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In a previous paper@Phys. Lett. A182, 255 ~1993!# we showed that, for the one-parameter area-preserving
Hénon map, the domain in phase space where stable motion occurs can always be computed by using the
invariant manifolds emanating from the hyperbolic fixed point of period one, regardless of the value of the
parameter. We present here a generalization of this result to a large class of symplectic polynomial mappings
of the plane. Even in this case it is possible to show that the stability domain is given by the inner envelope of
the invariant manifolds of a low period~one or two! hyperbolic fixed point. Numerical simulations are pre-
sented. They were performed on different maps, including a model of relevance for accelerator physics.
@S1063-651X~96!02706-7#

PACS number~s!: 29.20.2c, 29.27.2a, 41.85.2p

I. INTRODUCTION

One of the main topics in the study of nonlinear Hamil-
tonian systems is the determination of the region in phase
space where bounded motion occurs. This problem has deep
implications in various areas of science, including accelera-
tor physics. A hadron collider can be well described within
the framework of Hamiltonian theory and the problem of the
dynamic aperture, which is related to the region in phase
space where stable motion occurs, is vital. To safely operate
with the beam it is necessary that the stable region is large
enough to accommodate the circulating particles with some
safety margin. This imposes tight constraints on the design
of a circular machine and requires good insight into the
sources of instabilities.

For two-dimensional nonlinear systems it is possible to
define unambiguously an area in phase space where the mo-
tion is stable for arbitrarily long periods. In fact, the phase
space has a well-known structure@1,2#: around the origin,
which is usually chosen to be a stable fixed point, there are
closed curves@one-dimensional~1D! Kol’mogorov-Arnol’d-
Moser ~KAM ! tori#, and wherever the nonlinear frequency
satisfies a resonant condition the invariant curves are broken
into islands. When nonlinearities are dominant, one reaches a
stability border beyond which a fast escape to infinity occurs.
This stability border is what we have called the dynamic
aperture. In this case the KAM tori separate different phase-
space domains, i.e., an initial condition inside a KAM torus
cannot cross it: therefore, there exists a last connected invari-
ant curve whose interior represents a set of stable initial con-
ditions. Outside this curve, there can only be islands of sta-
bility, scattered in the sea of initial conditions that escape to
infinity.

In a higher dimension the situation is completely differ-
ent: the KAM tori do not separate different domains of phase
space; therefore the concept of last invariant curve, surround-
ing stable initial conditions, is no longer valid@1,2#. This
implies that initial conditions arbitrarily close to the origin
can slowly move away from it by a process similar to diffu-
sive motion. Hence, strictly speaking, only the origin is
stable for arbitrary times. This phenomenon due to the intrin-

sic topology of the phase space is universally known as
Arnol’d diffusion @3#.

The standard approach to determine the stable region is to
follow the evolution of a set of initial conditions distributed
in the phase space. Their stability can be determined by
checking whether they stay bounded, i.e., within a given dis-
tance from the origin, over a given time. This technique has
the main drawback of giving little theoretical insight into the
causes for the instabilities and, furthermore, it is very CPU
time consuming.

In previous papers we presented an analytical method
@4–6# to determine the stable region in phase space of a
simple planar Hamiltonian map. This approach allows the
determination of the stability border of the He´non map@7#
following the invariant manifolds that emanate from the hy-
perbolic fixed point of the map. The key point of this method
is that, although the He´non map is actually a one-parameter
family of maps, the result holds true regardless of the value
of the parameter. The topology of the phase space depends
critically on the value of the parameter; however, it is always
possible to reconstruct exactly the stable region of this sys-
tem from knowledge of the hyperbolic fixed point of period
one.

In the present paper we generalize this result to a large
class of planar area-preserving maps, namely, maps that can
be decomposed into involutions. Through a careful analysis
of the existence and stability of the fixed points of such
maps, we will show that the stability domain, i.e., the region
in phase space of stable motion, is always given by the inner
envelope of the invariant manifolds emanating from a fixed
point of low period~one or two!.

Furthermore, we will present the results of numerical
simulations carried out on a model representing a two-
dimensional version of a circular accelerator, the CERN Su-
per Proton Synchrotron, showing that the method is even
more general and can be applied to realistic planar systems.

The structure of the paper is as follows. Section II dis-
cusses the problem of computing the fixed points for a sym-
plectic map that can be decomposed into involutions~also
called reversible maps!. Section III reports some results on
the existence of hyperbolic fixed points. In Sec. IV we define
the invariant manifolds and explain how to construct them
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numerically. The results of the numerical simulations on a
simple model with a cubic nonlinearity are presented in Sec.
V. In Sec. VI some numerical experiments performed on a
realistic model are described. Finally, some concluding re-
marks are made in Sec. VII.

