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ABSTRACT

Current electronic patient medical records are based on relational databases that have
been very successful in managing text-based information. Recently, however, complex
data types, such as digitized images, are becoming increasingly important in healthcare.
Unfortunately, existing relational databases are not able to manage these complex data
types in a satisfactory manner. The goal of this project is to study the feasibility of
developing a high-performance image archive that will handle both text and complex data
types. In order to achieve this goal, this project designed and prototyped a medical
imaging archive. The prototype consists of an Informix Universal Server database
engine, an object-oriented database schema, and an application-programming interface
(API). The schema and API are implemented in a software module called a DataBlade.
This DataBlade extends a generic Informix database with the ability to manage medical
information objects as defined in the DICOM (Digital Imaging and Communications in
Medicine) standard. The schema incorporates an extensible inheritance hierarchy, while
the API includes encapsulation of routines and data structures built specifically for
DICOM information. The prototype demonstrates how developers can be shielded from
the complexities of the DICOM standard, yet still be able to store and query the complete
DICOM information model.
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Title: Professor of Mechanical Engineering
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Chapter 1 Background

Within the last ten years, healthcare providers have increasingly adopted electronic

patient records as the method of choice in managing patient information. This industry-

wide movement brought about the development of computer-based patient records (CPR)

based on the relational data model. Although these CPRs have proven quite capable of

managing text-based patient information, they have had limited success in incorporating

digital images into medical records [1]. Specifically, existing relational CPRs cannot

satisfactorily store and query digital medical images which are widely created and

communicated in accordance to the DICOM 3.0* standard (Digital Imaging and

Communications in Medicine) [2].

The remaining sections of this chapter present background information on the

DICOM standard. This Chapter will then conclude with a brief discussion of prior work

in managing DICOM information.

1.1. The DICOM Medical Imaging Standard

In 1983, the American College of Radiology (ACR) and the National Electrical

Manufacturers Association (NEMA) formed a joint committee to develop a vendor

neutral standard for communicating digital medical images. This committee developed

the first two versions of the DICOM standard (ACR-NEMA 300-1985 and ACR-NEMA

300-1988). These versions failed to garner widespread acceptance because they lacked

network support and an explicit information model for radiological information [3, 4].

Thereafter, it was decided that version ACR-NEMA 300-1988 would be completely

redesigned to accommodate network support and a clearly-defined object-oriented

information model [5]. This new design was ratified in whole in 1993 and is known as

DICOM 3.0. DICOM 3.0 is currently the most widely used protocol for communicating

diagnostic medical images in digital format.

The remaining parts of this section is not intended to be a tutorial on DICOM, but

rather, they serve to explain characteristics of the standard that are major drivers in

* Hereafter referred to simply as DICOM.



designing the image archive. These characteristics are that the standard is object

oriented, it defines a highly nested information model, and it incorporates large data

types.

1.1.1. DICOM: Object-Oriented

The DICOM standard is object-oriented because it defines an information model

based on encapsulation and inheritance [6]. Specifically, the model defines objects, such

as patients and images, that have attributes and services arranged in both an entity-

relationship hierarchy and an inheritance hierarchy. Both hierarchies are discussed in

more detail later (Sections 1.1.2 and 2.1.4); this section describes DICOM objects

themselves. There are two categories of DICOM information object definitions (IOD):

normalized object classes (NIOD) and composite object classes (CIOD)*. NIODs contain

only those attributes that inherently describe their corresponding real-world entity.

CIODs, however, contain inherent attributes as well as other non-inherent but related

attributes. For example, DICOM defines a patient NIOD that only contains attributes that

inherently describe a patient, such as name and date of birth. On the other hand, the

standard also defines a computed radiography CIOD that contains attributes describing

characteristics inherent to an X-ray, such as pixel data, as well as related attributes for

interpretation, such as the patient-owner of the X-ray. Figure 1-1 illustrates the general

structure of normalized and composite information objects. In general, a CIOD consists

of information entities (IE), and two of these entities, the Patient and Study entities, are

subsets of their NIOD counterparts. Table 1-1 on page 18 lists the most commonly used

NIODs and CIODs defined in DICOM.

* Normalized and composite object classes are more commonly referred to as normalized information
object definitions (NIODs) and composite information object definitions (CIODs), respectively.



Normalized objects

Patient Study Visit

Composite objects

Patient Patient Patient

Information Entities (IE)
Study Study Study

Series Series Series

ImaOe Overla Curve

Figure 1-1 Relationship between normalized objects (NIOD), composite objects
(CIOD), and information entities (IE) within the DICOM standard. CIODs are
made of IEs. Some IEs, such as the Patient IE and the Study IE, are subsets of their
NIOD counterparts.

There are several important aspects concerning the object-orientedness of the

DICOM information model. First, the model is based on semantically natural

information objects (NIODs and CIODs) and information entities. That is, it is intuitive

for composite objects to be comprised of a Patient IE who may own one or more Study

IEs, for which there may be recursively one or more Series IEs and Image IEs. Second,

although composite object definitions are semantically natural, they are not normalized.

A storage and management system based on non-normalized objects will encounter data

redundancies that eventually will result in integrity problems. So while DICOM, on one

hand, defines a highly natural information model that should be used for the sake of ease-

of-use, it is intimately based on a very non-normalized object model and should be

avoided when implemented in an archiving system. A major effort of this project

involves developing an information model that is fully normalized but is as natural as the

DICOM model.



Table 1-1. Normalized and composite object classes within DICOM

Object Class Class Type
Patient Normalized
Visit Normalized
Study Normalized
Interpretation Normalized
Results Normalized
Computed Radiography Image Composite
Computed Tomography Image Composite
Magnetic Resonance Image Composite
Nuclear Medicine Image Composite
Ultrasound/Ultrasound Multi-frame Image Composite
Secondary Capture Composite
Standalone Overlay Composite
Standalone Curve Composite
Waveform Composite
Visible Light Image Composite

1.1.2. DICOM: Nested Information Model

Recall from the previous section how a Patient IE can have multiple Study IEs where

each Study IE can have multiple Series IEs, etc. This is an example of complex data

where information objects are related to one another by many one-to-many relationships.

Figure 1-2 is a graph illustrating how complex data defined in DICOM can result in a

highly nested information model. This nested structure poses a tremendous information

management problem because queries based on multiple objects can be computationally

costly as they require the reconstruction of nested relationships.

1.1.3. DICOM: Large Data Types

The final important aspect of DICOM is that it defines objects with very large

attributes. For example, a typical diagnostic image object can have pixel data larger than

20 Mbytes. Incorporating very large data streams within object definitions poses several

potential problems. First, query processing requires more complex routines than those

developed for shorter data types, and second, transactions on large data types tend to

impose blocking calls that slow or interrupt other processes. As will be presented in the

next section, many developers have circumvented these requirements by developing



DICOM management systems that do not incorporate the entire DICOM information

model.

1-n
Patient

Visit 1-n
1-n

Study

1-n

Series

1-n 1-n
1-n

Overlay Image Curve

Figure 1-2 A directed-acyclic graph representing a subset of the DICOM
information model for composite objects.

1.2. Prior Work

Since the late 1980's, manufacturers of diagnostic imaging equipment have been

moving toward digital format in lieu of film-based outputs. This industry wide

movement has prompted much effort to develop information management systems to

organize and manage digital medical images. H. K. Huang was instrumental in

spearheading this effort between 1982 to 1992 by developing several picture archiving

and communication systems (PACS) based on either proprietary communication

standards or the earliest versions of DICOM [7, 8, 9]. In 1992, Ratib et al at the

University Hospital of Geneva developed a fully functional medical image archive. This

system pioneered a highly distributed architecture, but its proprietary Papyrus image

format has limited its acceptance [10]. Concurrent to but independent of this

development, Humphrey and DoVan developed one of the first image management

system designed specifically for DICOM information [11]. They used a relational data

model, and as a result, were only able to represent a subset of the DICOM information



model within their database*. To compensate, they used pointers within the database to

reference DICOM files residing outside of the database's management domain for image

data as well as other large unstructured data. To this day, their work serves as the model

for many commercial PACS, including those from AGFA, Siemens Medical Systems,

and GE Medical Systems [12, 13, 14]. In 1992, H.K. Huang and S. Wong [15] extended

their previous work to include support for DICOM and an object-relational mapper. This

mapper serves as the object-oriented interface for their underlying relational database.

The goal of this thesis is to design and prototype a database to support the

complete DICOM information model. The next chapter presents the design goals for this

project.

* For a discussion of the limitations of the relational data model in supporting the complete DICOM
information model, see Section 3.2.



Chapter 2 Design Goals and Specifications

This project studies the feasibility of a commercial grade image archiving system for

managing the DICOM information model. In this study, a design is chosen and a

prototype is developed that can manage the entire DICOM information model while

shielding its users and administrators from the complexities of the standard. The design

process consists of selecting a data model as well as a method for how information is

organized within the model. To this end, design specifications were developed to assist

in evaluating design alternatives. The following sections explain design specifications

for both the data model and its internal representation (schema). In addition to these,

however, another component is required to isolate users and developers from the

complexities of the schema and standard. This project uses an application-programming

interface for this purpose, and its design specifications are presented after those of the

data model and schema.

2.1. Data Model Design Specifications

A data model defines how information is presented to the users of a database. Since

the invention of the modern computerized database, many data models have been

developed, ranging from the older hierarchical and networked data models, to the

currently prevalent relational data model, to the more recent object-oriented and object-

relational data models. In order to evaluate these existing data models for the image

archive, design specifications were developed. They are explained below.

2.1.1. Use Relational Technologies

The selected data model must leverage existing relational database technologies, such

as transaction management, security, SQL, and concurrency control. These technologies

are well developed for the relational database domain and currently serve as industry-

wide benchmarks for new database technologies. Since the prototype developed for this

project is intended to serve as a demonstration of a commercial grade system, this

requirement is essential to the functionality of the archive.



2.1.2. Support User-defined Types and Methods

The selected data model must natively support user-defined data types and access

methods. DICOM defines many information objects with large unstructured attributes

that can be indexed, queried, stored, and retrieve in many ways. For example, the pixel

data of a diagnostic image can be sequentially read or read by random access according

to a variety of optimization algorithms. To accommodate the many ways a DICOM

information object can be represented and analyzed, the selected data model must support

user-defined data types and access methods. This facility allows developers to specify

the internal representation of data as well as support routines for accessing it in a manner

optimized for DICOM objects. This requirement is essential to the functionality of the

archive.

2.1.3. Support Complex Data

The selected data model must support complex data in a natural manner. The

DICOM information model specifies a directed acyclic-graph with many one-to-many

references (see Figure 1-2 on page 19). Since a goal of this project is representing the

DICOM information model within the image archive, the selected data model must have

facilities for representing relationships between highly nested objects. Although nested

objects can be represented, to one degree or another, in all existing data models, their

representations can be awkward or natural depending on the data model used. A detail

discussion of this is presented in Chapter 3.

2.1.4. Support Class Inheritance

The selected data model should support the notion of inheritance. The term

"inheritance" is used here in the object-oriented context: a class can inherit attributes and

methods from another class. Although not mentioned in Section 1.1, DICOM IODs are

highly modular, and related objects extensively share attributes with one another. For

example, the computed radiography CIOD shares over 40 attributes with the computed

tomography CIOD, the ultrasound CIOD, and the magnetic resonance CIOD. Such

sharing of attributes makes it natural for these CIOD objects to be related to one another

in an inheritance hierarchy. The use of an inheritance-based schema promotes the re-use



of class definitions for a more modular and compound schema. These two mechanisms

help shield developers from the complexity of the DIOCM standard. This requirement is

not essential for the functionality of the image archive, but it is a preferred attribute.

This section has outlined the major requirements for selecting a data model for

the DICOM image archive. Chapter 3 presents a thorough evaluation of existing

data models and selects one for this project.

2.2. Database Schema Design Specifications

Database design typically involves 1) identifying data objects to be managed, 2)

designing a schema, and 3) optimizing the schema by resolving and normalizing it. This

project does not involve the identification of objects because they have been specified by

the DICOM standard. This section explains the design specification for the database

schema. Chapter 4 explains the schema design process after evaluating alternative

designs based on the specifications presented here.

A database schema defines the logical relationship between data items and their

integrity constraints. Modem database design uses the entity-relationship (E-R) approach

developed by E. R. Bachman. In this approach, an E-R diagram is developed to model

both the information entities of interest and their relationships. This project uses the

DICOM information model (which is an E-R diagram itself) as the starting point but

makes major modifications to it. These modifications are necessary because the entities

defined in the DICOM model are not normalized, the DICOM model does not explicitly

use object inheritance, and the DICOM model is not optimized for querying information

entities.

Table 2-1 lists design requirements that serve as guidelines for the image archive

schema. Most requirements are self-explanatory, but those that need further elaboration

are noted with an asterisk and are discussed below.



Table 2-1 Schema design specifications

General Requirements
- Must be independent of the application level interface
- Support all DICOM information model entities and data types
- Entity attributes must be consistent with those used in the DICOM standard

Modeling Requirements
- *Be in Fifth Normal Form (5NF)
- *Be self-contained (lossless decomposition and nomenclature conservation)
- *Avoid non-homogeneous class definitions
- *Use type inheritance
- Minimize the number of entities
- *Support expanded query scopes

2.2.1. Minimize Data Redundancy

One goal of modern database design is the minimization of data redundancy within

the schema. Data redundancy is the storage of the same information more than once or

when information that can be derived is stored. Redundancy should be avoided because

it promotes inefficient storage space utilization, complicates updates and data

modifications, and leads to data inconsistency [16]. Data redundancy can occur as a

result of many situations, ranging from simply having class definitions with semantically

identical attributes to more subtle cases involving multi-values dependencies. To

eliminate these redundancies, conditions have been defined that are the basis of the five

normal forms used in relational database design: first normal form (1NF), second normal

form (2NF), Boyce-Codd normal form (BCNF), fourth normal form (4NF), and fifth

normal form (5NF). The explicit conditions defined by these normal forms will not be

presented here because they can be readily found in the literature [16]. Although these

normal forms are most commonly presented in the relational context, they can be

generalized for use with object-oriented schema design. All class definitions used for this

project should be in 5NF to avoid running into data integrity problems.

