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Abstract

Small unmanned aerial vehicles (UAVs), equipped with navigation systems and video
capability, are currently being deployed for intelligence, reconnaissance and surveil-
lance missions. One particular mission of interest involves computing location esti-
mates for targets detected by onboard sensors. Combining UAV state estimates with
information gathered by the imaging sensors leads to bearing measurements of the
target that can be used to determine the target's location. This 3-D bearings-only
estimation problem is nonlinear and traditional filtering methods produce biased and
uncertain estimates, occasionally leading to filter instabilities. Careful selection of the
measurement locations greatly enhances filter performance, motivating the develop-
ment of UAV trajectories that minimize target location estimation error and improve
filter convergence. The objective of this work is to develop guidance algorithms that
enable the UAV to fly trajectories that increase the amount of information provided
by the measurements and improve overall estimation observability, resulting in proper
target tracking and an accurate target location estimate.

The performance of the target estimation is dependent upon the positions from
which measurements are taken relative to the target and to previous measurements.
Past research has provided methods to quantify the information content of a set of
measurements using the Fisher Information Matrix (FIM). Forming objective func-
tions based on the FIM and using numerical optimization methods produce UAV
trajectories that locally maximize the information content for a given number of mea-
surements. In this project, trajectory optimization leads to the development of UAV
flight paths that provide the highest amount of information about the target, while
considering sensor restrictions, vehicle dynamics and operation constraints. The UAV
trajectory optimization is performed for stationary targets, dynamic targets and mul-
tiple targets, for many different scenarios of vehicle motion constraints. The resulting
trajectories show spiral paths taken by the UAV, which focus on increasing the angu-
lar separation between measurements and reducing the relative range to the target,
thus maximizing the information provided by each measurement and improving the
performance of the estimation.



The main drawback of information based trajectory design is the dependence of
the Fisher Information Matrix on the true target location. This issue is addressed
in this project by executing simultaneous target location estimation and UAV trajec-
tory optimization. Two estimation algorithms, the Extended Kalman Filter and the
Particle Filter are considered, and the trajectory optimization is performed using the
mean value of the target estimation in lieu of the true target location. The estima-
tion and optimization algorithms run in sequence and are updated in real-time. The
results show spiral UAV trajectories that increase filter convergence and overall esti-
mation accuracy, illustrating the importance of information-based trajectory design
for target localization using small UAVs.
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Chapter 1

Introduction

1.1 Motivation

Since knowing your adversary is an essential strategic and tactical requirement, most

missions in modern warfare are centered on collecting and processing as much in-

formation about the opponent and the environment as possible. Examples of such

missions include point, area, and route reconnaissance tasks, persistent surveillance,

threat identification, target tracking and post-battle reconnaissance for damage as-

sessment [51]. Even though these missions vary in scope and requirements, they

all focus on collecting and exploiting information about the environment, with the

purpose of minimizing the uncertainty regarding the enemy's location, behavior, in-

tentions, and courses of action. The first step in successfully analyzing the adversary

is executing proper Intelligence, Surveillance and Reconnaissance (ISR) procedures

to collect and process information [3] [4] [2].

ISR has traditionally been accomplished using several different tools and tech-

niques, ranging from satellites and high-altitude aircraft equipped with high-resolution

sensors, to land-based reconnaissance teams carrying cameras and radar devices [1].

Recent advances in technology are encouraging the use of small unmanned aerial

systems (UAS) for ISR procedures. UAS have repeatedly proven their usefulness

by assisting soldiers in several different types of missions. Equipped with onboard

electro-optical (EO) and/or infrared (IR) cameras, as well as navigation and com-



(a) Raven (AeroVironment, Inc) (b) Wasp Block III (AeroVironment,
Inc)

(c) RQ-7B Shadow 200 (AAI Corpora- (d) Aerosonde (AAI Corporation)
tion)

Figure 1-1: Examples of small unmanned aerial systems

munications hardware, current small UAS are capable of surveying the environment,

providing the operator with real-time visual information rapidly, inexpensively and

with low risk to human life. Figure 1-1 shows a few examples of small UAS plat-

forms, such as Raven and Shadow, which are currently used by the U.S. Army for

many military missions overseas.

A particulary interesting ISR mission for small UAS is to localize and track targets

detected by onboard sensors. Using imagery data of a target from different vehicle

locations as well as knowledge of the vehicle positions and orientations at the time

of the measurements, an estimate of the geodetic coordinates of the target can be

computed. This capability would be very useful in environments for which no a

priori information is available. For example, information obtained by the UAS could

be relayed to troops or to military systems which use absolute targeting methods, and

therefore, require geodetic coordinate information in order to engage the target. In

addition to ISR missions, this localization capability would be invaluable for several

other applications such as traffic monitoring, forest fire localization, scientific surveys

in dangerous conditions, border and harbor patrol, search and rescue, and wildlife



tracking, among others.

The main challenges involved with target localization include: maintaining the

target in the field of view, and developing a vehicle trajectory such that the target

location estimation error is minimized. For a human operator, maintaining the target

in the field of view is an extremely challenging task. This is because of limited vehicle

maneuverability, a noisy environment (mainly due to wind and gusts) and an overall

lack of proprioceptive feedback provided to the operator from the vehicle. As for the

latter task of flying the vehicle in such a way that the target location estimation error

is minimized, it is difficult for a human operator to have an intuitive understanding

of how best to accomplish this. For the stationary target case circular trajectories

which maintain an orthogonal line-of-sight to the target are widely accepted in the

literature as optimal trajectories. However, if the target is moving, the operator

may not know what the best vehicle path is. Autonomous flight path generation

and trajectory design, therefore, are essential to successful target localization. The

purpose of this work is to provide methods for creating trajectories that enable small

UAS to autonomously perform vision-based target localization in the most accurate

manner.

1.2 Problem Description

This section describes the problem of target localization using UAS equipped with

image-based sensors. By taking imagery data of a ground target from several dif-

ferent vehicle locations, an estimate of the target location can be computed through

triangulation (see Figure 1-2). For the purpose of this thesis, image processing for

target recognition is assumed and the process of obtaining a "measurement" consists

of finding the pixel location in the image that corresponds to the centroid of the tar-

get. Then, using the vehicle position, attitude, the pointing angle of the camera with

respect to the vehicle, and the pixel location of the target, the measurement provides

a relative position vector from the vehicle to the target. The magnitude of this vector,

however, is unknown and the resulting measurement is a bearing to the target (one



Vehicle
Trajectory

/ / Camera
/ FOV

Target

Figure 1-2: Illustration of target localization using a UAV with vision

angle in the 2-D case and two angles in the 3-D case). Given several measurement

vectors, the absolute target position can be computed by finding the point in space

that minimizes the sum of the squares of the distances between that point and the

nearest points lying on the measurement vectors.

The task of target acquisition presents several challenges. Most modern small

UAS are equipped with GPS capabilities and inertial sensors, but are designed to be

inexpensive and therefore include low quality sensors and poor navigation filtering al-

gorithms, leading to inaccurate vehicle state estimation. Given these large navigation

errors it is difficult to achieve a high level of precision in the target location estimate

since the errors in the vehicle state propagate into the targeting algorithms. The

resulting target estimation error is a combination of errors in the vehicle position,

vehicle orientation, and sensor noise. Under simplifying assumptions involving the

noise correlations, the target estimation error equation can be described, in a gross

sense, as

2OA 2N r2 R + or 2 r2 D 2  +ca 2 V 2 + uR2 W (1i
OTOTAL  xNAV + 0O,NAV + ,SEN + -O,SEN V 2 AT ATR

Here R is the relative range to the target, V is the relative velocity between the



vehicle and the target, and w is the angular velocity of the vehicle. The first two

terms are the contribution due to errors in the vehicle state estimation, the next two

terms are due to the sensor errors, and the last two terms are from integration errors

in the target state estimation. The state errors in vehicle position propagate directly

into the target estimation, whereas the targeting error contribution due to errors in

vehicle orientation is a function of the relative range to the target. Therefore, errors

in vehicle attitude lead to increasingly large target localization errors as the relative

distance between the vehicle and the target increases. The purpose of this work

is to find methods to reduce this target location estimation error given noisy and

inaccurate vehicle navigation. The vehicle navigation system is provided and certain

amounts of vehicle state errors are unavoidable, but the trajectory of the UAV can

be controlled to reduce the uncertainty or entropy about the target estimation and

mitigate the effect of the noisy vehicle state estimates.

This problem can be addressed within the framework of Information Theory, which

explains the connections between the entropy or uncertainty about the estimation pro-

cess and the information provided by the measurements. Here entropy is a measure of

the uncertainty of a random variable. It can also be thought of as the self-information

contained in that random variable. Entropy in the discrete case is defined by

H(X) = - E p(x) log p(x) (1.2)
xCX

where X is the random variable and p(x) is its probability distribution. This defini-

tion of entropy provides a measure of how rich in information a data stream is, and is

normally used to determine the minimum amount of bits required for communicating

a certain amount of information. In an estimation process, the entropy of the esti-

mation is a measure of how much information the measurements provide about the

estimation process. Different sets of measurements produce different amounts of en-

tropy in the estimation. As more measurements are taken, the entropy becomes lower

and, correspondingly, the uncertainty in the estimation is reduced. However, not all

measurements lead to an equal reduction in uncertainty. Some measurements pro-



vide more information about the process to be estimated than others, increasing the

accuracy of the estimation. For the target localization problem, the UAV trajectory

affects the amount of information received about the target, since the information

content of the measurements is a function of both the UAV and the target states.

The goal of this thesis is to provide information-theoretic methods for designing vehi-

cle trajectories that provide the highest amount of information about the target and

thus reduce the uncertainty in the target location estimate.

In order to design UAV trajectories that increase the performance of the target

localization algorithm it is necessary to understand the relationship between the ve-

hicle state errors and the target location estimate, as well as the underlying geometry

of the problem. For example, due to the lever arm effect of the vehicle orientation

errors it is desirable to reduce the relative range to the target. It is also desirable to

make the measurement vectors as orthogonal as possible to minimize the intersection

of the error bounds associated with each measurement. Section 1.2.3 provides more

detail on the relationships between the vehicle state errors and the target estimation

errors. These relationships can then be exploited to determine the optimal locations

for taking measurements, leading to the development of vehicle trajectories that re-

duce the target localization error. Other elements that affect flight path generation,

such as vehicle constraints, sensor constraints, computational limitations and mission

requirements must also be considered. Target dynamics, environmental constraints,

and disturbances must be taken into account as well, and the varying nature of these

suggests that the solution should be updated in real time. The following sections

provide more detail about the problem considered in this thesis, define the scope, and

state the major assumptions made.

1.2.1 Platform Vehicle

The platform vehicle for this project is restricted to a small fixed-wing airplane. The

concept of a UAS introduced above involves the entire unmanned system, including

the vehicle, the ground station and other components. For this thesis the component

of interest is the platform vehicle itself and this unmanned aerial vehicle will heretofore



be referred to as a UAV. The small UAVs considered in this thesis are equipped

with rudimentary navigation systems involving low-grade inertial sensors and GPS

receivers. They also have onboard imaging sensors (both IR and EO), controllable

actuators (elevators and rudders), and basic onboard processing and communication

capabilities. An example of such a vehicle is the Raven, made by AeroVironment, Inc

(see Figure 1-1). Since most small UAVs are designed to be inexpensive and rugged

the quality and accuracy of the sensors and onboard navigation systems leaves much to

be desired. Typical navigation errors for these systems involve standard deviations of

about 13 feet for position accuracy using GPS, 10 degrees for attitude using gyros (roll

and pitch), and 5 degrees for heading using a magnetometer or electronic compass.

Furthermore, in urban settings, magnetometer readings can be severely affected by

the surrounding magnetic fields and the resulting heading errors are much larger.

In addition to poor navigation systems, small UAVs are also limited in their phys-

ical capabilities. Most have low control authority with either rudders or ailerons as

actuators but not usually both, making coordinated turns difficult. The lightweight

small UAVs are mostly battery operated and therefore have limited power and en-

durance. The environmental conditions for most small UAV operations include winds

and gusts on the order of the vehicle's nominal speeds and maneuverability, which

makes controlling the vehicle very difficult. The Raven for example has a nominal

cruise speed of 30 mph, a climb rate of 900 ft/min, and a turn rate of 15 degrees/sec

[60]. Controlling small UAVs in normal environmental conditions is therefore a very

challenging task and the achievable accuracy in following a prescribed trajectory is

fairly poor without real-time replanning capabilities.

The vehicle specifications of the Raven are listed in Table 1.1. The imaging sensors

onboard the Raven include 2 electro-optical (EO) cameras or an infrared (IR) camera

option. The electro-optical cameras are mounted such that one is forward looking

and the other is side-looking, and the operator can select which camera is active and

can receive the video output from one camera at the ground station in near real-time.

Other UAV platforms include cameras mounted on gimbals which can be controlled

to point the camera in the desired direction. An example of such a system is used in



Table 1.1: Raven Aircraft Characteristics [60]

Wingspan 55 in

Length 36 in
Structure modular, KevlarTA composite

Weight 4.2 lb

Payload Nose Weight 6.5 oz
Operating Altitude 150 to 1,000 ft AGL
Nominal Low Altitude 100 ft
Cruise Speed 30 mph (13.5 m/s)

Range 10 km (LOS)
Climb Rate 900 ft/min at 2,000 ft AGL
Turn Rate 360 degrees in 24 sec
Aircraft Batteries LiSO 2 (single-use), Li-Ion (rechargeable)
Flight Duration 60+ min rechargeable, 90+ min single-use

[61]. For both gimballed and fixed camera systems there are restrictions associated

with obtaining imagery. For example, for the Raven the video clarity begins to

degrade after 500 feet above ground level [60]. Due to radar horizon considerations,

the UAV is restricted to maintain an altitude of at least 100 feet in order to properly

communicate with the ground station, limiting how close the vehicle can get to the

target. Effects that obscure the measurement process (poor lighting, fog or reduced

visibility, recognition of targets at night, reflections etc) and frame drop-outs are

problematic for most image based target localization algorithms. However, treatment

of these conditions is assumed to be taken care of by the image processing algorithms

and is therefore beyond the scope of this thesis.

In order to compute trajectories in real time it is necessary to have sufficient

computational resources available for executing the algorithm. Most small UAVs cur-

rently have limited onboard computational capabilities. Algorithms can be executed

on a ground station system and the answers relayed to the UAV, but the UAV must

have sufficient communication bandwidth for this approach to be feasible. In general

it is desirable to make the optimization algorithms as efficient and quick as possible

so that they can be utilized in a real-time framework with limited communications

bandwidth and computational resources.



1.2.2 Target Types and Behaviors

The targets of most interest within the current scope of the project include small

stationary ground targets and small slow-moving ground targets. Small UAVs operate

at an altitude between 100 to 1000 ft above ground level. The lower limit is due

to radar horizon restrictions which make communication between the UAV and the

ground station difficult below 100 ft. Even though the upper limit of operation is

1000 ft the image quality degrades above 500 ft, so the useful imagery data obtained

by small UAVs involves mostly small stationary and slowly moving ground targets.

These targets include cars, trucks, tanks, small buildings, portable missile launchers,

and enemy combatants, among others. For this thesis the targets are characterized

according to their motion and behavior and the main target types considered include

stationary targets and targets whose behavior can be modeled as stochastic (slowly

moving targets for which prior motion models are not available).

The stationary targets are the simplest to consider and will be used to analyze

the baseline capabilities and performance of the optimization algorithms. The slowly

moving stochastic targets can move in any random direction but have constraints on

their achievable range and acceleration within a given time-frame. These targets in-

clude targets exhibiting random walk behavior, vehicles moving at a constant velocity,

and vehicles following circular trajectories. Since, in practice, it is uncertain whether

a motion or behavioral model of the target will be available, it is desirable to treat the

behavior of all moving targets as stochastic. If further information is available, such

as road maps or target classifications, it could be incorporated to improve estimation

accuracy and convergence, however, for the purpose of this work no prior information

is assumed.

1.2.3 System Dynamics and Measurement Model

The UAV is assumed to have six degrees of freedom (6DOF), 3 translational and 3

rotational. The target is assumed to remain on the ground, although its position

must be estimated in three-dimensional space. In order to obtain a measurement it is
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Figure 1-3: Measurement process

necessary at each measurement time to have: the UAV position and orientation, the

camera pointing angle with respect to the UAV, and an image of the target in the video

capture. The camera pointing angle with respect to the UAV is typically well known

and can be either fixed or controllable for a camera mounted on gimbals. The vehicle

position and orientation are taken from the UAV navigation system and usually have

large errors that propagate into the target location estimation. As mentioned before

the target location estimation error is affected by vehicle position errors, vehicle

orientation errors and sensor noise. The vehicle position errors translate directly into

the target estimation. The vehicle orientation errors scale with the relative range to

the target and produce large estimation errors for measurements taken from far away.

The image of the target taken at the appropriate measurement time can be processed

to extract the pixel location of the centroid of the target. This pixel location can be

transformed into two bearing angles (ac and a 2) from the camera pointing axis to a

vector that passes through the target and through the camera focal point (see Figure

1-3). Using a series of simple rotations (from the camera frame to the UAV frame,

and from the UAV frame to the earth relative frame), the two angles a1 and a 2 can be

transformed into overall azimuth and elevation angles (0 and 0) between the target

and the UAV. The resulting "measurement" can be modeled as a line from the UAV

to the target and the azimuth and elevation angles used to define the bearing to the



target. Figure 1-4 shows the overall bearing angles to the vehicle with the target at

the origin. The measurements are then given by,

3 = tan- i (1.3)

= tan1 rTz (1.4)

The following equations can be used to describe the normalized components of the

relative vector (r) between the target and the vehicle using the bearing angles,

= sin/3 cos€
r|

_= cos / cos
r|

z = sine0 (1.5)
|r

It is important to note that image-based measurements only provide bearing informa-

tion to the target and not range. The magnitude of the relative vector, Irl, therefore

cannot be determined using only one measurement. Two or more measurements are

needed to obtain an estimate of the target location.

Another major consideration for the design of the vehicle trajectory is ensuring

that the target remains within the field of view (FOV) of the camera. A measurement

is only valid if the target falls within the camera FOV. For a small UAV, the FOV

constraints are usually fairly tight. Typical cameras used onboard small UAVs have

vertical and horizontal FOVs of approximately 10 degrees and 20 degrees respectively.

Using a gimballed camera system, such as in [61], the FOV constraints are more lenient

since the camera can be pointed to face the target and therefore can usually maintain

the target in the field of view. For the purpose of this thesis a gimballed camera

system is assumed.

Additional constraints include limits on the allowable range to the target. As

specified in [60], the visual quality of the measurements deteriorates above 500 ft

AGL and, due to radar horizon considerations, the UAV cannot descend below 100
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ft AGL. Given the resolution and FOV specifications of the camera, the range to the

target must be low enough to ensure that there are enough pixels to properly identify

the target. Additional complications arise from the skewing of the image due to the

angle of the camera. These distortions change as the pitch and bank angle of the UAV

change, complicating the measurement process. As mentioned before, for the purpose

of this work it is assumed that software for image processing and target recognition

is available and proper measurements are obtained.

1.2.4 Error Propagation

As mentioned in the previous sections, errors in the vehicle state estimation and the

measurement process propagate into the target location estimate. This error propa-

gation is highly dependent on the geometry of the vehicle trajectory. The purpose of

this work is to exploit this dependence in order to produce trajectories that minimize

the target localization error. In order to do this it is first necessary to understand

how the errors propagate through to the estimation. Figure 1-5 illustrates how errors

in vehicle position and orientation affect the target localization process.
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Figure 1-5: Effect of vehicle navigation errors on target location estimate

The vehicle position errors translate directly into the target location estimate,

but the separation angle or orthogonality between the measurements controls how

much the estimation is affected by vehicle position errors. For the vehicle orientation

errors, separation angle between measurements and relative range to the target affect

how much of the error is propagated through to the target localization. Figure 1-

6 shows the effect of orthogonality and range on the resulting combined localization

error. Orthogonal measurements produce a lower combined error than non-orthogonal

measurements for both position and attitude errors. For vehicle position errors, a

closer range to the target does not affect the combined error, but for vehicle attitude

errors a reduced range greatly improves the target localization (see Figure 1-6).

In order to further study how the localization error is affected by the vehicle

trajectory, an algorithm can be used to estimate the location of a stationary target

using visual measurements taken from different vehicle positions. The algorithm is

implemented in the MATLAB environment and uses an Extended Kalman Filter

(EKF) to process the measurements. The vehicle navigation errors are assumed to be

zero mean, white, and Gaussian, with standard deviations of 5 deg for attitude and

heading. Figure 1-8 shows the resulting mean and variance of the localization error

for four different vehicle trajectories; a full circle above the target, a quarter circle

above the target, a fly-by to one side of the target, and a half fly-by (trajectories

No Errors
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Figure 1-8: 3-D target localization results for trajectories in Figure 1-7

shown in Figure 1-7).

The plots in Figure 1-8 suggest that the geometry of the problem is significant since

completing a full circle around the target results in a much lower mean and variance

for the target localization error than the other trajectories. In particular, spreading

the measurements over a full circle increases the separation angle or orthogonality

between the measurements, thus improving the overall geometry for the estimation.

This is similar to the geometric dilution of precision (GDOP) problem often seen

in GPS, where the GDOP criterion is used to find the configuration of satellites

that provides the best geometry and results in the lowest position estimation error.

I-----~-..---- ~ ~..........~.-...............~.....-....



Additional tests conducted to study the effects of range to the target show that

lowering the range to the target reduces the target localization error. This is because

the effects of the vehicle attitude errors on the target position estimate increase as

the relative distance between the vehicle and the target increases.

While comparisons of ad-hoc trajectories show the underlying importance of se-

lecting a good flight path, they do not provide a proper framework for designing such

a path. It is necessary to develop a methodical way to analyze the geometry and

understand how the errors in vehicle position, attitude and heading propagated into

the target location estimate. The approach taken in this thesis is to use the Fisher

Information Matrix to provide a framework for quantifying how much "information"

is provided by a set of measurements. Maximizing this information content by posi-

tioning the vehicle leads to the development of flight trajectories that minimize the

target localization error.

1.3 Literature Review

The problem of trajectory design for vision-based target localization has several re-

lated areas of research. The task of target localization and tracking has been studied

extensively in many different contexts. There are numerous texts such as [9] and [64]

dedicated entirely to target localization and tracking applications. For bearings-only

target localization several important considerations for filter development and observ-

ability requirements have been explored in the context of passive sonar applications.

More current research involves the extension of many of the passive sonar concepts

to vision-based target localization using UAVs.

In addition to localization of targets, the dual problem of self localization using

external references has also been extensively explored. Navigation using bearings-only

measurements dates back to the days of celestial navigation where sailors triangulated

their position based on angular measurements taken with respect to the stars. Modern

day star trackers are still used for correcting dead-reckoning errors and bounding

navigation drift in space applications. UAV navigation using feature tracking also



attempts to assist vehicle state estimates by using bearing measurements to fixed

features in the environment. Research in simultaneous localization and mapping

(SLAM), which deals with vehicle navigation as well as external target localization,

has also been advancing rapidly. The following sections provide more detail for a few

areas that are particulary relevant to the problem of trajectory design for vision-based

target localization.

1.3.1 Bearings-only Target Tracking

The problem of bearings-only target estimation and tracking has a rich history in the

context of passive sonar applications for underwater vehicles which dates back to the

1960's. Early research focuses mainly on analytical derivations for the observability

criteria of the estimation process, and comparisons of the convergence properties and

performance of the different types of filters used for passive target localization. Since

bearings-only target estimation involves a non-linear measurement process, several

filtering and observability complications arise. Lindgren and Gong [48] analyze the

observability associated with a least-squares estimation approach and show that, for

a constant velocity target and a constant velocity vehicle moving in a 2-D plane, the

target estimation is unobservable until the vehicle executes a maneuver (change in

heading). Nardone and Aidala [55] extend this work to show that a unique tracking

solution cannot be obtained for a constant velocity target from a constant velocity ve-

hicle; a vehicle maneuver is necessary for the observability matrix to be non-singular.

However, the type of maneuver is important, and there exist maneuvers for which

the target state will still remain unobservable. In other words, vehicle maneuvers are

necessary but not sufficient conditions for estimation observability. Later work by

Hammel [25] and also by Levine [47] extend these results to three-dimensional tar-

get and vehicle motion, Fogel and Gavish [18] derive the observability conditions for

bearings-only target estimation for the case of Nth order target dynamics, and Becker

[11] shows the necessary conditions for observability using a simple linear approach.

