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Stability domain of planar symplectic maps using invariant manifolds
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In a previous papdPhys. Lett. A182 255(1993] we showed that, for the one-parameter area-preserving
Henon map, the domain in phase space where stable motion occurs can always be computed by using the
invariant manifolds emanating from the hyperbolic fixed point of period one, regardless of the value of the
parameter. We present here a generalization of this result to a large class of symplectic polynomial mappings
of the plane. Even in this case it is possible to show that the stability domain is given by the inner envelope of
the invariant manifolds of a low periogne or twg hyperbolic fixed point. Numerical simulations are pre-
sented. They were performed on different maps, including a model of relevance for accelerator physics.
[S1063-651X96)02706-1

PACS numbds): 29.20—-c, 29.27-a, 41.85-p

I. INTRODUCTION sic topology of the phase space is universally known as
Arnol'd diffusion [3].
One of the main topics in the study of nonlinear Hamil-  The standard approach to determine the stable region is to

tonian systems is the determination of the region in phaséollow the evolution of a set of initial conditions distributed
space where bounded motion occurs. This problem has deép the phase space. Their stability can be determined by
implications in various areas of science, including accelerachecking whether they stay bounded, i.e., within a given dis-
tor physics. A hadron collider can be well described withintance from the origin, over a given time. This technique has
the framework of Hamiltonian theory and the problem of thethe main drawback of giving little theoretical insight into the
dynamic aperture, which is related to the region in phas€auses for the instabilities and, furthermore, it is very CPU
space where stable motion occurs, is vital. To safely operatéme consuming.

with the beam it is necessary that the stable region is large In previous papers we presented an analytical method
enough to accommodate the circulating particles with somé#—6l to determine the stable region in phase space of a
safety margin. This imposes tight constraints on the desig§MPIe planar Hamiltonian map. This approach allows the

of a circular machine and requires good insight into thedetermination of the stability border of the fen map[7]

sources of instabilities. following the invariant manifolds that emanate from the hy-

For two-dimensional nonlinear systems it is possible to_perbolic fixed point of the map. The key point of this method

define unambiguously an area in phase space where the my that, aithough the Heon map is actually a one-parameter

tion is stable for arbitrarily long periods. In fact, the phase amily of maps, the result holds true regardless of the value
space has a well-known structufe,2]: around the origin, of the parameter. The topology of the phase space depends

hich i v ch b ble fixed point. th critically on the value of the parameter; however, it is always
which Is usually chosen to be a stable fixed point, there argsqjpia 1o reconstruct exactly the stable region of this sys-

closed curvegone-dimensionaf1D) Kol'mogorov-Arnol'd- o from knowledge of the hyperbolic fixed point of period
Moser (KAM) tori], and wherever the nonlinear frequency gne.

satisfies a resonant condition the invariant curves are broken |n the present paper we generalize this result to a large

intO islands. When non”nearities are dominant, one reaCheS@‘aSS Of p|anar area_preserving mapS, name'y, maps that can
stability border beyond which a fast escape to infinity occurshe decomposed into involutions. Through a careful analysis
This stability border is what we have called the dynamicof the existence and stability of the fixed points of such
aperture. In this case the KAM tori separate different phasemaps, we will show that the stability domain, i.e., the region
space domains, i.e., an initial condition inside a KAM torusin phase space of stable motion, is always given by the inner
cannot cross it: therefore, there exists a last connected invarénvelope of the invariant manifolds emanating from a fixed
ant curve whose interior represents a set of stable initial corpoint of low period(one or twg.
ditions. Outside this curve, there can only be islands of sta- Furthermore, we will present the results of numerical
bility, scattered in the sea of initial conditions that escape tsimulations carried out on a model representing a two-
infinity. dimensional version of a circular accelerator, the CERN Su-
In a higher dimension the situation is completely differ- per Proton Synchrotron, showing that the method is even
ent: the KAM tori do not separate different domains of phasenore general and can be applied to realistic planar systems.
space; therefore the concept of last invariant curve, surround- The structure of the paper is as follows. Section Il dis-
ing stable initial conditions, is no longer vali{d,2]. This  cusses the problem of computing the fixed points for a sym-
implies that initial conditions arbitrarily close to the origin plectic map that can be decomposed into involutigaso
can slowly move away from it by a process similar to diffu- called reversible mapsSection Ill reports some results on
sive motion. Hence, strictly speaking, only the origin isthe existence of hyperbolic fixed points. In Sec. IV we define
stable for arbitrary times. This phenomenon due to the intrinthe invariant manifolds and explain how to construct them
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numerically. The results of the numerical simulations on a Fo2nt1(x)=F " PN (x) = F" 1o 7,0 F°"(x)
simple model with a cubic nonlinearity are presented in Sec. o e o 1
V. In Sec. VI some numerical experiments performed on a =F"e.71oF(X) = F e 720F" " %(X)

realistic model are described. Finally, some concluding re-

marks are made in Sec. VII. =71(%). ©)

| EIXED POINTS OF REVERSIBLE MAP The last relation follows by applying E¢8) repeatedly, thus
: OINTS O S S proving the theorem.