II. FIXED POINTS OF REVERSIBLE MAPS

In this section we will present some important results
@8–11# concerning the fixed points of a special class of sym-
plectic maps. A mapF of R2n that is symplectic, i.e., its
Jacobian determinant is unity, is called reversible if it is the
product of two involutions, namely,

F5I 1+I 2 , I 1
25I 2

25I , ~1!

whereI is the identity matrix inR2n. This peculiar factoriza-
tion imposes tight constraints on the existence and location
of the fixed points and can be exploited to simplify the prob-
lem of their computation.

We recall that a pointx is called a fixed point ofF if it
satisfies the equation

F~x!5x. ~2!

Similarly, fixed points of orderm, or m cycles, can be de-
fined as the fixed points of themth iterate of the map

F+m~x!5x, ~3!

where

F+m~x!5F„F~F„•••F~x!•••…!…. ~4!

in which there arem F’s on the right-hand side. The first
result one can prove is the following.

Theorem 1. Given a symplectic mapF of R2p such that
F5I 1+I 2 with I 1,I 2 two involutions, ifx is a point ofR

2p

satisfying

I 1~x!5x,
~5!

I 2„F
+n~x!…5F+n~x!,

thenF+2n11~x!5x. Similarly, if x is a solution of one of the
two systems

I 1~x!5x,
~6!

I 1„F
+n~x!…5F+n~x!;

I 2~x!5x,
~7!

I 2„F
+n~x!…5F+n~x!,

thenF+2n~x!5x.
Proof. We will show the validity of the first result only, as

the second one can be proved in the same way. As a first step
it is worthwhile noting that from the factorization in Eq.~1!
follows

I 1+F
+m5I 2+F

+m21, F+m+I 25F+m21+I 1 ; ~8!

using the properties of the involutions combined with Eq.
~5!, one obtains that

F+2n11~x!5F+n11+F+n~x!5F+n11+I 2+F
+n~x!

5F+n+I 1+F
+n~x!5F+n+I 2+F

+n21~x!

5I 1~x!. ~9!

The last relation follows by applying Eq.~8! repeatedly, thus
proving the theorem.

We will now consider a less general case of planar sym-
plectic maps. We will choose the two involutions such that
I 1 will be a linear transformation ofR2 andI 2 a nonlinear
transformation of the plane. For the first transformation it is
possible to write down the explicit expression. In fact, if we
neglect the trivial possibility thatI 1 coincides with the iden-
tity matrix, the general form of a linear involution ofR2 is
given by

I 1 : S x8y8 D5S a b

12a2

b
2aD S xyD , ~10!

wherea,b are free parameters. It is a remarkable property of
this transformation that it represents a reflection about the
straight line of the equation

y5
12a

b
x. ~11!

Obviously such a line represents the locus of fixed points of
I 1.

As far as the nonlinear transformation is concerned, we
impose the form

I 2 : S x8y8D 5S 1 0

0 21D S x
y1Pn~x! D , ~12!

wherePn(x)5( j52
n pjx

j is a polynomial of degreen in thex
variable only. The locus of the fixed points of the transfor-
mation shown in Eq.~12! can be easily determined:

y52
Pn~x!

2
. ~13!

Again it can be shown that locally the transformationI 2
represents a reflection about the curve of Eq.~13!. In the
following we will use the notationF fix~I l! for the set of
fixed points ofI l . The reason for the choice of the two
particular transformationsI 1,I 2 will be discussed in detail
later. By using these assumptions it is possible to strengthen
the results stated in Theorem 1. In fact it is possible to show
the following.

Theorem 2. Let F be a planar symplectic map factorized
into involutionsI 1,I 2 of types shown in Eqs.~10! and~12!,
respectively. Thenx is a fixed point ofF if and only if it
satisfies

I 1~x!5x,
~14!

I 2~x!5x.
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Proof. We have already shown that the condition in Eq.
~14! is sufficient; however, it remains to be proven that it is
also necessary. The relation expressingx as a fixed point of
F reads

~a21!x2by2bPn~x!50,
~15!

12a2

b
x1~a21!y1aPn~x!50,

and after a little algebra we obtain

y5
a21

b
x2Pn~x!,

~16!
a21

b
x5

1

2
Pn~x!.

It can be readily seen that Eq.~16! is equivalent to the con-
dition xPF fix~I 1!ùF fix~I 2!.

The geometrical interpretation of the previous result is
clear: the fixed points of period one are exactly the intersec-
tions of the loci of the fixed points of the two transformations
I 1,I 2 into which the mapF is decomposed. A similar result
holds even for the fixed points ofF+2.

