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ABSTRACT

Essay 1: Translation Errors in the Aggregation of Consumer Recommendations

There has been a substantial increase of websites providing consumers with
recommendations about products and services. These recommendations are usually
presented in the form of verbal reviews and numerical ratings. It is assumed implicitly
that consumers can integrate adequately the information across the two presentation
modes (verbal and numerical). However, research on the effects of compatibility between
stimulus and response formats suggests that preference consistency is higher (lower) in
cases of compatible (non-compatible) formats, implying that information aggregation
across the two modes may be sub-optimal. The results of three experiments confirm this
conjecture. Information aggregation and preference reversals were systematically
affected by the compatibility of the stimulus and response format. Decision makers were
not aware of this effect.

Essay 2: The Researcher as a Consumer of Scientific Publications: How Do Name
Ordering Conventions Affect Inferences About Contribution Credits?

When researchers from different fields with different norms collaborate, the question
arises how name ordering conventions are chosen, and how they affect contribution
credits. In this paper we answer these questions by studying two disciplines that
exemplify the two cornerstones of name ordering conventions: Lexicographical ordering
(i.e., alphabetical ordering, endorsed in economics) and non-lexicographical ordering
(i.e., ordering according to individual contributions, endorsed in psychology). Inferences
about credits are unambiguous in the latter arrangement, but imperfect in the former,
because alphabetical listing can reflect ordering according to individual contributions by
chance.



We contrast the fields of economics and psychology with marketing, a discipline
heavily influenced by both. Based on archival data, consisting of more than 38,000
journal articles, we show that the three fields have different ordering practices. In two
empirical studies, with 351 faculty and graduate student participants from all three
disciplines, as well as in a computer simulation, we show that ordering practices
systematically affect and shape the allocation of perceived contributions and credit.
While strong disciplinary norms in economics and psychology govern the allocation of
contribution credits, a more heterogeneous picture emerges for marketing. This lack of
strong norms has detrimental effects in terms of assigned contribution credits.

Essay 3: Performance-Contingent Discounts and Consumer Choice

Incentives affect individuals' attitudes and behaviors in a myriad of ways. In this paper
we explore the effects of performance-contingent discounts on consumer choice. For that
purpose we set up an online store for digital cameras. Half the subjects received a fixed
rebate; the other half had to "earn" their rebate by learning about the products offered.
The more information subjects remembered, as inferred from their answers to a short
quiz, the higher their discounts. Our results indicate that subjects, who were offered
performance-contingent discounts, found the online store more informative and
reputable, were more likely to recommend the store to their friends, and were more likely
to buy. The results cannot be attributed to a better performance in the quiz or a more
thorough exploration of the products offered.
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Essay 1

Translation Errors in the Aggregation of Consumer Recommendations

ABSTRACT

There has been a substantial increase of websites providing consumers with

recommendations about products and services. These recommendations are usually

presented in the form of verbal reviews and numerical ratings. It is assumed implicitly

that consumers can integrate adequately the information across the two presentation

modes (verbal and numerical). However, research on the effects of compatibility between

stimulus and response formats suggests that preference consistency is higher (lower) in

cases of compatible (non-compatible) formats, implying that information aggregation

across the two modes may be sub-optimal. The results of three experiments confirm this

conjecture. Information aggregation and preference reversals were systematically

affected by the compatibility of the stimulus and response format. Decision makers were

not aware of this effect.



An increasing number of consumers purchase many items on the Internet rather

than in brick and mortar stores. One important difference between traditional stores and

virtual marketplaces is that the latter do not allow consumers to inspect directly the

physical properties of the goods and commodities. This lack of immediate direct

experience increases the uncertainty about the quality of the products.

One way to reduce this uncertainty is by allowing consumers to share their

experiences in the form of reviews and recommendations (Roselius, 1971). Indeed, many

of the leading Internet marketplaces (e.g., Amazon, EBay) offer consumers the

opportunity to publicize their experiences in the form of verbal statements and numerical

ratings. Verbal statements usually are free-format short essays, whereas numerical ratings

provide a summary in the form of quantitative ratings. These two information formats -

verbal and numerical - need to be integrated by consumers to adequately aggregate the

available information.

The compatibility hypothesis (e.g., Slovic, Griffin & Tversky, 1990) suggests that

correspondence between stimulus presentation (input) and response mode (output)

facilitates the evaluation and the choice process. For example, compatibility decreases

reaction time and increases accuracy of performance (Kornblum, Hasbroucq & Osman,

1990). The hypothesis implies that information is aggregated faster and more accurately

for cases in which stimulus and response format match - or are compatible - as compared

to cases of non-matching formats. For instance, consumers who encounter information in

the form of verbal recommendations, and also process it in a matching format, are

expected to integrate the information quicker and better than consumers who process the

same information in a different format (e.g., numerical rating scales). The quality of
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information integration is also expected to affect preference consistency. Preferences

should be more consistent with compatible information formats (compared to non-

compatible ones), because the information is more reliable (due to fewer "translation"

errors from one mode to another), rendering the comparisons more direct and natural.

In this paper, we report empirical evidence for the compatibility hypothesis in

information aggregation. Participants were presented with recommendations for fictitious

products. The recommendations were presented in either verbal or numerical format.

Participants first rated the products using a third modality (a graphical slider)

individually, based on the advisors' recommendations, and were then asked to process the

recommendations either in a matching or a non-matching format. Finally, they were

shown pairs of (the same) products, and asked to pick their preferred ones. This

procedure allowed us to investigate the internal consistency of preferences as a function

of the stimulus and response information format and their compatibility.

Related literature

The importance of compatibility between stimulus and response has been first

noted in the domain of industrial psychology. Responses to visual displays of

information, such as an instrument panel, were faster and also more accurate if the

structure of the response apparatus was compatible with the spatial arrangement of the

stimuli (Fitts & Deininger, 1954; Fitts & Seeger, 1953). For instance, the response to a

pair of lights was faster and more accurate if the left (right) light was associated with the

left (right) key than if the left (right) light was associated with the right (left) key.



In the literature on judgment and decision-making, the concept of compatibility

was invoked as a predictor in multi-attribute decision-making (Slovic & McPhillamy,

1974) and as an explanation for the preference reversal phenomenon (Tversky, Sattath &

Slovic, 1988). This phenomenon refers to the inconsistencies in revealed preferences as a

function of the elicitation method. For example, people tend to prefer a gamble with a

higher probability of winning a relatively small amount of money to a gamble with a

lower probability of winning a relatively large amount of money, yet they indicate a

higher selling price for the latter as compared to the former gamble (Cubitt, Munro &

Starmer, 2004; Lichtenstein & Slovic, 1971; Tversky, Slovic & Kahneman, 1990).

Tversky et al. (1988) propose the hypothesis of scale compatibility' to explain this

finding. They suggest that the weight of a stimulus attribute is enhanced by its

compatibility with a response mode.2 For instance, payoffs of gambles are usually

denoted in dollars, and are therefore more compatible with the elicitation of selling prices

(which are also denoted in dollars) than with choices among gambles.3 Nowlis and

Simonson (1997) extend this work by showing preference reversals for different

attribute-task combinations. Easy-to-compare attributes (e.g., price) are shown to receive

more weight in direct comparisons, whereas "enriched" attributes (e.g., brand names)

tend to receive greater weight in individual evaluations (e.g., ratings) of the same items.

This result is also consistent with the distinction between joint and separate evaluation

(e.g., Hsee, 2000).

Gonzilez-Vallejo and Wallsten (1992) showed that the frequency of preference

reversals is moderated by the format of the probability information. When probabilities

were stated numerically, preference reversals were observed at a rate equal to previous



empirical studies. However, when probabilities were presented in verbal format, the

frequency of preference reversals was significantly reduced. This result was driven by a

reduction of risk aversion in the choice task.

The moderating role of the information format is somewhat surprising, since

previous evidence suggests that despite the disagreements on the meanings of probability

terms (Beyth-Marom, 1982; Wallsten, Budescu, Rapoport, Zwick & Forsyth, 1986),

their use does not degrade performance in a variety of decision tasks (Budescu &

Wallsten, 1990; Budescu, Weinberg & Wallsten, 1988; Erev & Cohen, 1990). For

instance, Erev and Cohen (1990) asked sportswriters and basketball announcers to

provide verbal and numerical estimates of the chances of specific events in upcoming

basketball games with the promise of sharing a fraction of the profits earned by decision-

makers, who relied on these estimates when betting. The results showed no difference in

profits between the two information formats.

The present work

One domain, in which these two streams of literature - consistency of preferences

and the effects of information format on decision-making - converge, is the aggregation

of opinions. With the proliferation of Internet portals that allow (and in many cases,

strongly encourage) consumers to publicize their experiences in the form of verbal

summaries and/or numerical ratings, the question of how consumers integrate this

information, and how it affects their preferences, becomes increasingly important.

Previous research has provided first clues by, for instance, examining how

conflicting opinions are weighted (Budescu & Yu, 2006, 2007; Chevalier & Mayzlin,
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2006; Gershoff, Mukherjee & Mukhopadhyay, 2003; West & Broniarczyk, 1998), how

decision makers (DMs) revise their judgments in light of the opinions of others (Soll &

Larrick, 2005; Yaniv & Kleinberger, 2000), and how DMs process and compare

numerical and verbal expressions of uncertainty (Jaffe-Katz, Budescu & Wallsten, 1989;

Wallsten, Budescu & Tsao, 1997).

In this paper we merge these separate streams of literature by studying how DMs

integrate opinions communicated numerically and verbally, and how this integration

affects preference consistency. More specifically, we explore whether preference

consistency is sensitive to (a) the format of recommendations provided by others (verbal

or numerical), (b) the modality the DMs used to process and summarize the information

(verbal or numerical) and, most importantly, (c) the compatibility between the two

modes. According to the compatibility hypothesis, we expect that if DMs are presented

with recommendations in the form of verbal statements, the rate of preference reversals

will be higher (lower) when they are asked to provide a numerical (verbal) summary of

these recommendations.

This prediction is based on the assumption that consumers actually switch

between verbal and numerical information when aggregating opinions and that they need

to "translate" some information across modalities. To illustrate this point we conducted a

pilot study. We asked 12 participants (approached at the library) to collect information on

Amazon.com about a product that they would like to purchase in the near future. Amazon

displays recommendations (numerical ratings and verbal summary evaluations)

sequentially for each source - a practice that is shared by other leading Internet stores and

portals (e.g., iTunes, epinions). Participants were free to collect as much or little
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information as they wanted. During the entire process we tracked their eye-movements

(with the software eyebox2 by Xuuk.com). The results show that all 12 consumers

alternated between numerical and verbal information. For each product subjects first

looked at the numerical rating, and then read (at least part of) the verbal evaluation,

before moving on to the next review. This alternation between numerical and verbal

information might make consumers susceptible to compatibility effects - the topic of our

research.

We tested compatibility effects in three laboratory experiments, which will be

described in the next section. In the first study we establish that non-compatibility

between stimulus and response formats increases the frequency of preference reversals.

In the second and third studies we show that DMs do not anticipate the detrimental

effects of stimulus-response non-compatibility on preference consistency.

