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Abstract 4

Abstract

If the ocean is in a statistically steady state, energy balance is a strong constraint, suggesting

that the energy input into the world ocean is dissipated simultaneously at the same rate. Energy

conservation is one of the most important principles in the natural world. However, the study

of energy balance in the oceanic circulation has long been overlooked. Mink and Winch (1998)

proposed that energy is needed to maintain the meridional overturning circulation and they

also concluded that the wind energy input into the world ocean constitute the most important

part. Since then, many estimates on the wind energy input have been given with a focus on

different time and spatial scales.

It is well known that it is the air-sea momentum flux (wind stress) that actually drives

the ocean circulation, especially the upper layer circulation. Due to the difficulties of directly

measuring the wind stress, different algorithms were proposed to relate the wind stress with

the wind velocity and other related atmospheric and oceanic variables. Different algorithms in

fact produce quite different wind stresses, which may leads to spurious estimates in the wind

energy input into the world ocean.

The thesis is organized as follows. In chapter 1, we try to understand the difference of four

bulk algorithms, and conclude that different bulk algorithms may yield the wind energy input

differences of 20%. Comparison of 4 different wind stress dataset were presented in Chapter

2. However, we do not determine which product is the best. In Chapter 3, a simple numerical

experiment was executed and some preliminary estimate on the effects of introducing the wind

stress dependence on the oceanic surface velocity were given. The ECCO data computation,

however, does not produce the results as expected and some explanations are given.

Thesis Supervisor: Carl Wunsch

Title: Cecil and Ida Green Professor of Physical Oceanography



Chapter 1

Bulk Formulas

Knowledge of near-surface wind over the ocean is a key parameter for the investigation of

many oceanographic, meteorological and climatic processes. Prior to the advent of spaceborne

scatterometers, the temporal and spatial resolution and quality of ocean wind measurements (to

a large extent from merchant ships) were far from satisfactory. The global wind field provided

by the operational numerical weather prediction (NWP) has a better resolution, but the models

are limited by our knowledge of the physical processes and the availability of data. Now the

spaceborne scatterometers have demonstrated the capability for measuring the near surface

wind velocity (both speed and direction) under clear and cloudy conditions, day and night.

However, wind velocity itself is not what matters. Dynamically it is the momentum flux at

the air-sea interface (wind stress) that drives the oceanic general circulation. In the context

of energy input, the dissipation of the ocean energy will be the same as the energy input into

the ocean provided that the ocean is in a statistically steady state. Wind energy input into

the ocean through the air-sea interface constitutes the most important part. The dot product

of wind stress and oceanic surface current velocity defines the energy input rate. From the

atmospheric aspect, a good quality wind stress dataset is essential for the quantification of the

wind energy input.

Due to the difficulties of direct measurement of wind stress, wind stress is usually parametrized

as T = paCD Ua ,, where pa is the atmospheric density, Ua is the atmospheric speed and CD is

called drag coefficient, which is a function of wind speed, atmospheric stratification, humidity

and oceanic surface current, etc. However, the parametrizations of the drag coefficient have

been debated over the past decades. Consequently, the uncertainties due to both the wind

velocity and the parametrizations of the drag coefficient contribute to the uncertainties of wind

stress and then the energy input into the ocean.
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1.1 Bulk formula: theoretical background

The wind stress, exerted by the atmospheric flow over the sea surface, is essentially the momen-

tum exchange between the atmosphere and ocean, denoted as T7 = pau'w' and 7 = pav'w'. The

Reynolds flux w'z' can be determined by measuring the time or space series of w', u' and v' and

then calculating their mean product. This method, referred as covariance or eddy-correlation

method, is the only way to directly measure the flux. Many other indirect approaches were also

created due to the difficulties of direct measurement. For simplicity, different bulk algorithms,

based on theories and observations, were proposed and have been widely used in most numerical

models of air-sea interaction processes.

Since the momentum, sensible heat and latent heat fluxes couple together, it is not easy

to separate one physical process from the other two. The latent and sensible heat flux will be

discussed together with the momentum flux.

Wind stress, by definition, is the product of atmospheric density and the vertical turbulent

flux of zonal momentum

X = Pau'w', 4 = Pav'w'. (1.1)

Note that this quantity can be measured at all altitudes.

In the atmosphere, at the bottom of the planetary boundary layer, a surface layer, whose

depth depends on stability but is usually less than 10% of the total boundary layer depth,

exists and it is maintained entirely by vertical momentum transfer by the turbulent eddies.

Observations indicate that the surface momentum can be represented by a bulk formula (e.g.

Brunke, et al 2003)

u'w's = -CDS(U - UO); v'w' = -CDS(v - vo). (1.2)

where Cd is called the drag coefficient, u and v are the zonal and meridional wind speed, u0o and

v0o are the ocean surface velocity. S = /(u- o)2  ( - vo2 + w~ is the near-surface wind

speed with the inclusion of convective gustiness wg (S = /(u - uo) 2  (v- 0) 2 otherwise).

wg is defined as w, = Ow,, where 3 is a coefficient and w, is the convective velocity scale,

w, = (- ,*,z )1/ 3.  (1.3)0V
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where 0, is the virtual potential temperature, 0,, is the scaling parameter for virtual potential

temperature and zi is the height of the atmospheric boundary layer.

The drag coefficient is a function of boundary layer stratification, specific humidity, the

difference between the atmospheric and oceanic current velocity, and ocean waves, etc. Many

different algorithms were proposed to parametrize CD, to be discussed in more detail in the

following section.

Monin-Obukhov similarity theory (Foken, 2006) states that in this layer

| - o 1 z z
S_ [ln( ) ,(z)] (1.4)

U* K zo L

where z is the height above the ocean, zo is called aerodynamic roughness length, K = 0.4 is the

von Karman constant, ilo is the ocean surface velocity and u, is the friction velocity, defined as

U2 ,2 + 72 | (1.5)

L is the Monin-Obukhov length, the height at which mechanically produced (by vertical shear)

turbulence is in balance with the dissipative effect of negative buoyancy,

L = Tu* (1.6)
ngw'T'

where T is temperature and T, = T(1 + 0.61q) is the virtual temperature, and q is specific
z

humidity; 4 is a universal function of of the dimensionless height z = -. ( is called stability
L

parameter. When L is negative with a small magnitude, is negative with a large magnitude,

which corresponds to large instability due to buoyancy. Positive values of ( correspond to

stable stratification. When the boundary layer is neutrally stable, L is infinitely large and the

stability parameter ( = 0. This function may vary with different algorithms.