Several filter designs for bearings-only target estimation have been proposed.

Lindgren and Gong use a least-squares approach [48], and maximum likelihood esti-



mation is used by De Vlieger [16] and by Tao [67]. Kalman Filtering techniques are

used by Aidala [6] and by Nardone, Lindgren and Gong [54]. Since the bearings-only

estimation problem involves nonlinear measurements, an Extended Kalman Filter

(EKF) approach needs to be used instead of the normal Kalman Filter. The tradi-

tional EKF however is sensitive to initialization techniques and measurement errors

which can cause premature covariance collapse and other filter instabilities [6]. The

vehicle trajectory affects the observability and convergence of the target estimation,

suggesting that a good trajectory design can reduce filter instability and estimation

errors. A pseudolinear filter formulation is explored by Aidala and Nardone [7], which

attempts to linearize the dynamics and measurement models. However by linearizing

the dynamics the noise becomes non-Gaussian which, when propagated through the

filter, causes estimation bias. For the bearings-only tracking problem, the bias is

introduced only in the position estimate, and is highly dependent on the geometry of

the vehicle maneuvers, once again suggesting that the estimation performance can be

improved by proper design of the vehicle trajectory. Comparisons of the properties

and performance between several different filtering algorithms are explored by Nar-

done, Lindgren and Gong [54]. A particularly interesting filter is the modified polar

coordinates filter, proposed by Aidala and Hammel [5], which has become widely

used in the passive target localization literature. The filter uses an EKF algorithm

with a state vector choice, based on polar coordinates, that attempts to separate

the observable and unobservable components of the estimated state by using a dif-

ferent coordinate system. The resulting filter is stable and asymptotically unbiased.

Although this filtering approach became popular because of its convergence proper-

ties, it is important to stress that the choice of coordinate system does not affect

the physics and geometry involved in the problem, it is merely a tool to improve

the mathematic formulation and numerical properties of the estimation algorithm.

In fact, the covariance formulation for the modified polar coordinate filter shows the

dependence of the target estimation on the vehicle maneuvers, once again suggesting

that the estimation can be improved by designing a good trajectory.

Although these previous works provide insight into the bearings-only tracking



problem, most of them assume constant velocity target motion, which is a rather lim-

iting assumption. Later work by De Vlieger uses a piecewise linear model of the target

motion and a Maximum Likelihood Estimator (MLE) approach for target tracking

[16]. He uses numerical methods to condition the Jacobian of the measurement model

to increase the observability of the estimation. Goshen-Meskin and Bar-Itzhack derive

the observability requirements for piecewise constant linear systems [23]. Tao shows

that for an MLE approach it is important to consider the correlation of the noise, and

that ignoring it degrades the performance of the estimation [67]. Le Cadre also uses

a piecewise linear model of the target and explores estimation from a multi-sensor

platform [71]. He shows that the Fisher Information Matrix (FIM) can be used as

a measure of the performance of the estimation and that some trajectories lead to

more information than others. He explores positioning and trajectories of multi-array

sensors for passive sonar target localization [71]. He also showes that the Fisher In-

formation Matrix is additive for multiple sensors, and that focusing on the target

velocity component can improve target localization performance [44]. Nardone also

explores vehicle trajectory generation, presenting a closed-form solution to the esti-

mation problem for a constant velocity target and a vehicle with piecewise constant

velocity segments [56].

To deal with maneuvering sources, several modifications to the classical estimation

algorithms have been explored. Some attempt to smooth the trajectory, adjusting

maneuvers within the constraints of a known target behavior model. Others consist

of designing multiple filters for different known maneuvers and using statistical prop-

erties of the innovation to switch between the algorithms. Another approach has been

to support multiple Kalman filters simultaneously and develop an estimate by com-

bining all the filters 1. Later research by Bar-Shalom et al. [9] has focused on using

interacting multiple models (IMM) and hidden Markov models (HMM) are used by Le

Cadre [45] to support stochastic behavior of the target. Particle filtering or Sequential

Monte Carlo techniques have also been explored by Ristic, Arulampalam, and Gordon

[64]. Particle filters have the advantage of being able to deal with nonlinear systems

'For a review of different filtering methods for maneuvering targets see [45]



and non-Gaussian noise models making them particularly well suited to bearings-

only tracking. They can also accommodate unknown and stochastic target models

making them more versatile than classical filters. However, they require increased

computational resources and, for proper and fast convergence, need a fairly accurate

description of the measurement likelihood function and a good initial distribution on

the estimated target location.

Later work using particle filtering focuses on tracking and estimation of multiple

targets. Multiple target motion analysis suffers from the difficulty of associating mea-

surements with the specific target tracks, making it a simultaneous data association

and target estimation problem. Many algorithms based on the EKF, such as the

Multiple Hypothesis Tracker (MHT), the Probabilistic MHT (PMHT), and the Joint

Probabilistic Data Association Filter (JPDAF), have attempted to track multiple tar-

gets, however the hypothesis associations must be exhaustively enumerated leading to

an NP-hard problem. Particle filters provide an easier framework for multiple target

tracking. Hue, Le Cadre, and Perez solve the multiple target tracking problem for 2-D

constant velocity targets using a particle filter combined with a Gibbs sampler [32]

[31] [35] [34]. They show that using adaptive resampling techniques the multi-target

estimation is greatly improved. They also show that particle filters can adequately

support multiple measurement models for proper data fusion [34]. Le Cadre, Gau-

vrit, and Trarieux [43] and Hue, Le Cadre, and Perez [33] attempt to approximate

the Cramer-Rao Lower Bound (CRLB) for the multiple target motion analysis case

to quantify the performance of the multi-target estimation. Given the strong de-

pendence of estimation performance on the vehicle's maneuvers, subsequent research

of interest for this thesis focuses mainly on developing methods for optimizing the

vehicle trajectory to achieve the best target estimation performance. The details of

this research are described in section 1.3.2.

1.3.2 Vehicle Trajectory Optimization

In order to design optimal vehicle trajectories it is necessary to specify a performance

criteria or objective function that can be optimized to provide the desired system



behavior. For the target localization problem this objective function must capture

the geometry of the localization process. A common approach is to use objective

functions derived from the Fisher Information Matrix (FIM). The FIM quantifies the

amount of information provided by a set of measurements about the target state

or parameter to be estimated. The inverse of the FIM provides a lower bound on

the mean-square error achievable by any estimator of the target state. This bound

is referred to in literature as the Cramer-Rao Lower Bound (CRLB), and is a lower

bound on the covariance of the estimation for any unbiased estimator. It is important

to note that the CRLB does not depend on the specific estimator used but is derived

from the geometry and the properties of the system. It presents a tight lower bound

on covariance for any unbiased estimator and, if an estimator achieves this lower

bound, it is referred to as an efficient estimator.

It is desirable to obtain estimation results with the lowest possible covariance and

thus the CRLB can be used to design an objective function to be minimized. Lowering

the CRLB will naturally result in a lower covariance if the estimator is efficient,

however it is important to note that a non-efficient estimator is not guaranteed to

have a lower covariance even if the CRLB is lower. In practice though, lowering the

CRLB results in lower covariance for most well-designed estimators. An equivalent

objective function can be derived by maximizing the Fisher Information Matrix, which

is a symmetric, positive definite matrix. This can be achieved by maximizing any

norm of the matrix, and choosing a physically significant norm has been the subject

of much research [72]. Some norms provide more information than others, however

computational ease is also a factor in most optimization scenarios. For example,

the determinant of the FIM provides more geometric information for the bearings-

only problem than the trace of the FIM, but the trace is easier to compute and can

be updated recursively whilst the determinant is much more involved and must be

recomputed at every measurement time.

Past research on vehicle trajectory optimization by Le Cadre et al. includes [40],

[41], and [42], where the determinant of the FIM is used as a cost function and the

target and vehicle trajectories are assumed to be piecewise linear. Maximizing the



determinant of the FIM is equivalent to minimizing the volume of the confidence

ellipsoid around the estimate of the target. It is a function of the multiplication of

the eigenvalues and therefore could favor solutions with highly eccentric uncertainty

ellipsoids (as long as one eigenvalue is small the multiplication will be small regardless

of the other values). An interesting point in [40] is that the determinant of the FIM

does not satisfy the Additive Monotonicity Property2 , therefore optimizing a control

value u[k + 1] and adding it to an already existing sequence of optimal controls

U = {u[0], ..., u[k]} does not necessarily provide the optimal answer for the whole

sequence of controls. Le Cadre et al. derive approximations for the determinant of

the FIM to use as objective functions in the optimization [40] [41] [42]. However,

Oshman and Davidson [57] use the determinant of the FIM directly and show that

the trajectories obtained result in better target estimation than methods based on

lower bounds or approximations of the determinant.

For the bearings-only tracking problem another complication arises from the non-

linear measurement model. The Jacobian of the measurement, H, is time-varying

due to the nonlinearity of the measurement model and this in turn causes the FIM to

be time-varying as well. It also complicates the observability analysis, however, for

a constant velocity target, the estimation will be observable if the vehicle maneuvers

involve non-zero bearing rates between the trajectory legs [55] [25]. Fawcett [17] com-

putes the CRLB for the estimation of a 2-D constant velocity target. He also derives

an analytic approximation for the FIM in the modified polar coordinate framework.

The objective function for the optimization is the standard deviation value for the

range only, since this is the state of most interest and least information (or largest

uncertainty) in the bearings-only tracking framework. He compares the Maximum

Likelihood Estimator (MLE) covariance results and shows that they match the CRLB

fairly well. Another approach taken by Helferty and Mudgettin is to minimize the

trace of a weighted sum of the CRLB [27] [28]. This method favors equal uncertainty

in all observation axes. It is interesting to note that objective functions based on the

CRLB instead of the FIM may "blow up" due to the singularity in the estimation

2For a description and explanation of the Additive Monotonicity Property see [40]



process if the estimation is unobservable. They compute the CRLB by first deriving a

continuous time version of the FIM, resulting in vehicle paths that are independent of

the number and frequency of observations, giving slightly different trajectories than

the discrete-time case [27] [28]. To the author's knowledge, there are no approaches

that use the trace of the FIM since most of the angular information between the

measurements is lost. The trace of the CRLB, however, represents the sum of the

eigenvalues of the covariance matrix and is equivalent to the sum of the squares of

each axis of the confidence ellipsoid. This approach makes sure that there are no axes

with large uncertainties, leading to smaller range errors than trajectories based on

the determinant of the FIM. Another approach is to use the error covariance of the

target state estimate instead of the CRLB. In practice however, one does not have

access to the true target state, therefore computation of the CRLB and of the tar-

get state error covariance matrix is equivalent. Logothetis, Isaksson, and Evans use

scalar functions based on the error covariance of the final target state and compare

the trace, determinant and maximum eigenvalue, as potential objective functions [50].

Frew uses the determinant of the error covariance matrix provided at every time step

as the objective function of choice [20].

All of the above research involves computing trajectories by solving the optimiza-

tion numerically. Other approaches taken by Liu [49] and by Passerieux and Van Cap-

pel [59] involve using a classical optimal control framework to solve the optimization

analytically. Liu gives the analytic expression for a lower bound on the determinant

of the FIM and computes the Hamilton-Jacobi-Bellman equation to maximize this

lower bound [49]. The target is assumed to be stationary and the dynamics are 2-D.

Since the results are analytic expressions, these results are not immediately scalable to

more complicated scenarios (moving targets and 3-D dynamics). Passerieux and Van

Cappel use a cost function based on the log of the determinant of the FIM computed

at the final time only [59]. Since the objective is to find a path that maximizes the

information for the whole set of measurements only the final time FIM is considered,

which greatly simplifies the Hamiltonian. The objective function used is referred to

as the global accuracy criterion, Q = - log I J(T) , and it minimizes the volume of



the uncertainty ellipsoid at the final time T. Classical control techniques based on

the Hamiltonian and Euler's equations are used to solve the case of a constant veloc-

ity target in 2-D. Analytic expressions for the costates are computed and the Euler

equations are integrated analytically as well. Results show that the vehicle wants

to maneuver towards the target and in such a way that bearing rate is maximized,

supporting the intuition about the problem and results from past research with nu-

merical optimization approaches. Again these results are not easily scalable to more

complex target motions or 3-D dynamics.

Later research focuses on optimal vehicle maneuvers for estimation of stochastic

targets, eliminating the assumptions of stationary or constant velocity targets and

allowing for random target motion. Tremois and Le Cadre attempt to deal with

maneuvering targets by using hidden Markov models [70] [45]. They use a dynamic

programming algorithm to find the sequence of states that maximizes the conditional

probability given a set of measurements. The optimization of the vehicle trajectory

consists of controlling a partially observable Markov decision process (POMDP) using

a cost functional based on the Fisher Information Matrix. The results show that when

the vehicle is far from the target it is best to move orthogonally to the line of sight

to the target, thus increasing the overall observability of the estimation. When the

vehicle is near the target however, it is better to get closer to it to minimize the effect

of range on the angular errors. These results agree with the intuition provided by

the geometry of the problem and with previous results by Liu [49] and by Passerieux

and Van Cappel [59]. The results show the limiting behavior of the information-based

optimization but not the strategy for the intermediate cases. Another approach taken

by Singh, Ba-Ngu, Doucet, and Evans is to model the target as a Jump Markov Linear

Model (JMLM) and use the score-gradient estimator as the objective function [65].

Hernandez assumes stochastic target behavior and computes the FIM and the PCRLB

recursively for the 2-D case. He also shows an efficient search method for improved

numerical optimization [29].



1.3.3 Vision-Based Target Localization

Although most of the previous research in bearings-only tracking and vehicle trajec-

tory optimization has been done within a passive sonar context, recent attention has

been given to the problem of vision-based target localization, which shares the same

mathematical framework as the passive sonar problem. Small UAVs equipped with

video cameras are gaining popularity and their use in target tracking is the topic of

many current research endeavors. Ivey and Johnson consider the problem of develop-

ing a vision-based target tracking filter for use on board a UAV [36]. They attempt to

estimate the target location as well as its size and orientation using both an Extended

Kalman Filter (EKF) and a Square-Root Unscented Kalman Filter (SRUKF). Bar-

ber, Redding, Mclain, Beard, and Taylor explore the problem of localizing stationary

targets using small fixed-wing UAVs [10]. They use a Recursive Least Squares (RLS)

filtering approach and account for navigation biases and wind to improve the estima-

tion. They also explore the problem of flight path optimization by finding an optimal

altitude and radius for a circular trajectory above the stationary target. Due to its

symmetry a circular trajectory leads to a lower target localization error making it

widely accepted as the optimal trajectory. Rafi, Khan, Shafiq, and Shah also analyze

circular trajectories of fixed altitude for tracking stationary and constant velocity tar-

gets, and optimize the radius of the circle for the lowest target localization error [62].

They explore vehicle constraints such as airplane turn radius and velocity require-

ments as well as camera field-of-view constraints. The use of gimballed cameras is

considered to increase the overall FOV and to ensure that the target is always within

sight. Quigley, Goodrich, Griffiths, Eldredge, and Beard also explore the use of gim-

balled cameras on board a small UAV, stating that the gimbals improve the quantity

and quality of the imaging [61]. They use a gimbal mechanism with an azimuth limit

of 135 degrees and show in hardware that the gimbals are robust and can withstand

crashes. They also address the problem of trajectory planning, using Hopf bifurca-

tion techniques that result in spiral trajectories which converge to a constant radius

circle (altitude is assumed constant). These results for the stationary target case rely



on limit cycle behavior, and although an ad-hoc approach at trajectory planning is

taken, the results capture the geometric intuition of the bearings-only target tracking

problem. Frew explores the problem of trajectory planning using a 2-D ground robot

equipped with a vision-based sensor [20]. He uses the determinant of the error co-

variance matrix of the target state as the objective function for the optimization and

generates trajectories that are valid for a ground robot with a limited field of view.

Similar work by Kuang and Liu uses omnidirectional 2-D robots with stereo vision to

track a target [39]. A least squares filter is implemented and maneuver optimization

that minimizes the error estimation in a least squares sense is considered.

The problem of coordinated flight for multiple UAVs has also been studied. Frew,

Dixon, Argrow and Brown design trajectories for a network of UAVs for radio source

localization using an information-theoretic approach [19]. They explore receding hori-

zon techniques as well as a cost function based on the recursive form of the FIM.

Bethke, Valenti, and How consider the use of multiple quad-rotor UAVs for coop-

erative target tracking using a RLS approach [12]. Watanabe, Johnson and Calise

consider a formation of two airplanes circling a stationary target [73]. The trajectories

are created using an optimization cost function based on the variance of the target

position estimate and an assumption of constant altitude. Whitacre and Campbell

explore the problem of designing orbits for two UAVs circling a target [74]. An approx-

imation of the information matrix for the target tracking problem is used as the cost

function and the results show coordinated periodic orbits assuming constant altitude.

Wise and Rysdyk show coordinated flight for two UAVs for tracking a moving target

in windy conditions [75]. The guidance laws used are based on Helmsman behavior,

Lyapunov vector fields and controlled collective motion and the different approaches

are compared. Ousingsawat and Campbell design trajectories for multiple vehicles

to track stationary, moving and multiple targets [58]. They use an objective func-

tion based on the determinant of the FIM and receding horizon control techniques to

develop the vehicle trajectories. Arambel, Silver, Krant, Antone, and Strat also con-

sider the problem of tracking multiple ground targets, but using a multi-hypothesis

approach [8]. A novel application of the target tracking problem is considered by



Calise, Johnson, Sattigeri, Watanabe and Madyasthain, where vision-based localiza-

tion is used for detecting and tracking other aircraft and enabling formation flight

of a fleet [13]. The target tracking filter used is an EKF based on a modified polar

coordinate framework (described in [5]).

In addition to vehicle guidance, control and navigation, extensive research has

been done in the areas of automatic target recognition (ATR) and machine vision3 .

Specific challenges of vision-based target tracking include dealing with image differ-

ences and distortions due to the changes in the projection angle of the camera to

the target as the target and the vehicle move [26]. Furthermore, changes in the

lighting, reflections and the target itself may further complicate the automatic target

recognition process. Research in image processing and algorithm development for

vision-based target tracking methods has focused mainly on obtaining and processing

a set of "measurements" from the image, that is, recognizing the target in succes-

sive frames. For the purpose of this thesis, a measurement is assumed to be given if

the target is close enough and within the field of view of the camera, and therefore

the specifics of the automatic target recognition process are beyond the scope of this

thesis.

1.3.4 Sensor Placement Techniques

Another important area of research for this thesis involves exploring techniques for

optimally placing sensors in order to estimate parameters of interest. The mathe-

matical framework for sensor placement problems is very similar to that of trajectory

optimization, however, the motion constraints of the system are not included. In

general, sensor placement techniques involve positioning stationary sensors in an op-

timal configuration so as to minimize the estimation error of the parameter of interest,

whereas most trajectory optimization problems involve active positioning of a moving

sensor with given motion constraints. Therefore the sensor placement scenario could

be considered a limiting case of the general trajectory generation problem involving

3 For a complete description of machine vision and related challenges see [30]. For a survey on
recent vision-based target tracking and autonomous vehicle navigation developments see [37]



an unconstrained vehicle dynamics assumption. Ucifiski provides an excellent review

of the state-of-the-art of optimal measurement methods for distributed parameter sys-

tem identification [72]. Several sensor placement methods involve optimizing over cost

functions based on the FIM in order to maximize the information content provided

by a set of measurements. There are a few issues with using a FIM based approach.

One of the main issues is that the calculation of the FIM involves the parameter to be

estimated, which, by virtue of the problem statement, is an unknown quantity. If the

estimation and sensor placement problems are combined, the dependence of sensor

optimization on the parameters to be estimated creates a highly nonlinear problem

which is difficult to solve using classical techniques. Another issue is deciding on a

scalar cost function based on the FIM. There are many different types of optimality

criteria and in several cases it is unclear which the best one to choose is. Uciiski gives

several examples of past research in sensor placement and describes the advantages

and disadvantages of different optimality criteria [72].

More current research focuses on the problem of data fusion. Grocholsky, Makarenko,

and Durrant-Whyte explore the use of multiple sensor platforms for bearings-only

tracking [24]. They use the log of the determinant of a predicted version of the

FIM as the cost function and develop sensor trajectories that optimize the amount

of information provided. Sinha, Kirubarajan, and Bar-Shalom study the problem of

coordinating the placement of UAVs equipped with Ground Moving Target Indicators

(GMTI) for tracking ground targets [66]. They compute a recursive version of the

FIM and use gradient methods to numerically optimize the placement of the UAVs.

Martinez and Bullo focus on sensor placement techniques for target tracking using

range based measurements [53]. They compute the determinant of the FIM and pro-

vide an analytic derivation of the cost function. An interesting result is that assuming

uncorrelated noise between the sensors leads to configurations which place multiple

sensors at one location [72]. Mandic and Frazzoli study the placement of ground sen-

sors for the localization of a sniper using acoustic (range-based) measurements [52].

An expression for the determinant of the FIM is provided and gradient methods are

used to numerically optimize the placement of the sensors. To deal with the unknown



nature of the target an a priors stochastic distribution for the target is considered

and an expected value of the cost over the target distribution is used in the opti-

mization. Frew explores the problem of optimal sensor placement using range and

bearing sensors equipped with communications capabilities, producing results that

differ from the classical approach of decentralized sensors [21]. Kaplan and Cevher

study sensor management for fusing bearings-only sensors with different constraints

and capabilities [38]. They use an information-theoretic approach to optimize the

location of the sensors for target localization. Most of the current research in sensor

placement and data fusion focuses on information-theoretic methods because of the

ease of computation and the intuition provided by an information based approach.

But perhaps the most valuable property of the Fisher Information Matrix is that

it is additive, providing a framework for easily integrating multiple sensors, fusing

different types of sensors, optimizing the trajectory of one sensor, or combining all of

these to produce optimal trajectories for multiple coordinated sensors.

1.4 Thesis Objectives

This thesis focuses on developing trajectories for small UAVs to perform target local-

ization using vision-based sensors. The main goal of this thesis is to provide methods

for designing UAV trajectories that increase the information provided to the estima-

tion, and to show that by using these optimal trajectories the estimation performance

can be greatly enhanced. One of the objectives of this thesis involves exploring dif-

ferent filtering algorithms and showing in detail the relationship between the Fisher

Information Matrix, the observability matrix, and the covariance matrices of some of

these filtering methods, motivating the use of information-theoretic trajectory opti-

mization to enhance estimation performance and increase observability. Most current

literature states that the Fisher Information Matrix and Cramer-Rao Lower Bound

are used to provide theoretical limits on the estimation performance and are therefore

independent of the particular estimation algorithm used. In fact, the derivations and

connections provided in Chapter 2 show that the FIM truly represents the physical



and geometrical properties of the system and that the estimation performance of most

traditional filtering methods is closely tied to the FIM.

A contribution of this work involves developing estimation algorithms for the 3-D

bearings-only target localization problem. In particular, an Extended Kalman Filter

and a Particle Filter are designed for use in 3-D target localization for many differ-

ent target motion scenarios. The resulting performance of the filtering algorithms

shows that these methods can be used to track stationary and moving targets, even

when the target motion is unknown. Another contribution involves deriving the FIM

for the 3-D bearings-only target localization problem and comparing several different

objective functions, showing that the A-optimality criterion, the trace of the inverse

of the FIM, is the best suited objective function for the 3-D bearings-only target

localization problem. The determinant of the FIM is widely used in the literature as

the objective function of choice for information-based optimization problems, how-

ever, for the 3-D bearings-only target localization problem, the sensitivity of the

determinant of the FIM to the relative range to the target is much larger than its

sensitivity to the angular separation between measurements, and optimization using

the determinant tends to ignore important information regarding the angular sepa-

ration between measurements. The A-optimality criterion, however, more accurately

represents the physical and geometric consideration for reducing the error in the 3-D

bearings-only target localization problem. Furthermore, this choice of objective func-

tion is shown to be equivalent to the geometric dilution of precision (GDOP) criteria

used in GPS navigation to select the optimal configuration of satellites, providing a

geometric interpretation for FIM based optimization.