Study I

We obtained two individual preference orderings over products --- One is based

on graphical ratings, the other is based on pair-wise comparisons among the same

products using compatible and incompatible scales. Preference reversals are identified by

comparing these two orderings. The compatibility hypothesis predicts higher rates of

preference reversals when the stimulus format (verbal or numerical) does not match the

response format (verbal or numerical). For example, if DMs are presented with

recommendations in the form of verbal statements, the rate of preference reversals would

be higher (lower) when they are asked to provide a numerical (verbal) evaluation based

on these recommendations.
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The study consisted of two stages. In stage 1, participants rated the desirability of

12 fictitious products on a sliding (graphical) scale (see Figure 1 for a screen shot of the

task). Participants were instructed to assume that all products were from the same

category - household appliances or entertainment products - and had equal prices. The

products were shown in random order. For each product participants saw a list of 10

recommendations that were presented either as brief verbal statements or as numerical

ratings (in the form of "stars") on a 5-point scale (see Table 1 for a complete listing). The

verbal statements were pre-tested to match the 5-point numerical scale (see details

below). We manipulated the mean (low, intermediate, or high), the standard deviation

(low or high), and the presentation format (verbal or numerical) of the recommendations

(see Table 2 for details). Thus, each of the 12 products represents a unique combination

of the mean, the standard deviation, and the presentation format of the recommendations.

After a 10-minute filler task (involving the completion of consumer surveys),

participants were shown pairs of the products used in stage 1 in random order, including

the corresponding recommendations (see Figure 2, Panel a, for a screen shot). The

subjects' task was to evaluate the two products. The evaluation was either verbal or

numerical. In the verbal condition participants were shown five verbal statements, and

asked to select a global evaluation of the product's recommendations by clicking the

option that provided the best overall fit. The options ranged from "I am very unhappy

with the product" to "I am very satisfied with the product" (see Figure 2, Panel b, for a

screen shot of the task). In the numerical condition the participants were shown five

numerical scale values (1 to 5 stars), and asked to evaluate the recommendations by

clicking the best fitting option (higher number of stars indicated a stronger
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recommendation). After evaluating the two products, participants were asked to pick their

preferred product (see Figure 2, Panel c), and to indicate their confidence of having

picked the superior one on a rating scale (see Figure 2, Panel d).

We provided incentives for consistent preferences across the two stages of the

experiment. The probability of winning a prize, a $20 voucher for amazon.com, increased

linearly in participants' preference consistency across both stages of the experiment.4 The

subjects were told that the closer their choices among product pairs in stage 2 replicated

their initial preference orderings of stage 1, the higher was their probability of winning

the prize.

Pretest

Seventy-one students, 29 women and 42 males, aged 19 to 29 years (M=21.14,

SD=1.88), participated in the pretest. They were shown 50 short verbal statements, like

"this product was alright" or "this product was amazing," and were instructed to assign

each statement a numerical scale value of 1, 2, 3, 4, or 5, where a value of I indicated that

the product was not at all recommended, and a value of 5 indicated that the product was

highly recommended. We picked the 5 statements (one for each scale value) that yielded

the highest rates of agreement across participants (see Table 1 for a listing of the selected

statements and their corresponding agreement rates). We used these five verbal

statements in the subsequent studies, reported below.

Experimental design and procedure

Sixty-eight students, 33 women and 35 males, aged 18 to 24 years (M=20.24,

SD=1.45), participated in the study. We employed a 2 (stimulus format: verbal vs.
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numerical) x 2 (response format: verbal vs. numerical) mixed-factorial design. The first

factor was manipulated between-subjects, the second within-subjects.

In stage 1, participants rated the desirability of the 3 (means) * 2 (standard

deviation) * 2 (format: verbal and numerical) = 12 products. After a filler task, the

participants were shown pairs of products. All pairs were shown either in verbal or

numerical format according to the between-subjects factor "stimulus format" (see Figure

1, Panel a). There were two blocks of (6*5/2=) 15 pairs of products (see Figure 2, Panel

b). The response format in one block matched the format of the stimulus presentation

(compatible condition), whereas in the other block it did not match the format of the

stimulus presentation (non-compatible condition). Thus, each subject evaluated 30 pairs

of products. The order of the two blocks was counter-balanced.

Figure 2 shows a (non-compatible) product pair where the stimulus format was

numerical, and the response format was verbal. After evaluating the two products,

participants were asked to pick their preferred product (see Figure 2, Panel c), and to rate

the confidence of their choice (see Figure 2, Panel d).

Results

The desirability ratings in stage 1 allowed us to derive an individual preference

ordering over the 12 products. Since this was done graphically, it does not favor either

response mode (verbal or numerical) and serves as the "gold-standard." The pair-wise

choices and the summary evaluations, among product pairs in stage 2 induced a second

preference ordering. A comparison of these two orderings allowed us to identify

preference reversals.
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Does non-compatibility between the stimulus and response format increase the

rate ofpreference reversals? To answer this question we computed for each participant

the difference between the number of preference reversals under the non-compatible

format condition and the corresponding number under the compatible formats condition,

based on choices among products (see Panel c of Figure 2). 5 An ANOVA of this measure

of compatibility with the factor stimulus format (verbal or numerical) indicates that the

number of preference reversals is significantly higher with non-compatible cases,

irrespective of the information format (F(1, 64)=4.74, p<.05, 12=.11). That is, there is no

significant difference between the two stimulus modes.

What drives preference reversals, besides non-compatibility? To answer this

question, we considered separately four different types of product combinations (see

Table 3 for a complete enumeration of all cases): (1) pairs of products with different

means but equal standard deviation (e.g., M=3.40, SD=1.90 and M=2.60, SD=1.90),

which we label DMESD; (2) pairs of products with equal means but different standard

deviation (e.g., M=3.40, SD=1.90 and M=3.40, SD=1.07), labeled EMDSD; (3) pairs of

products were one has the higher mean and the higher standard deviation (e.g., M=3.40,

SD=1.90 and M=3.00 and SD=1.05), labeled HMHSD; and (4) pairs of products where

one has the higher mean and the lower standard deviation (e.g., M=3.40, SD=1.07 and

M=3.00, SD=1.94), which we label HMLSD.

We ran a 3-way (2 x 2 x 4) mixed ANOVA with the between-subjects factor

stimulus format (verbal or numerical) and two within-subjects factors - compatibility of

response format (yes or no) and product combination (DMESD, EMDSD, HMHSD and

HMLSD). The mean values are displayed in Table 4. We observed a significant main
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effect for stimulus format (F(1, 66)=5.39, p<.05, ir 2=.02), indicating that the average

proportion of reversals was higher in the verbal than in the numerical format (M=0.30 vs.

M=0.24). We also observed a significant main effect for product combination (F(3,

64)=37.40, p<.05, T12=.64). Bonferroni post-hoc tests that control the experimenter-wise

error rate indicate that the average proportion of reversals was higher for EMDSD than

for the other combinations (p<.05).

To shed further light on the nature and the determinants of the reversals, we

regressed the number of reversals for each pair of products on the following explanatory

variables: The perceived distance between the members of the pair, measured by the

absolute mean differences in the ratings of the two products in stage 1; same mean (1 =

the two products have the same mean, 0 = otherwise); same standard variance (1 = the

two products have the same variance, 0 = otherwise); compatible (1 = stimulus and

response format match, 0 = otherwise); numerical stimulus (1 = stimulus format is

numerical, 0 = otherwise); and numerical response (1 = response format is numerical, 0 =

otherwise). Table 5 presents the correlation coefficients and the standardized regression

coefficients of all 6 predictors.

The regression results indicate a systematic and highly predictable pattern

(Adjusted R2 = .74, F(6, 53) = 29.61, p < .05). We observe that reversals are more likely

when products are perceived as very similar, when they have identical means, when the

stimulus format is non-compatible with the response format, and when products are

represented numerically.

A dominance analysis (Azen and Budescu, 2003, Budescu, 1993) performed to

identify the predictors' contributions to the overall fit (based on comparisons among them
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in all subset regressions) indicates that most variance is explained by products with

identical means followed by products that are perceived to be similar to each other.

Compatibility explains more variance than the effects of stimulus and response mode

combined (see last column of Table 5).

Is the self-reported confidence of having made the correct choice correlated with

the number ofpreference reversals? The answer is no: We did not find significant

correlations between these variables for compatible and for non-compatible formats

(r(68)=.22 and r(68)=-. 11, respectively).

Discussion

Our results provide strong evidence for the compatibility hypothesis in the

aggregation of consumer recommendations. When DMs were asked to integrate

recommendations and summarize them in a non-compatible format (e.g., verbal inputs

and numerical evaluations), their preferences were significantly less consistent compared

to compatible formats (e.g., verbal to verbal). Preferences were most inconsistent for

product pairs with identical means but different standard deviations, suggesting that DMs

choices are least stable and consistent when facing options with highly variable

recommendations. To study the nature and source of the reversals, we classified each

subject according to his/her modal preference for low or high variability in all tasks. We

find that in stage 1, a slight majority of subjects (53%) favor high variance products when

the recommendations are presented verbally, but most subjects (64%) favor low variance

products when the recommendations are presented numerically. The corresponding rates

are less extreme (closer to 50%) in the second stage. The reversals can be due to the

change in the task (e.g., Tversky, et al, 1988) and/or format incompatibility. We found
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that the rate of reversals across different tasks was 40% when the formats were

compatible and 57% when they were incompatible. Thus, the net effect of format

incompatibility was 17% (or about half the size of the preference-reversal baseline).

In the next study, we investigate whether DMs can anticipate compatibility

effects.

Study II

Experimental design and procedure

Fifty-one students, 18 women and 33 males, aged 18 to 24 years (M=20.45,

SD=1.55), participated in the study. We employed a two-group between-subjects design,

varying the stimulus format (verbal vs. numerical). Subjects saw a product pair, described

either by 10 verbal or 10 numerical recommendations each. They only had to indicate

whether they believed consumers would summarize the information more accurately

verbally or numerically.

Results

Most participants predicted that consumers would be able to summarize the

information more accurately when using the numerical information regardless of the

stimulus presentation (X2(1)=14.23, p<.05). Twenty-one of the 25 (84%) subjects who

saw the numerical stimulus presentation selected the compatible (numerical) response

format, whereas only 8 of the 26 (31%) subjects who saw the verbal stimulus

presentation selected the compatible (verbal) response format. These results suggest that

DMs do not anticipate compatibility effects.
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In the next study we investigate whether this observation holds also when DMs

can choose their own response format. To this end we return to the experimental

paradigm of study I.

Study III

We studied whether DMs anticipate the detrimental effects of non-compatibility

between stimulus and response format on preference consistency by allowing participants

to choose their response format (verbal, numerical, or random) for every pair of products.

If participants anticipate the importance of compatibility between stimulus and response

format, they would choose the response format that matches the stimulus format in a

majority of cases.

We also test a major corollary of the compatibility effect: If DMs process the

stimulus information in one format (e.g., verbal), and then provide a summary evaluation

in a different format (e.g., numerical), it should take them longer to evaluate the products

than if they evaluate the information in a matching format (e.g., verbal). The additional

time is associated with the cross-modality translation (see Jaffe-Katz et al,, 1988). We

test this prediction by measuring subjects' decision times (i.e., the time it took them to

provide their summary evaluations).

Experimental design and procedure

Sixty-two students, 21 women and 41 males, aged 18 to 25 years (M=20.53,

SD=1.47), participated in the study. The participants first rated the desirability of the 3

(means) * 2 (standard deviation) * 2 (format: verbal and numerical) = 12 products. After

a filler task, they were shown 15 pairs of products, presented in verbal format, and 15
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pairs of products, presented in numerical format. The 30 pairs were presented in random

order. For each pair participants could select the response format for the product

evaluation and their recommendations. They could choose to respond verbally,

numerically, or randomly (in which case the program selected the verbal or numerical

format at random). After providing their evaluations, participants were asked to pick their

preferred product and to rate the confidence in their choice.

