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Abstract

The ability to quickly and reliably detect people in images and video is highly desired.
Several object recognition algorithms have demonstrated successful detection of multi-
class objects with varied scale, position and orientation. This study examines the
effectiveness of these methods when applied to detecting humans in two distinct
domains: A) Leave-behind sensing and B) Aerial surveillance. Using novel image sets
that are significantly more realistic and difficult than standard datasets, a variety of
tests are conducted to compare the algorithms in terms of classification success rate.
Dalal and Triggs' Histogram of Oriented Gradients algorithm, when trained with
image samples taken from inside MIT's Stata Center, detects with no false positives
all but one person in six minutes of video taken from inside a separate building. An
enhanced version of Riesenhuber and Poggio's cortex-like recognition model, trained
to detect people, correctly classifies 95% of images taken from a small UAV when
trained with an independent set of images. These results illustrate the potential to
accurately and reliably determine the presence of people in video from unmanned
aircraft and indoor sensors.
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Chapter 1

Introduction

1.1 Motivation

Obtaining accurate information from the vast amount of military sensor data is a

tactical necessity. This information is often the foundation upon which entire military

operations are planned and performed. The varied nature of these operations demands

the logical delivery of information. Troops should receive accurate and pertinent

information to maximize the chance of success in dangerous environments.

Military surveillance often entails using sensors to detect the presence of people.

Having humans perform this detection process is an effective, yet ultimately inefficient

approach considering the remarkable advances in computer vision algorithms. A

reliable person detection system would lead to significant savings in personnel hours

and greater operational flexibility.

1.2 Problem Statement

Ideal aerial surveillance is the perfect monitoring of events on the ground. One

important area of surveillance is tracking people and their actions, where it is critical

to first determine the presence of people on the ground. Video surveillance offers the

viewer the opportunity to quickly determine this presence and respond appropriately.

While effective, this technique undoubtedly wastes the time of the viewer uninterested



in the majority of footage. An effective solution would be a system that promptly

alerts the user when a person has entered the monitored ground area, giving the

user the ability to respond when necessary and perform other important tasks in the

meantime.

Another important military operation is checking buildings for the presence of

enemy combatants. The US Marine Corps stresses of the importance of units

establishing "clearly recognizable and understandable signals for marking cleared

rooms and buildings" [25]. These markings are often made directly on the building

exterior. One main problem with this current approach is that enemies may likely

enter cleared rooms, posing a serious threat to troops who are misled by their own

markings. Another problem is the potential for troops to mark rooms cleared when

enemies are actually present. Dan Zanini, deputy program manager of the Army's

Future Combat Systems program, says that Israeli Defense Forces recently suffered

the most casualties against Hezbollah "from forces that they bypassed and forces that

came in from their rear" [12].

These problems would be alleviated by placing a small sensor inside each cleared

room, where troops would receive notification when someone is detected. An

automated system that quickly and accurately determines human presence would

bypass the need for constant human monitoring.

The definition of successful person detection can depend on the application.

Momentarily neglecting to notice human presence during one mission may have

fewer consequences than overlooking enemy presence in another. An effective person

detection system should strive for an extremely low miss rate without generating

many false positives. It is important to keep an appropriate balance between these

two factors. Finally, each detection system must respond quickly enough to maintain

usefulness and reliability.



1.3 Thesis Overview

This thesis displays the full progression of this project. Chapter 2 describes the

most significant testing results of this thesis and how they relate to real detection

scenarios. Chapter 3 details the review of background literature, beginning with

the general development of object recognition and ultimately describing the specific

detection methods that were examined. Chapter 4 describes the testing of benchmark

algorithms with novel datasets. The problem characteristics, dataset development,

and testing progression and results are detailed for both the indoor and aerial domains.

Chapter 5 applies object tracking to yield an alternative approach to testing with

video, and the performance improvements achieved are evaluated. Finally, Chapter

6 summarizes the overall conclusions and ideas for future research.
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Chapter 2

Key Results

This section briefly summarizes the two most important test results of this thesis.

These tests are simple yet significant, as they illustrate real potential for person

detection in multiple domains.

2.1 Leave-Behind Sensing with HOG

In the Indoor Sequence Test (described fully in Section 5.3), Dalal and Triggs'

Histogram of Oriented Gradients (HOG) algorithm successfully detected all but one

person in six minutes of indoor video, without producing any false positives. This was

done by tracking each object in order to incorporate multiple classifications. Figure

2-1 is a plot of detection rate vs. false positive rate for all object sequences in the four

test videos. This impressive result is significant for three main reasons:

1. Both the training and test image sets are realistic: they were obtained from

authentic videos taken from inside MIT buildings and contain instances of many

different people in an abundance of poses and positions.

2. The training and test sets are independent. Because the sets contain videos

taken in different locations with different people, these results can be extended

to real-world scenarios.



Train and Test with Indoor Video Crops
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Figure 2-1: ROC curve for testing HOG with indoor video crop sequences.

3. The detection system employed in this test ran faster than the video itself,

which means that successful real-time person detection is possible using HOG

with image subtraction.

2.2 Aerial Surveillance with HMAX

An enhanced version of Riesenhuber and Poggio's "Standard Model" of cortex-like

object recognition, referred to as HMAX, was able to correctly determine whether

people were present in 95% of images from a small UAV (as shown in Figure 2-2).

This result is significant for three main reasons:

1. For this test (described fully in Section 4.3.3), HMAX was trained with cropped

samples of images taken from atop a parking garage. Both the training

set and the UAV test set contain authentic images with people and other

objects. Furthermore, the complete independence between training and test sets

illustrates both the dynamic nature of the algorithm and the realistic nature of

this result.

-----.. . . .-1 ..



Train with Aerial Image Crops, Test with UAV Video Crops
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Figure 2-2: ROC curve for testing HMAX with UAV video crops.

2. More than half of the positive UAV samples contain a person who is not fully

visible. Such occlusion is realistic, yet not well-handled by many algorithms;

this result shows that HMAX is an exception.

3. The positive samples were manually cropped to contain people who were often

not centered in the image and sometimes not fully in view. This was done to

mimic the nature of image registration techniques designed to automatically

isolate foreground objects. This test demonstrates the potential power of

combining HMAX with image registration techniques.

-------- ---- -- -------- --- ;-- -; ~
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Chapter 3

Current Techniques

3.1 Overview

Computer object recognition has been an active area of research for nearly five

decades. Recognizing objects is an important step towards the ability for computers

to "perceive" what surrounds them, the implications of which are exciting and

significant. Applications in automation, robotics, consumer engineering, and many

other fields are seemingly endless, and as a result, there is an ever-increasing reliance

upon effective and efficient object recognition.

There are many approaches to object recognition. Some use explicit or proba-

bilistic shape models of the object, whereas others consider the context in which an

object is found or the function an object often serves [18]. Approaches range from

recognizing simple 2D objects to complex 3D shapes, and can use intensity images,

range information, or a combination as a means for recognition.

The first object recognition systems employed autocorrelation and template

matching; 2D pattern classification was a common goal [14]. Curved 2D shapes,

3D structures, and occluded objects with background clutter eventually followed,

and researchers continue to examine object geometries and functions as a means to

improved detection.

Detecting the presence of people in images and video is an important class of

general object recognition. Many intelligence and surveillance applications would



benefit greatly from accurate and reliable person detection, bypassing the need for

constant human observation.

While face detection systems have demonstrated success with large variations in

size, shape and orientation, there is a need for similarly dynamic detection of people

when their faces are not visible. Recently, template matching and learning-based

techniques have been applied to recognizing people [16]. Gait has also been used to

detect people in image sequences. There is an ongoing effort to choose image features

that ensure reliable invariance to pose and context variations.

3.2 Detection Methods

There are many ways in which object recognition methods can differ from one another.

The multitude of characteristics that define these methods can be placed into one of

two groups. First, many characteristics relate to the method's intention, namely

what problem the method is attempting to solve. Any remaining characteristics will

define the algorithm's implementation, or the ways in which the problem is solved.

The algorithms reviewed throughout this study had wide-ranging properties of both

intention and implementation.

The main question regarding algorithm intention is which objects are classified.

Several methods have shown success in distinguishing among many object categories,

whereas others specifically distinguish people from the background or identify people

among other foreground objects. Those algorithms that detect people often recognize

full bodies, upper bodies or faces. Certain methods are claimed to detect partially

missing or occluded objects, whereas for others either no such claims are made, or it

is acknowledged that occluded objects will be missed. Also varying is the range of

distances at which objects can be detected. Several algorithms are specifically geared

for either far-field or close-range detection, whereas for many others neither claims

nor limitations are stated regarding detection range.

For the methods reviewed during the study, there are two overarching categories

regarding implementation. The first is whether the object recognition is "parts-



based," whereby objects are modeled as a probabilistic configuration of "parts," or

feature groupings. Among the parts-based algorithms, methods vary according to

whether the parts are predetermined. For instance, certain methods model humans

as a configuration of body parts (such as face, upper torso, and legs), each of which

is modeled from feature groupings. Others model an object as a group of unlabelled

parts. The other overarching implementation category is whether motion information

is used to help detect an object. While most of the reviewed algorithms operate on

static images, some use consecutive image frames as the basic input for classification.

There were three key elements for an algorithm to be chosen for testing. First,

it was essential to have the ability to retrieve and properly implement the software.

This required both obtaining the same software used to produce benchmark results

and acquiring the image sets necessary to verify those results, thus verifying proper

implementation. The second priority was demonstrated success with difficult datasets.

The leave-behind sensor and aerial surveillance problems are inherently tough; people,

often in the presence of extreme clutter and background variation, must be detected

consistently and reliably. The last major element considered when determining the

testing algorithms was runtime, of which there are two components: offline training

and online testing. Minimizing training time becomes important upon retraining, but

minimal testing time is essential for any real-time person detection system.

Serre and Poggio's recent extension of Riesenhuber and Poggio's "Standard

Model" of object recognition in cortex (HMAX) has recently shown remarkable

success in detecting objects from the Caltechl01 and MIT-CBCL image sets [22],

the latter of which contains objects under extreme illumination conditions [24]. The

only algorithm that has been known to consistently outperform HMAX on pedestrian

detection is Dalal and Triggs' Histogram of Oriented Gradients (HOG) approach [23].

Viola and Jones' Boosted Cascade detector (V-J) is able to quickly and accurately

detect faces among clutter and can be trained on other classes besides faces [26].

Training their system for person detection was another viable option. HMAX, HOG

and V-J were the only algorithms that displayed all three key attributes, so each was

trained and tested with the abundance of collected images.



3.2.1 HMAX

Humans and other primates still outperform state-of-the-art machine vision systems

in almost every measure, and thus a system that emulates object recognition in

cortex is very desirable. In the past, there has not been much attention paid

to biologically plausible recognition features with higher complexity than using

Derivative of Gaussian and Gabor filters [23]. Serre and Poggio have extended

Riesenhuber and Poggio's biologically based architecture for object recognition; this

HMAX algorithm is founded upon a quantitative theory of the ventral stream of

primates' visual cortex [20].

The key element in the HMAX method is a novel set of position and scale-invariant

feature detectors that agree with the tuning properties of ventral stream cells and are

adaptive to training. HMAX has shown impressive performance on the recognition

of objects in cluttered surroundings for multiclass classification.

Standard Model of Visual Cortex

The HMAX algorithm models the feedforward path of object recognition in cortex,

which accounts for the first 100-200 milliseconds of ventral stream processing [23].

HMAX is consistent with several generally accepted facts about the ventral stream

in visual cortex: (1) visual processing is hierarchical, first generating invariance to

position and scale and then to other transformations, (2) both the size of neural

receptive fields and the complexity of their optimal stimuli increase along the

hierarchy, (3) information processing for immediate recognition is feedforward, and

(4) learning and plasticity occur at all stages of the hierarchy.

The model contains four layers of computational units. Simple (S) units combine

inputs to increase selectivity, or ability to discriminate between different objects and

object classes, whereas complex (C) units combine inputs to increase invariance, or

tolerance to transformations such as scaling, translation, and viewpoint changes.

The S units combine inputs with a bell-shaped function, whereas C units perform

a maximization procedure.



Implementation Details

All images are first converted to grayscale and scaled such that the short edge is 140

pixels in length and the aspect ratio is maintained [15]. Each image is stored at ten
1

different scales, each 24 times smaller than the last.