The universal function b proposed by Paulson (1970) is widely accepted and gives a good

fit to the data (Hogstrom, 1988)

S= 21n[(x + 1)/2] + ln[(X2 + 1)/2] - 2tan-1 (x) + 7r/2 (1.7)

where x = (1 - 16)0 ° 25

If the atmosphere is neutrally stable, ( = 0 and ),m(0) = 0, and Eq. (1.4) reduces to

IN - io 1 Z
In -l(-) (1.8)

, K ZO



1.1. Bulk formula: theoretical background 8

Combining Eqs. (1.1, 1.2, 1.5) yields the relation between the drag coefficient, the wind

speed and the friction velocity,

2

|- o| CDN2 [ - j CDN (1.9)

K/2

where CDN =(lnz/zo)2 If the convective gustiness is not included and = 0, CD = CDN, SO

CDN is usually called the neutral drag coefficient, where z is the reference height. Note that

here CDN is defined to be the function of the same z0o as used in CD. From Eq. (1.9), the drag

coefficient Cd is technically determined with the knowledge of z0o and (. Notice that

PaCND(UN - UO) 2 = Pa /) n(zzo)2 = pau, (1.10)

It is readily seen that

T = PaCDS(u - o) 2 = PaCND(UN - uo)2  (1.11)

Traditionally, the oceanic surface current velocity is neglected considering the fact usually

uo < u. However, recent studies show ignoring the ocean current dependence in the wind stress

significantly increases the calculated global energy input to the oceanic general circulation. The

removal of the stress dependence on the ocean surface current artificially removes the oceanic

damping over the regions of strong currents.

Latent and sensible heat flux

The latent and sensible heat flux are defined respectively as

E = paLvw'q' (1.12)

H = PaCpw'O' (1.13)

where L, is the latent heat of evaporation, C, the specific heat at constant pressure, q the

specific humidity and 0 the potential temperature. Based on the scaling parameter for wind or

friction u,, the scaling parameters for humidity q, and potential temperature 0, are defined as

w q1q = (1.14)
U,
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0, -= w (1.15)

uq, u*,
By defining turbulent exchange coefficients CE =- u and CH (q and

S(qs - qS) S(0, - Oa)
qa are the surface and near surface atmospheric specific humidities; 0, and Oa are the surface

and near surface air potential temperatures), the turbulent fluxes are directly related to the

meteorological measurements

E = paL,CES(q, - q.) (1.16)

H = PaCpCHS(O - Oa) (1.17)

In general, the coefficients Cd, CH and CE are functions of wind speed, atmospheric stability,

ocean current, and waves, etc.

Monin-Obukhov similarity theory also states that for potential temperature and specific

humidity
0 - 0 1 z

q-q 0  1 z (1.18)
0* K Zoo L

q - o 1 z z
S[ln( ) - q(-)] (1.19)

q* K ZOq L

where zoo and Zoq are the roughness length corresponding to potential temperature and specific

humidity; e0 and Op are also universal functions (Paulson, 1970).

Atmospheric winds are essential for reliable computations of CD, CE and CH. However, the

satellite-derived wind speeds are equivalent neutral wind (ENW) speeds instead of the actual

winds (Risien and Chelton, 2008). Up to now, the definition of ENW is somewhat ambiguous.

In general, there are two definitions. The equivalent neutral wind speed is commonly defined

as the mean wind speed that would exist under the neutral atmospheric stratification. Neutral

drag coefficients and roughness lengths can be determined according to this definition.

If convective gustiness is neglected, Eq. (1.9) is written as

rKC- 1/2 = 1n- -z m (1.20)
z 0

If one considers the case of neutral stratifications where m = 0, the drag coefficient and

roughness length might be defined as CdN and ZON, respectively, where the subscript N indicates
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neutral stratification. Now Eq. (1.20) reduces to

CN/2 = In z (1.21)
ZON

The relation between Cd and CdN can be obtained from combining Eqs. (1.20, 1.21)

Cd = (Cd 2 - l I ON-2 (1.22)
K K ZO

In interpreting Eq (1.22), the relation between the drag coefficient, the neutral drag coefficient,

the roughness and neutral roughness, it must be remembered that these parameters refer to

the same wind speed at a reference level. The corresponding wind stresses may vary due to

different stratifications, and so do the roughness lengths.

As is commonly known that the scatterometers measure surface stress instead of the surface

wind itself (refer to Chapter 2 for details). The observed radar backscatter is calibrated to

equivalent neutral wind speed according to the following definition. Roughness length and

stability functions consistent with the atmospheric observations are used to calculate the ENW

with the atmospheric stratifications term in the modified log-wind profile set to zero. With

this definition, the conversion of wind stress to the ENW is straightforward regardless of the

atmospheric conditions at the time of measurement (more details below), and vice versa (Risien

and Chelton, 2008).

1.2 Bulk Algorithms: Comparison

Because wind stress, sensible and latent heat flux couple together, they are computed simulta-

neously in all bulk algorithms. Eqs. (1.4, 1.6, 1.18, 1.19) can be rewritten as

C = u.(z0, q*)

0* 0*(ZOO, )

q,= q*(zq, ( )

Now there are four equations with seven variables (u,, 0,, q,, zo, Zoo, Zq and (). Three more

equations are needed to get the drag coefficients and the corresponding fluxes.
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Bulk algorithms differ in how they parametrize the exchange coefficients and the representa-

tion of roughness lengths for wind, temperature and humidity to provide three more equations.

Here several algorithms, which are generally believed to be useful, are chosen to study the drag

coefficient difference and the energy input difference associated with different algorithms.

2.1 ECMWF Algorithm (ECMWF)

The algorithms in the ECMWF forecast model (Beljaars 1994) uses the Monin-Obukhov

similarity theory. In the computation of scalar wind speed, the convective gustiness is included.

The roughness lengths for momentum, heat and moisture are parametrized as

0.018u2 0.65 x 10-6
zo = * + (1.23)

g u,

6 x 10- 6  9.3 x 10- 6

Zot = and z0q = (1.24)

The surface humidity over salt water is usually depressed by around 2% compared to that of

pure water. However, this effect is not included in this algorithm. It might be an essential

factor in the computation of the surface latent heat flux under strong wind conditions.

With proper initial conditions (u,, 0,, q,, zo and (), a few iterations are all that is neces-

sary to yield the converged u,, 0,, q, z0o and ( associated with the given atmospheric speed,

stratifications and specific humidity. The corresponding wind stress, latent and sensible heat

flux can be calculated accordingly.

2.2 University of Arizona Algorithm (UA)

Zeng, et al. (1998) developed a new bulk aerodynamic algorithm. It is similar to the

ECMWF algorithm with some modifications. It differs slightly from the ECMWF algorithm in

the parametrization of roughness length for momentum flux

0.013u2 0.11
zo - + - (1.25)

g U*

where g = 9.81N/m 2 and v is air kinematic viscosity.

However, parametrizing the roughness lengths for heat and moisture is quite different (Brut-

saert, 1982)

ln(zo) = lr( z) = 2.67Rel/ 4 - 2.57 (1.26)
Zot ZOq
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where Re = u,zo/v is the roughness Reynolds number and v the kinematic viscosity of air.