Results

Are subjects sensitive to format (in) compatibility? Most participants preferred the

numerical format (67.6%), followed by the verbal format (17.6%), and the random

determination of the response format (14.8%). This strong preference for the numerical

response format suggests that our participants did not anticipate the detrimental effects of

non-compatibility between stimulus and response format on preference consistency.

To investigate this claim more thoroughly, we calculated for each participant the

proportion of cases, in which they selected the numerical response format for products

that were represented numerically and products that were represented verbally. Table 6

displays the frequencies of the preferred response format as a function of the presentation

mode. The average proportion of the numerical response format for products that were

presented verbally was 0.56 as compared to 0.79 for products presented numerically

(t(61)=-4.90, p<.05). Excluding all instances where subjects were indifferent (and opted

for a random choice of the response mode), the corresponding proportions are 0.67 and

0.92, respectively (t(56)=-4.58, p<.05). These findings suggest a general preference for

numerical responses for all products, but the intensity of the preference is stronger for

compatible (numerical) cases.
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Do subjects process compatible and incompatible cases alike? An analysis of

subjects' decision times indicates that evaluations were considerably faster for matching

stimulus-response formats (M=23.19 seconds, SD=6.00, for verbal-verbal and numerical-

numerical) than for non-matching formats (M=29.57 seconds, SD=8.62, for verbal-

numerical and numerical-verbal). This difference is significant (t(21)=3.21, p<.05.). 6

Does incompatibility between stimulus and response formats increase the rate of

preference reversals? We computed for each individual the proportion of reversals for

compatible and non-compatible formats. Since we had many instances of few (or

missing) observations, we used robust non-parametric tests. Wilcoxon ranked-sign tests

indicate that (a) the number of preference reversals was significantly higher for non-

compatible stimulus-response pairs for products presented verbally, compared to

compatible stimulus-response pairs (z=2.66, p<.05), but (b) the number of preference

reversals was not significantly different between compatible and non-compatible

stimulus-response pairs for the products that were presented numerically (z=0.04,

p>.05).

What factors drive preference reversals for the various cases? We performed an

ANOVA of the average proportion of reversals per subject with two repeated factors:

stimulus format (verbal or numerical) and type of pair. Based on the results of the first

study we only distinguished between pairs with equal means and different standard

deviations (EMDSD) and all other pairs. The proportion of reversals is significantly

higher for product pairs with identical means but different standard deviations as

compared to all others (Fl, 6)=18.58, p<.05; M=0.66 versus M=0.33). There was no

effect for the format of presentation.
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Is the self-reported confidence correlated with the rate of preference reversals?

The correlations between the confidence and the rate of preference reversals are not

significantly different from 0 for the verbal stimulus format (r(61)=. 11), the numerical

stimulus format (r(61)=.09), the verbal response format (r(61)=-.08), and for the

numerical response format (r(61)=. 10).

Discussion

Our results demonstrate a general preference for the numerical response format,

replicating the results of study II that asked for expectations about others, as well as the

findings of Olson and Budescu (1997). One reason for this finding is that it is easier to

compare numerical values, such as prices, than verbal information, such as brand names

(Viswanathan & Narayanan, 1994). Preference consistency was impaired by the lack of

compatibility between stimulus and response mode only when subjects opted to respond

numerically to product pairs that were presented verbally. This combination of imprecise

(verbal) input and precise (numerical) output is quite rare (see Wallsten et al., 1993).

In addition, we showed that - consistent with the compatibility effect - stimulus-

response compatibility led to faster decision times than incompatability (see similar

results for congruent and non-congruent judgments in Jaffe-Katz et al., 1989). This

finding indicates that DMs require extra time to translate the information from one format

to the other.

General discussion

The compatibility hypothesis states that congruence between stimulus

presentation and response mode decreases reaction time and increases accuracy in
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performance. This implies that information would be aggregated faster and more

accurately for cases in which stimulus and response format match compared to cases of

non-matching formats. Hence, we predicted that preferences would be more consistent

for cases of compatible information formats.

We tested the compatibility hypothesis by presenting participants with

recommendations for fictitious products. The recommendations were shown either in

verbal or numerical format. Participants first rated the products individually using a

(format-neutral) slider. Later, subjects were shown pairs of (the same) products, and

asked to pick their preferred ones, while manipulating the match between the presentation

and response modes. This allowed us to investigate the internal consistency of

preferences as a function of the compatibility between the stimulus and response format.

In the first study, we showed that non-compatibility between stimulus and

response formats increases the frequency of preference reversals. In the second and third

study, we showed that DMs do not anticipate the detrimental effects of stimulus-response

non-compatibility on preference consistency. We also showed that stimulus-response

compatibility led to faster decision times than non-compatibility, suggesting that it is

easier to process the information if the response involves the same format and there is no

need to convert and switch formats. This finding is directly relevant to the ongoing

debate on the mental representation of numerical information. Abstract-modular theories

(e.g., McCloskey, Sokol & Goodman, 1986) postulate a central abstract and amodal

representation of numbers. The compatibility effects observed in our studies, for both

numerical and verbal representations, weaken this claim.
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It is well established that DMs appear to reverse their prefaces across elicitation

modes, and that the rate of reversals varies as a function of special features of the stimuli

(e.g Tversky et al., 1990). We found that in the present context DMs showed the highest

levels of reversals for products with identical means but different variances. The finding

that DMs have more trouble exhibiting consistent preferences for products with different

variances as compared to products with different means is in line with previous research

on people's ability to extract statistical properties from various stimuli. For instance,

Ariely (2001) and Chong and Treisman (2003, 2005) showed that DMs can accurately

judge the mean sizes of groups of circles. Obrecht, Chapman and Gelman (2007) showed

that in pair-wise comparisons DMs assigned the most weight in their decisions to mean

differences, less weight to sample size, and little weight to standard deviation. Given the

predominance of reversals associated with differences in variances we focused our

attention only to these cases. We were able to determine that the net effect of format

incompatibility is about half of the effect of the change in procedure (17% compared to

40%). This is a sizeable effect that deserves additional study. This finding, however, was

moderated by the information format. When the information was presented both

numerically and visually, DMs were more confident when the standard deviation was

high.

Martin, Barron, and Norton (2006) showed that DMs sometimes prefer high

variability options. For instance, they showed that movies with higher variability in

ratings were more successful at the box office (controlling for mean differences in movie

recommendations). Preferences for high variability options were found for other positive

experiences, such as desserts, and jelly beans, but were reversed for negative experiences,
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such as fear-factor foods, and dentist visits. West and Broniarczyk (1998) showed that

DMs prefer variance in recommendations, i.e., disagreement, for alternatives that fall

below an idiosyncratic reference or aspiration level. However, for alternatives that exceed

such a level consensus among recommenders is preferred. Goldsmith and Amir (2008)

investigate promotions that offer uncertain rewards. The authors find that a lottery

between small and large rewards is perceived as more attractive than receiving the large

reward for certain.

Our finding that compatibility between information presentation format and mode

of processing matters, begs the question what is the most prevalent information format

that consumers encounter, and how do they process it? The presentation format may vary

systematically across sources. When consumers rely on the recommendations of friends,

colleagues or peers, the information format is predominately verbal, because these

recommendations are most likely voiced in direct verbal communication, and because

this is most people's preferred mode (Wallsten et al., 1993). However, if consumers

consult systematic surveys of consumer reports (e.g., www.consumerreports.org) the

dominant information format is numerical, and most internet portals present mixtures of

the two formats.

It is also reasonable to assume that the information format is a function of the

product category. One could imagine that for products with high hedonic appeal

consumers search for confirmatory cues in order to justify their purchase intent. These

cues seem to be more likely to be verbal in nature, because words appear more

ambiguous than numbers (Budescu et al., 1988; Windschitl & Weber, 1999). On the other

hand, for products with high utilitarian appeal consumers might prefer numerical
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information, which appears to be more precise, and more likely to identify the objectively

best product of a category. Here consumers might be less emotionally involved with a

specific, implicitly favored, product. And, of course, these two factors may interact in the

sense that one is likely to rely more on verbal advice from friends for products with high

hedonic appeal (e.g., entertainment), and gravitate towards formal, data driven numerical

ratings for utilitarian products (e.g., appliances). Future research is needed to explore

these important questions.

Our findings have practical implications for the design of recommendation

systems and web portals. When consumers are asked to provide reviews about their

experiences with certain goods and products, they should be given the option of either

providing verbal summaries and/or numerical evaluations. This would ensure that

consumers can adequately recall the originally processed information and provide an

evaluation thereof in a matching format. Also, separating verbal summaries from

numerical ratings might be beneficial to those consumers who wish to aggregate the

available information on internet portals, like Amazon.com. This would ensure that

consumers do not need to switch between different information formats (with sometimes

conflicting evaluations) for single reviews, thereby reducing the likelihood of

"translation" errors.8
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Endnotes

1 Fischer and Hawkins (1993) later differentiated between scale compatibility and

strategic compatibility.

2 In later explanations of the preference reversal phenomenon, Tversky et al. (1988,

1990) stress the relevance of both hypotheses; scale compatibility and

prominence. Prominence refers to the attractiveness of the gamble with the higher

probability of winning a small amount of money in choice.

3 Schkade and Johnson (1989) use process measures to show that participants give

differential attention to probabilities and payoffs in studies on preference

reversals.

4 We counted the number of violations of the initial preference orderings across the

two information formats, resulting in a number between 0 (no violations) and 30

(all violations). We used this number to derive the probability of winning the $20

voucher: (30 - # of violations)/30. Thus, the probability of winning the prize is 1

in case of zero violations, and 0 in case of 30 violations.

5 There was a 98% agreement between these choices and the evaluations (panel b

of Figure 2), so we only report these results.

6 This analysis is based only on those subjects who selected to answer, at least,

once in each format for every presentation mode.

7 There was a 97% agreement between these choices and the evaluations (panel b

of Figure 2), so we only report these results.

8 Diehl (2005) provides another example for the potentially negative effects of

information display on consumer choice.
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Table 1: Labels used in the verbal and numerical information format

Scale Verbal format Numerical format Agreement rate

value in pilot study

1 I am very unhappy with the product 88.73

2 The product was quite bad 85.92

3 The product was okay 90.14

4 The product was quite good 84.51

5 I was very satisfied with the product 90.14

Table 2: Mean (standard deviation) of the verbal and numerical recommendations

High standard deviation Low standard deviation

High mean 3.40 (1.90) 3.40 (1.07)

Intermediate mean 3.00 (1.94) 3.00 (1.05)

Low mean 2.60 (1.90) 2.60 (1.07)
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Table 3: Classification of

DMESD

(6 pairs)

3.40 (1.07)

3.00 (1.05)

3.40 (1.07)

2.60 (1.07)

3.00 (1.05)

2.60 (1.07)

3.40 (1.90)

3.00 (1.94)

3.40 (1.90)

2.60 (1.90)

3.00 (1.94)

2.60 (1.90)

the 15 product pairs into 4 classes

Class of pairs

EMDSD HMHSD

(3 pairs) (3 pairs)

3.40 (1.07) 3.40 (1.90)

3.40 (1.90) 3.00 (1.05)

3.00 (1.05) 3.00 (1.94)

3.00 (1.94) 2.60 (1.07)

2.60 (1.07) 3.40 (1.90)

2.60 (1.90) 2.60 (1.07)

Note: The entries in the table denote possible product pairs, showing means plus standard

deviations (in parenthesis) of each pair. DMESD denotes products with Different Mean,

but Equal Standard Deviation. EMDSD denotes products with Equal Means, but

Different Standard Deviation. HMHSD denotes products where one has the Higher Mean

and the Higher Standard Deviation, and HMLSD denotes products where one has the

Higher Mean and the Lower Standard Deviation.
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HMLSD