Theorem 3. Let F be a planar symplectic map factorized
into involutionsI 1,I 2 of the types in Eqs.~10! and ~12!,
respectively. Thenx is a fixed point ofF+2 if and only if it
fulfills the condition

I 2~x!5x,
~17!

I 2„F~x!…5F~x!.

Proof. We have already shown that ifx satisfies Eq.~7!
for n51, then it is a fixed point ofF+2. In addition, we will
show that with the new hypothesis on the form of the two
involutions, if x is a solution of

I 1~x!5x,
~18!

I 1„F~x!…5F~x!,

thenx is a fixed point ofF and therefore a trivial solution of
F+2~x!5x.

By writing the equations and taking into account the ex-
pression of the two involutions, we obtain

y5
12a

b
x,

~19!
11a22a2

b
x1aPn~x!5

~12a!~2a21!

b
x

2~12a!Pn~x!.

It is apparent that the second equation is equivalent to

12a

b
x52

Pn~x!

2
;

henceF~x!5x. As a consequence, only the solutions of Eq.
~7! for n51 are nontrivial roots ofF+2.

It remains to be proven that the condition is also neces-
sary. This can easily be seen by writing the equation
F+2~x!5~x! in the equivalent formF~x!5F21~x!. Therefore

ax2by2bPn~x!5ax1by, ~20!

12a2

b
x1ay1aPn~x!52

12a2

b
x1ay2Pn~ax1by!,

and from this we obtain

y52
1

2
Pn~x!,

~21!
12a2

b
x1

a

2
Pn~x!52

1

2
PnS ax2

b

2
Pn~x! D .

It is clear that Eq.~21! coincides with Eq.~17!.
Some insight can be gained by interpreting the previous

result from a geometrical point of view. The meaning of
condition ~17! is the following: if the initial pointx belongs
to the locusF fix~I 2! and, furthermore, if its image under the
mapF is also a point inF fix~I 2!, thenx is a fixed point of
period two. The action of the map on a point ofF fix~I 2! is
simply a reflection about the fixed line ofI 1. Therefore, for
a fixed point of period two to exist the setF fix~I 2! must
contain at least one point together with its reflection about
the fixed line ofI 1. One can apply this result to see that this
condition is never fulfilled for the quadratic He´non map, thus
explaining why it does not have any real fixed point of pe-
riod two ~see@7#!.

A. Planar maps and physical models

In the preceeding section we showed how the existence of
a fixed point is linked to the decomposition of a map into
two involutions. From the general class of transformations
that fulfill the involutive condition we selected a subset. Now
we would like to justify this choice by examining the link
between such transformations and physical models.

In many mathematical physics problems one is interested
in the study of systems governed by a Hamiltonian
H5H(q,p;t) of the type

H~x,p;t !5
p2

2
1

v2

2
x21G~x! (

n52`

1`

d~ t2nT!, ~22!

whereG(x)5( k53
` gkx

k. This system represents a nonlinear
oscillator. The equations of motion can be readily integrated
thanks to the presence of the periodicd function. Therefore,
one obtains the map

H~v!: S x8y8D 5S cosvT 2sinvT

sinvT cosvT D S x

y1
g~x!

v
D ,

~23!

where@in Eq. ~23!# we have used

g~x!52
dG~x!

dx
, y5

p

v
. ~24!
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In the mathematical literatureH is called the Poincare´ sec-
tion of the HamiltonianH(x,p;t). It can be shown that un-
der the assumption thatG(x) is a polynomial function of
finite order,H represents a fundamental object in accelera-
tor physics, namely, a FODO cell~i.e., a sequence of focus-
ing and defocusing quadrupoles separated by drift spaces!
containing a nonlinear element in the thin lens approxima-
tion @2# expressed in normalized Courant-Snyder coordinates
@12#. The rotation matrix in Eq.~23! accounts for the linear
elements of the cell, whileg(x) is the contribution of the
nonlinear element. Therefore, if one is interested in applica-
tions to accelerator physics the proper object to study is

Hn~v!: S x8y8D 5S cosv 2sinv

sinv cosv D S x
y1Pn~x! D , ~25!

with Pn(x)5( j52
n pjx

j , T51, andvP@0,2p#. In practice it
is possible to restrict the interval of variation of thev to
@0,p#: for v.p it suffices to considerv2p and to change
the sign of the odd terms in the polynomialPn(x). In the
accelerator physics literature, the mapHn(v) is called a one-
turn map or transfer map.