The first simple layer (Si) corresponds to V1 simple cells, and is computed by

centering 2D Gabor filters with a full range of orientations at every possible position

and scale. Thus the S1 layer is a 4D structure, where every position/scale in the 3D

structure has multiple oriented units. The Gabor filters are 11 x 11 pixels in size and

are described by:

G(x, y) = exp( 2o-2  ) cos o where

Xo = x cos O + y sin O and yo = -x sin O + y cos O

x and y vary between -5 and 5, and 0 varies between 0 and 7r. Appropriate values

for y (aspect ratio), cr (effective width), and A (wavelength) are taken from Serre and

Poggio's 2005 article [24]. Each filter is normalized so that its components have a

mean of 0 and the sum of their squares is 1. The response of a group of image pixels

X to a Gabor filter G is given by:

R(X, G) =

The first complex layer (C1) is modeled after Vi complex cells [15]. The

S1 pyramid is convolved with a 3D (10x 10 units across, 2 units deep in scale)

maximization filter at every orientation. The C1 unit's value is the highest value

of any S1 unit that falls within the maximization filter, and the filter is shifted across

the S1 pyramid in steps of 5 units across and 1 unit deep in scale.

The S2 layer, which corresponds to the cortical area V4 or posterior IT, is formed

upon template matching between patches of C1 units centered at a given location

and each of d prototype patches. This matching is performed across all positions and



scales of the C1 layer. The d prototype patches are randomly selected from the C1

layers of training images in an initial feature learning stage. The feature learning

consists of n x n (x 1 in scale) patches centered at random positions and scales within

the C1 layers of a training image, where n can be 4, 8, 12, or 16. (Multiple feature

sizes have been demonstrated useful for effective texture and shape characterization.)

After feature learning, every prototype is convolved with a test image's C1 layer, and

the S2 pyramid holds d prototype readings for every position and scale within the C1

layer. The response of an image's C1 patch X to a prototype P (size n x n) is given

by the Gaussian function:

R(X, P) = exp IIX - P112

where I IX - PII is the Euclidean distance between X and P. The standard deviation

o is often set to 1, and a is a normalizing factor dependent on the patch size n.

The final layer (C2) is a d-dimensional vector, elements of which are the maximum

response from the S2 layer over all positions and scales. As a result, full position and

scale invariance is attained. The C2 features are then classified using a linear support

vector machine (SVM).

Recent Improvements

Mutch and Lowe made four improvements to the original HMAX model for improved

functionality and efficiency [15]. First, S2 inputs were reduced to one per C1

position/scale, only using the dominant orientation instead of storing the value for

every orientation. This change allowed for the number of Gabor orientation filters to

increase from four to twelve without increasing computational burden. The second

improvement was also designed to ignore non-dominant orientations: instead of

sparsifying S2 inputs, the S1/Cl unit outputs are suppressed to generate a clearer

representation of the dominant orientations at each position.

The third improvement limits the position and scale invariance of the model for

two reasons: complete invariance is inconsistent with the V4 and IT neurons' lack



of complete invariance and leaves the system vulnerable to co-occurrence of features

from other objects. The improved model restricts the area of the visual field in which

an S2 feature can be found relative to its location in the sample image. Lastly, the

improved algorithm drops S2 features with low SVM weight because many features

are not necessarily related to the object in question. The desired number of features

are selected from an initial set of 12,000 by training the SVM in layers and eliminating

up to half of the features each time. This change improves effectiveness and efficiency.

Results

Serre and Poggio trained and tested the "Standard Model" with the Caltechl01

database [22], which contains images from 101 categories of objects in a large

variety of sizes, positions and orientations [5]. The model outperformed several

benchmark algorithms when trained and tested with airplanes, cars, faces, leaves,

and motorcycles. The model also outperformed benchmark algorithms when tested

with the MIT-CBCL Cars and Faces image sets.

In later work, Serre and Poggio evaluated HMAX performance for object

recognition in clutter, object recognition without clutter, and recognition of texture-

based objects [23]. For object recognition in clutter, HMAX outperformed several

leading algorithms on various Caltechl01 and MIT-CBCL datasets. The StreetScenes

database was used to test object recognition without clutter; detectors were trained

to recognize bicycles, cars, and people. Compared to four leading algorithms, HMAX

achieved the best results for bicycles and cars. HMAX was outperformed only by

HOG in person detection. HMAX consistently outperformed benchmark algorithms

for recognition of four texture-based objects: buildings, roads, skies, and trees.

Mutch and Lowe applied their enhanced HMAX model to the Caltechl01 database

and the UIUC car dataset, achieving state-of-the-art performance for both image

sets [15]. HMAX received the highest average of per-category classification rates

from eight independent runs on Caltechl01 with fifteen training images per category.

For the UIUC car detection/localization task, a sliding window was added to the

framework. HMAX achieved the highest precision rates from eight independent runs



with single-scale (99.4%) and multi-scale (90.6%) test sets.

3.2.2 HOG

Dalal and Triggs' Histogram of Oriented Gradients (HOG) algorithm aims to

discriminate the human form against varied cluttered backgrounds [4]. The authors

show that normally localized HOG descriptors form a robust feature set that

outperforms other leading feature sets. These descriptors are similar to edge

orientation histograms, Scale Invariant Feature Transformation (SIFT) descriptors,

and shape contexts, but are computed on a dense grid of uniformly spaced cells with

overlapping contrast normalizations for superior performance. Dalal and Triggs used

a linear SVM for classification throughout their study.

Overview

This method is based on the premise that object shape and appearance can be suffi-

ciently characterized by a distribution of local edge orientations or intensity gradients,

without knowledge of the edge or gradient positions [4]. The procedure evaluates a

dense grid of well-normalized local histograms of image gradient orientations.

A given image is divided into small regions, each with a 1-D histogram of edge

orientations or gradient directions among that region's pixels. Contrast-normalizing

local responses yield HOG descriptors that are invariant to lighting effects. Humans

are detected by tiling the detection window with an overlapping grid of HOG

descriptors and classifying the combined feature vector with a linear SVM.

The use of orientation histograms reached maturity when Lowe's SIFT approach

combined them with local spatial histogramming and normalization, thus providing

image patch descriptors for matching scale-invariant keypoints [4]. Dalal and Triggs'

study suggests that the leading keypoint-based methods have higher false positive

rates than HOG by at least one order of magnitude. No keypoint detector seems

able to reliably recognize human body forms. HOG detects humans best with a

combination of coarse spatial sampling, fine orientation sampling, and strong local



photometric normalization.

Performance Analysis

Dalal and Triggs trained and tested their algorithm with two image sets: the standard

MIT pedestrian database (only front or back views of people) and INRIA, which

contains 1805 64x128-pixel images of fully visible humans cropped from a set of

images [4]. (It is important to note that both of these datasets contain few, if

any, images with people occluded by objects or frame boundaries.) For INRIA

testing, the initial training set consisted of 2478 positive samples and 12,180 patches

sampled randomly from 1218 negative images. After preliminary training, the model

was retrained using the initial training set along with any false positives found in

the 1218 negative images; this technique, commonly referred to as "bootstrapping,"

significantly improves performance. HOG generally outperformed the other leading

detection methods for both the MIT and INRIA databases.

To find the algorithm's optimal performance for person detection, Dalal and Triggs

experimented with input pixel representation, gradient computation, spatial and

orientation coarseness, size and normalization of descriptor blocks, detector window

proportions, and choice of classifier:

* Performance was reduced when input pixels were reduced to grayscale. As a

result, color information is used when available.

* For computing gradients, 1-D discrete derivative masks without smoothing

performed best. The larger derivative masks, such as 2x2 diagonal masks and

3x3 Sobel masks, significantly worsened performance.

* Each image pixel generates a weighted vote for an edge orientation histogram

channel depending on the orientation of the gradient element centered on

that pixel. The algorithm fared best when the vote was simply the gradient

magnitude at that pixel, and not some other function of the magnitude. Votes

are then accumulated into "orientation bins" over local regions (cells). The votes

are linearly interpolated between neighboring bin centers in both orientation and



position. Optimal performance was obtained with fine orientation binning and

coarse spatial binning.

* Lighting and contrast variations necessitate effective local contrast normaliza-

tion. Normalization schemes typically group cells into larger spatial blocks

and contrast-normalize every block; blocks can be either rectangular or circular

log-polar. For the rectangular geometry, 3x3 cell blocks of 6x6-pixel cells

performed best. The circular descriptors have been suggested because the

transformation field to V1 cortex in primates is logarithmic. Small descriptors

with few radial bins gave the best performance. Dalal and Triggs compared

four different normalization methods to find the preferred technique.

* Decreasing the background margin (typically 16 pixels around person on each

side, for 64x 128-pixel images) or increasing the person's size tended to lower

detection effectiveness.

* A soft linear SVM trained with SVMLight was used by default. Using a

Gaussian kernel SVM improved performance at the expense of a significantly

higher runtime.

3.2.3 Viola and Jones' Boosted Cascade

Viola and Jones' Boosted Cascade algorithm (V-J) can efficiently detect the presence

of objects in an image after generating a statistical feature-based classifier [26].

Statistical models have greatly aided the world of video surveillance and object

recognition in particular, as simple heuristic-based approaches are often insufficient

for complex detection. V-J has been proven effective for frontal face recognition

and has the potential to aid the more daunting task of detecting human presence in

images.



Method Overview

This algorithm primarily relies on an image set used to train the multi-layer classifier

[3]. This set must consist of many images that contain the desired object and an

abundance of images that do not contain the object. In training, specific features are

extracted from the samples with the intention of isolating the features that distinguish

a given object from everything else. This information is condensed into a statistical

model, each successive layer of which is improved by accounting for known false

positives and undetected positives of previous layers.

Features

Haar-like features are fundamental to V-J [3]. Every feature is described by its

shape, size, and location relative to the search window. The original Boosted Cascade

algorithm used five features, and Lienhart and Maydt extended this set to fourteen,

allowing for rotated features [11].

Every feature has black and white rectangles [3]. A feature's value is calculated

as a weighted sum of two components: (1) the pixel sum over the black rectangle and

(2) the pixel sum over the whole feature. These two components are weighted with

opposite sign, and their absolute values are inversely proportional to their respective

areas. (e.g., the pixel sum from the black rectangle in a given feature would be

multiplied by a factor of 9 if it comprised 1 of the feature's area.)

Integral Image

Because each classifier can contain hundreds of features, computation of pixel sums

over multiple rectangles could drastically affect runtime [26]. In order to reduce

computation time, V-J creates an "integral image" ii for every image i, where:

z,(Xy) W= y
x <X,yI<y

Thus the pixel sum over any upright rectangle with origin (x, y), width w, and height

h is a simple calculation: ii(x + w, y + h) - ii(x, y + h) - ii(x + w, y) + ii(x, y).



Classifier

Each computed feature value x, is given to a simple decision tree classifier that is

typically of the following form:

f1(x) = + 1  if x, > tz or f(x)= +1 if tz,o < x, < t,l

-1 if x < t, -1 otherwise

where f, = +1 corresponds to the desired object and f, = -1 corresponds to

everything else [3]. These "weak classifiers" cannot alone determine an object's

presence in an image. but rather react to a simple feature that hopefully relates

to the object.

Boosting is used to build a complex and robust classifier from the weak classifiers,

and a variant of AdaBoost is used to select the appropriate feature sets and train

the complex classifier. It has been shown that such a robust classifier can attain an

arbitrarily high detection rate and arbitrarily low false positive rate given sufficiently

large sets of training images and weak classifiers. V-J chains classifiers together with

increasing complexity, and a search window must pass each successive classifier to be

classified as a positive sample.

Experiments with face detection have shown that generally 70-80% of search

windows are rejected by the first two classifiers, effectively speeding up and making

productive use of the detection time.

Achievements

The Boosted Cascade algorithm has been proven effective in the domain of frontal

face recognition. Viola and Jones trained a 38-layer cascaded classifier to detect

frontal upright faces [26]. The positive training set consisted of 9832 hand labeled

faces (4916 faces with their reflections), each resized to a 24x24-pixel resolution.

The negative training set was comprised of approximately 350 million 24x24-pixel

subwindows selected randomly from 9544 images without faces.

Each classifier in the cascade was trained with all 9832 face samples and 10,000



negative subwindows using the AdaBoost procedure. The initial classifier used

10,000 negative subwindows randomly selected from the vast training set. Each

successive classifier used subwindows that the previous classifiers determined to be

false positives.

The 38-layer classifier was tested with the MIT+CMU frontal face test set,

consisting of 130 images with 507 frontal faces. As it is critical to detect objects

with unknown scale, the detector is scaled throughout the image (each scale is a

factor of 1.25 larger than the previous scale). Impressive results were achieved by

scanning the detector across test images with a step size of 1 pixel [26]. All image

subwindows were variance-normalized to minimize lighting effects, and overlapping

detections were combined into a single detection.