In this section we will present some important results We will now consider a less general case of planar sym-
[8—11] concerning the fixed points of a special class of sym-Plectic maps. We will choose the tho involutions such that
plectic maps. A magF of R?" that is symplectic, i.e., its 71 Will be a linear transformation of“ and.”, a nonlinear
Jacobian determinant is unity, is called reversible if it is thetransformation of the plane. For the first transformation it is

product of two involutions, namely, possible to write down the explicit expression. In fact, if we
neglect the trivial possibility tha?; coincides with the iden-
F=.9109,, .7§=.:7§= [ (1) tity matrix, the general form of a linear involution & is
iven b

wherel is the identity matrix inR?". This peculiar factoriza- J Y

tion imposes tight constraints on the existence and location o 8

of the fixed points and can be exploited to simplify the prob- ) x' 5 X

lem of their computation. 2% (y') =|1-a — (y) (10

We recall that a poink is called a fixed point of if it B

satisfies the equation

wherea, are free parameters. It is a remarkable property of
this transformation that it represents a reflection about the
straight line of the equation

F(x)=x. 2

Similarly, fixed points of ordem, or m cycles, can be de-
fined as the fixed points of thath iterate of the map

F™(x) =X, () y=—pg % (11)

where Obviously such a line represents the locus of fixed points of

F™(x) = F(F(F(---F(x)-+-))). @ 7 . -
As far as the nonlinear transformation is concerned, we
in which there arem F's on the right-hand side. The first impose the form

result one can prove is the following.

Theorem 1 Given a symplectic mag of R?” such tf21at X' 1 0 X
F=727, with .71,7, two involutions, ifx is a point ofR*P Ty v 1=l —allysr.x) (12
satisfying
T1(X) =X, whereP,(x)=2 ]-”:zpjxj is a polynomial of degrer in thex
(5) variable only. The locus of the fixed points of the transfor-
TH(F"(x))=F"(x), mation shown in Eq(12) can be easily determined:
then F2"*1(x)=x. Similarly, if x is a solution of one of the Ph(X)
two systems y=—— (13
T1(X)=X,
(6) Again it can be shown that locally the transformatiof
T1(F"(x))=F"(x); represents a reflection about the curve of Ef). In the
following we will use the notation7%,(7,) for the set of
TH(X) =X, fixed points of.7;. The reason for the choice of the two
(7)  particular transformations’; .7, will be discussed in detail
TH(F"(x))=F"(x), later. By using these assumptions it is possible to strengthen
. the results stated in Theorem 1. In fact it is possible to show
thenF"(x)=x. the following.

Proof. We will show the validity of the first result only, as  Theorem 2Let F be a planar symplectic map factorized
the second one can be proved in the same way. As a first stgfxo involutions.7; .7, of types shown in Eq410) and(12),
it is worthwhile noting that from the factorization in EGL)  respectively. Therx is a fixed point ofF if and only if it
follows satisfies
T . oE°M— 7 op°m—1 oM, 7 — Eem—1, 7 -
T1oF M=M=t FMo7,=F 71, €S)) Z10=x,
using the properties of the involutions combined with Eq. (14)
(5), one obtains that TH(X)=X.
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Proof. We have already shown that the condition in Eq. It remains to be proven that the condition is also neces-
(14) is sufficient; however, it remains to be proven that it issary. This can easily be seen by writing the equation
also necessary. The relation expressings a fixed point of F%(x)=(x) in the equivalent fornF(x)=F %(x). Therefore

F reads
ax—By— BPy(x)=ax+ By, (20

(15) 1-a? 1-a?
X+ay+aPy(X)=—

(@—=1)x—BYy—BPn(Xx)=0,
1—a?
B

and after a little algebra we obtain

X+ ay—P,(ax+ By),

X+ (a—1)y+aP,(x)=0,

and from this we obtain

1
y= TP, Y=7 3 Palx),
g (21
-1 1 (16) 1—a? o 1 B
aﬁ x=5 P.(). 3 x+§ Pn(x)=—§ Pn( ax—7 Pn(X)).