Another contribution of this work involves developing optimal information-based

trajectories for several different cases of target motion and vehicle dynamics for the 3-

D bearings-only target localization problem, and showing the basic trends associated

with these trajectories, thereby providing a physical intuition about the problem. A

rigorous mathematical framework is provided for performing information-theoretic op-

timization in many different scenarios and a few of the cases in the literature are shown

to be particular instances of these scenarios. For example, unconstrained vehicle tra-



jectory optimization (or the sensor placement case shown in Section 3.2.1 produces

circular trajectories above the target, a result which is widely accepted throughout

the literature [10] [62]. Considering vehicle velocity and turn rate constraints pro-

duces spiral trajectories that minimize the relative range to the target while making

subsequent measurement vectors as orthogonal as possible. Both the circle and the

spiral trajectories demonstrate the tradeoff between reducing the relative range to

the target and increasing the angular separation between the measurements, thus

providing the best geometric configuration for the measurements and supporting the

intuitions developed in Section 1.2.4. Several different scenarios for vehicle constraints

are considered and the results show that the optimal trajectories attempt to spiral in

as close to the target as possible, within the vehicle's turn rate constraints, and subse-

quently circle the target to come in for another spiral pass. The information increase

is shown to be sharper and the information rate higher when the relative range to the

target is the lowest. Several cases of slow and fast moving targets are considered and

the trajectories are shown to follow spirals, adjusting their shape to account for the

target's motion. The multiple target scenario is also considered, once again showing

the spiral trajectory, and also showing that the optimal information-theoretic move

is to spiral towards farther targets instead of circling around near targets again, since

the information rate is higher for farther targets.

Another contribution involves addressing the problem of the dependence of the

FIM on the actual target location by invoking the Certainty Equivalence Principle

and executing simultaneous estimation and optimization, using the estimated target

location for the FIM computations in the optimization. This approach is demon-

strated to have increased estimation convergence and better observability. The op-

timal UAV trajectories are shown to follow the spiral shape once again, and the

estimation achieves the desired accuracy and convergence using only half the mea-

surements needed in the case of the predefined circular UAV trajectory. The combined

estimation and optimization algorithms are shown to run in real time and within the

computational resources of a small UAV. Another approach for dealing with the un-

certainty in the target location involves using a probabilistic distribution of the target



location in the optimization by taking the expected value of the FIM over the tar-

get distribution. This approach is combined with a particle filter algorithm, where

the particles with their respective weights are used to represent the stochastic target

distribution in the optimization. Although this method shows enhanced robustness,

the computational requirements are not within the limitations of small UAV proces-

sors and therefore can not be used in real time. However, this approach could be

used to initialize the UAV trajectory for situations with unusual initial target dis-

tributions. The main objective of this thesis is to show that the Fisher Information

Matrix provides a good framework for the trajectory optimization problem. In ad-

dition to representing the system dynamics physically and geometrically, the FIM

is additive and can be updated recursively, which provides a simple and computa-

tionally efficient way of integrating several measurements. This additive property

can be used to combine measurements from several different types of sensors over

many time-steps, making the FIM ideally suited for estimation problems involving

heterogenous teams with several different sensing systems collaborating to provide a

target location estimate.

1.5 Thesis Layout

This section describes the layout of the thesis. Chapter 1 provides an introduction and

motivates the problem of target localization using small UAVs. It then describes the

system dynamics and the main challenges associated with this problem and includes

a review of the current literature, discussing relevant previous work. It ends with a

description of the thesis objectives and contributions. Chapter 2 describes the estima-

tion process and the criteria used to quantify the performance of a given estimator.

It also presents a few common estimation algorithms and shows their relationship

to the Fisher Information Matrix. It ends with examples of two estimation algo-

rithms, the Extended Kalman Filter and the Particle Filter, applied to the problem

of target localization with bearings-only measurements using a UAV with a prede-

fined trajectory. Chapter 3 describes the task of vehicle trajectory optimization with



the goal of improving the target localization by increasing the information provided

by the measurements and improving the observability of the estimation. It focuses

on deriving and comparing different cost functionals based on the Fisher Information

Matrix and shows optimal vehicle trajectories which maximize the amount of infor-

mation obtained for different cases of target behavior and vehicle constraints. The

optimization in Chapter 3 assumes that the target location is known, an obviously

invalid assumption which is the problem faced in most joint estimation and trajec-

tory planning problems. Chapter 4 explores the issue of uncertain target location by

invoking the Certainty Equivalence Principle [63] and tying together the target loca-

tion estimation from Chapter 2 and the vehicle trajectory optimization from Chapter

3. The estimation and optimization algorithms are run sequentially and updated in

real-time. The combined algorithm is shown to converge and the estimation results

are significantly better than those obtained in Chapter 2 using the predefined vehicle

trajectories. Another approach explored in Chapter 4 to accommodate stochastic

target behavior involves performing the optimization using the expected value of the

FIM over a probabilistic distribution on the target instead of the deterministic FIM

based on the true target value. This approach is combined with a particle filter,

using the particles and their weights to represent the stochastic target distribution.

The results in Chapter 4 show that improved estimation performance is obtained by

planning trajectories in real-time to maximize the information, rather than using a

predefined circular trajectory above the target which is currently the most common

approach. Chapter 5 concludes with a summary and discussion of the results and a

description of future work.
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Chapter 2

Target Location Estimation

The problem of target localization and tracking using bearings-only measurements

is a difficult task. The filtering algorithms involve a nonlinear measurement process,

which, when linearized, can lead to time-varying parameters, biases and in some cases

premature filter collapse as explained by Aidala in [6]. The most common estima-

tion algorithms used for bearings-only target localization are: Least Squares (batch

and recursive forms), Maximum Likelihood Estimator, Extended Kalman Filter, and

Particle Filters or Bayesian Methods. This chapter describes the overall estimation

process and performance expectations. It also shows details for a few of the most

common estimation algorithms and ends with applications of these techniques to the

problem of target localization using bearings-only measurements.

2.1 Estimation Performance

The most common measures of performance for an estimator are the mean and co-

variance of the estimation error. The objective of an estimator is to ensure that the

mean of the estimation error is as small as possible. The covariance of the estimation

error represents the uncertainty associated with the accuracy of the estimation re-

sults. The covariance should ideally also be as low as possible but can only be lowered

up to a certain limit defined by the Cramer-Rao Lower Bound (CRLB). The CRLB

is based on the physical properties of the system and the geometry associated with



the estimation problem. It provides a tight lower bound on the achievable covariance

of the estimator. The performance of any unbiased estimator can be quantified by

comparing its covariance to the Cramer-Rao Lower Bound. Any unbiased estimator

that achieves this lower bound is called efficient. The CRLB is really a measure of

the achievable mean square error of the estimation process, but for an unbiased es-

timator the mean square error is equivalent to the covariance of the estimation. It

is important to note that the CRLB is not a function of the estimation method but

of dynamics of the system and the geometry of the estimation problem. Therefore it

provides a limit on the best possible answer (lowest uncertainty) that can be obtained

for a particular system using a specific set of measurements. Its inverse is referred to

as the Fisher Information Matrix (FIM) and provides a measure of the amount of in-

formation contained in a given set of measurements about the states to be estimated.

The following section introduces the formal definitions of the FIM and the CRLB.

2.1.1 Cram6r-Rao Lower Bound and the Fisher Information

Matrix

This section shows the derivation of the Fisher Information Matrix and the Cramer-

Rao Lower Bound. The concept of Fisher Information can be addressed within the

framework of Information Theory, which explains the connections between the en-

tropy or uncertainty about an estimation process and the information provided by

measurements. Here, the entropy of a random variable is a measure of its uncertainty,

or the self-information contained in that random variable. It quantifies the average

number of bits needed to represent a data sequence. Entropy in the discrete case is

defined by

H(X) = - p() log2 p( )  (2.1)
XEX

where X is the random variable and p(x) is its probability distribution. This definition

of entropy provides a measure of how rich in information a data stream is, and can be



used to determine the minimum amount of bits required for communicating a certain

amount of information. The concept can be extended to the problem of parameter

estimation, where the entropy of the estimation is a measure of how much information

the measurements provide about the estimation process. Not all measurements pro-

vide equal amounts of information and some measurement sets contain more overall

information than others, leading to a reduced entropy and uncertainty in the estima-

tion process. Another concept closely related to entropy is Fisher Information. The

Fisher Information Matrix is used to quantify the information contained in a set of

measurements about an estimation process. The FIM can then be used to determine

the location of measurements such that this information content is maximized, thus

lowering the uncertainty in the estimation.

To derive the Fisher Information Matrix we start with the information inequality,

as described in [46], which is given by

P = Ex{[6(z) - x][6x(z) - x]T} J(x)- 1  (2.2)

Here x is the vector of parameters to be estimated, 6x(z) is any estimator of the

parameters x given the data z, and P represents the covariance matrix of the estima-

tion error. The Cram6r-Rao Lower Bound is the lower bound on the estimation error

covariance and is given by J(x)- 1 where J(x) is the Fisher Information Matrix for x.

For the scalar case, the Fisher Information is defined by the following expression,

J(x) = Ex log p(x, z) (2.3)

where p(x, z) is the joint probability density of the parameter x and the measurements

z. If the following regularity condition is met,

J X2 p(x, z)dx = 0 (2.4)

where D is the domain of the probability density p(x, z), then the FIM can also be



written as

J(x) = Ex - 2 log p(X z) (2.5)

It is interesting to note that the score function, x log p(x, z), can be rewritten as

logp(x, ) = a(xz) (2.6)ax p(x, z)

which is the normalized relative rate at which the density p(x, z) changes at a specific

value of x. One interpretation of Fisher information is that the greater J(x) is at

x = x0 , the higher the relative rate of density change is and the easier it is to

separate x0 from the surrounding values of x. Therefore x can be estimated more

accurately when the information is higher (this is true for large samples under certain

assumptions, see [46]).

As described in [46], the Fisher Information Matrix for the multi-parameter case

is given by

J(x) = E{ [V logp(x, z)][V logp(x, z)]}

= E{-Vx[Vxlogp(x,z)]T } (2.7)

where x = [Xl... x]T is the vector of the n parameters to be estimated, Vx =

[ ... ]T is the gradient operator with respect to x, and J(x) is n x n. Using the

following fact,

p(x, z) = p(z) x)p(x) (2.8)

the FIM can be rewritten as

J(x) = JD(x) + Jp(x) (2.9)



where

JD(x) = E{-Vx[Vxlogp(zlx) T } (2.10)

Jp(x) = E{-Vx[Vxlogp(x)]T } (2.11)

Here Jp(x) represents the a priori information about the parameters and JD(X) is

the information obtained from the measurements. Note that the definition of the

Fisher Information Matrix assumes constant or slowly-varying parameters.

Computing the Fisher Information Matrix at each time-step is a tedious process

since it involves accounting for all the measurements taken up to that time. It is

desirable to use a recursive version of the FIM instead that can be updated every time

a new measurement is obtained. Tichavsky et al. [69] present a recursive method

for computing the FIM at time k, which is illustrated below for the target tracking

problem. The details of the derivation are presented in Appendix A and in [69] and

[64].

For the target tracking problem the bound of interest is given by

Pk k = E{([Xklk - Xk ][Xkk - Xk] T } J - (2.12)

where Xk is the true state of the target at time k, Xklk is the estimate of the target at

time k given the measurements obtained up to that time, and Pklk is the covariance

of the error for the estimate at time k given all the measurements up to time k. The

recursive form of Jk is given by

Jk+l = D22 - D 2(Jk + D I)-'D12 (2.13)



where

Dk = -E Vxk [Vx, lo0g p(Xk+I x )]

D = EVxk ~Xk+1 10g p(k+1 Xk)1

D 2  = -E{ VXkl [xk lOgp(k+1 Xk = [D 21]T

S-EVxk+1 [VXk 10gp(Xk+ Xk)}

-E {VXk+l [Vk+l 10ogp(zk+1 Xk+1)]T } (2.14)

Note that the dimensions of all the matrices involved in the recursion are n x n, unlike

the non-recursive computation of the FIM which involves inversion and multiplication

of increasingly large matrices as the number of measurements grows.

The application of the recursive FIM for a nonlinear system with Gaussian noise

is illustrated in the following derivation. The system model is assumed to be of the

following form,

Xk+1 = f(Xk)+ W k  (2.15)

Zk = h(Xk)+vk (2.16)

where f(Xk) and h(Xk) are the nonlinear process and measurement models respec-

tively, and the noise variables Wk and vk are uncorrelated, Gaussian, zero-mean white

noises with covariances given by Qk and Rk (i.e. Wk - /A(O, Qk) and vk - /V(O, Rk)).

The logarithms of the transitional probabilities become

- log p(Xk+1 Xk) = C1 + I[Xk+1 - f(Xk)lTQk [Xk+ 1 - f(Xk)] (2.17)

-log p(zk xk) = C2 + [Zk -h(xk)]TR [zk - h(Xk)] (2.18)
2

where cl and C2 are constants independent of x.

Using Fk = Vxkf(xk) and Hk = Vxkh(xk), which are the Jacobians for the system



dynamic model and the measurement model with respect to the estimation state, the

equations in (2.14) become

D 1

D 2kc

FTQk Fk

= -FTQk 1

= -Q- Fk

QI1+ HT R-1Hk+
Q- Hk+ k+ k+1

The recursive form of the FIM, given in equation (2.13), becomes

T -1 1F -'FTQ-1
Jk+l Q- 1 + H+lRk Hk+l- Q-IFk(Jk + F -k k k)FTk

Applying the Matrix Inversion Lemma1 the FIM reduces to

Jk+1 = (Qk + FkJ-1 T)-1 + HT +lRklHk+l

(2.19)

(2.20)

(2.21)

which is very similar in form to the Kalman Filter (see [69] and [68]). In fact, for non-

random target dynamics Qk = 0, and replacing Fk with the state transition matrix

Ik+1,k, the equation above becomes

k1,k -1 T -1Jk+1 -- k+l~kkJk(Dk+l k Hk+lRk+Hk+l (2.22)

which is the covariance propagation equation for the Information Filter form of the

Kalman Filter [68].

To initialize the recursion, the matrix Jo is computed using

Jo= E xVo log p(xo) [Vxo logp(xo) ] (2.23)

where p(xo) is the initial density and the expectation is taken with respect to xo.

If the initial distribution is Gaussian with mean xo and covariance Po such that

1Matrix Inversion Lemma: A - ABT(BABT + C)-1 BA = (A - 1 + BTC-1B)- 1



p(xo) = A(: 0o, Po) then the initial information matrix is given by

Jo = E [Vxo log p(xo) [xo log p(xo)]} (2.24)

= E [-P'(x -Xo )] [-P (x - x)] (2.25)

= PoE{ (xo- Ro)(xo - 0)T} Po (2.26)

= PoPoPo = Po1  (2.27)

An interesting fact is that a consistent estimator (in a mean-squared sense) must

have an increasing amount of information. Therefore as more measurements are

taken and k -+ oc, the FIM approaches infinity and the CRLB (and covariance

of the estimation error) approach zero [46]. This suggests that the FIM and the

CRLB are directly related to the performance of the estimator and therefore are

good candidates for an objective function for the optimization of vehicle trajectories

to improve estimation performance.

2.1.2 Estimation Observability

Another concept closely related to the performance of estimators is observability. A

system is said to be observable if the current state of the system can be computed

in finite time using only the measurements obtained up to that time. For a linear

time-invariant system, the observability matrix can be computed to determine if the

system is observable. The observability matrix for observable systems is positive

definite. If the matrix is positive semi-definite, or singular (has a determinant equal

to zero), then the estimation process is unobservable. A similar condition involving

the observability grammzan is used for linear time-varying systems. The observability

grammian is given by

Wo(t) = ( 1T', t)HT(T)H(-)T1(T, t)dT (2.28)



and this matrix can be evaluated for a specific value of time t. Similar to the observ-

ability matrix, if Wo(t) is positive definite the system is observable, otherwise it is

unobservable [14]. An equivalent observability condition for the stochastic estimation

problem is given by

WO(t) j= 1(7, t)H(T)R(T)-'H(Tr)((T, t)dT (2.29)

where R(t) is the covariance of the sensor noise at time t [22]. As before, for a

specific time t, if Wo(t) is positive definite the system is observable, otherwise it is

unobservable.

Strictly speaking, observability is a binary concept; an estimation process is either

observable or it is not. However, the condition number of the observability matrix

can be used as an indication of how accurate and stable the estimation is. Several

past research endeavors used this concept of relative observability to optimize vehicle

maneuvers attempting to increase the relative observability of the estimation (see

Section 1.3.2). Throughout the rest of this thesis the term observability will refer

to this concept of relative observability. The condition number of the observability

matrix, however, does not provide a proper framework for optimization since it is

very sensitive to cases where the process is nearly unobservable but not sensitive

enough when the measurements provide good observability. The observability gram-

mian is very similar to the Fisher Information Matrix and can be used to determine

how much uncertainty is present or how much information is available through the

measurements. This can be seen by looking at the discrete version of equation (2.29),

k

W' = (T ,HRT -'Hk,z (2.30)
z=0

which, through simple calculations, can be shown to have the same form as equation

(2.22) for the Fisher Information Matrix, showing the close connection between in-

creasing information and increasing observability to improve the performance of the

estimation process. Both the FIM and the observability matrix capture the fact that



all measurements are not equal and that some sets of measurements provide higher

information than others. By finding sets of measurements that provide the highest in-

formation the relative observability can be increased and the estimation performance

enhanced.

2.2 Estimation Algorithm Review

This section introduces a few of the most commonly used estimation algorithms and

shows how they relate to the Fisher Information Matrix and the Cramer-Rao Lower

Bound. The algorithms considered include the Least Squares estimation algorithm

(LS), the Extended Kalman Filter (EKF), and the Particle Filter (PF). The Least

Squares algorithm and the traditional Kalman Filter (KF) are considered optimal

when dealing with a linear time-invariant (LTI) system, although the LS algorithm is

more restrictive than the KF and is used mainly for parameter estimation, whereas

the KF is optimal for any LTI system. When the system is nonlinear, the EKF or the

linearized KF can be used instead of the traditional KF. Filter design for nonlinear

systems usually entails a linearization assumption which can introduce biases, time-

varying effects and other suboptimal behavior into the algorithms. Particle filters

are much better at dealing with nonlinear systems with non-Gaussian noise models

than classical estimation algorithms such as the LS and the EKF, however, they are

suboptimal algorithms which only approach the true system behavior as the number

of particles goes to infinity. The following sections describe the LS, EKF and PF

algorithms in detail. For the LS and EKF the connection to the Fisher Information

Matrix is shown, motivating the use of the FIM in trajectory design to enhance

estimation performance.

2.2.1 Least Squares Estimation

The Least Squares Estimation algorithm works by attempting to minimize the sum of

the squares of the estimation errors for all the parameters to be estimated. There are

several versions of the Least Squares algorithm, some of which include the traditional



Batch Least Squares, Recursive Least Squares, and Extended Least Squares. The

Batch Least Square algorithm is the most common form of the LS algorithm and is

widely used for parameter estimation throughout the literature. The main disadvan-

tage of a batch processing algorithm is that it recomputes the best estimate given

all the past data at every time-step. This usually involves working with large ma-

trices, storing large amounts of data, and other computational difficulties. Another

major problem for batch processing algorithms is that they cannot deal well with

time-varying systems. The Recursive Least Squares algorithm presents an improve-

ment over the Batch Least Squares algorithm by recursively updating the estimation

and only processing the current measurement at each time-step. For time-varying

parameter estimation the Extended Least Squares algorithm can be used, which in-

volves exponential forgetting, attempting to discount older data to deal with slowly

time-varying parameters. The most well-known version of the LS algorithm, how-

ever, is the Batch Least Squares algorithm. It is presented below and the relationship

between the estimation performance and the FIM is shown.

We assume a system whose dynamics are given by

Xk+1 = Jk+1,kXk (2.31)

Zk = h(Xk) + Vk (2.32)

where Ok+1,k is the state transition matrix of the system from time k to k + 1 and

vk is the measurement noise which is assumed to be Gaussian and white with zero

mean and covariance Rk (i.e. Vk - Af(O, Rk)).

Since the Least Squares algorithm requires a linear measurement, the Jacobian

of the measurement model with respect to the estimation state must be computed.

Linearizing the measurement model gives

Zk = HkXk + Vk (2.33)



where

Hk = Vxkh(Xk) (2.34)

Collecting all the measurements for batch processing gives the vector of measure-

ments Zk = z... Zk] , which can be written as

Zk = Ak,0xo + Vk (2.35)H1 1,,o
Ak,o = (2.36)

[Hkk,O

Vk = i (2.37)

Vk

Using least squares estimation to minimize the sum of the squares of the estimation

error, the estimate of the initial state given k measurements, oljk, is obtained through

the following,

A A,[Zk - Ak,O 0lk]

AoAk,oXOjk

0olk

A TZk

[A oAk,o]
1 Ak,oZk (2.38)

the solution of which implies that for any Rolk,

IZk - Ak,oo0kl2 I Zk - Ak,o00k11 2 (2.39)

The performance of the estimation can be analyzed by computing the covariance.

For the least squares estimation algorithm the covariance matrix is given by

= E { [xo - Olk][XO - XOk] }Polk (2.40)



which, using equations (2.35) and (2.38), can be rewritten as

Polk SE { [-[AoAk,0o] A T Vk] [ [AT oAk,0o-1A T Vk]TS[A k, E{VkV k, oAk,1

,[A koAk,AE V V k } Ako[[A ,oAko]

Simplifying this expression and using E { VkV T = Rk gives

POlk = [A oR Ak,o] -1

which can also be written recursively as

Polk [A ,oR k 'Ak,o]- 1

[A T ,oR~'Ak-1,o + I)T oH R-7'HkIk,01 1

[P -1 T T R Hkko -1olk-1 k,o k Rk Hk(Io (2.43)

The information matrix Jolk, which, as mentioned before, is the inverse of the covari-

ance matrix Polk, can be written recursively using equation (2.43) as

Jolk = A,oRk Ak,o

Ak -1,oR Ak 1,0 ,H+ ITOH[R'HkI)k,o

T T1 o R-1Hkk,JOk-1 + k, k k k,o

= ET oHTR-
1Hj',o (2.44)

The covariance and information matrices derived above are for the estimation error

of the initial state given all the measurements collected up to time k. In order to get

the covariance and information matrices for the estimation error of the final state (at

time k) the following expression is needed,

Pklk = (Dk,oPOlk k,

(2.41)

(2.42)

(2.45)



which gives

P-1 = Jklk T,0 -1 JOkk,1 (2.46)

Combining this expression with equation (2.44) gives the recursive form of the inverse

of the error covariance or the Fisher Information Matrix,

k

Jk(k [,0] -1 IH TR- 1 HjIo D-]

k-1
[T ,k-1 1  -,0 - 1  OH 1 RH io 1,o 1 + H (R 7 Hk

= [T k-1 Jk-k1 kk1, + H H TR-Hk (2.47)

This equation is identical to the Fisher Information Matrix equation, (2.22), shown

in the previous section, thus implying that the FIM is a good metric for assessing the

performance of the least squares estimation algorithm.

The estimation of the final state xkIk is obtained from the estimation of the initial

state X0jk by using

:kk = Ik,0-01|k (2.48)

2.2.2 Extended Kalman Filter

The Kalman Filter has long been known as the most popular estimation algorithm. It

is a recursive filtering method that is optimal and efficient2 for linear time-invariant

dynamic systems, as well as being computationally efficient due to its recursive nature.

To deal with systems that have nonlinear dynamics or nonlinear measurement models

several modifications to the Kalman Filter have been proposed. A few examples are

the Linearized Kalman Filter, the Extended Kalman Filter (EKF), and the Unscented

Kalman Filter (UKF). This section presents the Extended Kalman Filter for a system

with nonlinear dynamics and a nonlinear measurement model and shows the close

2Achieves the Cramdr-Rao Lower Bound



relationship between the EKF covariance and the Fisher Information Matrix.

We assume a nonlinear system whose dynamics are given by

Xk+1 = f(Xk)+ k (2.49)

Zk = h(Xk) + Vk (2.50)

where f(Xk) and h(Xk) are the nonlinear dynamics and measurement models of the

system, and wk and Vk are the process and measurement noises, which are assumed

to be uncorrelated, Gaussian and white with zero mean and covariance Qk and Rk

respectively (i.e. Wk NV(0, Qk) and Vk - jA(0, Rk)).

The EKF algorithm is composed of a prediction step and an update step. The

prediction step involves developing a state and covariance estimate of the next time

step based on the current estimates and the system dynamics model. The update

state involves processing the new measurement and updating the prediction made

using the new information. The equations for the EKF are shown below.