The Boosted Cascade algorithm features an impressively low detection time.

Evaluated on a 700 Mhz Pentium III processor, the face detector processed a 384 x 288-

pixel image in 0.067 seconds on average, which is several orders of magnitude faster

than other leading detectors.

Extensions

Viola and Jones found that results were improved at many false positive rates with

the addition of two other cascade detectors along with the 38-layer classifier [26]. By

picking the majority vote among these classifiers, detection rates were increased by

about 1% for most false positive rates. It has been suggested that the improvements

would have been greater if the three classifiers were more independent.

Lienhart and Maydt extended the feature set used by Viola and Jones from five

features to fourteen [11]. This set that included rotated features was compared with

the basic feature set using the MIT+CMU frontal face test set. At comparable

detection rates, the extended set demonstrated false positive rates 10% lower on

average than the basic set.



3.2.4 Other Methods

Fergus, Perona, and Zisserman's Constellation object recognition framework models

objects as flexible assemblies of parts, where the probabilistic assemblies account

for shape variation and the possibility of occlusion [6]. Every object model consists

of around 3 to 7 parts and each image contains up to 30 "features." Each part is

composed of appearance, relative scale, and a binary occlusion factor, all of which are

modeled by probability density functions. An object's shape is represented by the

relative position of the parts and the Expectation-Maximization algorithm is used to

learn each object's parts.

A certain number of interesting features (N) are found in each image. At every

point within the image, the intensities within a circular region around the point are

determined, and the N regions with the highest saliency (function of the region's

entropy) provide the features for learning and recognition. Every test image then

contains N features with locations, scales and appearances. The image is classified

based on the probability that the object is present given the N features, with every

possible feature-parts assignment factored into the probability.

Fergus, Perona, and Zisserman's Heterogeneous Star Model (HSM) is a translation

and scale-invariant representation of an object as an organization of parts [7]. HSM

is an extension of the Constellation model, which has several shortcomings. Mainly,

its exponential computational cost limits the number of parts per model and regions

per image that can be dealt with, thus forcing the model to learn from a sparse

image representation. HSM's lower complexity for learning and recognition allows it

to handle more parts per model and more features per image.

The main reason for HSM's lower complexity is the way in which parts depend

upon one another. In the Constellation model, the location of all parts are dependent

upon each other; an HSM object has one landmark part upon which all other

part locations are dependent. Thus given the landmark part, all other parts are

independent from each other. The downside is that the landmark part must be



present for an object to be recognized, whereas the Constellation model can detect

an object despite any part's absence. HSM also provides a number of different feature

types for broader object recognition, where the optimal combination of feature types

is determined with an object's initial validation set.

Mikolajczyk, Schmid, and Zisserman's person detection model is able to detect full

bodies and close-ups in the midst of clutter and occlusion [13]. As is the case with

the Constellation model and HSM, humans are modeled as flexible assemblies of

parts, with parts represented as co-occurrences of local features. The human body

is modeled as a probabilistic configuration of body parts, with seven parts used:

frontal head, frontal face, profile head, profile face, frontal upper body, profile upper

body, and legs. The geometric relationship among the body parts is represented by a

training-generated Gaussian function. Each body part is represented with orientation-

based features and groupings of those features.

The body parts are detected with a cascade-like approach: a succession of strong

classifiers where the fastest and most accurate classifiers are applied first. Each strong

classifier is an AdaBoost-generated linear combination of weak classifiers. For a given

object, a weak classifier is a log-likelihood ratio relating the probability of feature

occurrence on the object to the probability of feature occurrence on a non-object,

with the probabilities based on feature occurrences in the training data. The final

three-step process is performed: (1) individual features are detected at multiple scales

within an image, (2) individual parts are detected based on those features, and (3)

bodies are detected from configurations of the parts.

Schneiderman and Kanade's system is another parts-based approach. In this system,

a trainable object detector determines the presence of faces and cars at any size, pose

or location; multiple classifiers are used to cope with different object orientations

[21]. Each classifier is based on the statistics of parts, where each part is a transform

from wavelet coefficients to a distinct set of values. The statistics of these part



values are obtained from positive and negative training examples, and an AdaBoost-

trained classifier is used to minimize classification error. The classifier computes

the part values within a test window and makes a categorization decision based on a

likelihood ratio test derived from the probabilities determined during training. Similar

to Viola and Jones' Boosted Cascade system, efficiency is increased by using a series

of classification stages.

Gavrila and Munder's PROTECTOR is an integrated detection and tracking system,

where detection is performed with a cascade of modules: stereo-based region of

interest (ROI) generation, shape-based recognition, texture-based detection, and

stereo-based verification [9]. ROI generation acts to reduce the effect of lens distortion

away from the image center. In recognition, pedestrians are represented by a series

of generated templates that ideally cover multiple people and varying pose and scale.

Recognition is also robust to missing features or occlusion. Template matching is

based on the chamfer distance transform, where matching a test sample with a

template is performed with depth-first search of a template tree.

A supplemental texture-based recognition approach utilizes a richer set of intensity

features to distinguish between person and non-person. Interestingly, neural networks

were found to outperform SVM with Principle Component Analysis (PCA) for this

approach in both detection rate and processing requirements. Finally, pedestrian

verification is used to filter out false detections: a pedestrian shape template is applied

as a filter for dense cross-correlation. PROTECTOR ultimately uses bounding box

position, extent, depth, and their derivatives to track objects.

Bose and Grimson developed a far-field surveillance system for detecting and tracking

people and vehicles [2]. The system employs background subtraction and clutter-

removing preprocessing. The object-class detector is much simpler than those used

in the majority of recognition systems because it only needs to distinguish between

foreground objects, and not between object and background.



The low-resolution video often does not provide enough information to accurately

determine and detect parts-based features; thus, an object's temporal features are

used for classification. SVM was chosen as the classifier, with an emphasis on

generating scene-invariant classifiers. This was done by simply training with scene-

invariant features as opposed to scene-specific features. Scene-invariant features

included orientation, variation in area (second derivative of number of pixels over

time) and percentage occupancy (number of silhouette pixels divided by the area of

the bounding box). Scene-specific features are helpful for reducing classification error

when training and testing in similar scenes, and include location, pixel area, speed,

motion direction and aspect ratio. Further adaptation of the classifier is described in

their article [2].

Jhuang and Poggio's biologically motivated system recognizes actions of primates

in video sequences [10]. The model extends Riesenhuber and Poggio's "Standard

Model" for object recognition by modeling motion processing in the visual cortex.

The original model categorizes images following the biologically plausible steps that

ensure position and scale-invariance. A linear SVM classifier categorizes images based

on their C2 features. C2 features are obtained by computing the global max of each of

the S2 feature maps. S2 feature maps derive from the template matching performed

from the C1 maps, which are computed as the global max over the S1 feature maps.

The key change between Jhuang and Poggio's model and the original is in the SI1

feature representation; S1 features are now sensitive to motion direction. The motion-

based S1 features can be computed in three different ways: (1) spatial gradients along

the horizontal and vertical axes, as well as the temporal gradient across successive

image frames, as inputs to S1 features, (2) optimal flow-based S1 features, and (3)

3D space-time filters. Experiments showed that SI1 features using space and time

gradients and those using 3D space-time filters saw the most consistent success.



Viola, Jones, and Snow developed a person detection system that integrates intensity

information with motion information [27]. This implementation is able to detect

people at very small scales (down to 20-pixel height) and has demonstrated success

on low-resolution images under challenging environmental conditions. However, this

system is unable to detect occluded or partial figures.

The detector is based on the simple rectangle filters used by Viola and Jones'

Boosted Cascade system. Motion information is extracted from successive image

information, with five "shifted images" generated: one temporally shifted image and

four directionally and temporally shifted images (motion images). There are three

types of filters that operate on these shifted images: (1) comparing sums of absolute

differences between images, (2) comparing sums within the same motion image, and

(3) measuring the magnitude of motion within the motion image.

The AdaBoost learning algorithm chooses from the range of motion/appearance

filters to construct the optimal classifier for separating positive and negative samples.

Scale-invariant detection is performed, and a boosted cascade approach is used: each

successive stage acts to decrease both the detection rate and the false positive rate,

where ideally the latter decreases faster than the former.

3.3 Algorithm Attributes Summary

Many object recognition algorithms were considered over the course of this project.

While only three methods were used to test the novel indoor and aerial datasets, it is

important to dissect every examined algorithm with regard to key desirable attributes.

Table 3.1 gives a comprehensive summary in which each row corresponds with a

benchmark algorithm and the attributes are listed by column. For the algorithms

that were not used for testing, properties were established based on the results and

claims made in the respective articles. The attributes of HMAX, HOG, and V-J

were verified through testing. Ultimately, this section is intended to assist future

researchers and developers, whether looking for a quick overview or attempting to

locate the algorithm with the right mix of attributes.



Attributes
Fast Fast Eye-Level Aerial Broad Occluded Human

Algorithms Training Testing Success Success Range Success Focus
Poggio "HMAX" [20] N N Y Y Y Y N
Dalal "HOG" [4] Y Y Y Y Y Y
Viola (V-J) [26] N Y Y Y Y N
Fergus "Constellation" [6] N N Y Y N
Fergus "HSM" [7] Y Y N
Mikolajczyk [13] Y Y Y Y
Schneiderman [21] N Y Y N
Gavrila "PROTECTOR" [9] Y Y N Y Y
Bose & Grimson [2] Y N Y
Jhuang & Poggio [10] Y Y N
Viola, Jones & Snow [27] Y Y Y N Y

Table 3.1: Overview of algorithm attributes, where Y signifies that the at-
tribute has been demonstrated/claimed, N signifies that the contrary has been
demonstrated/claimed, and no marking signifies that there has been no definitive
determination.

The attributes given in Table 3.1 are defined as follows:

* An algorithm possesses "fast training/testing" if its current implementation is

ready for real-time use. Fast Training means that retraining with a sufficiently

large image set (over 100 images) can occur within a reasonable time frame

(under 10 minutes). Fast Testing is defined as the ability to process a typical

640 x 480-pixel image in under one second.

* Eye-Level Success: Demonstrated correct-classification rates of at least -90%

for objects at eye-level (e.g., indoor testing).

* Aerial Success: Demonstrated correct-classification rates of at least -90% for

objects with altitude at least 50 feet below camera altitude.

* Broad Range: Adaptable to both close-range and far-field object detection.

* Occluded Success: Demonstrated successful detection of objects less than

75% visible. HMAX, HOG, and V-J were given this attribute due to their

-90% correct-classification rates for the Indoor Video Set samples that included

occluded people. However, this attribute was not explicitly verified because the

~;;--~ -- - ;; ~-;; ~ -~~



impact of occlusion was not statistically examined.

* Human Focus: Algorithm is intended and/or specifically tuned for person

detection.



Chapter 4

Image and Video Testing

4.1 Methodology

4.1.1 Algorithm and Dataset Concerns

Algorithm testing was performed to establish an indication of how well the algorithms

will perform in real-world scenarios and to provide a fair comparison of the methods.

A fair comparison necessitates consistency among both the datasets used and how

they are used to train and test each algorithm. Several steps were taken to ensure

this consistency.

For every test, there were several ways in which the selected algorithms needed

to be consistently applied. First, the same training and test sets were used for each

algorithm. Additionally, emphasis was given to ensuring that all algorithms were

run with the techniques instrumental to any single algorithm's success. For instance,

HOG is trained with bootstrapping, whereby secondary training is conducted with

negative samples that are incorrectly classified by the initial training. Though specific

bootstrapping implementation varied among the algorithms, it was important that all

algorithms were trained with bootstrapping. In addition, some algorithms thoroughly

scan each test image to classify subwindows, whereas others classify the entire image.

These inconsistencies were removed upon testing.

For every algorithm, measures were taken to ensure the legitimacy of test results.



Algorithm restrictions regarding image size and proportion were considered when

generating the image sets. For instance, HOG and V-J must be trained with uniformly

sized positive samples; the aspect ratio of all generated positive samples was thus held

constant. Also, because the HMAX implementation classifies the entire image rather

than classifying subwindows, its performance is predicated on the need for consistent

size among all positive and negative training/test images.

It was also essential that training and test image sets were as independent as

possible. Real-world testing will likely occur in several disparate locations with

conditions different than those during training. Measures taken to ensure this

independence between the training and test sets generated for the indoor and aerial

applications are discussed in Sections 4.2.2 and 4.3.2.