It can be readily seen that E€L6) is equivalent to the con- 't 1S clear that Eq(21) coincides with Eq(17). _
dition xe. 77, (7)) NT 1 (T>) Some insight can be gained by interpreting the previous
7 fix\- 7 fix\- 2/

The geometrical interpretation of the previous result is"eSult from a geometrical point of view. The meaning of

clear: the fixed points of period one are exactly the interseccondition(17) is the following: if the initial pointx belongs

tions of the loci of the fixed points of the two transformations 1© the 10€us7,(-75) and, furthermore, if its image under the

7,7, into which the magF is decomposed. A similar result MaPF is also a point in74,(7), thenx is a fixed point of

holds even for the fixed points &F2 period two. The action of the map on a point.&%,(7,) is
Theorem 3Let F be a planar symplectic map factorized simply a reflection about the fixed line of;. Therefore, for

into involutions.7;,7, of the types in Egs(10) and (12), & fixed point of period two to exist the sefy,(7,) must
respectively. Ther is a fixed point ofF2 if and only if it contain at least one point together with its reflection about

fulfills the condition the fi_xgd I?ne of7;. One can apply this re;glt to see that this
condition is never fulfilled for the quadratic Hen map, thus
TH(X)=X, explaining why it does not have any real fixed point of pe-
(17) riod two (see[7]).
T2(F(x))=F(x).

. _ A. Planar maps and physical models
Proof. We have already shown thatf satisfies Eq(7)

for n=1, then it is a fixed point of*2. In addition, we will In the preceeding section we showed how the existence of
show that with the new hypothesis on the form of the twoa fixed point is linked to the decomposition of a map into
involutions, ifx is a solution of two involutions. From the general class of transformations
that fulfill the involutive condition we selected a subset. Now
T1(X)=X, we would like to justify this choice by examining the link
(18)  between such transformations and physical models.
T1(F(x))=F(x), In many mathematical physics problems one is interested

) . ) o ) in the study of systems governed by a Hamiltonian
thenx is a fixed point ofF and therefore a trivial solution of 7= 7/(q,p;t) of the type

F2(x)=x.
By writing the equations and taking into account the ex- p?  w? ) e

pression of the two involutions, we obtain F(X,p;t)= STrox +G(X)n;w o(t—nT), (22

1- . .

y= « X, whereG(x) =2 °k°:3gkxk. This system represents a nonlinear
B oscillator. The equations of motion can be readily integrated
(19 thanks to the presence of the periodiéunction. Therefore,
1+ a—2a? (1-a)(2a—1) :
X+aP,(X)=———— " one obtains the map
B B
. X
—(1—a)P.(X). x' coswT —sinwT
(1= a)Pa(0) H(w): (, = 900 |,
. L . y SineT  coswT y+——
It is apparent that the second equation is equivalent to w
(23)
l-«a PL(x)
B X= - 5 ; where[in Eqg. (23)] we have used

henceF(x)=x. As a consequence, only the solutions of Eq. g(x)=— dG(x) y= P (24)
(7) for n=1 are nontrivial roots of™. dx ’ o'
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In the mathematical literaturdl is called the Poincarsec- [ll. EXISTENCE AND STABILITY

tion of the Hamiltonian7(x,p;t). It can be shown that un- OF LOW-PERIOD FIXED POINTS
der the assumption thas(x) is a polynomial function of . . . .
finite order,.7 represents a fundamental object in accelera- The results proved in the preceding section concerning the

tor physics, namely, a FODO cdile., a sequence of focus- ;:;:gw?ntéon of fixed points can be combined to prove the
ing and defocusing quadrupoles separated by drift spaces Theorem 4Let H, () be a planar symplectic map of the

containing a nonlinear element in the thin lens approxima;
tion [2] expressed in normalized Courant-Snyder coordinate@'Ioe

[12]. The rotation matrix in Eq(23) accounts for the linear X X
elements of the cell, whilg(x) is the contribution of the Ho(w): ( ):R(w)(
nonlinear element. Therefore, if one is interested in applica- y Y+ Pn(x)
tions to accelerator physics the proper object to study is

, wel0,m], (29

where P,(x)=X]_,p;x'. Then, (i) if n=2I, at least one
fixed point of period one exists other than the origin for all
), (25)  values ofwe[0,7]; (i) if n=21+1 andp,;<0, at least
one fixed point of period one exists other than the origin for
all values ofwe[0,7]; and(iii) if n=21+1 andp,,;>0, at
least two fixed points of period two exist other than the ori-
gin for all the values ofwe[0,7].
Proof.
(i) For the proof it is sufficient to consider the geometri-
cal meaning of Eq(14).
(i) The same approach as foy can be used.
(iii) In this case it should be clear that the existence of
fixed points of period one cannot be guaranteed for arbitrary
(x’) (cosu sine ) (x) values ofw. To prove this statement we will make use of Eq.
71 =

X

() y+Po(x)

Sinw  COSw

X' CoOsw —Sinw
y' |

with P(x)=2]_,p;x}, T=1, andwe[0,27]. In practice it
is possible to restrict the interval of variation of theto
[0,7]: for w>7r it suffices to considew—7 and to change
the sign of the odd terms in the polynomig},(x). In the
accelerator physics literature, the mdg( w) is called a one-
turn map or transfer map.