Prediction phase:

kjk-1 = f(k-1|k-1) (2.51)

Zklk-1 = h(^<kkk-l) (2.52)

Pklk-1 = k,k-lPk-lk- ,k-1 + Qk (2.53)

Kalman Gain:

Kk = Pklk-lH[ [HkPkk- 1H T + Rk] 1 (2.54)

where (Dk,k-1 and Hk are, respectively, the Jacobians of the system dynamics and

measurement models with respect to the state, evaluated at the predicted state ^-klk-1*

The equations for 'k,k-1 and Hk are given by

Jk,k-1 = Fk Vxkf(k) (2.55)

Hk = Vxkh(Xk) (2.56)



Update phase:

Vk = Zk - Zklk-1 (2.57)

Xkk = Xklk-1 + Kk'k (2.58)

Pklk Pklk-1 - Pk k-l1 H  [HkPklk- 1H[ + Rk] 1 HkPklk -  (2.59)

The equations for the EKF covariance propagation are computationally intensive

since they involve taking the inverse of [HkPklk-lH + Rk]. The calculations can be

greatly simplified by propagating the inverse of the covariance matrix instead of the

covariance, resulting in an algorithm known as the Information Filter. The equations

for the covariance propagation in the Information Filter are given by

P-1 [D T
Pk- = [1k,k-lPk-l k- 1 + Q-l] 1 (2.60)

P- = P- + H T- 'Hk (2.61)k klk- I k k

and can be obtained directly from equations (2.53) and (2.59), and the Matrix Inver-

sion Lemma3 . Combining equations (2.60) and (2.61) gives

Pk [k,k-1Pk-1k-l k,k-1 + Qk-1] + HRHk (2.62)

which has the same form as equation (2.21). For the case where there is no process

noise (Qk = 0), the inverse covariance propagation becomes

P-l [)k1 1  -1 T -1Hk (2.63)P k kG ,k-1 -1 Pk-1|k-1( k,k-1 + H(RkHk (2.3)

which is identical to equation (2.22) for the computation of the Fisher Information

Matrix (see [68], [69] and [64]). The major difference between equations (2.22) and

(2.63) is that the former is evaluated at the true target state whereas the latter is

evaluated using the estimated target state. In practice, however, the algorithm has no

access to the true target state so the online computation of the FIM would have to be

31Matrix Inversion Lemma: A - ABT(BABT + C)-'BA = (A - 1 + BTC- 1B) - 1



executed using the estimated target state, leading to equation (2.63). The Information

Filter shows that functionals based on the FIM make good objective functions for

maneuver optimization since the FIM closely resembles the covariance of the EKF,

which is widely accepted as the traditional measure of estimation performance.

2.2.3 Particle Filtering

A more recent algorithm than the classical least-squares and EKF approaches is

the Particle Filter. Particle filtering, also known as Sequential Monte Carlo (SMC)

estimation, is a suboptimal filtering technique that works by performing Monte Carlo

integration on a set of particles that represent the probability distribution of the

process at hand. Here, a "particle" is a sample drawn from an a przori distribution

of the parameter to be estimated. The basic idea behind the particle filter is that a

large number of particles or samples can be used to represent the distribution of the

estimation. The larger the number of particles used, the more accurately the particle

set will represent the prior distribution.

The particle filter is initialized by drawing N particles from the a priori distribu-

tion of the parameters to be estimated. The filtering algorithm involves propagating

these particles through a system model and then weighting them using the infor-

mation obtained by taking a measurement. The resulting particles and associated

weights represent the posterior distribution of the estimation process. The cycle is

repeated for each new measurement and the particle weights are updated to represent

the new posterior distribution. One major problem with this traditional particle fil-

tering approach is that it usually results in a few particles having very large weights

and the rest having negligible weighting values, which leads to filter instability. This

problem can be fixed by introducing a resampling step, where N new particles are

drawn from the distribution represented by the old particles and weights. These new

particles are then given equal weights and the algorithm continues. The estimation

results are obtained by taking the sample mean (and covariance) over the set of par-

ticles. If the samples are independent, the sample mean is an unbiased estimate of

the true mean and, given finite variance and using the law of large numbers, as the



number of samples increases the estimation error converges to a zero mean Gaussian

process with the same finite variance [64].

Even though the particle filter is a suboptimal filter, as the number of samples

goes to infinity the algorithm approaches the optimal Bayesian estimator. There-

fore it is desirable to have as many particles as possible to represent the process.

Unfortunately this comes at the cost of increased computation, leading to a trade-

off between algorithm accuracy and speed of computation. The number of particles

must therefore be selected based on the demands of the estimation problem at hand.

Another consideration for tuning the particle filter is setting the resampling thresh-

old. As mentioned before, resampling is an important step in particle filtering and

without it the filter will eventually end up with one particle having a heavy weight

while the others are almost negligible, degenerating the algorithm. The idea is that if

the weights get too uneven and a resampling threshold is reached, the particles with

low weights are thrown out and the remaining set forms the new probability den-

sity from which new samples can be taken. The choice of this resampling threshold

presents a tradeoff where resampling too soon causes the filter to be overly sensitive

to noise and resampling too late causes filter divergence. The other main design

choice for the filter is the selection of a proper importance density. If it is difficult to

sample from the posterior density, an approximation of the probability density func-

tion can be used instead, under certain conditions (see [64]). This process is called

importance sampling and the choice of the importance density function affects the

performance of the filter. An issue with choosing the importance density is that it

has to be a function from which one can sample. The optimal choice of importance

density is given by p(xk Xk-1, Zk), however, in general this is a difficult function to

sample from. A suboptimal choice of importance density is the transitional prior

which is given by the conditional probability of the target state given the previous

set of particles, p(xk X l 1). This importance density relies on a model of the target

dynamics to propagate the target state. It greatly simplifies the calculation of the

particle weights, is commonly used in the literature, and is used in this work, giving

the weighting equation shown in the algorithm below. The generic particle filtering



algorithm is summarized as follows:

1. To initialize, draw N particles from an a priori distribution p(xo).

weights to be normalized and equal.

~ p(xo)

N

i=1 : N

=I:N

Set all

(2.64)

2. Propagate the particle set according to a process model of the target dynamics.

i=: N (2.65)

Here f(x-_l) is the dynamics model and w'_1 is the noise.

3. Update the particle weights based on the received measurement Zk and the

likelihood function (or conditional probability) of receiving that measurement

given the current particle value.

i=l: N (2.66)

4. Normalize the weights.

m
k N m

K=1 kn~

(2.67)

5. Compute the effective sample size. The bounds on the effective sample size are

given by 1 < Neff < N.

EiN (.2m)2

X k = f(x _l) + W ,

mk = m_ p(Zk ),

(2.68)Neff =



6. Compare Neff to the resampling threshold. Resample if necessary.

Neff < Nthr - RESAMPLE AND GO TO STEP 2

Ne > Nthr 4 GO TO STEP 2 (2.69)

In this algorithm Neff is used to determine if the particles are unevenly distributed.

If a few particles have heavy weighting and the rest have comparatively low weighting

values, Neff will be close to 1. If all the particles have equal weighting values, Neff

will be equal to N. The resampling threshold can be tuned so that if Neff becomes

too low the particles can be resampled. The resampling step involves approximating

the density of the estimation process based on the current particles and their weights.

N new particles are then drawn at random from this distribution and their weights are

set to be equal. At any time step, the value of the estimate is formed by computing

the sample mean,

N

xk = Zxm (2.70)
2=1

The covariance can be computed using

N

Pk = Z(Xk x) (2.71)
z=1

For an example of a particle filtering algorithm see Appendix B. For a complete

tutorial on particle filters see [64].

One consideration to keep in mind while using particle filters is the insufficiency of

the CRLB in assessing the complete performance of the PF algorithm. As mentioned

before, the CRLB provides a lower bound on the mean-squared error of the estima-

tion. For the particle filtering algorithm the mean and covariance of the estimation

can be computed for comparison with the CRLB, which for Gaussian processes is

enough. However, using the particle filtering algorithm, the posterior densities ob-

tained for the nonlinear filtering problem are usually non-Gaussian, requiring higher



order moments to characterize the density. The CRLB is therefore theoretically in-

sufficient for providing a limit on the accuracy of particle filters [64]. For many

estimation problems, however, the probability distribution of the estimation can be

approximated by a Gaussian distribution, in which case the CRLB can be used to

provide an indication of the expected performance of the estimation. As mentioned

before, the CRLB is based on the physical and geometrical aspects of the estimation

problem and, since any filter can only do as well as the information provided, in most

cases the CRLB is still a good indicator of the performance of the PF algorithm. This

can be seen in the following section, especially by noting the similar performance of

the PF and EKF algorithms for the constant velocity target scenario, which shows

that the estimation performance is highly dependent on the vehicle trajectory and

the information provided by the measurements.

2.3 Vision-Based Target Localization

This section explores the problem of target localization using vision-only measure-

ments obtained from a UAV flying above the target. As described in Section 1.2.3,

the images from the vision sensors can be converted into bearings-only measurements,

which can be used to determine the location of the target. The filtering algorithms

presented in this section consider this bearings-only target estimation problem. Two

filter designs are implemented for the simplified two dimensional scenario and the full

three dimensional case. The first method uses the EKF algorithm described in Sec-

tion 2.2.2 and the second uses the Particle Filtering algorithm (Section 2.2.3). The

target dynamics considered assume a stationary target and a slow stochastic target

that is free to move in the ground plane but for which no prior motion model is

known. For this slow moving target case, several different scenarios are considered,

such as a random walk trajectory, a constant velocity trajectory and a semi-circular

target trajectory. The UAV flight path is predefined, and for the 3-D case, is assumed

to be a circular trajectory orbiting the target at a constant altitude. This trajectory

was shown in Section 1.2.4 to be the best ad-hoc trajectory for the stationary target



case, resulting in the lowest error mean and variance for the target location estima-

tion. Chapter 3 will further explore the problem of trajectory design. The following

sections describe the estimation performance for the target localization problem us-

ing vision measurements, and show the information obtained from the measurements

using the chosen vehicle trajectory.

2.3.1 EKF for Bearings-Only Target Localization

Here we apply the EKF algorithm discussed in section 2.2.2 to the target localization

problem using bearings-only measurements. The details of the filtering algorithm are

discussed in this section. The target dynamics model is assumed to be linear but the

measurement model is still nonlinear, giving the following system dynamics,

Xk+1 = (Ik+l,kXk +Wk (2.72)

Zk = h(Xk)+vk (2.73)

where (k+l,k is the state transition matrix of the system from time k to k + 1 and wk

and vk are the process and measurement noises, which are uncorrelated, Gaussian and

white with zero mean and covariance Qk and Rk respectively (i.e. wk M .A(0, Qk)

and vk - A/(0, Rk))

Recall the filter equations for the EKF are,

Prediction phase:

XkIk-1 (k,k-1 k-llk- 1  (2.74)

Zkk-1 = h(iklk-l) (2.75)

Pk k-1 = 'k,k-1Pk-llk- ,k-1 Qk (2.76)

Kalman Gain:

Kk = Pkk1H [HkPklk-lHk + Rk] -1 (2.77)



where

Hk= Vxkh(xk)

Update phase:

Vk = Zk - Zklk-1

Xkljk

PkIk

= Xkjk-1 + KkVk

- PIk-1 - Pklk-1H [HkPkk- 1H + Rk] - HkPklk-

For the 2-D target localization case the measurement is of the bearing angle be-

tween the vehicle and the target, as described in Section 1.2.3 and shown in Figure

1-4. The measurement model is given by

/= tan- IPy - t x = tan
1 ,ry

(2.82)

where Pk = [P

of the target and rk =

PT [
Py k is the position of the vehicle, tk = t

rx ry k is the relative vector between

y k is the position

the vehicle and the

target. The state to be estimated is Xk = tk = [tx t T

given by

h(xk) = tan- 1 -r)

and its Jacobian with respect to the target is

Hk = ry 2
r x +ry

. The measurement model is

(2.83)

r
r2 +r2x Y I

(2.84)

For the stationary target case the target position is assumed invariant between

(2.78)

(2.79)

(2.80)

(2.81)



time-steps. Therefore the state transition matrix and the process noise are given by

Gkk-1 1 k = 1 (2.85)
01 00

The sensor noise is assumed to have a constant variance which gives

Rk = 0 2  (2.86)

A simulation of the target localization problem, created in MATLAB, is used

to analyze the target estimation performance. One hundred bearing measurements

are taken by a vehicle following a circular trajectory around a target located at the

origin. The position is measured in feet and the standard deviation of the sensor

noise is assumed to be o- = 5 deg which is fairly typical for commercially available

bearing sensors. The following values are used to initialize the simulation

0 30 200 0
xo = , o , P0 - (2.87)

0 30 0 200

Figure 2-1 shows the vehicle trajectory and the target estimation ground track on the

left, the estimation performance for both axes on the right, and the Fisher Information

for the trajectory on the bottom. The vehicle trajectory begins at po = [100 0

and circles counter clockwise around the target. An interesting result is that the es-

timation performance of the Y coordinate is initially much better than that of the X

coordinate, as seen by the mean and standard deviation results. This is because, due

to the vehicle trajectory, the information gained in the Y direction is initially more

than in the X direction, leading to reduced uncertainty in the Y dimension. The

information plot in Figure 2-1 shows that the information about the Y axis increases

more rapidly than the X axis initially. At 25 measurements, the UAV completes a

quarter circle around the target and the information about the X and Y axes is the

same, as shown in the information plot. Note that at 25 measurement, the covariance

of the X and Y axes also become the same as seen by standard deviation lines in
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the estimation error plot. As the vehicle circles the target, increased information

and observability are gained in the X and Y directions in a sinusoidal pattern cor-

responding to the circular UAV trajectory. After the full circle is completed, the

estimation has the same information in both dimension yielding equal performance

for both coordinates.

The scenario is extended to the three dimensional case. Here the target state

to be estimated is xk = tk I[t ty tz k The measurements are of two bearings

(described in Section 1.2.3 and shown in Figure 1-4)

S= tan1 P - tan

= tan-1 ( P -t) (p ) =tan 1 r (2.88)

.................I........................ii ... .................................. . ........



T T
where pk = [Px Py P k is the position of the vehicle, tk = t ty t k is the

position of the target and rk - rx ry rz k is the relative vector between the

vehicle and the target. The measurement model is given by

tan-1 ()

h(Xk) = ta (2.89)

The Jacobian of the measurement with respect to the target is

ry rx 0
S+r2 r+r2 2

Hk =x + _ Y N H0 (2.90)

S 2 (r 2+r 2r (r2+r2+rZ)

Several target tracking cases using the EKF are considered, involving stationary and

slow moving targets. The main scenarios described in this section include: a station-

ary target, a target exhibiting random walk behavior, a constant velocity target, and

a target following a semi-circular trajectory. This section shows the EKF performance

for these different cases and the results for all are summarized in Table 2.1. The data

provided in Table 2.1 includes: the end estimation error for each axis as well as the

norm of the estimation error, the ending variance of the estimation error for each

axis and the total sum of the variances, and the Fisher Information obtained about

each axis as well as the total sum of information over all axes. An additional case

involving a fast target is presented at the end of the section.

To begin, the case of a stationary target located at the origin is considered first.

For this scenario, the process noise is zero since the target position is constant, so the

filter parameters for the EKF are given by

k,k-= 0 1 , Qk= 0 0 , Rk= [2 02 (2.91)

0A 3-D simulation 0to test the EK algorithm. As mentioned before, the

A 3-D simulation is used to test the EKF algorithm. As mentioned before, the



vehicle trajectory is chosen to be a constant altitude circle above the target. Again

the standard deviation of the noise is set to a = 5 deg. The simulation is initialized

using the following values,

O 20 200 0 0

xo= 0, o = 20 , Po= 0 200 0 (2.92)

0 20 0 0 200

The initialization values shown above were selected arbitrarily. In practice, one can

use a least squares approach with the first two measurements to develop an initial

estimate of the target for the EKF initialization. Since the first two measurements

are taken from locations very close to one another this will give a pretty bad initial

estimate of the target location. This is because the information provided by two

measurements that are close to each other is similar and therefore the second mea-

surement does not provide much new information. Another approach would be to use

other available data. For example one could use the UAV altitude, one measurement,

and an assumption that the target is on the ground to develop an initial target esti-

mate. This approach will usually have better geometry than the case of initialization

with two subsequent measurements and will yield a more accurate initial target esti-

mate. A third approach is to use an a priori distribution model for the target if one

is available. This is the most accurate initialization method but it requires an initial

distribution on the target location.

The EKF results are presented in Figure 2-2. The plot on the upper right shows

the vehicle and target trajectories with the measurement line-of-sight vectors drawn

in. The plot on the upper left shows the ground track for the target trajectory,

along with the target location estimation results. The lower left plot shows the target

trajectory and the estimation results for each axis, and the lower right plot shows the

estimation error and standard deviation for each axis. The bottom plot shows the

information obtained in each axis as a function of the number of measurements. The

plots in Figure 2-2 once again show that the Y axis estimation results improve faster

than the X axis due to the larger information provided initially by the trajectory in



that dimension. At 25 measurements the information about the X and Y dimensions

is equal and the covariance of both dimensions also becomes the same. As the UAV

circles around the target the X and Y information is increased in a sinusoidal manner

due to the geometry of the vehicle trajectory. The Z axis estimation performance

remains the worst throughout as can be seen by looking at the standard deviation

bounds on the lower right plot and the low amount of Z information on the Fisher

Information plot. This is because the UAV must remain above the target at all times.

If it were allowed to go below the target, the information about the Z dimension

would increase and, correspondingly, the uncertainty about this axis would decrease,

improving the estimate. However, for obvious reasons, this is not an option and the

Z axis estimation remains the worst throughout. The same trend can be seen in the

problem of GPS navigation, where altitude is usually the most inaccurate value since

the GPS satellites are always above the user.

The next cases explored involve moving targets. The motion of the target, how-

ever, is unknown and no prior behavior models about the target are available. The

targets are therefore treated using a stochastic model which assumes a stationary

process, but allows for unknown target motion by adjusting the assumptions on the

process noise Qk. This is the most practical approach if no prior information is

available about the target or the environment.

The first stochastic target behavior explored is the random walk. The target

is chosen to move on the ground according to a random walk model. The filter

parameters for this case are given by

'Dk,k-1 0 1 0, Qk = 13 Rk 2 (2.93)

0 0 1 0 0 0
Here the nonzero process noise values for the X and Y variances represent the un-

certainty in the motion of the target in these two directions. The Z variance is still

chosen to be zero since the target is assumed to remain on the ground. This is a

reasonable assumption for ground targets traveling on fairly level terrain. If the ter-
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rain is more varied then some process noise may be added, but in general the motion

along the Z axis is expected to be considerably less than in the other directions. The

actual values for the variances were selected as shown above for this specific case.

In general the process noise selection represents a tradeoff, larger process noise val-

ues increase stability but decrease the accuracy of the estimation. For the random

walk case the initialization conditions for the simulation are the same as those for

the stationary case. Results for this scenario are presented in Figure 2-3 and show

good tracking performance for the EKF (less than 5 feet of error). It is interesting

to note that although the EKF provides proper results, it also exhibits occasional

unstable behavior, especially when lower values of process noise are used. This is

due to the nonlinearity in the bearings-only measurement model and the lack of good

observability in the estimation process which tend to promote premature covariance

collapse [6].

The next case considered involves a target moving with constant velocity. Since

the objective is to estimate targets with no prior information or behavior model, it

is important to note that the estimation algorithm does not know that the target

is moving with constant velocity. The best it can do is assume that the target is

stochastic and is moving somehow in the 2-D ground plane. Like the random walk

case, this is handled by adjusting the process noise to account for the stochastic

nature of the target. The parameters used for the EKF algorithm in this case are

100 100
Dk,k-1 0 1 0 Qk= 0 1 Rk 10 2 (2.94)

001 000

The simulation is initialized as before and the results for this scenario are presented

in Figure 2-4. It is interesting to note the biased behavior of the estimation before the

vehicle has finished circling the target and obtained measurements from all directions.

This clearly shows the lack of proper information and estimation observability due

to the vehicle trajectory. The estimation results obtained using the particle filtering

algorithm in Section 2.3.2 display this same behavior and will be discussed further in
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the following section. By the end of the circular trajectory, however, the estimation

results converge to within the standard deviation bounds and the tracking perfor-

mance is within 5 feet. Note the sharper information increase towards the end of the

trajectory. This increase corresponds to the point where the UAV is closest to the

target and the relative range between the UAV and the target is the lowest. This

sensitivity of the Fisher Information to the relative range is more pronounced in the

3-D bearings-only case than in the 2-D case and is discussed further in Chapter 3.

The last slow moving target case considered in this section is a target following a

semi-circular trajectory. The target begins at the origin and moves around a semi-

circular trajectory with a radius of 20 ft. Again the estimation has no knowledge

of the target's behavior and considers it to be stochastic. The process noise can be

tuned accordingly and the EKF parameters are chosen to be

100 700

bk,k-1 0 1 , Qk = 7 0 , Rk 0 2 (2.95)

001 000

For this scenario, the process noise can be tuned to provide accurate estimation with-

out causing filter instability. The simulation is initialized as before and the results for

the curved target trajectory case are shown in Figure 2-5. The tracking performance

is shown to be within 7 ft of the actual target trajectory. For this scenario, the EKF

diverges more often due to the nonlinearity of the target trajectory. The estimation

results are noisier and the variance for this scenario is much higher than that of the

other cases (see Table 2.1). It is interesting to note the close relationship between the

Fisher Information and the covariance of the estimation. The information plot of Fig-

ure 2-5 shows that the Fisher Information about the X and Y coordinates increases

in a sinusoidal pattern. This same sinusoidal pattern is seen in the 1-o bounds of

the X and Y axis shown in the estimation error plot. The variance of the estimation

oscillates but does not improve much even if more measurements are taken. This

is because of the nonlinear target motion and the assumption of stochastic target

dynamics in the filter. It is also due to the fact that the older measurements do



Target Localization Estimation - Top View

5 - True Target

-15

E -20 ...... i... ... "

-40 .............. --so : :

-50

0 10 20 30 40 50 60

X Position [ft]

Vehicle and Target Trajectory - 3D View

o.40-- --

2.- . --Vehicle Traj
-C Target Traj

0, - Measurement

100 100

Y Position [ft] -1oo -o X Position [ft]

(a) Vehicle and Target Trajectories

Target Localization Estimation
. . . .. . . ..... .. ... .. ...... ... ...... .. .. .... ... .. -.. . ... .... .... .

: , .-............... ............... : ... .......... .... ... , , . . ..............!

........... ! . . .. ,. .. ............ . .............. -.............. :- :

X estimate
--- Xtarget
- estimate

-Y target
_Z estimate
- Z target I,

0 20 40 60 80

Number of Measurements [k]

Target Localization Estimation Error
25

- X error

20 ......................... .............. ---X 1-o
,,Y error

15 ........-........... .. ....... ........ ... Y 1-o
SZ error

015-10

-15-o ..... ..- z 1.." :.10 . ..
-1 . . . ... i .. . . .. . . . . .. .. . .. .. . .. .. . .. .

100 o 20 40 60 80

Number of Measurements [k]

(b) Target Localization Estimation Results

1.2

08

0 o6

04

0.2

Fisher Information of Estimation
-Xinformation
- Y fomation.....
-Z information

.. .- .- --- -I- ;. ... .. .. .. .. .. .. ... .. . ..

.... ... . .... .. .. . .. .. . .. .. .. .

.. .... .. . . . .. ... .. . .. ..

.... .... ..

0 10 20 30 40 50 60 70 80 90 100
Number of Measurements [k]

(c) Fisher Information

Figure 2-4: Localization of a constant velocity target using EKF algorithm in 3-D

83

40

r 20

0

--

-40

=~~..~.~..~.. ............--



Table 2.1: Summary of results for 3-D EKF Estimation

not accurately represent the newer target position, however, the filter assumes a sta-

tionary target model and therefore does not properly discount older measurements.

If the target motion model were known the filter performance could be improved,

leading to increased accuracy in the target estimation and increased filter stability.

However, since the target motion is unknown, the best assumption is that the target

is stationary and the uncertainty in the process is high.

An additional case considered involves tracking a fast moving target using the

predefined UAV trajectory and the EKF estimation algorithm. For this scenario the

target velocity is chosen to be 22 ft/sec, which is half the cruise velocity of the UAV.