The salinity effect coefficient 0.98 was applied in this algorithm,

q8 = 0.98qsat(Ts) (1.27)

In the computation of the drag coefficient and corresponding wind stress, latent and sensible

heat flux, only a few iterations, with proper initial guess, are needed to produce the results

because the atmospheric layer is usually very close to neutrally stable (Zeng, et al. 1998).

2.3 Liu and Tang Algorithm (LT96)

The LT96 algorithm is the one usually used to convert the in situ observed winds to the

neutral-stability winds for the purpose of calibration of the scatterometer data produced by an

inverse transfer function (this will be discussed in Chapter 2).

LT96 proposed that
0.011u2 0.11v

o = + (1.28)
9 U*

htu*
8,L

hqu*

where ht and hq are the height of the potential temperature and specific humidity sensors.

If the neutral winds whose z0o and ( are consistent with the observations are provided (e.g.

satellite derived ENW), it is straightforward to compute the stress. Combining Eqs. (1.8,

1.23,1.25,1.28) produces z0o and u,. The corresponding stress and neutral drag coefficient are

then computed according to the definition.

2.4 Large and Yeager 2004 (LY04) Algorithm

The LY04 algorithm is widely used in oceanic models including the MITgcm (Marshall,

1997). The concept of equivalent neutral wind is used in this algorithm. Based on the fact

that quite a few field experiments show that the neutral drag coefficient tends to be a fimction

of only wind speed at a reference level (e.g.10m) under the neutrally stable conditions. The

neutral drag coefficient CDN, at 10m above the ocean, is usually written as

CDN = (aUN + b + cUloN) x 10- 3 (1.29)
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where a, b and c are generally functions of U1ON and determined by the data. For the LY

algorithm, a = 2.70, b = 0.142, and c = 0.76. When UlON is infinitely small, CDN is infinitely

large, so a minimum Umin is usually set in the computation to avoid the singularity.

The transfer coefficients for evaporation, CE, and sensible heat, CH are given as follows

1000CE = 34.6 /D (1.30)

1000CH 18.0 C if stable > 0 (1.31)

32.7,CD if unstable C < 0

Instead of parametrizing the roughness lengths, the LY04 parametrized the neutral drag coef-

ficient directly as functions of neutral wind speed. In contrast to other algorithms, while doing

the iterations, the potential temperature and specific humidity data have to be shifted to 10m

above the ocean to use the above parametrizations if the given data are not on that level. The

details will not be discussed here.

The LY04 algorithm is not alone; there are quite a few similar parametrizations along this

track. For example, based on Large and Pond (1982), Dittmer (1977) and Schacher (1981),

Trenberth, etc (1989) proposed that

0.49 + 0.065U10N if UlON > 10ms - 1

103Cd = 1.14 if 3 < UlON < 10ms - 1

0.62 + 1.56U 0'N if UlON < 3ms- 1

As in other algorithms, the use of these algorithms also require the knowledge of the wind

profile gm, and necessary iterations to reach converged solutions.

As discussed in the introduction, the wind stress essentially depends on the difference be-

tween the atmospheric speed and the oceanic surface speed instead of the atmospheric speed

itself, so does the drag coefficient. Initially, most of the bulk algorithms exclude this depen-

dence. However, this can be introduced easily by replacing the atmospheric speed with the

difference.

Different algorithms produce different drag coefficients and wind stress. Because the atmo-

sphere is nearly neutrally stable, it is interesting to see the difference under this circumstance.

In this example, the wind stress drag coefficient and the coefficients for the sensible and latent
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flux decouple. For the ECMWF, UA and LT96 algorithms, two equations for u, and z0o are

used to yield CDN as a function of U10N. For the LY04 algorithm, it is even easier because CDN

is directly parametrized as a function of UlON.

If the boundary layer is neutrally stable, the LT96 algorithm, for example, is reduced to

0.011u 2  0.11v
Zo -- +

g U*

rUN
U* In( )

where UN is the atmospheric neutral winds. With proper initial guess of zo and u,, a few

iterations yield the converged z0o and u,. The corresponding wind stress and drag coefficient

are readily available. If the wind stress is available, u, can be computed by definition. the

computation of zo and UN is straightforward using the two equations above.

Fig. 1.1 display the drag coefficients as a function of wind speed under the neutral-stability

conditions for the four algorithms. The four curves have similar patterns. A minimum value is

found for all four. The values of U for the minimum are mathematically computable, which

are 1.86, 2.72, 2.89 and 5.95 for ECMWF, UA, LT96 and LY04 algorithms, respectively. These

values differ significantly due to different parametrizations. It is interesting that when U tends

to zero, the LY04 drag coefficient tends to be infinitely large, while other coefficients seem to

reach constant values (little is unknown).

The LT96 and UA algorithms are very close at low wind speed (U < 3); while U < 3, LT96

values are a little smaller than UA values. For the LY04 algorithm, the drag coefficient CDN

has a minimum at U = 5.95m/s. CDN increases with the increase of U when U > Uo; CDN

decreases when U < Uo. CDN tends to infinity when U approaches 0. Because of this behavior,

the drag coefficient generated by LY04 is significantly different from any other algorithm under

low wind speed conditions (e.g. U < 1). In fact, the algorithm itself (at least in MITgcm) also

sets a minimum wind speed of U = 0.1 to avoid super large values of Cd.

At the range of 5 < U < 20, CD(ECMWF) > CD(UA) > CD(LY96) > CD(LY04) and the average

values are (1.59, 1.47, 1.41, 1.34) x 10- 3 . The ECMWF is around 19% larger than the LY04

coefficient. It is expected that the produced ECMWF stress is roughly 19% stronger than the

LY04 stress.
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Figure 1.1: Neutral drag coefficient as a function of neutral wind speed (m/s). The neutral

wind speed can be described either as the atmospheric neutral speed or the difference between

the atmospheric and oceanic surface speed.
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Figure 1.2: Wind stress as a function of neutral wind speed (m/s)
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Fig. 1.2 shows the corresponding wind stress as a function U. In contrast to the Cd

variation, the wind stress 7 increases monotonically with ENW. Since the equivalent neutral

wind removes the stability effects, the stronger the ENW, the larger the stress. Apparently

between 10 < u < 20m/s, TECMWF > TUA > TLT > TLY04. The wind stress approaches zero

when U tends to zero as expected, and the LY algorithm decreases much more slowly than the

other algorithms.

Based on the same wind velocity data, different algorithms produce different drag coeffi-

cients and consequently different wind stresses. The neutral-stability winds are the best wind

(velocity) data available (Risien and Chelton, 2008). However, the converted wind stress from

the wind data can be quite different if different bulk algorithms are used. It is still questionable

to say how good the satellite wind stress data are without understanding which bulk algorithm

is better. For other wind stress data, different wind velocity data may be used in the calculation

and it is too early to tell the difference without a direct comparison. In the next Chapter, four

different datasets will be compared.



Chapter 2

Comparison of Different Wind Datasets

As discussed in the Chapter 1, wind stress plays a dominant role in driving the oceanic circu-

lation. More than half of the energy necessary to sustain the meridional circulation is from the

wind work on the ocean surface current (Munk and Wunsch, 1998; Wunsch and Ferrari, 2004).