2.2.2. Be Self-contained

The image archive must provide a reasonable interface to communicate with other

DICOM compliant devices and/or access applications. This interface is dictated by the

fact that when information is communicated between DICOM compliant devices, the data



are typically sent and received as complete NIODs and CIODs. Recall from Section

1.1.1, however, that the image archive cannot store CIODs as they are defined within the

standard because CIODs are non-normalized objects. Instead, the image archive can only

store normalized decompositions of CIODs, but these decompositions must be lossless

decompositions so that the archive can reconstruct the original objects at a later time.

Hawryszkiewycz [17] gives the necessary and sufficient condition for lossless

decomposition as follows

If a class definition, Class_ (X, Y,Z), is defined to contain attributes X, Y,
and Z, its decomposition into Class_lA(X, Y) and Class_IB(X,Z) is lossless
if Y is functionally dependent on X or Z is functionally dependent on X.

In addition to this requirement, the image archive must provide facilities to map

between DICOM specific nomenclature and their internal database representation. For

example, most commercial database environments limit the string length of attribute

names to eighteen characters. DICOM, however, defines many attribute names, such as

the Patient's Mother's Birth Name attribute, that exceed this limit. For the image archive

to be able to handle such attributes, it must provide a mechanism to convert attributes

between a shorter internal representation and the longer DICOM representation. Another

reason why mapping of attribute names is important is because all DICOM attributes are

assigned unique tags, and it is these tags that are more often used to identify attributes.

Mapping between an internal representation, tags, and attribute names is called

nomenclature conservation. Satisfying both lossless decomposition and nomenclature

conservation makes the image archive self-contained because it can reconstruct fully

compliant DICOM CIODs from self-contained internal representations.

2.2.3. Avoid Non-homogeneous Class Definitions

Class nonhomogeneity occurs when a class contains one or more attributes for which

its object instances never or rarely possess values [18]. Having nonhomogeneous classes

can result in inefficient memory usage and can force external applications to make

provisions for handling null values. The latter implication violates one of the

fundamental goals in modem schema design, application level independence. DICOM

CIODs, unfortunately, are highly nonhomogeneous. Two example of DICOM class



nonhomogeneities are in the definitions of the nuclear medicine and ultrasound CIODs

containing mutually exclusive information entities (see section A.5.3.1 in Part 3 of the

standard) and in the definitions of mutually exclusive cine and non-cine modules for

multi-frame and non-multi-frame objects.

2.2.4. Use Type Inheritance (Class Inheritance)

Type inheritance is the ability of classes to inherit attributes and methods from other

classes. When applied to schema design, type inheritance allows for a very modular

schema that promotes re-use of both class definitions and methods and minimizes errors

when defining new classes. There are two aspects to the DICOM information model that

makes it very amenable to using type inheritance. First, recall from Section 1.1.1 that the

DICOM information model is object-oriented, and as a result, associates methods with

objects. Second, the model contains approximately 600 unique attributes, and a typical

image information entity contains approximately 70 or so of these attributes. To provide

developers with an easy mechanism for extending the schema without having to recreate

existing methods or to know about all DICOM attributes, type inheritance must be an

integral component of the schema.

2.2.5. Support Expanded Query Scope

If type inheritance is supported within a schema, the notion of expanded query scope

can be realized. Expanded query scope refers to the ability of querying all sub-classes of

a class inheritance hierarchy using only one query. That is, a query against a parent class

has an expanded query scope if its scope is the parent class and all subclasses of the

parent class. Expanded query scope can be extremely powerful if the underlying schema

is highly modular.

2.3. Application Programming Interface Design Specifications

One major requirement of this project is to develop an image archive that allows end-

users to manage DICOM information without having to know about the details of the

standard. This isolation can be achieved through an application-programming interface

(API). For this project, the API must satisfy the following functional requirements:



provide DICOM views, support DICOM input/output services, and facilitate schema

extensions. Each of these requirements is elaborated below.

2.3.1. Provide DICOM Views (presenting an object interface)

Recall from Sections 2.2.1 and 2.2.2 that the schema only stores normalized

decompositions of CIODs instead of CIODs themselves. Although breaking CIODs into

normal components is a requirement of good database design, there are several

disadvantages to doing so. First, users who are familiar with the DICOM object model

may want to construct queries based on the CIOD model instead of its normalized

version. This is because applications written in the C programming language can use

linked-lists and data structures to construct and process queries more easily if they were

directed against the CIOD model. Second, normal decompositions of CIODs introduce

an abstraction layer that is not defined within the standard, and therefore, can be

perceived by many as a proprietary approach that adds more complexity to an already

impenetrable standard. Third and probably most important, all queries, no matter how

simple, for aggregate information regarding a CIOD requires the reconstruction of the

CIOD from its normalized components. Reconstructions can be simple or they can be

very computationally costly; in which case, they can render the image archive useless in a

large-scale environment.

A solution to all three of the above problems is to use DICOM views. DICOM views

are analogous to views in a relational database or to cached data in fast I/O applications.

For this project, there will be functions defined in the API that construct non-normalized

objects having the same class-composition hierarchies as those defined in the standard for

CIODs*. These DICOM views are linked to their underlying normal representations so

that commands issued against a view are translated into commands on its underlying data.

Figure 2-1 illustrates the DICOM view concept. By using DICOM views, users who

prefer the DICOM object model are presented with that representation, while those who

prefer a normalized version are presented with the actual schema. These views also

eliminate the need for "on-the-fly" reconstruction of CIODs to answer aggregate queries.

* DICOM class-composition hierarchies for CIODs are defined in Annex A of Part 3 of the standard.



DICOM VIEWS

Figure 2-1 DICOM views are constructed from normalized object representations.
Commands issued views operate on their underlying normalized structures.

2.3.2. Support DICOM Input/Output Services

The image archive must support queries requesting individual attribute values and

those requesting entire NIODs or CIODs. Most external applications querying the image

archive will use SQL, but there are two possible ways for them to receive query results.

The first way is where an application requests attributes of objects within the archive and

receives returned values pre-parsed. For example, if the result set of a query involves

more than one value, the SQL interface of the image archive presents the result set to the

application one result at a time so that the application can place each result into separate

memory buffers. In the alternative way, the external application does not ask for an

attribute of an object but for an entire NIOD or CIOD whose attributes satisfy some

predetermined condition. An application that issues such a query still receives data

through the archive's SQL interface, but the returned data will be presented as one large

data stream. That is, all the attributes and values of a returned NIOD or CIOD is treated

as one unit bundled into one data stream, and the access application is required to place

the entire stream into one memory buffer. The format of the data stream will comply

with the DICOM format for data sets as defined in Section 7 of Part 5 of the standard.



Figure 2-2 illustrates both mechanisms by which an external application can receive data

from the image archive.

Pre-Parsed Attribute Stream

a) SWAY_

serdek

Database
DICOM Data stream

b)

Figure 2-2 Two methods for DICOM input/output services: a) First method where
individual attribute values are returned to access applications b) Second method
where complete NIODs or CIODs are sent to access applications as one data stream.

2.3.3. Facilitate Schema Extensions

A schema will usually change throughout the life of its database to accommodate the

changing needs of its users. In addition to changes associated with natural schema

growth, the schema developed for this project must additionally accommodate two types

of changes owing to the fact that it stores DICOM data. First, the DICOM standard

allows for the specialization of DICOM defined IODs by the addition of private

attributes. These extensions are quite common in practice as the standard commonly

defines entities with a sparse set of attributes. Second, the DICOM standard is

considered a large work-in-progress because ACR/NEMA is continuously augmenting it

with new IODs, such as those for waveforms and visible light images. As new IODs are



ratified, users may want to incorporate them into their existing schema. Merely allowing

users to modify the schema is not enough because, in reality, expecting users to

understand the DICOM information model or how it is represented in the schema is

unreasonable. Therefore, the image archive must provide facilities where users can

modify the schema at a level separated from the low-level details present in the standard

and in the schema. For example, consider the case where a user wants to add the

attributes image_attribute_l and image_attribute_2 to the computed radiography image

CIOD at the level of the image IE (see Figure 1-1 on page 17). Without a mechanism

facilitating this extension, the user would need to define a completely new entity within

the database that includes the fifty-three attributes DICOM defines for the CR image

entity as well as the two new attributes. This exercise will undoubtedly require the user

to familiarize himself/herself with the DICOM information model as well as how CIODs

are normalized in the schema.

This project circumvents the above problem by providing an API service that

removes users from the low-level schema interface. The API service creates new objects

by extending existing classes with subclasses (see Section 5.4).

2.4. Summary of Design Specifications

This chapter discussed the major design specifications for selecting a data model,

designing a DICOM specific database schema, and for developing an API that provides

services for schema information objects. We will summarize these specifications before

moving on.

The data model must support highly mature relational technologies such as security,

SQL, concurrency control, and transaction management. The data model must also allow

user-defined data types and routines within the schema to accommodate the many ways

DICOM information entities can be represented and stored. Two other requirements of

the data model are that it supports class inheritance and that it can store complex data

without requiring too many attribute references between objects.

In designing the schema for this project, the DICOM information model is used to

identify all pertinent information objects to be represented in the schema. The DICOM

model is a good starting point for the schema, but it can't be used directly because it is



based on non-normalized objects and it is not optimized for query processing. Table 2-1

lists the major requirements set forth for this project in designing the database schema.

Of these requirements, the most notable ones are that the schema has to be application-

level independent, be self-contained, be based on normalized objects, and incorporate

type inheritance.

The schema alone is able to store all DICOM information objects, but it lacks

facilities to provide DICOM specific services. An API is used to provide these services

and to isolate the details of the schema from developers and database administrators who

may not be familiar with the DICOM standard. Services that this API will provide are

DICOM view functions, DICOM input and output functions, and schema extension

functions.
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Chapter 3 Conceptual Design of the Data Model

In the previous chapter, design specifications for the data model, database schema,

and API were explained. This chapter explains the evaluation of several data models for

this project.

The research involved in the development of a database data model is a massive

undertaking that typically requires years and the cooperation of many individuals.

Acknowledging this fact, this research project does not aim to develop a new database

data model. Instead, this project uses work others have done in this regard and applies it

to the diagnostic medical imaging domain. Specifically, this project evaluates existing

database data models and selects the most appropriate one for managing DICOM

information. This chapter gives an overview of existing data models and then present a

discussion of the strengths and weaknesses of each with respect to managing DICOM

information.

3.1. Overview of Existing Data Models

Since 1970 when E. F. Codd proposed the relational data model, much research has

been done to refine relational transaction management, concurrency control, scalability,

security, and distributed processing [19]. Today, these database technologies are so

mature and reliable that they are the administrative hearts of most commercial and

government institutions. Although the relational data model has served its purpose well

for the last 15-20 years, more and more shortcomings have been discovered in recent

years as demand for the management of complex data has risen [20]. Most notable of

these shortcomings is the lack of a natural mechanism to represent nested information

entities and a limited set of supported data types. Taken together, these limitations

preclude the storage of unstructured data, such as images and audio, and render the

representation of complex data difficult at the very least. These limitations have,

however, provided impetus for the database community to develop novel alternatives.

Three recent developments have come to the fore as promising alternatives: object-

oriented databases, object-relational databases, and object-relational mappers [21]. These

alternatives, along with the relational data model, comprise nearly all database models



currently in use or in development. Therefore, this project only evaluates these models

and does not provide any treatment for older models like the hierarchical and network

models.

3.2. Relational Data Model

The relational data model is based on relational theories in mathematics. Specifically,

a relation is a set of ordered tuples defined over a set of not necessarily distinct domains.

Each domain is itself a set. For example, given the sets (domains) D1 , D2, and D3, there

can be a relation R defined over these domains such that each tuple in R contains one

element from each of the three domains. The logical representation of this relation is a

table containing three columns, one for each domain, to store attribute values. Each table

row is a tuple representing an instantiation of the information entity represented by the

table.

3.2.1. Advantages

The relational model is the most mature data model to date. There are several

advantages of using this model for storing DICOM information. First, relational

databases are so robust that many hospital information systems (HIS) for patient

admissions, discharge, and transfer data use relational databases. Additionally, recall

from Section 1.2 that many healthcare institutions have implemented commercial picture

archiving and communications systems (PACS) based on this data model. This large

number of HISs and PACSs currently in use is a good reason for using the relational

model for the image archive because it makes interfacing the archive with legacy HISs

and PACs much easier. A second reason for using the relational model is that it is just as

good as any other model in handling certain types of data [22]. For example, non-

complex data involving short string, integer, or real data types are probably most

efficiently indexed using B-tree indexing schemes developed for the relational model

[23]. Another advantage of this model is that many standards have been developed for it

to promote interoperatability between commercially developed relational databases and

their access applications. These standards include the Structure Query Language (SQL),



Open Database Connectivity (ODBC), and Java Database Connectivity (JDBC)

protocols.

3.2.2. Disadvantages

As mentioned previously in Section 3.1, the recent move within the healthcare

industry toward managing digital images has exposed weaknesses of the relational data

model. The most obvious weaknesses stem from the fact that the relational model is not

object-oriented. Relational databases lack built-in mechanisms to support object

inheritance and to map between objects and tables. Without inheritance, an object-

oriented information model stored in a relational database loses all of the semantic

content represented in its inheritance hierarchy. Without this semantic content, the

database has no mechanism to support such facilities as expanded query scope (see

Section 2.2.5). The relational database also cannot present object-oriented interfaces (see

Section 2.3.1) defined by object-oriented information models. Take for example a

relational database used to store DICOM information. Within the database, all DICOM

CIOD and NIOD instances will be disassembled and represented as rows in tables. Since

the database cannot map between objects and their tabular representations, it exposes to

its users essentially all attributes of all objects. Clearly, this is a violation of DICOM's

use of encapsulation where objects expose their attributes only through strictly defined

interfaces.

Other weaknesses of the relational model are related to its limited set of supported

data types. One direct consequence of this limitation is the poor support for nested or

hierarchical data. Consider, for example, trying to represent the relationships of the

directed-acyclic graph illustrated in Figure 1-2 (page 19) using tables that can only store

dates, strings, integers, etc. In Figure 3-la, the one-to-many relationship between Patient

and Visit is completely represented within the Patient table. This representation is quite

natural, but it contains redundancies because Tom's DOB is stored more than one once.

