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Abstract
This thesis addresses planning of mobile sensor networks to extract the best infor-
mation possible out of the environment to improve the (ensemble) forecast at some
verification region in the future. To define the information reward associated with
sensing paths, the mutual information is adopted to represent the influence of the
measurement actions on the reduction of the uncertainty in the verification variables.
The sensor networks planning problems are posed in both discrete and continuous
time/space, each of which represents a different level of abstraction of the decision
space.

In the discrete setting, the targeting problem is formulated to determine the se-
quence of information-rich waypoints for mobile sensors. A backward formulation is
developed to efficiently quantify the information rewards in this combinatorial deci-
sion process. This approach computes the reward of each possible sensing choice by
propagating the information backwards from the verification time/space to the search
space/time. It is shown that this backward method provides an equivalent solution
to a standard forward approach, while only requiring the calculation of a single co-
variance update. This work proves that the backward approach works significantly
faster than the forward approach for the ensemble-based representation.

In the continuous setting, the motion planning problem that finds the best steer-
ing commands of the sensor platforms is posed. The main difficulty in this continuous
decision lies in the quantification the mutual information between the future verifica-
tion variables and a continuous history of the measurement. This work proposes the
smoother form of the mutual information inspired by the conditional independence
relations, and demonstrates its advantages over a simple extension of the state-of-
the-art: (a) it does not require integration of differential equations for long time
intervals, (b) it allows for the calculation of accumulated information on-the-fly, and
(c) it provides a legitimate information potential field combined with spatial interpo-
lation techniques.

The primary benefits of the presented methods are confirmed with numerical
experiments using the Lorenz-2003 idealistic chaos model.

Thesis Supervisor: Jonathan P. How
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

This thesis presents new algorithms for planning of mobile sensor networks to extract

the best information out of the environment. The design objective of maximizing

some information reward is addressed in both discrete and continuous time and space

in order to represent different levels of abstraction in the decision space. The sensor

targeting problem that locates a sequence of information-rich waypoints for mobile

sensors is formulated in the discrete domain; the motion planning problem that deter-

mines the best steering commands of the sensor platforms is posed in the continuous

setup. Key technological aspects taken into account are: definition and effective

quantification of the information reward, and design mechanism for vehicle paths

considering the mobility constraints.

This work addresses the above planning problems in the context of adaptive sam-

pling for numerical weather prediction. The goal of adaptive sampling is to determine

when and where to take supplementary measurements to improve the weather fore-

cast in the specified verification region, given a fixed observation network (See Figure

1-1). The complex characteristics of the weather dynamics, such as being chaotic, un-

certain, and of multiple time- and length-scales, requires the use of a large sensor net-

work [1-5]. Expanding the static observation network is limited by geographic aspects;

thus, an adaptive sensor network incorporating mobile sensor platforms (manned or

possibly unmanned) has become an attractive solution to effectively construct larger

networks.



The primary challenges in this adaptive sampling are:

* Spatial and temporal coupling of the impact of sensing on the uncertainty re-

duction: Since a decision by one sensing agent affects the information reward for

decisions by other sensing agents, the selection of the best set of measurements

should take into account these coupling effects. Due to this type of coupling,

the adaptive sampling problem is NP-hard [6, 7].

* Enormous size of systems: A typical state dimension of the weather system is

0(106) and a typical measurement dimension of the sensor networks is 9(103)

[4]; therefore, the adaptive sampling is a very large-scale combinatorial decision

making.

* Long forecast horizon: The quantity of interest in the adaptive sampling prob-

lem is the weather variables over the verification region in the far future; thus,

computation of the impact of sensing on the verification region typically incurs

a computationally expensive forward (in time) inference procedure. Therefore,

a solution method should feature an effective forward inference.

* Nonlinearity in dynamics: The weather system is highly nonlinear; therefore,

incorporation of nonlinear estimation schemes are essential in adaptive sam-

pling.

* Interest in a specified subset of the entire state space: The fact that the ver-

ification region is a small subset of a large state space brings difficulty in the

adoption of well-established techniques [6, 8-10] for the selection problems with

submodular reward functions.

Previously, there were two representative types of adaptive sampling approaches:

One approach locates the sites where a perturbation from them propagated through a

linearized dynamics exhibits the largest growth of errors in the verification region [1-

3]. This approach characterizes the direction of error growth embedded in the dy-

namics, but cannot take into account specific details of the data assimilation scheme

such as the uncertainty level of the state estimates. The other approach quantified
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Figure 1-1: Adaptive sampling for weather forecast improvement: Paths for four UAV

sensor platforms ( cyan *, green 0, blue A, magenta 0) over a 12hr mission horizon

starting at black markers are selected to improve the weather forecast over California

(red 0) in 3 days.

the variation in the future forecast error based on an ensemble approximation of the

extended Kalman filter [4, 5], and sought for the sensing points that reduce the trace

of the covariance matrix of the future verification variables. This type of approach

can incorporate the uncertainty information into the sampling decision. However, due

to the challenges listed above, only simple selection strategy has been tractable. For

instance, two flight paths were greedily selected out of 49 predetermined paths in [4].

This thesis addresses these challenges by considering two levels of decision making

- the targeting problem and the motion planning problem. The targeting problem

posed in the discrete time/space domain concerns a longer time- and length-scale

decision for sensor platforms where the nonlinear weather dynamics is represented

by an ensemble forecast system. The motion planning problem posed in the contin-



uous time/space domain deals with a shorter time- and length-scale decision when

the linear system approximates a short-term local behavior of the original nonlinear

dynamics. This hierarchical approach enables better incorporation of the multi-scale

aspect of the weather system with providing better computational efficiency. More-

over, this work takes an information-theoretic standpoint to define and quantify the

impact of a measurement on the uncertainty reduction of the verification variables,

taking advantage of some important properties of the mutual information that facil-

itate computationally efficient decision making.

1.1 Information Rewards

1.1.1 Discrete-Time Mutual Information [Chapter 3]

The notion of mutual information has been frequently [6, 8-14] used to define the

information reward for discrete selection, since it represents the degree of depen-

dency between the sensor selection and the quantity of interest. For the problems of

tracking (moving) targets, the mutual information between the target states and the

measurement sequence has been used to represent the improvement of the estimation

performance by the measurement selection [10, 12-14]. In addition, in [6, 8, 9, 11],

mutual information was used to quantify the uncertainty reduction of the temperature

field over the unobserved region by the sensor selection. Since the use of mutual in-

formation usually incurs substantial computational cost, all the algorithms have been

developed in ways that either approximate the mutual information using other simple

heuristics [12] or introduce some greediness in the selection decision [6, 8-11, 14].

Relevant approaches to finding the globally optimal solution to a mathematically

equivalent problem to sensor selection were addressed in the context of environmen-

tal monitoring. Anstreicher et al. [15] presented a 0-1 nonlinear program called a

maximum-entropy remote sampling problem and proposed a branch-and-bound al-

gorithm to solve this problem with global optimality. Although the authors of that

paper did not employ the same terminology, they used linear algebraic properties to



derive a formulation that is equivalent to the sensor selection based on commuta-

tivity of mutual information. But the problem sizes considered in [15] were much

smaller than the ones usually encountered in a targeting problem in a large-scale sen-

sor network. The observation that the global optimal solutions to the sensor selection

decisions have been available only for small-size problems points out the importance

of effective computation of the information reward in designing a large-scale sensor

network.