The dot product of wind stress and surface current produces the energy input to the ocean,

which may be an important parameter which controls the meridional circulation. However, al-

though many different wind stress datasets are available and their key features are similar, they

differ in many aspects. In this chapter, four different datasets, including the stress datasets

from Scatterometer Climatology of Ocean Winds (SCOW), National Centers for Environmental

Prediction (NCEP), European Centre for Medium-Range Weather Forecasts (ECMWF), and

Estimating the Circulation & Climate of the Ocean (ECCO), are compared in detail.

2.1 Description of different datasets

2.1.1 SCOW Datasets

The QuikSCAT mission was proposed to measure sea-surface wind speed and direction under

all weather and cloud conditions over the world ocean, and it was initiated as a "quick recov-

ery" mission to help reduce the ocean-wind vector data gap created by the loss of the NASA

Scatterometer (NSCAT) on the Japanese Advanced Earth Observing Satellite (ADEOS), which

ceased functioning when ADEOS failed on June 30, 1997.

Spaceborne scatterometer measurements are highly indirect. Scatterometers transmit mi-

crowave pulses to the ocean surface and measure the backscattered power received from the

instrument, from which the normalized radar cross section of the sea surface (o0 ) can be calcu-

lated. ao is calculated from the basic radar equation (Naderi, et al., 1991). The received power

is the fundamental measurement; it (also ao) is determined by the radar frequency (v), polar-
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ization (p), incident angle (0), and the surface geometry (essentially surface wind speed vector

V): ao = G(V, 0, v,p), where G is known as a geophysical model function (GMF). The model

function should be derivable from theory alone in principle. However, because of the inadequacy

of our understanding of both the relationship between the wind and the surface geometry, and

the interaction between electromagnetic radiation and the sea surface, empirical models were

established to relate ao and the surface wind. The surface wind velocity (both speed and direc-

tion) can be retrieved according to the inverse transfer function: V = g(co, 0, v, p). Because g

is usually a multivalued function, several measurements of Co from different azimuthal angles

are used to uniquely estimate the wind speed.

The estimated wind speed is actually the equivalent neutral-stability wind (ENW) at the

height of 10m above the sea surface. ENW is the wind that would exist if the atmosphere

were neutrally stable. The ENW can be converted from actual wind measurements easily using

the Liu and Tang (1995) algorithm if the simultaneous measurements of air and sea surface

temperature (stratification) are available. Thus a much larger database of ENW is available

than that of direct measurements of stress for the purpose of calibration.

The scatterometer is essentially a stress measuring instrument (Risien and Chelton, 2008).

However, because the database of direct measurements of stress for calibration purposes is

inadequate, the geophysical model function is constructed as a function of wind speed vector

instead of wind stress vector and the radar backscatter is calibrated to the ENW at a height of

10 m above the sea surface. To the extent that the atmospheric boundary layer is near neutrally

stable over most of the world ocean, ENW seldom differs by more than a few tenths of a meter

per second from the corresponding actual wind. At times and locations of significant deviation

from neutral stability, the two will differ.

Conversion of ENW to wind stress using bulk aerodynamic algorithms is straightforward, re-

gardless of the actual stability at the time of measurement, since roughness length and stability

functions corresponding to ENW are consistent with observations (Liu and Tang 1996).

Traditionally in the bulk algorithms, the wind stress is parametrized only as a function

of atmospheric speed at a reference level (T = paCdu ). However, recent studies indicate

that stress actually depends on the difference between the surface wind and current speed

(7 = paCd(ua - uo) 2) (Duhaut and Straub, 2006). What scatterometers indirectly measure is
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in fact the surface wind stress instead of the wind itself. Recent studies (Chelton, et al., 2004;

Risien and Chelton, 2008) reveal that many smaller scale ocean current features appear in the

satellited derived date, especially when derivatives are considered.

2.1.2 NCEP Datasets

The NCEP in cooperation with National Center for Atmospheric Research (NCAR) has been

using a frozen state-of-the-art global data assimilation system and a database as complete as

possible to produce a retroactive record of more than 50 years of global analyses of atmo-

spheric fields in support of the rewarch and climate monitoring communities. The recovery of

land surface, ship, aircraft, satellite, and other data are involved. The analyses are produced

by combining observations derived from the global observation network with the short term

forecast. The details can be found in Kalnay et al. 1996 and Kistler et al. 2000.

Operational NCEP analyses are based on a three-dimensional variational (3D Var) system;

the underlying spectral model is run at a T170 resolution (about 10) and exhibits 42 sigma

levels between the ground and 2 hPa. Wind stress is one of its outputs.

2.1.3 ECMWF Datasets

The ECMWF re-analysis project is in two phases. The first, ERA-15 generated re-analyses

from December 1978 to February 1994. The second, ERA-40, begins in 1957 (the International

Geophysical Year). ECMWF analyses are produced by a four-dimensional variational (4D Var)

data assimilation system, using a T511 spectral model (about 0.40 resolution); the 60 hybrid

model levels cover the atmosphere from the ground to 0.1 hPa.

2.1.4 ECCO Datasets

As part of the World Ocean Circulation Experiment (WOCE), ECCO was established in 1998

as a consortium of Scripps Institute of Oceanography (SIO), Massaschusetts Institute of Tech-

nology (MIT) and Jet Propulsion Laboratory (JPL) in an effort to combine a general circulation

model (GCM) with diverse observations to produce a quantitative depiction of the time-evolving

global ocean state. In contrast to meteorological "data assimilation", driven by the compelling
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need to forecast the weather, the dominant problem in oceanography at present is to under-

stand how the system works due to the difficulties of obtaining enough observations. "State

estimate" is the term used by oceanographers. Automatic differentiation (AD) tools were ap-

plied to generate tangent linear and adjoint code for ocean circulation and climate studies. The

system has been used to study problems of ocean state estimation. The MIT general circulation

model (GCM) outputs and oceanic observations have been combined to generate the estimate

(Wunsch and Heimbach, 2007). Essentially, the ECCO data can be considered the sum of the

model output and the corresponding adjustment.

ECCO system uses NCEP wind data to drive the model. Consequently, the ECCO stress

data are actually the adjusted NCEP data.

2.2 Data Comparison

Four different datasets are compared in this section. The SCOW data are the 8-year monthly

mean data ranging from September 1999 to August 2007 and they are on a 0.250 latitude by

0.25' longitude grid spanning from 0.125 0 E to 0.125 0 W and 69.875'S and 69.875oN. The NCEP

and ECCO data are obtained from the same time range and the spatial resolution is 1' by 10;

the ECMWF data are generated from 7-year data from 2000 to 2006 because the 2007 data are

not available.

Although there are also some problems with the scatterometer data, summarized at the

end of the chapter, they are still considered the best available wind data (Chelton and Freilich,

2005; Risien and Chelton, 2008). The comparison is based on the differences between different

data with SCOW data.