Furthermore, it can immediately be seen thig(w) can
be decomposed into two involutions

(26) (17). It can be shown that this condition is equivalent to

y’ sine  —cosw/\Y
) Sinw
and 2x sinw+ Py 1.1(X)C0Sw+ Py 41| X COS— —5— Py 41(X)
x' 1 0 X
T = . 2 =0. (30)
72 (y) (o -1 y+Pn(X)) @

. . . To eliminate the trivial solutions given by the fixed points of
These involutions are exactly the same as those used in ﬂbeeriod one, which satisfy

previous section with

: w
a=cow, B=sinw. (28) 2x tan + Py 1(x) =0, (31)

This particular form of7; permits a stable fixed point at the
origin (which is always the case for physical situatipns we will consider

Sinw
2X sinw~+ Py 1(X)cosw + Py, 4| X COSw— > P2n+l(x)>
T(X)= . (32

w
2X tanE +Ps41(X)

Therefore, the equatio(x)=0 will allow the nontrivial

. 2 1
fixed points of period two to be calculated. It can immedi- —piniilsine]? DY 140 ;)
ately be seen that T(X)~ 1

5 Pon+ X2t 1+O(;>
F(0)= —w>0 V we[0]. (33 L
1+tal']2 E *_p%zii[SianZHlen(szrl) 1+0 ;) .

Furthermore, it is possible to show that the asymptotic beTherefore the sign of the limit depends only upon the sign of
havior of.7 for x— * is given by Py . q: if it is positive then.7{(x)— —oo, which, combined
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with the property in Eq(33), proves that at least two solu- section with the line7;,(7;). In this general case we will
tions of .7#(x)=0 are always present for all values of use the notatioxX,(w)Xnn(w) to take into account the de-
we[0,7]. pendence both om and on the initial point,,x,Xmin- US-

Now we will consider the problem of the stability of the ing these concepts it is possible to prove the following.
fixed points determined so far. The first step is to consider Theorem 5 Given a mapH,(w) decomposed into two
how they can be classified. Close to the fixed poirthe involutions.7;(w),.7, of the types, shown in Eq$26) and
motion is determined by the linear part of the generic fiap (27), the following holds.

i.e., the Jacobian matrik, , (i) If n=2I andp, >0, the point
dFy  dF; P21 (Xmin(@))
(AX’) X W (AX) + (higher orders. (34) Xmin( @) = | Xmin( @), = 2 (38)
N A ! . . :
y @ '9_':2 y is hyperbolic over the whole intervale[0,7].
2 (i) If n=2I andp, <0, the point
whereF,; andF, are the two components &f Therefore the P (Ximad @)
stability of the fixed point is determined by the eigenvalues Xmaxd @) = | Xma{ @), — — 5 (39
(\1,\,) of F . Owing to the area-preserving property they
must satisfy the condition;A,=1 so that only three situa- g hyperbolic in the whole intervabe[0,].
tions are allowed: (i) If n=21+1 andp, ,,<0, the points
A, AeC, A=A} (elliptic case, Py 1 (X @)
. Xmin( @) = | Xmin( @), — 2 — |
N, h2eR, Ni#\, (hyperbolic casg (39
) —\ .= i P2+ 1(Xmad ©))
N,h2eR, N;=\,=1 (parabolic case Xenaod @) = | Xemand @), — + Zma
In the following we will make use of the concept of Poincare
index of a map. Given a closed curve that does not pass are hyperbolic over the whole intervale[0,7].
through any fixed point of a map, the index of7%, J,, is Proof.
defined as the number of times the vector (i) It can be seen immediately that there exists a valye
B such that forw €[ w, 7] there will be only two fixed points of
V(X)=F(X)—=X, Xe? (36)  period one, namely, the origiiX,ig) andXm(w). If we con-

) . ) sider a closed curve” surroundingXyig andXpin(w), thenJ,
circles the origin as the point moves along”. is the sum of the indices of the two points. The origin is
Itis clear thatd. is a function with integer values. More- gjjiptic by definition; therefore it has an index efl. Hence

over, some properties of such a function are readily deduceq(.mm(w) must be hyperbolic, i.e., with an index ef1. Oth-

(i) I depends continuously on the curie Furthermore, — gryise3_ would be equal tor2, but it can be shown that no
when the magF is dependent on certain parameters, the iNtqontinuous map can satisfi;= + 2 for any closed curve.
dex depends smoothly on the same parameters. Furthermorex,,,(w) remains hyperbolic even fase[0,0,].