This thesis provides an efficient way of quantifying the mutual information to be

used for a large-scale sensor targeting problem. Mutual information is used as a mea-

sure of uncertainty reduction and it is computed from the ensemble approximation

of the covariance matrices. The commutativity of mutual information is exploited

to address the computational challenge resulting from the expense of determining

the impact of each measurement choice on the uncertainty reduction in the verifica-

tion site. This enables the contribution of each measurement choice to be computed

by propagating information backwards from the verification space/time to the search

space/time. This backward computation is shown to significantly reduce the required

number of ensemble updates, which is a computationally intensive part of the adap-

tive planning process, and therefore leads to much faster decision making. In this

thesis, theoretical computation time analysis proves the computational benefit of the

backward approach, which is also verified by numerical simulations using an idealized

weather model.

1.1.2 Continuous-Time Mutual Information [Chapter 5]

Although mutual information in the continuous-time domain does not appear to be

as well-known in the robotics and sensor networks communities, in the information

theory context, there has been a long history of research about the mutual informa-

tion between the signal and observation in the continuous-time domain. Duncan [16]

showed that the mutual information between the signal history and observation his-

tory (i.e. signal during [0, t] and observation during [0, t]) is expressed as a function of

estimation error for a Gaussian signal through an additive Gaussian channel. Similar



quantification is performed for non-Gaussian signal [17, 18] and fractional Gaussian

channel [19]. On the other hand, Tomita et al. [20] showed that the optimal filter

for a linear system that maximizes the mutual information between the observation

history for [0, t] and the state value at t is the Kalman-Bucy filter; Mayer-Wolf and

Zakai [21] related this mutual information to the Fisher information matrix.

Recently, Mitter and Newton [22] presented an expression for the mutual infor-

mation between the signal path during [s, t], s < t and the observation history, with

statistical mechanical interpretation of this expression. Newton [23, 24] extended

his previous results by quantifying the mutual information between the future signal

path during [t, T], t < T and the past measurement history during [0, t] for linear

time-varying [23] and nonlinear [24] systems. However, it should be noted that all

these previous quantifications have been about the state and observation. On the

contrary, this study deals with the mutual information between the values of a subset

of the state at T and the observation history during [0, t] when T > t.

As an effective mechanism to quantify the mutual information for forecast prob-

lems, this thesis proposes the smoother form, which regards forecasting as fixed-

interval smoothing. Based on conditional independence of the measurement history

and the future verification variables for a given present state value, the smoother form

is proven to be equivalent to the filter form that can be derived as a simple extension

of previous work [20-22]. In contrast to the filter form, the smoother form can avoid

integration of matrix differential equations for long time intervals, resulting in better

computational efficiency. Moreover, since the smoother form pre-processes the effect

of the verification variables and the future process noise, the information accumu-

lated along the path and the rate of information accumulation can be computed on

the fly with representing the pure impact of sensing on the uncertainty reduction.

This facilitates more adaptive planning based on some information potential field.



1.2 Path Planning

1.2.1 Discrete Targeting [Chapter 4]

Discrete path planning of sensor platforms is based on the abstraction of a measure-

ment path as a sequence of waypoints [14, 25-27]. Then, the information reward

gathered along a path is represented by the mutual information between a finite

number of sensing points distributed over time and a finite number of future verifica-

tion variables. While the backward formulation enables computation of this mutual

information value, the primary question in the discrete path planning is how to incor-

porate the constrained vehicle motions in an effective manner, and how to maintain

computational tractability and the performance level in large-scale decisions.

In this thesis, the aspect of the vehicle mobility constraint is dealt with by using

the concept of the reachable search space and the action space search. These two allow

for reduction of the search space dimension by excluding inadmissible solution can-

didates. Also, a cut-off heuristics utilizing a simplistic approximation of the mutual

information provides further computational efficiency.

To handle computational burden in the optimal targeting of multiple sensing plat-

forms, decomposition schemes that break down a large-scale targeting problem into

a series of smaller problems are presented. The comparative study of different de-

composition topologies indicates the crucialness of the coordinated modification of

covariance information to achieve good overall team performance.

1.2.2 Continuous Motion Planning [Chapter 5]

The spatially continuous feature of the vehicle path can be addressed by using spatial

interpolation techniques such as Kriging [28] and Gaussian Processes Regression [29]

that predict a value of the quantity of interest at an arbitrary point in continuous

space as a function of values at a finite number of grid points. Using this technique,

the measurement action along a continuous path can be modeled as evolution of the

observation function - the observation matrix in a linear system, which appears in



the integrand of the matrix differential equation for the smoother-form information

reward. Thus, continuous variation of the vehicle location will change the integrand of

the matrix differential equation through the observation matrix, and this ultimately

leads to the change in the information reward value.

Utilizing this representation of continuous paths, many standard path planning

methods are explored. The optimal path planning and a real-time gradient-ascent

steering based on information potential fields are presented.

1.3 Implementation Issues

1.3.1 Sensitivity Analysis of Targeting [Chapter 6]

In real weather prediction systems, due to the computational expense of integrating

forward a large-scale nonlinear system, and storing large ensemble data sets, the en-

semble size that can be used for adaptive sampling is very limited [30-32]. In spite of

limitation of ensemble diversity in real weather prediction systems, there have been

little studies on the sensitivity of the ensemble-based adaptive sampling to the ensem-

ble size. As an essential step toward real implementation of the presented targeting

mechanism, this thesis performs a sensitivity analysis from both experimental and

theoretical points of view. Monte-Carlo experiments characterize important sensi-

tivity properties anticipated with small ensemble size, and analytical formulas that

relate the ensemble size and the expected performance variation are derived based on

the statistics theory for sample entropy estimation.

1.4 Summary of Contributions

* Discrete-Time Mutual Information A similar backward formulation based

on commutativity of mutual information was first presented in [15] in the process

of formulating a 0-1 program, and previous work [10, 14] dealing with the task

of tracking a moving target recognized the convenience and efficiency it gives in

representing and calculating the associated covariance information. However, a



key contribution of this thesis is to clearly show the computational advantages

of the backward form caused by the reduction of the number of covariance

updates, by expanding the benefits in [10] to much more general sensor selec-

tion problems. In addition, with two key examples, this thesis shows that the

backward selection performs never slower than the forward selection and also

clearly identifies the types of systems for which the backward offers a substantial

computational improvement over the forward. This newly-identified advantage

of the backward selection, which is amplified for large-scale decisions, was not

addressed in previous work [10, 14], and is a unique contributions of this thesis.