Figure 3-lb illustrates an alternative normalized representation that removes this

redundancy from the Patient table, but this method introduces an extra table for the

relationship between Patient and Visit. This extra table is an artifact of the normalization

process because the columns of the Patient relation can only store simple data types (see



Sections 4.1.1 and 4.1.2 for a discussion of alternative ways of representing one-to-many

relationship without artifact tables). Extra tables like these can be quite numerous in

complex information models, and they are one of the many reasons behind the high cost

of processing queries involving multiple objects. Another problem of having limited data

types is the lack of native support for large unstructured data. In current relational

databases, large data objects are stored as Binary Large Objects (BLOBs) where they

reside outside of these databases' logical boundaries for concurrency control, logging, etc.

[23]. These BLOBs are only represented within the database by pointers that reference

their operating system files. As a result, large objects cannot be searched, indexed or

read by random access, and if an external agent changes them, additional code is required

to propagate these changes to the database.

1-n Patient Patient DOB Visit Visit Date Study

(a) Visit Tom 2/2/73 234 234 2/2/94 AF23
1-n Tom 2/2/73 354 354 3/5/97 HJ45

Study Bob 3/4/39 201 201 1/3/67 LK56

S Patient Patient DOB Visit Date Stud

(b) Visit 1 l-n Tom 2/2/73 234 2/2/94 AF23
1-n Tom 2/2/73 354 3/5/97 HJ45

Study Bob 3/4/39 201 1/3/67 LK56

Patient Visit
Tom 234
Tom 354
Bob 201

Figure 3-1 Two methods for representing one-to-many relationships between the
patient, visit, and study entities. (a) This is a non-normalized representation
because DOBs are stored more than once for patients who have more than one
visits. (b) This is a normalized representation using an extra relationship table.

3.3. Object-Oriented Data Model

Object oriented databases (OODB) evolved in the mid-to-late 1980's following the

development of object-oriented programming languages such as Smalltalk and C++. An



object-oriented database can be defined as a system that extends an existing object-

oriented programming language with persistent data, concurrency control, query

facilities, and other database capabilities [24]. These databases use a data model that

incorporates unique object identifiers, data encapsulation, and inheritance. Unlike the

relational data model, there is still no internationally accepted standard for defining an

object-oriented data model (OODM).

3.3.1. Advantages

A clear advantage of the OODM is the ability to directly map between the DICOM

information model and its persistent store. DICOM objects stored in an OODB are stored

in data structures native to an object-oriented programming language. If these data

structures are closely modeled after DICOM object definitions, there is very little

mismatch between how DICOM defines objects and how they are represented in the

database. Additionally, there will be very little difference between what the database

exposes for its interface and what DICOM defines for object interfaces. Several other

advantages of the OODM come from its support of object inheritance. When an OODB

stores an object of a class belonging to an inheritance hierarchy, the database retains all

of the object's relationships within this hierarchy. These relationships can then serve as

the basis for defining rules for expanded query scopes. These relationships also facilitate

the creation of classes by allowing new classes to inherit existing class attributes and/or

methods.

Another benefit of inheritance is the re-use of objects and methods. Within an

inheritance hierarchy with many classes that share many attributes, method inheritance

can be used to dramatically reduce the number of methods that have to be created from

scratch. Beside inheritance, the OODM allows object attributes to have any data

structure as their domains. If these domains are defined as other classes, an OODB can

easily represent nested and hierarchical data without creating artifacts, as was created

with the relational data model (see Section 3.2.2). Eliminating these artifacts can

potentially boost query-processing performance significantly.

A final advantage of the OODM is the notion of enforcing semantic integrity

constraints. In relational databases, the primary integrity constraint on attribute values is



the data type designated for the attribute. For instance, if the integer data type is

designated as the domain of an attribute, then the database will only allow integers to be

stored for this attribute. This kind of integrity constraint does not necessarily imply any

semantic constraint since many different meanings can be attached to generic data types

like integers and strings. In an OODB, however, the domain of an attribute can be a class

or any one of the simple data types available to the relational model. If the domain of an

attribute is a class, the integrity constraint for this attribute can imply a PART-OF or

CONSISTS-OF relationship between an object and the other objects that it references.

These implied constraints can be made explicit to form the notion of composite objects,

objects that are made of many component objects. This ability to strong type composite

objects is very useful for the DICOM information model because the model is riddled

with PART-OF relationships; images are PARTS-OF series and series are PARTS-OF

studies.

3.3.2. Disadvantages

Most weaknesses of the object-oriented data model do not come from inherent

limitations with the model. Instead, these weaknesses arise from the fact that the OODM,

and hence commercial OODBs, are not as mature as relational databases. For instance,

there has yet to be developed a national or international standard for creating an object-

oriented data model. Consequently, no standards have been developed that is analogous

to the SQL standard for relational databases. This lack of standardization within the

OODB community has resulted in the development of many commercial systems each

implementing a separate and proprietary model and interface. This means that if the

image archive is developed based on an OODM, it will most likely be incompatible with

other existing and/or future models. Within recent years, however, the Object Data

Management Group* (ODMG), an independent consortium of OODB vendors, has

proposed a vendor neutral object model and query language, but this work is far from

widespread acceptance [24]. Other examples where the OODM trails the relational data

model are in transaction management, replication support, and the sheer availability of

access application development environments.

* Formerly known as the Object Database Management Group



Another disadvantage of using an OODB for DICOM information is that many HISs

and PACs currently use relational databases. An image archive using an OODB will

unduly complicate the migration process from existing legacy HISs and PACs to the

newer model.

3.4. Object-Relational Mapper

Recall from Section 3.2.2 that the relational data model does not present an object-

oriented interface. Many people have devised work-arounds to this problem in order to

use the relational data model for storing object-oriented data [21, 22, 25, 26, 27]. One

approach is to use an object-relational mapper (OR mapper) that serves as the interface

between a relational database and its object-oriented access applications. An OR mapper

presents an object interface to all access applications by mapping between object

representations and their underlying tabular forms. Figure 3-2 illustrates the generic

relationship between access applications, an OR mapper, and a relational database. Two

approaches have been developed to perform object-to-relational mapping. In the first

approach, the OR mapper translates each relation tuple to an object instance of the

relation. This approach is called the table-equals-type (table=type) approach because it

makes a one-to-one correspondence between tables and types (classes). The alternative

approach is called the object-modeling approach. This approach involves translating a

relational schema into an object model so that semantic concepts like inheritance and

composite objects can be added the object model because they are missing from the

relational model. An OR mapper using this approach performs object-to-relational

mappings as well as enforces semantic constraints implied by inheritance.

Database

Object-Relational Mapper ,

I I Patient DOB Study
Application Obiec Patient DOB Study Tom 2/2/73 234

Tom 2/2/73 234
Tom 2/2/73 432

Bob 3/4/39 201

Figure 3-2 An object-relational mapper translates between an application's object-
oriented data model and a relational database's relational model.



3.4.1. Advantages

The major benefit of using an OR mapper is the ability to present an object model for

relational data. This ability relieves client applications of the burden of performing table

to object conversion, and as a result, makes the overall system more scalable. Another

benefit is that an OR mapper can present more than one object view for any given

relational schema. This is quite convenient because requiring all access applications to

share one common object model is not usually feasible.

3.4.2. Disadvantages

The underlying data in a system using an OR mapper is relational. Therefore, this

approach shares many of the disadvantages of the relational model discussed in Section

3.2.2. Additionally, mappers based on the object modeling approach require high

maintenance because they are intimately tied to the underlying schema. Changes in the

schema will require corresponding changes in the object model. For mappers based on

the table=type approach, objects lack the semantic content usually available in pure

object-oriented models; a tuple mapped into an object by a table=type mapper will lack

metadata such as its relationships within an inheritance hierarchy. The result is that client

applications must now perform some of the semantic conversions usually performed by

object-oriented databases.

3.5. Object-Relational Data Model

Stonebraker [28, 29] and, independently, Kim [23, 30] developed the object-relational

data model (ORDM) in the early 1990's. This model extends the relational data model

proposed by E. F. Codd to support object-oriented notions, such as encapsulation,

inheritance, and class definitions having attributes and methods. In addition to these

extensions, modern object-relational databases (ORDB) support data types for complex

and unstructured data.

An ORDM can be thought of as a relational model where tables are considered as

classes, tuples are object instantiations of classes, and columns of tables are attributes of

their corresponding classes. Just as in the relational data model, tables can have

constraints, storage options, triggers, indexes, and methods. Class inheritance is



supported by allowing tables (subtables) to inherit all or some of the columns,

constraints, storage options, etc. of other tables (supertables). Within an ORDB, attribute

domains can be abstract data types (ADT), user-defined data types (UDT), or any of the

types supported in conventional relational databases. Abstract data types are data types

constructed from other built-in types (integers, strings, char, etc.). These types allow

attributes to possess structure or to store sets of values. User-defined data types are data

types whose internal structures are completely opaque to the database; the database has

no intrinsic mechanism to access such data. All UDTs, therefore, must be accompanied

by user-defined access methods for reading, writing, indexing, and querying information

contained within them. Allowing UDTs to have these access methods is one way in

which ORDBs support encapsulation. Encapsulation is also supported by ORDBs when

methods are assigned to tables and serve as the only mechanisms through which users

access and manipulate table attributes [31].

3.5.1. Advantages

The ORDM combines the best both of the relational model and the object-oriented

model. The ORDM can exploit the large relational user-base and its mature technologies

and standards because the model is based on relations. Algorithms developed for

concurrency control, transaction management, and query optimization as well as

constructs from ODBC and SQL are still valid within the ORDM framework because the

notion of relations and tuples are conserved. Unlike pure relational models, relations in

the ORDM support two mechanisms for conserving the semantic content of object-

oriented information models. First, tables support inheritance. All table-subtable

relationships are maintained within the ORDB and they directly map to class-subclass

relationships. The direct correspondences between tables and classes in inheritance

hierarchies of the database and the underlying information model make explicit the

notion of objects specializing other objects. Access applications can then use these

explicit relationships without having to reconstruct them.



The second way some* ORDBs conserve semantic content is by allowing attribute

domains to be tuples (objects). This facility allows strong enforcement of semantic

integrity constraints as discussed in Section 3.3.1. Another advantage of the ORDM is

that interface mismatch problems present in relational systems storing object-oriented

data can be avoided. For example, in pure relational systems, the act of normalizing

objects into tables violates object encapsulation because all object attributes become

exposed via SQL. In ORDBs, however, objects can be represented by tables with opaque

data types and user-defined access methods such that tables strictly adhere to the

interface specifications of the underlying object-oriented model. Finally, the ORDM

supports complex data types. These data types allow an attribute to possess structure or

to contain a set of atomic values instead of just one. For example, a person abstract data

type can be defined such that it contains fields for first name and last name. Although the

type consists of two string data types, it is addressed and stored as one unit. Another

example of a complex data type is the collection data type. Collections allow attributes to

store multiple values. This type is quite useful in representing one-to-many relationships

because no artifacts of normalization are created (see Section 3.2.2).

3.5.2. Disadvantage

There is currently no nationally accepted standard for defining object-relational data

models. This problem was alluded to in Section 3.5.1 where it was noted that some

commercial ORDBs support semantic integrity constraints while others do not. Other

areas where vendors differ in their implementation of ORDMs include mechanisms to

support collections and user-defined data types [23, 32, 33, 34, 35, 36]. To compound

this problem, data type extensions, such as collections and user-defined data types, do not

have SQL analogs or SQL means of access. Therefore, vendors have developed highly

proprietary mechanisms to handle these data types. Besides differences in

implementations among vendors, there are also problems inherent to having relations

support collections and user-defined data types. For instance, the collection type can

store more than one atomic value, so there is no meaning to indexing it via the B-tree

* Some implementations, such as IBM's Universal Database version 5.0, do not support system-wide object
identifiers (OIDs), and thus they do not support semantic integrity constraints.



indexing scheme. One also cannot perform relational algebraic operations, such as the

join operation, on this data type.

User-defined data types pose even a greater problem than collections since they are

intrinsically not "understood" by the database environment. Not only are they not

indexable* and not compatible with many relational algebraic operations, they can

promote data redundancy. To clarify this point, consider an example where all objects

are represented as opaque data within an object-relational database. This database

schema would consist of one table with two columns, one for object IDs and another for

object instances stored as opaque data. Figure 3-3 illustrates the example schema where

the database stores opaque data for the DICOM ultrasound (US) CIOD. If more than one

CIOD comes from a patient, a series, or a study, the patient's information, the series

information, or the study information will be redundantly stored.

Object ID Object Instance

1.2.840.24587.3.... Attnbutes

ope..onso) /Pixel Data

S ]Image Info.
1.2.840.24587.5.... ttributs I

OperationsO Series Info.

Patient Info

Figure 3-3 An example schema showing how opaque data types can be used to
represent the DICOM ultrasound CIOD.

Although incompatibilities currently exist between different ORDMs, it should be

noted that SQL3 is being developed by ISO and is expected to be ratified in 1999. SQL3

will provide a complete language and model for the management of persistent complex

objects. This standard should provide vendors with a neutral model for implementing

portable database environments.

* User-defined data type are not indexable by the traditional B-tree indexing scheme, but this does not
preclude the development or use of other indexing schemes designed specifically for the type of
information stored.



3.6. Data Model Selection

This section compares the data models presented in the previous sections with respect

to design specifications of Section 2.1. Table 3-1 summarizes how each data model

compares in term of supporting the design specifications.

Table 3-1 Comparison of different data models with respect to design requirements
of Section 2.1

Data Model Relational User-defined Complex Inheritance
Technologies* Data Types Data

Relational -/
Object-Oriented
Object-to-Relational Mapper
Object-Relational
*Relational technologies are SQL, ODBC,
4 = supported
-I4 = minimally supported

security, transaction management, concurrently control

This project uses the object-relational data model because it supports all four of the

design specifications shown in the table above. The relational data model and the object-

to-relational mapping paradigm were not chosen because they do not support user-

defined data types or type inheritance. The pure object-oriented data model was

eliminated primarily because it lacks standardization and widespread acceptance.
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Chapter 4 Design of the Schema

This section presents the design of how information will be organized within the

image archive. This organization is referred to as the database schema, and it defines

how DICOM NIODs, CIODs, and information entities (IE) are represented and related to

one another in tabular form.

The schema design for this project uses a top-down approach involving two stages.

The first stage develops a general framework for treating non-normalized CIODs; the

framework determines whether or not CIODs are to be decomposed into normalized

forms, and if so, the method for doing so. In the second stage, the framework is used to

design a detailed entity-relationship diagram for the entire schema. The following

sections present the framework design followed by the entity-relationship design.