Another priority was to train algorithms with datasets large enough to ensure valid

results. Dalal and Triggs trained their HOG model with over 1000 positive person

samples. Mutch and Lowe trained the HMAX model with 30 samples from each of

101 object categories. Viola and Jones used about 5000 positive and 10,000 negative

subwindows for training. Generating appropriate datasets was essential for this study;

because only so many images could reasonably be generated, training was sometimes

performed with fewer samples than potentially necessary for optimal results. With

larger training sets, algorithm results will likely improve. Test set size was also an

important consideration, as sufficient sample size is necessary for valid conclusions.

(One way to achieve statistical validity with smaller datasets is to average results

over multiple random or stratified training/test splits. This technique would have

certainly substantiated the test results in this thesis; unfortunately, time constraints

precluded its use.)

The tests conducted in this thesis are "system-level" comparisons of the algo-

rithms. This means that each algorithm was implemented with non-feature charac-

teristics (such as the bootstrapping technique or the classifier) that were specifically

chosen by the algorithm's developer. (The exception is HMAX bootstrapping, for

which pseudocode is given in Appendix C.) As a result, no conclusions can be made

about which algorithm has superior features, or which particular characteristics were



responsible for any given results. Instead, these tests are intended to show readers

which systems work well given a particular image domain.

4.1.2 Algorithm Implementations

This section briefly describes how each algorithm was implemented for both indoor

and aerial testing. Detailed descriptions of each algorithm are given in Section 3.2.

Mutch and Lowe's enhanced version of the "Standard Model" of cortex-like object

recognition (HMAX) was used for testing. For each test, C2 features were classified

using a linear SVM from Franc and Hlavac's Statistical Pattern Recognition Toolbox

for Matlab [8]. For every training set, 1500 features were selected from among 12,000

random C2 features using successive layers of feature elimination.

The HOG algorithm was implemented with the following parameter values:

* Detector Window Size: most often 64x 128 pixels

* Cell Size: 8x8 pixels

* Block Size: 2x2 cells

* Number of Orientation Bins: 9

* Descriptor Stride in Window: 8x8 pixels

These parameters are fully described in Dalal and Triggs' article [4]. A soft linear

SVM trained with SVMLight was used for classification.

Viola and Jones' statistical algorithm for face detection (V-J) was retrained for

person detection using OpenCV.

4.1.3 Accuracy Conventions

There are several standard methods for characterizing and comparing the accuracies

of given algorithms. Generally, each algorithm is trained and tested with the same

image sets, and an algorithm's accuracy is defined by two values: detection rate (DR)

and false positive rate (FPR). These rates are defined as follows:

TP FP
DR = and FPR = , where

#P #N



TP = number of positive test images that are correctly classified

#P = total number of positive test images

FP = number of negative test images that are incorrectly classified

#N = total number of negative test images

One of two main approaches is typically used to quantify classification accuracy.

The first is to plot a Receiver Operating Character (ROC) curve for each algorithm.

The horizontal axis corresponds with false positive rate and the vertical axis

corresponds with detection rate. A curve is then generated by varying the classifier

threshold that acts to distinguish between positive and negative classification.

Many of the leading object recognition methods, including HMAX and HOG, use

a Support Vector Machine (SVM) to classify query images. SVMs are linear classifiers

that separate the p-dimensional training data points with a (p - 1)-dimensional

hyperplane. A test image's SVM output, which is related to the distance between

the image's data point and the separating hyperplane, is usually used as a proxy for

classification confidence. In a two-class SVM, all test images with SVM output above

a certain threshold are placed into one classification category, whereas all images with

output below the threshold are placed into the other group.

Sometimes various aspects of the ROC curve are used for characterizing accuracy,

such as the area under an ROC curve or the "equilibrium point," where false positive

rate equals miss rate. Miss rate is the opposite of detection rate, and is the number of

incorrectly classified positive samples divided by the total number of positive samples.

The terms "correct-classification rate" and "success rate" are used in this thesis to

denote the detection rate at the equilibrium point. To compare two algorithms, points

from the ROC curves will often be compared; the preferred method has the higher

detection rate for the same false positive rate.

The other main approach taken to determine accuracy is to plot a Recall-Precision

curve for each algorithm. The horizontal axis corresponds with Precision, or the

percentage of the images classified as positive that are actually positive. The vertical

axis corresponds with Recall, the equivalent of detection rate. Like the ROC curve,



points from the curve are often used to measure accuracy. There are other variations

to the ROC and Recall-Precision curves, many of which deal with absolute numbers

instead of rates.

This study is concerned with determining the presence of one or more people

in an image. As a result, the goal is to classify the entire image, not to classify

subwindows of the image. Thus if any subwindow is classified as positive, then the

entire image is labeled positive. This is a noteworthy distinction because of the

following implication: false positive subwindows in positive images will not lower the

algorithm's defined accuracy. This is justified because false positive subwindows in

negative images will decrease the accuracy. In other words, if there are a significant

number of false detections, it stands to reason that they will be distributed between

both the positive and negative images, thus lowering accuracy.

The standard ROC curve is an appropriate selection for this study. The ultimate

goal is to obtain a perfect classification curve, where a range of classifier thresholds

exist with which every positive sample is correctly classified and there are no false

positives. Because this is highly unlikely, the realistic goal becomes consistently

correct classification. Acceptable rates of correct classification are subjective, but

the goal of this study is to obtain high correct-classification rates (preferably above

90%) for a sufficiently large sample set of query images. In order for the results to be

generalized to real-world scenarios, there should be high statistical confidence that

new images will be correctly classified at a rate that is hopefully around 90%.

Statistical convention dictates that if a percentage P of the test images (assumed

to be a random sample of all appropriate images) are classified correctly, then a

different, randomly selected image will be correctly classified at least (P - -) percent

of the time at confidence C. Z depends on C (e.g., Z = 1.9599 for C = 95%), and ql

is the number of images in the test set.



4.2 Leave-Behind Sensing

4.2.1 Problem Characteristics

There are a few characteristics of the leave-behind sensing problem that help to

shape both the expectations of successful person detection as well as the process of

achieving this. First, indoor surveillance necessitates that people are detected at a

range of distances from the camera. In this sense, indoor detection is more complex

than detection from the air, where all people have much more consistent size and pose

with respect to the camera. Because of the multitude of detection ranges and the

fact that close-range surveillance provides for a large range of human pose, achieving

consistently high accuracy from a given training set may be more difficult for indoor

sensing.

One major benefit to indoor object detection is the ability to use a stationary

camera. This allows the possibility of using established motion detection algorithms

as a first pass for specific object recognition techniques. Because a person must move

into the frame to be detected, effective motion detection will determine nearly every

instance where a person is present. Complex detection techniques are still necessary

to protect against false positives, but using these techniques alone will not be as

cost-effective as coupling them with motion detection.

A prominent yet simple technique for detecting motion is background subtraction.

First, the difference in pixel values between a current video frame and a background

frame (in which no people are present) is taken. Then, any region in the current

frame where that difference is large enough is regarded as evidence of motion. Of

course, this "motion" may have nothing to do with a person: lighting changes, shadow

movements, and other object movement are some examples.

The algorithm written to detect motion has several components (pseudocode is

provided in Appendix B). For each current frame, background subtraction is applied

to produce a "difference frame" with pixel values equal to the difference between the

pixel values of the current and background frames. Pixel values range from 0 (black)

to 255 (white). Pixels with values above a selected threshold are then turned to white,



whereas those with values below that threshold are turned to black. Every motion

region, or region with white pixels, is cropped for testing, eliminating the need to

scan every frame for test crops. These crops are then tracked from frame to frame,

removing the need to test the same object more than once.

4.2.2 Datasets

Every image set used to conduct leave-behind sensing tests is described in this section.

Table 4.1 gives the general characteristics of each dataset.

Indoor Image Set

The primary goal upon generating the Indoor Image Set was to collect four groups of

images: (1) training images containing a person, (2) training images not containing

a person, (3) test images containing a person, and (4) test images not containing a

person. Restrictions were then placed on these datasets for the sake of consistency.

First, it is important that training images are as independent from test images as

possible, because real systems will most likely be trained with conditions independent

from those in which testing will occur. Second, positive and negative images were to

be different only by the presence of a person, and not by the presence of any other

object. For this reason, every positive image has a corresponding negative image,

where the only change is the presence of a person. In other words, every non-person

object is present in equally as many positive images as negative images.

Dataset Type # Pos. # Neg. Locations

Training Images 100 100 One Kendall Draper Bldg.
Test Images 100 100 Guggenheim Lab, Koch Bldg.

Training Crops 112 500 One Kendall Draper Bldg.
Indoor Image Set Test Crops 114 500 Guggenheim Lab, Koch Bldg.

Training Crops 284 162 Stata Center
Test Crops 481 154 77 Mass. Ave. Dome

Table 4.1: Characteristics of each indoor image set: number of positive images,
number of negative images, and locations.



The Indoor Image Set is comprised of 400 480 x 640-pixel images, containing 200

training images and 200 test images. The training and test sets each contain 100

positive and 100 negative images. Sample positive and negative images from both

the training and test sets are shown in Figures 4-1 and 4-2.

In order to make the training and test groups independent, several steps were

taken. First, all training images were taken in different locations than the test

images. The training images were taken in the One Kendall Draper Building in

different offices, hallways and conference rooms. The test images were taken in

classrooms in two MIT buildings: the Guggenheim Laboratory and the Koch Biology

Building. There were independent groups of people between training and testing,

and the two sets were taken on different days. There are seemingly endless ways

to make the groups independent, and thus improve the validity of the sets, like

Figure 4-1: Sample positive and negative indoor images from the training set.



changing the camera/camera settings between training and testing, or even changing

the campus/area between the groups. However, the measures taken were adequate

for generating an appropriate dataset for this study.

As this image set was designed to test for a real-life indoor surveillance system,

it was essential to vary the positions and orientations of the people visible in the

images, as well as their distances from the camera. In order to reduce bias, there

was also an emphasis on varying the gender, race, clothing, and apparel of the people

in the images. Because a reliable system would detect the presence of people in

any condition, this image set contained training and test images with people partially

occluded by other objects and only in part of the image frame. Also, the room lighting

was often varied, as was the position of the camera within the room. This range of

variations makes the Indoor Image Set considerably more difficult than commonly

Figure 4-2: Sample positive and negative indoor images from the test set.
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used sets for testing, such as MIT Pedestrian Database and the INRIA Dataset.

From the 400 images in this set, another image set was generated that contained

only cropped subsamples (crops) of the original images. There were 112 crops of

people taken from the 100 positive training images and 114 crops of people taken

from the 100 positive test images. Each crop has a fairly consistent background

border surrounding the person, and every training crop has a 1:1.5 aspect ratio.

(HOG and V-J require a consistent aspect ratio among all training positives.)

There were 500 negative crops taken randomly from both the negative training

and test image sets, with random width between 60 and 200 pixels and height between

100 and 300 pixels. Figure 4-3 shows sample crops from the training set and Figure

4-4 shows sample crops from the test set.

Figure 4-3: Sample positive and negative indoor image crops from the training set.

Figure 4-4: Sample positive and negative indoor image crops from the test set.



Indoor Video Set

An Indoor Video Set was obtained by taking 640 x 480-pixel video at 30 frames per

second in multiple locations on the MIT campus. For training data, three videos

(totaling 3 minutes and 34 seconds) were taken with different views from within the

Stata Center. The test set was comprised of five videos (totaling 5 minutes and 46

seconds) taken with various views from inside the 77 Massachusetts Avenue dome.

While many indoor settings naturally yield few false positives (the vast majority of

moving objects are people), the Indoor Video Set locations were chosen to include

non-person motion, such as shadows, moving doors, or outside vehicles.

The motion detection algorithm generated a 1:2-aspect ratio crop around any

object that was significantly different than a background frame. Thus any crop wider

than 240 pixels was rejected because its height would exceed the available 480 pixels.

(This is not an ideal approach for a true detection system; in later sequence testing,

each wide crop was subsampled with 1:2-aspect ratio crops.) All crops were uniformly

resized before training or testing. By taking crops from every tenth frame, 483 training

crops were generated and 803 test crops were generated. These crops were then

manually placed into one of four categories: (1) the crop contains a person and it

is apparent without context clues, (2) the crop does not contain a person and it is

apparent without context clues, (3) the crop contains a person and it is apparent only

with context clues, and (4) it is not apparent whether the crop contains a person. It is

not fair to train or test with crops from categories (3) and (4) because the algorithms

cannot interpret the context clues that humans instinctively use. There were 284

positive crops (first category) and 162 negative crops (second category) for training

and 481 positive and 154 negative crops for testing. Sample crops from the training

and test sets are shown in Figures 4-5 and 4-6, respectively.