2.1 SCOW and NCEP

All the features known to exist in the surface stress are prominent in both the SCOW

and NCEP stress fields as displayed in the upper and middle panels in Fig. 2.1. Located in

the tropics between about 30'N and 30'S are the trade winds. The Intertropical Convergence

Zone (ITCZ), also known to mariners as the doldrums, is located north of the equator. Year-

round westerlies prevail in the middle latitudes (between 30' and 600). The westerlies can be

particularly strong, especially in the southern hemisphere, where there is less land in the middle
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latitudes to cause friction and slow the winds down. The Indian Ocean monsoon completely

reverses its direction from January to July and vice versa.

The NCEP data are on 10 x 1' grid and they were bilinearly interpolated to the SCOW

0.25' x 0.25' grid for the purpose of comparison.

Although the major structures in the NECP wind stress are similar to those in the SCOW

data, the magnitude difference between NCEP and SCOW data, displayed in the lower panels

(Fig. 2.1), shows a few easily visible regions where there exist significant differences. In the

Southern Ocean, the NCEP stress magnitudes are generally 35% stronger than SCOW stress.

The greatest differences occur in the Indian Ocean section of the Southern Ocean. It is believed

that the inadaquacy of in situ ship observations leads to the deviation of model states from

the SCOW states in the Southern Ocean. An interesting exception is that there are patches

of regions in the South Indian Ocean along the meandering Agulhas Return Current (ARC)

between 40 and 450S and 25 and 70'E where the the SCOW wind stress magnitudes are stronger

than the NCEP wind stress fields, consistent with what O'Neil et al., (2003, 2005) described:

the wind stress is intensified over warm-core eddies and decreased over cold-core eddies shed

from the ARC. The higher resolution of SCOW data make it possible to resolve the features

producted by the coupling between surface winds and meso-scale oceanic eddies. The unstable

marine atmospheric boundary layer created by the air-sea temperature difference and secondary

circulations perpendicular to SST fronts induced by the temperature constrasts associated with

the SST fronts are the mechanisms that contribute to the wind variations over SST fronts. The

weakness of the NCEP stress in the eastern tropical Pacific (cold tongue region) may also be

attributed to the coupling between SST and surface winds.

In January, to the northwest of the north Pacific, the NCEP stress is weaker than the

SCOW stress; to the northeast the NCEP stress is stronger; the NCEP stress is stronger in

North Atlantic. In northern winter, the NCEP stress is significantly stronger than the SCOW

stress in the Labardor sea; however, they differ only slightly in summer.

In the oceanic interior, a basic balance is the Sverdrup relation, which is the balance between

the planetary vorticity and the wind stress curl (vertical vorticity). Wind stress curl also

generates Rossby waves, which, with free Rossby waves, play a critical role in the oceanic

dynamics. A good quantification of wind stress curl fields is clearly important. The upper and



2.2. Data Comparison 23

middle panels in Fig. 2.2 display the wind stress curl fields for both SCOW and NCEP data

and their differences (bottom panels). The two maps share similar patterns: in the northern

subpolar gyre, the curl is generally positive; in the northern subtropical gyre, it is negative. The

band of positive curl around 8 to 10'N coincides with the location of shallowest thermocline

in the tropical Pacific (Wang, 1999). From 25 to 45°S, the wind curl is broadly positive, while

south of that in the Southern Ocean, the wind curl is negative. In the Northern Hemisphere,

the wind stress curl is much stronger in boreal winter than that in summer; while in the

Southern Hemisphere, the wind stress curl becomes only slightly stronger from January to July

as displayed in Fig. 2.2.

Although sharing many similar features, the SCOW and NCEP differ in some aspects.

Compare the top and middle panels, the NCEP wind stress curl is more like a smoothed

version of the SCOW stress curl. The SCOW data clearly show some fine structures associated

with the air-sea interaction. For instance, right above the Gulf Stream in the Atlantic, a very

thin and long line of positive curl distinguishes itself from the surrounding negative curl. It

is not possible to observe such small-scale features in coarse resolution datasets. As shown in

the bottom panels of Fig. 2.2 , in the boreal winter, north of 350 N and south of 40'S, the two

curls differ significantly. However, there is no readily visible regions where the NCEP data are

uniformly stronger or weaker.

The wind stress divergence has no dynamical effects on the ocean current, but it is an

indicator of the coupling between the ocean and atmosphere. For example, the interaction

between SST and wind is clearly visible in the divergence maps. As seen in Fig. 2.3, alternating

patches of divergence and convergence occur in the Pacific and northwest Atlantic and all over

the Southern Ocean. These regions are full of strong eddies, warm or cold. Right above the

warm eddies, the wind stress is intensified; while over the cold eddies, the wind stress is reduced.

Divergence/convergence is developed while the wind is from cold/warm to warm/cold eddies.

The NCEP data do not resolve such small-scale signals. The parallel bands of strong divergence

and convergence in the tropical Pacific are attributed to the coupling of wind stress and the SST

fronts on both sides of the equatorial cold tongues too. Different from the meso-scale eddies,

the cold tongues have much larger scale and the divergence and convergence are distinguishable

on both SCOW and NCEP maps.
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The magnitude difference is shown in the bottom panel of Fig. 2.3. Not surprisingly, the

NCEP divergence is broadly smaller than the SCOW divergence in the eddy-rich regions. For

some unclear reason, the NCEP divergence is much stronger in the Labrador sea.

The longitudinally averaged zonal stress for SCOW, NCEP, ECMWF and SCOW is shown

in Fig. 2.4. As described above, in the Southern Ocean, the SCOW is significantly weaker than

NCEP stress, while the difference in the region from 40'S to 350 N is small. North of 35 0 N, they

differ.

2.2 SCOW and ECMWF

The ECMWF stress (EA) maps are displayed in Fig. 2.5.They share similar features with

SCOW maps. The magnitude difference as shown in the bottom panels of Fig. 2.5 has similar

features with the difference between NCEP and SCOW datasets, which indicates that the NCEP

and EA data are quite close as shown in the zonally averaged zonal stress. In the Southern

Ocean, the EA magnitudes are even a little stronger than NCEP data. Not surprisingly, the

EA magnitudes are much larger in the Southern Ocean. In the north Pacific between 1600E

to 130 0W and 25°N to 35 0 N, EA stress is much stronger than the SCOW stress. It is noticed

that the EA stress is weaker than NCEP stress to the northwest in the north Pacific, as shown

in Fig. 2.6, the magnitude differences between NCEP and EA stress. In other regions, the

differences are small.

The middle and bottom panels in Fig. 2.5 show the magnitude difference of wind curl

and divergence. These maps are very similar to those differences between NCEP and SCOW,

indicating that the NCEP and EA data do not differ qualitatively. NCEP and EA data differ

in details, but direct comparison of NCEP and EA data does not show significant differences

with the only exception that EA divergence is a little stronger in the eastern tropical Pacific

2.3 SCOW and ECCO

According to the definition, ECCO = NCEP + adjustment. It is interesting to know what

the adjustment is. However, since the SCOW data are considered the best available data, the

comparison is still based on SCOW data.