* Continuous-Time Mutual Information Despite well-established theory on

mutual information between the states and observations in the continuous-time

domain, it is a unique and novel contribution of this thesis to derive the expres-

sions for the forecast problem. In particular, the smoother form is proposed

to well account for distinctive characteristics of forecasting, i.e., interest in a

particular subset of the states in the far future. Also, this work clearly identifies

the advantages of the smoother form over the filter form in the aspects of com-

putational efficiency, robustness to modeling errors, and concurrent knowledge

of information accumulation.

* Multi-Sensor Platform Targeting On the backbone of the backward se-

lection formulation, this work presents the overall algorithmic procedure for

multi-sensor platform targeting. In the process, techniques offering further ef-

ficiency are proposed, which reduce the dimension of the search space and the

number of calculations of information rewards. Moreover, the importance of co-

ordinated information sharing is clearly pointed out based on numerical studies

on various decomposition strategies.

* Information Potential Field and Continuous Motion Planning While

most previous information-driven path planning studies have dealt with discrete

decisions, the concept of information potential field, and continuous motion

planning based on that concept, was proposed in [33, 34]. This thesis offers a



similar information potential field for the forecast problem by deriving a for-

mula for the rate of change of the smoother form information reward. Despite

similarity to the previous work [33, 34], the ability of the smoother form to

figure out the pure impact of sensing on the uncertainty reduction of the vari-

ables of ultimate interest, enables construction of the true map of information

distribution that takes into account the diffusion of information through the

future process noise.

* Sensitivity Analysis There have been studies to figure out and mitigate

the effect of small ensemble size on the quality of forecasting and data assim-

ilation [30, 31]; however, no intensive research has addressed the sensitivity

analysis for the adaptive sampling problems. A contribution of this thesis is to

quantify the performance variation with respect to the ensemble size with both

numerical experiments and theoretical analysis.



Chapter

Preliminaries

2.1 Entropy and Mutual Information

The entropy that represents the amount of information hidden in a random variable

is defined as [35]

H(A1) = -1E [log (fAl (al))]

-EfA (a') log(fA, (al)),

-J fA (ai) 10g(f (ai ))dai,_OO

for a discrete random variable A1

for a continuous random variable A,

(2.1)

where E[-] denotes expectation, and fA1 (a1 ) represents the probability mass function

(pmf) for a discrete A 1 (i.e. Prob(A1 = al)), or the probability density function

(pdf) for a continuous A, (i.e. -dProb(Ai < a,)). The joint entropy of two random

variables is defined in a similar way:

H(A 1, A 2) = -E [log (fA 1,A2 (al, a 2 ))]

-E EfA1,A 2 (a l , a2) 10g(fA1,A 2
(a '

, aJ)),
= i j

0J fAi,A 2(a,, a2 ) log0(fA,A2 (a, a2))dal da2,
d-OOX .,-OO

for discrete A 1, A 2

for continuous A 1, A 2

(2.2)



with fA 1,A 2 (a, a2) denoting the joint pmf or pdf of A1 and A 2. This definition can

be extended to the case of a random vector consisting of multiple random variables.

Specifically, if a random vector is Gaussian, its entropy is expressed in terms of the

covariance matrix as

(A) = log det(P(A)) + I0 log(27re) (2.3)

The notation P(A) is defined as P(A) A IE [(A - E[A])(A - E[A])'] where ' denotes

the transpose of a matrix, and another notation P(A, B) will be used in this thesis

to represent P(A, B) A E [(A - E[A])(B - E[B])']; JA denotes the cardinality of A,

and e is the base of natural logarithm.

The conditional entropy is defined as

R(A 1 A2)

= -EfA,A 2 [log (fAlJA 2 (a a2))1

-- -fA,A2 ( , a) log(fA1A (a a )), for discrete A1, A2

-J .. fA,A 2(al,a2) 10og(fA 1A(al a2))da1 da2 , for continuous A 1, A 2,

(2.4)

and the joint entropy and the conditional entropy satisfy the following condition:

'H(A 1, A 2) = '(A 1)+ 7(A2 IA1)
(2.5)

= 7-(A 2) + R(AI A 2).

Namely, the joint entropy of two random variables comprises the entropy of one

random variable and the conditional entropy of the other conditioned on the first. In

case of multiple random variables (i.e. a random vector), the relation in (2.5) can be



extended as

7-(A1, A2, ... , Ak)

= -(A) + i(A 2 A ) + -H(A3 A , AA2) + + -(AkA17... Ak-1),

=- = H-(Ail) + -(Ai, Ai2) + -(Ai3 Ail Ai2) + .+ -(Alk Ai, ..., Aik-_l),

(2.6)

where k = AlI and {il,..., ik} represents some possible permutation of {1,..., k}.

The mutual information represents the amount of information contained in one

random variable (A2) about the other random variable (A,), and can be interpreted

as the entropy reduction of A1 by conditioning on A2:

I(A1; A 2 ) = 7(A 1) - R7-(A 1jA 2). (2.7)

It is important to note that the mutual information is commutative [35]:

Z(Ax; A 2 ) = 7-(A 1) - 7-(A lA 2)

= 1-(A 1) - (-(A 1, A 2) - 7-(A 2))

= 7-(A 1) - (7-(A 1) + H-(A 2 A1) - 7-(A 2)) (2.8)

= 7-(A 2)- 7-(A 2 A1)

= I(A 2 ; A1).

In other words, the entropy reduction of A1 by knowledge of A2 is the same as the

entropy reduction of A 2 by knowledge of A1 . Because of this symmetry, the mutual

information can also be interpreted as the degree of dependency between two random

variables. The conditional mutual information can be defined in a similar way and

the commutativity holds as well:

Z(A1; A 2 A 3) = 7-(A 11A3 ) - 7-(A 1IA 2, A 3 )

= R7-(A2 A 3) - 7-(A 2 AI, A 3) (2.9)

= Z(A 2; A 1 IA3).



The mutual information between two random vectors A A {A 1 , A 2,.., Ak} and B A

{B 1, B 2, ... , B 1} is defined the same way, and it can be expressed in terms of individual

random variables as follows

I(A; B) = I(Ai,; B) + Z(A 2; BAi) + ... I(Aik; B Ai,..., Aik-1) (2.10)
(2.10)

= I(Bjl; A)+ I(Bj2; A|Bj) +... Z(Bjl; A By,,... ,Bjl_)

where and {i, . . .,ik} and {jl,...,ji} represent possible permutations of {1, ... , k}

and {1,..., 1}, respectively. Using (2.3), the mutual information two random vectors

that are jointly Gaussian can be written as

(A; B) = I(B; A) = log det P(A) - log det P(A B)
(2.11)

Slog det P(B) - log det P(B A)

where P(A|B) A E[(A - E[A])(A - E[A])' B]. In this work, the above expression of

mutual information will be utilized to represent the uncertainty reduction of verifi-

cation variables by a finite number of measurements taken by sensor platforms (in

Chapter 3, 4, and 6). In case the measurement is taken in a continuous fashion,

the uncertainty reduction of the verification variables by a continuous measurement

history is the mutual information between a random vector and a random process.

However, some reformulation based on conditional independence allows for utilizing

the expressions in (2.11) for quantification of this type of mutual information as well.