The crops generated from the indoor images and video frames are in many ways

more difficult than many of the standard image sets. Compared with these standard

sets, the indoor image and video crops contain people with a much larger variation

in pose. People in the indoor sets can be found standing, sitting, walking, leaning,



crouching, or even laying down. By contrast, the MIT-CBCL Pedestrian database

only contains views of upright persons centered in each image [17]. Another difficult

aspect is the presence of heavily occluded people; in a sizable portion of the crops

from both images and video, people are partially to mostly occluded or are only

partially in the image frame. Many standard image sets only contain positive images

in which people are mostly visible. For example, the StreetScenes database contains

only people who are at least "75% visible" [1].

The indoor video crops are a particularly challenging set. Both the training and

test sets contain images without a consistent background border (margin around the

person). The INRIA dataset used by Dalal and Triggs is one of many sets with such

consistency; each person has around 16 pixels of margin on all four sides [4]. The set

of human faces used by Viola and Jones also has very consistent object-to-background

Figure 4-5: Sample positive and negative indoor video crops from the training set.

Figure 4-6: Sample positive and negative indoor video crops from the test set.
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proportions. In addition, the indoor video crops contain close-ups of people inside as

well as far-field views of people outside. There are very few, if any, standard image

sets with such a situational variety among the training and test images. The goal

in generating these image sets was to encompass the variety of situations in which

people can be found, and the results of testing with these sets must be viewed not

only in comparison to other studies, but also within the context of these complexities.

4.2.3 Test Progression

It was essential to apply the datasets fairly and consistently when training and testing

the selected algorithms. Designing the appropriate types and amount of testing is

an inexact science, so emphasis was placed on conducting a wide range of image

categorization tests. Some test procedures are ultimately feasible, whereas others

serve more as proof of concept. Certain procedures are more convenient to perform

than others. There are many tradeoffs involved, as the most convenient and feasible

procedures are often met with lower expectations and ultimately lower performance.

These tradeoffs provide the context for the following discussion of the implementation

and results of this study's most significant tests. Table 4.2 gives an overview of

Test Datasets
Video Crop

Training Datasets Full Images Image Crops Video Crops Sequences
HOG: 70%

Full Images HMAX: 65%
(No Boot.)

HOG: 90%
Image Crops HMAX: 88%

(No Boot.)
HOG: 89% HOG: 95%

Video Crops V-J: 85% (Sect. 5.3)
HMAX: 83%

Table 4.2: Overview of indoor tests organized by training and test datasets. Each
algorithm's approximate correct-classification rate is listed, with the best performance
highlighted. All tests are described in this section unless otherwise noted. The HMAX
bootstrapping technique was implemented for all tests unless otherwise noted.
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the indoor tests discussed in this thesis. (For a complete list of all tests conducted

throughout this study, see Appendix A.)

Training and Testing with Full Indoor Images

Many object recognition methods employ a similar strategy: an object is recognized

by testing an exhaustive list of subwindows within an image. While this approach has

been successful with standard image sets, there is appeal in avoiding subwindowing

and instead testing the entire image at once. Testing hundreds of windows just to

classify one image is both cumbersome and costly, where the majority of tests are

ultimately unnecessary.

Training algorithms with full positive and negative images and testing with entire

images is an extremely convenient and feasible procedure. The first major test was

conducted with 100 full indoor images in each of the four categories: positive training,

negative training, positive testing, and negative testing (sample images are shown in

Figures 4-1 and 4-2). Only HMAX and HOG were used for this test because V-J is

not meant for training upon and categorizing 480 x 640-pixel windows (a typical size

Train and Test with Full Indoor Images
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Figure 4-7: ROC curves for training and testing with full indoor images.
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is 20 x 20 pixels).

Though HOG outperformed HMAX, correct-classification rates of around 70% (as

shown in Figure 4-7) are unreliable by any realistic standards. Not surprisingly, there

is good reason for using the subwindowing approach instead of categorizing entire

images. Small windows mostly occupied by the object intuitively provide a more

effective positive training set than large images mostly occupied by the background.

The next tests were conducted with crops from the Indoor Image Set.

Training and Testing with Indoor Image Crops

The 112 positive training crops and 114 positive test crops were taken manually from

the indoor images. As for the negatives, there were 500 training and 500 test crops

taken randomly from the respective image sets. (Sample crops from the training

and test sets are shown in Figures 4-3 and 4-4, respectively.) The algorithms were

trained and tested with these image sets, and results are impressive despite not using

uniformly sized crops or enhancing HMAX with the bootstrapping technique.

Figure 4-8 shows that both HMAX and HOG achieved very promising correct-
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Figure 4-8: ROC curves for training and testing with indoor image crops.
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classification rates of around 90%. However, these results are deceiving for two main

reasons. First, while manually cropping people for training is acceptable, doing the

same for testing is infeasible. Fortunately, simple image subtraction-based techniques

help to generate crops of moving objects in video frames. These crops will not be

as uniform as the manual crops, but feasibility will have been attained. The second

misleading part of this procedure was testing with random negatives; it is possible

that the algorithms simply distinguished between background-bounded objects (i.e.,

those well-centered in the image with a relatively uniform background frame) and

random patterns, not between people and non-people. (In fact, the HMAX correct-

classification rate decreased by around 20% when cropped non-person objects were

used as training and test negatives.) An appropriate alternative is for the subtraction-

based technique used to generate the test positives to also generate the test negatives.

Training and Testing with Indoor Video Crops

Using the crops generated with simple image subtraction for training and testing is

convenient and feasible. In fact, the following results are essentially a lower bound on

the potential of this process, as more sophisticated motion detection techniques would

inevitably provide cleaner crops. The indoor training video generated 284 positive

and 162 negative crops (samples are shown in Figure 4-5), and each algorithm was

trained in a similar manner.

The bootstrapping technique was used with all algorithms, whereby initial training

is followed by training on samples that were initially false positives. The 284 positive

samples, along with their horizontally flipped counterparts, formed the 568 positive

samples for HMAX, HOG, and V-J. For HMAX, the positives were resized to 64 x 128

pixels, and the 162 negative crops were resized to 128x256 pixels. The initial

training set for HMAX consisted of 568 positives and 810 negatives (five random

64 x 128 windows from each of the 162 negative crops). Then, 2430 negative crops (15

per negative crop) were tested by the initial classifier, and the 400 most positively

classified samples (the false positive candidates) were added to the negative training

set for secondary training on 568 positives and 1210 negatives, all 64x128 pixels.



Pseudocode for this technique is provided in Appendix C.

HOG was initially trained with the same 568 positive and 810 randomly chosen

negative samples, and subsequently trained with false positives from an exhaustive

set of negative windows. V-J was given an initial training set of 568 positive and 810

randomly chosen negative samples, and performed nineteen layers of retraining, each

with the same 568 positives and a maximum of 810 false positives from exhaustive

scanning of the 162 original negative crops. (For computational reasons, all crops

used for training V-J are 32x64 pixels instead of 64x 128 pixels.)

Each algorithm was tested with the 481 positive and 154 negative crops generated

from the video test set, all consistently sized with the training crops (64x 128 pixels

for HMAX and HOG, 32x64 pixels for V-J). Figure 4-6 shows sample positive and

negative crops from the test set.

Figure 4-9 shows that all three algorithms achieved successful categorization rates

for the video-generated crops. HOG, which demonstrated a correct-classification rate

of 88%, outperformed HMAX and V-J. This success rate was statistically extended

(using the methodology in Section 4.1.3) to account for the broad range of potential
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Figure 4-9: ROC curves for training and testing with indoor video crops.
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test samples. Assuming that the 635 classified test samples comprise a random

selection of similar indoor video samples, it can be said that new test images will

be correctly categorized more than 84% of the time at 95% confidence.

4.3 Aerial Surveillance

4.3.1 Problem Characteristics

Successfully determining the presence of people on the ground from aerial imagery

is difficult for several reasons. Many leading object recognition algorithms show

impressive results for objects of a certain (pixel) size, but are untested for the

inevitably smaller sizes of people in aerial images. While accuracy may suffer as

the object size decreases, there is an increase in the conformity of samples, since

greater distance between camera and person decreases the variability of the person's

pose with respect to the background. These aspects of far-field aerial detection are

worth considering when training and testing the numerous benchmark methods.

Another difficult aspect of detecting people from aircraft imagery is the camera's

instability. Unlike the leave-behind sensing problem, aerial detection will be done

from a moving platform. This means that any tool used to improve the runtime of

a detection system, such as a background subtraction or filtering-based approach,

must be enhanced before being applied to the aerial domain. Image registration is

a standard technique for placing successive images from a moving platform onto one

common reference frame [19]. Applying this type of technique to the shaky succession

of images would enable the use of background subtraction or an alternative form

of motion detection. While more effort is required, the benefits of adding motion

detection to the recognition process can still be achieved.

While using image registration is a viable option, the method was not applied in

this work. Because image registration is not the focus of the thesis, selecting and

applying such an algorithm to the small sample of available aerial video was deemed

unnecessary in the presence of a viable alternative. Instead, simulated aerial video



was taken with a stationary camera atop the Draper parking garage and then divided

into training and test sets. This allowed for training the detection models on an image

set that is independent from the UAV video test set, and for testing with the aid of

background subtraction.

4.3.2 Datasets

For the aerial surveillance problem, the initial goal was to use a small UAV to collect

enough video capturing people from a suitable altitude in order to create the same

groups as in the Indoor Image Set (positive/negative training and testing). The

available footage from the UAV consisted of about twenty minutes of video at 30

frames per second, generating about 30,000 still images. While this number of images

should have been sufficient, this dataset was ultimately inadequate for both training

and testing. Only about 30 seconds of the video contain definitive human presence

and there are only a few different people in the video. Because the training and test

sets should be independent and because of the sparsity of samples, the UAV video

alone did not suffice for both training and testing.

One way to generate more images for aerial surveillance training and testing was to

simulate aerial images with those taken from rooftops. The major concern was making

sure that images taken from rooftops are appropriately consistent with those taken in

authentic aerial surveillance missions. It was essential that the pixel-size of persons in

the simulated images correspond with the pixel-size of persons in authentic imagery.

The characteristics of a typical small camera were used to get an estimate of authentic

pixel-size. Using a 200 vertical field of view and 300 inclination angle from an altitude

of 100 feet, a 6-foot person would be 37 pixels high on a 640 x480-pixel display. While

that altitude is very low compared to that of a typical surveillance mission (about

500 feet in altitude), cameras chosen specifically for far-field surveillance would likely

yield more information than the typical small camera. Using rooftop imagery with

people ranging from 40 to 100 pixels for training and testing was deemed appropriate.

This section describes every image set used to conduct aerial surveillance tests.

Table 4.3 gives the size and location of each image set.



Dataset Type # Pos. # Neg. Locations
Training Images 101 100

Aerial Image Set Images 100 100 Draper Parking GarageTest Images 100 100

Aerial Image Set Training Crops 100 500 Draper Parking Garage
Test Crops 100 500

Training Crops 195 708
Aerial Video Set Draper Parking Garage

Test Crops 300 474

UAV Video Set Test Crops 110 500 Fort Devens, Mass.

Table 4.3: Characteristics of each aerial image set: number of positive images, number
of negative images, and locations.

Aerial Image Set

Similarly to the Indoor Image Set, the Aerial Image Set is comprised of training

positives, training negatives, test positives and test negatives. There are 401 480 x 640-

Figure 4-10: Sample positive and negative aerial images from the training set.
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pixel images in the Aerial Image Set, containing 201 training images and 200 test

images. Of the training images, 101 are positive and 100 are negative. Of the test

images, 100 are positive and 100 are negative. The training and test groups were

made independent in several ways. First, training and test images were taken on

different days and at different times of day. This created a noticeable difference in

overall lighting between the two groups. Second, the same person does not appear

in both the training and test groups. Third, the camera zoom and inclination is not

consistent between the two groups. Sample positive and negative images from both

the training and test sets are shown in Figures 4-10 and 4-11.

For the Aerial Image Set, it was essential to have as much variation as possible

to simulate authentic testing. Images were taken from the Draper parking garage at

varying elevations and locations. As in the Indoor Image Set, the people captured in

Figure 4-11: Sample positive and negative aerial images from the test set.



the images have varying positions, orientations and distance from the camera. The

gender, age, race, and apparel of the people also vary, and there are instances of

people walking dogs and riding bicycles and motorcycles. The types and range of

variation, specifically the varying camera inclination and elevation, make the Aerial

Image Set considerably more challenging than the INRIA Dataset and the MIT-CBCL

StreetScenes Database.