4.1. Schema Framework Design

This project involves both relational and object-oriented design theories. As such,

consideration must be given to issues involving the best use of user-defined data types,

type inheritance, encapsulation, and relationship tables to maximize ease-of-use and to

optimize query processing of CIODs. This project evaluated three frameworks for doing

this and ultimately selected one. Each of the three alternatives is discussed below

followed by an explanation of the selection process.

4.1.1. Framework Alternative 1: Opaque Data Types for all IODs and IEs

This schema alternative uses opaque data types to represent all DICOM information

object definitions (IODs) and information entities. Recall from Section 3.5 that object-

relational databases can support user-defined types (UDT) called opaque data types.

These types are termed opaque because their data structures are not accessible to the

database without user-defined methods. The idea behind this alternative is to represent

all NIOD and CIOD objects as opaque data so that access to information stored within

them are restricted to interfaces defined by their access methods. Figure 4-1 is an

example schema based on this approach. It illustrates how the DICOM patient NIOD,

study NIOD, CT image CIOD, and series IE are represented in tables. The patient, study,



and series tables are normalized, so their attribute values are self-contained. For the

image table, however, a CT instance will inevitably have redundancies because it

contains attributes pertaining to other objects, such as patients and studies (see Figure

4-1). This problem can be remedied by using user-defined access methods such that

opaque data types for CIODs do not store attributes pertaining to other objects. Instead,

these types retrieve attributes "on-the-fly" when needed.

Patient NIOD Image CIOD

SOP Instance UID Object Instance SOP Instance UID Object Instance

1.2.840.24587.3.... Patient Name 1.2.840.24587.2.... Oe Each of these three IEs
Patient ID Patient IE requires methods for
Patient DOB Study I E retrieving attribute values

1.2.840.24587.5.... SOPStudy Ds 1.2.840.24587.5.... Series IE from their normalized
SOP Visit IDs ImageIE versionsFu 1 versions

Study NIOD Series Entity

SOP Instance UID Object Instance r Series Instance UID Entity Instance

1.2.840.24587.9.... Visit ID 1.2.840.24587.1.... Instance UID
Institution Name Modality
Admitting Date A Series Date

1.2.840.24587.6.... SOP Patient ID 1.2.840.24587.8.... a Series Time
SOP Study IDs I I SOP Study IDs

Figure 4-1 An example schema based on the opaque data type framework. The
patient, study, and series tables contain normalized objects, whereas the image table
contains non-normalized objects.

There are several reasons for desiring this approach. First, this method does not

require CIODs to be decomposed into normalized components. Instead, the opaque data

types can be made to preserve the class definitions of the DICOM information model;

this eliminates the need for a second database-specific information model. The nested

structure of the DICOM model is intrinsically preserved because opaque types can have

attributes that are link-list structures like that of the ANSI C. Another benefit of this

framework is that it enforces encapsulation to prevent applications from becoming too

dependent on the underlying data structure. That means the schema can be changed

without affecting how access applications perceive the underlying data store.



A major disadvantage of this approach is the sheer amount of effort required to

develop access methods for each opaque data type. These access methods must not only

provide basic input/output services but also provide query-optimizing services such as

indexing and query cost analysis. If this project uses a schema similar to the one in

Figure 4-1 a significant amount of time will be spent duplicating traditional database

services for opaque data types. This problem is further compounded by the fact that there

is currently no standardized way among database vendors for implementing opaque data

types. That means access methods developed for one vendor's database environment will

most likely be incompatible with another vendor's environment. Another problem with

this framework is that there is no database intrinsic mechanism to extend opaque types

using inheritance. This is because the data structures of opaque data types are not

accessible to the database environment, so the database cannot implement and track

attribute inheritance between opaque types. Users who want to use inheritance will have

to provide their own user-defined methods to implement it. This work-around is still

only a partial solution because facilities like expanded query scope require intrinsic

database support and therefore will be not available.

4.1.2. Framework Alternative 2: Nested Tables using ADTs

This framework uses abstract data types (ADT) to represent the nested DICOM

information model. The best way to understand this approach is by considering the

example schema shown in Figure 4-2. This schema in uses nested tables to represent the

directed-acyclic graph (DAG) of Figure 1-2 (page 19). Each tuple of Patient_Table

represents a unique patient, and it contains columns for patient characteristics as well as a

column named study of type Study_ADT. The type Study_ADT is a collection type where

each field in the collection is an ADT for study specific information. That is, each field

within the collection is an embedded table having one row and three columns to store

three study attributes (Study, Date, Series). The Series column of this ADT is itself

another collection type similar to the Study_ADT type. This pattern is recursively

implemented such that the nested hierarchy of the schema starts at the Patient_Table and

ends with ADTs for the image, curve, and overlay objects.



StudyADT Image_ADT
Patient_Table A collection of ADTs A collection of ADTs

Figure 4-2 An example schema based on nested relations using abstract data types.

This particular approach provides a very intuitive representation of the DICOM

information model. It preserves the nested structure of the DICOM model so users can

traverse the schema from patient to image in a very transparent manner. For example,

suppose one wants to select from the above schema all patients who owns at least one CT

image. The SQL statements for this query would be as follows:

Select Patient from Patient_Table
Where Study.Series.Image.Type = "CT";

The DOT notation allows users to traverse the entire nested hierarchy without requiring

multiple-table joins. Contrast this with a pure relational system where at least 7 tables are

required (4 tables for the patient, study, series, and image objects and 3 relationship

tables to relate patients to studies, studies to series, and series to images). The same

query previously posed would require a minimum of six table joins.

Although abstract data types are natural for nested relations, there is currently no

industry-wide standard for using and implementing them. Several vendors-specific

implementations are available on the market, but they are for the most part incompatible

with each other. As a result, most databases, including those from Informix, Oracle, and

IBM, have very limited querying and updating facilities for ADTs. Another problem

with this framework is that the schema is not very extensible. The Patient_Table, which

embodies most of the schema, does not provide for a mechanism to separate and make

independent each of the embedded information entities. As a result, changing the

Patient_Table requires knowledge of the entire nested hierarchy to determine the correct



insertion point for new attributes. It also requires that one determine the effect of new

attributes on the normalized entities above and below the insertion point.

4.1.3. Framework Alternative 3: Non-nested Tables

The idea behind this framework is to have a one-to-one correspondence between the

tables of the schema and IODs and IEs of the DICOM information model. Tables for

NIODs will have the same attributes as those defined for them within the standard.

Tables for CIODs, however, will only contain attributes of the image IEs, curve IEs,

overlay IEs, VOI LUT IEs, or modality LUT IEs that they represent. Other attributes that

make a CIOD non-normalized will be accessed via their respective normalized tables.

For example, a table for the CT Image CIOD will not contain attributes about patients,

studies, or series to which images belong. Instead, the CT Image table will use primary

and foreign key references to other tables for this information. Other IEs defined within

CIODs (see Figure 1-1 on page 17) may or may not be represented as separate

independent tables, depending on whether or not they are subsets of NIODs (see Section

1.1.1). IEs with NIOD counterparts will not be represented by separate tables, whereas

IEs without NIOD counterparts will be represented by independent tables.

A major benefit of this framework over the first two alternatives is that it is based on

a highly transparent schema. That means the usage of opaque and abstract data types is

kept to a minimum so that all querying and data manipulation facilities of the relational

model are applicable to the schema. This transparent schema is also less vendor-

dependent than the previous two as it does not rely heavily on unstandardized data types.

The schema is also very extensible because each table can have its own user-defined

inheritance hierarchy below it.

This framework has several disadvantages compared to the first two alternatives.

First, this schema does not preserve the nested structure of the DICOM information

model as nested tables. Rather, it uses the more awkward approach based on relationship

tables and table joins (see Section 3.2.2 for a discussion of artifacts of normalization).

Another weakness of this framework is that it violates encapsulation by exposing the

entire DICOM information model to SQL data manipulation commands. This problem



can be overcome, however, by using user-defined access methods assigned to tables (see

Section 3.5)

4.1.4. Framework Selection

The main difference between the three alternatives presented in the previous section

is what aspects of the DICOM information model each alternative preserves. The first

alternative uses opaque data types to preserve both the class definitions and nested

hierarchy of the DICOM model. This is accomplished at the expense of intrinsic

database support for queries and data manipulation. The second framework uses a more

transparent schema to preserve only the nested structure of the DICOM model using

abstract data types. It allows for the direct navigation from Patient to Images using DOT

notations, but it too sacrifices query support. The third framework limits the use of

opaque and abstract data types to preserve only NIOD and normalized IE definitions. It

does not preserve CIOD definitions nor does it support the nested structure of the

DICOM model as naturally as the first two alternatives. This framework, however, does

not sacrifice data manipulation or query support.

This project chooses framework 3 over the others for two main reasons. First, this

framework is able to support the nested structure of the DICOM model to an acceptable

level without foregoing support for query processing and data manipulation. Second, the

framework provides developers and end-users with enormous flexibility and scalability

through its treatment of inheritance and user-defined routines.

4.2. Entity-Relationship Design

This section presents the detailed schema design based on the framework chosen in

the previous section. The goal of the detailed design is to construct an entity-relationship

(E-R) diagram that specifies all tables of the schema and their interrelationships. The E-

R design consisted of several steps, and each step is presented below.

4.2.1. E-R Design Step 1: Entity and Relationship Identification

The DICOM information model serves as the starting point for identifying

information entities for the schema. Figure 4-3 on page 53 lists entities that are defined

in the DICOM information model and how they are used within the schema. The table



also lists entities that are created for the schema but are not defined in the DICOM model.

Some entries in the left column have indentations after them to indicate inheritance. For

example, the entry for Image IOD has several objects listed under it to represent image

objects that inherit attributes from the dcm_image table. Several entries have "Not

represented" in their right columns because they pertain to print services, and therefore,

are not used within schema. Three schema tables do not correspond to any DICOM

information model entities. These are the dcm_ciod_prt, dcm_hospital, and

dcm_physician tables. The dcm_ciod_prt table is created to allow expanded query scope

between all images, curves, overlays, and modality and volume-of-interest (VOI) look-

up-tables (LUT) (see Section 4.2.4 for a detailed discussion of tables for expanded query

scopes). The dcm_hospital table is required to normalize the DICOM Visit NIOD

(dcm_visit table) and the Equipment IE (dcm_equipment table) because these tables

contain hospital information within their definitions. If these hospital-related attributes

are kept within the dcm_visit or dcm_equipment tables, they would render both tables

non-normalized. Similarly, the dcm_physician table normalizes the dcm_visit and

dcm_study tables.

Relationship tables allow normalized tables to participate in multiple one-to-many

relationships. As in the case with entities, most of the relationship tables in the schema

are derived from relationships in the DICOM information model. Other relationship

tables, however, are not represented in the DICOM model but are required for expanded

query scopes (see Section 4.2.4).

Figure 4-3 on page 54 shows the E-R diagram for all entities and relationships of the

schema. Primary key and foreign key relationships are represented as solid lines.

Inheritance relationships are indicated with heavier dashed lines.

There is one major difference between the DICOM information model and the E-R

diagram. The DICOM information model explicitly specifies a one-to-many PART-OF

relationship between the Study Component IOD and its component images, curves,

Modality LUTs, overlays and VOI LUTs. This relationship is not represented within the

schema because the standard does not define Study Component IODs with all the

necessary attributes for referencing images, curves, Modality LUTs, overlays and VOI

LUTs. Instead, the standard defines the Study Component IOD with attributes for



referencing Series IEs, and provides Series IEs with attributes for referencing images,

curves, etc. The schema uses a PART-OF relationship between Study Components and

Series IEs and between Series IEs and it components. No connection is explicitly

represented between Study Components and images, curves, etc.



Table 4-1 Correspondence between DICOM information objects and schema entities

DICOM Information Model Entities Schema Tables
Annotation IOD
Basic Study Descriptor IOD
Equipment IE

Nuclear Medicine Equipment IE
Secondary Capture Equipment IE

Film Box IOD
Film Session IOD
Frame of Reference IE

Ultrasound Frame of Reference IE
General Series IE

Computed Radiography Series IE
Nuclear Medicine Series IE

Image Box IOD
Image Overlay Box IOD
Interpretation IOD
Not represented

Image IOD
Computed radiography image IOD
Computed tomography image IOD
Magnetic resonance image IOD
Nuclear medicine image IOD
Secondary capture image IOD
Ultrasound image IOD
Ultrasound multi-frame image IOD

Stand-alone Curve IOD
Stand-alone Modality LUT IOD
Stand-alone Overlay IOD

stand-alone multi-frame overlay IOD
Stand-alone VOI LUT IOD

Not represented
Not represented
Patient IOD
Print Job IOD
Printer IOD
Results IOD
Study Component IOD
Study IOD
Visit IOD
VOI LUT Box IOD

1
Not represented
Dynamically created into view
Dcm_equipment
Dcm_nmequipment
Dcm scequipment
Not represented
Not represented
Dcm_frame_ref
Dcmusframe_ref
Dcm_series
Dcmcrseries
Dcm nm series
Not represented
Not represented
Dcminterpret
Dcm_ciod_prt
Dcm_image
Dcmcrjimage
Dcmctimage
Dcm_mr_image
Dcm_nm_image
Dcmscimage
Dcmusimage
Dcm_usmf_image
Dcm_curve
Dcm_modality_lut
Dcm_overlay
Dcm_modality_mf_lut
Dcm_voi_lut
Dcm_hospital
Dcm_physician
Dcm_patient
Not represented
Not represented
Dcm_results
Dcm_stdy_compnt
Dcm_study
Dcm_visit
not representedm
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Figure 4-3 Entity-Relationship diagram for the image archive schema. Primary key
and foreign key relationships are indicated with solid lines; heavier dashed lines
indicate inheritance between objects.



4.2.2. E-R Design Step 2: Attributes Definition

The schema cannot directly use DICOM attribute names for table column names

because many attribute names are longer than the eighteen-character limit of

conventional databases. To avoid using an alternative naming convention, table columns

are named after the unique tags* that are assigned to each DICOM attribute. Each

column name within the schema is composed of the 'tag_' string followed by an attribute

group number (hexadecimal form), followed by an underscore character, followed by an

attribute element number (hexadecimal form). For example, the column name for the

Patient's Birth Name (0010,1005) attribute is 'tag_0010_1005'. Table A- 1 and Table A- 2

in Appendix A list all entity and relationship tables and their attributes. The DICOM

value representation for each attribute is also listed. The correspondence between value

representations and data types is discussed in Section 4.2.3. To convert between the

English name of an attribute and its tag designation, the API dcm_deref() function is

used. This API function is discussed in detail in the next chapter.