Furthermore, it can immediately be seen thatHn(v) can
be decomposed into two involutions

I 1 : S x8y8D 5S cosv sinv

sinv 2cosv D S xyD ~26!

and

I 2 : S x8y8D 5S 1 0

0 21D S x
y1Pn~x! D . ~27!

These involutions are exactly the same as those used in the
previous section with

a5cosv, b5sinv. ~28!

This particular form ofI 1 permits a stable fixed point at the
origin ~which is always the case for physical situations!.

III. EXISTENCE AND STABILITY
OF LOW-PERIOD FIXED POINTS

The results proved in the preceding section concerning the
calculation of fixed points can be combined to prove the
following.

Theorem 4. LetHn(v) be a planar symplectic map of the
type

Hn~v!: S xyD5R~v!S x
y1Pn~x! D , vP@0,p#, ~29!

where Pn(x)5( j52
n pjx

j . Then, ~i! if n52l , at least one
fixed point of period one exists other than the origin for all
values ofvP@0,p#; ~ii ! if n52l11 andp2l11,0, at least
one fixed point of period one exists other than the origin for
all values ofvP@0,p#; and~iii ! if n52l11 andp2l11.0, at
least two fixed points of period two exist other than the ori-
gin for all the values ofvP@0,p#.

Proof.
~i! For the proof it is sufficient to consider the geometri-

cal meaning of Eq.~14!.
~ii ! The same approach as for~i! can be used.
~iii ! In this case it should be clear that the existence of

fixed points of period one cannot be guaranteed for arbitrary
values ofv. To prove this statement we will make use of Eq.
~17!. It can be shown that this condition is equivalent to

2x sinv1P2l11~x!cosv1P2l11S x cosv2
sinv

2
P2l11~x! D

50. ~30!

To eliminate the trivial solutions given by the fixed points of
period one, which satisfy

2x tan
v

2
1P2l11~x!50, ~31!

we will consider

F ~x!5

2x sinv1P2l11~x!cosv1P2n11S x cosv2
sinv

2
P2n11~x! D

2x tan
v

2
1P2l11~x!

. ~32!

Therefore, the equationF (x)50 will allow the nontrivial
fixed points of period two to be calculated. It can immedi-
ately be seen that

F ~0!5
2

11tan2
v

2

.0 ; vP@0,p#. ~33!

Furthermore, it is possible to show that the asymptotic be-
havior ofF for x→6` is given by

F ~x!'

2p2n11
2n12@sinv#2l11x~2n11!2F11OS 1xD G

p2n11x
2n11F11OS 1xD G

'2p2n11
2n11@sinv#2l11x2n~2n11!F11OS 1xD G .

Therefore the sign of the limit depends only upon the sign of
p2l11: if it is positive thenF (x)→2`, which, combined
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with the property in Eq.~33!, proves that at least two solu-
tions of F (x)50 are always present for all values of
vP@0,p#.

Now we will consider the problem of the stability of the
fixed points determined so far. The first step is to consider
how they can be classified. Close to the fixed pointx the
motion is determined by the linear part of the generic mapF,
i.e., the Jacobian matrixFL ,

S Dx8
Dy8 D5S ]F1

]x

]F1

]y

]F2

]x

]F2

]y

D S Dx
DyD1~higher orders!, ~34!

whereF1 andF2 are the two components ofF. Therefore the
stability of the fixed point is determined by the eigenvalues
~l1,l2! of FL . Owing to the area-preserving property they
must satisfy the conditionl1l251 so that only three situa-
tions are allowed:

l1 ,l2PC, l15l2* ~elliptic case!,

l1 ,l2PR, l1Þl2 ~hyperbolic case!, ~35!

l1 ,l2PR, l15l251 ~parabolic case!.

In the following we will make use of the concept of Poincare´
index of a map. Given a closed curveC that does not pass
through any fixed point of a mapF, the index ofC , Ic , is
defined as the number of times the vector

v~x!5F~x!2x, xPC ~36!

circles the origin as the pointx moves alongC .
It is clear thatIc is a function with integer values. More-

over, some properties of such a function are readily deduced.
~i! Ic depends continuously on the curveC . Furthermore,

when the mapF is dependent on certain parameters, the in-
dex depends smoothly on the same parameters.

~ii ! A curve enclosing only one fixed point will have an
index equal to21,11,11 according to the classification of
the fixed point: hyperbolic, elliptic, or hyperbolic with inver-
sion, respectively.

~iii ! The index of a curve enclosing different fixed points
is the sum of the indices of each fixed point.

~iv! The index of a closed orbit ofF is 11.
We will now return to the specific mapsHn(v). Let us

indicate withxi , i51,...k, thek solutions of the polynomial
equation

Pn~x!50. ~37!