Details on this point will be presented in Chapter 5.

2.2 Ensemble Square-Root Filter

In this thesis, the environmental (e.g. weather) variables are tracked by an ensemble

forecast system, specifically, the sequential ensemble square-root filter (EnSRF) [36].

Ensemble-based forecasts better represent the nonlinear features of the weather sys-

tem, and mitigate the computational burden of linearizing the nonlinear dynamics

and keeping track of a large covariance matrix [36, 37], compared to the extended



Kalman filter. In an ensemble forecast system, the ensemble matrix X consists of

sample state vectors:

X=[x, X2, ... XLE LxxLE (2.12)

where xi E RLx represents i-th sample state vector. Lx and LE denote the number

of state variables and the ensemble members. EnSRF carries this ensemble matrix

to track the dynamics of the environmental variables. In EnSRF, the state estimate

and the estimation error covariance are represented by the ensemble mean and the

perturbation ensemble matrix, respectively. The ensemble mean is defined as

1 LE-a LE (2.13)
LE i=1

and the perturbation ensemble matrix is written as

XA co (x- 1'=cE CO -X, X2 -X, ... XLE -] (2.14)

where 0 denotes the Kronecker product, 1LE is the LE-dimensional column vector

every entry of which is unity, and co is an inflation factor used to avoid underesti-

mation of the covariance [36]. Then, the estimation error covariance is approximated

as

P(xtrue - x) X X '  (2.15)
LE - 1

using the perturbation ensemble matrix. EnSRF works in two steps: the prediction

step that propagates the state estimates through the nonlinear dynamics, and the

measurement update step that performs Bayesian inference based on a linearized

observation under the Gaussian assumption. The prediction step corresponds to the

integration

Xf(t + At) = Xa(t) + X dt (2.16)

where the superscripts 'f' and 'a' denote the forecast and the analysis, which are

equivalent to predicted and updated in the Kalman-filter terminology, respectively.



The measurement update for the EnSRF consists of the mean update and the per-

turbation ensemble update as:

a 5C + K,(z - Hkf),

Xa = (I - K H)Xf,

where z and H are the measurement vector and the Jacobian matrix of the observation

function - a functional relation between the state and the noise-free measurement; Kg

represents the Kalman gain determined by a nonlinear matrix equation of X I [36].

In the sequential framework devised for efficient implementation, the ensemble

update by the m-th observation is written as

+l = xrn C1C2" c (2.17)
LE - 1

with cl = (1 + c)-1, c2 = (Pii + Ri)- 1, when the i-th state variable is directly

measured (i.e, H is the i-th unit row vector) and the sensing noise variance is Ri. (i

is the i-th row of X "m and pii = i LE - 1). Cl is the factor for compensating the

mismatch between the serial update and the batch update, and c2X m(( is equivalent

to the Kalman gain.

2.3 Lorenz-2003 Chaos Model

The methodologies presented in this work are numerically validated using the Lorenz-

2003 model [38], which is an idealized chaos model that addresses the multi-scale

feature of the weather dynamics as well as the basic aspects of weather system, such as

energy dissipation, advection, and external forcing that are captured in its precursor,

Lorenz-95 model [3]. As such, the Lorenz models (including -95 and -2003) have been

successfully implemented for the initial verification of numerical weather prediction

algorithms [3, 5]. In this thesis, the original one-dimensional model presented in [3, 38]

is extended to two-dimensions to represent the global dynamics of the mid-latitude

region (20-70 deg) of the northern hemisphere [32].



The system equations are

1 k=+Lp./2J

Oij = - i-2px,jAi-px,j 2Lpx/ 2] + 1 / Z i-px+k,jOi+p +k,j

k=-LP x/ 2J

2 + 2/3 k=+[Lpy/2J

- 7i,j-2pywij-p + /2 + 1 k-l /2j i,j-py+k4 i,i+p+k (2.18)
k=- LpY/2]

- ij + 0o

where

1 k=+ LPx/2J

S=i+k,j, i = 1,..., Lon (2.19)2Lp /2J + 1 k=-[px/21

1 k=+[Lp/2]

¢ij i,+k, + 1 E ,., at. (2.20)
2[p,/2+1 k=- py / 2 J

/ij represents a scalar meteorological quantity, such as vorticity or temperature [3],

at the (i, j)-th grid point. i and j are longitudinal and latitudinal grid indices,

respectively. The dynamics of the (i, j)-th grid point depends on its longitudinal

2px-interval neighbors (and latitudinal 2p,) through the advection terms, on itself

by the dissipation term, and on the external forcing (0o = 8 in this work). In case

Px = Py = 1, the model reduces to the two-dimension Lorenz-95 model.

There are Lon = 36 p, longitudinal and Lat = 8py, 1 latitudinal grid points. In

order to model the mid-latitude area as an annulus, the dynamics in (2.18) are subject

to cyclic boundary conditions in the longitudinal direction [32]:

=i+L,,,j = i-Lon,j = i,j, (2.21)

and constant advection conditions in the latitudinal direction: i.e., in advection terms,

0i, = . .= Oi,-LPu/2] = 3; Oi,Lat+1 = *. = i,Lat+Lpy/2] = 0. (2.22)

The length-scale of the Lorenz-2003 is proportional to the inverse of px and py in each

direction: for instance, the grid size for px = Py = 2 amounts to 347 km x 347 km.



The time-scale of the Lorenz-2003 system is such that 1 time unit is equivalent to 5

days in real time.



Chapter 3

Sensing Point Targeting

This chapter presents an efficient approach to observation targeting problems that

are complicated by a combinatorial number of targeting choices and a large system

state dimension. The approach incorporates an ensemble prediction to ensure that

the measurements are chosen to enhance the forecast at a separate verification time

and location, where the mutual information between the verification variables and

the measurement variables defines the information reward for each targeting choice.

The primary improvements in the efficiency are obtained by computing the impact of

each possible measurement choice on the uncertainty reduction over the verification

site backwards. The commutativity of mutual information enables an analysis of the

entropy reduction of the measurement variables by knowledge of verification variables,

instead of looking at the change in the entropy of the verification variables. It is

shown that this backward method provides the same solution to a traditional forward

approach under some standard assumptions, while only requiring the calculation of a

single ensemble update.

The results in this chapter show that the backward approach works significantly

faster than the forward approach for the ensemble-based representation for which

the cost of each ensemble update is substantial, and that it is never slower than the

forward one, even for the conventional covariance representation. This assessment is

done using analytic estimates of the computation time improvement that are verified

with numerical simulations using an idealized weather model. These results are then
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Figure 3-1: Sensor targeting over space and time: decision of deployment of sensors

over the search space-time to reduce the uncertainty about the verification region.

(N: size of search space, M: size of verification region, n: number of sensing points)

compared with a much smaller-scale sensor selection problem, which is a simplified

version of the problem in [10]. This comparison clearly identifies the types of systems

for which the backward quantification offers a significant computational improvement

over the forward one.

3.1 Sensor Selection Problems

Figure 3-1 illustrates the sensor targeting problem in a spatial-temporal grid space.