The EKF parameters are given by,

100 100

k,k-1 =[0 1 0 , Qk = 0 1 0 , Rk 02

001 000

84

(2.96)

Target Dynamics Estimation Error Estimation Variance Fisher Information
Stationary x 0.05 1.20 0.82

y 0.31 1.18 0.82
z 0.97 2.82 0.33

Total 1.02 5.19 1.97
Random Walk x -2.54 38.79 1.03

y 0.18 10.22 1.01
z -1.79 28.03 0.31

Total 3.11 77.04 2.35
Constant Velocity x -2.40 7.75 1.53

y 0.54 5.72 1.68
z 0.56 5.74 0.28

Total 2.52 19.21 3.49
Semi-circular x 4.17 80.89 0.88

y 5.26 30.66 0.89
z 1.85 16.78 0.32

Total 6.96 128.33 2.09
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and the results for this case are presented in Figure 2-6. As seen in the plots, the

EKF cannot track the target and the filter diverges. The motion of the target is too

extreme, and even with several different values of process noise variance, the filter

cannot localize the target properly. The information plot (bottom plot of Figure 2-

6 shows that the information content of the measurements provided by the ad-hoc

circular trajectory is low, and that as the target moves further away the information

tends to level off indicating that the new measurements are not providing much new

information.

Using an EKF with a stochastic target model produces promising results for dif-

ferent types of target trajectories in all but the most extreme cases. Even though

no initial model of target behavior is known the EKF is able to track the target and

the resulting estimation error is usually within 5 feet. The approach taken in most

past literature is to assume a model for the target behavior (typically stationary or

moving with a constant velocity). If a correct model of target behavior is assumed,

the filtering results for the EKF would be more accurate than those obtained with

this stochastic version of target behavior and the filter would diverge less often, how-

ever, the tradeoff is the obvious lack of flexibility. Since in practice it is rare to have

a model of target behavior, especially for small UAVs used in areas in which the

user has no prior information about the terrain or the targets it may encounter, it is

of more value to have a filtering algorithm that is flexible enough to handle several

types of target behaviors. Even though this approach works well for stationary and

slow moving target, the EKF with a stochastic target model cannot handle fast mov-

ing targets. Using an ad-hoc vehicle trajectory, the EKF algorithm is incapable of

tracking the fast target and the filter diverges. The relationship between the informa-

tion content of the set of measurements and the filer performance is shown in all of

the above cases, motivating the development of vehicle trajectories that increase the

amount of information provided by the measurements. Chapter 3 explains the process

of developing such information-based UAV trajectories for 3-D bearings-only target

localization and Chapter 4 revisits the cases presented above using a simultaneous

target estimation and vehicle trajectory optimization approach.
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2.3.2 Particle Filter for Bearings-Only Target Localization

The next filtering algorithm explored for the problem of target localization with vision

based measurements is the particle filter. The particle filtering algorithm, described

in Section 2.2.3, is implemented first in a simplified 2-D version of the estimation

problem. The number of particles is set to N = 500, which is usually low for a

particle filter, but which provides adequate estimation results in real-time (less than

a second). The vehicle trajectory, target location, and initialization parameters are

the same as those used in the EKF problem. The sample particles for the 2-D case are

initialized from a Gaussian distribution p(xo) = A/(o, Po) with mean and covariance

given by

30 200 01o = , Po= (2.97)
30 0 200

The particle propagation model is assumed to be constant with a noise model given

by Wk - n(0, aw). Selecting the particle filter tuning parameters is important for

determining the performance of the algorithm. Increasing the value of a, speeds up

the response and convergence of the particle filter, however, it increases the overall

variance and the estimate is noisier. The resampling threshold Nthr affects the overall

stability of the algorithm. If Nth, is too high the algorithm degenerates and diverges

and if it is too low then the resampling is based on noisy processing of measurements

and not on a true significant change in probability distribution. For the 2-D stationary

target case the tuning parameters are set to

a,, = 1.5 (2.98)

Nthr = 10 (2.99)

The measurement likelihood function is Gaussian and is defined by

p(zk x) = exp - [zk, - h(x)] 2 (2.100)
2w- L2882  J

88
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Here h(x) is the measurement model evaluated at the particle x and is given by

(2.101)h(x) = tan- 1 Pkx -- _= tan-1Pk - X \rkTe
( Pk - Xky

which is the measurement model described previously for the EKF. The results for

the 2-D particle filtering algorithm are shown in Figure 2-7. Note that, once again,

the initial Y axis performance is much better than that of the X axis due to the

sharper initial increase in information in the Y direction.

The particle filtering algorithm is extended to the 3-D target localization case.

The UAV trajectory is chosen to be a circle of 100 ft radius, orbiting the target at a

constant altitude of 100 ft, which is the same vehicle trajectory used in the previous

section. The particle filter sample set is initialized using a Gaussian distribution
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p(xo) = .A( 0o, P0 ) with mean and covariance given by

201 200 0 0

0 = 20 , Po 0 200 0 (2.102)

20 0 0 200

The particle filter algorithm is used on the following scenarios: a stationary target,

a target exhibiting random walk behavior, a constant velocity target and a target

following a semi-circular trajectory. The results for these cases are summarized in

Table 2.2, which provides the same data described in the previous section for the

EKF results table. An additional case for a fast moving target is considered as well

and presented last.

For the stationary target case, the particle propagation model is assumed to be

constant. The noise model is given by Wk - N(0, a,) and the tuning parameters are

set to

a, = 0.5 (2.103)

Nthr = 30 (2.104)

The measurement likelihood function for the 3-D case is based on two bearings mea-

surements as before, and its equation is given by

p(zk x)= exp -I [zk - h(x)] T [Zk - h(x )] (2.105)

T
where Zk k (see equation (2.88)) and the measurement model is

tan ,Pk-x tan-1 k

h(x) = [tan( ) It n (2.106)
tan- 1 Pk-p. k - t-x )2 +(pk k,-x ( Y),

The PF results for the stationary target case are presented in Figure 2-8. The final

estimation error is 0.46 ft, but the variance is still high (see Table 2.2). More accurate



results can be obtained if the number of particles is increased. However, for real-time

use onboard a UAV the computational cost required for processing more particles is

too high. For instance the PF algorithm with 500 particles takes under a second to

run whereas with 5000 particles the run-time is two orders of magnitude higher.

The next case considered is for a stochastic target pursuing a random walk behav-

ior. For this case the particle propagation model is once again considered constant,

but the variance of the process noise is increased to account for the added uncertainty

due to the target motion. The filter tuning parameters for the random walk case are

set to

aw = 2.0 (2.107)

Nthr = 20 (2.108)

The results are given in Figure 2-9. The filter successfully tracks the random walk

and the estimation error is within 5 feet.

A constant velocity target is explored next. No prior behavior model for the target

dynamics is assumed so the particle propagation model is once again constant and the

process noise is adjusted accordingly to account for the target motion. The tuning

parameters for the constant velocity target case are

rW = 1.5 (2.109)

Nthr = 30 (2.110)

The results for the estimation of the constant velocity target are presented in Fig-

ure 2-10. It is interesting to note that the performance of the estimation for the

particle filtering algorithm is very similar to that of the EKF shown in the previous

section (see Figure 2-4). Once again there are biases in both the X and Y axes until

the vehicle completes a circle above the target and obtains measurements from all

sides. Furthermore, the drastic improvement in estimation performance seen in the

error plot of Figure 2-10 corresponds to the increase in information observed in the
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Fisher Information plot. This shows the dependence of the estimation performance

on the vehicle trajectory and illustrates the importance of selecting a trajectory that

maximizes the information provided by the measurements.

The last slow moving target case considered is for a target starting at the origin

and following a semi-circular trajectory. The particle propagation model for this case

is also assumed constant and the tuning parameters are set as follows

o-, = 1.2 (2.111)

Nthr = 20 (2.112)

The results for the target following a semi-circular trajectory are presented in Figure

2-11. The estimation convergence properties for the PF are better than those of

the EKF and the filter diverges less often. The tracking performance however is

noisier and the estimation error is about 9 ft with a variance of 70.5 (see Table 2.2).

Decreasing oa, would make the PF results less noisy, but for this moving target case,

lower values of a, would decrease the stability of the filter.

An additional case of a fast moving constant velocity target is considered as well

and the results are presented in Figure 2-12. The target velocity is 22 ft/sec, half

the cruise speed of the UAV, and the UAV trajectory is predefined as before. The

results show that the particle filter is incapable of tracking the fast target. For several

values of the tuning parameters a, and Nthr the filter still diverges. The information

provided by the ad-hoc UAV trajectory, shown in the bottom plot of Figure 2-12, is

very low compared to the other scenarios, and, as in the case using the EKF, the

information tends to level off showing that the new measurements are not providing

much new information.

Overall, the particle filtering algorithm performs as desired yielding good tracking

performance for the stationary target case and for the cases of slow moving targets

with unknown target dynamics, even though tracking in the fast moving target case

is not achievable. In general, the particle filtering algorithm is more stable than the

EKF and is less prone to filter collapse or algorithm degeneration. It is also able to
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Figure 2-11: Localization of a turning target using a particle filtering algorithm in
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Table 2.2: Summary of results for 3-D Particle Filter Estimation

handle the nonlinear, non-Gaussian distribution better and, given enough particles,

leads to a more accurate estimation of the target motion (although at the cost of

higher computational requirements). On the other hand, the particle filter is more

sensitive to its tuning parameters, requiring more design effort to properly select

these parameters, and, in many cases, it is not obvious what the best selection of

these should be.

The most interesting result though is observing the similarities between the algo-

rithms' performances. This is especially noted in the constant velocity target scenario,

where both algorithms have similar biased estimation results and poor performance

in the same axes during the same time spans, until enough information and proper

estimation observability is provided by the UAV coming close to the target and by

completing the circle. For all of the scenarios shown above, using an ad-hoc UAV

trajectory provides the same information to the EKF and the PF, and the estimation

performance for both algorithms is shown to be highly dependent on the information

contained in the measurements, illustrating the need for proper trajectory generation

Target Dynamics Estimation Error Estimation Variance Fisher Information
Stationary x 0.34 4.55 0.82

y -0.31 4.80 0.82
z 0.04 12.30 0.33

Total 0.46 21.65 1.97
Random Walk x -3.68 69.38 0.85

y -0.85 34.75 0.85
z -0.73 56.45 0.32

Total 3.84 160.59 2.02
Constant Velocity x -0.72 12.58 1.53

y 1.90 9.42 1.68
z 5.75 32.20 0.28

Total 6.10 54.21 3.49
Semi-circular x 6.34 23.58 0.88

y 2.08 20.65 0.89
z 6.02 26.26 0.32

Total 8.99 70.49 2.09



algorithms that focus on increasing the information provided by the measurements.

The next chapter focuses on designing trajectories that maximize the information for

the 3-D bearings-only target location estimation problem, and Chapter 4 revisits the

estimation problem for the cases shown above using the optimized vehicle trajectory.
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Chapter 3

Vehicle Trajectory Optimization

Optimizing the trajectory of the vehicle is a necessary step in improving estimation

performance. The previous chapters explained and illustrated the dependance of the

estimation performance on the vehicle trajectory. This is an especially big concern for

the problem of target localization using vision based measurements, since the mea-

surement model is highly nonlinear, and the estimation results become severely biased

if the measurements do not provide much new information and proper estimation ob-

servability is not obtained. This chapter explores the problem of trajectory design

and optimization for the bearings-only target location estimation problem. The first

sections revisit the concept of the Fisher Information Matrix and show how this per-

formance measure can be used to produce an objective function for the trajectory

optimization problem. The following sections show the optimization results for the

sensor placement case and the problem of trajectory design with motion constraints.

The sensor placement case analyzes the problem of determining the best locations

from which to take measurements, without considering vehicle motion constraints

that restrict the distance between subsequent measurement locations. This scenario

is applicable to a target localization problem without a strict time limit or to the

case of target localization using multiple UAVs. The results for the sensor placement

case provide intuition about the expected trajectory shape and are useful in testing

and comparing different objective functions. The next scenario examined is that of

trajectory optimization with vehicle constraints. Here the motion of the vehicle is
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restricted between subsequent measurements based on the vehicle's capabilities and

constraints. The resulting trajectories are applicable to the case of target localization

using a single UAV.

It is important to note that the results in this chapter are obtained assuming

that the true target location is known. Since the problem at hand is to estimate the

location of the target, this is obviously a very limiting assumption. The dependence

of the optimization solution on the true target location has been one of the biggest

problems associated with vehicle trajectory optimization, usually leading to a highly

nonlinear problem if the estimation and optimization are solved simultaneously (see

[72]). Nevertheless, exploring the theoretical results for trajectory optimization using

the true target location leads to results which provide intuition about the expected

performance of the trajectory optimizer. Chapter 4 addresses the problem of uncer-

tainty in the target location and provides ways to deal with this issue by combining

the optimization and estimation problems.

3.1 Objective Function Selection

As described in Section 2.1, the Fisher Information Matrix captures the physical and

geometrical properties of the estimation problem and provides a good baseline for

quantifying the performance of the estimation process. Since all measurements differ

in the information contained about the estimation process, an information-theoretic

framework provides a way of selecting which measurements bring the most additional

or new information, thus increasing the overall information content and enhancing

the performance of the estimation. In addition to being related to the accuracy of the

estimation, the FIM enjoys several useful properties which make it a good framework

for the trajectory optimization problem. These properties include being symmetric

and positive-definite (or at least positive semi-definite), having a recursive form for

computation, and being additive across multiple sensors and time-steps (the overall

FIM from many sensors over time is the sum of the FIM's for the individual sensors,

or the FIM over many time steps is the sum of the FIM's for each time step). The

102



FIM is the inverse of the CRLB which is a lower bound on the covariance achievable

by the estimation algorithm. Since the objective is to minimize the covariance of the

estimation, it is desirable to make the FIM as large as possible.

The FIM is a function of the sensor locations, among other things, suggesting

that the sensor locations can be optimized to maximize the value of the FIM. In

a strict sense this amounts to finding a configuration for the sensors, p*, such that

J(p*) > J(p) where J is the FIM and p is any other sensor configuration. This is

equivalent to requiring the matrix defined by J(p*) - J(p) to be at least positive semi-

definite. In general p* is not likely to exist except under very special circumstances

and even then it is difficult to find [72]. It is therefore desirable to find a scalar real-

valued function based on the FIM over which the optimization can be performed.

Since going from a matrix to a scalar results in a loss of information, this leads to a

weaker optimization metric, but simplifies the process enough to produce successful

trajectory results. An analysis of different possible functions is provided in Section

3.1.2.

Another main problem with the FIM is its dependence on the true value of the

parameter to be estimated, in this case, the true target location. Chapter 4 will

look at this issue in more detail. The form of the FIM for the bearings-only target

localization problem is derived in Section 3.1.1. The equations show the dependence

of the FIM on both the vehicle measurement locations and the true target position.

3.1.1 Fisher Information Matrix for Bearings-Only Target

Localization

The equations for the Fisher Information Matrix are given in Section 2.1.1. The

recursive form of the FIM is provided by

Jk kk- - 1 -1
k, 1 + HkR1Hk

k

- C THT 1 (3.1)
2=1
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Here #(k,2 is the state transition matrix of the estimation process from time i to k,

Rk is the measurement noise covariance, and Hk is the Jacobian of the measurement

model defined by Hk = Vxkh(xk).

To derive the Fisher Information Matrix for the 2-D bearings-only estimation

problem, the measurement model used is

h(Xk) = 0 = tan - 1 Px - tx

PY - ty )
tan i%)

where Pk = [Px

of the target and

T [Py k is the position of the vehicle, tk [ t

rk [ rx ry k is the relative vector between
kc

target. The state to be estimated is xk = tk = [tX

measurement model is given by

Hk ry
r x +r y

iT

y k
, so

is the position

the vehicle and the

the Jacobian of the

rxl
r +rr k (3.3)

Using a constant process model and constant sensor noise variance gives

k,
0

0 ,

1
Rk = U2

and the FIM reduces to

Jk =2 HH,
or2 :

For the 2-D case HTH becomes

H r2 2)2 2(r2+r)2

(r)+2)2 1+r )2Y (rx 2)2z
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which gives

1
Jk = 2

2

Zy

(r +r2 )2
Zx T"ZY

r2
rzx

(r2 +r 2 )2
ZX ZY

I k1 1
0.2 E ri4

,= r l

S2

Zx ry[ 2 ~

-rTz ry

IX

(3.7)

To calculate the Fisher Information Matrix for the 3-D case, the measurement

model consisting of two bearing angles is used (see Figure 3-1),

h(Xk)
tan-1

tan-1 ( p-tx )
P, -tyz Pz-tz

V(P;-tz )2 +(py-ty )2

tan- (r)
[1 ( Zt an- -2X+7-YL I( r;, )

where Pk = Py Pz k is the

position of the target and rk =

position of the vehicle, tk = [tx is the

ry rz k is the relative vector between the

vehicle and the target. The Jacobian of the measurement model with respect to the

target is then given by

Hk J

Ty

r+T2r Y

rxrz

(rx + T2 +r) Z
2 2 2 r 2

ryrz
2 r2 2 2 2

rX Y z Vrrx +rY

0]
+r2 +r2)

Hp
(3.9)

Since the target is stationary or stochastic with a stationary process model the

state transition matrix is constant. The noise is assumed to be uncorrelated and with

constant covariance giving

1
4k,z = 0

0

001
1 0

0 1

Rk : 0
o.2

(3.10)

and the FIM reduces to

k

Jk = .-2 H H
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Figure 3-1: Azimuth (13) and elevation (0) between vehicle and target

In the 3-D case HTH becomes

r 22
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7rxrz
S (rx r +rz)2
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ryrz
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rxrz 1
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(r 2r)2 2

y +Z
r 2
ry

rxry

(r+ry)2

0

72+r2)2

2

0 0y

0 0

2 2
x z
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rx rz
L (2 r2 r 2 )2
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ry r

2 2 2 2
( x + 2 r )2

rx~

rxrz

ryrz

(rx +r2+r)2(r + ) 2) I

(r+r+rz)2 J

(3.12)

T
2 

2 2 2

S ( 
2 )2 + ( 2 2  -r2 )2(r 2 - 2

r x ry rx xy rz r 2z

, zy 2, X Zz

=1 Z
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rax ry rx ar y r r2
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+r )2 2 ( +r r2 
)

2
(r

2
x +r 2 )

r
2  

r
2  

2
2

+ ( +r ++ )2(2 +2r2

r ty 7Tz

rTx Tz
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tx Zy

(r 2hr
2 +r

2 )2
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The FIM for this 3-D case can also be written as

k 
k

Jk - 2 H , = 2 (HtH HOHi Jk Jk (3.13)
Z=1 2=1

showing that the FIM is additive and that the FIM contributions of each sensor can be

computed separately (assuming that the sensors are independent and uncorrelated).

This is a very valuable property because it allows for the inclusion of multiple sensors

with different characteristics or sensors providing measurements at different times.

To obtain a better physical intuition of what the equations of the FIM shown above

mean, it is advantageous to make the substitutions given below. The magnitude of

the vector for the 2-D top-view projection corresponding to the measurement of 3

can be written as (see Figure 3-1)

ra =r2 (3.14)

The overall magnitude of the relative measurement vector is given by

r| ( + r + r (3.15)

The following trigonometric substitutions can be made

sin 0 =
Ira

cos ry
|ra

sin =
Irl

cos = ra (3.16)
Irl

Using these substitutions, the FIM components H Hp and H Hp can be rewritten
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Cos 2 /3

- sin cos

0

sin 2 /3 sin 2

sin / cos / sin2 0

- sin /3 sin cos )

- sin/3 cos

sin2 3

0

sin/3 cos / sin2

Cos 2 3 sin2 0

- cos 3 sin 0 cos 0

- sin/3 sin 0 cos 0

- cos /3 sin q cos 0

COS 2

and the overall equation for the FIM is given by

k Cos2 /31

i~ [2- sin cos /3,

sin2 3 s in2  s

2 sin /3 cos 3i sin2 0

sin /, sin cos 4 -

- sin /3, cos 3

sin2 /3

0

in 3, cos /3, sin2 0

Cos 2 /3, Sin 2 0

cos 3, sin 0 cos 0

0
S+...

- sin 3, sin 0 cos 7

- cos /, sin 0 cos c

COS 2

The equation above shows that the range and bearing information are separable in

the FIM. It is convenient to rewrite the FIM using these trigonometric substitutions,

especially when computing norms of the FIM, to preserve this separation between

range and angular information. This form of the matrix suggests that maximization

of the FIM involves lowering the range to the target and increasing the angular

separation between measurements, which supports the intuition developed in Section

1.2.4.

3.1.2 Selection of an Objective Function Based on Matrix

Measures

Since maximizing the Fisher Information Matrix is a difficult task, it is necessary to

find a real-valued scalar function based on the FIM to serve as an objective function

108

as,

1
ra 2

1
H THo = r2

Jk =

(3.17)

HH =



in the trajectory optimization problem. Going from a matrix to a scalar function re-

sults in a loss or compression of information, leading to a weaker optimization metric.

Careful analysis of different possible functions is necessary to ensure that the infor-

mation of interest to the estimation problem is properly captured. The optimization

algorithm will find an "optimal" trajectory based on minimizing the chosen objective

function, and if the objective function does not capture the desired trajectory be-

havior, this "optimal" trajectory will not produce the desired results. Furthermore,

it is desirable to choose a function that is well structured for optimization (contains

the fewest local extrema, is equally sensitive to all optimization variables, etc). As

mentioned before, the FIM is symmetric and at least positive semi-definite, therefore

its eigenvalues are real and positive (or zero). The eigenvalues of the FIM are related

to the uncertainty ellipsoid of the target estimation, since the FIM is related to the

estimation error covariance. More specifically, the length of each axis of the uncer-

tainty ellipsoid is given by one over an eigenvalue squared for each eigenvalue of the

FIM. Therefore, maximizing the eigenvalues of the FIM leads to a smaller uncertainty

ellipsoid and a more accurate estimation.

A few of the most common matrix measures are described below. The first function

is based on the determinant of the FIM and is known as the D-optimality criterion.

Its equation is given by

f(J) = - log det{J} (3.18)

The determinant of a symmetric positive definite matrix is given by the multiplication

of its eigenvalues so the D-optimality criterion results in the minimization of the vol-

ume of the uncertainty ellipsoid. The determinant is a very popular choice of matrix

measure and is used widely in the literature. One advantage of the D-optimality crite-

rion is that it is invariant for parameter scale changes and linear transformations [72].

A drawback of using the determinant is that it is not a monotonic function, resulting

in several local minimums and maximums in the objective function. This makes the

optimization quite sensitive to initial conditions and may cause the optimizer to get
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stuck in a local maximum if not initialized properly. Furthermore, calculating the

determinant of a matrix is more computationally intensive than many other matrix

norms. The next function considered is the E-optimality condition which uses the

maximum eigenvalue of the inverse of the FIM and is given by

f(J) = max{eig(J-1)} (3.19)

Optimizing using the E-optimality criterion leads to the minimization of the length

of the largest axis of the uncertainty ellipsoid. A third function is the A-optimality

criterion which involves computing the trace of the inverse of the FIM. Its equation

is given by

f(J) = Tr{J - 1} (3.20)

and it is designed to minimized the average variance of the estimates. The last

function considered is the sensitivity criterion given by

f(J) = -Tr{J} (3.21)

This criterion involves maximizing the trace of the FIM, which for a symmetric pos-

itive definite matrix, is the sum of the eigenvalues. The sensitivity criterion is the

easiest to compute and provides a monotonic optimization function, however, it is

not stable and could result in a singular FIM. It is typically used only to initialize

the optimization problem. These are the most widely used matrix measures. Uciiski

provides a complete discussion on possible matrix measures for the FIM [72].

A sensor placement exercise serves as a benchmark for testing and comparing

several functions of the Fisher Information Matrix. The algorithm is based on nu-

merical optimization techniques and uses a gradient descent method to find a set of

N optimal UAV measurement locations in 3-D space with a fixed altitude constraint.

Section 3.2.1 shows more detail for the results of the sensor placement optimization

scenario. The sensor placement case is used to test the performance of the functions
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described above in order to determine which is the one best suited to the problem.