(3 pairs)

3.40 (1.07)

3.00 (1.94)

3.00 (1.05)

2.60 (1.90)

3.40 (1.07)

2.60 (1.90)
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Table 4: Percentage of preference reversals as a function of stimulus and response

compatibility (study I)

Format Product pairs

Stimulus Response DMESD EMDSD HMHSD HMLSD Overall

Numerical Numerical 22.06 32.39 22.74 19.53 24.18

Numerical Verbal 21.59 32.74 20.60 24.17 24.78

Verbal Verbal 25.76 39.02 24.24 25.38 28.60

Verbal Numerical 30.14 40.03 30.18 29.04 32.35

Overall 24.89 36.04 24.44 24.53 27.48

Table 5: Regression analysis on the frequency of reversals (study I)

Variables Zero-order Standardized t General

correlations coefficients (df=59) dominance

Perceived Distance -.70 -.37 -4.39* .267

Same Mean .79 .51 5.69* .364

Same Variance -.42 -.12 -1.69 .076

Compatible -.19 -.19 -2.84 .035

Numerical Stimulus .12 .16 2.46* .022

Numerical Response -.07 -.07 -1.10 .005

Model's R2 (Adjusted R2) .770 (.744)

p <.0 5
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Table 6: Stimulus presentation format and preferred response format (study III)

Stimulus Preferred response format

format Numerical Random Verbal Total

Numerical 733 131 66 930

Verbal 525 144 261 930

Total 1,258 275 327 1,860
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Figure 1: Schematic screen-shot of the desirability ratings task (stage 1)

PRODUCT #2

The product was okay.
The product was quite bad.
The product was quite good.
I was very satisfied with the product.
The product was quite bad.
The product was okay.
The product was quite good.
The product was okay.
I was very satisfied with the product.
The product was okay.

How desirable is the product to you?

Not at all Highly
desirable desirable

Note: This product was shown in verbal format and was characterized by a high mean

(3.40) and a low standard deviation (1.07).
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Figure 2: Schematic screen-shot of the pair-wise choice task (stage 2)

Product A Product B

a

Please summarize each product by selecting the most appropriate option

0 I am very satisfied with the product C3 I am very satisfied with the product
0 The product is quite good 3 The product is quite good

b 0 The product is okay 0 The product is okay
0 The product is quite bad 0 The product is quite bad
3 I am very unhaov with the oroduct 0 I am very unhaeov with the oroduct

Please select the product that you prefer

E3 I prefer Product A
C 1 I prefer Product B

How confident are you in your choice?

Not at all Very
d confident confident

Note: Product A and B were represented in numerical format. Product A had an

intermediate mean (3.00) and a low standard deviation (1.05), whereas product B had a

high mean (3.40) and a high standard deviation (1.90). Panel a shows the stimulus

presentation, b the response task, c the choice task, and d the confidence task. For this

particular example, the stimulus presentation (numerical) was non-compatible with the

response task (verbal).
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Essay 2

The Researcher as a Consumer of Scientific Publications: How Do Name Ordering
Conventions Affect Inferences About Contribution Credits?

ABSTRACT

When researchers from different fields with different norms collaborate, the question

arises how name ordering conventions are chosen, and how they affect contribution

credits. In this paper we answer these questions by studying two disciplines that

exemplify the two cornerstones of name ordering conventions: Lexicographical ordering

(i.e., alphabetical ordering, endorsed in economics) and non-lexicographical ordering

(i.e., ordering according to individual contributions, endorsed in psychology). Inferences

about credits are unambiguous in the latter arrangement, but imperfect in the former,

because alphabetical listing can reflect ordering according to individual contributions by

chance.

We contrast the fields of economics and psychology with marketing, a discipline

heavily influenced by both. Based on archival data, consisting of more than 38,000

journal articles, we show that the three fields have different ordering practices. In two

empirical studies, with 351 faculty and graduate student participants from all three

disciplines, as well as in a computer simulation, we show that ordering practices

systematically affect and shape the allocation of perceived contributions and credit.

While strong disciplinary norms in economics and psychology govern the allocation of

contribution credits, a more heterogeneous picture emerges for marketing. This lack of

strong norms has detrimental effects in terms of assigned contribution credits.
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Social norms and conventions establish implicit rules of conduct that facilitate and

coordinate social interactions (Akerlof, 2007; Elster, 1989; Sherif, 1966). Applications

range from food-sharing among small-scale societies (Kaplan and Hill, 1985) to demand

for free consumer products (Shampanier, Mazar and Ariely, 2007) and personalized

recommendations (Kramer, Spolter-Weisfeld and Thakkar, 2007), permeating the private

and professional life. In academia, social norms provide guiding standards for academic

integrity and methodological practices. Norms also govern more mundane areas, such as

refereeing for academic journals, or deciding on the ordering of author names in

academic publications.

Two recent trends highlight the importance of name ordering. First, many

disciplines have noted a steady increase of collaborations, resulting in a sharp rise of

multi-authored publications (e.g., Hudson, 1996; Mendenhall and Higbee, 1982) and

higher citation rates (Wuchty, Jones and Uzzi, 2007). Second, the higher rate of

interdisciplinary collaboration (e.g., Morillo, Bordons and G6mez, 2003) often leads to

publications in journals different from the main outlets of an author's "home" discipline.

When collaborators from different fields with different conventions determine name

ordering, they can either accept a convention of one of the fields or create a new

convention. In either case, inferences about contribution credits are imperfect due to a

number of reasons:

1. Scientific disciplines cannot, and are not expected to, formally enforce their

prevalent ordering conventions. Although the majority of researchers follow the

customary norms, some researchers employ different conventions.

-41-



2. While inference about relative contributions for non-alphabetically ordered

papers is unambiguous, alphabetical listing of authors can either reflect equal

contributions or relative contributions, when the names reflect alphabetical order by

chance.

3. Attribution ambiguity becomes progressively more important with the growth

in interdisciplinary research, the rising number of publications in multi-disciplinary

journals, and the increase of citations across disciplinary boundaries.

4. Attribution ambiguity may also affect how individual researchers are evaluated.

Authors involved in collaborative work may employ multiple name ordering conventions

in their scientific publications (i.e., using both alphabetical and non-alphabetical

orderings), which might lead them to being penalized if they are evaluated according to

the prevalent norms of their "home discipline."

In this paper we investigate the question of name ordering conventions -- and

inferred contribution credits -- from the perspective of new and emerging fields. We

consider two disciplines, which exemplify the two cornerstones of name ordering

conventions in scientific publications: Alphabetical name ordering (endorsed in

economics) and non-lexicographical ordering, according to individual contributions

(endorsed in psychology). We study how name ordering conventions are shaped in a

relatively young and emerging field -- marketing -- a discipline strongly influenced by

the research culture of both economics and psychology (Simonson, Dhar, Drolet and

Nowlis, 2001). Deciding about the name ordering on scientific publications is not only a

question of which conventions or social norms to invoke. It also signals how researchers

decide to "market" themselves. From this perspective, this paper can be seen as an
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attempt to understand how the consumers of scientific research, i.e., fellow academics,

view and evaluate authors' marketing efforts.

To illustrate the differential name ordering conventions, we asked 163 faculty

members from all three disciplines (economics, marketing, and psychology) to participate

in a survey ranking of the top journals in their respective disciplines. The selection of

journals presented was based on previously published journal rankings (see Stigler,

Stigler and Friedland, 1995, for economics; Hult, Neese and Bashaw, 1997, and Tellis,

Chandy and Ackerman, 1999, for marketing; and Burgard, 2001, for psychology).

Those journals (see Table 1 for a complete listing) that received at least 80%

agreement were included in our analysis, and all scientific articles published in these

journals between January 1973 and December 2005 (except if noted otherwise) were

downloaded from the Social Sciences Citation Index (SSCI). This generated a data set of

38,315 articles (16,765 in psychology, 15,424 in economics; 6,126 in marketing).

Table 1 shows the frequency of alphabetical name ordering as a function of the

number of authors for economics, marketing, and psychology. The rate of alphabetical

name ordering in multi-authored papers ranges from 33% in psychology to 87% in

economics. As expected, marketing assumes an intermediate position with a rate of 50%.

We compared the expected (E,) and the observed (O,) percentages of alphabetical name

ordering for papers with i authors (i ranging from 2 to 6) for the various disciplines. The

prevalence of alphabetical name ordering exceeds chance level by a factor of 2 in

economics (see the row "Total"). A substantially different picture emerges in psychology

where the prevalence of alphabetical name ordering closely matches the expectation.

Marketing is in between these two extremes.
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Analyzing the prevalence of alphabetical name ordering across years by discipline

(see Figure 1) reveals a higher variance for marketing, which might reflect the existence

of different research traditions (behavioral vs. quantitative) within the field. For instance,

outlets which specialize in behavioral research might show ordering patterns that closely

correspond to the existing norms of psychology, while others that specialize in

quantitative research might correspond to the norms of economics. We find some

directional support for this conjecture with respect to the behavioral tradition, but no

support for the quantitative tradition.

The differential name ordering conventions in economics and psychology are

reflected in the disciplines' research on this topic. In psychology, researchers emphasize

the importance of visibility, inferred from author positions, as the driving motivation for

non-lexicographical ordering (Over and Smallman, 1973). In economics most efforts

have been devoted to identify conditions under which alphabetical name ordering is

attainable (Engers, Gans, Grant and King, 1999; Joseph, Laband and Patil, 2005; Laband

and Tollison, 2006). Recent research by Einav and Yariv (2006), however, has shown

that researchers in economics with names earlier in the alphabet were more successful

professionally. They suspect this finding to be linked to the prevalence of alphabetical

name ordering in economics.

Previous research has identified differential norms of name orderings used in

distinct academic fields, and the conditions under which they are sustainable, but not

much is known about the "consumers" of academic output and the meaning they assign to

name orderings. How do they perceive the contributions of individual authors, and what

are the potential factors that shape and influence these inferences? Understanding these
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factors is of crucial importance for the evaluation of individual scientific output (e.g.,

grants, promotions, awards) as well as for the motivation of the researchers in a given

project. We address these questions in three studies.

STUDY 1: ALLOCATION OF CONTRIBUTION CREDIT

We study whether scholars in economics, marketing, and psychology departments

endorse the prevalent conventions of their discipline when assigning contribution credit.

Method

Two hundred forty-seven faculty members and advanced graduate students from

economics (n=45), marketing (n=150), and psychology (n=52) participated in an Internet

study (80% of the participants held tenure-track or tenured positions and the median rank

was assistant professor).' Participants were presented with two lists of authors, displayed

side-by-side on the screen. In each list, one name (the target author) was highlighted, and

the participants were asked to compare the contribution credit that the two authors

deserve. First, they were asked to identify the target author that deserves more credit (or

to indicate that both deserve equal credit). Next, they were asked for the relative

contribution of each target author on a scale from 0% to 100% (for cases of equal

contribution, this question was posed only once, applying to both authors).2

The lists of authors consisted of one to four names. In case of multiple authors,

we presented the lists either in alphabetical or non-alphabetical order, and the target

authors could assume positions 1 to 4. Overall, we designed 19 different name listings,

'Findings in this study, and in study 3, remain qualitatively unchanged when the group of graduate
students is removed from the analyses. However, due to lower statistical power, some significant findings
become insignificant.
2 We used an abstract setting to isolate the role of norms in the contribution process, and acknowledge that
the effect size of our findings might be different when using more realistic judgments.
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resulting in 171 distinct pairs. A screen-shot of the task is shown in Figure 2 and a

complete listing of names can be found in Table 2.