The objective of sensor targeting is to deploy n sensors in the search space/time (yel-

low region) in order to reduce the uncertainty in the verification region (red squares) at

the verification time ty. Without loss of generality, it is assumed that each grid point

is associated with a single state variable that can be directly measured. Denote the

state variable at location s as Xs, and the measurement of X, as Z,, both of which are

random variables. Also, define Xs - {X1,X 2,... ,XN} and Zs - {ZI, Z2 ,..., ZN}

the sets of all corresponding random variables over the entire search space of size

N. Likewise, V = {V, V2 , ... , VM} denotes the set of random variables represent-

ing the states in the verification region at tv, with M being the size of verification

region. With a slight abuse of notation, this thesis does not distinguish a set of



random variables from the random vector constituted by the corresponding random

variables. Measurement at location s is subject to an additive Gaussian noise that is

uncorrelated with noise at any other location as well as with any of the state variables:

Z, = X,+ W, s E S [1, N] n Z (3.1)

where W, - N'(O, R,), and

P(W, W) = 0, V p C S\ {s}(3.2)

P(W,, Y) = 0, VY E XsUV.

As mentioned in section 2.1, P(A, B) AE [(A - E[A])(B - E[B])'], and P(A)

P(A, A). This work assumes that the distribution of Xs U V is jointly Gaussian,

or, in a more relaxed sense, that the entropy of any set Y C (Xs U V) can be well

approximated as:

=(Y) log det(P(Y))+ I log(27re). (3.3)

Also, the covariance matrix P(Xs U V) is assumed to be known in advance of making

sensor targeting decisions.

The uncertainty metric in this study is entropy; uncertainty reduction over the

verification region is the difference between the unconditioned entropy and the con-

ditioned (on the measurement selection) entropy of V. Thus, the selection problem

of choosing n grid points from the search space that will give the greatest reduction

in the entropy of V can be posed as:

Forward Selection (FS)

s) = arg max I(V; Zs) R -(V) - R(V Zs)

= arg max log det P(V) -1 log det P(V Zs) (3.4)

= arg min1 log det P(VIZs)
sESn

where S - {s C S : sl = n} whose cardinality is (N). Note that I(V; Zs) is the



mutual information between V and Zs. Since the prior entropy H7-(V) is identical

over all possible choices of s, the original arg max expression is equivalent to the

argmin representation in the last line. Every quantity appearing in (3.4) can be

computed from the given covariance information and measurement model. However,

the worst-case solution technique to find s) requires an exhaustive search over the

entire candidate space S,; therefore, the selection process is subject to combinatorial

explosion. Note that N is usually very large for the observation targeting problem

for improving weather prediction. Moreover, computing the conditional covariance

P(VIZs) and its determinant requires a nontrivial computation time. In other words,

a combinatorial number of computations, each of which takes a significant amount of

time, are required to find the optimal solution using the FS formulation.

Given these computational issues, this thesis suggests an alternative formulation

of the selection problem:

Backward Selection (BS)

s) = arg max I(Z; V) - 7-(Z ) - H-(Ze V)
SES,

= argmax log det P(Z) - 1log det P(Zr V) (3.5)
sESn

= arg max log det (P(Xs)+ Rs) - log det (P(Xs IV) + Rs)

Instead of looking at the entropy reduction of V by Zs, this backward selection looks

at the entropy reduction of Z. by V; it provides the same solution as FS, since the

mutual information is commutative [35]:

Proposition 1. The forward selection and the backward selection create the same

solution:

S* = S, (3.6)

since I(V; Zs) = I(Zs; V), Vs E S,. D]

Note that P(Z I.) in (3.5) becomes simply P(Xs|-) + Rs, the first term of which is

already embedded in the original covariance structure. This type of simple relation

does not exist for P(-IZs) and P(-IXs), which appear in FS. Previous work [10, 14] that



utilized a similar backward concept took advantage of this convenience. However, in

the moving target tracking problems addressed in [10, 14], the verification variables

are the whole state variables; in other words, V = Xs. This leads to P(XslV) =

0 with no need of computing the conditional covariances. In contrast, this work

mainly considers the case in which Xs and V are disjoint, which requires conditioning

processes to compute P(XsV).

Regarding computational scalability, since the worst-case solution technique to

find s* is still the exhaustive search, BS is also subject to combinatorial explosion.

However, the conditional covariance in the BS form can be computed by a single

process that scales well with respect to n; BS can be computationally more efficient

than FS. More detail on these points are given in section 3.2.

3.1.1 Ensemble-Based Adaptive Observation Targeting

The observation targeting problem for weather prediction concerns improving the

weather forecast for the future time tv broadcast at the nearer future time tK (<

tv), which is called "targeting time" [4], by deploying observation networks from tl

through tK. While the routine sensor network, whose locations are fixed and known, is

assumed to take measurements periodically (every 6 hours in practice), the targeting

problem concerns deployment of a supplementary mobile network (see Figure 3-2).

What is known a priori at the decision time to is the state estimate and covariance

information based on past measurement histories. Since the actual values of the

future measurements that affect the actual forecast error at the verification site are

not available at to, the targeting considers the forecast uncertainty reduction (not

the forecast error reduction) that can be quantified by estimation error covariance

information without relying on the actual values of observations. Thus, the outcome

of the targeting is the sensing locations/times that reduce the forecast error the

most in the average sense. To address the adaptive observation targeting as a sensor

selection problem presented in the previous section, it is necessary to construct the

covariance field over the future time based on the a priori knowledge at time to. This

section presents that procedure in the ensemble-based weather forecasting framework
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O Routine obs. after the targeting time - out of interest

,& Future additional observations determined by selection process

Figure 3-2: Observation structure over the search space and time. The adaptive

observation targeting problem decides the best additional sensor network over the

time window [t1 , tK] given the routine network that makes observations over the

same time window. The presence of routine observations between (tK, tv] is not of a

practical concern, because the ultimate interest is in the quality of forecast broadcast

at tK based on the actual measurement taken up to time tK. [32]

described in section 2.2.

Ensemble Augmentation and Sensor Targeting Formulation

The prior knowledge in the observation targeting problem is the analysis ensemble at

to. Since the design of the supplementary observation network is conditioned on the

presence of the routine network, the covariance field needed for the sensor selection

problem is the conditional covariance field conditioned on the impact of future routine

observations. Processing the observations distributed over time amounts to an EnSRF

ensemble update for the augmented forecast ensemble defined as

X = [(x)',..., (X{K)', (X{ I)' ] R(K+1)L XLE, (3.7)



where

X{k = Xo + jX(t)dt, (3.8)

with Xo E RLx LE being the analysis ensemble at to. For computational efficiency,

the impact of the future routine observations is processed in advance, and the outcome

of this process provides the prior information for the selection process. The routine

observation matrix for the augmented system is expressed as

H~, = [ H ® IK OKnxLx], Hr E nrlxLx (3.9)

where nr is the number of routine measurements at each time step and 0 denotes the

Kronecker product. Since only the covariance information is needed (and available) for

targeting, incorporation of the future routine networks involves only the perturbation

ensemble update
Xag f (3-10)
Xug -(I- KaugHaug)Xaug (3.10)

without updating the ensemble mean. In the sequential EnSRF scheme, this process

can be performed one observation at a time.