_ (i) A curve enclosing only one fixed point will have an | fact, in this interval it moves along a monotonic branch of
index equal to—1,+1,+1 according to the classification of e cyrve 7, (7,) and no bifurcation can occur. Therefore
the fixed point: hyperbolic, elliptic, or hyperbolic with inver- ;5 stability cannot change.

sion, respectively. o _ _ (i) The same approach as f6J can be used.
_ (iii) The index pf a curve enclos_lng dlff_erent fixed points (iii) In this case it is always possible to find a valsg
is the sum of the indices of each fixed point. such that only three distinct fixed points are present, namely,
(iv) The index of a closed orbit df is +1. the Origin Xorig, Xma{®), andX(w). The origin is elliptic
~ We will now return to the specific mapd,(w). Let US  (index +1) by construction; therefore three possibilities are
indicate withx; , i=1,.. k, thek solutions of the polynomial |t for the stability of the other two fixed points, i.e., their
equation indices could be+1 and+1, +1 and—1, or —1 and—1,
P.(x)=0 37) respectively. The first case is forbidden as it would give a
n ' global index of+3. The second is not allowed because two

It is clear that &;,0) are fixed points of,(0). Furthermore, ©ut of the three fixed points would give an index 6.

we define He_nce only t_he last possibility is_ compatible with the prop-
erties of the index. Moreover, this result can be extended to
Xmax™= Max X; , the interval [0,0;] as no bifurcation occurs along the
i=1,..k branches of the curve7;,(7,) swept by the fixed points.

_ This proves the theorem.
Xmin= Min X;.
e A similar statement holds for the fixed points of period two.
Theorem 6Given a maH,, ., ;(w) decomposed into two
For w#0 the fixed points(X;.x,0) and (Xy,in,0 will move  involutions .7;(w),7, of the types shown in Eq$26) and
along a branch of the curv&;, (7,) according to the inter- (27), such thatp,, , >0, there exist two fixed points of pe-
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riod two, X;(w)=(Xy(w),y1(®)) and X;=(Xz(w),y,(w))
with X4 (@) <Xpmin @nd X,(w) >Xmax, Which are hyperbolic
over the whole intervab e[0,].

Proof. By using Eq.(17) it is clear that there exists a
value w; such that forwe[0,w;] only three fixed points of
period two exist: the origix,,y and what we have called,
andx,. It is easy to show that the mag,, . ;(w) transforms
X, into X, and vice versa; therefore the two points will have
the same stability. Furthermore, they must be hyperbolic as it
is not possible to construct a continuous map with an index
of +2. Again the reasoning can be extended to the whole
interval [0,7r] as in previous cases.

IV. INVARIANT MANIFOLDS OF SYMPLECTIC MAPS

In Secs. Il and Il we discussed the problem of determin-
ing the fixed points of a planar map when it can be expressed
as the product of two involutions and we investigated the
existence of low-period hyperbolic fixed pointg,,. In the
hyperbolic case the two eigenvalues define two linear sets in -2.

the plane,?'//'ﬂ(xhyp) and 7} (Xnyp)» along which the motion ) 2.
induced by the linearized map has an expandsuperscript _ _ y _ .
u for unstableé or a contracting(superscripts for stable FIG. 1. Invariant manifolds and stability domain for theride

behavior. The subscript indicates that these objects are Map- The black area represents the stochastic layer where hetero-
linked with the linear part of the map. The interesting fact igclinic intgrs_ections_ betwee_n invariant manifolds emanating from
that we can extend these sets to the original nonlinearfnap hyperbolic fixed ppmts of d_|fferent order occur. T_he gray area rep-
i.e., it is possible to define two subspaces emanating from thgsents the stability domain. The value of the linear frequency is
unstable fixed point such that these sets, callet{x,,,) and /2m=0.255,

%G(thp), show the same expanding or contracting behavior

v ; small part of these manifolds in the vicinity af,,. More-
Furthermore, it is possible to prove that these sets are act