The author names were randomly sampled from a list of frequent British names

(in order to eliminate prior opinions about particular researchers) and the co-authors from

a list of real author names, obtained from the initial study. We instructed participants to

assume that the papers being compared were published in the same high-quality journals,

and that the lists of authors were hypothetical. Participants were asked to complete at

least one block of 25 comparisons, but could complete more than one block. Incentives

were provided by holding weekly lotteries raffling $100 coupons for Amazon.com, with

the probability of winning proportional to the number of blocks completed. On average,

respondents performed 29.77 comparisons.

Results and Discussion

We analyzed a total of 7,234 pairs of authors (4,544 by marketing scholars; 1,702 by

psychologists, and 988 by economists). We included all respondents, who answered at

least 15 pairs of lists. Applying the Bradley-Terry-Luce (BTL) choice model (Bradley &

Terry, 1952; Luce, 1959) to the respondents' preferences, we estimated the scale values

for the 19 target authors. The normalized solutions are displayed in Figure 3. We fixed

the scale value for a single authored paper to unity in all cases. Thus, the values plotted

represent credit assigned to a certain position in a multi-authored paper relative to a

single-authored paper. Note that the values inferred from the psychologists' judgments

span a wider range, and are considerably lower, than the other two disciplines, indicating

that (a) psychologists differentiate more carefully between the various positions, and (b)

they value single-authored papers more than the other two disciplines.
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While there is high agreement in the ordering across disciplines, systematic

differences are observed. Psychologists ordered the name listings lexicographically

according to (a) the target author's position and (b) the total number of co-authors. This

ordering identifies nine distinct clusters (starting with the first author in a pair and ending

with the last author in a group of four). Each of these clusters includes two scenarios that

vary in their (alphabetical and non-alphabetical) ordering (being first of two authors,

being first of three authors,..., being fourth of four authors). No systematic ordering

within these pairs was found, confirming the hypothesis that psychologists do not pay

attention to this distinction. On the other hand, economists assign credit differentially for

alphabetical and non-alphabetical orderings of authors. They cluster all positions under

alphabetical ordering together, but reproduce the psychologists' differentiation for non-

alphabetical ordering. The marketing solution is quite similar to psychology, with a few

deviations from the lexicographical ordering that, in most cases, are consistent with the

economists' judgments.

We regressed these estimates on the following explanatory variables: number of

"authors" (1, 2, 3, 4), "position" of the target author (1, 2, 3, 4), and the dummy-variables

"alphabetical" ordering (l=yes, 0=no), "economist" (1=yes, O=no), and "psychologist"

(l=yes, O=no), and interactions between these variables. The model selected includes

only those interactions that contributed significantly to the fit. Table 3 presents the

correlation coefficients and the standardized regression coefficients of all 9 predictors.

The regression results indicate a systematic and highly predictable pattern

(Adjusted R2=.97, F(9; 44)=161.58, p<.05), and confirm our impressions from the BTL-

analysis. We observe significant differences between the disciplines (lower contributions
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for psychologists) and, not surprisingly, significant effects for the number of authors and

their position in the author list.3 A significant interaction between the position of an

author and the name ordering of the paper suggests that when the names are ordered

alphabetically the assigned contribution credit is higher for later positions. More

important for our purposes, we found an interaction between the position and the

academic discipline of psychology, indicating that psychologists strongly discount the

contribution of authors whose names appear in later positions.

A dominance analysis (Azen and Budescu, 2003; Budescu, 1993) performed to

identify the predictors' contributions to the overall fit (based on comparisons among them

in all subset regressions) indicate that the author's position, the distinction between

psychologists and the other disciplines, and the interaction of these two factors account

for the largest share of the variance in the model (see last column of Table 3).

We also analyzed the average contributions assigned by the three academic

disciplines, as a function of the name ordering (alphabetical in the top panel and non-

alphabetical in the bottom panel), and the number and position of authors (see Figure 4).

Although economists tend to assign equal contributions to all authors in the case of

alphabetical name ordering, they display a slight decrease in credit for authors in later

positions. In case of non-alphabetical name ordering, however, the three disciplines show

very similar patterns, suggesting a strong first-author advantage and relatively steep

discounting of contributions in later positions.

Next, we analyze the first-author advantage across disciplines. To achieve

comparability across differential numbers of authors, we divided the assigned

3 In a similar vein, Stremersch, Verniers and Verhoef (2007) found that author visibility, as captured -
among other things - by the number of co-authors, predicts citation counts for marketing articles.
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contributions by the expected contributions, assuming that all authors contributed equally

(i.e., 50% for two-authored papers, 33.3% for three-authored papers, and 25% for four-

authored papers). This value is greater than 1 in all cases (grand mean =1.33, SD=0.22),

suggesting that it always pays to be the lead author. We performed a 3-way ANOVA with

the factors "academic discipline" (economics, marketing, psychology), "number of

authors" (2, 3, 4), and "name ordering" (alphabetical, non-alphabetical) on this measure

and found significant main effects for academic discipline (F(2; 162)=52.74, p<.05,

rl2=.39), number of authors (F(2; 162)=102.67, p<.05, r2=.56), and name ordering (F(1;

162)=40.41, p<.05, q2=.20). We observed a significant 2-way interaction between

discipline and number of authors (F(4; 162)=9.13, p<.05, n2=. 18), suggesting that as the

number of authors increases, the perceived difference in the "first author advantage"

between economists and psychologists increases (see Figure 5a). Another 2-way

significant interaction between discipline and name ordering (F(2; 162)=13.58, p<.05,

r 2 = . 14) indicates that the perceived advantage of being first author is more pronounced in

cases with non-alphabetical ordering (psychologists are insensitive to this factor, as

shown in Figure 5b). Marketing is between economics and psychology, showing

considerably less differentiation of assigned contribution credits.

In summary, study 1 showed that researchers apply their respective disciplinary

conventions when deciding about contribution credits. Next we report results of a

computer simulation designed to explore potential implications of these findings.
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STUDY 2: COMPUTER SIMULATION

We seek to determine how economists, marketing researchers, and psychologists would

assess the aggregate contribution credits of colleagues from their own, and from

neighboring disciplines. To compare the contribution credits of authors within their own

discipline, and across fields, we performed a computer simulation in which we applied

the inferred contribution weights from study 1 to the empirical distribution of author

names and papers identified in our initial survey.

Method

The simulation was programmed in Matlab and consisted of the following steps:

Step la: Select the discipline of the target author (economics, marketing, or

psychology).

Step ib: Select the discipline of the evaluator (economics, marketing, or

psychology).

Step 2: Draw randomly a surname initial from the distribution of author names of

the particular discipline chosen in step 1a. The distributions of surname initials

were based on the journals selected in study 1 for the time period 1973 to 2005. It

consisted of 34,561 author names in psychology, 23,820 names in economics, and

10,874 names in marketing.

Step 3: Given the empirical distribution of single-authored papers, two-authored

papers, three-authored papers, and four-authored papers (see Table 1), as well as

the distribution of alphabetical and non-alphabetical orderings, k papers are drawn

at random for the target author identified in step 2. If the target author's discipline

(step la) is economics, k=-20; if it is marketing, k=23, and if it is psychology,
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k=-27. The differential number of papers across fields reflects our assumption that

every author (in every discipline) puts the same amount of time and/or effort into

the work, but that time/effort per paper is inversely proportional to the number of

authors (meaning that in an m-authored paper each author invests 1/m of the

amount of time/effort that she would have invested in a single-authored paper.

Since the average number of authors differs across fields (1.54 in economics, 1.78

in marketing, and 2.08 in psychology), we allowed the number of papers (k) to

differ between disciplines too, reflecting the differential average numbers of

authors.

Step 4: For each target author in each of the k papers, the standardized

contribution weights from study 2 (see Figure 3) are recorded.4

The procedure was repeated 5,000 times for each of the nine cases (three

disciplines of the target author x three disciplines of the evaluator).

Results and Discussion

Table 3 displays the average simulated contribution credits (across the 5,000 replications)

as a function of the author's discipline as well as the evaluator's discipline. Higher

numbers imply higher credits.

Two findings are suggested: First, marketing scholars assign colleagues from their

own field lower contributions (30.40) than economists (31.21) and psychologists (32.86)!

Second, the contribution credits that marketing scholars assign to colleagues from their

field (30.40) are lower than what economists (31.84) and psychologists (32.87) would

4 We standardized the contribution weights with mean equal to 0 and standard deviation equal to 1 within
each discipline to render them comparable across fields.

-51-



assign to the same target authors! Marketing is the only field for which these two

observations hold.

These suggestive findings extend the results of our survey and of study 1 by

showing that the lack of a well-differentiated name ordering norm (in interdisciplinary

fields such as marketing) can have detrimental effects in terms of overall contribution

credits. One shortcoming of this simulation is its implicit assumption that researchers

evaluate one's record as a simple summation of all the individual papers, without

considering potential spillovers from one paper to another. We tackle this possibility in

the next study, where we consider publication records with multiple publications and

conflicting norms; a setting most representative of real-world publication records.

STUDY 3: INFERENCE BASED ON CONTRIBUTION CREDIT

In this study we investigate inferences based on mixed signals about name ordering

conventions. Mixed signals occur when researchers with multiple publications list their

names according to at least two different conventions. We predict that in such cases,

inferences are moderated by the relative position of an author's surname initial. To see

this consider, for instance, two scenarios involving a researcher (B) with two

publications: one two-authored paper and one three-authored paper (note that B is the

second author in all the papers):

Scenario I: 1. A, B 2. A, B, C

Scenario II: 1. A, B 2. C, B, A

In scenario I, the authors are listed alphabetically in both papers, whereas in

scenario II, they are listed non-alphabetically in the second paper. For simplicity, assume

-52-



that B is assigned 1/2 and 1/3 of the contribution credit in scenario I. Given the mixed

signals about author B's name ordering practices in scenario II, inference about the first

paper is ambiguous: it could be that A contributed more than B or that both contributed

equally, justifying alphabetical ordering. We expect that, on average, author B's assigned

contribution to the first paper gets discounted (< 1/2) because of this ambiguity.

The reverse pattern is also conceivable: Consider author A in scenarios III and IV.

Author A, the target author in scenarios III and IV, is always the lead author.

Scenario III. 1. A, B 2. A, B, C

Scenario IV. 1. A B 2. A, C, B

Let's assume that A is assigned 1/2 and 1/3 of the contribution credit in scenario

III. In scenario IV author A sends a mixed signals about the name ordering practice, and

inference about the first paper is ambiguous: it could be that A contributed more than B

or that both contributed equally. This ambiguity leads us to predict that, on average,

author A's assigned contribution to the first paper would increase (> 1/2).

Our four scenarios highlight the potential interplay of name ordering conventions

and the relative position of an author's surname initial when making contribution

inferences.

Method

One hundred four faculty members and advanced graduate students from economics

(n=21), marketing (n=46), and psychology (n=37) participated in an Internet study (71%

of the participants held tenure-track or tenured positions and the median rank was

assistant professor). Participants were shown pairs of candidates for a prestigious

scholarship. The six major publications of the two applicants were presented side-by-
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side. For each publication we presented the list of author names (with the candidate's

name highlighted), a classification of the journal (application, methods, or theory), and

the length of the paper (8, 9, 10, 11, 12, or 13 pages). Participants were asked to select the

more deserving candidate and to rate the strength of their preference on a scale from 1

(barely preferred) to 7 (strongly preferred).