Xa,, will be utilized to construct the prior covariance matrix for the sensor se-

lection problem. Since the selection problem only concerns the search space and the

verification region, it deals with a submatrix of the Xa
aug

Xxsuv = (7,..., ~x , (,.t,• , (3.11)

where (.) E RALE represents the row vector of Xaug corresponding to the subscribed

variable. Using this ensemble, the covariance matrix of Y E {Y,..., Yk} C Xs U V

can be evaluated as

P,(Y) = [, -. ,: k T,,"~ ( /(LE - 1). (3.12)

The distribution of Xs U V is not jointly Gaussian in general due to nonlinearity of the

dynamics; however, the entropy information is assumed to be well represented by the



expression in (2.3). The numerical results in Section 4.4 will verify this assumption

by showing the equivalence of the mutual information values using the FS and BS

forms for a simplified weather model.

After obtaining the prior ensemble in (3.11), the forward selection can be written

in terms of ensembles as

SF,En = argmin log det 1Xv zs vIzs), (3.13)

SESn 
LE-

and the backward ensemble targeting is expressed as

SEn = arg max log det (1 x / + Rs)

2 log det (LE1XxSIvxslv + Rs) (3.14)

The conditional ensembles, XvIzs in FS and XxsIv in BS, can be computed using the

sequential ensemble update formula in (2.17). The computational cost of the forward

selection in (3.13) and of the backward selection in (3.14) are compared analytically

in section 3.2.2 and numerically in section 3.4.1.

3.1.2 Sensor Management for EKF Tracking of a Moving

Target

The main objective of this chapter is to present a computationally efficient way of

targeting for a large-scale systems such as weather prediction. A secondary objective

is to identify the classes of systems for which the selection algorithm offers a significant

computational advantage. To this end, this work also considers a smaller-scale sensor

selection problem for comparison. The smaller-scale example considered is the single

time-step version of the sensor management problem introduced in [10].

The sensor management problem is the decision of which sensors at fixed locations

to turn on to best track a moving target under a limited communication budget. The

nominally constant-velocity, two-dimensional motion of the target is modeled by the



linear system:

Xt+i = Fxt + Wt (3.15)

where x = [Px vx py vy ' with p(.) and v(.) denoting the position and velocity in each

direction, and wt - N(O, Ew) is a white Gaussian noise. F and Ew are given as

[1 AtAt
3  At 2

F= 12, 0 ) E W 3 2 012. (3.16)

Denoting the measurement taken by the s-th sensor at time t as z, the s-th sensor

measures the noise-corrupted quasi-distance to the target:

z t = pl(llMpxk - 2 + p2 - 1 + v. (3.17)

tv is a zero-mean white Gaussian noise with variance of Rs, and it is independent of

the process noise and the sensing noise for other sensors. Mp = [1 0] 0 I2 and 1I is the

location of s-th sensor, and pi and P2 are selected to model the signal-to-noise ratio

(SNR) of the sensor.

The single time-step sensor management decision at time t considers the following

forward selection:

SF,Kf = arg max7-(xt zo:t-1) - t(xt |z, ZO:t-i)
SESn (3.18)

= argmin -(xtlz , zo:t-1 )

where zo:t-1 and z denote the measurement sequence up until time t - 1, and the

current measurement taken by the set of sensors s, respectively. In spite of the

nonlinearity in the observation model, the entropy of the state is assumed to be well

approximated by log det of its covariance estimate based on linearization as it was

in [10]:

h- (xtIzS, zo:t-1) = log det P(xt Iz, zo:t-1) + Ax (3.19)

where Ax = 2 log(2re). Given the prior covariance matrix P(xtlzo:t- 1), the posterior



covariance matrix can be computed by the EKF update equation in Joseph form [39]:

P(xtIz , zo:t-1) = (I - KsHs)P(xtIzo:t_l)(I - KsHs)' + KsRsKs (3.20)

with the Kalman gain

Ks = P(xtIzo:t-1)H s (HsP(xt1zo:t-1)Hs + Rs) (3.21)

The (linearized) observation matrix Hs RInx 4 consists of rows expressed as

Hs = -2Pl(||Mxt - l1f + p2 )- 1 (MpXt - IS)'Mp, Vs E S. (3.22)

The forward selection performs (N) times of the measurement update process in

(3.20).

The equivalent backward formulation for (3.18) is posed as:

SB,Kf = arg max (zt jzo:t_) - ( t xt,zo:t-1). (3.23)

The prior entropy of zs is presented as

H(z~zo:t-1) = log det P(z) + As

= log det(HsP(xt zo:t-1)Hs' + Rs) + As

where As = " log(27re). Since the current measurement is conditionally independent

of the previous measurements for a given current state, the posterior entropy for zt

simply becomes

7-'(z'sxt, Z:t-1) = log det Rs + A 5 = EEs log R, + As. (3.24)

It should be noted that no measurement update is needed for the backward formu-

lation, since the posterior entropy for z can be calculated from the measurement

noise variance with simple arithmetic; this aspect was exploited in [10] for an efficient



implementation. This thesis identifies another aspect of computational advantages of

the backward selection that can apply to more general sensor selection problems.

3.2 Computation Time Analysis

In the previous section, the backward selection was suggested as an alternative of

the forward selection that needs to perform covariance updates (N ) times to find the

optimal solution using an exhaustive search. This section shows that the backward

selection requires only one covariance update and this can lead to an reduced com-

putation time compared to the forward selection. The conventional covariance form

inference will be first considered for a general discussion on this computational ef-

fect, and the EnSRF-based targeting will be specifically dealt with to derive detailed

expressions of the computation times of the forward and backward selection methods.

The computation for the prediction step such as the ensemble augmentation pro-

cedure in (3.8) will not be considered in this section's analysis, because the primary

purpose of this section is comparison of the forward and the backward formulation in

addressing the combinatorial sensor selection process. As the prediction step causes

the same amount of computational overhead in both the forward and the backward

selection, it does not influence the main results. However, it should be pointed out

that for a large-scale realistic weather system, the computational cost of the pre-

diction step, which involves integration of nonlinear differential equations with large

number of state variables, gives rise to another challenge, and many work are devoted

to improve this aspect of the computation time. However, efficiency in the prediction

of nonlinear systems is beyond the scope of this thesis.

3.2.1 Conventional Covariance Form

In a conventional linear least-square estimation framework, the conditional covariance

matrices needed for FS in (3.4) can be computed as

P(VlZs) = P(V) - P(V, Xs)[P(Xs) + Rs]- 1 P(Xs, V) (3.25)



where P(V) is already known. After the conditional covariance is computed, FS

calculates the log det value. Thus, an exhaustive search to find s* would perform

the update equation in (3.25) followed by a determinant calculation of a M x M

symmetric positive definite matrix a total of (N) times. The resulting computation

time for this forward selection process is then

TF ( (TimeUpdateM,n + TimeDetm) (3.26)

when other computational overhead, such as memory access and sorting, is ignored.