Some entity and relationship tables within the schema have attributes that are not

DICOM defined attributes. The dcm_physican table includes a primary key column

named dcm_mitx_phyx for storing unique identifiers for physicians. The DICOM

standard does not make provisions for storing physician information separate from the

visit and study NIODs, so a unique identifier has to be created if physician information is

to be kept separate and not stored redundantly (see Section 4.2.1). The dcm_curve,

dcm_overlay, dcm_modality_jut, dcm_voi_lut, and dcm_emb_obj tables contain a

column for dcm_mitx_objx. This attribute is also not a DICOM defined attribute. It is

required because DICOM image CIODs can have embedded curves, overlays, modality

LUTs, and VOI LUTs, and these embedded objects are different from their standalone

counterparts in that they do not have unique identifiers assigned to them. The

dcm_mitx_objx attribute allows these embedded objects to have unique identifiers when

they are separated from their CIODs (recall from Sections 2.2.1 and 2.2.2 that CIODs are

separated into normalized components when they are stored within the database).

*DICOM attribute tags are composed of two ordered pairs of hexadecimal numbers representing a group
number and an element number, respectively.



Schema entities are very similar to their DICOM counterparts in terms of attribute

definitions, but several differences should be noted. These differences are explained

below.

* The dcm_visit table does not include the following attributes of the Visit

Identification Module (Table C.3.2-1 of Part 3 of the standard): Institution Name,

Institution Address, Institution Code Sequence. These attributes are replaced by the

Institution Code Sequence>>Code Value (0008,0100) and Institution Code

Sequence>>Code Scheme Designator (0008,0100) attributes. The dcm_visit table

does not include the following attributes of the Visit Admissions Module (Table

C.3.4-1 of Part 3 of the standard): Referring Physician's Name, Referring Physician's

Address, Referring Physician's Phone Numbers. These attributes are replaced by the

dcm_mitx_phyx attribute.

* The dcm_study table does not contain the Series in Study and Acquisitions in Study

attributes of the Study Acquisition Module (Table C.4.5-1 of Part 3 of the standard).

These attributes are derivable attributes and should not be stored*.

* The dcm_stdy_compnt table does not include the following attributes of the Study

Component Module (Table C.4.7-1 of Part 3 of the standard): Study ID, Study

Instance UID, and Referenced Series Sequence and all of its elements. Study ID and

Study Instance UID are stored within the dcm_study table and/or the

dcm_stdy_stdycmp table. Elements of the Referenced Series Sequence are stored

within the dcm_series table or the dcm_stdycmp_ser table.

* The dcm_image table does not have the Smallest Image Pixel Value and Largest

Image Pixel Value attributes because they are derivable (Table C.7.6-3 of Part 3 of

the standard).

* The dcm_cr_image table does not store the Exposure attribute because it is derivable

(Table C.8.1-2 of Part 3 of the standard).

* The dcm_ct_image table does have the High Bit and Exposure attributes because they

are derivable (Table C.8.2-1 of Part 3 of the standard).

* Derivable attributes require user-defined methods to derive their values. These methods are not
developed for this project but are required in the case of a commercial implementation.



* The dcm_curve table does not contain the Minimum Coord. Value, Maximum Coord.

Value, and Curve Range attributes because they are derivable (Table C10.2 of Part 3

of the standard).

* The dcm_overlay table does not have the ROI Mean and ROI Standard Deviation

attributes because these are derivable (Table C.9.2 of Part 3 of the standard).

4.2.3. E-R Design Step 3: Data Type Definition

Table 4-2 below lists the correspondence between DICOM value representations and

schema data types. All schema data types listed are SQL-3 standardized types, including

the CLOB (Character Large Object) and BLOB (Binary Large Object) data types [37].

An attribute with the SQ value representation consists of a sequence of zero or more

items, where each item contains a set of attributes. For example, the attribute Patient's

Insurance Plan Code Sequence (0010,0050) has the SQ value representation because it

contains fields for Code Value (0008,0100), Coding Scheme Designator (0008,0102) and

Code Meaning (0008,0104). That is, this attribute specifies a nested structure where

three other attributes are contained within it. Attributes that have the SQ value

representation require abstract data type definitions because the multiset data type alone

cannot store the nested structure these attributes posses.



Table 4-2 Mapping between DICOM value representations and schema data types

Value
Representation Meaning Schema (SQL) data typeRepresentation

AE Application Entity Character varying(16)
AS Age String Char(4)
AT Attribute Tag Char(4)
CS Code String Character varying(16)
DA Date Date
DS Decimal String Decimal(16)
DT Date Time Datetime year to fraction
FD Floating Point Double Float
FL Floating Point Smallfloat
IS Integer String Integer

LO Long String Character varying(64)
LT Long Text CLOB
OB Other Byte BLOB
OW Other Word BLOB
PN Personal Name Character varying(64)
SH Short String Character varying(16)
SL Signed Long Integer
SQ Sequence of Items Multiset of abstract data

types
SS Signed Short Smallint
ST Short Text BLOB

TM Time Datetime hour to fraction
UI Unique Identifier Character varying(64)
UL Unsigned Long Integer
US Unsigned Short Smallint

4.2.4. Designing for Expanded Query Scope

Recall from Section 2.2.5 that expanded query scope is the ability to include an entire

inheritance hierarchy within the scope of a query. This ability allows users to quickly

search and select all components of a composite object if the components share a large

set of common attributes. For example, consider trying to select from the information

model shown in Figure 1-2 (page 19) all images, curves, and overlays belonging to given

a series. Without expanded query scope, this query requires a separate select statement

for the overlay, image and curve entities. Within the actual DICOM information model



where there are actually seven types of images and four types of stand-alone objects each

represented by different tables, this query requires a total of eleven compound statements.

The schema used for this project overcomes this problem by creating two 'link' tables

between objects that share common attributes. The first link table is the dcm_ciod_prt

(CIOD PART) table (see Figure 4-3 on page 54). This table serves as the root for the

inheritance hierarchy that includes all components of the series IE; all image modality

tables and stand-alone object tables are sub-tables of the dcm_ciod_prt table. This

inheritance hierarchy allows users to search all image modalities and stand-alone objects

with just one select statement directed against the dcm_ciod_prt table. The select

statement automatically searches all sub-tables under dcm_ciod_prt because the

inheritance hierarchy is present. The second link table is the dcm_img_emb_obj

relationship table. It allows users to search for all embedded objects of a given image

CIOD. Recall that when a CIOD is stored within the archive, it is disassembled into

normalized components. This disassembly process causes the image component of a

CIOD to be stored in one of the dcm_image tables (dcm crimage, dcmctimage, etc.),

while its embedded curve, overlay, and look-up tables are stored in the stand-alone tables

(dcm_curve, dcm_overlay, etc.). Once these components are separated, they are

completely independent of each other because there is no information within each of

them that specifies the type of objects that they were embedded with before separation.

For example, if a CIOD is disassembled into an image component and an embedded

curve component, the image component does not contain information to indicate that the

original CIOD also contained an embedded curve component. This is also true vice-versa

such that no information regarding the image component is indicated in the curve

component. That means reconstructing a complete CIOD requires exhaustively searching

all relationship tables that link images to stand-alone objects until every component is

identified. The image archive reduces the number of select statements required to

perform this search by creating a relationship inheritance hierarchy rooted at the

dcm_imgemb_obj table. This table allows one query, directed at this root table, to

search all relationship tables between images and stand-alone objects.



4.3. Summary

This chapter has presented the schema design consisting of two stages. The first

stage involved developing a framework for treating DICOM CIODs using both relational

and object-oriented design methodologies. Three different frameworks were developed

and evaluated for this project, but only one was selected. The selected framework

decomposes CIODs into highly transparent and normalized tabular representations with

minimal use of abstract and opaque data types.

In the second stage of the design process, a detailed entity-relationship diagram was

developed based on the framework chosen in the first stage. This E-R diagram specifies

all information entities to be represented within the schema, their interrelationships, and

their attribute definitions and data types.



Chapter 5 Application Programming Interface

This Chapter presents the application programming interface (API). The API is a set

of C language functions that implements the design requirements presented in Section

2.3. The API developed for this project is the result of a collaborative effort with

significant contributions from Stefan Claesen under the guidance of Professor Richard

Kitney at Imperial College in England and from Patrick McCormick and myself under

the guidance of Professor C. Forbes Dewey here at MIT.

The API currently consists of the following functions:

dcmbld_usmfciod()
dcm_callback_handled()
dcm_ciod_to_tga ()
dcm_create_class()
dcm_create_dict()
dcm_create_schema()
dcm_deref()
dcm_expl_ciod_f ()
dcm_remove_schema()
dcm_view()

All functions are compiled into the shared library file DICOM.bld. Except for the

dcm_callback_handledO function, all functions are SQL accessible functions. That

means they are invoked within SQL statements* (see Section 6.1). The syntax presented

in the following sections refer to SQL syntax.

* SQL accessible functions need to be declared within a database environment as external functions or

procedures before they can be invoked within SQL statements. SQL functions are calls that have return
values. SQL procedures are calls that do not have return values.



5.1. dcm_bld_us_mf_ciodo

This function is named for DICOM Build Ultrasound Multiframe CIOD. It is
used to retrieve an entire DICOM Ultrasound Multi-frame Image CIOD with
attribute values that match the supplied identifier list (see below for definition of
an identifier list). This is the only IOD build function that this project developed.
Other similar functions for building other modality images still need to be
developed.

Syntax:

dcm_bld_us_mf_ciod("'attribute_name_ 1', 'value_1',
'attribute_name_2', 'value_2', ' attribute_name_3',
'value_3', ...")

Note: 1) The identifier list is the sequence of attribute name and
value pairs shown in the syntax above.

2) The beginning and ending double quotation marks are
required as well as interior single quotation marks around
each attribute name and value.

Return Values:

On success, this function returns a data stream for composite IODs as a
dcm_ciod_stream distinct type. For applications using this function through
ODBC 3.0, the dcm_ciod_stream distinct type is analogous to the
SQL_CBINARY type.

Shared Library function in DICOM.bld

blob * dcm_bld_us_mf_ciod(mi_lvarchar *identifier, MIFPARAM
*Gen_fparam)



5.2. dcm_callback_handled()

This function is registered by every DICOM API function as the default callback
to handle all events. Informix defines an event to be "something that occurs in the
database server or in a user-defined routine that might be of interest to an
application". This function is not registered within the database as an SQL-
accessible function. Therefore, it cannot be accessed through SQL.

All DICOM functions that require the service of dcm_callback_handled() must
register dcm_callback_handledO as its default callback. See Chapter 9 of the
Informix DataBlade API documentation for details.

Shared Library function in DICOM.bld

int dcm callback_handled (MI_EVENT_TYPE event_type, MI_CONNECTION
*conn, void *cb_data, void *user_data)



5.3. dcm_ciodtotga

This function is named for DICOM conversion from CIOD to Targa. It takes in a
complete CIOD stream and outputs TGA images for each frame within the CIOD.
The TGA files created are 24-bit images.

Syntax:

dcm_ciod_to_tga( 'temp_blob')

Note: temp_blob is a temporary SQL data instance created from the
result of a select statement using the dcm_bld_usmfciod()
function.

Return Values:

On success, this function returns a data stream for TGA images as a
dcm_tga_stream distinct type. If more than multiple TGA images are returned, as
in the case with multiframe CIODs, individual frames are returned in the same
manner that result sets with multiple values are returned. For applications using
this function through ODBC 3.0, the dcm_tga_stream distinct type is analogous to
the SQLCBINARY type.

Shared Library function in DICOM.bld

int dcm_ciod_to_tga(mi_1varchar *identifier, MI_FPARAM
*Gen_fparam)



5.4. dcm_create_classO

This function is used to extend the DICOM schema with subclasses to existing
classes. For example, if Class_A is the parent class of Class_B, then extending
the inheritance hierarchy with a new class, Class_C, such that it is a subclass of
Class_B is extending the schema with subclasses.

Syntax:

dcm_creat_class ("Name", "'Attribute_namel', 'Attributename2', ' ..' ",
"Parent_Object");

Note: 1) Name refers to name of the new class to be created.
2) The beginning and ending double quotation marks are
required as well as interior single quotation marks around
each attribute name list.
3) Parent_object refers to the name of the parent classes to
be extended.

Return Values:

No return values. If an error occurs while creating the new subclass, the database
server will issue an error message call to the user via standard output.

Shared Library function in DICOM.bld

int dcm_ciod_to_tga(mi_lvarchar *name, mi_1varchar
*attribute_list, mi_lvarchar *parent_object, MI_FPARAM
*Gen_fparam)



5.5. dcm_create_dict

This function is named for DICOM Create Dictionary. It reads from the file
dici tonary. dat to retrieve all entries of the DICOM data dictionary and then
populates the dcm_data_dict table (created by the dcm_create_schemaO function)
with these entries (entries are defined in Part 6 of the standard). The DICOM
dictionary is the official registry of all DICOM data element tags, names
(attribute), value representations (VR), and value multiplicity (VM). The logical
representation of the dcm_data_dict table is given below:

This table cannot be accessed through direct SQL Data Manipulation Language
calls (select, insert, update, etc.). To access elements contained within the
dcm_data_dict table, use the function dcm_deref().

The dcm_data_dict table allows the schema to be self-contained because it maps
between attribute tag and attribute names (see Sections 2.2.2 and 4.2.2).

Syntax:

dcm_create dict()

Return Values:

No return values. If an error occurs while populating the dcm_data_dict table, the
database server will issue an error message call to the user via standard output.

Shared Library function in DICOM.bld

void dcm_create_dict (MI_FPARAM *Gen_fparam)

Tag Attribute VR VM
00080000 Group Length UL 1
00080001 Length to End RET
00080005 Specific Character Set CS 1
00080008 Image Type CS 1-n



5.6. dcm_create_schema()

This function creates the entire DICOM schema as specified by the E-R diagram
of Section 4.2.1.

Syntax:

dcm_create_schema()

Return Values:

No return values. If an error occurs while creating the schema, the database
server will issue an error message call to the user via standard output.

Shared Library function in DICOM.bld

void dcm_create_schema(MI_FPARAM *Gen_fparam)



5.7. dcm_derefO

This function is overloaded to provide both tag-to-attribute and attribute-to-tag
translation under the same function name. This function is used to retrieve a
DICOM data element tag given an attribute name or to retrieve a DICOM
attribute name given a data element tag.