It is clear that (xi ,0) are fixed points ofHn(0). Furthermore,
we define

xmax5 max
i51,...,k

xi ,

xmin5 min
i51,...,k

xi .

For vÞ0 the fixed points~xmax,0! and ~xmin ,0! will move
along a branch of the curveF fix~I 2! according to the inter-

section with the lineF fix~I 1!. In this general case we will
use the notationxmax~v!,xmin~v! to take into account the de-
pendence both onv and on the initial pointsxmax,xmin . Us-
ing these concepts it is possible to prove the following.

Theorem 5. Given a mapHn(v) decomposed into two
involutions I 1~v!,I 2 of the types, shown in Eqs.~26! and
~27!, the following holds.

~i! If n52l andp2l.0, the point

xmin~v!5Fxmin~v!,2
P2l„xmin~v!…

2 G ~38!

is hyperbolic over the whole intervalvP@0,p#.
~ii ! If n52l andp2l,0, the point

xmax~v!5Fxmax~v!,2
P2l„xmax~v!…

2 G ~39!

is hyperbolic in the whole intervalvP@0,p#.
~iii ! If n52l11 andp2l11,0, the points

xmin~v!5Fxmin~v!,2
P2l11„xmin~v!…

2 G ,
xmax~v!5Fxmax~v!,2

P2l11„xmax~v!…

2 G
are hyperbolic over the whole intervalvP@0,p#.

Proof.
~i! It can be seen immediately that there exists a valuev1

such that forvP@v1,p# there will be only two fixed points of
period one, namely, the origin~xorig! andxmin~v!. If we con-
sider a closed curveC surroundingxorig andxmin~v!, thenIc
is the sum of the indices of the two points. The origin is
elliptic by definition; therefore it has an index of11. Hence
xmin~v! must be hyperbolic, i.e., with an index of21. Oth-
erwiseIc would be equal to12, but it can be shown that no
continuous map can satisfyIc512 for any closed curveC .
Furthermore,xmin~v! remains hyperbolic even forvP@0,v1#.
In fact, in this interval it moves along a monotonic branch of
the curveF fix~I 2! and no bifurcation can occur. Therefore
its stability cannot change.

~ii ! The same approach as for~i! can be used.
~iii ! In this case it is always possible to find a valuev1

such that only three distinct fixed points are present, namely,
the origin xorig , xmax~v!, and xmin~v!. The origin is elliptic
~index11! by construction; therefore three possibilities are
left for the stability of the other two fixed points, i.e., their
indices could be11 and11, 11 and21, or 21 and21,
respectively. The first case is forbidden as it would give a
global index of13. The second is not allowed because two
out of the three fixed points would give an index of12.
Hence only the last possibility is compatible with the prop-
erties of the index. Moreover, this result can be extended to
the interval @0,v1# as no bifurcation occurs along the
branches of the curveF fix~I 2! swept by the fixed points.
This proves the theorem.

A similar statement holds for the fixed points of period two.
Theorem 6. Given a mapH2l11(v) decomposed into two

involutions I 1~v!,I 2 of the types shown in Eqs.~26! and
~27!, such thatp2l11.0, there exist two fixed points of pe-
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riod two, x1~v!5„x1(v),y1(v)… and x25„x2(v),y2(v)…
with x1(v),xmin and x2(v).xmax, which are hyperbolic
over the whole intervalvP@0,p#.

Proof. By using Eq.~17! it is clear that there exists a
valuev1 such that forvP@0,v1# only three fixed points of
period two exist: the originxorig and what we have calledx1
andx2. It is easy to show that the mapH2l11(v) transforms
x1 into x2 and vice versa; therefore the two points will have
the same stability. Furthermore, they must be hyperbolic as it
is not possible to construct a continuous map with an index
of 12. Again the reasoning can be extended to the whole
interval @0,p# as in previous cases.

IV. INVARIANT MANIFOLDS OF SYMPLECTIC MAPS

In Secs. II and III we discussed the problem of determin-
ing the fixed points of a planar map when it can be expressed
as the product of two involutions and we investigated the
existence of low-period hyperbolic fixed pointsxhyp. In the
hyperbolic case the two eigenvalues define two linear sets in
the plane,W L

u~xhyp! andW L
s~xhyp!, along which the motion

induced by the linearized map has an expanding~superscript
u for unstable! or a contracting~superscripts for stable!
behavior. The subscriptL indicates that these objects are
linked with the linear part of the map. The interesting fact is
that we can extend these sets to the original nonlinear mapF,
i.e., it is possible to define two subspaces emanating from the
unstable fixed point such that these sets, calledW u~xhyp! and
W s~xhyp!, show the same expanding or contracting behavior.
Furthermore, it is possible to prove that these sets are actu-
ally manifolds and that the eigenvectors ofF are tangential
to the manifoldsW u,s~xhyp! at the fixed point. It should be
evident that these manifolds are invariant sets for the map,
namely,

F„W u,s~xhyp!…5W u,s~xhyp!. ~40!