TimeUpdaten,M corresponds to the time taken to calculate the conditional covariance

of an M-dimensional Gaussian random vector conditioned on a disjoint n-dimensional

vector, and TimeDetM is the time spent to calculate the determinant of a M x M

symmetric positive definite matrix.

On the other hand, the conditioning process for the backward selection in (3.5)

can be written as

P(Xs|V) = P(Xs) - P(Xs, V)P(V)-P(V, Xs) (3.27)

with known P(V). In case M/n - 0(1), this update equation takes as 0(1) times

long as the forward update in (3.25). However, note that P(X IV) can be evaluated

from an alternative update equation:

P(Xs V) = P(Xs) - P(Xs, V)P(V)- 1P(V, Xs), (3.28)

which computes the conditional covariance over the entire search space. Having com-

puted P(XslV), evaluation of P(Xs V) requires simply extracting the corresponding

principal minor from P(XslV), which is a trivial computation. The unconditioned

covariance P(Xs) can also be extracted from the known P(Xs) in the same way.

Afterwards, BS computes the determinants of the unconditioned and the conditioned

covariance matrices. Since there are (N) pairs of conditioned and unconditioned

covariance matrices, the exhaustive search procedure of the backward selection will



take

TB TimeUpdateN,M +2 (N) TimeDet. (3.29)

Although the backward selection also has the combinatorial aspect in terms of the

determinant calculation, it computes the conditional covariance only once. Since

TimeUpdateN,M does not depend on n, it can be first inferred that the covariance

update step for BS scales easily to the case of large n.

Scalability

This work first compares the scalability of FS and BS. To analyze asymptotic scalabil-

ity, the big-0 notations [40] are used. When considering the number of floating-point

operations (flops) for the covariance updates in (3.26)

(N TimeUpdateM,n ' ) [O(n + M2 + M2)(
n) (n) (3.30)

~ O(Nn max{M, n}2 ),

while in (3.29)

TimeUpdateN, ~ O(M3 ) + O(NM2) + (N 2 M) (331)
(3.31)

, O(N 2M)

where N > max{M,n}. Regarding the determinant calculation, TimeDetM -

O(M 3) and TimeDetn, O(n3 ). Thus, the overall complexity of FS and BS will

be

TF -O(N"n max{M, n}2) + O(NM 3)
(3.32)

-O(Nn max{M, n}3),

and

TB , O(N 2M) ++ O(Nnn3) , O(Nn n3 ). (3.33)



Note that both TF and TB are exponential in the number of sensing points; however,

since O(max{M, n}3 ) > O(n"), the backward selection scales better than (or at least

equivalent to) the forward selection, as the problem size grows.

Efficiency

In addition to the complexity, the ratio of the computation times TFITB for the

asymptotic case can be approximately obtained by counting the flops for each al-

gorithm, where asymptotic corresponds to N > max{M,n} and min{M,n} > 1.

Inversion of a p x p symmetric positive matrix requires approximately 2p 3 flops,

while a determinant calculation using Cholesky factorization requires approximately

1p3 flops [41]. Therefore,

N n3 + 2Mn2 + 2n + M3]
TF/TB (3.34)

M3+ 2NM2+ N2M + 2 (N) n3

1+3 1 + 3  + + (3.35)

1M3 3 > 1, M>n (3.36)
(3.36)

1, M < n.

Thus, the relative efficiency of BS compared to FS depends on the ratio M/n, but it

is at least unity, even in the case M < n for which the determinant calculation for

BS is very expensive.

Remark 1. Since the potential computational advantage of the backward form over

the forward form is due to the expense of calculating the conditional covariance in

(3.25), the trend can be different in case the probabilistic relation over Xs U V is

described as a graphical model. In a graphical model, what is known a priori is the

information matrix J(Xs U V) A P(Xs U V)- 1 rather than the covariance matrix.

Since log det P(Y) = - log det P(Y)- , the following quantities need to be computed

in the selection process: J(VIZs) for FS, and J(Zs) and J(ZIV) for BS. For simplicity



of discussion, assume R, = 0, Vs E S for now; thus, Z, = Xs, Vs E S. It is noted

that in order to compute any of the three information matrices mentioned above, the

marginalization process to compute J(Xs U V) is needed. Note that this marginalized

information matrix is not a submatrix of J(Xs U V); instead, it is expressed as

J(X U V) J(s) J(s, V)
J(X, U V)

J(V, s) J(V) (337)

s - Js,s' Js JSs Js,v - JssC J Js,v

Jv,s - JV,s-c 1Jsc,s J - Jv,sC J1JsC,v

where J(.,.) and J(.) denote the corresponding submatrices of the a priori information

matrix J(Xs U V) with s' A S \ s. Once J(Xs U V) is computed, FS does not require

any further marginalization process, because J(VIXs) = J(V). In case of BS, the

conditioned information matrix is simply obtained by J(XsIV) = J(Xs); however,

the unconditioned information matrix requires one more marginalization process:

J(Xs) = J(Xs) - (Xs, V)J(V)-1J(V, X). (3.38)

In other words, in the graphical model, BS needs to conduct both (3.37) and (3.38)

combinatorially many times, while FS only needs to do (3.37) that many times;

therefore, FS is computationally more effective than BS in terms of the cost of the

covariance updates. Since J(XsI) is not a submatrix of J(Xsl.), the similar type of

computational advantage that BS has in the covariance form representation does not

exist in the information form. However, since the size of Js is (N - n) x (N - n),

the computational cost of doing (3.37) dominates that of doing (3.38) in case N is

very large. Since the covariance updates in (3.25) and (3.27) can be done much faster

than the marginalization in (3.37), a more reasonable strategy of addressing sensor

selection problems in a graphical model would be to take the inverse of J(Xs U V)

and conduct the backward search in the covariance form.



3.2.2 EnSRF-Based Targeting

As described in section 3.2.1, the backward search is faster than or comparable to the

forward search, and becomes substantially faster if M > n. This section details the

computation time of both search schemes in the EnSRF-based targeting framework.

In case of using EnSRF, the computational cost of the covariance update (or equiv-

alently, ensemble update) not only relies on N, n, and M but also on the ensemble

size LE. In this section, the expressions of the computation time for FS and BS will

be presented for both purposes of emphasizing the advantage of BS in EnSRF-based

targeting and of providing practical (as well as asymptotic) estimates of the actual

computation times that can be used to indicate the real tractability of the problem.

For both the forward and the backward formulation in (3.13) and (3.14), re-

spectively, the selection processes involve four computation elements: 1) perturba-

tion ensemble updates to obtain conditional ensemble matrices, 2) covariance matrix

computations using the conditional (as well as unconditional for BS) ensembles, 3)

determinant calculation of the evaluated covariance matrices, and 4) finally, selec-

tion of the best candidate from the reward list. This section describes these four by

introducing the following four atomic time units: 6 LE, ULE, Tp, and 6 q.