. . - ver, it turns out that these initial conditions can be chosen
ally manifolds and that the eigenvectorsffare tangential o the eigenvalues of the linearized map provided that their
to the manifolds”™(xy,) at the fixed point. It should be  yigtance to the hyperbolic fixed point is sufficiently small.
evident that these manifolds are invariant sets for the map, Tne interest in studying invariant manifolds lies in their
namely, relation to the stability domain of planar symplectic maps.
LS — opus The stability domain of a planar map is the set of initial
P75 0y)) = 77 Xy (40 conditionsx=(x,y) such that""(x) is bounded for arbitrary

It is clear that a similar definition can be given in the case of/@lues ofn. In [4] it is shown that for the case of the’ hien
higher-order hyperbolic fixed points. In this case, all the preNaP[7] the stability domain is given by the inner envelope

vious definitions and properties hold, provided that the ma/@f the invariant manifolds emanating from the hyperbolic
F is replaced by itsnth iterateF"™. fixed point of period one. In Fig. 1 an example of the stated

From the very definition it follows that the invariant result is shown_: the gray area represents.the stability domain
manifolds have at least one intersection, which is the hyper@"d the invariant manifolds are superimposed. The ho-
bolic fixed point. An additional intersectior,,, is either moclinic oscillations are clearly visible and the agreement
homoclinic or heteroclinic depending on whether the twoP€tween the inner part of the manifolds and the shaded area
intersecting manifolds emanate from the same hyperboliéS IMPressive. Itis worthwhile noting that although the linear
fixed point. Provided the two manifolds are transversal, i.e.fréquency is closed to the 1/4 resonance, it is possible to
nontangential, at the poing,, it can be proven that there reconstruct the fourfol_d symmetry |mpos§d by the resonance
must be other intersections and that the set of intersections fructure simply by using the hyperbolic fixed point of period

countable. The key point is the invariance of the two mani-°"€-
folds. Therefore, unless the two manifolds coincide com-
pletely, which occurs in the integrable case, they will oscil- V. STABILITY RESULTS FOR THE CUBIC MAP

late around each other. In an attempt to generalize the result obtained for the

Due to the area-preserving qhar_acter of _the map, the argggnon map to other planar maps of the typg(w), we wil
enclosed between two successive intersections has to remagﬂjdy a map with cubic nonlinearity, namely

constant. Furthermore, the period of the motion tends to in-

finity as it approaches the hyperbolic fixed point, thus forc- ! X

ing the distance between successive intersections to decrease Ha(w): y’) =R(w) Y+ Pt paxd) (41)
exponentially and leading to larger and larger oscillations

close to the hyperbolic fixed point. using the results on the fixed points obtained previously. As

To construct the whole set®*"(x,,,), it is sufficient to  already shown, such a map can be derived from the Hamil-
iterate many times a set of initial conditions belonging to atonian[Eq. (22)] with
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GX)=—w

P2 53 P34 2.0
3x+4x). (42

Obviously the coefficient of the quadratic term can be set to
one by rescaling the variables. Moreover, the case where
p,=1 andps is a free parameter has already been studied in
[13]. Here then we will consider the simplified cage=0,

thus allowing an analytical treatment of the problem without
losing generality. Therefore, from now on, we will consider
the map

!

X X
Hal o) (y) :R(“’)(w psx’

, pseR, we[0m7].
(43

Having set the quadratic term to zero, it is possible to rescale
the variables such thgi;==*1. In fact, by defining new
coordinates -2.0

X==* \/@ Y=% \/E (44) FIG. 2. Invariant manifolds of the hyperbolic fixed points of
period one and stability domain for the cubic map. The stability
domain is represented by the gray area. The value of the linear
frequency isw/27=0.34, whilepz=—1.

the map(43) will read

! X
(Yr) = R(“’)<Y+sgr(p3)x3)' (45 results of Sec. Il. It should be obvious that there are no real
fixed points of period two in the case whepg<<0. Other-
wise, forp;>0 we have
The first step will be to compute the fixed points of period
one. By using Eq(5),

if p3>0 then there is no real solution, — 2 2
if p3<0 then XLm | * \/ o' " 5@ ' “8)
tanE tal E
w w
2 tan— 2tar — _ 3 _ _ _
oo | = 2 N 2 (46) In this case too the stability can be easily determined and it
: - T ' turns out that, , are hyperbolic for all values abe[0,7].
L2 P3 P3 haix; h bolic for all val abe[0,m]

With all these results to hand, we can perform the
stability-domain analysis of the majEq. (45)]. The first
point will be the study of the dynamics for the limit cases,
namely,w=0 andw= 7. For =0, the map reduces to