It is clear that a similar definition can be given in the case of
higher-order hyperbolic fixed points. In this case, all the pre-
vious definitions and properties hold, provided that the map
F is replaced by itsmth iterateF+m.

From the very definition it follows that the invariant
manifolds have at least one intersection, which is the hyper-
bolic fixed point. An additional intersectionxhom is either
homoclinic or heteroclinic depending on whether the two
intersecting manifolds emanate from the same hyperbolic
fixed point. Provided the two manifolds are transversal, i.e.,
nontangential, at the pointxhom, it can be proven that there
must be other intersections and that the set of intersections is
countable. The key point is the invariance of the two mani-
folds. Therefore, unless the two manifolds coincide com-
pletely, which occurs in the integrable case, they will oscil-
late around each other.

Due to the area-preserving character of the map, the area
enclosed between two successive intersections has to remain
constant. Furthermore, the period of the motion tends to in-
finity as it approaches the hyperbolic fixed point, thus forc-
ing the distance between successive intersections to decrease
exponentially and leading to larger and larger oscillations
close to the hyperbolic fixed point.

To construct the whole setsW u,s~xhyp!, it is sufficient to
iterate many times a set of initial conditions belonging to a

small part of these manifolds in the vicinity ofxhyp. More-
over, it turns out that these initial conditions can be chosen
on the eigenvalues of the linearized map provided that their
distance to the hyperbolic fixed point is sufficiently small.

The interest in studying invariant manifolds lies in their
relation to the stability domain of planar symplectic maps.
The stability domain of a planar map is the set of initial
conditionsx5(x,y) such thatF+n~x! is bounded for arbitrary
values ofn. In @4# it is shown that for the case of the He´non
map @7# the stability domain is given by the inner envelope
of the invariant manifolds emanating from the hyperbolic
fixed point of period one. In Fig. 1 an example of the stated
result is shown: the gray area represents the stability domain
and the invariant manifolds are superimposed. The ho-
moclinic oscillations are clearly visible and the agreement
between the inner part of the manifolds and the shaded area
is impressive. It is worthwhile noting that although the linear
frequency is closed to the 1/4 resonance, it is possible to
reconstruct the fourfold symmetry imposed by the resonance
structure simply by using the hyperbolic fixed point of period
one.

V. STABILITY RESULTS FOR THE CUBIC MAP

In an attempt to generalize the result obtained for the
Hénon map to other planar maps of the typeHn(v), we will
study a map with cubic nonlinearity, namely,

H3~v!: S x8y8 D5R~v!S x
y1p2x

21p3x
3D , ~41!

using the results on the fixed points obtained previously. As
already shown, such a map can be derived from the Hamil-
tonian @Eq. ~22!# with

FIG. 1. Invariant manifolds and stability domain for the He´non
map. The black area represents the stochastic layer where hetero-
clinic intersections between invariant manifolds emanating from
hyperbolic fixed points of different order occur. The gray area rep-
resents the stability domain. The value of the linear frequency is
v/2p50.255.
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G~x!52vS p23 x31
p3
4
x4D . ~42!

Obviously the coefficient of the quadratic term can be set to
one by rescaling the variables. Moreover, the case where
p251 andp3 is a free parameter has already been studied in
@13#. Here then we will consider the simplified casep250,
thus allowing an analytical treatment of the problem without
losing generality. Therefore, from now on, we will consider
the map

H3~v!: S x8y8 D5R~v!S x
y1p3x

3D , p3PR, vP@0,p#.

~43!

Having set the quadratic term to zero, it is possible to rescale
the variables such thatp3561. In fact, by defining new
coordinates

X56Aup3u, Y56Aup3u, ~44!

the map~43! will read

SX8
Y8 D5R~v!S X

Y1sgn~p3!X
3D . ~45!

The first step will be to compute the fixed points of period
one. By using Eq.~5!,

if p3.0 then there is no real solution,
if p3,0 then

x1,25
S 6
A2 tan

v

2

up3u
,6A2 tan3

v

2

up3u
D . ~46!

As far as their stability is concerned, it is easily found that
the trace of the linearization ofH3L(v) is given by

Tr@H3L~v!#52

5 tan2
v

2
11

tan2
v

2
11

~47!

and therefore the two fixed points are hyperbolic for all val-
ues of the linear frequency in the interval@0,p#. These results
suggest that a straightforward generalization of the result ob-
tained for the quadratic map to the cubic map is not possible.
In fact, in the case wherep3.0 there are no real hyperbolic
fixed points~in agreement with the results of the previous
sections! and therefore no real invariant manifolds to be used
in the determination of the stability domain of the map.