The publications of each candidate consisted of one single-authored paper, two

two-authored papers, one three-authored paper, and two four-authored papers. The

positions of each candidate in the list of authors were identical: Ist and 2 nd position in the

two-authored papers, 3rd position in the three-authored paper, and 3 rd and 4 th position in

the four-authored papers. The only differences between candidates were (a) the number

of alphabetically listed papers, and (b) whether the initial of the candidate's last name

was in the first or the second half of the alphabet (initials D to G vs. R to U). We asked

participants to complete all 28 distinct pairs. A screen-shot of the task is shown in Figure

6 and a complete listing of candidate pairs can be found in Table 5.

The names of the candidates were randomly sampled from a list of frequent

British names and the co-authors' names were taken from the list of authors identified in

study 1. The order of the papers, the journal types, and the length of the papers were

sampled randomly (without replacement). We instructed participants to assume that the

papers of the two candidates being compared were published in the last three years in

high-quality journals. We also informed them that the publications were hypothetical.

Incentives were provided by holding weekly lotteries raffling $100 coupons for

Amazon.com.
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Results and Discussion

We analyzed a total of 2,078 paired comparisons among candidates (1,016 by marketing

scholars, 664 by psychologists, and 398 by economists), including all respondents who

made at least 10 comparisons. We computed the average "strength of preference for

candidate L (left author)" for each participant, and regressed this measure on the

following explanatory variables: "economist" (1=yes, 0=no), "psychologist" (l =yes,

0=no), "first half' (1 =if candidate L and candidate R's names are in the first half of the

alphabet, 0 otherwise), "mixed" (1 =if candidate L's name is in the first half of the

alphabet and candidate R in the second half, 0 otherwise), and "alphabetical" (number of

alphabetically ordered papers for candidate L minus the corresponding number for

candidate R). We also considered interactions between these variables. The model

selected includes only those interactions that contributed significantly to the fit (see Table

6).

The results indicate a reasonably high fit (Adjusted R2=.55, F(9; 74)=12.33,

p<.05). The most interesting finding is the interaction of academic discipline and the

quality of the ordering signal (as evinced by the number of alphabetically ordered

papers). Economists favored candidates with a higher number of papers with alphabetical

listing of co-authors, whereas psychologists picked more often the candidate with a

higher number of non-alphabetically ordered papers. These findings were not qualified by

the position of the candidates' surname initials in the alphabet. The results of a

dominance analysis (see last column of Table 6) confirm that the interaction between

economists and alphabetical order, and the interaction between psychologists and

alphabetical order, account for the largest share of the variance in the model.
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Contrary to expectation, inferences were invariant across the surname initials of

the authors. This finding demonstrates the power of norms. Researchers in economics and

psychology relied on their professions' norms as a heuristic to resolve the conflict

induced by the mixed signals: they preferred those candidates with "familiar" publication

records, which matched the prevalent ordering patterns of their disciplines. Because of

marketing's weaker disciplinary norms these researchers could not rely on simple rules to

resolve the mixed signals.

An obvious question then is whether marketing scholars either adhere to the

norms of economics or psychology, or whether they employ their own norms. To answer

this question we calculated the mean ratings of the eight candidates (D to G and R to U,

see Table 7), as inferred from the expressed preferences. On average, economists

preferred candidates with a higher number of alphabetical papers and psychologists those

with a higher number of non-alphabetical papers. The mean marketing rating shows

much less variance, and lacks a clear ordering, suggesting that the marketing respondents

do not fall in two distinct sub-groups that either follow the norms of economics or

psychology. 5

GENERAL DISCUSSION

Name ordering norms allow for inferences about contributions to joint research by

unifying the standards of evaluation, and help coordinate effort among authors. For

example, if the authors agree to list names alphabetically, the equal-contribution norm is

invoked, leading authors to exert the same level of effort. Conversely, a decision to list

authors non-alphabetically might create incentives to exert effort as a function of how

5 A similar result is suggested by multi-dimensional scaling.
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important it is for an author to be listed in various positions. Researchers who place a

high value on being listed in a prominent position are likely to exert more effort than

those who place less value on these positions.

Various conventions have different strategic implications. For example, ordering

authors by relative contributions provides incentives to include more authors as a

research project progresses, and allows rewarding these authors accordingly at a smaller

cost to oneself than in the case of alphabetical ordering. This might be particularly

conducive to interdisciplinary research or to projects that require different types of skills

(analytical tools, statistical analysis, clinical skills, etc.). An obvious problem of this

norm stems from the fact that researchers often have different perceptions of the

importance of their own contribution to joint work (Fine and Kurdek, 1993; Floyd et al.,

1994),6 possibly resulting in fierce arguments about the final ordering of author names on

research papers. This, of course, is precisely the problem that alphabetical ordering

intends to solve. However, alphabetical ordering is not immune from manipulation: A

shrewd and strategically sophisticated researcher who understands the universal first

author advantage would seek collaborators whose last names are later in the alphabet to

place her in a position of"first among equals." 7

Although it is perfectly feasible to use a set of different norms -- as a coordination

device -- for each particular project, this actually might have detrimental effects on the

evaluation of a collection of works, such as in promotion and tenure decisions. These

credit inferences are the focus of our work. Our results show that disciplines with strong

6 See Bohlmann, Rosa, Bolton and Qualls (2006) for an example of how group interaction may affect
satisfaction levels.
7 See Mishra, Mishra and Nayakankuppam (2007) for a recent account of the interplay, and interference, of
strategic, deliberate, and affective components in information aggregation.
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norms, economics and psychology, rely on conventions to resolve conflicting

contribution signals. Marketing scholars lacked this opportunity due to weak ordering

norms. What are the implications of this?

First, strong norms render inferences about contribution credits more accurate

(i.e., more likely to reflect the authors' intentions). Second, when the norms are violated,

researchers are penalized in terms of their assigned contribution credits. Third, the

penalty for mixed contribution signals is more complex when the norms are alphabetical,

because a non-alphabetical ordering on one paper questions the ordering norm of other

(alphabetically ordered) papers. Fourth, the signal about individual contributions is least

clear for two-authored papers where alphabetical ordering either reflects equal

contribution or relative contribution (when the ordering happens to coincide with the

surnames' alphabetical order). In marketing, 64% of all multi-authored papers are two-

authored, and 60% of these papers list authors alphabetically.

Our results suggest that marketing scholars could benefit from clearer norms.

Moreover, the increasing rate of interdisciplinary research, joint-projects, and mixing of

alphabetical and non-alphabetical papers suggests that it would be best for the discipline

to adopt the individual-contribution norm. If this is not possible, researchers could

increase the accuracy of inferences about their contributions by specifying, for example,

in an author's note (a) what conventions the authors employed to order names (e.g.,

alphabetical) and (b) how much each of the authors contributed to the research.8 These

explicit clarifications render later evaluations of joint research less ambiguous and

8 A similar policy is currently implemented for publications in the Proceedings of the National Academy of
Sciences (http://www.pnas.ore/misc/iforc.shtml). A paper that follows this recommendation is, for instance,
Syam and Kumar (2006).
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therefore increase the likelihood of accurate and fair evaluations (e.g., for tenure review)

of a researcher's output.

Finally, it is worth pointing out that the importance of norms is not limited to

academia. Credit-sharing is also important for business and public policy, such as for

team-work, press-releases, patents, and the contribution to public goods. In these

domains, norms can highlight individual contributions, thereby serving as an implicit

motivator and reward, facilitating coordination. Along these lines, Weber and Camerer

(2003) show that declines of productivity after company mergers can be partly attributed

to conflicting cultures and norms, and Sell and Wilson (1991) show that individual

visibility improves contributions to public goods.
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Table 1: Frequency of alphabetical name ordering as a function of the academic discipline and the number of authors

Economics Marketing Psychology
No. of Frequency Frequency Percentage of Frequency Frequency Percentage of Frequency Frequency Percentage of
authors of alphabetic of alphabetic of alphabetic

alphabetic order alphabetic order alphabetic order
order O, E, order O, E, order O, E,

1 8,676 - - - 2,812 - - - 6,756
(56.25%) (45.90%) (40.30%)

2 5,328 4,773 89.58 50.00 2,120 1,276 60.19 50.00 5,445 2,704 49.66 50.00
(34.54%) (34.61%) (32.48%)

3 1,229 996 81.04 16.67 1,010 333 32.97 16.67 2,674 500 18.70 16.67
(7.97%) (16.49%) (15.95%)

4 166 122 73.49 4.17 148 36 24.32 4.17 1,125 77 6.84 4.17
(1.08%) (2.42%) (6.71%)

5 19 13 68.42 0.83 22 6 27.27 0.83 446 12 2.69 0.83
(0.12%) (0.36%) (2.66%)

6 2 0 0 0.14 8 0 0 0.14 149 9 6.04 0.14
(0.02%) (0.13%) (0.89%)

>6 4 0 6 1 170 5
(0.03%) (0.10%) (1.01%)

Total 15,424 5,904 87.49 42.65 6,126 1,652 49.85 37.33 16,765 3,307 33.04 32.72

Note: O, denotes the observed percentage of alphabetically ordered author names, whereas Ei denotes the probability in percent that

alphabetic order occurs purely by chance. The value in column "E,", row "Total," denotes the conditional probability

Prob(alphabetical I No. of authors)*Prob(No of authors).

For economics, we included the American Economic Review, Econometrica, Quarterly Journal of Economics, Journal of Political

Economy, and Journal of Economic Theory. For psychology, we included Psychological Review, Journal of Experimental

Psychology: General (1975-), Journal of Personality and Social Psychology, Psychological Science (1990-), American Psychologist,

and Cognitive Psychology. For marketing, we included the Journal of Marketing Research, Journal of Marketing, Journal of

Consumer Research (1974-), and Marketing Science (1991-).

-64-



Table 2: Experimental design of the author lists of study 1

Identification Number of Order List Position of

number authors target author

A

A

A

A

A

A

A

A

A

NOTA

NOTA

NOTA

NOTA

NOTA

NOTA

NOTA

NOTA

NOTA

A,

A,

A,

A,

B.

B.

B.

B.

