N1 and N2 plane where (N1 (t), N2(t)) cor-

respond to a point moving along a curve in the plane. This curve is called the trajecto-

ry and the plane filled with the possible trajectories is called the phase portrait.

To assist in the sketching of the trajectories, vector fields are drawn to indicate

whether the flow is along the N1 axis or N2 axis. The trajectories for the different ini-



tial conditions would be tangent to the vector fields. These concepts are illustrated in

the Figure A-0-3 below:
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Figure A-O-3. Phase portrait

The set of initial conditions where the trajectory ends in common equilibrium point is

called its basin of attraction. The Figure A-0-4 below shows the basin of attraction for

the equilibrium point (2,0). Any initial states on this basin of attraction would end up

at (2,0). The line demarcating the basin of attraction is called the basin boundary.
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Figure A-0-4. Basin of attraction



Appendix B

Code Listing

Computer programs written in Mathematica 6 were created to facilitate simulation of

the model.

Kanipulate[

M0dul4

(eal, zgn2, statpts, sol, nstatptsmax, n2statptsax, lxdata, n at, nna x, , nn2max,
coefti, coetM2, plotO, plotl, plot2, grl, qr stat, s pl21st, pl31ist, colorni rAGColor[t, 0, 01,
colorn2. MSColorO, 1, 0, plpts. 5O, vecpIts a 25, padding {(30, 30, (20, 20))1,

(rratationary rodints*

s Sol [l -0 a In [t]] - bIn2t . [t] n2 0 [], t],

eqz ri.nit]t - i -[t)] 12 ;,t22

2 2nt[O]2 b2nt ntn2tO,n2 r22 2ot) -, {12 22 + nit, ] 12( me rical sluin to cipled noalie P

fn'rt] -:Ohl,

n2 [t- .. eqn2,

ni [0) a n10,

(nt, nS), (t, 0, tax)] ;



nlstatptsmax 1.2 Nauxnl t]J /. statpts]
n2statptswx. 1.2 Max[n2t tt/. statpts):

nlhamdata* 1,2axt able Quiet[ExtractvaIuat [ae a ol), il]lt, , 0, tax, )J

2nrdata. 1.2 Max Table Iet extractact(3vluat j Itl sol], I] , t, 0, tsa,
10 piptes

nlsax a MaxfnlO, nistatptsmm, nlMandata; aax a Maxl[n20, n2atatptsm a, n axdatal; nln2ax Ma ax[riaxdata, n2anxdata

Coefi - Evaluate a1A2[ t ] '
-

b 1 n
2

I
t

] 
/+ Sol]

coefl2. valuate i2nit] -sb2nl[tI

ploto. PLotflcoerfl, coef2), (t, 0, taxi),

PlotRange- ((-0.05t an, tax)l, Automatic{a % n- ~ ,t Aea O igian- (0, 0),

PlotStyle* (colornl, colorn2), AxesLabelso (time*, Style["Oc+, colornl] Style[ >*', colorn2 ),
ImsgeSise- (400, 250), ImaePadding- paddi ):

Q ' rt rJ tjI &a Ait3' 'x'.

plotl Plot[rEaluate[nl[t) /. sol], Evaluate(n2[t] /. so l), (t, 0, twax),

PlotRanges- ((-0.05 taax, tmax), (-D.05nin2aax, nn2ax)), AmeDrigin - (0, 0) -i 0.05 a 0 :2 ax,
PlotStyle (colornl, colorn2), AxesLabel*- (tiew", Style ['1 4", colorAl] Style[ " :

, colorn2]),
ImageSize-. (400, 250), ImagePadding-+ padding)

plot2. ParametricPlotI(Extract[Evaluate[niIt] /. sol], 1), Extractf[Evaluate*fn2ft] /. saol], 1)), (t, 0, tax),
PlotRange- .({-0.05anma, alSax), (-0.05n2sax, n2ma }), AxrsOrigin {-0.05anx, -0,05n2~x),
Ases abel. (Style't*E1', colornl] , Styl(cNt'k', colorn2))J

startvw Graphics [Locator(Dynamic{n10, n20)] Background-o Yellow, LocatorRegion Automatic),
PlotRange-. ({-0.05rniax, alxn), (-0.05 n2ax, n2mx)) :

gr -ContourPlot rix - '.( Y - bl )x , O,nmax), , 0, n2max), ContourStyle - colorn2,
2 c1 +a y A