It is interesting that Fig. 2.4 shows that the adjustment tends to increase the magnitudes of

the zonal stress at local maxima, although the NCEP data tend to be large already compared

to the SCOW data.
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Fig. 2.8 shows the wind stress magnitude, curl and divergence maps for the ECCO data.

Although sharing similar patterns, ECCO data clearly have a larger magnitude. Although the

ECCO data are on a 10 by 10 grid, they show much more fine-scale features in the curl and

divergence maps. In the subpolar gyres of north Pacific and Atlantic, large patches of negative

curls are visible, which are not found in the NCEP maps.

The difference between ECCO and SCOW data is displayed in Fig. 2.9. The magnitude

difference shows strong seasonal dependence as shown in the top panels. In January, the two

are close in the tropical Indian ocean; while in July, the ECCO becomes dramatically weaker.

Also in the north subpolar Pacific and Atlantic Ocean, the ECCO stress is much stronger than

SCOW stress in July; while in January, the difference is not that large. There are more regions

clearly visible in the maps. However, the curl and divergence maps do not show evident seasonal

dependence.

2.3 Summary

In this charter, with the assumption that SCOW data are the best, all the maps are based on

the comparison with SCOW data, NCEP, EA or ECCO data.

The coupling of the wind stress with oceanic SST in the vicinity of strong SST fronts is

an important air-sea process. The availability of the high resolution SCOW data provides

the possibility to observe the oceanic signals from the wind stress. As discussed above, this

contributes most to the divergence difference maps.

The zonal stresses for ECCO, SCOW, NCEP and EA averaged over longitude are displayed

in Fig. 2.4. Among these stresses, ECCO stress has the maximum magnitude, while SCOW

magnitude is the smallest. The SCOW, NCEP and EA data match quite well from 40S to 400 N.

The disagreement becomes significant in the westerlies in both hemisphere and the disparity is

especially large in the Southern Ocean.

Among these products, ECCO data are the only one which are produced by oceanographers

instead of meteorologists. The divergence and curl maps surprisingly show some small scale

structures. Whether the small scale features are physical or not is an interesting question. Here

we do not investigate much, but a simple power density spectrum analysis is performed for the
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divergence map in January along 57.63°S, where there is no land along this line, as shown in Fig.
2 1

2.10. It is surprised to see that there are 4 minima, corresponding to 2RL, RL, -RL, and -RL

from left to right, respectively, where RL = 27rRcos(57.62)/360=59.54km, and R = 6371km,

the Earth Radius. This coincidence is a strong indication that the smaller features may be

nonphysical. It may be associated with model smoothing configurations. Further investigation

is needed.

Although it is believed that the SCOW data are the best available data, there are problems

and the data can also be contaminated by quite a few factors:

1. Rain effects. The data can be contaminated by rain in two ways: a. in the presence

of significant rain, the microwave radiation can be scattered or even absorbed by raindrops in

the atmosphere. The microwave propagation through the atmosphere differs significantly from

that in nonraining conditions; b. the centimetric roughness caused by the raindrops hitting the

sea surface is not correlated with what is generated by the wind stress. Different algorithms

were developed to detect rains.

2. Sea-ice. Accurate wind velocities can not be retrieved from ao measurement if significant

ice is formed in the observation area. Sea-ice detection algorithms were used to differentiate

ice-covered and ice-free ocean.

Also at present, there is no solid theoretical background to connect wind velocities and 0o.

"Geophysical Model Function" was developed from observations for practical purpose. The

output of the GMF is the equivalent neutral-stability wind and conversion of ENW to wind

stress produces different results using different algorithms as described in Chapter 1. As a

result, the use of SCOW data still needs to be cautious.
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Figure 2.1: The SCOW and NCEP wind stress fields (magnitude and vector) in January and

July are displayed respectively. Wind stress vectors are plotted on a coarse 30 x 30 grid for

clarity. The bottom panel shows the magnitude difference.
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Figure 2.2: Global SCOW/NCEP wind stress curl maps in January and July are shown respec-
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Figure 2.3: Global SCOW/NCEP wind stress divergence maps in January and July are dis-

played respectively. In middle panels, the NCEP divergence shows strong striping (not sure

why). The bottom panel displayed the divergence magnitude difference.
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Figure 2.4: Longitudinally averaged zonal stress as a function of latitude for January and July.

North of 40N, there are some wiggles on the stress curves. The zonal stress has its maximum

at around 50S in the Southern Ocean and it has two minimum at around 12N and 22S.
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Figure 2.5: ECMWF wind stress maps: stress magnitude (top panels), curl (middle panels),

and divergence (bottom panels). Wind stress vectors are plotted on a coarse 30 x 30 grid for

clarity.
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Figure 2.7: ECMWF and SCOW wind stress magnitude difference maps: stress magnitude (top

panels), curl (middle panels), and divergence (bottom panels). Wind stress vectors are plotted

on a coarse 30 x 30 grid for clarity.
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Figure 2.8: ECCO wind stress maps: stress magnitude (top panels), curl (middle panels), and
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Figure 2.9: ECCO and SCOW wind stress magnitude difference maps: stress magnitude (top

panels), curl (middle panels), and divergence (bottom panels). Wind stress vectors are plotted

on a coarse 3' x 30 grid for clarity.
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Chapter 3

Wind Energy Input Reduction

Although the energy input into the ocean itself is an interesting scientific question, the study

of the energetics in the ocean circulation has been little discussed over the past years, and

only been investigated sporadically until its physical significance on the meridional overturn-

ing circulation (MOC) was elaborated by Munk and Wunsch (1998). They pointed out that

mechanical energy was required for the maintenance of MOC. they argued that to maintain

the density stratification under the present strength of the meridional overturning circulation

(MOC), a mechanical energy input of about 2.1TW is required. It was estimated that 0.6-

0.9 out of the total 3.7TW from tidal dissipation might be available for abyssal mixing. The

question arises as to where the other part of the energy is from?

3.1 Energy input

In Wunsch and Ferrari (2004), the candidates of energy input were determined from the basic

equations. They are wind, heating/cooling, evaporation/precipitation, geothermal forcing, and

atmospheric loading.

A. Wind

Acting on the ocean surface, winds can directly generate oceanic kinetic energy and potential

energy. So far, wind power input (WPI) has been estimated separately according to their

individual processes.

win, = ().- 4= - + - VE + -, + p'W (3.1)

The first term on the right hand side is the work done by the wind on the geostrophic current.

The recent estimate is about 0.8TW, calculated by Wunsch (1998). Because ? ug = UEk ' Vp/p,
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it can also be explained as the work done by the Ekman transport against the hydrostatic

pressure. Since

(. g)=(d, Vp/p) (Epp)+ J E d, (3.2)

it implies that this part of the energy input can be effectively converted into the oceanic

potential energy by the work of w against the ambient pressure field, which supports the

general ocean circulation.