A,

A,

A,

B,

B,

B,

B,

C,

C,

C,

5 D,

, D,

, D,

, D,

A

A, B

A, B

B,C

B,C

B,C

C, D

C, D

C, D

C, D

B, A

B, A

A, B

A, B

A, B

A, C

A, C

A, C

A, C

Note: A denotes alphabetical and NOTA denotes non-alphabetical ordering of authors,

and A, B, C, and D represent the initials of authors' last names. Actual names were

sampled from a distribution of real author names.
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Table 3: Regression analysis of the 19 estimated scale values (study 1)

Variables Zero-order Standardized t General

correlations coefficients (df=44) Dominance

Economist 0.25 -0.16 -2.30* 0.026

Psychologist -0.65 -0.38 -5.43* 0.211

Authors -0.49 -0.22 -5.54* 0.111

Position -0.66 -0.58 -10.69* 0.224

Alphabetical -0.01 -0.04 -0.36 0.015

Authors x Alphabetical -0.12 -0.23 -1.91 0.017

Position x

Alphabetical

Economist x Position

Psychologist x

Position

Model's R2

0.029

-0.22

0.06

-0.82

0.31

0.06

-0.38

4.27*

0.83 0.022

0.317

-5.16*

0.971

Note: * p < 0.05.
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Table 4: Mean simulated contribution credits as a function of the author's discipline and

the evaluator's discipline (study 2)

Evaluator from

Candidate from Economics Marketing Psychology Mean

Economics 31.21b 29.34 31.99 30.85

Marketing 31.84c 30.40a 32.87c 31.70

Psychology 32.36 30.35 32.86 b  31.86

Mean 31.80 30.03 32.57 31.47

a < b: Marketing scholars assign colleagues from their field lower

contributions than what economists and psychologists assign

their respective colleagues
a < c: Marketing scholars assign colleagues from their field lower

contributions than what economists and psychologists would

assign them
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Table 5: Pairs of candidates used in study 3

Initial of the candidate's last name

1st half of the 2 nd half of the

alphabet alphabet

No. of Order Candidate's (D) (E) (F) (G) (R) (S) (T) (U)

authors position

1 - - X X X X X X X X

2 A 1 X X X X

2 A 2 X X X X

2 NOTA 1 X X X X

2 NOTA 2 X X X X

3 A 3 X X X X X X

3 NOTA 3 X X

4 A 2 X X

4 A 3 X X

4 NOTA 2 X X X X X X

4 NOTA 3 X X X X X X

No. of alphabetical papers: 5 3 1 0 5 3 1 0

Note: A denotes alphabetical and NOTA denotes non-alphabetical ordering of author

names. D, E, F, G, R, S, T, and U represent the initials of candidates' last names. X and X

denote possible candidates and their papers, with X representing alphabetical ordering

and X representing non-alphabetical ordering.
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Table 6: Regression analysis of the standardized
(study 3)

strength of preference for candidate L

Variables

Economist

Psychologist

First half

Mixed

Alphabetical

Economist x Alphabetical

Psychologist x

Alphabetical

First half x Alphabetical

Mixed x Alphabetical

Model's R2

Zero-order

correlations

0.47

-0.28

-0.01

-0.07

0.03

0.61

-0.45

-0.03

-0.01

Standardized

coefficients

0.24

0.06

-0.01

-0.10

-0.07

0.60

-0.34

-0.09

-0.05

t

(df=44)

2.53*

0.67

-0.06

-0.51

-0.20

5.10*

-3.03 *

-0.40

-0.21

General

Dominance

0.108

0.024

0.002

0.008

0.020

0.283

0.138

0.004

0.012

0.776

Note: * p < 0.05.
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Table 7: Mean ratings (standard deviation) of the authors as a function

alphabetical papers and discipline (study 3).

of the number of

Number of

alphabetical papers

5

5

3

3

1

1

0

0

Economics

0.97 (1.98)

1.30 (1.34)

0.36 (0.80)

0.21 (1.46)

-0.12 (1.54)

-0.48 (1.19)

-0.98 (0.95)

-1.65 (1.13)

Ranking by

Marketing

-0.28

-0.12

-0.45

0.64

0.07

-0.08

-0.02

0.13

(1.59)

(1.79)

(1.97)

(1.63)

(1.73)

(1.67)

(1.70)

(1.52)

Psychology

-1.05 (2.35)

-0.43 (2.82)

-0.55 (1.94)

-0.67 (1.86)

1.21 (2.12)

0.57 (2.15)

0.50 (2.77)

0.91 (2.70)
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Figure 1: Mean proportion (and 95% confidence interval) of alphabetical name ordering as a function of publication year and

academic discipline

1975 1979 1983 1987 1991 1995 1999 2003

Year

la U Economics
* Marketing
* Psychology

1973 1977 1981 1985 1989 1993 1997 2001 2005
1975 1979 1983 1987 1991 1995 1999 2003

Year

1 b Economics
* Journal of Consumer Research
* Psychology

1973 1977 1981 1985 1989 1993 1997 2001 2005
1975 1979 1983 1987 1991 1995 1999 2003

Year

Ic N Economics
E Marketing Science
* Psychology
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Figure 2: Schematic screen-shot of study 1

#9

Please rate the

King, Garrod, Taylor

0% I Io100%

relative contributions of the authors to
their papers

Crawfordmason, Derstroff

0% I 100%
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Figure 3: Normalized parameter estimates of the 19 author lists by academic discipline (study 1)
Economics

44 34 34 44 3324 14 24 33 23 13 22 14 2213 12 12

000 0.10 020 030 040 050 060 030 080 090 1 DO

Marketing

4444 34 34 33 24a3 24 21323 14 142222 13 13 1212 1
I ,II I l I 11 I I I 1 II ' I

0DO 0.10 020 030 040 050 060 0.70 080 090 100

Psychology

44 443434 33 33 24 2423 23 2222 1414 13 1212 1

I II I I ' I Ill I 'I I II I I ' ' ' I I
0.10 020 030 040 050 060

Note: 1 denotes single-authored papers. Alphabetically ordered papers are depicted in red and non-alphabetically ordered papers in black. Papers

are identified by an ordered pair of numbers. The first digit denotes the author position, and the second digit identifies the total number of authors.

For example, an alphabetically (non-alphabetically) ordered paper with two authors, in which the target author assumes position 1, is denoted by

12 (12).
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Figure 4: Average assigned contribution credit as a function of academic discipline, name ordering, and the number and position of

authors (study 1)
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Figure 5: Mean assigned contribution (and 95% confidence interval) to the first author by academic discipline (study 1)
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Figure 6: Schematic screen-shot of study 3

#9
In your opinion, which of the two candidates is more

deserving of the scholarship?

Sands

Paper Authors Journal Type Length

1 Sands, Schwartz Methods 13

2 Galvin, Sands Theory 12

3 Henrekson, Holmlund, Sands Theory 9

4 Sands Application 11

5 Vandervoort, Sands, Hofacker, Methods 10
Jordan

6 Thomas, Vanijzendoorn, Sands, Application 8
Bloomfield

Tester

Paper Authors Journal Type Length

1 Wittenbrink, Tester Methods 8

2 Tester Theory 11

3 Wheatley, White, Tester, Application 9
Gaerner

4 Tester, Abihashem Theory 12

5 Venables, Tester, Reznick, Methods 13
Farina

6 Mayes, Sternin, Tester Application 10

Please rate your preference on a scale from 1 to 7
01 o2 03 04 05 o6 07

Barely preferred Strongly preferred

Next
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Essay 3

Performance-Contingent Discounts and Consumer Choice

ABSTRACT

Incentives affect individuals' attitudes and behaviors in a myriad of ways. In this paper

we explore the effects of performance-contingent discounts on consumer choice. For that

purpose we set up an online store for digital cameras. Half the subjects received a fixed

rebate; the other half had to "earn" their rebate by learning about the products offered.

The more information subjects remembered, as inferred from their answers to a short

quiz, the higher their discounts. Our results indicate that subjects, who were offered

performance-contingent discounts, evaluated the online store as more informative and

reputable, were more likely to recommend the store to their friends, and were more likely

to buy. The results cannot be attributed to a better performance in the quiz or a more

thorough exploration of the products offered.
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Businesses face stiff competition for consumers' attention. With too many

companies, using similar marketing and advertising strategies, the need for innovative

marketing has become crucial. As a consequence, advertising has expanded from

traditional communication channels to bathroom stalls, doctors' offices, Broadway plays,

Hollywood movies, novels, and even shelf-eggs in supermarkets (Dang, 2006).

But advertising clutter is not the only challenge businesses face today. Ever

increasing options on the supply side require consumers to sift through tens or hundreds

of products before having explored the market's offerings. With this increase of supply,

the probability of picking a suboptimal product has increased sharply. Indeed, Iyengar

and Kamenica (2008) showed that an increase in the number of 401(k) funds shifts

choices towards money market and bond funds relative to equity funds and Iyengar and

Lepper (2000) showed that extensive arrays of jam discourage purchases altogether.

However, with consumer satisfaction being a major determinant of retention and

loyalty, companies have an inherent interest in enabling consumers to pick the product

that's right for them. Advertising clutter coupled with consumers' risk of choosing

suboptimal products pose a challenge to companies and marketers. In this paper, we aim

to provide a solution to that challenge. We design an incentive scheme that increases

attention rates by encouraging consumers to learn about the market's offerings, allowing

consumers to better understand their preferences. The basic principle for the effectiveness

of the incentive scheme is the relation between consumers' effort and their motivation to

learn about the market's offerings.

Traditional sales promotions, like mail-in rebates, price discounts or coupons,

differ in the degree to which they depend on consumers' effort to apply them (Jolson,
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Weiner & Rosecky, 1987; Silk & Janiszewski, 2008; Tat, William & Babakus, 1988). For

instance, price discounts granted for preferred methods of payment, like cash discounts,

require hardly any effort on part of the consumer at the point of purchase. Mail-in

rebates, on the contrary, require a sequence of actions for the consumer: the completion

of a rebate redemption form, the attachment of the original receipt, proof of purchase

from the product pack, and mailing all of the above to the company that offered the

rebate (Soman & Gourville, 2005).

The effort, associated with redeeming the rebate, creates uncertainty of the

reward, namely the reduced purchase price. Consequently, the consumer has to evaluate

whether the attractiveness of the uncertain reward justifies a purchase or not. One way to

perform this evaluation is to discount the rebate by the perceived probability of

redeeming it (Soman & Gourville, 2005). Prior research indicates that consumers are too

optimistic (Soman, 1998) about the redemption probability of rebates, leading them to

buy products without ever applying their rebates (Jolson et al., 1987). One factor that is

responsible for why consumers do not redeem rebates is that future effort is not very

salient (Akerlof, 1991; Loewenstein, 1996).

Past research on the redemption of rebates mainly focused on face-value

immediate incentives (Blattberg & Neslin, 1990) and on future delayed incentives

(Soman, 1995). However, due to the perceived reduced salience of future effort its role

on the attractiveness of rebates remains opaque. We contribute to the literature by

studying the importance of effort on the immediate redemption of rebates by varying the

effort level required to "earn" rebates. Subjects in our experiments explore an online store

that offers various digital cameras. Afterwards they participate in a quiz that tests their
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knowledge of the cameras. Subjects either receive a fixed discount of $50 towards any of

the offered cameras or a performance-contingent discount of up to $50. Performance is

measured by the number of correctly solved quiz questions. By tying the rebate to the

number of correctly solved questions, we increase the effort level that participants put

into the exploration of the store and its cameras.

The theoretical predictions on the consequences of increased effort on the

attractiveness of the store and its products are ambiguous. Research on the perceived

ease, with which information comes to mind (Kruger, Wirtz, Van Boven & Altermatt,

2004; Schwarz, Bless, Strack, Klumpp, Rittenauer-Schattka & Simons, 1991), and the

self-perception theory (Bem, 1967), suggest that consumers might interpret and justify

the expanded effort in terms of increased liking: "If I worked so hard to explore all the

products, and to do well in the quiz, then it must be that I really liked the products." The

corresponding prediction would be that subjects in the performance-contingent discount

condition evaluate the store, and its products, in a more positive way than subjects in the

fixed-discount condition, because in the latter, the rebate is a mere windfall gain that does

not involve effort.

The opposite prediction is suggested by research on the effects of monetary

incentives on internal motivation (Frey & Jegen, 2001). According to this account,

explicit rewards, like payments, change the experience of the task, thereby moving the

focus of consumers from playful exploration of the online store to being in a business or

consulting setting (Heyman & Ariely, 2004). This shift of focus might lead to the

"crowding out" of intrinsic motivation and interest in the store, leading subjects in the

performance-contingent discount condition to evaluate the store, and its products, in a

-80-



less positive way than subjects in the fixed-discount condition, because in the latter, the

link between effort/performance and rebate is stronger (and more explicit).

We test these two competing hypotheses in two studies.

Study 1

Experimental design and procedure

Sixty students participated in the study. We employed a one-factorial between

subjects design. Subjects either received a fixed discount of $50 towards any of the

offered cameras or a performance-contingent discount of up to $50. Performance was

measured by the number of correctly solved test questions. This test quizzed subjects

about the various features and attributes of the offered cameras. Overall, subjects (in both

conditions) had to answer 20 test questions. In the fixed-discount condition, performance

had no impact on the offered discount - it was always $50. In the performance-contingent

discount condition, however, each correctly solved question translated into an additional

discount of $2.50 - with a maximum discount of $50 (if all 20 questions were solved

correctly).