Syntax:

dcm_deref ("dcm_tag": :dcm_tag)
character varying (8) dcm_tag;

dcm_deref("attribute_name")
character varying (255) attribute_name;

NOTE: The quotation marks above are required as part of the SQL
statement.

Return Values:

1) dcm_deref ("dcm_tag" : dcm_tag) returns the name of the attribute
corresponding to the dcm_tag parameter as defined by the DICOM data
dictionary. The returned value has the character varying(255) SQL data type.

2) dcm_deref("attribute_name") returns the DICOM tag
corresponding to the attribute_name parameter as defined by the DICOM data
dictionary. The returned value has the dcm_tag distinct type.

NOTE: The dcm_tag data type is a distinct type created by dcm_create_schemaO
with the SQL data type char(8) as its source type. The type is an 8-byte string
formatted as XXXXYYYY where XXXX and YYYY denote the DICOM group
number and element number in hexadecimal, respectively.

Shared Library function in DICOM.bld

1) mi_ivarchar *dcm tag_to_attribute(mi_Ivarchar *tag, MI_FPARAM
*Gen_fparam )

2) mi_1varchar *dcm_attribute_to_tag(mi_ivarchar *attribute,
MI_FPARAM *Gen_fparam)



5.8. dcm_ expl_ciod_f()

This function is name for DICOM Explode CIOD from File. It is called by a user
when loading a DICOM CIOD file into the database schema.

Syntax:

Dcm_expl_ciod_f("filename")

Note: file_name must specify the entire operation system file path
to the file to be loaded. The current implementation uses
the UNIX path expression format.

Return Values:

No return values. If an error occurs while exploding a CIOD file into the schema,
the database will issue an SQL error message call to the user.

Shared Library function in DICOM.bld

Void dcm_expl_ciod_f(mi_1varchar *blobfile, MI_FPARAM *

Gen_fparam)

5.9. dcm_remove_schema

This function removes the entire DICOM schema, populated or not.

Syntax:

dcm_remove_schema()

Shared Library function in DICOM.bld

Void dcm_remove_schema(MI_FPARAM *Gen_fparam)



5.10. dcm_viewo

This function creates a DICOM view for an NIOD or a CIOD (see Section 2.3.1).

Syntax:
Dcm_view("IOD_table);

Return Values:

No return values. If an error occurs while creating a DICOM view, the database
will issue an SQL error message call to the user.

Shared Library function in DICOM.bld

Void dcm_view(mi_ivarchar *IOD_name, MI_FPARAM * Gen_fparam)



Chapter 6 Image Archive Prototype

This chapter discusses the prototype database that was developed based on the

designs presented in Chapters 3, 4 and 5. The purpose of the prototype is to demonstrate

how DICOM information stored within the schema can be extracted for viewing. The

prototype consists of an Informix Dynamic Server database with the Universal Data

Option* (IDS-UDO) and a software module that extends the generic database with

capabilities to store, retrieve, and query DICOM information. This software module is

called the DICOM DataBlade. Section 6.1 provides background information on the

Informix database environment and how the image archive is implemented using the

DICOM DataBlade. Section 6.2 discusses the configuration of the prototype.

6.1. Informix Database Environment

The IDS-UDO is a generic object-relational database, and as such, it does not have

the necessary facilities to store and manage DICOM information. This project takes a

generic IDS-UDO and extends it with a DICOM DataBlade module that provides

DICOM specific facilities. The DICOM DataBlade provides new data type definitions

for all DICOM value representations, a schema based on the E-R diagram developed in

Chapter 4, and a compiled version of the API presented in Chapter 5. The DICOM

DataBlade consists of four files: prepare. sql, prepare. en_us. 1252. sql,

obj ects .sql, and DICOM. bld. Their roles are explained below:

* The prepare. sql and prepare. en_us. 1252. sql files register the DICOM

DataBlade and its version number within the database's system tables. These file

should not be changed.

* The objects. sql file performs several functions. First, it creates distinct data

types for all value representations (VR) shown in Table 4-2 (based on their SQL data

types) and then creates a bi-directional cast between each VR and its based SQL type.

During this process, this file also creates two other distinct types, the dcm_tag distinct

* Formerly known as the Informix Universal Server. The prototype uses version 9.13 UC1 of the database

engine running on a Sun UltraSparc I (170Mhz).



type and the dcm_vm distinct type. dcm_tag is required by the dcm_derefO function

(see Section 5.7), while dcm_vm is required by the dcm_create_dict() function (see

Section 5.3). After these type declarations are performed, the objects .sql file

registers all API functions as external functions or external procedures. The

registration process dynamically links the DICOM.bld shared library into the

database environment's shared memory space. The last duty the objects. sql file

performs is the execution of two SQL files. The first of these files calls the

dcm_create_schemaO function to create the DICOM schema. The second SQL file

calls the dcm_create_dictO function to populate the dcm_data_dict table with entries

from the DICOM data dictionary.

The DICOM. bld file is the compiled shared library of all API functions presented in

Chapter 5. Functions within this file are registered by the obj ects .sql file as

described above.

In order to install DICOM DataBlade, one places a copy of prepare. sql,

prepare . en_us. 1252. sql, objects . sql, and DICOM.bld into the

$INFORMDIR/extend directory of the computer running the database. The

DataBlade is then registered using BladeManager t .

6.2. Prototype Setup

To demonstrate the storage and extraction of DICOM images from the prototype, an

access application is required to interact with the database. This project uses an HTTP

server running a Common Gateway Interface (CGI) program as the access application

because this approach leverages the user-interface of existing web browsers, and it allows

the demonstration to reach a wider audience. The demonstration requires interaction

between a client using a web browser, an intermediate server running an HTTP server,

and the prototype image archive. The configuration of the demonstration is illustrated in

Figure 6-1.

*$INFORMIXDIR is the directory where the IDS-UDO is installed.
t This product is provided by Informix and accompanies all releases of IDS-UDO.



HTTP Server
*Interprets request
*Sends ODBC request
*Converts image to JPEG
-Sends image to client

Browser Client --,
-Requests image
-Displays image w/ JavaScript

Image Archive
*Interprets request
*Retrieves CIOD image data
-Converts Image to TGA
*Sends image to HTTP Server

Figure 6-1 Configuration of the prototype demonstration consisting of three
computers: a client using a web browser, a server running an HTTP daemon, and
the prototype image archive.

Images are retrieved from the image archive when a web browser* submits a query to

the HTTP server requesting a DICOM image. This request is sent via the Hypertext

Transfer Protocol (HTTP), and when the HTTP server receives it, the server presents the

request to a CGI application running on the same machine. This CGI application parses

the request, translates it into an SQL query, and then sends the SQL query to the image

archive via an ODBC 3.0 call. Once the image archive receives the SQL requests, it

issues several DICOM DataBlade API calls. The first API call is to reconstruct the

requested image's CIOD from its normalized representation within the schema. The

* The browser client can be any web browser that supports JavaScript 1.2.



second API call extracts the image component of the CIOD and passes this information to

a third and final call that converts the image's pixel data to lossless TGA format. At the

completion of the third API call, the image archive sends the converted image to the

HTTP server where it undergoes another conversion from TIF to JPEG. This final image

format is then sent to the client and displayed. Other scenarios, including delivery of the

entire DICOM CIOD without conversion can easily be implemented. Figure 6-2 shows

the client user-interface before and after a request for an ultrasound image.

ICMIT Image Archive Demo ICMIT Image Archive Demo
Abot ThisDemo Abo the l T Who To Coatact About Ths Deo AboAt h e IClT 'Who To Cntact

Select a DICOM Composite IOD File: Select a DICOM Comnposite IOD File:

13D Utrasound . m i I 3DUtrasound . . d $Iii

61 tnages have been downloaded since 1040641998

Figure 6-2 The user-interface developed for the browser client before (left) and
after (right) image retrieval.



Chapter 7 Conclusion

This thesis has demonstrated the feasibility of extending a generic object-relational

database with facilities for storing and managing DICOM information. The design and

prototype presented in Chapters 4 through 6 provide a unified method for treating the

simple, complex, and unstructured information objects specified in DICOM.

The schema design presented in Chapter 4 is based on an object-relational data model

(ORDM). This data model was chosen because it is based on proven relational

technologies and because it supports object-oriented concepts. The ORDM provides

intrinsic support for type inheritance and data encapsulation. This project uses

inheritance in two ways. First, inheritance is used to capture the implied notion (present

in the DICOM information model) of objects specializing other objects. This notion is

implemented as inheritance hierarchies within the schema, and these hierarchies serve as

rules for expanded query scope. The schema also uses inheritance as the basis of its

modular design that allows code re-use and transparent schema extensions. The ORDM

also provides intrinsic support for data encapsulation, but this project did not implement

user-define methods to enforce DICOM defined data access interfaces*.

DICOM information object definitions (IOD) and information entities are stored with

the schema as normalized objects. Normalized representations of composite IODs are

lossless decompositions of their original definitions. This approach requires that the

schema be supported by user-defined methods for creating DICOM views, providing

DICOM input/output services, and facilitating schema extensions. This project has

developed these user-defined methods and several others in the form of an application-

programming interface.

* These interfaces were not implemented as access methods because they are generally very application-

environment specific. This project was not intended for any specific application environment.
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Appendix A

Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

Dcm_ciod_prt
(PK) tag_0008_0018 UI NOT NULL

Dcmcurve
(FK) tag_0008_1140 set(dcm_tag_0008_1155 not null),
tag.0008_0016 UI NOT NULL,
tag.0008_0005 CS,
tag0008_0012 DA,
tag0008_0013 TM,
tag.0008_0014 UI,
tag0020_0024 IS,
tag_0008_0025 DA,
tag0008_0035 TM,
tag_50xx_0005 US,
tag50xx_0010 US,
tag50xx_0020 CS,
tag_50xx_0103 US,
tag_50xx_3000 OB,
tag50xx_0022 LO,
tag50xx_0030 multiset(SH not null),
tag_50xx_0040 multiset(SH not null),
tag50xx_0106 multiset(SH not null),
tag50xx_0110 US,
tag50xx_0112 US,
tag50xx_0114 US

Dcmequipment
(PK) tag_0018_1000 LO,
tag_0008_0070 LO,
tag_0008_0080 LO,
tag_0008_0081 ST,
tag0008_1010 SH,
tag0008_1040 LO,
tag_0008_1090 LO,
tag_0018_1020 LO,
tag0018_1050 DS,
tag_0018_1200 DA,
tag0018_1201 TM,
tag0028_0120 DS

Dcm nm equipment
(PK) tag_0018_1000
tag_0008_0070 LO,
tag_0008_0080 LO,
tag_0008_0081 ST,
tag_0008_1010 SH,
tag_0008_1040 LO,
tag0008_1090 LO,
tag_0018_1020 LO,

LO,



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0018_1050 DS,
tag_0018_1200 DA,
tag_0018_1201 TM,
tag_0028_0120 DS,
tag_0018_1145 DS,
tag_0018_1147 CS,
tag0018_1149 multiset(IS not null),
tag_0018_1180 SH,
tag_0018_1181 CS,
tag_0018_1182 DS,
tag_0018_1183 DS,
tag_0018 1184 DS

Dcmscequipment
(PK) tag_0018_1000 LO,
tag_0008_0070 LO,
tag0008_0080 LO,
tag_0008_0081 ST,
tag0008_1010 SH,
tag0008_1040 LO,
tag0008_1090 LO,
tag_0018_1020 LO,
tag_0018_1050 DS,
tag_0018_1200 DA,
tag_0018_1201 TM,
tag_0028_0120 DS,
tag_0008_0064 CS,
tag_0008_0060 CS,
tag0018_1010 LO,
tag_0018_1016 LO,
tag0018_1018 LO,
tag_0018_1019 set(LO not null),
tag_0018_1022 SH,
tag_0018_1023 LO

Dcm_frame_of_ref
(PK) tag0020_0052 UI,

Dcm_us_frameof ref
(PK) tag_0020_0052 UI,
tag_0018_6018 UL,
tag_0018_601A UL,
tag_0018_601C UL,
tag_0018_601E UL,
tag_0018_6024 US,
tag_0018_6026 US,
tag_0018_602C FD,
tag_0018_602E FD,
tag_0018_6020 SL,
tag_0018_6022 SL,
tag_0018_6028 FD,
tag_0018 602A FD

Dcm hospital



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

(PK) inst code_value SH,
(PK) inst_code_scheme SH,
tag_0008_0080 LO,
tag_0008 0081 ST

Dcmimage
(PK) tag_0008_0
(FK) tag_0008_1
(FK) tag_0008_2
tag_0008 0016
tag_00080005
tag_0008_0012
tag_0008 0013
tag00080014
tag_0020_0013
tag_0020_0020
tag_0008_0023
tag_0008_0033
tag_0008_0008
tag_0020_0012
tag_0008_0022
tag_0008_0032
tag_0008_2111
tag_0020_400
tag_0028_0002
tag_0028_0004
tag_0028_0010
tag_0028_0011
tag_0028_0100
tag_0028_0101
tag_0028_0102
tag_0028_0103
tag_7FE0_0010
tag_0028_0006
tag_0028_0034
tag_0028_1101
tag_0028_1102
tag_0028_1103
tag_0028_1201
tag0028_1202
tag_0028_1203

018 UI NOT NULL,
140 set(dcm_tag_0008_1155 not NULL),
112 set(dcm_tag_0008_ 1155 not NULL),
UI NOT NULL,
CS,
DA,
TM,
UI,
IS,
set(CS not null),
DA,
TM,
set(CS not null),
IS,
DA,
TM,
ST,
LT,
US,
CS,
US,
US,
US,
US,
US,
US,
OB,
US,
set(IS not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null)

Dcm_crjmage
(PK) tag_0008_0018 UI NOT NULL,
(FK) tag_0008_1140 set(dcmtag_0008_1155 not NULL),
(FK) tag_0008_2112 set(dcm_tag_008_1155 not NULL),
tag_0008_0016 UI NOT NULL,
tag_0008_0005 CS,
tag_0008_0012 DA,
tag_0008_0013 TM,
tag_0008_0014 UI,
tag_0020_0013 IS,