Hence we are forced to look for higher-order fixed points.
The natural choice is to consider fixed points of order two.
This task can be made considerably easier by applying the

results of Sec. II. It should be obvious that there are no real
fixed points of period two in the case wherep3,0. Other-
wise, forp3.0 we have

x̄1,25S 6A 2

tan
v

2

,7A 2

tan3
v

2
D . ~48!

In this case too the stability can be easily determined and it
turns out thatx̄1,2 are hyperbolic for all values ofvP@0,p#.

With all these results to hand, we can perform the
stability-domain analysis of the map@Eq. ~45!#. The first
point will be the study of the dynamics for the limit cases,
namely,v50 andv5p. Forv50, the map reduces to

x85x,
~49!

y85y1sgn~p3!x
3

and this recurrence can easily be solved

xn5x0 ,
~50!

yn5y01n sgn~p3!x0
3.

Therefore every initial condition is unstable as it tends to
infinity under the iteration of the map.

For v5p, R2(p)5I ; thereforeH3~p! has the expression

FIG. 2. Invariant manifolds of the hyperbolic fixed points of
period one and stability domain for the cubic map. The stability
domain is represented by the gray area. The value of the linear
frequency isv/2p50.34, whilep3521.
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x852x,
~51!

y852y2sgn~p3!x
3.

The general solution of the previous recurrence is

xn5~21!nx0 ,
~52!

yn5~21!ny02~21!nn sgn~p3!x0
3

and again we have instability for every initial condition.
In the general case ofvÞ0, the stability domain has to be

analyzed using the invariant manifolds, i.e., ifp3,0 one
should use the hyperbolic fixed points of period one together
with the related manifolds. Alternatively, ifp3.0 then the
fixed points of period two should be used to compute the
related invariant manifolds.

This fact has been checked by performing some numerical
simulations. In Fig. 2 the results forp3521 are presented.
The shaded area represents the stability domain, i.e., initial
conditions that stay bounded under the iteration of the map.
In the simulations, 10 000 iterates of the map have been used
to check the stability of the initial conditions. The invariant
manifolds emanating from the hyperbolic fixed points of pe-
riod one are shown in the same plot. It is impressive that the
invariant manifolds are able to reconstruct even the finest
details of the stable region. This is due to the heteroclinic
intersections: the invariant manifolds emanating from the
fixed points of lowest period are connected to each other and
to other manifolds through heteroclinic intersections. This
mechanism allows the boundary of the stable area to be
reached from outside.

To check that this result is truly general and that it does
not depend on a specific value ofv, we have computed the
stability domain as a function of the parameterv for the case
wherep3521. In Fig. 3 the solid curve represents the mini-
mum radius of the stability domain, i.e., the radius of the
largest disk embedded in the stable domain. Hence we take
into account only the connected part of the stable area
around the origin, disregarding the stable islands that could
possibly exist. The points shown in the same plot are com-
puted using the invariant manifolds. More precisely they rep-
resent the minimum distance of the manifolds from the ori-
gin. Once again the agreement is impressive, thus reinforcing
the result: the stability domain is given by the inner envelope
of the invariant manifolds.

Finally, we will consider the case wherep351 for a spe-
cific value of the linear frequency~v50.255!. In Fig. 4 the
stable area is shown~shaded region! together with the invari-
ant manifolds emanating from the hyperbolic fixed points of
period two. As in the previous examples, the agreement is
excellent.

At this point of our analysis, we can summarize the situ-
ation as follows.

~i! If Hn(v) is of even order, i.e.,n52k, then real hy-
perbolic fixed points of period one exist forvP@0,p#. These
fixed points can be used to construct the invariant manifolds
and to compute the stability domain as the inner envelope of
such manifolds.

~ii ! If Hn(v) is of odd order, i.e.,n52k11 and
p2k11,0, then again hyperbolic fixed points of period one
exist forvP@0,p#. This case can be treated in the same way
as the one above.

~iii ! If Hn(v) is of odd order, i.e.,n52k11 and
p2k11.0, then hyperbolic fixed points of period two exist.
The invariant manifolds related to these fixed points deter-
mine the stability domain forvP@0,p#.

FIG. 3. Stability domain as a function of the linear frequency for
the cubic map (p3521). The solid line represents the minimum
radius of the stability domain, computed by direct iteration of the
map. The points represent the minimum distance from the origin of
the invariant manifolds.