The selected objective function must capture the dependence of the estimation on

the angular separation between measurement locations and the relative range to the

target (as described above and in Section 1.2.4). The first function, based on the

determinant of the FIM, is very sensitive to changes in range but exhibits far less

sensitivity to changes in angular separation. The optimization tends to bring the

measurement locations together to reduce the range as much as possible, resulting in

a sensor configuration that places all the points directly above the target (since, for

a fixed altitude, this is the position of lowest relative range). This result is obviously

undesirable since it leads to an unobservable estimation for the bearings-only esti-

mation problem. Another test performed on the determinant function, but holding

the range fixed, shows that the optimization algorithm separates the points prop-

erly. This confirms that the determinant function does contain information about

the angular dependence between the measurements, but due to the high sensitivity of

the determinant function to the relative range, this angular dependence is essentially

ignored. In addition to being overly sensitive to range, the determinant function has

many local extrema and, if not initialized properly, the optimization gets stuck in

a local minimum and returns a suboptimal configuration. It is important to state

that the determinant function is not dismissed lightly. In general, the D-optimality

criterion does capture most of the essential dependencies of the estimation on the

measurement locations and is widely used in literature as the optimization function

of choice. Furthermore, analytically computing the determinant of the FIM for the

two-dimensional bearings-only target localization problem gives

1 N r2 N 2N r2N \ 21
det{JN} 04 1=1 (r +r2 )2 =1 (r 2 +r 2 

)2 2 1 ( r
2 

)2

1 2

xr J (3.22)
2r4 ir,121r2

where the cross product in the numerator shows the need for increased orthogonality

between the measurement vectors and the magnitude of the range in the denominator
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shows that the determinant is maximized when the range to the target is as low as

possible. Most of the literature uses the D-optimality criterion in a two dimensional

setting, however, for the 3-D case, the sensitivity to range and the problem of local

maximums makes optimization quite difficult.

Next the sensitivity criterion involving the trace of the FIM is explored as an

optimization function. The trace function results in a configuration which completely

ignores the angular separation between measurements and optimizes only the range.

Even when the range is held constant the bearing angles do not change at all. Again,

as in the case of the determinant function, the sensor placement optimization places

all the measurement points directly overhead the target. This sensor configuration

results in an unobservable estimation for the bearings-only estimation problem and

is therefore undesirable, showing that the trace of the FIM does not capture the

dependencies of interest in this problem. Furthermore, analytically deriving the trace

of the FIM and simplifying the expression gives

Tr{J} = Jk = z + (3.23)
i=1

showing that the information about the dependence of the estimation on the angular

separation between measurements is completely lost.

The remaining functions, the E-optimality and the A-optimality criteria, result

in very similar measurement configurations. They both return sets of measurement

locations that are evenly spaced in a circular pattern above the target. This circular

sensor configuration shows the tradeoff between reducing the range to the target, while

still maintaining as much orthogonality between measurements as possible. Further-

more, both the A-optimality and E-optimality criteria exhibit faster convergence and

higher stability in the optimization. Since the A-optimality criterion involves all the

eigenvalues of the inverse of the FIM, it represents the uncertainty in all dimensions

equally and is therefore chosen over the E-optimality criterion as the best optimization
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function. It is interesting to note that the expression for the A-optimality criterion,

f(J) = Tr{J-'} (3.24)

closely resembles the expression for geometric dilution of precision (GDOP), which is

commonly exploited in GPS navigation to select the configuration of satellites that

gives the most accurate position estimate, showing that the A-optimality criterion

captures the geometric system dependencies. Furthermore, the A-optimality criterion

is the most physically significant function for the estimation problem since it is based

on minimizing the individual variances of the estimates. The following sections show

the results for the optimization of UAV measurement locations for several different

scenarios using the A-optimality criterion.

3.2 Trajectory Optimization

For the problem of optimizing the trajectory of a UAV performing target localization

two main scenarios are considered. The first case examines the problem of finding the

best sensing locations for a fixed number of measurements. This scenario is applicable

to a UAV with a limit on the amount of measurements it can take (due to bandwidth

or storage constraints, for example). It can also be used for the case of placing multiple

UAVs which can collaborate to provide a vehicle estimate. The second scenario looks

at the problem of trajectory optimization for a single UAV with motion constraints.

The rate at which measurements are taken is fixed and the motion constraints limit

the amount the vehicle can travel and turn between measurements. The optimization

for both scenarios is implemented using a gradient descent numerical method with

the objective function based on the A-optimality criterion. The gradient descent

algorithm uses a polar coordinate approach, varying the range to the target and the

angular separation between the measurement locations. The results are provided in

the following sections.
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Figure 3-2: Optimization of vehicle trajectory using sensor placement techniques

3.2.1 Optimization of Measurement Locations Using Sensor

Placement Techniques

This section describes the case of trajectory optimization for a UAV flying at a fixed

altitude above a stationary target taking a fixed number of measurements (N) of

the target. The optimization uses a gradient descent method which numerically

computes the derivative with respect to the range and bearing for each measurement

location, using a finite difference method, and updates the positions by taking steps

proportional to the computed derivative. The optimal sensor placement configuration

is given by the measurement locations evenly spaced around a circle directly above

the target. This is not a surprising result since a circular trajectory is widely accepted

in literature as the optimal trajectory and, as described in Section 1.2.4, is the path

that makes the most sense intuitively. The UAV trajectory is obtained by joining the

measurement locations and the results are shown in Figure 3-2 for the case of N = 5.

The cyan lines show the suboptimal trajectories tried by the optimization routine and

the blue line shows the final optimal UAV trajectory.

The optimization was performed for several different values of N. Figure 3-3

shows the resulting trajectories for N = 5, N = 10, and N = 15. As the number of

measurements increases the trajectory approaches a circle at a fixed altitude centered

on the target. An interesting result is that the ratio of the radius of the circular

trajectory to the altitude above the target is always close to 0.7 (+0.02) regardless

114

.;..~..;..;;;..;;;.~.;... .... .......... ..... .. ....... .... ~ . .. .



of the number of measurements. This demonstrates the tradeoff between minimizing

the relative range to the target and maintaining proper angular separation between

measurements. If the range only is considered, all the measurements would be taken

directly above the target, since this is the closest point within the altitude constraint,

leading to a radius to altitude ratio of zero. If the angular separation is the only

consideration the measurement vectors would be chosen to be orthogonal and the

ratio between the radius and the altitude would be 1. Since the optimal radius is 0.7,

this shows that there is a compromise between proximity to the target and angular

separation of the measurements. These results scale with altitude and the 0.7 ratio

remains the same for several different altitudes.

The task of simultaneously optimizing N measurement locations has several issues.

The first is that the optimization is a multimodal problem of high dimensionality.

The objective function is dependent upon all N measurements and for the general

3-D case the gradient vector has 3N terms (2N with a fixed altitude constraint). As

N increases, the computational load required to perform the optimization increases

as well. Another complication is that as N gets larger, the dependencies of the

objective function on the measurement locations become more complex making the

optimization quite difficult. For the bearings-only case the optimal configuration is

not unique since the spacing between the measurements is important and not the

actual bearing locations, leading to infinitely many optimal configurations. This can

be remedied by fixing the bearing information for one of the measurement locations

and optimizing over the rest. Furthermore, as N increases the objective function has a

growing number of local extrema causing severe sensitivities to initialization and often

leading to suboptimal solutions if not initialized properly. This is the most difficult

issue to deal with since, unless there is some prior insight about the problem, it is often

unclear what a proper choice of initial measurement configuration should be. Another

issue with improper initialization of the optimization is that the algorithm tends to

cluster the measurement locations. An example of this suboptimal configuration is

shown in Figure 3-4, where the five-point trajectory optimization results in clusters of

two points on each end of a line and one point in the center. The cyan lines show the
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progress of the optimization and the straight blue line shows the resulting "optimal"

trajectory. This suboptimal solution occurs because of the assumption that the noise

between the different measurements is spatially uncorrelated [72]. This result is not

practical and can be avoided by properly initializing the optimization.

The intuition about the problem and the insight provided by the sensor place-

ment case with low values of N suggest that the optimal solution tends to a circle

above the target with the measurement locations evenly distributed around it. This

measurement configuration is used to initialize the optimization and the algorithm

can then be executed to find the optimal relative range value for the radius of the

circle. Overall, the sensor placement case is a useful benchmark for providing intu-

ition about the problem and for determining which objective function is best suited

to the trajectory optimization task. The next section explores the inclusion of vehi-

cle motion constraints to provide trajectories for a single UAV that account for the

vehicle's limitations.

3.2.2 Trajectory Optimization With Vehicle Motion Con-

straints

In this section, motion constraints on the vehicle are incorporated into the optimiza-

tion of the UAV trajectory. The platform vehicle considered is the fixed-wing Raven

UAV, whose performance limitations are described in Section 1.2.1. The motion con-
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straints for the UAV include a fixed velocity of 44 ft/sec and a maximum turn rate

of 12 deg/sec, which are within the operating specifications of the Raven. The mea-

surement rate is fixed to 2 Hz and the vehicle motion between measurement locations

is restricted based on the UAV's maneuverability. The imaging sensors are assumed

to be mounted on gimbals, which can be controlled to keep the target in the field

of view. Therefore, field of view constraints are not considered in this section. The

optimization is initialized with a starting vehicle position and uses the A-optimality

criterion to determine the subsequent trajectory points that maximize the amount of

information while remaining within the vehicle's velocity and turn rate constraints.

The optimization algorithm used in this section works by determining the optimal

trajectory points one at a time and updating the Fisher Information Matrix recur-

sively. This optimization method provides the next best immediate decision based

on all prior information. Other optimization strategies could consider looking ahead

and finding the next N optimal trajectory points. The resulting trajectories using a

forward looking strategy would be better, providing a higher total amount of infor-

mation. However, optimization of N points suffers from the same issues mentioned

in the previous section. The major problem is that optimizing over a large num-

ber of trajectory points produces local extrema and is likely to lead to suboptimal

solutions. Furthermore, the computational resources required for a multi-point opti-

mization is several orders of magnitude larger than for single point optimization and

the resulting algorithm cannot be implement in real-time using onboard UAV com-

puters. Therefore, for this work, a single point optimization strategy is considered

and the optimization algorithm is used at each time step to find the next best UAV

measurement location. The following sections show the resulting UAV trajectories

for the stationary target case, the multiple target scenario, and several moving target

cases.

Trajectory Optimization for Stationary Targets

Several cases of trajectory optimization are considered in this section. The first

case assumes a stationary target located at the origin and a UAV initial position of
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Po = 100 0 100] with an initial heading of (North). These are the same initial

conditions assumed in Chapter 2, where the UAV was made to fly a circular trajectory

around the target. In this case, the trajectory is computed by the optimizer for 50

measurements and the results are presented in Figure 3-5. There are a few interesting

points to be made about this case. The first is that, after the initial spiral, the UAV

follows a circular orbit with a radius of approximately 70 ft. Since the altitude is

100 ft, this case illustrates the results from the previous section where the optimal

radius to altitude ratio is found to be 0.7. Another interesting observation is that

the information provided by this optimal trajectory in the X and Y axes is almost

equivalent to the information provided by the ad-hoc circular UAV trajectory used

in Chapter 2 (see Figure 2-2), however the number of measurements taken for the

optimal trajectory is 50 whereas the ad-hoc trajectory required 100 measurements to

reach this amount of information. This shows that by using a trajectory optimization

algorithm and placing the measurement locations efficiently the number of measure-

ments required to achieve a certain information threshold can be drastically reduced.

Unfortunately, due to the poor geometry with respect to the Z axis, the informa-

tion about this dimension cannot be increased much. The resulting Z information

using the optimal trajectory is about half of that obtained with the ad-hoc circular

trajectory, since only half the measurements are taken.

The next case considered places the UAV at an initial position which is farther

from the target. For this scenario the target is stationary and at the origin and the

UAV is initialized with a position of po = 200 0 100] and a heading of The

resulting trajectory is shown in Figure 3-6. Here the UAV begins by spiralling toward

the target, but instead of converging to a circular orbit it attempts to reduce the

relative range to the target as much as possible. This behavior increases the amount

of information provided in the X and Y dimensions as shown in the lower right plot

of Figure 3-6. The UAV then circles around and returns to the target on a second

spiral, once again passing close to it. The drastic increase in information around

measurements 15 and 35 correspond to the points on the trajectory that are nearest

to the target, showing the sensitivity of the Fisher Information to the relative range.
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2

Even though the target is initially farther away than in the previous scenario, the

total information for this trajectory is higher than that shown in Figure 3-5 since the

UAV is able to pass close to the target.

The third case considered involves starting the UAV with a different heading. The

UAV is initially at po = 200 0 100] , as before, but its heading is -r (West). The

results for this scenario are provided in Figure 3-7. The vehicle begins by diverging

from the straight path towards the target to provide better angular separation be-

tween the measurements. It then turns towards the target and passes close to it and

finally loops back around to circle the target. Again a larger increase in information

is observed when the UAV passes close to the target.

The next few cases study the effect of the UAV turn rate constraint. The trajectory
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Figure 3-8: Trajectory optimization with turn constraint of 5 deg/sec

optimization is performed for a 100 measurement trajectory and the maximum UAV

turn rate is varied. The first scenario uses a low maximum allowable turn rate,

restricting the vehicle to maximum turns of 5 deg/sec. The resulting trajectory,

shown in Figure 3-8, is an orbit around the target. An interesting observation is

that the target is not in the center of the orbit, as seen by looking at the oscillations

in the relative range and relative range rate plots on the lower right of Figure 3-8.

Additionally, the information rate is higher and the increase in information is sharper

when the vehicle passes closest to the target. This is because the error contribution of

the vehicle orientation errors is lower when the relative range to the target is lower, as

explained in Section 1.2.4, and correspondingly, the uncertainty in the estimation is

reduced. Therefore the optimal information-theoretic move is to minimize the relative

range to the target as much as possible within the vehicle turn rate constraints. The
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with turn constraint of 10 deg/sec

turn rate is then increased to 10 deg/sec and the trajectory optimization results for

this case are shown in Figure 3-9. The UAV again begins by spiralling in to the target,

reducing the relative range to the target while maintaining a heading which is nearly

orthogonal to the line-of-sight vector to the target. The UAV trajectory converges

on to an orbit around the target. Once again, the target is not in the center of the

orbit as can be seen by looking at the relative range and range rate plots on the lower

left of Figure 3-9. The plot on the lower right shows that the information increase is

largest when the UAV is on the portion of the orbit that passes nearest to the target.

The turn rate is increased to 15 deg/sec, which is the maximum allowable turn rate

for the Raven. The resulting trajectory is provided in Figure 3-10 and is shown to

spiral towards the target, reducing the relative range as much as possible. Since the

trajectory passes so close to the target, the next best decision after passing the target
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with turn constraint of 15 deg/sec

is to change directions and circle around again, coming in for a second pass. After

these transients, the trajectory converges onto a circle around the target. This time

the circle is centered on the target, as seen in the second half of the relative range and

relative range rate plots. Again the two sharp increases in information correspond to

when the UAV is nearest to the target. The final case considered is for a maximum

turn rate of 20 deg/sec. The results for this scenario are shown in Figure 3-11. The

UAV once again spirals into the target, this time passing almost directly overhead

the target. The information is drastically increased during this first pass. The UAV

then circles around and converges to a limit cycle centered on the target, where the

information increases at a constant rate. Note that the total amount of information

increases as the constraints are loosened. For the four turn rate cases considered, 5

deg/sec, 10 deg/sec, 15 deg/sec and 20 deg/sec, the average total information for the
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with turn constraint of 20 deg/sec

X and Y axes is 0.28, 1.22, 1.58, and 2.30, respectively. This shows that the more

restricted the vehicle is, the less capable it is of obtaining the best possible trajectory,

a result which makes intuitive sense. The maximum turn rate study shows that

different UAV constraints cause different orbiting behavior, however, the information-

theoretic framework produces trajectories that have the basic properties of reducing

the relative range to the target as much as possible, within the vehicle constraints,

and maintaining a heading that is nearly orthogonal to the line-of-sight to the target.

Trajectory Optimization for Multiple Targets

Since the FIM is additive, trajectory optimization for multiple target tracking can be

performed using the same optimization framework. In this section the FIM contri-
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butions of several stationary targets are added together and the UAV trajectory is

optimized so that the average amount of information about the targets is maximized.

The UAV is restricted to maintain a cruise speed of 44 ft/sec and has a maximum

desired turn radius of 12 deg/sec. The starting position is Po = 200 0 100 and

the initial heading is !. The UAV is assumed to take measurements of all the targets

at every measurement time-step. The resulting trajectories for tracking 2, 3 and 4

targets are provided in Figures 3-12, 3-13, and 3-14 respectively. The spiral behavior

is present again and the UAV is shown to close in on each target, circle around, and

then move onto the next target. As in the previous cases, the average information

is shown to increase sharply when the UAV passes close to a target. It is interesting

to note that the UAV trajectory optimization favors spiralling into a farther target

instead of circling around a target which the UAV has already passed close to. This

is because the unknown information about a farther target is greater than that of a

close target, leading to a higher information rate for the farther target. Therefore the

information increase obtained by reducing the range to a farther target is larger than

that obtained by re-circling a close target. As mentioned before, this optimization

assumes that all targets are measured at each time-step. A more realistic approach

would involve selecting one target at every time-step to take a measurement of, and

further optimization can be done to determine which target to look at in order to

obtain the largest amount of total information.

Trajectory Optimization for Moving Targets

Trajectory optimization for moving targets is considered in this section. The first

scenario involves targets moving with a constant velocity. The UAV constraints are

the same as those described in the first example. The UAV is restricted to maintain

a cruise speed of 44 ft/sec and has a maximum desired turn radius of 12 deg/sec.

The starting position is po = 200 0 100 and the initial heading is 9. The target

starts at the origin and moves on the ground plane with a constant velocity of 2.8

ft/sec. The results for two constant velocity target cases are shown in Figures 3-15

and 3-16. The UAV trajectories still exhibit the spiral behavior as before, but adjust
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motion constraints, constant velocity tar-

the shape of the trajectory to accommodate for the target's motion. The information

gain is again largest when the vehicle is nearest to the target.

Another moving target scenario considered is for a target following a semi-circular

trajectory. The target starts at the origin once again and is restricted to move in the

ground plane following a semi-circular trajectory with a 20 ft radius. The UAV

constraints on altitude and speed are the same as before and the UAV position is

again initialized to po = 200 0 100 with a heading of . The results for two

semi-circular target trajectories are shown in Figures 3-17 and 3-18. Again the basic

spiralling behavior is present, maintaining an orthogonal motion to the line-of-sight

vector to the target while reducing relative range. As the UAV passes near the target

the information is increased more rapidly, as before.
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A few cases of faster moving targets are considered. The first involves a constant

velocity target moving at 22 ft/sec, which is half of the UAV velocity. The results

for this case are shown in Figure 3-19 for the first 50 measurements and in Figure

3-20 for a 100 measurement UAV trajectory. Figure 3-19 shows that, in this case,

the UAV spirals towards the target but cannot close in because of the fast target

motion. It then moves alongside the target until it has passed it and finally spirals

around to the other side. Note the sharp information increase obtained when the

UAV crosses over the target. This is due to the reduction in uncertainty provided by

the geometry of the measurements. Figure 3-20 shows the entire 100 measurement

trajectory. After the first crossover, the UAV continues to move alongside the target

and then, once it has passed it, circles around. The lower right plot of Figure 3-20

shows the slightly sharper information increases at around 55 measurements and 80

measurements corresponding to the second and third crossovers.

The second scenario for a fast moving target considers a target following a semi-

circular trajectory with 100 ft radius and a UAV taking 50 measurements. The trends

for this case are the same as before. The UAV begins by spiralling into the target,

crosses over it and subsequently circles around it. The information about the X and

Y dimensions is increased after the crossover.

One limitation of using the Fisher Information Matrix in the moving target scenar-

ios is that the FIM is computed using the position of the target at the particular time

the corresponding measurement is taken. The total information reflects the summa-

tion over all the measurements, however, since the target is moving and its position is

changing, the information provided by the old measurements is not as useful as that

of the new ones. The FIM framework accounts for this by using a proper transition

matrix which represents the motion of the target. However, in our case, the behavior

model of the target is unknown and therefore the transition matrix is assumed to be

an identity matrix. The result of this inaccuracy is that the information provided by

older measurements is not as valuable as the newer information and therefore the total

information used in the problem misrepresents the reality of the situation. One way

of fixing this could be by using an exponentially forgetting algorithm which discounts
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passed measurements and weights newer ones more heavily.

The UAV trajectories presented in this chapter show that, even though the circular

trajectory above the target is widely accepted as the optimal trajectory, it is better

for a UAV with motion constraints to adopt a spiral trajectory that slowly reduces

the range to the target. Most common approaches involve orbiting the target in a

circular trajectory, or moving straight towards the target first and then following

a circle of reduced range. These approaches do not produce the best information-

based trajectories and the optimization objective functions used in these cases do

not properly capture the physical and geometrical dependencies of the bearings-only

estimation problem. The circling behavior is only optimal for the case of highly

constrained UAV turn rate, and even then it is preferable for the circle or orbit to

be offset from the target to ensure that some parts of the trajectory are as close

to the target as possible. The spiral behavior shown in this section is based on

maximizing the information and guides the UAV to get the most information out of

each new measurement. Quigley et al. [61] address the problem of UAV trajectory

planning at a constant altitude using Hopf bifurcation techniques. The resulting UAV

trajectories for the stationary target case are spirals which converge to a constant

limit cycle involving a circle of predefined radius. Even though their optimization

approach is ad-hoc, the resulting trajectories show that the trends which improve

estimation performance are captured. Using this approach, however, is limiting since

it leads to fixed-shape spirals which are not well suited for dealing with randomly

moving target scenarios or for the multi-target tracking case. For a UAV with a

gimballed camera system, the optimal information-theoretic action is to minimize

the relative range and close in on the target, while attempting to maintain a nearly

orthogonal heading to the line-of-sight vector to the target. This behavior maximizes

the information by reducing the relative range as much as possible instead of circling

above the target where errors in the X and Y axes are improved but at a slower rate.

The approach shown in this chapter provides a better way to design UAV trajectories,

which is based on minimizing the estimation error and maximizing the information

provided by each measurement, and which is modular enough to handle stationary
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targets, multiple target tracking and several types of moving targets. As mentioned

before, the main drawback to this trajectory optimization approach is that the Fisher

Information Matrix is dependent upon the true target location, a quantity which is

unfortunately unknown to the UAV. Chapter 4 addresses this problem and provides

different approaches to handle the uncertainty in the target's location, solving the

target estimation and vehicle trajectory optimization problems simultaneously.
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Chapter 4

Vehicle Trajectory Optimization

for Stochastic Targets

The main issue with information based optimization strategies is the dependence of

the objective function on the parameters to be estimated. As shown in Chapter 3,

the Fisher Information Matrix is a function of the parameters to be estimated, which

in this case is the target location. This issue is prevalent throughout the literature

and is best described by Cochran [15] as: "You tell me the value of 0 and I promise

to design the best experiment for estimating 0." Since in practice the trajectory

planner has no access to the true target state, the best that can be done is to use an

a priori distribution on the target location [52] and to perform the target estimation

and vehicle trajectory optimization simultaneously. There are obvious limitations to

this approach and, since combining the estimation and optimization usually leads

to a highly nonlinear problem, convergence cannot be guaranteed. However, for the

problem of 3-D bearings-only target tracking, if the estimation is initialized properly

and the optimization is updated at a fast enough rate, the simultaneous estimation

and optimization approach provides the desired performance, as will be shown in the

following sections.

This chapter ties together the target localization estimation procedures described

in Chapter 2 and the vehicle trajectory optimization from Chapter 3. The basic ap-

proach involves invoking the Certainty Equivalence Principle by using the estimation
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results in place of the true target location for the trajectory optimization, and up-

dating the estimation and optimization every time a measurement is taken. Section

4.1 describes the results and performance for the simultaneous trajectory planning

and estimation problem using both the Extended Kalman Filter and Particle Filter

algorithms. Another approach is to use a known distribution on the target instead of

a single value (the estimation result), to represent the target location. This method

was first considered by Mandic and Frazzoli in [52] for the task of localizing a stochas-

tic target using acoustic measurements. Using the target distribution instead of the

mean of the estimate gives a better representation of the target's location, but comes

at the expense of higher computational costs since the expected value of the FIM

must be taken over the entire target distribution instead of at a single value. The

benefits and drawbacks of this approach are described in Section 4.2.