In the following, we explain the sequence of events in the experiment in more

detail:

Stage 1 - Product & attribute exploration: Subjects could explore the features of

10 different digital cameras in a computer interface. If subjects were interested in a

specific camera, then they had to click on it (see Figure 1 for a screen-shot). If they did,

then subjects could learn the specific details of the following 6 attributes of the camera:

price, pixels, optical zoom, digital zoom, weight, and screen size. In order to obtain this
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information, subjects needed to click on a box (see Figure 2a for a screen-shot). This

procedure is an application of the so-called mouselab technique (see Johnson, Payne,

Bettman & Schkade, 1998). 9 Figure 2b shows the case, where a subject selected the

Canon PowerShot A550, and explored its pixels number. Once subjects learned about the

specific details of a camera, they could return to the introductory screen, which displayed

all 10 cameras, and decide either to explore another camera or to end the exploration

stage and to move on to stage 2. Subjects were free to explore as many - or few - of the

cameras, and their attributes, as they wanted.

Stage 2 - Preference & quiz: Subjects were asked which of the cameras they

preferred. Then they had to answer 20 multiple-choice questions (with four answer

categories each) regarding the 10 cameras, encountered in stage 1. For each question,

subjects also had to indicate their subjective degree of confidence of having provided the

correct answer. As indicated earlier, each correctly solved question translated into an

additional discount of $2.50.- in the performance-contingent discount condition, whereas

subjects in the fixed-discount condition received a discount of $50, irrespective of the

number of quiz questions answered correctly.

Stage 3 - Store evaluation: Subjects were asked how informative and reputable

the online store was. Also, subjects were asked how much they trusted the site and the

information on the site. Finally, subjects were asked whether they would recommend the

online store to their friends and how likely they were to buy their preferred camera - even

without the discount. All questions were asked on 11-point scales, where higher values

indicated higher rates of affirmation.

9 This technique provides process data of the information subjects attended to.
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Stage 4 - Discount information & purchase decision: Subjects were informed

about their discount. Then they were asked to indicate whether or not they wished to

purchase their preferred camera for the list price minus the discount.

Results and discussion

Stage 1 - Product & attribute exploration: Overall, subject could explore 10

(cameras) * 6 (attributes) = 60 different pieces of information.'l The number of

information pieces viewed did not differ significantly between the two conditions (Mann-

Whitney test, z=1.40, p=. 16). The mean number of information pieces viewed in the

performance-contingent discount condition was 51.44 (SD=14.71) and 45.55 (SD=19.53)

in the fixed-discount condition. Sixty-seven percent of the subjects viewed all 60

information pieces in the performance-contingent discount condition and 45% in the

fixed-discount condition. There was no significant difference in the average time in

seconds that subjects viewed the information (Mann-Whitney test, z=0.73, p=.86).

Stage 2 - Preference & quiz: There were no significant differences in the average

number of questions solved, and the average confidence of having given the correct

answer, between the conditions. The average number of questions solved was 8.96

(SD=2.65) in the performance-contingent discount condition and 8.24 (SD=2.43) in the

fixed-discount condition (t(55)=1.08, p=.29). The average confidence of having given the

correct answer was 52.58% (SD=21.14) in the performance-contingent discount

condition and 52.34% (SD=l 8.55) in the fixed-discount condition (t(55)=0.05, p=.9 6 ).

Stage 3 - Store evaluation: Subjects in the performance-contingent discount

condition found the online store significantly more informative (t(58)=2.98, p<.01),

marginally more reputable (t(58)=1.93, p=.06), were more likely to recommend the site

10 However, subjects were free to revisit previously consulted information pieces as often as they liked.
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to their friends (t(58)=2.38, p=.02), and were more likely to buy the camera even if they

had not been offered a discount (t(58)=2.66, p=.01). Table 1 displays the associated

means.

Generally, the six items were highly correlated (Cronbach's alpha = .84), we

therefore repeated the analysis with a composite measure of the six items. On this

measure, subjects in the performance-contingent discount condition achieved

significantly higher values (i.e., higher affirmation) than those in the fixed-discount

condition (t(58)=2.91, p=.01).

Stage 4 - Discount information & purchase decision: Three participants in the

performance-contingent discount condition decided to purchase their preferred cameras

for prices minus discounts of $10, $10, and $15, respectively. In the fixed-discount

condition, despite discounts of $50, no-one decided to purchase their preferred cameras.

However, none of the three participants followed up on their decision to buy the cameras,

so no transactions actually took place.

Despite the increased evaluations of the online store (results from stage 3) in the

performance-contingent discount condition, effort in terms of exploration of cameras as

well as performance in the quiz did not differ across the two conditions. So the actual

mechanism responsible for the increased evaluation does not seem to depend on effort or

performance. Before endorsing this result, we replicated study 1 with a few

modifications, which will be explained next.
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Study 2

Experimental design and procedure

Ninety-eight students participated in study 2, which was a replication of study 1

with the exception that subjects could now explore 20 cameras with 6 attributes each in

stage 1. Everything else was identical to study 1.

Results and discussion

Stage 1 - Product & attribute exploration: Overall, subject could explore 20

(cameras) * 6 (attributes) = 120 different pieces of information. This time, in contrast to

study 1, the number of information pieces viewed differed significantly between the two

conditions (Mann-Whitney test, z=1.97, p<.05). The mean number of information pieces

viewed in the performance-contingent discount condition was 88.31 (SD=30.23) and

65.32 (SD=37.35) in the fixed-discount condition. Thirteen percent of the subjects

viewed all 120 information pieces in the performance-contingent discount condition and

7% in the fixed-discount condition. Subjects in the performance-contingent discount

condition spent marginally more time (in second) viewing the information pieces than

subjects in the fixed-discount condition (Mann-Whitney test, z=1.74, p=.08).

Stage 2 - Preference & quiz: This time, subjects in the performance-contingent

discount condition solved significantly more quiz questions correctly than subjects in the

fixed-discount condition (t(95)=2.761.08, p<.01). The average number of questions

solved was 6.50 (SD=2.41) in the performance-contingent discount condition and 7.80

(SD=2.22) in the fixed-discount condition. The average confidence of having given the

correct answer was 53.22% (SD=14.71) in the performance-contingent discount

condition and 48.47% (SD=20.15) in the fixed-discount condition (t(95)=1.33, p=.19).
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Stage 3 - Store evaluation: Subjects in the performance-contingent discount

condition found the online store significantly more informative (t(95)=2.98, p=.03),

marginally more reputable (t(95)=1.90, p=.06), were more likely to recommend the site

to their friends (t(95)=2.52, p=.02), and were more likely to buy the camera even if they

had not been offered a discount (t(95)=2.18, p=.03). Table 2 displays the associated

means.

Generally, the six items were highly correlated (Cronbach's alpha = .87), we

therefore repeated the analysis with a composite measure of the six items. On this

measure, subjects in the performance-contingent discount condition achieved

significantly higher values (i.e., higher affirmation) than those in the fixed-discount

condition (t(95)=2.66, p=.01).

Stage 4 - Discount information & purchase decision: No-one wished to purchase

their preferred cameras.

We predicted that store evaluations in the performance-contingent discount

condition would be moderated by how much effort subjects put into the exploration of the

camera features and how well they subsequently did in the quiz. To test this prediction

we ran an ANOVA with the composite measure of the store evaluations as dependent

variable, the experimental condition (performance-contingent discount vs. discount

rebate) as a between-subjects factor, and the total information pieces explored as well as

the total number of questions solved in the quiz as covariates. The results suggest that

neither exploration (F(1, 92)=0. 12, p=.73) nor performance in the quiz (F(1, 92)=0.01,

p=.99) moderates store evaluation.
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General discussion

Sales promotions differ in the degree to which they depend on the effort of

consumers to make use of them. Some sales promotions, like for instance mail-in rebates,

require considerably more action, planning, and consistency on the part of consumers, as

compared to, for instance, cash discounts. From past research little is known on the

effects of effort - associated with rebates - on the perceived attractiveness of products. In

fact, two prominent streams of literature on the consequences of increased effort on the

attractiveness of choice options lead to opposite predictions. The literature on the

perceived ease, with which information comes to mind (Kruger et al., 2004; Schwarz et

al., 1991), and the self-perception theory (Bem, 1967), suggest that consumers might

interpret and justify the expanded effort in terms of increased liking, whereas the

literature on the crowding out of internal motivation (see Frey & Jegen, 2001, for an

overview) suggests that increased effort is associated with decreased liking.

We test these two predictions experimentally in an online store, varying the effort

that is associated with a cash discount. Half of the consumers, visiting the store, received

a fixed discount, whereas the discounts of the other half depended on how well the

consumers did in a quiz, testing their knowledge of the products offered. Our results

indicate that performance-contingent discounts led consumers to evaluate the online store

as more informative and marginally more reputable. Also, consumers were more likely to

recommend the store to their friends and indicated that they were more willing to

purchase their preferred product even without the discount offered. The results cannot be

attributed to a better performance in the quiz or to a more thorough exploration of the

products offered.
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Future research is needed to uncover the mechanism that is responsible for the

increased evaluations that we observed. Possible explanations are that the learning and

testing phase increased the purposefulness of the exploration and evaluation experience.

Explicit incentives might have shifted the mindset of consumers, leading to more positive

rather than neutral evaluations. Also, the testing phase might have increased the general

arousal level of our online consumers, which in turn might have affected their

evaluations.

A possible limitation of our study is the fact that the vast majority of our subjects

did not express a desire to buy a digital camera within the next three months of the time

the experiment was conducted. This raises serious concerns on subjects' motivation to

learn about the products offered. So, future tests of our incentive scheme should vary the

product domain to assess the impact of consumers' motivation on product exploration,

and subsequent evaluation, more directly.
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Figure 1: Screen-shot of the camera display

Please click on a camera to get more information about it
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Figure 2a: Screen-shot of the attributes display (covered)
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Figure 2b: Screen-shot of the attributes display (partially uncovered)
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Table 1: Means and test statistics for the online store evaluation (study 1)

Item Discount Mean SD t p

Informativeness Performance-contingent 7.87 1.76 2.98 .004

Fixed 6.40 2.04

Reputation Performance-contingent 7.07 1.98 1.93 .059

Fixed 6.07 2.03

Trust in Information Performance-contingent 7.40 2.36 1.45 .154

Fixed 6.60 1.90

Trust in Site Performance-contingent 7.10 2.38 1.30 .199

Fixed 6.33 2.19

Recommendation Performance-contingent 5.83 2.48 2.38 .021

Fixed 4.43 2.06

Likely to Buy Performance-contingent 4.17 2.69 2.66 .010

Fixed 2.63 1.65
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Table 2: Means and test statistics for the online store evaluation (study 2)

Item Discount Mean SD t p

Informativeness Performance-contingent 7.32 2.45 2.24 .027

Fixed 6.23 2.38

Reputation Performance-contingent 6.62 2.28 1.90 .056

Fixed 5.75 2.19

Trust in Information Performance-contingent 7.59 2.12 1.58 .119

Fixed 6.75 2.60

Trust in Site Performance-contingent 7.10 1.89 1.66 .098

Fixed 6.40 2.30

Recommendation Performance-contingent 6.20 2.53 2.52 .020

Fixed 4.88 2.97

Likely to Buy Performance-contingent 4.38 1.96 2.18 .031

Fixed 3.48 2.14
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