PlotPoints + pipts, fram - alse Axes True, AresLabel {Style[N , colonl] , Style(#N #, colorn2}] ;

r2 ContourPlot 2 - r2 (a2 b2 x , Ix, 0, nlmax , , n2ax), ContourStyle -# colorni,

PlotPoints-+ plpts, AxesLabel-. {Style([": ', colornl] , Style[tN 2 , colorn2])J:

pl2list (grl, gr2, Graphics PointSize(Large], Blue, Point({(l[t], n2ft]) /. statpts])],
Graphics[(Dashed, Line[((ki, 0), ( , axr , Linef((0, 12), (nx, , 12)1,

Text*(ac,%) #, (11, 12), Background 4 Whitef])f;
pl3lst. (plot2, grl, gr2, startv, Graphics {UPointSize (Large], Blue, Point {nl(t], n2 [t) I. statpts] )}])

If [vec n~*MA" , Apentopls3ist,

VeatorfieldPiots'VctorrieldPlot i ) I -al -i r y r2 a2 -b2)R 1 cl+ y 1 12 c2 +n 12

(x, -0.05 nalr, alnAx), (y, -O.O5n2*x, n2a), PlotPoints. + vc~pts.] :

Grid [{ (plotl, Show (pl31ist, AspectRatio 1, ImageSize -# (300, 300)]),
(plotO, Showvpl21list, AspectRatio- 1, ImageSise- {00300, 300)}]), ItemSize+ ((30, 25), (30, 25}),

Alignsaent- ((Right, Lart), (Bottom, Top}))



{(rl, rilnit, "r"), riin, rlmax, deltari, ImageSize -.Tiny, Appearance L eled

{(r2, r2init, "rz"}, r2min, r2max, deltar2, ImageSize Tiny, Appearance-. "Labeled"),

((kl, klinit "", kimin, kimax, deltak , ImageSize Tiny, Appearance-. "Labeled"),

{(k2, k2init, "K:"), k2min, k2max, deltak2, ImageSize . Tiny, Appearance "Labeled") ,

{ (al, alinit, "t"), alin, almax, deltaal, ImageSize . Tiny, Appearance- "Labeled"),

{(a2, a2init, "a":), a2min, a2max, deltaa2, ImageSize - Tiny, Appearance . "Labeled"),

({bl, blinit, "~0"), blmin, bmax, deltabl, ImageSize - Tiny, Appearance "Labeled),
{{(b2, b2init, ""), b2ain, b2max, deltab2, ImageSize fTiny, Appearance - "Labeled"),

{{ci, clinit, "y a), ain, clax, deltacl, ImageSize - Tiny, Appearance - "Labeled"),

((c2, c2init, "a"), c2uin, c2max, deltac2, ImageSize - Tiny, Appearance 4 "Labeled"),
Delimiter,

"Initial states:",

( (nl, 0, 11, "11 .}, ControlType - InputField, ImageSize - Tiny),

(({n20, 0.1, "W1W, ControlType-+ InputField, ImageSize - Tiny),

Delimiter,
" Settings: ",

((tax, tmaxinit, "t,"), tmaxmin, taxax, deltatmax, ImageSize - Tiny, Appearance-. "Labeled"),

((vec, "scaled", "vectors"), ("scaled", "none'*, ImageSize -+Tiny),

Initialization 1. (
rlinit = 0.1; rlin 0.01; rimax. 5. ; deltarl = 0. 005:

r2init 0. 1; r2min 0. 01; r2max -5.; deltar2 0,005;

klinit .2..: klmin. I,; kimax 5.; deltakl. 0.05;

k2init a 2.; k2min 1.; 2max. 5.; deltak2 -0.05:

alinit a 1.; amin = 0.01: almax 10.; deltaal a0.01;

a2init .1.; a2min = 0 .01: a2max 10. ; deltaa2 a 0.01:;
blinit = 0.5; blmin a 0.01; bimax x 5. :deltabl : 0.01;
b2init = 0.5; b2min .0.01; b2aax . 5.; deltab2 = 0.01;
clinit = 3. ; cdmn 0. 01; clnax = 5 ; deltacl w 0. 01;
c2mnit a 3.; c2min a 0.01; c2max a 5; deltac2 = 0.01;
tManinit = 200; taXmin = 5; tamax 500: deltatmax = 10:
Get ("Vectorfi.eldPlots' "), SynchronousUpdating False,

ControlPlacement-. Left, AutorunSequencing-# {3, 5, 6, 8), TrackedSymbols. Manipulatel
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