As far as their stability is concerned, it is easily found that
the trace of the linearization dfl; (w) is given by

w !
S5tarf —+1 X' =X,
2 49
Tr[HsL(w)]:Z—w 47 (49)
tar? > +1 y' =y+sgnpg)x®

and therefore the two fixed points are hyperbolic for all val-and this recurrence can easily be solved
ues of the linear frequency in the intery@l]. These results
suggest that a straightforward generalization of the result ob-

Xn=Xg,
tained for the quadratic map to the cubic map is not possible. no (50)
In fact, in the case wheng;>0 there are no real hyperbolic
fixed points(in agreement with the results of the previous Yn=Yo+ N Sgr(ps)XS.

sectiong and therefore no real invariant manifolds to be used
in the determination of the stability domain of the map.
Hence we are forced to look for higher-order fixed points.Therefore every initial condition is unstable as it tends to
The natural choice is to consider fixed points of order two.infinity under the iteration of the map.
This task can be made considerably easier by applying the For w=1, R*(7)=1; thereforeH(m) has the expression
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X =—X, g 2

6D &

, 3 P 1.8 -
y'=—y—sgr(ps)x". £

5‘1 6

The general solution of the previous recurrence is /
1.4
Xn=(—1)"Xo, 12 — y
(52) f

Ya=(—1)"yo—(—1)"n sgr(ps)xg
0.8 L
and again we have instability for every initial condition. r
In the general case @+0, the stability domain has to be o6
analyzed using the invariant manifolds, i.e.,p§<0 one L
should use the hyperbolic fixed points of period one together
with the related manifolds. Alternatively, ;>0 then the
fixed points of period two should be used to compute the
related invariant manifolds. o
This fact has been checked by performing some numerical
simulations. In Fig. 2 the results fgr;=—1 are presented.
The shaded area represents the stability domain, i.e., initial FIG. 3. Stability domain as a function of the linear frequency for
conditions that stay bounded under the iteration of the maghe cubic map [§3=—1). The solid line represents the minimum
In the simulations, 10 000 iterates of the map have been usdddius of the stability domain, computed by direct iteration of the
to check the stability of the initial conditions. The invariant map. The points represent the minimum distance from the origin of
manifolds emanating from the hyperbolic fixed points of pe-the invariant manifolds.
riod one are shown in the same plot. It is impressive that the
invariant manifolds are able to reconstruct even the finest (jj) If H,(w) is of odd order, i.e.,n=2k+1 and

details of the stable region. This is due to the heteroclini(‘p2k+l<o, then again hyperbo”c fixed points of period one

intersections: the invariant manifolds emanating from th%)qst fOf(UE[O,’JT]. This case can be treated in the same way
fixed points of lowest period are connected to each other angs the one above.

to other manifolds through heteroclinic intersections. This  (jii) If H.,(w) is of odd order, i.e.,n=2k+1 and

mechanism allows the boundary of the stable area to bg,, ,.>0, then hyperbolic fixed points of period two exist.

reached from outside. _ _ The invariant manifolds related to these fixed points deter-
To check that this result is truly general and that it doesmine the stability domain fowe[0,7].

not depend on a specific value of we have computed the
stability domain as a function of the parameigfor the case
wherep;=—1. In Fig. 3 the solid curve represents the mini- | 5
mum radius of the stability domain, i.e., the radius of the
largest disk embedded in the stable domain. Hence we take
into account only the connected part of the stable area
around the origin, disregarding the stable islands that could
possibly exist. The points shown in the same plot are com-
puted using the invariant manifolds. More precisely they rep-
resent the minimum distance of the manifolds from the ori-
gin. Once again the agreement is impressive, thus reinforcing
the result: the stability domain is given by the inner envelope
of the invariant manifolds.

Finally, we will consider the case whepg=1 for a spe-
cific value of the linear frequenciw=0.255. In Fig. 4 the
stable area is showishaded regiontogether with the invari-
ant manifolds emanating from the hyperbolic fixed points of
period two. As in the previous examples, the agreement is
excellent.