_I



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0020_0020
tag_0008_0023
tag_0008_0033
tag0008_0008
tag_0020_0012
tag_0008_0022
tag_0008_0032
tag_0008_2111
tag_0020_4000
tag_0028_0002
tag_0028_0004
tag_0028_0010
tag_0028_0011
tag_0028_0100
tag_0028_0101
tag_0028_0102
tag_0028_0103
tag_7FE0_0010
tag_0028_0006
tag_0028_0034
tag_0028_1101
tag_0028_1102
tag_0028_1103
tag_0028_1201
tag_0028_1202
tag_0028_1203
tag_0018_0010
tag_0018_1040
tag_0018_1041
tag_0018_1042
tag_0018_1043
tag_0018_1044
tag_0018_0060
tag_0018_1004
tag_0018_1110
tag_0018_1111
tag_0018_1150
tag_0018_1151
tag_0018_1152
tag_0018_1170
tag_0018_1400
tag_0018_1401
tag_0018_1402
tag_0018_1403
tag_0018_1404
tag_0018_1405
tag 0018_6000

set(CS not null),
DA,
TM,
set(CS not null),
IS,
DA,
TM,
ST,
LT,
US,
CS,
US,
US,
US,
US,
US,
US,
OB,
US,
set(IS not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
LO,
LO,
DS,
TM,
TM,
DS,
DS,
DS,
DS,
DS,
IS,
IS,
IS,
IS,
LO,
LO,
CS,
CS,
US,
IS,
DS

Dcmctimage
(PK) tag_0008_0018
(FK) tag_0008_1140

UI NOT NULL,
set(dcm_tag_0008_1155 not NULL),

Dcm ct image



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

(FK) tag_0008_2112
tag_0008_0016 UI]
tag_0008_0005 CS,
tag_0008_0012 DA
tag_0008 0013 TM
tag_0008_0014 UI,
tag_0020_0013 IS,
tag_0020_0020 set(
tag_0008_0023 DA
tag_0008_0033 TM
tag_0008_0008 set(
tag_0020_0012 IS,
tag_0008_0022 DA
tag_0008_0032 TM
tag_0008_2111 ST,
tag0020_4000 LT,
tag0028_0002 US,
tag_0028_0004 CS,
tag0028_0010 US,
tag0028_0011 US,
tag_0028_0100 US,
tag0028_0101 US,
tag_0028_0102 US,
tag0028_0103 US,
tag_7FE0_0010 OB,
tag_0028_0006 US,
tag_0028_0034 set(
tag0028_1101 mul
tag_0028_1102 mul
tag_0028_1103 mul
tag_0028_1201 mul
tag0028_1202 mul
tag_0028_1203 mul
tag.0028 0030 mul
tag_0020_0037 mul
tag_0020_0032 mul
tag0018_0050 DS,
tag_0020_1041 DS,
tag_0018_0010 LO,
tag_0018_1040 LO,
tag_0018_1041 DS,
tag0018_1042 TM
tag0018_1043 TM
tag_0018_1044 DS,
tag_0028_1052 DS,
tag_0028_1053 DS,
tag_0018_0060 DS,
tag_0018_0022 set((
tag_0018_0090 DS,
tag0018_1100 DS,

set(dcm_tag_0008_ 1155 not NULL),
NOT NULL,

CS not null),

CS not null),

IS not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(DS not null),
tiset(DS not null),
tiset(DS not null),

CS not null),



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0018_1110 DS,
tag_0018_1111 DS,
tag_0018_1120 DS,
tag_0018_1130 DS,
tag_0018_1140 CS,
tag_0018_1150 IS,
tag_0018_1151 IS,
tag_0018_1152 IS,
tag_0018_1160 SH,
tag_0018_1170 IS,
tag_0018_1190 multiset(DS not null),
tag_0018_1210 multiset(SH not null)

Dcm_mrimage
(PK) tag_0008_0018
(FK) tag_0008_1140
(FK) tag_0008_2112
tag0008_0016 UI]
tag_0008_0005 CS,
tag0008_0012 DA
tag_0008_0013 TM
tag_0008_0014 UI,
tag_0020_0013 IS,
tag_0020_0020 set(
tag_0008_0023 DA
tag_0008_0033 TM
tag_0008_0008 set(
tag_0020_0012 IS,
tag_0008_0022 DA
tag_0008_0032 TM
tag_0008_2111 ST,
tag_0020_4000 LT,
tag_0028_0002 US,
tag_0028_0004 CS,
tag_0028_0010 US,
tag_0028_0011 US,
tag_0028_0100 US,
tag_0028_0101 US,
tag_0028_0102 US,
tag_0028_0103 US,
tag_7FE0_0010 OB,
tag_0028_0006 US,
tag_0028_0034 set(
tag_0028_1101 mul
tag0028_1102 mul
tag_0028_1103 mul
tag_0028_1201 mul
tag_0028_1202 mul
tag0028_1203 mul
tag_0028_0030 mul
tag_0020_0037 mul

UI NOT NULL,
set(dcm_tag_0008_1155 not NULL),
set(dcm_tag_0008_1155 not NULL),

NOT NULL,

CS not null),

CS not null),

IS not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(DS not null),
tiset(DS not null),



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag.0020_0032
tag0018_0050
tag0020_1041
tag_0018_0010
tag_0018_1040
tag_0018_1041
tag0018_1042
tag_001 8_1043
tag_0018_1044
tag_0018_0020
tag0018_0021
tag_0018_0022
tag_0018_0023
tag_0018_0080
tag0018_0081
tag_0018_0091
tag_0018_0082
tag_0018_1060
tag0018_0024
tag_0018_0025
tag_0018_0083
tag_0018_0084
tag_0018_0085
tag_0018_0086
tag_0018_0087
tag_0018_0088
tag_0018_0089
tag_0018_0093
tag_0018_0094
tag_0018_0095
tag_0018_1062
tag_0018_1080
tag_0018_1082
tag_0018 1083
tag_0018_1084
tag_0018_ 1085
tag_001 8_ 1086
tag_0018_1088
tag_0018_1090
tag_0018_1094
tag_0018_1100
tag_0018_1250
tag_0018_1251
tag_0018_1310
tag_0018_1312
tag_0018_1314
tag_0018_1316
tag_0018_1315
tag_0018_1318
tag_0020_0100

multiset(DS not null),
DS,
DS,
LO,
LO,
DS,
TM,
TM,
DS,
set(CS not null),
set(CS not null),
set(CS not null),
CS,
DS,
DS,
IS,
DS,
DS,
SH,
CS,
DS,
DS,
SH,
multiset(IS not null),
DS,
DS,
IS,
DS,
DS,
DS,
IS,
CS,
IS,
IS,
IS,
LO,
IS,
IS,
IS,
IS,
DS,
SH,
SH,
multiset(US not null),
CS,
DS,
DS,
CS,
DS,
IS,



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0020_0105 IS,
tag_0020 0110 DS

Dcm_nm_image
(PK) tag_0008_0
(FK) tag_0008_1
(FK) tag_0008_2
tag_0008_0016
tag_0008_0005
tag_0008_0012
tag_0008_0013
tag_0008_0014
tag_0020_0013
tag_0020_0020
tag0008_0023
tag_0008_0033
tag0008_000
tag_0020_0012
tag_0008_0022
tag0008_0032
tag_0008_2111
tag_0020_4000
tag_0028_0002
tag_0028_0004
tag_0028_0010
tag_0028_0011
tag_0028_0100
tag_0028_0101
tag_0028_0102
tag_0028_0103
tag_7FE0_0010
tag0028_0006
tag_0028_0034
tag_0028_1101
tag_0028_1102
tag_0028_1103
tag_0028_1201
tag_0028_1202
tag_0028_1203
tag_0028_0030
tag0020_0037
tag_0020_0032
tag_0018_0050
tag_0020_1041
tag_0018_1063
tag_0018_1065
tag_0008_2142
tag_0008_2143
tag_0008_2144
tag_0018_0040
tag_0018_1066

018 UI NOT NULL,
140 set(dcm_tag_0008_1155 not NULL),
112 set(dcm_tag_0008_1155 not NULL),
UI NOT NULL,
CS,
DA,
TM,
UI,
IS,
set(CS not null),
DA,
TM,
set(CS not null),
IS,
DA,
TM,
ST,
LT,
US,
CS,
US,
US,
US,
US,
US,
US,
OB,
US,
set(IS not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(DS not null),
multiset(DS not null),
multiset(DS not null),
DS,
DS,
DS,
multiset(DS not null),
IS,
IS,
IS,
IS,
DS,



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag0018_0073
tag_0018_1242
tag0028_0008
tag_0028_0009
tag_0028_0031
tag_0018_0070
tag0018_0071
tag_0018_1100
tag_0018_1110
tag_0018_1130
tag_0018_1131
tag0018_1141
tag_0018_1142
tag0018_1210
tag0018_5020
tag_0018_5021
tag.0020_0015
tag0020_0016
tag_0020_0017
tag_0020_0018
tag0028_0032
tag_0028_0051
tag_0018 1061
tag_0018_1060
tag_0018_1062
tag_0018_1064
tag_0018_1080
tag_0018_1081
tag_0018_1082
tag_0018_1083
tag_0018_1084
tag_0018_1085
tag0018_1086
tag0018_1088
tag0018_1090
tag0018_1144
tag_0018_1143
tag0018_1140
tag0018_1146

DS,
IS,
IS,
AT,
multiset(DS not null),
IS,
CS,
DS,
DS,
DS,
DS,
DS,
multiset(DS not null),
multiset(SH not null),
LO,
LO,
IS,
IS,
IS,
IS,
multiset(DS not null),
CS,
LO,
DS,
IS,
LO,
CS,
IS,
IS,
IS,
IS,
LO,
IS,
IS,
IS,
IS,
DS,
CS,
multiset(DS not null)

Dcm usjimage
(PK) tag_0008_0018 UI NOT NULL,
(FK) tag_0008_1140 set(dcm_tag_0008_1155 not NULL),
(FK) tag_0008_2112 set(dcm_tag_0008_1155 not NULL),
tag0008_0016 UI NOT NULL,
tag_0008_0005 CS,
tag0008_0012 DA,
tag_0008_0013 TM,
tag0008_0014 UI,
tag0020_0013 IS,
tag0020_0020 set(CS not null),



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0008_0023
tag_0008_0033
tag_0008_0008
tag_0020_0012
tag_0008_0022
tag_0008_0032
tag_0008_2111
tag_0020_4000
tag_0028_0002
tag_0028_0004
tag_0028_0010
tag_0028_0011
tag_0028_0100
tag_0028_0101
tag_0028_0102
tag0028_0103
tag_7FE0_0010
tag_0028_0006
tag_0028_0034
tag_0028_1101
tag_0028_1102
tag_0028_1103
tag_0028_1201
tag_0028_1202
tag_0028_1203
tag_0018_0010
tag_0018_1040
tag_0018_104 1
tag_0018_1042
tag_0018_1043
tag0018_1044
tag0018_6011
tag 0028_0009
tag0008_2124
tag0008_212A
tag0008_2120
tag_0008_2122
tag0008_2128
tag_0008_2129
tag_0008_2130
tag_0008_2132
tag_0008_2200
tag_0008_2204
tag_0008_2208
tag_0018_1060
tag_0018_1062
tag_0018_1080
tag_0018_1081
tag_0018_1082
tag_0018_1088

DA,
TM,
set(CS not null),
IS,
DA,
TM,
ST,
LT,
US,
CS,
US,
US,
US,
US,
US,
US,
OB,
US,
set(IS not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
LO,
LO,
DS,
TM,
TM,
DS,
set(tag_0018_6011 not null),
AT,
IS,
IS,
SH,
IS,
IS,
IS,
set(DS not null),
set(LO not null),
CS,
CS,
CS,
DS,
IS,
CS,
IS,
IS,
IS,



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0018_5000
tag_0018_5010
tag_0018_6031
tag_0018_5012
tag_00l 8_5020
tag_001 8_5022
tag_0018_5024
tag_0018_5026
tag_0018_5027
tag_00 18_5028
tag_00 18_5029
tag_0018_5050
tag_0018_5210
tag_0018_5212

set(SH not null),
multiset(LO not null),
CS,
DS,
LO,
DS,
DS,
DS,
DS,
DS,
DS,
IS,
DS,
DS

Dcm_us_mf_image
(PK) tag_0008_0018
(FK) tag_0008_1140
(FK) tag_0008_2112
tag_0008_0016 UI
tag_0008_0005 CS,
tag_0008_0012 DA
tag_0008_0013 TM
tag_0008_0014 UI,
tag_0020_0013 IS,
tag_0020_0020 set(
tag_0008_0023 DA
tag_0008_0033 TM
tag_0008_0008 set(
tag_0020_0012 IS,
tag_0008_0022 DA
tag_0008_0032 TM
tag_0008_2111 ST,
tag_0020_4000 LT,
tag_0028_0002 US
tag_0028_0004 CS,
tag_0028_0010 US
tag_0028_0011 US
tag_0028_0100 US
tag_0028_0101 US
tag_0028_0102 US
tag_00280103 US
tag_7FE0_0010 OB
tag_0028_0006 US
tag_0028_0034 set(
tag_0028_1101 mu
tag_0028_1102 mu
tag_0028_1103 mu
tag_0028_1201 mu
tag_0028_1202 mu
tag_0028_1203 mu

UI NOT NULL,
set(dcm_tag_0008_ 155 not NULL),
set(dcm_tag_008_1 155 not NULL),

NOT NULL,

CS not null),

CS not null),

'IS not null),
Itiset(US not null),
Itiset(US not null),
Itiset(US not null),
Itiset(US not null),
ltiset(US not null),
Itiset(US not null),
ltstU ntnl)

,



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0018_0010
tag_0018_1040
tag_0018_1041
tag_0018_1042
tag_0018_1043
tag_0018_1044
tag_0018_6011
tag_0028_0009
tag_0008_2124
tag_0008_212A
tag_0008_2120
tag0008_2122
tag_0008_2128
tag_0008_2129
tag_0008_2130
tag_0008_2132
tag_0008_2200
tag_0008_2204
tag_0008_2208
tag_0018_1060
tag_0018_1062
tag_0018_1080
tag_0018_1081
tag_0018_1082
tag_0018_1088
tag_0018_5000
tag_0018_5010
tag_0018_6031
tag_0018_5012
tag_0018_5020
tag_0018_5022
tag_0018_5024
tag_0018_5026
tag_0018_5027
tag_0018_5028
tag_0018_5029
tag_0018_5050
tag_0018_5210
tag_0018_5212
tag_0018_1063
tag_0018_1065
tag_0008_2142
tag_0008_2143
tag_0008_2144
tag_0018_0040
tag_0018_1066
tag_0018_0072
tag_0018_1242
tag0028_0008