4.1 Simultaneous Trajectory Optimization and Tar-

get Estimation

This section explains the process of combining the target estimation and vehicle

trajectory optimization algorithms, and shows the resulting UAV trajectories and

estimation performance for several different cases. The two filters used for the esti-

mation are the EKF and the Particle Filter described in Section 2.3. The trajectory

optimization is performed by using the most current value of the target estimation

to form the FIM, and then minimizing the trace of the inverse of the FIM (using

the A-optimality criterion described in Section 3.1.2). Measurements are taken ev-

ery 0.5 seconds and the estimation and optimization routines are run in sequence,

updating both results at every time step. The processing time required to perform

the computations for these two algorithms is usually well within the allotted time of

0.5 seconds (due to the stochastic nature of the problem, sometimes the optimization

takes longer to converge but this is rare). The simultaneous estimation and opti-

mization results show that the estimation performance achieved using the optimized
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trajectory is similar to that obtained using the circular UAV trajectory presented

in Chapter 2, however the number of measurements for the optimized trajectory is

reduced by half. The total amount of information obtained using the optimized tra-

jectory with half the measurements is also shown to be similar to the information

gained over the ad-hoc trajectory presented in Chapter 2. Furthermore, both the

EKF and particle filter show increased stability and faster convergence and tend to

diverge less often. It is important to note that using this approach of simultaneous

estimation and optimization does not guarantee convergence, however, for the cases

described below, the initialization parameters are an order of magnitude larger than

the expected estimation accuracy and both filters are very stable, exhibiting better

convergence properties than in the case without an optimized trajectory. The results

for each filter are presented and discussed in the following sections.

4.1.1 Trajectory Optimization with Extended Kalman Filter

Estimation

Combining the trajectory optimization with the Extended Kalman Filter involves

using the current value of the target estimation in the optimization as the best known

target position. Several cases of target motion are analyzed, as in Section 2.3, and the

results for all the cases are summarized in Table 4.1, which provides the same data

as before. The stationary target scenario is considered first. The filter is initialized,

as in Section 2.3, using

0 20 200 0 0
xo= 0, o= 20 , Po 0 200 0 (4.1)

0 20 0 0 200

The UAV is operated at a fixed altitude with a velocity constraint of 44 ft/sec and

a turn rate constraint of 12 deg/sec. The UAV initial position is given by po =

[200 0 100 ], which is much farther than the initial position given in Chapter 2

of Po = 100 0 100 . The results for the simultaneous trajectory optimization
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and target estimation for the stationary target case are provided in Figure 4-1. The

UAV trajectory follows the initial spiral shape described in Chapter 3, passing close

to the target and then circling around for a second pass. The convergence of the

estimation is much faster, and the resulting mean and variance for the X and Y

dimensions is much more accurate than the case presented in Chapter 2 (see Table

4.1), and using only half the measurements than before. Furthermore, the X and Y

information are also shown to be higher than before. The estimation performance for

the Z axis is worse however, since only half the measurements are used than before,

and the trajectory optimization cannot drastically improve the information obtained

about the Z axis. This can be seen by looking at the information plot of Figure

4-1. In practice though, terrain elevation data is usually available and could be used

to improve the performance of the Z estimation. It is interesting to note that the

information in the X and Y axes increases sharply when the UAV crosses over the

target the second time, and, correspondingly, the estimation performance drastically

improves. Overall, even though the UAV is farther away from the target than in the

previous case and less measurements are taken, the estimation performance is better,

since the optimized trajectory provides higher information, reducing the uncertainty

in the estimation.

The next scenarios considered are for moving targets with no prior behavior model

of the target motion, as described in Section 2.3. The first case involves a target

exhibiting a random-walk behavior. The EKF parameters are initialized as in Section

2.3 and the UAV trajectory is optimized using the target estimation results. The

results for this case are presented in Figure 4-2. The UAV trajectory produced by the

optimizer closely resembles the results shown in Figure 3-6, and the UAV is shown

to spiral in towards the target, passing over and then circling around for another

pass. The information in the X and Y axes in significantly improved when the UAV

passes over the target as seen in the information plot of Figure 4-2. Correspondingly,

the X and Y estimation error and covariance decrease, but due to the random walk

dynamics of the target, the estimation accuracy decreases as the UAV moves away

again. The resulting estimation performance for the random walk case is slightly
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worse than that obtained in Chapter 2 but overall is quite similar even though only

half the measurements are used.

The next moving target case considered is for a constant velocity target. As before,

no target behavior model is assumed, and the EKF consists of a stochastic target

model with constant propagation and increased process noise. The results for this

scenario are presented in Figure 4-3. The resulting UAV trajectory is similar to that

shown in Figure 3-15 exhibiting the same spiralling and circling behavior as before.

The estimation performance for this case is worse than that of Section 2.3.1 and the

estimation error and variance are about twice as much as before and the information

is half as much. These results are shown in Table 4.1 and the particle filter algorithm

also shows the same performance (described in the next Section). Since only 50

measurements as opposed to 100 from before are used, the estimation performance

is about equal to that of Section 2.3.1. An interesting thing to note however, is that

although the variance and estimation error remain noisy, the estimation is not biased

as before and the optimal UAV trajectory is effective in eliminating the estimation

bias by increasing the information rapidly (as evidenced by the increase in information

after 10 measurements in Figure 4-3).

The final slow moving target case involves tracking a target following a semi-

circular trajectory. The target is restricted to the ground plane and follows a semi-

circular trajectory of 20 ft radius as before. Again, a stochastic model of the target

is used in the EKF, since the estimation algorithm cannot assume that the target is

turning. The results for the turning target case are provided in Figure 4-4. The UAV

trajectory again resembles the results shown in Chapter 3. A sharp information gain

can be seen as the UAV comes close to the target, around 15 measurements, causing

a corresponding decrease in uncertainty and increase in estimation accuracy. The

overall estimation performance is better than in Section 2.3.1, showing a lower error,

much lower variance and increased information with only half the measurements (see

Table 4.1).

An additional case involving a fast moving constant velocity target is considered

as well. In this scenario the target has a velocity of 22 ft/sec which is half the speed
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Table 4.1: Summary of results for 3-D EKF Estimation with Trajectory Optimization

Target Dynamics Estimation Error Estimation Variance Fisher Information
Stationary x 0.23 0.71 1.45

y 0.28 0.68 1.52
z -0.81 7.92 0.12

Total 0.89 9.30 3.09
Random Walk x -0.62 23.83 0.84

y 2.74 29.68 0.88
z 3.46 11.57 0.16

Total 4.46 75.08 1.88
Constant Velocity x -2.82 23.58 0.82

y 3.01 16.51 0.96
z 2.82 8.34 0.17

Total 5.00 48.43 1.95
Semi-circular x -2.21 4.35 1.15

y 2.05 11.42 1.08
z 0.86 9.86 0.15

Total 3.14 25.62 2.38

of the UAV. The results for the simultaneous estimation and optimization are shown

in Figure 4-5. Although the errors are quite large, the EKF manages to track the

target and the filter remains stable, unlike the case presented in Chapter 2 using the

ad-hoc trajectory. Furthermore, the information provided by the measurements using

the optimized UAV trajectory is much higher than the results presented in Chapter 2

using the circular trajectory. This case clearly illustrates the benefit of optimizing and

re-planning the UAV trajectory in real-time using an information-based approach.

The simultaneous trajectory optimization and target estimation using the Ex-

tended Kalman Filter shows that enhanced estimation performance can be obtained

by optimizing the target trajectory using an information metric in real-time. For all

the cases described above, the estimation converges rapidly, the EKF algorithm is

considerably more stable than before, and the estimation achieves accurate results

within only 50 measurements. In general, the estimation of the Z axis is worse than

that of the other two dimensions. As mentioned before, this is because the informa-

tion provided about the Z axis is much less than that of the X and Y axes since
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measurements cannot be taken from below the target. Overall, the EKF combined

with the trajectory optimizer performs very well, showing that it is more important

to increase the information gain provided by each new measurement by designing

a proper UAV trajectory than to waste bandwidth and computational resources by

taking more sub-optimal measurements.

4.1.2 Trajectory Optimization with Particle Filter Estima-

tion

This section describes the simultaneous UAV trajectory optimization and target es-

timation using a particle filtering algorithm. The particle filter described in Section

2.3.2 is combined with the trajectory optimization algorithm from Chapter 3. The

sample mean of the particles at a given time step are used in the trajectory opti-

mization algorithm instead of the true target value. The estimation and optimization

algorithms are run in sequence, updating both in real-time. The performance of the

combined trajectory optimizer and particle filter is tested using the same scenarios

described above for the EKF and in Section 2.3.2 and the results for the stationary

and slow moving cases are summarized in Table 4.2, which contains the same data as

before. An additional case for a fast moving target is considered last and the particle

filter shows good tracking performance even for this extreme target motion case.

The first case considered is for a stationary target. The UAV is initialized to

Po = 200 0 100] which is farther than the case considered in Section 2.3.2. The

results for the stationary target case are shown in Figure 4-6. The trajectory shape is

similar to the optimal trajectory shown in Figure 3-6 and displays the same spiralling

and circling behavior as before. The target estimation performance is similar to the

results obtained in Section 2.3.2 and the information content and variance for the

X and Y dimensions for both cases are close. The mean of the estimation error is

slightly worse using the optimal trajectory but the results are still under 5 ft (see Table

4.2). It is interesting to note the drastic increase in estimation performance when the

information is sharply increased by the UAV passing close to the target. This can be
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seen by looking at the estimation error and information plots in Figure 4-6. Overall

the PF estimation using the optimal trajectory achieves similar performance to the

case of an ad-hoc circular trajectory using only half the measurements.

The moving target case for a random walk target is explored next and the results

are presented in Figure 4-7. The UAV trajectory is shown to spiral into the target

and then circle around it to come in for a second pass. The information is shown

to increase sharply when the UAV comes close to the target. Correspondingly, the

X and Y estimation error and covariance decrease at these same times. Due to the

random walk dynamics of the target, however, the estimation accuracy decreases as

the relative range increases again. As explained in Section 2.3.2, the PF algorithm

is quite sensitive to its tuning parameters and the propagation noise of the particles

(aW) has to be adjusted to obtain adequate filter performance. If aw is too high the

the estimation performance will be noisy, but is a is too low the filter cannot track

adequately and will diverge. If oa is properly tuned however, the particle filter is

very stable and consistently achieves good convergence. The estimation accuracy is

similar to the results obtained in Section 2.3.2, but using only half the measurements

(see Table 4.2).

The constant velocity target case is considered next and the results are shown in

Figure 4-8. The UAV trajectory closely resembles the optimal trajectory shown in

Figure 3-15, where the UAV spirals towards the target and then circles around it.

The information gain when the UAV passes close to the target can be seen in Figure

4-8, and the estimation error and variance are shown to decrease accordingly. As

in the case of the EKF, the information obtained for the constant velocity tracking

case is about half of that obtained using the ad-hoc trajectory from Chapter 2. The

estimation performance is also shown to be worse (see Table 4.2). Since the optimal

trajectory uses half the measurements than the ad-hoc trajectory the estimation per-

formance is equitable. The optimal trajectory does, however, reduce the estimation

bias successfully and although the results are noisier, they converge faster and remain

closer to the true target value throughout the remainder of the estimation.

The final slow moving target case considered is for a target following a semi-
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Table 4.2: Summary
Optimization

of results for 3-D Particle Filter Estimation with Trajectory

circular trajectory. As before the target behavior is considered stochastic and the

particle propagation noise is increased to account for the uncertainty in the target's

motion. The results for this scenario are presented in Figure 4-9 and in Table 4.2.

The UAV trajectory spirals towards the target and then circles around it coming in

for a second pass. Once again, the information plot shows sharp increases in X and

Y information when the relative range to the target is the lowest. These information

increases are shown to correspond with a reduction in uncertainty and an increase in

estimation accuracy as seen in the estimation error plot of Figure 4-9. The resulting

estimation error is lower than the results shown in Table 2.2 and the information for

the X and Y axes is higher, even though only half the measurements are used.

An additional case involving a fast constant velocity target moving at half the

speed of the UAV is considered. The results for this scenario are presented in Figure

4-10. The particle filter is able to track the target and even though the error is large

compared to the slow moving target case, the filter remains stable and converges,
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Target Dynamics Estimation Error Estimation Variance Fisher Information
Stationary x -0.56 3.89 0.81

y -1.50 5.46 0.84
z 3.60 17.97 0.16

Total 3.94 27.33 1.81
Random Walk x 5.17 44.76 1.11

y -0.26 28.56 1.44
z -3.14 57.45 0.14

Total 6.05 130.77 2.68

Constant Velocity x 0.42 15.67 0.85
y 5.19 14.89 0.87
z -6.73 17.34 0.15

Total 8.50 47.90 1.87
Semi-circular x 0.04 65.37 1.45

y 3.03 39.61 1.54
z -2.97 57.58 0.13

Total 4.24 162.57 3.12
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unlike the case considered in Chapter 2 using the ad-hoc trajectory. This shows

that using an optimized UAV trajectory results in enhanced estimation performance.

Furthermore, the information content for this scenario is much higher than in the

case considered in Chapter 2 with the ad-hoc circular trajectory, showing that in-

creasing the information provided by the measurements improves the accuracy and

convergence of the estimation.

Overall, the particle filtering algorithm combined with the UAV trajectory opti-

mization works very well and achieves accurate estimation performance. The particle

filter has very good convergence properties and is consistently more stable than the

EKF for all the above scenarios. The Z axis estimation results are not as accurate as

the X and Y estimation, due to the lack of information about the Z axis caused by

the poor geometry of having all the measurements taken from above the target only.

One issue with the PF is its sensitivity to its tuning parameters, especially to the par-

ticle propagation noise (aW). Higher values of axw increase the speed of convergence

but make the estimation results noisier, whereas lower aw values make convergence

slower but the estimation is a lot less noisy. Ideally, higher a, values should be used

initially to increase the speed of filter convergence, however, as the estimation be-

comes more accurate, ac should be reduced to smooth out the estimation results.

Future enhancements to the particle filter would involve adaptively recomputing a

leading to improved filter performance.

4.2 Trajectory Optimization for Targets with Stochas-

tic Distribution

The approach taken in the previous sections uses the estimated target value instead

of the true target location in the computations of the Fisher Information Matrix. In

practice, this method is shown to work well, however no guarantees can be made

about the stability or convergence of the combined algorithm. In fact, if the initial

estimate of the target is too far away from the true value, the UAV trajectory would
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be considerably off from the desired optimal trajectory and the estimation algorithm

would likely diverge. This dependency of the UAV trajectory on the single value of the

target location estimate is undesirable and can be somewhat ameliorated by using a

distributed target approach instead. Using an a priori distribution for the stochastic

target, the expected value of the Fisher Information Matrix can be computed and

used in the optimization in lieu of the FIM computed with the single target location

estimate, leading to a more accurate consideration of the uncertainty in the target's

position. This approach was first explored in [52] and is described in Section 4.2.1,

where results for the trajectory optimization of a UAV around a uniformly distributed

target are presented. The new optimization approach is then integrated with a particle

filter estimation algorithm and the process is described in Section 4.2.2. The particle

values and their respective weights are used to represent the stochastic distribution

of the target at each time step and the FIM in the optimization is computed over the

entire particle set. The resulting UAV trajectories and target location estimation are

shown below.

4.2.1 Trajectory Optimization for Distributed Targets

This section describes the process of performing UAV trajectory optimization for

tracking a stationary target using a probability density function of the stochastic tar-

get's distribution. The expected value of the Fisher Information Matrix is computed

with respect to the target distribution instead of using the FIM at the estimated

target location. The equation becomes,

Ex{J(x)} = D J(x)fx(x) dx (4.2)

where fx(x) is the joint target distribution over its three dimensions and D is the

domain of fx(x). The objective function is then computed using the expected value

of the FIM and is given by,

f(J(x)) = Tr{Ex{J(x)} - } (4.3)
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The trajectory optimization for a fixed altitude UAV tracking a stationary target,

presented in Section 3.2.2, is revisited using a distributed target. The target is as-

sumed to be uniformly distributed over an area of 60 ft x 60 ft and the distribution

is discretized using 81 points. The UAV trajectory results are shown in Figure 4-11.

The shape of the trajectory does not change much due to the target distribution. The

UAV still spirals towards the target and then circles around for a second pass. The

total expected information is however higher than in Figure 3-6. To test the effects

of a larger distribution area for the target, a uniform target distribution over an area

of 120 x 120 is used instead. The results for this scenario are presented in 4-12 and

this time the shape of the trajectory is affected by the target distribution. The UAV

prefers to fly along the border of the distribution and circle around the entire area,

instead of circling around the mean. The expected information is higher than that

obtained in 3-6.

This trajectory optimization approach based on a probability distribution of the

target provides UAV trajectories that are theoretically better than those computed

using a single target estimate value, since they more accurately account for the un-

certainty in the target estimate. For targets with very complex or widespread dis-

tributions the benefits of this approach are apparent. This method could also be

used for UAV trajectory planning in the multiple-target scenario, by representing the

target distribution using a multi-modal density. However, for the single UAV case

with a uniform or normal a priori distribution with a relatively small uncertainty

(one order of magnitude above the desired estimation accuracy), the optimized UAV

trajectories are still very similar to the results obtained using the mean of the distri-

bution, and the benefits of the distributed target method are marginal. Furthermore,

optimization using the expected value of the FIM over the entire target distribution

is a computationally intensive task which takes orders of magnitude longer to execute

than the optimization using the mean of the target distribution. Since the results are

not significantly different, the additional computational resource usage is not justified.
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4.2.2 Trajectory Optimization for Distributed Targets Using

Particle Filter Estimation

One of the most interesting uses of the approach presented above is its easy integration

with particle filter estimation. Since particle filters work by propagating a target

distribution using weighted particles, the probability density function of the target is

readily available at each time-step. The optimization can then use the particle values

and their weights to compute the expected value of the Fisher Information Matrix

over the particle set for every time step using,

N

E{J(xk)} = J(Xk)m k  (4.4)
i=-i

where N is the number of particles and m is the associated weight of each particle

used in the filter.

The results for the combined particle filter estimation and trajectory optimization

over the stochastic target distribution are presented in Figure 4-13 and Table 4.3.

The shape of the UAV trajectory is very similar to that obtained using the mean of

the estimation for the trajectory optimization (see Figure 4-6). The total information

provided by the measurements is also similar in both cases as is the final estimation

error. The variance, however, using the distributed target approach is much lower (see

Table 4.3). After 15 measurements the filter stabilizes and the estimation error and

covariance remain fairly constant, showing that the distributed target optimization

approach enhances the stability and robustness of the particle filter. Since the normal

particle filter shown in Section 4.1.2 is already quite stable and converges rapidly,

however, the uncertainty in the target location estimate is not large enough to produce

a significant change in the trajectory shape.

Although this approach using the stochastic target distribution is more robust and

theoretically more accurate, it suffers from a few practical drawbacks. The main issue

is that the computation time required to perform optimization using a distributed

target is orders of magnitude longer than the case using the sample mean of the target
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Table 4.3: Summary of results for 3-D Particle Filter Estimation with Trajectory
Optimization Using Particle Distribution

Target Dynamics Estimation Error Estimation Variance Fisher Information
Stationary x 0.33 2.15 0.79

y 1.03 2.80 0.85
z 2.46 3.89 0.16

Total 2.69 8.84 1.80

estimate. Reducing the number of particles in the PF could reduce the amount of

computational resources required, but at the expense of lower PF estimation accuracy.

In practice it is found that the PF algorithm requires at least 500 particles, making

this distributed target optimization approach infeasible in real-time. Furthermore, the

improvement in trajectory design for this new algorithm over the case using the mean

of the target estimation is marginal. This is especially true when more measurements

are available and the estimation accuracy increases, since the variance decreases, and

as seen in Section 4.2.1, the trajectory for a distributed target with low variance is

almost the same as that for a target centered at the origin.

For the 3-D bearings-only target tracking problem using small UAVs it is found

that the best approach for target estimation is provided by executing simultaneous

estimation and trajectory optimization. Optimizing the UAV flight path in real time

leads to trajectories that maximize the amount of information provided by the mea-

surements and reduce the uncertainty and error in the target location estimation.

Although no guarantees of convergence can be made, both the EKF and the PF algo-

rithms exhibit enhanced stability and convergence properties when an optimal trajec-

tory is used. The EKF and particle filter with 500 particles show similar estimation

performance and are equally well suited to dealing with stationary and stochastically

moving targets. Both estimation algorithms, along with the optimization, take signif-

icantly less than 0.5 seconds to run and, although computational resources available

onboard a UAV are very different from those of a traditional personal computer, the

algorithm run-time suggests that there is a future for implementing methods like these
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onboard small UAVs. The accuracy of the particle filter could be increased by using

a larger number of particles, but this would come at the expense of increased compu-

tational resources. Additional improvements to the PF algorithm shown in Section

4.1.2 could be made by adequately tuning the filter parameters. With an adaptive

tuning algorithm, the sensitivity of the PF performance on the tuning parameters

could be exploited to improve the overall estimation results. The distributed target

approach presented in this section is too expensive to implement in real-time, but

could be used to initialize the optimization, especially if the uncertainty in the initial

target estimate is very large.

Overall, the results presented in this chapter show that computing optimal information-

based UAV trajectories in real-time is important and leads to increased accuracy and

observability in the target estimation. The computational resources required to pro-

cess the combined estimation and optimization described in Section 4.1 are moderate

and these algorithms could be implemented on board a small UAV to improve target

estimation and tracking performance.
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Chapter 5

Conclusion

This work explores the challenges associated with localizing an unknown target in an

unknown environment using a small UAV equipped with navigation and imaging capa-

bilities. Estimation algorithms for the 3-D nonlinear bearings-only tracking problem

are presented and trajectory optimization strategies based on information-theoretic

techniques are considered. The problem of simultaneous target estimation and vehicle

trajectory optimization is explored and the resulting algorithms produce vehicle tra-

jectories that increase the information provided by the measurements, greatly enhanc-

ing the target estimation performance, removing biases, improving filter convergence,

increasing estimation observability, and overall leading to improved target localiza-

tion. The following sections summarize the content of this thesis, analyze and discuss

the results obtained, and provide suggestions for future work and improvement.

5.1 Summary

Chapter 1 introduces and motivates the problem of target tracking and localization

using small UAVs equipped with navigation and video capabilities. The main system

models and dynamics are provided and the primary challenges associated with target

localization and tracking using small UAVs are discussed. Chapter 1 also describes

previous work in bearings-only target tracking and explores different issues associated

with target estimation and vehicle trajectory optimization. Research in sensor place-
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ment techniques and vision-based target localization is considered as well. The Fisher

Information Matrix and the Cramer-Rao Lower Bound are introduced as measures

for assessing estimation performance and provide a framework for the development

of vehicle trajectories that increase the information provided by the measurements in

order to improve the accuracy and observability of the estimation.

Chapter 2 provides a detailed analysis of the general target estimation problem.

It begins by describing the Fisher Information Matrix and Cramer-Rao Lower Bound

which are used to quantify the performance of different estimation algorithms. The

challenges associated with different estimation algorithms such as the Least Squares

estimator, the Extended Kalman Filter, and the Particle Filter are described. The

close relationship of the EKF and the least-squares estimation algorithms to the

Fisher Information Matrix is also described, showing the dependence of the estimation

performance on the information content of the measurements. The chapter ends with

applications of the Extended Kalman Filter (EKF) and the Particle Filter (PF) to

the problem of 3-D target localization with bearings-only measurements. The known

information includes the position of the UAV and the direction in which the camera is

pointing, resulting in measurements composed of two angles (azimuth and elevation).

The relative range from the UAV to the target is not measured, but can be determined

through subsequent bearings measurements. Although the EKF and the PF are shown

to be good tracking algorithms, this bearings-only estimation problem is nonlinear

and several complications arise with these traditional filtering methods. For example,

if proper estimation observability is not provided quickly the estimation algorithms

diverge and the resulting instability leads to premature covariance collapse, as shown

by Aidala [6]. Or, without proper estimation observability, the estimation results

become biased and the uncertainty is increased. The cases shown in Chapter 2 use a

predefined ad-hoc UAV trajectory which consists of a circular orbit above the target

at a fixed altitude. For this trajectory, the estimation results and the information

provided by the measurements are given for several different cases of target motion,

and the close relationship between the information and the estimation performance is

demonstrated. The examples in Chapter 2 show the sensitivity of the overall target
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estimation problem to the trajectory taken by the UAV and illustrate the need for

designing trajectories that maximize the information provided by the measurements

and thus enhance estimation performance.