At this point of our analysis, we can summarize the situ-
ation as follows. -1.5

0.4

\\‘ll\\]\\l\‘\r\\‘\l\\‘ll\l]\ll\‘lj;J

0.15 0.2 0.25 0.3 0.35 0.4 Q.45 0.5

Linear Frequency (®/27)

(i) If H,(w) is of even order, i.e.n=2k, then real hy- -1 15
perbolic fixed points of period one exist fare[0,7]. These FIG. 4. Invariant manifolds emanating from the hyperbolic fixed
fixed points can be used to construct the invariant manifoldgoints of period two for the cubic map with linear frequena@s
and to compute the stability domain as the inner envelope 6£0.255 andp;=1. The gray area is the stability domain as com-
such manifolds. puted by direct iteration of the map.
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15.0 15.0

-15.0

-15.0 ' 15.0 -15.0

FIG. 5. Phase-space portrait of the 2D model of the SPS lattice. -15.0 150

) FIG. 6. Invariant manifolds of the hyperbolic fixed point of
VI. A REALISTIC MODEL: THE CERN SPS period one for the 2D model of the SPS lattice. The gray area

To conclude this analysis we will present some resultdepresents the stability domain as computed by direct iteration of
obtained for a more realistic model. We have applied the® one-turn map.
approach based on the invariant manifolds to a lattice repre- ] o ]
senting a 2D version of the CERN Super Proton Synchrotro®€en set tow/27=0.636, which coincides with the value
(SPS. normally used in the experiments.

This machine has a symmetry of order six, with FODO  T0 apply the approach used for maps of typg w) it is
cells of approximately 90° phase advance. In addition to thé@€cessary to determine the fixed points of the iiftap (54)].
linear elements, there is a certain number of nonlinear magthe hyperbolic fixed points of the mapZ have been com-
nets, namely, sextupoles and octupoles. The sextupoles haRéted with the help of the progragoTTo [16-18. GIOTTO
a twofold function: to correct the chromatic effects produced?!lows the phase space of a generic 2D map to be visualized
by the quadrupoleé108 elementsand to extract the beam and, at the same time, it has the capability to perform the
by exciting the third order resonan¢@ elements The oc- computation of a certain number of dynamic indicators that
tupoles are used to control the instabilities due to collectivetre useful in the analysis of the map under consideration. For
effects. instance, it can compute the fixed points of arbitrary period

In the past years the SPS has been used to perform eXsSing a bisection method9]. As an example, we show in
periments of nonlinear dynami¢4]. For these studies, the Fig. 5 the phase space of the map in Ef). Some invariant
SPS is set up in a configuration where the eight extractiofurves are clearly visible together with a chain of islands of
sextupoles are powered with currents ten times stronger tha#griod five. o _
during normal operation, allowing the introduction of strong ~ From the whole set of hyperbolic fixed points, the one
but controlled nonlinearities. The octupoles are switched offthat is furthest from the origin was chosen. Then the invari-

In this configuration the real transfer map of the SPS carnt manifolds were computed using the standard approach
be approximated very accurately by composition of the eighPreviously defined. The choice of the fixed point does not
transfer maps corresponding to the eight extraction sextunfluence the result as the different manifolds are always
poles plus the linear elements in between, the chromatic sexonnectedthis is actually the key point of our methpdn

tupoles being neglected. Therefore the one-turn map can dag- 6 we show the results. As usual, the gray area represents
written as the stability domain as computed by direct iteration of the

one-turn map of Eq(54). The invariant manifolds are also
X' =M(X)=Mjo---oMg(X), (53  superimposed on the same plot. As for the simple model of
the cubic map studied in Sec. V, we found excellent agree-
WhereMj represents the transfer map of tj’tﬁ extraction ment between the stability domain and the inner envelope of
Sextupo|e p|us the linear elements up to tl]]e'ﬂ.)th sextu- the invariant manifolds. The stable islands in the Iarge sto-
po]e_ These maps have been Computed using the prograﬁl‘ilastic Sea are perfectly reproduced, as is the border of the
SIXTRACK [15]. The global mafM has been transformed into Stable area, thus showing the generality of the method pro-
normalized coordinates to deconvolve the rotation generate@osed here.
by the linear elements. The one-turn map then reads
y' = 2(y)=R(w)e S (y), (54) VII. CONCLUSIONS
In this paper we have presented the properties of the fixed
whereR(w) represents a rotation matrix, whilé¢” incorpo-  points of a class of planar area-preserving maps that can be
rates the nonlinear part of the map. The linear frequency hadecomposed into involutions. This peculiarity allows the
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problem of finding the fixed points to be simplified and somegeneral, by presenting an application to a realistic model
results on the existence of hyperbolic fixed points of lowbased on the lattice of the CERN Super Proton Synchrotron.
period (one or twQ to be proved. Furthermore, we have In this case too the stability domain can be accurately repro-
shown the connections between these maps and acceleratafisiced using the invariant manifolds.
We have outlined how it is possible to use invariant mani-
folds to reconstruct the stability domain of a map decom-
posed into involutions, avoiding the direct iteration of a set ACKNOWLEDGMENTS
of initial conditions, in order to test their stability. This ap-
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