LO,
LO,
DS,
TM,
TM,
DS,
set(tag_0018_6011 not null),
AT,
IS,
IS,
SH,
IS,
IS,
IS,
set(DS not null),
set(LO not null),
CS,
CS,
CS,
DS,
IS,
CS,
IS,
IS,
IS,
set(SH not null),
multiset(LO not null),
CS,
DS,
LO,
DS,
DS,
DS,
DS,
DS,
DS,
IS,
DS,
DS,
DS,
multiset(DS not null),
IS,
IS,
IS,
IS,
DS,
DS,
IS,
IS

Dcm_ scimage



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

(PK) tag_0008_0018
(FK) tag_0008_1140
(FK) tag_0008_2112
tag0008_0016 UI
tag_0008_0005 CS,
tag_0008_0012 DA
tag0008_0013 TM
tag_0008_0014 UI,
tag_0020_0013 IS,
tag_0020_0020 set(
tag0008_0023 DA
tag0008_0033 TM
tag00080008 set(
tag_0020_0012 IS,
tag0008_0022 DA
tag_0008_0032 TM
tag00082111 ST,
tag0020_4000 LT,
tag0028_0002 US,
tag0028_0004 CS,
tag0028_0010 US,
tag_0028_0011 US,
tag0028_0100 US,
tag_0028_0101 US,
tag_0028_0102 US,
tag.0028_0103 US,
tagj7FE0_0010 OB
tag_0028_0006 US,
tag_0028_0034 set(
tag0028_1101 mul
tag0028_1102 mul
tag0028_1103 mul
tag_0028_1201 mul
tag0028_1202 mul
tag0028_ 1203 mul
tag0018_1012 DA.
tag_0018 1014 TM

UI NOT NULL,
set(dcm_tag 0008_1155 not NULL),
set(dcm_tag0008_1155 not NULL),

NOT NULL,

k,

CS not null),

CS not null),

IS not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),
tiset(US not null),ltstU ntnl)

Dcminterpret
(PK) tag_0008_0018
tag0008_0016 UI NOT
tag0008_0005 CS,
tag0008_0012 DA,
tag0008_0013 TM,
tag_0008_0014 UI,
tag4008_0200 SH,
tag4008_0202 LO,
tag4008_0210 CS,
tag4008_0212 CS,
tag_4008_0100 DA,
tag_4008_0101 TM,

UI NOT NULL,
NULL,

Dcminterpret 

....



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_4008_0102 PN,
tag_4008_0103 LO,
tag_4008_0108 DA,
tag_4008_0109 TM,
tag_4008_010A PN,
tag_4008_010B ST,
tag_4008_010C PN,
tag_4008_0111 set(dcm_tag_4008_0111 not null),
tag_4008_0115 LT,
tag4008_0117 set(dcm_tag_4008_0117 not null),
tag_40080118 set(dcmtag_4008 0118 not null)

Dcm_modalitylut
(FK) tag_0008_1140 set(dcm_tag_0008_1155 not null),
tag_0008_0016 UI NOT NULL,
tag_0008_0005 CS,
tag_0008_0012 DA,
tag_0008_0013 TM,
tag_0008_0014 UI,
tag_0028_3000 set(dcm_tag_0028_3000 not null),
tag_0028_1052 DS,
tag_0028_1053 DS,
tag_0028_1054 LO,
tag_0020 0026 IS

Dcm_overlay
(FK) tag_0008_l
tag_0008_0016
tag_0008_0005
tag_0008_0012
tag_0008_0013
tag_0008_0014
tag_0020_0022
tag_0008_0024
tag_0008_0034
tag_60xx_0010
tag_60xx_0011
tag_60xx_0050
tag_60xx_0100
tag_60xx_0102
tag_60xx_3000
tag_60xx_1301
tag_60xx_1100
tag_60xx_1101
tag_60xx_1102
tag_60xx_1103
tag_60xx_1200
tag_60xx_1201
tag_60xx_1202
tag_60xx_1203

140
UI NOT
CS,
DA,
TM,
UI,
IS,

set(dcm_tag_0008_1155 not null),
NULL,

DA,
TM,
US,
US,
multiset(SS not null),
US,
US,
OW,
IS,
US,
US,
US,
US,
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null)

Dcm mf overlay
set(dcm_tag_0008_1155 not null),S(FK) tag0008_1140

v --



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0008_0016
tag_0008_0005
tag_0008_0012
tag_0008_0013
tag_0008_0014
tag_00200022
tag_0008_0024
tag_0008_0034
tag_60xx_0010
tag_60xx_0011
tag_60xx_0050
tag_60xx_0100
tag_60xx_0102
tag_60xx_3000
tag_60xx_1301
tag_60xx_ 1100
tag_60xx_1101
tag_60xx_1102
tag_60xx_ 1103
tag_60xx_1200
tag_60xx_1201
tag_60xx_1202
tag_60xx_1203
tag_60xx_0015

UI NOT NULL,
CS,
DA,
TM,
UI,
IS,
DA,
TM,
US,
US,
multiset(SS not null),
US,
US,
OW,
IS,
US,
US,
US,
US,
multiset(US not null),
multiset(US not null),
multiset(US not null),
multiset(US not null),
IS

Dcm-patient
(PK) tag_0010_0020 LO,
(FK) tag_0038_0004 SQ,
tag_0008_0018 UI,
tag_0008_0016 UI NOT NULL,
tag_0008_0005 CS,
tag_0008_0012 DA,
tag_0008_0013 TM,
tag_0008_0014 UI,
tag_0010_0010 PN,
tag_0010_0021 LO,
tag_0010_ 1000 set(LO NOT NULL),
tag_0010_1001 set(PN NOT NULL),
tag_0010_1005 PN,
tag_0010_1060 PN,
tag0010_1090 LO,
tag_0010_1040 LO,
tag0010_2152 LO,
tag_0010_2150 LO,
tag_0010_2154 set(SH NOT NULL),
tag_00100030 DA,
tag_0010_0032 TM,
tag_00102160 SH,
tag_001 0040 CS,
tag_0010_1020 DS,
tag_0010_1030 DS,

I

,



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0010_1080
tag_0010_1081
tag_0010_0050
tag_0010_21f0
tag_0010_4000
tag_0038_0500
tag_0010_21CO
tag_0010_2000
tag_0010_2110
tag_0038_0050
tag_0010_21DO
tag_0010_21AO
tag_0010_21B0

LO),
LO,
set(dcm_tag_0010_0050
LO,
LT,
LO,
US,
set(LO NOT NULL),
set(LO NOT NULL),
LO,
DA
CS,
LT

NOT NULL),

Dcmphysician
(PK) tag_mitx_phyx UI,
tag_0008_0090 PN,
tag_0008_0092 ST,
tag_0008_0094 set(SHNOT NULL)

Dcm results
(PK) tag_0008_0018 UI NOT NULL,
tag_0008_0016 UI NOT NULL,
tag_0008_0005 CS,
tag_0008_0012 DA,
tag_0008_0013 TM,
tag_0008_0014 UI,
tag_4008_0040 SH,
tag_4008_0042 LO,
tag_4008_0300 ST,
tag_4008 4000 ST

Dcm series
(PK) tag_0020_000OE UI,
(FK) tag_0018_1000 LO,
(FK) tag_0020_0052 UI,
tag_0020_0011 IS,
tag_0020_0060 CS,
tag_0008_0021 DA,
tag_0008_0031 TM,
tag_0008_1050 set( PN NOT NULL),
tag_0018_1030 LO,
tag_0008_103E LO,
tag_0008_1111 set(PN NOT NULL),
tag_008_0015 CS,
tag_0008_5100 CS,
tag_0028_0108 US,
tag_0028 0109 US

Dcm cr series
tag_O018_5101
tag_0018_1160
tag_O018_1180
tag_0018_1190

CS,
SH,
SH,
set(DS NOT NULL),



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0018_1260 SH,
tag_0018_1261 LO

Dcm nm_series
tag_0018_0030 set(LO not Null),
tag_0008_0042 CS,
tag_0018_1300 IS,
tag_0018_1301 set(CS not Null),
tag_0018_1302 IS,
tag_0018_0031 set(LO not null),
tag_0018_0032 DS,
tag_0018_0033 multiset(DS not null),
tag_0018_0034 LO,
tag_0018_0035 TM,
tag_0018_0072 DS,
tag_0018_1045 multiset(IS not null),
tag_0018_1061 LO,
tag_0018_1070 multiset(LO not null),
tag0018_1071 multiset(DS not null),
tag_0018_1072 multiset(TM not null),
tag_0018_1073 multiset(TM not null),
tag_0018_1074 multiset(DS not null),
tag_0018_1120 DS,
tag_0020_0014 IS

Dcm stdycompnt
(PK) tag_0008_0018 UI NOT NULL,
(FK) tag_0008_1110 set(dcm_tag_0008_1155 not null),
tag_0008_0016 UI NOT NULL,
tag_0008_0005 CS,
tag_0008_0012 DA,
tag_0008_0013 TM,
tag_0008_0014 UI,
tag_0008_1030 LO,
tag_0008_1032 dcm_tag_0008_1032,
tag_0008_1050 set(PN NOT NULL),
tag0032_1055 CS

Dcm.study
(PK) tag_0020_000D UI,
tag0008_0018 UI NOT NULL,
tag_0008_0016 UI NOT NULL,
tag_0008_0005 CS,
tag_0008_0012 DA,
tag_0008_0013 TM,
tag_0008_0014 UI,
tag_0008_0050 SH,
tag_0020_0010 SH,
tag_0032_0012 LO,
tag_0020_1070 set(IS NOT NULL),
tag_0032_000A CS,
tag_0032_000C CS,
tag_0032_4000 LT,



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

tag_0032_1000
tag0032_1001
tag_0032_1010
tag_0032_1011
tag_0032_1020
tag_0032_1021
tag_0032_1030
tag_0032_1033
tag_0032_1060
tag0032_1064
tag_0032_1070
tag_0032_1040
tag0032_1041
tag_0008_0020
tag_0008_0030
tag_0032_1050
tag0032_1051
tag_0032_0032
tag_0032_0033
tag_0008_1060
tag_0032_0034
tag_0032_0035

DA,
TM,
DA,
TM,
LO,
multiset(AE not null),
LO,
LO,
LO,
set(dcm_tag_0032_1064),
LO,
DA,
TM,
DA,
TM,
DA,
TM,
DA,
TM,
PN,
DA,
TM

Dcm_ visit
(PK) tag_0008_0018 UI NOT NULL,
tag_0008_0016 UI NOT NULL,
tag_0008_0005 CS,
tag_0008_0012 DA,
tag_0008_0013 TM,
tag_0008_0014 UI,
tag_0038_0010 LO,
tag_0038_0011 LO,
tag_0038_0008 CS,
tag_0038_0300 LO,
tag_0038_0400 LO,
tag_0038_4000 LT,
tag_0038_0020 DA,
tag_0038_0021 TM,
tag_0038_0016 LO,
tag_0008_1080 LO,
tag_0008_1084 dcm_tag_0008_1084,
tag_0038_0030 DA,
tag_0038_0032 TM,
tag_0038_0040 LO,
tag0038_0044 dcm_tag_0038_0044,
tag_0038_001A DA,
tag_0038_001B TM,
tag_0038_001C DA,
tag_0038_001D TM,
tag0038 001E LO

Dcm voi lut

7



Table A- 1 Attributes of all entities of the schema. (PK)
represents primary keys, (FK) represents foreign keys. Next
to each attribute is its value representation as defined in Part
6 of the DICOM 3.0 standard.

(FK) tag_0008_1140 set(dcm_tag_0008_1155 not null),
tag_0008_0016 UI NOT NULL,
tag_0008_005 CS,
tag_0008_0012 DA,
tag_0008_0013 TM,
tag_0008_0014 UI,
tag_0028_3010 set(dcm_tag_0028_3010 not null),
tag_0028_1050 multiset(DS not null),
tag_0028_1051 multiset(DS not null),
tag_0028_1055 set(LO not null)



Table A- 2 Relationship tables within the schema. The naming convention used is
the following: dcmentityl_entityl represents a relationship table between entityl
and entity2. (PK) represents primary key, (FK) represents foreign key. Next to
each attribute is its value representation as defined in Part 6 of the DICOM 3.0
standard.

dcmpatientvisit
(PK)(FK) tag_0008_1120 UI
(PK)(FK) tag_0008 1125 UI

dcm patientstudy
(PK)(FK) tag_0008_1120 UI,
(PK)(FK) tag_0008_1110 UI

dcm_studyresults
(FK) (PK) tag_0008_1 110 UI,
(FK) (PK) tag_0008_1100 UI

dcm_reslt_intprt (results and interpret)
(FK) (PK) tag_0008_1100 UI,
(FK) (PK) tag_4008 0050 UI

dcm_physvisit (physician and visit)
FK) (PK) tag_0008_1125 UI,
FK) (PK) tagmitxphyx UI

dcm_visit_hospital
(PK)(FK) tag_0008_1125 UI,
(PK)(FK) inst_code_value SH,
(PK)(FK) instcode_scheme SH

dcm_visitstudy
(FK) (PK) tag0008_1125 UI,
(FK) (PK) tag_0008_1110 UI

dcm_stdystdycmp (study and study component)
(FK) (PK) tag_0008_1 110 UI,
(FK) (PK) tag_0008 111 UI

dcm stdycmp ser (between study component and series)
(FK) (PK) tag_0008_1111 UI,
(FK) (PK) tag0008_ 1115 UI,

dcm ser ciodprt (series and ciodprt)
(PK)(FK) tag_0008_1115 UI,
(PK)(FK) tag_0008_1140 UI

dcmimg embobj
(PK)(FK) tag_0008_1140 UI,
(PK) tagmitx_obj UI

Dcmimgcurve
(PK)(FK) tag_0008_1140 UI,
(PK)(FK) tagmitxobj UI

dcm_imgmodlut
(PK)(FK) tag_0008_1140 UI,
(PK)(FK) tagmitx_obj UI

dcmimgoverlay
(PK)(FK) tag_0008_1140 UI,
(PK)(FK) tagmitxobj UI

dcm imgvoilut
(PK)(FK) tag_0008_1140 UI,
(PK)(FK) tagmitxobj UI
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