For further training and testing, crops were taken from the 401 images in this set.

Figure 4-12: Sample positive and negative aerial image crops from the training set.

Figure 4-13: Sample positive and negative aerial image crops from the test set.



There were 100 samples of people cropped from the first 47 positive training images

and 100 samples of people cropped from the first 71 positive test images. Each crop

has a fairly consistent background border surrounding the person and every training

crop has a 1:2 aspect ratio. The negative samples were randomly cropped from the

positive images (500 training and 500 testing). The negative training crops were given

a random width between 20 and 200 pixels and height between 40 and 300 pixels.

The negative test crops were given random dimensions that were more consistent with

the positive crops: width is a random value between 20 and 60 pixels and height is a

random value between 40 and 120 pixels. Figure 4-12 shows sample crops from the

training set and Figure 4-13 shows sample crops from the test set.

Aerial Video Set

While the relatively simple background subtraction technique does not suffice

for video from a moving platform, more advanced background subtraction with

image registration could serve to detect motion in more complex aerial platforms.

Nonetheless, stationary video from atop the Draper parking garage was adequate for

proof of concept testing; actual UAV video substantiated the results.

The Aerial Video Set consisted of crops from four training videos (totaling 3

minutes) and four test videos (totaling 5 minutes and 16 seconds). While all videos

were taken from the Draper parking garage, training and test sets were obtained

from different sides of the garage, with different weather, time of day, and camera

inclination and zoom. The methodology and categorization used for generating Indoor

Video Set crops was repeated for the Aerial Video Set. Originally, there were 971

crops generated from the training videos and 855 crops generated from the test videos.

There were 195 positive and 708 negative crops for training, and 300 positive and 474

negative crops for testing. Sample crops from the training and test sets are shown in

Figures 4-14 and 4-15, respectively.



Figure 4-14: Sample positive and negative aerial video crops from the training set.

Figure 4-15: Sample positive and negative aerial video crops from the test set.

UAV Video Set

Draper received 16 minutes and 32 seconds of 30-frames per second video from a small

UAV with varying altitude above 100 feet. The video contains views of fields, trees,

roads, sky, vehicles, and people. From the total footage, there are only approximately

30 seconds of footage in which one or more people were definitively present. Sample

positive and negative video frames are shown in Figure 4-16. (Note that the image

quality was sometimes reduced due to dropouts of wireless communication.) In the

absence of an advanced motion detection algorithm incorporating image registration,

positive 1:2-aspect ratio crops were manually taken from the 30 seconds of video.

The crops were intentionally taken roughly (people not centered and often not fully

in the crop) in order to mimic the difficulty of motion detection algorithms in such a

complex domain.



Figure 4-16: Sample positive and negative images from the UAV video set.

The set of crops taken from the video provide an authentic test set and the

opportunity to train and test in completely separate environments. The positive test

set is comprised of 110 manually cropped samples and the negative test set contains

500 randomly cropped samples. Sample positive and negative crops are shown in

Figure 4-17.

Like the indoor datasets, the aerial image and video sets are inherently difficult

to train and test with. The image and video crops do not have the same margin and

pose consistency as many of the standard object image sets, including the CaltechlOl

set and the UIUC Image Dataset. The aerial testing results become more impressive

upon recognizing the uniquely challenging nature of the training and test images.



Figure 4-17: Sample positive and negative UAV video crops.

4.3.3 Test Progression

A logical progression of tests was developed for the aerial surveillance application.

Like the indoor testing, algorithms were trained and tested with full images, manually

selected crops, and subtraction-based crops from video frames. Additional tests were

conducted to improve results and apply them toward the UAV video. Table 4.4 gives

an overview of the aerial tests discussed in this thesis.

Test Datasets
Video Crop

Training Datasets Full Images Image Crops Video Crops Sequences UAV Crops
HOG: 67%

Full Images HMAX: 61%
(No Boot.)

HMAX: 90% HMAX: 65% HMAX: 95%
Image Crops (No Boot.) HOG: 65% HOG: 71%

HOG: 88% V-J: 60% V-J: 71%
HMAX: 68% HOG: 70%

Video Crops HOG: 65% (Sect. 5.4)
V-J: 65%

Table 4.4: Overview of aerial tests organized by training and test datasets. Each
algorithm's approximate correct-classification rate is listed, with the best performance
highlighted. All tests are described in this section unless otherwise noted. The HMAX
bootstrapping technique was implemented for all tests unless otherwise noted.
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Training and Testing with Full Aerial Images

HMAX and HOG were trained and tested with the full images taken from atop the

Draper parking garage (samples are shown in Figures 4-10 and 4-11). While this

approach is extremely convenient, the unacceptably low 60-70% correct-classification

rates (as shown in Figure 4-18) are not surprising. Only a very small portion (smaller

than indoor) of each positive image is occupied by a person, and it was evident that

training and testing with background-bordered crops of people would result in more

accurate detection.

Train and Test with Full Aerial Images
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Figure 4-18: ROC curves for training and testing with full aerial images.

Training and Testing with Aerial Image Crops

The 112 positive training and 114 positive test samples were manually cropped from

the aerial images. There were also 500 training and 500 test crops taken randomly

from the image sets. Sample images from the training and test sets are shown in

Figures 4-12 and 4-13, respectively. HMAX and HOG were trained and tested with

these sets. The results are impressive despite the fact that HMAX bootstrapping was

not yet added and the fact that the crops are not uniformly sized.
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Train and Test with Aerial Image Crops
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Figure 4-19: ROC curves for training and testing with aerial image crops.

Figure 4-19 shows that both HMAX and HOG demonstrated correct-classification

rates of around 90%. While this is impressive, there are some feasibility concerns.

Since positive test crops were manually selected, the high classification rates may

be unrealistic. Also, because the negative training and test crops were randomly

generated, the algorithm could succeed by merely recognizing the presence of

any background-bordered object, not necessarily a person. Using the background

subtraction-generated crops for training and testing alleviates these concerns.

Training and Testing with Aerial Video Crops

This approach is certainly more realistic than training and testing with manually

selected image crops, but is still not altogether feasible. The results from this test

must be viewed with a caveat: crops generated by applying image subtraction to

stable video may result in unrealistically high classification rates compared with shaky

video.

The process of testing with aerial video crops generally mirrored that of testing

with indoor video crops; only the size of the image sets changed. HMAX was initially
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Figure 4-20: ROC curves for training and testing with aerial video crops.

trained with 390 positive crops (195 crops with their flipped counterparts) and 810

negative crops (5 random windows from each of 162 subtraction-generated crops),

all 64 x 128 pixels. (The set of 162 negative crops is the original set of 708 negatives

with most redundancies eliminated.) The algorithm was then retrained with the same

images plus the 400 "most false positive" crops from among the 2430 exhaustively

generated negative set. HOG was trained with 390 positive crops, 810 randomly

chosen negative crops, and additional false positives. V-J generated 20 successive

classifiers, each trained with negative samples that were incorrectly categorized by

the previous classifier.

Each algorithm was tested with the 300 positive and 474 negative crops generated

from the test videos, all consistently sized with the training crops (64 x 128 pixels for

HMAX and HOG, 32x64 pixels for V-J). Sample images from the training and test

sets are shown in Figures 4-14 and 4-15, respectively.

The algorithms achieved fairly successful categorization rates for the video-

generated crops. As shown in Figure 4-20, HMAX generally outperformed HOG

and V-J, achieving higher detection rates by 5-10% for most false positive rates.
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HMAX correctly classified about 68% of the test images. Assuming that the 774 test

samples comprise a random selection of similar aerial video samples, new test images

will be correctly categorized more than 64% of the time at 95% confidence. (The

applied statistical convention is described in Section 4.1.3.) This is 20% lower than

the corresponding indoor success rate and is unacceptable for any real-world detection

system. While the success rate is low, the size and difficulty of the training and test

sets must be reemphasized. The test images are difficult but realistic; the training

set, however, is limited in size when compared to traditional sets used to train these

algorithms.

Training with Aerial Image Crops and Testing with Aerial Video Crops

In order to improve results from the last procedure, the positive training set was

replaced by the manually cropped positive samples. The idea was that the manual

crops are more consistent than the subtraction-based crops, and thus would provide

for better algorithm training. The 200 positive image crops were used to train the

Train with Aerial Image Crops, Test with Aerial Video Crops
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Figure 4-21: ROC curves for training with aerial image
video crops.
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algorithms and the negative training crops were taken randomly from the Aerial Image

Set (sample training crops are shown in Figure 4-12). The test dataset was comprised

of the background subtraction-generated crops from the Aerial Video Set.

For the most part, the changes in classification rates from video crop training

to image crop training were small. However, Figure 4-21 shows that the expected

increase in detection rate occurred in all three algorithms for low false positive rates.

Thus in order to test with the UAV crops, the image crops were used for training.

Training with Aerial Image Crops and Testing with UAV Video Crops

This procedure almost reaches full feasibility. While the training set remained the

same as it was for the previous procedure, the test set was comprised of 1:2-aspect

ratio crops from actual UAV video frames. The positive samples were manually

cropped from video frames, and the negative samples were randomly selected. Like

previous tests, the manual crop selection compromises the feasibility of the procedure;

however, these positives were roughly cropped: the background borders are not

consistent among the test positives, and many samples do not contain the full

person. This was an attempt to mimic the inexact nature of the more complex

image registration techniques necessary for unstable video. This procedure gives key

insight into the potential for these leading object recognition algorithms to classify

authentic UAV video samples.

HMAX, HOG, and V-J were trained using bootstrapping with 200 positive and

800 negative crops that were generated from the Aerial Image Set. The algorithms

were tested with 110 positive and 500 negative crops from the UAV video. Figure

4-17 shows sample positive and negative UAV video crops. All training and test crops

were resized to 64x 128 pixels (32x64 for V-J).

The results in Figure 4-22 show a stunning contrast between HMAX and the

other two algorithms. HMAX obtained a successful classification rate of about 94%,

whereas HOG and V-J only correctly classified about 70% of the 610 test images.

This large disparity is most likely due to the fact that neither HOG nor V-J have

traditionally succeeded in detecting occluded objects. In this dataset, 68 of the 110
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Figure 4-22: ROC curves for training with aerial image crops and testing with UAV
video crops.

positive samples contain one or more occluded people. The fact that the positive

samples were manually extracted may call into question the applicability of these

results, but the high classification rates suggest that coupling HMAX with suitable

image registration and background subtraction methods could result in a very reliable

person detector.

4.4 Timing Analysis

This section describes the trends and contrasts associated with the algorithm

runtimes. Training and testing for HMAX, HOG, and V-J were conducted on a

3.6 GHz Pentium 4 processor. HMAX was implemented using Matlab R2006b to run

numerous Matlab/C++ components [15]. HOG training and testing were performed

using a series of C executables [4]. V-J was implemented using OpenCV Workspace

MSVC6 [3].

Tables 4.5 and 4.6 give the algorithm training and testing runtimes for every

dataset. For each of the seven training image sets (three indoor, four aerial), HOG
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Dataset HMAX HOG V-J
Full Indoor Images 2 hrs, 51 min 5 min N/A
Indoor Image Crops 15 hrs, 57 min 5 min N/A
Indoor Video Crops 6 days, 10 hrs 2 min 4 days, 21 hrs

Full Aerial Images 3 hrs, 29 min 5 min N/A

Aerial Image Crops (Original Set) 12 hrs, 34 min 35 sec N/A
Aerial Video Crops 9 days, 3 hrs 1 min, 30 sec 1 day, 18 hrs
Aerial Image Crops (Uniform Set) 1 day, 23 hrs 7 min 12 hrs, 38 min

Table 4.5: Training times for indoor and aerial datasets.

Dataset HMAX HOG V-J
Full Indoor Images 15 min 4 min N/A
Indoor Image Crops 1 hr 8 min N/A
Indoor Video Crops 1 hr, 5 min 18 sec 26 sec

Full Aerial Images 16 min 4 min N/A

Aerial Image Crops 1 hr, 5 min 43 sec N/A
Aerial Video Crops (Video Crop Training) 1 hr, 22 min 23 sec 20 sec
Aerial Video Crops (Image Crop Training) 1 hr, 19 min 22 sec 9 sec
UAV Video Crops 1 hr, 3 min 19 sec 12 sec

Table 4.6: Testing times for indoor and aerial datasets.

was the fastest to train. HOG was faster than HMAX by between one and four

orders of magnitude for every dataset. For all datasets used to train V-J, HOG was

faster than V-J by between two and three orders of magnitude. HOG was the fastest

algorithm to test for all three indoor datasets and two of the five aerial datasets (V-J

was fastest for the other three aerial datasets). The runtime disparity between HOG

and the other algorithms was not as large for testing as it was for training; HOG

and V-J demonstrated comparable testing speed. That said, HOG was faster than

HMAX by up to two orders of magnitude for some test sets.