Chapter 3 describes the task of vehicle trajectory optimization with the goal of

improving the target location estimate by increasing the information provided by the

measurements. It starts by deriving the Fisher Information Matrix (FIM) for the

2-D and 3-D bearings-only target localization problems. A discussion and compari-

son of different cost functionals based on the FIM is provided next, focusing on the

physical significance and mathematical qualities of each. For the 3-D bearings-only

target localization problem the A-optimality criterion, involving the trace of the in-

verse of the FIM, is chosen as the objective function and optimal UAV trajectories are

computed which maximize the amount of information available for different cases of

target behavior and vehicle constraints. For the sensor placement (unconstrained ve-

hicle motion) case the optimal trajectory is shown to be a circle above the target with

a radius to altitude ratio of approximately 0.7. For the constrained vehicle motion

scenario a fixed-wing UAV with a fixed velocity and maximum turn rate is considered

as the platform vehicle and several cases of target motion are analyzed. The resulting

trajectories for the stationary target case consist of spirals that increase the angular

separation between subsequent measurements while reducing the relative range to the

target. The UAV trajectories pass as close to the target as possible, within the vehicle

constraints, and then circle around for the next pass. Sharper information increases

are observed when the UAV passes close to the target. Restricting the maximum turn

rate leads to limit cycles where the UAV orbits the target. An interesting result is

that the optimal information-theoretic action in these cases involves following an orbit

where the target is off-center. This leads to measurement points along the trajectory

that pass as close to the target as possible, within the vehicle turn rate constraints,

minimizing the relative range to the target. As the maximum allowable turn rate is

increased, the trajectories become more spiral-like, passing closer to the target, and

then circling back around for subsequent spiral passes. Slow moving target scenarios

are considered next and the same spiral trends are observed for these cases, although
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the trajectory is adjusted to account for the motion of the target. Fast moving tar-

gets are also considered and the resulting trajectories show that the UAV spirals are

adjusted to minimize the relative range to the target while attempting to maintain

as much angular separation between the measurements as possible. When the vehicle

is close enough to the target it crosses overhead and the information is drastically

increased. Multiple target scenarios are also considered and the UAV again spirals

towards a target and then circles around and moves towards the next target, showing

that minimizing the relative range to a farther target provides a sharper information

increase than circling around a near target multiple times.

The information-theoretic optimization in Chapter 3 depends on the true target

location, an unknown quantity, which is the conundrum faced in most joint estimation

and trajectory planning problems. To address this issue and accommodate stochastic

or unknown target behavior two approaches are explored in Chapter 4. The first

invokes the Certainty Equivalence Principle by tying together the estimation from

Chapter 2 and the optimization from Chapter 3, using the mean value of the esti-

mation instead of the true target location in the optimization algorithm. Both, the

estimation and the optimization, are run in sequence and updated simultaneously in

real time. This approach is tested using both the EKF and the Particle Filter, and the

algorithms are shown to converge leading to estimation results which are better than

those obtained in Chapter 2. The results in Chapter 4 show that improved estimation

accuracy and increased filter convergence are obtained by planning trajectories in real

time to maximize the information, rather than using a predefined circular trajectory

above the target which is currently the most common approach. The second method

of dealing with stochastic targets consists of computing the expected value of the FIM

with respect to a known target distribution in the optimization instead of using the

deterministic FIM based on the estimated target value. This approach is combined

with a particle filtering estimation algorithm, where the particles and weights of the

filter are used to represent the probability distribution of the stochastic target. Al-

though this method is theoretically more stable and increases filter convergence, the

algorithm run-time is shown to be several orders of magnitude higher than that of
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the simultaneous estimation and optimization approach described earlier, and could

therefore only be used to initialize the UAV trajectory. The following section de-

scribes the results of this thesis in more detail and provides discussion on some of the

noteworthy points.

5.2 Analysis and Discussion of Results

This thesis presents an information-theoretic approach for vehicle trajectory opti-

mization in the 3-D bearings-only target localization problem. The optimal vehicle

trajectories are shown to be spirals which increase the angular separation between

the measurements while decreasing the relative range to the target. These trajec-

tories maximize the amount of information provided by the measurements and are

applicable to several types of target motion and vehicle dynamic constraints. The

sensor placement case presented in Section 3.2.1 shows that, without considering ve-

hicle motion constraints, the optimal trajectory is a circle orbiting the target, a result

that is widely accepted in the current literature as the optimal UAV trajectory for

target localization. However, this is only a particular case of the vehicle trajectory

optimization problem with restricting assumptions on the vehicle dynamics. If vehi-

cle constraints on velocity and turn rate are considered, spiral trajectories are shown

to be better than circular trajectories centered on the target. Using the stationary

target scenario as a baseline, different transient and limiting behavior is obtained by

modifying the turn rate constraints. With a low maximum allowable turn rate, the

initial spiral trajectory cannot get as close to the target as with a more relaxed con-

straint. This low turn rate constraint causes the UAV to converge onto a limit cycle,

circling around the target. It is interesting to note that, for the information-theoretic

optimal trajectory, the target is not in the center of the circle as most current lit-

erature suggests (see [62] and [10]). Rather, the UAV has phases of the trajectory

where it is close to the target, showing that minimizing the relative range to the

target while maintaining angular separation of the measurements results in a higher

information content. As the turn rate constraint is relaxed, the UAV is free to make
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sharper turns and the resulting trajectory is a spiral which passes as close to the

target as possible within the vehicle turn rate constraint. Spiral trajectories using

Hopf bifurcation techniques are presented by Quigley et al. [61] as ad-hoc solutions to

the UAV trajectory planning problem for target localization. The spiral trajectories

start by heading towards the target and subsequently converge onto a limit cycle that

circles the target. This case can be compared to the scenario presented in Figure 3-

7. The information-theoretic solution differs by making the initial trajectory pass as

close to the target as possible and then come around, finally converging on a circular

limit cycle around the target. The information gain as the UAV passes close to the

target can be seen in the information plot of 3-7, illustrating the benefit of reduc-

ing the relative range to the target. Many results shown throughout the literature

are obtained by making specific assumptions about the target motion or the vehicle

dynamics, however, the algorithms presented in Chapter 3 provide a mathematical

framework to handle several different types of vehicle constraints and dynamics, as

well as many different target scenarios, including moving targets and multiple targets.

This framework relies on maximizing the information provided by the measurements

and results in trajectories that provide the best geometry for the measurement set,

thus minimizing the target location estimation error for many different situations.

As mentioned in the previous section, an issue with information-based trajectory

design is that the objective function relies on the value of the true target location.

Chapter 4 addresses this issue by providing a suite of algorithms for performing target

estimation and vehicle trajectory optimization in sequence, using the mean of the tar-

get estimate in the optimization objective function in lieu of the true target location.

An important result of this thesis is that the performance of the simultaneous estima-

tion and optimization algorithms explored in Chapter 4 is significantly better than

the target estimation using a predefined trajectory seen in Chapter 2. It is well known

that taking more measurements reduces estimation error, but the information pro-

vided by the vehicle trajectory also plays an important part in improving estimation

accuracy. Some measurements provide more information than others and, by maxi-

mizing the amount of information provided by each new measurement, the estimation
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performance can be enhanced. This is shown by comparing the estimation results,

for both the EKF and the PF, using the circular trajectory from Chapter 2 to the

later results using the optimal UAV trajectory. Even though 100 measurements are

taken in the circular trajectory cases and only 50 are used for the optimal trajectory

scenarios, the estimation error and uncertainty for both trajectory scenarios are very

similar, and the information provided by the measurements is comparable, showing

that equal estimation performance can be obtained using only half the measurements

if the UAV trajectory is selected properly. The convergence properties of both the

EKF and the PF estimation algorithms are also increased by optimizing the vehicle

trajectories, as shown in the cases of tracking a fast moving target. The estimators

using the ad-hoc circular trajectory are incapable of achieving tracking convergence,

whereas optimizing the UAV trajectory in real time allows the estimators to track the

target easily. Furthermore, for both the EKF and the PF, the estimation accuracy

is shown to rapidly increase and the covariance decrease when a sharp information

gain is obtained. All these results show that it is more important to increase the

information provided by the measurements by designing a proper UAV trajectory,

than to waste bandwidth and computational resources by taking more measurements

that do not provide much new information. The measurements for the optimal tra-

jectory scenario are taken every 0.5 seconds to ensure that enough time is provided

for processing the estimation and optimization algorithms. This measurement rate is

arbitrarily chosen and further analysis on the increase in information provided by the

trajectory could be used to optimize the measurement rate, thus reducing process-

ing requirements whilst still achieving the desired estimation accuracy. For example,

since it is not necessary to waste bandwidth and computational resources if the new

measurements do not provide a significant amount of new information, the algorithm

could be tuned to take a measurement only when the change in information is above

a certain threshold.

One of the primary conclusions of this thesis is that the Fisher Information Matrix

provides a good framework for vehicle trajectory optimization. The FIM is indepen-

dent of the estimation algorithm used and is based mainly on the physical and geomet-
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rical properties of the system. Optimization based on the FIM therefore captures the

essential geometric relationships associated with the estimation problem and focuses

on increasing the information provided by the measurements, resulting in improved

estimation performance. Another important property of the Fisher Information Ma-

trix is that it is additive and can be updated recursively using a simple summation.

This can be used for processing measurements from a single sensor over multiple time

steps or for computing the FIM for multiple sensor measurements. A combination of

these can also be used where multiple sensors take measurements over multiple time

steps. It is interesting to note that the separate sensors are not required to have the

same properties or measurement models and are not restricted to taking measure-

ments at the same time steps. As long as the sensors are independent the Fisher

Information Matrix is easily computed. This makes the information-theoretic ap-

proach particularly well suited to estimation problems involving heterogenous teams

with several different sensing systems collaborating to provide a target location es-

timate. It is important to mention that the concepts of using the FIM to compute

optimal trajectories for improved estimation performance and combining the opti-

mization and estimation are not restricted to the bearings-only case. This approach

can be used for any nonlinear system with any measurement model. Convergence

properties may change based on the dynamics of the problem at hand but, since this

approach relies on the underlying physical and geometric properties of the system, it

is probable that this method will enhance the estimation performance for many types

of nonlinear systems.

An interesting result is that the best suited objective function for trajectory op-

timization in the 3-D bearings-only target estimation problem is the A-optimality

criterion, which closely resembles the geometric dilution of precision (GDOP) criteria

often used in GPS navigation. This further illustrates that optimization using the

FIM leads to trajectories that provide the best geometry for a given set of measure-

ments. The trajectory optimization results presented in Chapter 3 show the tradeoff

between simultaneously reducing the relative range to the target and increasing the

angular separation between measurements, thus supporting the geometric intuition
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about minimizing the estimation error presented in Chapter 1, and showing that

information-based optimization captures these geometric and physical properties of

the estimation problem.

The resulting trajectories shown in this thesis can be directly applied to small

UAVs with gimballed camera systems. A gimballed camera can be pointed in any

direction and made to look at the target, thus ensuring that the target always remains

in the field of view of the camera. Since the trajectories that produce the most

information usually maintain a flight path that is nearly orthogonal to the line-of-

sight vector to the target, the desired placement for a fixed camera would probably

be a side-looking mounting. This work could be extended to consider UAVs with

fixed side-look cameras by including the field of view constraints in the trajectory

optimization problem. For small fixed-wing UAVs, the main challenge associated

with using a side-mounted camera is that these vehicles are particularly sensitive to

wind and gusts, especially with respect to the bank angle. This often causes the

target to move out of the field of view of the camera and thus proper measurements

cannot be obtained. Using a gimballed camera system would mitigate this problem

by allowing the camera to turn and point at the target even when the airplane is

not at the desired bank angle, thus providing greater flexibility and increasing the

usefulness of small UAVs in the target localization problem.

5.3 Future Work

There are several possible extensions of this work and a few ideas are described in this

section. The first suggestion for future work involves the incorporation of behavior

models for different target types. The results in this thesis consider stationary targets

and moving targets with stochastic behavior models. The motion of the targets is

assumed unknown and the best the filter can do is to use the process noise model to

represent the uncertainty in the target motion. Incorporating actual behavior models

of the target motion would improve the performance of the estimation by increasing

accuracy and filter stability. This comes at the cost of reduced flexibility, since any
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deviation by the target from the expected behavior model would cause serious prob-

lems with the estimation. Since this system is designed to be used in situations where

no prior information is available a stochastic target model is considered appropriate

for this thesis. As more information is collected and target types are classified, differ-

ent behavior models of targets could be used to enhance estimation performance. For

example, turn constraints or maximum vehicle speeds could be incorporated to limit

the motion of the target. Additionally, information about the environment could be

processed to produce probabilistic models of the target's behavior. For example, if a

road is detected and a vehicle is on it, it is more likely that the vehicle will remain on

the road than deviate off of it. Or if a lake or barrier is present, it is highly unlikely

that a car or truck would turn into it, thus imposing a probabilistic constraint on

the target's motion. Research of target estimation using hospitability and synthetic

inclination maps is already in place and could be used in combination with the tra-

jectory optimization strategies provided in this thesis. Terrain elevation data, such as

DTED, could also be used to refine the estimation of the Z dimension and to restrict

the motion of the target in this direction.

Another interesting target type that can be considered involves targets exhibiting

evasive behavior. Evasive targets are those with knowledge of the pursuer's actions

and intentions and which purposely attempt to increase the difficulty of the pursuer's

task. These types of targets have been considered in a differential games framework,

where the target acts to maximize his value and minimize that of the pursuer. In this

case, the value function would involve the inverse of the FIM and the target would

plan its trajectory by maximizing this function. Such targets could be considered by

assuming that they will always execute maneuvers that reduce the observability of

the estimation and decrease the information provided by the UAV's measurements,

thus attempting to decrease the performance of the target location estimation.

This work could also be extended to include target localization for multiple tar-

gets. Chapter 3 shows results for UAV trajectory optimization in the multiple target

scenario assuming that measurements of all the targets are obtained at every time

step. In reality, one would image one target at every time step and further optimiza-
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tion could be performed to determine which target to measure in order to obtain the

highest overall information. Another problem, involving the estimation algorithm,

in the multiple target scenario is that if multiple targets are imaged simultaneously

the target localization task consists of a simultaneous data association and estima-

tion problem. This type of estimation can be accomplished using particle filters but

the task of determining which measurements are associated with each target is quite

challenging, especially if the number of targets is unknown [9] [8].

Another interesting problem involves determining what the optimal camera mount-

ing location is for the case of a UAV with a fixed-camera. This camera placement

would depend on the type of target motion expected and would probably involve

a side-look camera since the optimal information-theoretic trajectory maintains a

nearly orthogonal heading to the line-of-sight vector to the target. As mentioned

before however, side-look cameras are more difficult to use since wind and gusts af-

fect the bank angle of the UAV the most, and this issue would need to be addressed

before the system can be used in a realistic setting. Additionally, it would probably

be advantageous to have a wider vertical field of view than horizontal field of view,

since most of the change in viewing angle occurs in the vertical direction (due to the

reducing relative range). It would also be interesting to determine what the optimal

measurement rate is. Finding the slowest rate at which measurements can be taken

whilst still providing the desired accuracy would free up computational resources and

bandwidth which are fairly limited for small UAVs. This rate could also be made vari-

able and measurements could be taken only when the expected additional information

is above a certain threshold.

Other suggestions for improvement involve refining the UAV trajectory optimiza-

tion and target estimation. For example, by using the future target location instead of

the current target location estimate, the optimization would produce a better UAV

trajectory and a more accurate estimation could be achieved. This would require

the propagation of the target dynamics model and the time needed for planning

and UAV maneuvering would have to be quantified. The resulting trajectory would

improve the overall estimation performance by increasing accuracy and filter conver-
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gence. Further improvements could be obtained by revisiting the assumptions on

the sensor noise, such as the lack of sensor correlation, and applying that to both

the estimation and optimization algorithms. Other optimization considerations could

also include additional operational constraints involving obstacles in the environment

such as mountains and buildings or vehicle no-fly zones.
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Appendix A

Derivation of the Cramer-Rao

Lower Bound and the Fisher

Information Matrix

A.1 Theoretical Derivation

The derivation of the Fisher Information Matrix and the Information Inequality, also

known as the Cramer-Rao Lower Bound, are shown below. The well known covariance

inequality [46] is given by

[cov{6, O }]2var({6} > [cov{, (A.1)
varf {0}

where 6 is any estimator of the function g(x) whose argument x is an unknown pa-

rameter and O(z, x) is any function, with a finite second moment, of the measurable

quantity z and the unknown parameter x. Since cov{6, b} depends on 6, the covari-

ance inequality is of limited use in providing a bound for var{6}, however, if cov{6, b}

depends on 6 only through Ex {6} = g(x) and 7(z, x) is chosen as

- ap(z, X) (
(Z = =- - log p(z, z) (A.2)
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then the inequality above becomes I

var {6} _>
var { a log p(z, x) }

(A.3)

Here z is the vector of measurements and is distributed with density given by p(z, x).

The function i(z, x) represents the relative rate at which the density p(z, x)

changes at z. The average of the square of this rate is given by

J(x) = Ex, log p(z, x)
(9x 2

P'(z, X)(Z zX) J p(z, x) dx (A.4)

J(x) is the Fisher information that z contains about x. One interpretation of Fisher

information is that the greater J(x) is at x = x0 , the higher the relative rate of

density change is and the easier it is to separate x0 from the surrounding values of x.

Therefore x can be estimated more accurately when the information is higher (this is

true for large samples under certain assumptions, see [46]).

Under some not very limiting conditions (see [46]) the following can be written,

Ex log p(z, ) = 0 (A.5)

which implies that

J(x) = var a logp(z, x) (A.6)

This gives the Information Inequality for any estimator 6 of g(x),

var{6} >
- J(x)

(A.7)

When estimating a real-valued parameter x, g(x) = x and therefore g'(x) = 1, so the
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Information Inequality becomes

1
var {6} >

J(X)
(A.8)

For estimators of x this implies that the lowest possible achievable variance of the

estimator is bounded by the inverse of the Fisher information. This lower bound is

also referred to in literature as the Cram6r-Rao Lower Bound. An estimator that

achieves this lower bound on the variance is said to be efficient.

For the multi-parameter case where we are trying to estimate n parameters x =

X . .. xn , we have the n the x n Fisher Information Matrix J(x) where

}
log p(Z x) alog p (z, x)

As in the scalar case, the following can be written,

Ex log p(zx) = 0

(A.9)

(A.10)

implying

Jij(x) = cov a log p(z, x), (A.11)
a log (z, x)

Since J(x) is the inverse of a covariance matrix it is usually positive definite. If

the estimation is unobservable then the FIM will be positive semi-definite and the

covariance will be infinite.

A.2 Recursive Form

For the target location estimation problem, the Cramer-Rao inequality is given by

E{ [XkIk - Xkl[Xkk k- XkT} - I; 1 (A.12)
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where

Ik = E{[Vx 1ogp(Xk, Zk)][VXk 1ogp(Xk, Zk)]T (A.13)

Ik = -E{Vxk[VXk o10gp(Xk,Zk)]T} (A.14)

(A.15)

Here Xk is the target trajectory up to time k and is defined as Xk = {x , j =

0, ..., k} and Zk is the sequence of measurements up to time k such that Zk = {z, j =

0, ..., k}. The above expression includes the fact that the target dynamics are stochas-

tic (i.e. includes process noise). When the target state is deterministic p(Xk, Zk) is

replaced with the likelihood function p(Zk Xk) in the above equations. The expecta-

tions above are taken with respect to Xk and Zk. When the covariance of the unbiased

estimator is equal to the CRLB, the estimator is considered statistically efficient.

The bound of interest is given by

Pkk = IE{ (klk - Xk) (Xklk - Xk)} > jk 1  (A.16)

where Xk is the state of the target at atime k. Rewriting Xk= X[ _1 XT , the

information matrix for the entire target trajectory Ik can be written as

Ik = Ak B (A.17)
B Ck

where

Ak = -E Vxk-I 1VXk_ logp(Xk, Zk)] (A.18)

Bk -E V{xk-1 Xk log P(Xk, Zk)] (A.19)

Ck = E VXk [Vxk 10g(Xk,Zk)} (A.20)

The lower bound for the covariance of the estimation error for Xk is given by the right
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lower block of Ik1 which can be written as

Jk Ck - BTAk 1Bk (A.21)

The dimensions of the matrices Ak and Bk grow as the time index k increases, which

makes the expression for Jk given above computationally inefficient. A recursive

method for computing the information matrix Jk was presented by Tichavsky et al.

in [69]. The recursive form of Jk is given by

Jk+l = D22 - D21(Jk + Dl)- 1 D 2  (A.22)

where

D = -E{Vx VXk log p(Xk+1 Xk) T (A.23)

D 1  - E VXk [VXkl 0g p(Xk+l Xk)] T  (A.24)

D 2 =  - Vxk+1 [Vxk 0g p(k+1 Xk) ]T [D 2]T (A.25)

-E{ Vxk [Xk+l X+ g p(Zk+1 Xk+1)]T (A.26)

For a complete derivation see [69] or [64]. To initialize the recursion, the matrix Jo

is computed using

J I{ [Vx log p(xo)] [Vx log p(xo)]) (A.27)

where p(xo) is the initial density and the expectation is taken with respect to xo. If

the initial distribution is Gaussian such that p(xo) = NJ(xo; xo, Po) then the initial
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information matrix is given by

Jo { E Vx0 ogp(xo)1 Vxo0 ogp(xo)I 1 (A.28)

I E(-Po '(xo - o) -Po '(xo - (A.29)

Sp {(xoX -O )(Xo o)} Po (A.30)

po 1poPo 1 = po' 
(A.31)
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Appendix B

Particle Filtering Algorithm

GENERIC PARTICLE FILTER ALGORITHM IN MATLAB

% 3D Particle Filter

% Initial Parameters

Nthr = 5;

N = 2000;

sigmaW = 10;

% Initial estimation data

xO = [20; 20; 201;

PO = [200 0 0; 0 200 0; 0 0 200];

% Initialize particles

x(:,l,1) = sqrt(PO(1,1))*randn(N,1) + x0(1)*ones(N,1);

x(:,2,1) = sqrt(PO(2,2))*randn(N,1) + xO(2)*ones(N,1);

x(:,3,1) = sqrt(PO(3,3))*randn(N,1) + x0(3)*ones(N,i);

w(:,l) = (1/N)*ones(N,1);

% SIR algorithm

for k=l:length(Vehz),

% Propagate particles

x(:,:,k+l) = x(:,:,k) + sigmaW*randn(N,3);

% Compute weights based on a measurement (use likelihood function)

for i=l:N,

w(i,k+l) = w(i,k)*(i/sqrt(2*pi*sigma2))*exp(-(1/(2*sigma2))*...

((Veh_z (, k)-atan2(Veh_pos (, k)-x(i,, k+), Vehpos (2,k)-x (i,2,k+) ) ̂ 2..

+(Veh_z(2,k)-atan2(Veh_pos(3,k)-x(i,3,k+), ...

sqrt((Veh_pos(I,k)-x(i,1,k+1))^2+(Veh_pos(2,k)-x(i,2,k+1))-2)))^2));
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end

sumW = sum(w(:,k+l));

w(:,k+l) = w(:,k+l)/sumW;

% See if resampling is needed

Neff = 1/(w(:,k+l)'*w(:,k+l));

if (Neff < Nthr),

x(:,:,k+l) = SIR_resample(x(:,:,k+l),w(:,k+l));

w(:,k+l) = (1/N)*ones(N,1);

end

X Compute new mean and covariance
xhat_k(k,:) = w(:,k+l)'*x(:,:,k+l);

cov_k = (x(:,:,k+l)-ones(N,1)*xhat_k(k,:))'*dlag(w(:,k+l))*..

(x(:,:,k+l)-ones(N,1)*xhat_k(k,:));

var_k(l,k) = cov_k(l,l);

var_k(2,k) = cov_k(2,2);

var_k(3,k) = covk(3,3);

end

RESAMPLING FUNCTION

function xnew = SIR_resample(xold,w),

[Wsorted Wind] = sort(w,'descend');

Wsum = cumsum(Wsorted);

uni = sort(rand(length(xold) ,),'ascend');

flag = 0;

i=1;

for k=i:length(uni),

flag = 0;

while(flag == 0),

if (uni(k) < Wsum(i)),

xnew(k,:) = xold(Wind(i),:);

flag = 1;

else,

i = i+1;

end

end

end
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