FIG. 4. Invariant manifolds emanating from the hyperbolic fixed
points of period two for the cubic map with linear frequencyv/2p
50.255 andp351. The gray area is the stability domain as com-
puted by direct iteration of the map.
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VI. A REALISTIC MODEL: THE CERN SPS

To conclude this analysis we will present some results
obtained for a more realistic model. We have applied the
approach based on the invariant manifolds to a lattice repre-
senting a 2D version of the CERN Super Proton Synchrotron
~SPS!.

This machine has a symmetry of order six, with FODO
cells of approximately 90° phase advance. In addition to the
linear elements, there is a certain number of nonlinear mag-
nets, namely, sextupoles and octupoles. The sextupoles have
a twofold function: to correct the chromatic effects produced
by the quadrupoles~108 elements! and to extract the beam
by exciting the third order resonance~8 elements!. The oc-
tupoles are used to control the instabilities due to collective
effects.

In the past years the SPS has been used to perform ex-
periments of nonlinear dynamics@14#. For these studies, the
SPS is set up in a configuration where the eight extraction
sextupoles are powered with currents ten times stronger than
during normal operation, allowing the introduction of strong
but controlled nonlinearities. The octupoles are switched off.

In this configuration the real transfer map of the SPS can
be approximated very accurately by composition of the eight
transfer maps corresponding to the eight extraction sextu-
poles plus the linear elements in between, the chromatic sex-
tupoles being neglected. Therefore the one-turn map can be
written as

x85M ~x!5M1+•••+M8~x!, ~53!

whereM j represents the transfer map of thej th extraction
sextupole plus the linear elements up to the (j11)th sextu-
pole. These maps have been computed using the program
SIXTRACK @15#. The global mapM has been transformed into
normalized coordinates to deconvolve the rotation generated
by the linear elements. The one-turn map then reads

y85M~y!5R~v!+N ~y!, ~54!

whereR(v) represents a rotation matrix, whileN incorpo-
rates the nonlinear part of the map. The linear frequency has

been set tov/2p50.636, which coincides with the value
normally used in the experiments.

To apply the approach used for maps of typeHn(v) it is
necessary to determine the fixed points of the map@Eq. ~54!#.
The hyperbolic fixed points of the mapM have been com-
puted with the help of the programGIOTTO @16–18#. GIOTTO
allows the phase space of a generic 2D map to be visualized
and, at the same time, it has the capability to perform the
computation of a certain number of dynamic indicators that
are useful in the analysis of the map under consideration. For
instance, it can compute the fixed points of arbitrary period
using a bisection method@19#. As an example, we show in
Fig. 5 the phase space of the map in Eq.~54!. Some invariant
curves are clearly visible together with a chain of islands of
period five.

From the whole set of hyperbolic fixed points, the one
that is furthest from the origin was chosen. Then the invari-
ant manifolds were computed using the standard approach
previously defined. The choice of the fixed point does not
influence the result as the different manifolds are always
connected~this is actually the key point of our method!. In
Fig. 6 we show the results. As usual, the gray area represents
the stability domain as computed by direct iteration of the
one-turn map of Eq.~54!. The invariant manifolds are also
superimposed on the same plot. As for the simple model of
the cubic map studied in Sec. V, we found excellent agree-
ment between the stability domain and the inner envelope of
the invariant manifolds. The stable islands in the large sto-
chastic sea are perfectly reproduced, as is the border of the
stable area, thus showing the generality of the method pro-
posed here.

VII. CONCLUSIONS

In this paper we have presented the properties of the fixed
points of a class of planar area-preserving maps that can be
decomposed into involutions. This peculiarity allows the

FIG. 5. Phase-space portrait of the 2D model of the SPS lattice.

FIG. 6. Invariant manifolds of the hyperbolic fixed point of
period one for the 2D model of the SPS lattice. The gray area
represents the stability domain as computed by direct iteration of
the one-turn map.
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problem of finding the fixed points to be simplified and some
results on the existence of hyperbolic fixed points of low
period ~one or two! to be proved. Furthermore, we have
shown the connections between these maps and accelerators.

We have outlined how it is possible to use invariant mani-
folds to reconstruct the stability domain of a map decom-
posed into involutions, avoiding the direct iteration of a set
of initial conditions, in order to test their stability. This ap-
proach is very powerful as it allows the stability domain in
the whole interval of variation of the parameterv to be de-
termined using the same low-period hyperbolic fixed point.

Moreover, we have shown that the method is even more

general, by presenting an application to a realistic model
based on the lattice of the CERN Super Proton Synchrotron.
In this case too the stability domain can be accurately repro-
duced using the invariant manifolds.
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