These results demonstrate that HOG has the potential for real-time person

detection and retraining. In addition, V-J has shown the potential for real-time

testing. While HMAX was not the fastest to train or test for any dataset and

was often significantly slower than both HOG and V-J, this comes as no surprise.

Riesenhuber and Poggio's primary goal in developing HMAX was to establish an
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appropriate model of the visual cortex; the algorithm's processing speed is limited by

initial template matching and maximum pooling operations [23].



Chapter 5

Sequence Testing

5.1 Problem Characteristics

The image background subtraction module tracks each object for the duration of

time in which the object is visible. Thus there is a series of crops containing

each moving object. This approach is beneficial for two main reasons. First, it is

not computationally efficient to repeatedly retest an object that has already been

classified. However, in order to avoid this retesting, there should be high confidence

that the object's classification is indeed correct. This leads to the second reason for

tracking objects: testing with a sequence of object images allows for more confident

classification than simply testing with a single image.

Every tracked object has a certain lifespan during which the object remains within

the image frame. For every image sample in an object's lifespan, the detection

algorithm generates the (classifier) confidence that the sample contains a person.

The series of confidences for all test samples throughout an object's lifespan is then

converted into an overall confidence that the object is a person. This is done by

taking the average of the individual confidences. (Other methods designed to convert

from confidences to probabilities were attempted, but simply averaging worked best.)

Another approach would be to penalize high deviation among the confidences. There

are other, more statistically based methods for determining an overall confidence.

With this overall confidence in mind, a new success curve can be generated with



axes similar to the ROC curve. The major difference is that rates now depend on the

total number of positive and negative sequences instead of the number of positive and

negative object crops. The horizontal axis represents the false positive rate, or the

number of sequences without a person that are classified as positive. The vertical axis

represents the detection rate, or the correct-classification rate of sequences containing

at least one instance of a person. Finally, instead of generating the curve by varying

the classifier confidence threshold, the "overall confidence threshold" is varied. This

threshold is the average confidence above which a sequence is classified as positive.

The advantage of using multiple crops per object should result in higher correct-

classification rates than before.

5.2 Algorithm Tradeoffs

The image and video testing results were used to determine the best algorithm to

employ for the final sequence testing. The most important traits to consider were

detection speed and success rate, with simplicity of implementation also considered.

The HOG approach stood out in all three categories.

Relatively speaking, HOG was the most consistently successful algorithm. In all

three indoor tests, HOG outperformed (had a higher detection rate for most false

positive rates) the other algorithms. However, HOG only outperformed the other

algorithms in two of the five aerial tests (HMAX won three). This is where algorithm

runtime was considered. The time necessary to train and test HOG was significantly

less than the runtimes of HMAX and V-J (sometimes by three orders of magnitude).

As the sequence tests were designed to determine the feasibility and effectiveness of

real-time testing, HOG's runtime dominance could not be ignored.

Simplicity of implementation was the final consideration when deciding which

algorithm to use. Each method was relatively simple to run, with HOG having the

edge because of its ready-made module for classifying individual samples. With all

three factors considered, HOG was chosen for sequence testing and analysis.



5.3 Leave-Behind Sensing

5.3.1 Methodology

Similar to the previous video crop testing, object crops (portions of the video frame

with substantial difference from the background frame) were obtained from every

tenth frame and tracked. An object history is the series of SVM confidence scores

from crops containing the tracked object, where the overall confidence for a sequence

is the average of the confidence scores in the history. For this test, each object history

had a maximum of five samples. If an object was visible for longer than the duration

needed for five samples, another history was created for the same object. This helped

to mitigate the problem of an isolated series of outlier scores impacting the object's

overall classification. The history length was also limited because the merging and

splitting of object regions made it difficult to accurately generate the full history for

each object.

For cases in which two independent object histories were combined (e.g., two

people move together), the combined object history was the individual history with

the greater overall confidence, or higher likelihood of containing a person. If one of the

objects of interest is indeed a person, it is important that the combined score reflect

the classification already achieved. For any case where an object history was split

(e.g., two people move apart), a new history began for each object. This was done

to avoid making assumptions about the individual objects based on their combined

confidence scores.

Each object sequence was first grouped into one of four categories: (1) one or more

sequence samples definitively contains a person, (2) no samples contain a person, (3)

one or more samples contains a person as determined only from context clues and the

other samples do not contain a person, and (4) one or more samples may contain a

person and the other samples do not contain a person. An ROC curve was generated

by varying the overall confidence above which a sequence was classified as positive,

with positive and negative sequences taken from groups (1) and (2), respectively.

It is important to note that no object histories with fewer than three samples were



classified, which helped to avoid the problem of outlier SVM scores contributing to

sequence classification.

Among the five indoor test videos, there were 251 positive sequences and 94

negative sequences. After eliminating all sequences with fewer than three samples,

there were 179 positive sequences and 34 negative sequences.

5.3.2 Results

Direct comparison between the original test and the Indoor Sequence Test shows a

dramatic improvement in classification. Figure 5-1 shows that there exists an overall

confidence threshold such that 160 of the 179 positive sequences (89%) were correctly

classified and 100% of the negatives were correctly classified. Even more impressive

is the fact that of the 19 incorrectly identified positive sequences, 18 contain one or

more persons that were present in correctly classified sequences. Also, all 72 positive

sequences that were eliminated because of their small sample size contain one or more

persons that were present in correctly classified sequences. Thus HOG, trained with

Train and Test with Indoor Video Crops
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Figure 5-1: ROC curves
video crop sequences.

comparing original indoor video testing to testing with indoor
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background subtraction crops from three different videos from one building, was able

to detect, without any false positives, all but one person in five separate videos from

another building.

5.4 Aerial Surveillance

5.4.1 Methodology

The setup for the Aerial Sequence Test was very similar to that of the Indoor Sequence

Test. Object crops were obtained from every tenth frame of each of the four aerial

test videos (taken from atop the parking garage). Each object was tested over the

duration of its in-frame visibility, with each sample's classifier confidence recorded

in the object's history (maximum length of five samples). The ROC curve was then

generated by varying the overall confidence threshold above which each sequence is

classified as positive. The overall confidence is taken as the average of the classifier

confidences for the individual samples.

Methodology adjustments from indoor to aerial testing were minor. The merging

and splitting of objects were handled exactly as they were for the indoor test. The

only change made was decreasing the gap width within an object region necessary for

the region to be split (e.g., two people moving away from one another). The necessary

gap width was made smaller because objects were further away from the camera.

Object sequences were labeled positive, unsure, or negative depending on whether

a person was definitively, not definitively, or never seen in the sequence, respectively.

Among the four aerial test videos, there were 264 positive sequences and 564 negative

sequences. Like the indoor testing, all sequences with fewer than three samples were

eliminated, leaving 195 positive and 193 negative sequences for HOG to classify.

5.4.2 Results

Classifying object sequences instead of individual samples improved the correct-

classification rate. As shown in Figure 5-2, detection rates improved for most false



positive rates, including notable improvements of around 20% for false positive rates

between 10% and 20%. For the Indoor Sequence Test, some potential doubts about

the methodology and results were settled, as every positive sequence eliminated due

to small sample size and all but one incorrectly identified positive sequence contained

people that were correctly classified in a prior or subsequent sequence. The same idea

likely applies to this test, strengthening the existing detection results.

The detection improvement seen by classifying aerial sequences was not as

noteworthy as the improvements seen with the Indoor Sequence Test. There are

several components of the methodology that, if changed, would have most likely

yielded better results:

* Crops with high person-to-background ratio were more consistently detected

as positive. The relatively crude image subtraction technique, combined with

the simple way in which object regions were merged and split, often generated

crops with inordinately large background space. Simply put, better processing

techniques would have almost certainly yielded better results.
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Figure 5-2: ROC curves comparing original aerial video testing to testing with aerial

video crop sequences.



* The current overall confidence was taken as the average of individual confi-

dences. If a better approach had been taken, such as penalizing high deviation

among confidences in a sequence, more consistent detection would have likely

resulted.

* With only one positive sample needed for an entire sequence to be labeled

positive, any correctly labeled negative samples in such a sequence were not

rewarded. Even worse, they were penalized, decreasing the overall confidence

for the positive sequence. Limiting the sequence history length helped to combat

this problem, but there is room for improvement.

* Likewise, many positive sequences contained ambiguous samples (those in which

a person is present, but only recognizable through context clues). Though highly

tedious, it would have been fair to eliminate the inclusion of these individual

confidences in overall confidences.

5.5 Timing Considerations

In addition to detection accuracy, system runtime is also a major consideration. HOG

has not only provided better detection results than HMAX and V-J, but the method

has greatly outperformed the other methods with respect to runtime for both training

and testing. The main concern for the sequence testing was whether HOG's impressive

testing runtime results could translate to real-time detection without much delay.

The quickest way to determine the feasibility of online sequence testing is to

compare the testing runtime with the length of the video itself. The Indoor Sequence

Test used five videos totaling 5 minutes and 46 seconds. Running the background

subtraction and tracking module at 3 frames per second and categorizing each object

sample took a total of 4 minutes and 20 seconds. The four aerial videos totaled 5

minutes and 16 seconds, with the Aerial Sequence Test taking 7 minutes and 7 seconds

to complete.

These impressive runtimes become even more promising upon considering two



other factors. First, these test videos contained an abundance of objects; real

surveillance scenarios will likely contain much fewer objects, effectively decreasing

runtime. Furthermore, the detection system does not have to categorize an object

sample once its status has been determined (overall confidence has reached a defined

threshold). This could significantly improve runtime. In the end, these results seem

to strongly indicate that person detection in live video is possible using Dalal and

Triggs' HOG approach.



Chapter 6

Conclusion

6.1 Findings

The ability to detect people in a variety of situations is a critical component of

many surveillance applications. Automating this process has many benefits, and

this thesis examines how state-of-the-art object recognition algorithms fare in this

context. These algorithms were tested with novel datasets that were designed to

reflect the inherent difficulties of the task. Numerous tests seem to suggest that

the examined algorithms (most notably Dalal and Triggs' Histogram of Oriented

Gradients approach) have potential for successful, reliable, and easily implementable

person detection. There are several significant outcomes from this work, each

enumerated in this section:

1. Even when faced with the significantly challenging Indoor Video

Set, HOG delivered highly impressive results when combined with

tracking and categorizing object sequences.

With independence between training and test sets, HOG was able to detect all

but one person in five separate videos without any false positive sequences. This

is very impressive considering the limited size and consistency of the training

set, as well as the disparate test set. With more appropriate training sets and



image subtraction techniques, this result could extend to a number of different

leave-behind sensing scenarios.

2. An effective and efficient person detector can be easily adjusted to

situational needs.

The Indoor Sequence Test showed the promise of training HOG with datasets

similar in nature to the test set. A detector was created that can be adjusted

to either ensure that every person is detected or that no false positives are

generated, without significantly compromising either priority. This important

distinction can be made with the tuning of one parameter (classifier confidence

threshold). For some scenarios (e.g., searching for enemy presence), correctly

detecting every person is critical, whereas for other situations, an abundance

of false positives could be more detrimental than missing a few people. The

person detection system applied in this study has the flexibility to encounter

this range of scenarios.

3. HOG and V-J were efficient enough for real-time object detection.

With background subtraction reducing the workload, these algorithms took

only a fraction of a second to categorize each image window. The original goal

was to quickly alert users for the presence of people; the results suggest that

this can be done successfully and reliably.

4. HMAX and V-J achieved impressive results considering their original

intentions.

These two algorithms fared only slightly worse than HOG for most of the image

and video tests, and both outperformed HOG when categorizing UAV video

samples. This is significant because whereas HOG was specifically tuned for

human detection, HMAX and V-J were not. The HMAX implementation was

designed to distinguish among general object instances, not to detect people



from the background. Viola and Jones' original model was trained to detect

frontal faces and was not intended to detect objects such as humans with large

variation in appearance and pose.

5. Motion detection algorithms (e.g., background subtraction) greatly

aid systems for reliable, real-time person detection.