The second term is the energy input to the Ekman current. The present estimate was

estimated by Wang and Huang (2004a) at 2.3-2.4TW. This part of energy input is likely to be

used to support and maintain the turbulence and mixing in the Ekman layer. However, the

fraction that can be used to support the general ocean circulation is unclear.

Energy input to the inertial motions was estimated by Alford (2003) and Watanabe and

Hibiya (2002), using slab models. Although the details of their methods are different, they gave

an estimate with only slight difference (0.5 or 0.7TW).

In Wang and Huang (2004b), it is argued that the WPI into the ocean is primarily produced

through surface waves. Based on empirical formulas and numerical model results, the number

was estimated to be 60TW. Although it appears to be a large number, the contribution of this

energy input to the general circulation is not clear.

The fraction of the WPI input, which can penetrate to the abyssal ocean and be used to

sustain the MOC, is unknown. However, it is believed that even if it is very small, it, together

with the tidal input, is enough to sustain the MOC.

B. Heating/cooling

Using a specific definition of turbulence, Paparella and Young (2002) argued that the horizontal

convection (hearting and cooling are at the same geopotential) is nonturbulent in a boussinesq

approximation. Recently, Wang and Huang (2005) extended Paparella and Young's result to

nonboussinesq fluids. They argued that although the ocean may work as a heat engine (like

the atmosphere, although the configuration is different) under the configuration of horizontal

convection , the efficiency of the ocean is only 7 x 10- 7 , equivalent to a negligible energy input

of 1.5 x 10-3TW compared to the tidal dissipation.
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C. evaporation/precipitation and geothermal forcing

Up to now, there is no reliable estimate on the energy input by evaporation and precipitation.

The total geothermal heat flux of 32TW produces a rate of heat-to-gravitational-potential-

energy about 0.05TW, probably a non-negligible but still small, driving force of the abyssal

circulation.

As pointed by Munk and Wunsch, wind energy input constitutes the most important part.

In this chapter, our interest is the energy input from the wind stress. However, instead of

directly calculating the WPI, we focus on discussing the possible uncertainties associated with

the wind stress T.

3.2 Uncertainties in the WPI

The dot product of wind stress and oceanic surface current velocity defines the wind energy

into the surface ocean Wwind = 7- Us, where T is the wind stress and us is the oceanic surface

velocity (OSV). The bulk formula, - = pCDUa - us 2, is used to calculate the wind stress,

where p is the atmospheric density, CD drag coefficient, Ua atmospheric velocity and ',s OSV.

Because 's is usually much smaller than Ua, it is traditionally neglected in the formula.

However, recent studies show that the introduction of u~i into the bulk formula significantly

changes the wind energy into the ocean. CD, as described earlier, is a function of I, - Us ,

atmospheric boundary layer stratification, specific humidity, etc. In this section, the atmosphere

is assumed neutrally stable, so CD - CD( ca- s)

Wind stress can be written in the following 4 ways with different choices

' = paCD(U a ) K 1Ua a (3.3a)

= paCD( a ) a s •l(Ca s- ) (3.3b)

S= aCD( a - U',8) Pa - sI" (Ai -s) (3.3c)
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' = PaCD( Ja - Uls ) Ua " Ya (3.3d)

Eq. (3.3a) is the traditional wind stress definition; Eq. (3.3b) introduces the OSV in the square

term, but neglects the drag coefficient dependence, which is generally assumed in recent studies

(Xu and Scott, 2008); Eq. (3.3c) further includes the CD dependence; the last one (3.3d) only

has the dependence in the CD term to isolate how this term will change the energy input.

A simple numerical computation

Now it is widely acknowledged that accounting for an OSV in the bulk formula leads to a

significant reduction of the WPI to the ocean general circulation by around 17-35%. The

presence of oceanic mesoscale eddies enhances the dissipation rate at the air-sea interface and

reduces the WPI as illustrated by Xu and Scott, 2008 (Fig. 5). Above an oceanic eddy, if the

OSV is in the same/opposite direction as the wind velocity, the wind stress is reduced/enhanced

by including the OSV, and so does the positive/negative WPI. This explains why the oceanic

eddies, either cyclonic or anticyclonic, serve as damping machines.

Here a simple example numerical experiment was carried out. There is an eddy in an

infinitely large zonal flow uO = 0.Olm/s. The eddy velocity field is written as

Emeso = -V
1000CH Umeso (3.4)

Umeso = R V

where Ro = 50km and V = 0.25m/s. The size of the eddy is defined as the e-folding scale of

V. The atmospheric velocity is set to Us = 10m/s.

Fig. 3.1 displayed the surface velocity vector map. It is readily seen that the circle is

distorted a little bit by the zonal flow. The edge of the eddy is defined by the e-folding scale

(red line). All the following computations are confined to this region. In the computation, the

atmosphere is assumed neutrally stable and the LT96 algorithm is applied.

The WPI maps, computed from Eqs. (3.3a) and (3.3c), are shown in Fig. (3.2a, b) share

similar features. When the wind velocity is in the same/opposite direction as the OSV, the

WPI is positive/negative. In Fig. 3.2a, the positive WPI is stronger than that in Fig. 3.2b;

the negative WPI is weaker than that in Fig. 3.2b.
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Figure 3.1: The eddy field defined by Eq. 3.4. The grid unit is km
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Figure 3.2: The WPI computed from Eq. (3.3a) (A) and Eq. (3.3c) (B). The two maps share

similar features, but the WPI in (A) is everywhere bigger than (B). The grid unit is km.
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Figure 3.3: The difference of WPI computed from Eq. (3.3a) (A) and Eq. (3.3c) (B) and the

difference is positive definite. The grid unit is km.

Evidently, the difference is positive definite as shown in Fig. 3.3. The maximum difference

occurs where the eddy has maximum zonal velocity as expected. The map is not symmetric

about y = 100 because u0 54 0.

This has been demonstrated in many studies (Xu and Scott, 2008; Hughes and Wilson,

2008). Here the focus on the uncertainties associated with different choices of wind stress. The

mean WPI into the eddy for Eqs. (3.3a, 3.3b, 3.3c, 3.3d) are 3.14 x 10- 3, 2.64x 10-3 , 2.57 x 10- 3,

and 3.07 x 10- 3 Wm- 2 , respectively. The corresponding reduction ratio is around 19%, 22%,

2%. The introduction of the OSV dependence in the drag coefficient leads to a small reduction

of a little more than 2%. However, the reduction rate from around 19% to 22% indicates an

average decrease of about 17% relative to Eq. 3.3b. Under this experiment configuration, the

presence of the OSV dependence in both terms provides the most significant reduction of the

WPI. In the computation of the WPI, the OSV dependence in the drag coefficient can not be

neglected although the dependence in the square term dominates.