The background subtraction and tracking algorithm used in this work generated

mostly uniform object crops and eliminated the need to test with full frames.

While this simple technique worked well, more robust and reliable methods

could raise success rates even higher. Local filtering to reduce noise, keeping

more current backgrounds to allow for lighting changes, and using image

registration to account for motion effects are just a few possibilities.

6.2 Future Work

Over the course of this project, several research extensions came to mind that were

not possible to fully examine under the given time constraints. In the hopes that

others following in this line of work take interest, these ideas are listed in this section:

1. Examine the impact of expanding or improving the training sets for

these tests.

The test results in this study were impressive considering the relatively small

training sets that were used. The sets were on the order of several hundred

images, while each detection method had achieved state-of-the-art results with

training sets composed of thousands of samples. This thesis was intended to

examine the application of benchmark algorithms to realistic image sets, and

as such the training sets were limited to what could be collected. It would be

revealing to see how the methods fare when faced with larger and perhaps more

effective training sets.



2. Attempt to combine benchmark algorithms to form superior detec-

tion systems.

This thesis did not examine the effect of combining algorithms, though

certain situations (e.g., occlusion and poor lighting) may have warranted this.

Combining algorithms could mean using both in a given system or using aspects

of each method to construct a hybrid approach. Of course, runtime must always

be considered.

3. Generate an effective multi-object detection system.

There are many other objects besides people that must be detected in a number

of practical situations. For instance, vehicle detection was briefly examined

during this study. It would be very interesting to look at ways in which several

different object categories could be detected and distinguished in real-time.

4. Enhance the "motion detection" capability employed in this work

while considering these improvements' costliness.

The detection system developed in this project used simple background

subtraction, along with a relatively crude form of tracking, to identify the

presence of objects before classifying them. There are entire fields of research

devoted to special image processing techniques that would be of great use to

object detection/recognition. Finding the right combination of these techniques

that would both improve upon this system and still maintain runtime feasibility

would be an interesting challenge.

5. Perform testing with more varied examples of live video.

With all of the webcam and video streams available online, there is no shortage

of relevant test data. As a result of this work, the capability is in place to read

these live videos and detect the presence of people.



Appendix A

Completed Tests

1. HMAX - Indoor Image Set - Train/Test with Full Images

2. HMAX - Indoor Image Set - Train with Full Images, Test with Pos. Crops &
Neg. Full Images

3. HMAX - Indoor Image Set - Train with Pos. Crops & Neg. Full Images, Test
with Full Images

4. HMAX - Indoor Image Set - Train/Test with Pos. Crops & Neg. Full Images -
Random 100 Train, 100 Test Crops

5. HMAX - Indoor Image Set - Train/Test with Pos. Crops & Neg. Full Images -
Different Random Set

6. HOG - Indoor Image Set - Train with Pos. Crops & Neg. Full Images, Test
with Full Images

7. HOG - Indoor Image Set - Train/Test with Pos. Crops & Neg. Full Images -
1010 Neg. Tr. Samples, 60x90 Detector Window (DW)

8. HOG - Indoor Image Set - Train/Test with Pos. Crops & Neg. Full Images -
10,100 Neg. Tr. Samples, 60x90 DW

9. HOG - Indoor Image Set - Train/Test with Pos. Crops & Neg. Full Images -
1010 Neg. Tr. Samples, 40x60 DW

10. HOG - Indoor Image Set - Train/Test with Pos. Crops & Neg. Full Images -

1010 Neg. Tr. Samples, 40x80 DW

11. HOG - Indoor Image Set - Train/Test with Pos. Crops & Neg. Full Images -
101,000 Neg. Tr. Samples, 60x90 DW



12. V-J - Indoor Image Set - Train Upright-Facing Pos. Crops & Neg. Full Images,
Test Full Images - 20 stages

13. V-J - Indoor Image Set - Train Upright-Facing Pos. Crops & Neg. Full Images,
Test Full Images - 15 stages

14. HOG - Indoor Image Set - Train/Test with Pos. Crops & Neg. Full Images -
Also Train with Flipped Pos. Crops

15. HMAX - Indoor Image Set - Train/Test with Pos. Crops & Neg. Full Images -
Test Pos. are Neg. Object Crops

16. HMAX - Indoor Image Set - Train/Test with Pos. Crops & Neg. Object Crops

17. HMAX - Indoor Image Set - Train with Pos. Crops & Neg. Full Images, Test
with Pos. Crops & Neg. Object Crops

18. HMAX - Indoor Image Set - Train/Test with Pos. Crops & Neg. Random
Crops - No Train with Flipped Pos. Crops

19. HMAX - Indoor Image Set - Train/Test with Pos. Crops & Neg. Random
Crops - Also Train with Flipped Pos. Crops

20. HOG - Indoor Image Set - Train/Test with Pos. Crops & Neg. Random Crops
- 58 x 87 DW

21. HOG - Indoor Image Set - Train/Test with Pos. Crops & Neg. Random Crops
- 40x60 DW

22. HMAX - Aerial Image Set - Train/Test with Pos. Crops & Neg. Random Crops

23. HMAX - Aerial Image Set - Train/Test with Full Images

24. HOG - Aerial Image Set - Train/Test with Pos. Crops & Neg. Random Crops

25. HOG - Aerial Image Set - Train with Pos. Crops & Neg. Random Crops, Test
with Full Images

26. HMAX - Indoor Video Set - Train/Test with Crops

27. HOG - Indoor Video Set - Train/Test with Crops - 20x40 IM, 19x38 DW

28. HMAX - Aerial Video Set - Train/Test with Crops

29. HOG - Aerial Video Set - Train/Test with Crops - 64x 128 IM, 40x80 DW

30. HOG - Aerial Video Set - Train/Test with Crops - 64x 128 IM, 64 x 128 DW
(Invalid: Some Test Images < 64x 128)

31. HOG - Aerial Video Set - Train/Test with Crops - 35x70 IM, 35x70 DW



32. HOG - Indoor Video Set - Train/Test with Crops - 35 x70 IM, 35x70 DW

33. HOG - Aerial Video Set - Train/Test with Crops - 64x128 IM, 64x128 DW

(Valid: All Test Images > 64x 128)

34. HMAX - Indoor Image/Video Set - Train with Image Crops, Test with Video
Crops

35. HOG - Aerial Image/Video Set - Train with Image Pos.

Images, Test with Video Crops

36. HMAX - Aerial Image/Video Set - Train with Image Pos.

Images, Test with Video Crops

37. HOG - Indoor Image/Video Set - Train with Image Pos.

Images, Test with Video Crops

38. HMAX - Indoor Image/Video Set - Train with Image Pos.

Images, Test with Video Crops

39. HMAX - Aerial Image Set/UAV - Train with Image Pos.

Images, Test with UAV Crops

40. HOG - Aerial Image Set/UAV - Train with Image Pos.

Images, Test with UAV Crops

41. V-J - Aerial Image/Video Set - Train with Image Pos.

Images, Test with Video Crops

42. V-J - Aerial Image Set/UAV - Train with Image Pos. Crops

Test with UAV Crops

43.

44.

45.

46.

47.

48.

49.

50.

Crops & Neg. Full

Crops & Neg. Full

Crops & Neg. Full

Crops & Neg. Full

Crops & Neg. Full

Crops & Neg. Full

Crops & Neg. Full

& Neg. Full Images,

Retesting (All Crops 64x128, HMAX with Bootstrapping)

HMAX - Indoor Video Set - Train/Test with Crops

HOG - Indoor Video Set - Train/Test with Crops - 810 Neg. Tr. Samples

HOG - Indoor Video Set - Train/Test with Crops - 16,200 Neg. Tr. Samples

HOG - Aerial Video Set - Train/Test with Crops - Full Training Set

HMAX - Indoor Video Set - Train/Test with Crops - No Bootstrapping (to see

effect)

HMAX - Aerial Video Set - Train/Test with Crops

V-J - Indoor Video Set - Train/Test with Crops

HMAX - Aerial Image Set - Train/Test with Full Images



51. HOG - Aerial Video Set - Train/Test with Crops - Streamlined Training Set

52. HOG - Aerial Image/Video Set - Train with Image Pos. Crops & Neg. Video
Crops, Test with Video Crops

53. HOG - Aerial Image/Video Set - Train with Image Pos. Crops & Neg. Full
Images, Test with Video Crops

54. HOG - Indoor Image Set - Train/Test with Full Images

55. HOG - Aerial Image Set - Train/Test with Full Images

56. HMAX - Aerial Video Set - Train/Test with Crops - Streamlined Training Set

57. HMAX - Aerial Image/Video Set - Train with Image Pos. Crops & Neg. Full
Images, Test with Video Crops

58. HMAX - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full
Images, Test with UAV Crops

59. HOG - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full
Images, Test with UAV Crops (DEFAULT - Cell Size: 8x8 pix., Cell Block:
2 x 2 cells)

60. HOG - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full
Images, Test with Full UAV Frames

61. HOG - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full
Images, Test with UAV Crops (Cell Size: 6x6 pix., Cell Block: 3x3 cells)

62. HOG - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full
Images, Test with UAV Crops (Cell Size: 8x8 pix., Cell Block: 3x3 cells)

63. HOG - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full
Images, Test with UAV Crops (Cell Size: 10x10 pix., Cell Block: 3x3 cells)

64. HOG - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full
Images, Test with UAV Crops (Cell Size: 10x10 pix., Cell Block: 2x2 cells)

65. HOG - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full
Images, Test with UAV Crops (Cell Size: 6x6 pix., Cell Block: 2x2 cells)

66. V-J - Aerial Video Set - Train/Test with Crops - Streamlined Training Set

67. V-J - Aerial Image/Video Set - Train with Image Pos. Crops & Neg. Full
Images, Test with Video Crops

68. V-J - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full Images,
Test with UAV Crops



69. V-J - Aerial Image Set/UAV - Train with Image Pos. Crops & Neg. Full Images,
Test with Full UAV Frames

70. HOG - Indoor Video Set - Train with Crops, Test with Crop Sequences

71. HOG - Aerial Video Set - Train with Crops, Test with Crop Sequences
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Appendix B

Background Subtraction &

Tracking Pseudocode

* Obtain "background image" that does not contain any people

* Convert background image to grayscale

* For every tenth frame:

- Convert current frame to grayscale

- Generate "difference image," in which each pixel value, between 0 (black)
and 255 (white), equals the absolute value of the pixel difference between
the current frame and the background image

- Generate "working image," which is the difference image with all pixel
values above a certain threshold turned to white, and all below that
threshold turned to black (helps to reduce noise)

For every "motion area" (previously detected window with enough white
pixels):

* Adjust the motion area based on any motion since the last frame

* Merge two motion areas if they overlap

* Split motion area given any sufficiently large gaps of black pixels

* If there are no white pixels in the motion area, remove area from
consideration

- Generate "search image," which is the working image with all pixels in
designated motion areas turned to black (this allows an easy search for
new white pixels)

- Find bounding box on any new white pixels



- If width or height of bounding box is too large, split into multiple bounding
boxes given any sufficiently large gaps of black pixels

- For every bounding box:

* Add pixel margin to all sides (to account for object's future motion)
* If bounding box does not overlap any motion areas, make bounding

box into new motion area

* If bounding box overlaps any motion area, merge the two and redefine
all motion areas given any overlaps

- Remove any motion area with sufficiently small dimensions

- For every motion area:

* Generate 1:2-aspect ratio crop sample around motion area

* Resize the sample to 64 x 128 pixels (i.e., consistent with size of training
samples)

* Classify sample with recognition algorithm

* Add classifier confidence to history and update overall confidence



Appendix C

HMAX Bootstrapping Pseudocode

* Begin with positive (64x128) and negative (128x256) training images

* Initial Training Set: All positive images and N random 64x 128 windows from
negative training images

* Train initial classifier

* Generate Z windows from an exhaustive scan of the negative training images

* Classify all Z windows and obtain the F most positively classified windows
(F < Z)

* Final Training Set: Same positive images and N + F negative windows

* Train final classifier and categorize test set

Note:

* HOG performs the same sequence, but the number of false positives used for
secondary training can vary

* V-J performs a similar version of bootstrapping:

- Initial classifier is trained with positive images and an initial set of random
negative windows generated from the negative training images

- Initial classifier is used to categorize subwindows obtained from scanning
the negative training images

- All false positives (up to a given maximum number) are then used, along
with the same positive set, to train the next classifier

- Subsequent classifiers are trained with the false positives generated using
the previous classifier (all positive training samples remain the same)
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