As discussed in Chapter 1, the use of different algorithms results in different WPI. For

this idealized numerical experiment, the ECMWF algorithm yields a WPI, roughly 20% (ref.
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Chapter 1) stronger than the WPI produced by LY04 algorithm (details are not included, but

the result can in inferred from the last figure in Chapter 1). Now the important conclusion is

that the use of different algorithms may produce uncertainties as large as those resulting from

the inclusion of the OSV dependence in the algorithms.

3.3 The WPI computed from ECCO data

The idealized numerical experiment gives some preliminary results on the WPI. However, the

atmosphere is not absolutely in neutral-stability conditions and there are much more than one

eddy in the ocean. A computation based on the "real" oceanic data is executed here.

The data used here is from the ECCO group. The data span in the Southern Ocean with

a high spatial resolution of 1/6' x 1/60 (Mazloff, 2008). For those who are more interested in

the data, here is the website: http://www.ecco-group.org.

From the estimate by Wunsch (1998), Wang and Huang (2004a, 2004b), Xu and Scott

(2008), etc, the WPI in the Southern Ocean dominates the energy input into the world ocean.

Also the Southern Ocean is full of energetic eddies, cyclonic or anticyclonic. Accordingly, the

Southern Ocean becomes a very interesting region to test the differences associated with the

inclusion of OSV in the bulk formula and the use of different algorithms.

For the time being, we focus the difference resulting from the use of different algorithms and

in the computation, the OSV dependence is neglect. Time evolution of CD for two randomly

selected points is shown in Fig. 3.4. LY04, UA and ECMWF algorithms are applied to com-

pute the corresponding CD. As predicted from the neutrally stable conditions, the ECMWF

algorithm generally produces the largest CD, while LY04 yields the smallest. There are a few

exception points at which the LY04 drag coefficients are much larger due to the nature that

when the wind speed approaches zero, CD tends to be infinitely large.

Associated with the CD difference, different stresses are produced and the corresponding

WPI are surely different. The WPI corresponding to the three algorithms are show in Fig. 3.5

for the year of 2001. It is readily seen that the WPI computed from the ECMWF algorithm

is only slightly larger than that from UA algorithm, but they both are significantly larger

than that from the LY04 algorithm as expected. The mean WPI for ECMWF, UA and LY04
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Figure 3.4: Time evolution of CD as a function of time for two randomly selected points.
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Figure 3.5: The WPI computed from LY04, UA and ECMWF algorithms as a function of

time. The horizontal lines are the corresponding mean values.
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Figure 3.6: The power density spectrum of the WPI computed from LY04, UA and ECMWF

algorithms as a function of time. The frequency unit is s- 1.

algorithms are about 23 x 10- 3, 22 x 10- 3 and 19 x 10- 3 , respectively. The ECMWF algorithm

generates a WPI, which is around 21% stronger than that from LY04 algorithm.

Fig. 3.6 displays the corresponding power spectrum. A diurnal cycle (frequency=1.16 x

10-5s - 1) is observed in the WPI . Around 65% of the WPI is in the timescale between 1 day

and 30 days.

The use of different algorithms results in significantly different WPI. The previous analysis

also indicates a significant different WPI with the presence of the OSV dependence in the

computation of wind stress. However, using the ECCO data, we do not find significant difference

with or without the OSV dependence as shown in Fig. 3.7. The WPI without inclusion of the

OSV dependence is only slightly larger than that without the dependence (22.64 x 10- 3 versus

21.47 x 10-3Wm- 2). Actually, the ECCO wind velocity (not stress), to a great extent, is the

adjusted NCEP wind velocity with oceanic information included. In other words, the ECCO

wind differs from the wind which produces the ECCO oceanic surface velocity. As a result,

including the OSV in the wind stress computation does not leads to a significant reduction of
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Figure 3.7: The difference of WPI computed from ECMWF algorithm with and without the

OSV dependence.

the WPI.

One speculation is that since the SCOW data are the best wind stress dataset available, the

oceanic model driven by the SCOW data will yield the best estimate of the WPI into the world

ocean. From the above analysis, it is concluded that this is not true. First, the SCOW wind

stress already contains the OSV information; second, the oceanic model represents a chaotic

system and the produced oceanic states driven by the SCOW data differ from the oceanic

information contained in the SCOW data. Xu and Scott (2008) did an interesting calculation.

Since the SCOW wind are essentially Ua - i,, the sum of the SCOW wind and the OSV ui

produces the net atmospheric velocity a. Using the SCOW wind stress data and the surface

current data from AVISO gridded merged product of absolute geostrophic velocity compiled

by the CLS Space Oceanographic division of Toulouse (France), the global integrals of 6-year

mean WPI with and without OSV dependence are 0.91TW and 1.20TW, which indicates a

WPI reduction rate of 32%.

3.4 Summary

The wind stress dependence on the OSV in the bulk formula has long been neglected because

the OSV magnitude is much smaller than the atmospheric speed magnitude. With the recog-

nition of the importance of the energy input (especially WPI) into the oceanic circulation,

oceanographers begin to realize although the presence of the OSV in the computation of the
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drag coefficient and wind stress changes the wind stress only slightly, it leads to significant

decrease of the WPI into the world ocean. The difference comes from the oceanic eddy damp-

ing effects as discussed above. The numerous eddies in the ocean, cyclonic and anticyclonic,

reduces the WPI in a way that if the OSV is in the same/opposite direction as the atmospheric

velocity, the positive/negative WPI is decreased/increased.

The nature of the ocean system is chaotic. No matter how good the model is and no matter

how accurate the initial conditions are, the model results will deviate exponentially from the

real states. With the constraints of simultaneous observations, the model may mimic the large

scale circulation well, but the smaller scale (e.g. mesoscale) motions are less well simulated.

However, the WPI reduction is mainly associated with the mesoscale eddies. If the mesocale

eddies are not well simulated, the WPI reduction rate due to the OSV may not be significant,

and that is one reason why the reduction rate from ECCO data is small.

The essence of the ECCO project to use as many data as possible, along with models,

to produce the best atmospheric and oceanic estimate. As a result, the produced wind data

contain the oceanic information, which is another reason why the introduction of OSV does

not reduce the WPI significantly for ECCO wind data.

The WPI reduction rate is significant only when the OSV contained in the wind stress

matchs the corresponding OSV. If the oceanic models are forced directly by the SCOW data,

the computed WPI reduction rate may not be significant just because the simulated OSV differs

from the OSV information contained in the SCOW data. As a result, direct application of the

SCOW data to force the oceanic general circulation models needs to be cautious.

The use of different bulk algorithms to compute wind stress also yields significant difference

in WPI. Generally speaking, among the algorithms discussed here, the wind stress computed

from LY04 is around 20% weaker than that from the ECMWF algorithm, and the corresponding

WPI is accordingly weaker. Conversion of atmospheric velocity to wind stress as accurate as

possible is essential to quantify the WPI into the world ocean.
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