6LE represents the time to update LE ensemble members associated with one state

variable by one observation. In the sequential update framework, the update

equation in (2.17) can be done row by row as

F - LE - 1

where the superscript "+" denotes the updated one. ,LE is the time for con-

ducting a single run of (3.39). It will take pq6 LE to update the ensembles of p

states with q observations, since (3.39) will be evaluated for each j E {1, ... , p}

to incorporate a single measurement, and this process should be repeated q

times. Also, 6 LE is approximately linear in LE, as the number of floating-point

operations is 3LE for given "'2 when the scaling of a vector is assumed to

need a single operation.



LE is the time to compute the inner product of two vectors with size LE. Then, the

time to multiply a p x LE matrix with its transpose on its right, which is needed

to evaluate the covariance matrix from the perturbation ensemble matrix, can

be approximated as p(p + 1)ULE, because a covariance matrix is symmetric.

Note that aLE is linear in LE as it needs 2LE flops.

-p is the time to calculate the determinant of a p x p symmetric positive definite

matrix. T- corresponds to p(p + 1) (2p + 1) + p floating-point operations, which

is approximately 1p3 for sufficiently large p. This work concerns more accurate

expression of 7T for a moderate size p, since the degree of potential advantage

of the backward formulation highly depends on the ratio of unit cost of the

covariance update and determinant calculation.

Oq is the time to select the greatest element out of the list with length q, and 0q

requires approximately q flops.

For a given measurement choice s with size n, the forward search first needs to

compute the conditional ensemble Xvzs. It is noted that in the sequential EnSRF

framework, ensembles for Xs (as well as V) also need to be sequentially updated in

this conditioning process. This is because the effect of observation at sl E s on the

ensembles for X, 2, s 2 E s should be incorporated for later update that considers

observation at s2. Although the most efficient implementation may not incorporate

the change in the earlier sensing point si by the later observation at S2, this work

considers the case that every ensemble for Xs U V is updated by the measurement

Zs to simplify the expressions of the computation time using the previously defined

atomic time units. Thus, ensembles of a total of n + M states are updated using n

observations taken at s; this procedure will take n(n+M)6LE. Once the calculation of

the conditional ensemble Xvlzs is completed, the conditional covariance P(VIZs) =

LEIXvz.XvIzs is computed; the time taken in this procedure can be expressed as

2M(M + 1)ULE. The next process is determinant calculation of P(VIZs), which will

take TM. The exhaustive search in the forward form needs to repeat this process

consisting of ensemble update, covariance evaluation, and determinant calculation



for every s E S,. Then, a search over a list of information rewards for each s whose

length is (N) will determine the best solution s*,En. Thus, the estimated computation

time for FS becomes

TF= (N)[n(n + M) 6 LE + M(M UE 1)TLE ] + (N). (3.40)

ensemble update cov. comp. det.

In case of the backward selection, the conditional ensemble for Xs U V needs to

be evaluated by the fictitious observations taken at the verification sites of size M.

This conditioning process will take M(N + M)6LE, since ensembles for N + M states

are updated; the outcome of this process is Xxsuvv. For a given s, BS needs to

evaluate two covariance matrices: P(Xs) and P(XIV). One way to compute these

from the unconditioned and the conditioned ensembles for Xs U V is to extract the

corresponding rows of those ensembles to have Xxs and Xxslv, and then compute the

covariance matrices by multiplying the these ensemble matrices with their transposes.

However, this way involves redundant computations if repeated for all s E S,. Instead,

it is more computationally efficient to first compute P(Xs) and P(XslV), and then

to extract the corresponding principal submatrices from these N x N covariance

matrices. Computation of two covariances for Xs will take 2 x 1N(N + 1)ULE, but

this computation does not need to be repeated for different measurement choices.

Having computed P(Xs) and P(XslV), BS starts a combinatorial search to find

S,En. For each s E Sn, the backward search 1) extracts the submatrices from the

covariance matrices for the entire search space, and 2) computes the determinants of

the unconditioned and conditioned covariances. As matrix extraction takes a trivial

amount of time, the computation time spent for this process is 2 Tn. Once all the

rewards are evaluated, a search process taking 0(N) will determine the best solution.

Therefore, the estimated computation time for the backward exhaustive search is

written as

TB = M(N + M)6LE + N(N + 1)LE +2 N Tn +O(N). (3.41)

ensemble update cov. comp.

det.



Note that TB does not contain the combinatorial aspect in the ensemble update and

the covariance computation, while all the relevant terms in TF are combinatorial.

It should be pointed out that LE/N > 1 for a large-scale system, since a large num-

ber of ensembles are typically needed to accurately estimate a complex system with

a large number of state variables. Since 6LE and aLE are approximately proportional

to LE, the computation cost of ensemble update and the covariance computation

will dominate the determinant calculation for a large LE; this enables the backward

formulation to remarkably reduce the computation time compared to the forward

formulation.

Scalability

The scalability of EnSRF-based FS and BS can be analyzed using big-0 method-

ology [40]. This analysis considers the asymptotic case in which N > max{M, n},

LE > max{M, n}, and min{M, n} > 1. The asymptotic complexity will be

TF () (n max{M, n } LE M 2LE M3) (3.42)

O(Nn max{M, n}2LE),

and

TB ~ O(MNLE 2 LE) + (n) (n ( n 3 ). (3.43)

The dependency of TF on LE indicates that FS will not scale well as the state di-

mension increases, because it is typical that LE cx Lx, i.e., an increase in the state

dimension usually leads to an increase in the ensemble size. In contrast, BS does

scale easily with this type of problem complexity.

Efficiency

Using the relations 6
LE 3LE flops, oLE 2LE flops, T, 3 flops, and

O, s q flops given in the definitions of atomic time units, the ratio of TF/TB for the



asymptotic case is

(N) [3n(n + M)LE + M(M + 1)LE + M3  1
TFITB (3.44)

3M(N + M)LE + 2N(N + I)LE + (N) (n3 +

(nn

(3.45)

( n3)

ILEM2 /r 3 , IM2RS1_+M+ + (> 1) (3.46)3 LEM2 /n 3, M > n (3.47)(3.47)
9LE/n, M < n.

These results show that the EnSRF-based BS is computationally more efficient than

EnSRF-based FS by a factor of at least 9LE/n , which is large because typically

LE> n.

3.3 Sequential Greedy Strategies

3.3.1 Algorithms

As shown in (3.42) and (3.43), the computation times for both FS and BS grow

exponentially with the number of targeting points. One typical approach to avoid

this exponential growth is a sequential greedy algorithm that selects the best targeting

point, one at a time. The sequential greedy algorithm based on the forward selection

formulation is stated as follows.

Forward Sequential Greedy Selection (FSGS)

sFG* = arg max -(V ZFG*) - H(V Z,, SFG)

sES k- k-1lks 
(3.48)

= arg max log detP(V ZFG) - log det P(V IZs, ZsFG
sGES2 k-1 2k-1



for k E {1,...,n}, where ZSFG. - {ZFG*,..., ZFG}, and ZSFG, = 0. The selection

of the k-th measurement point is made conditioned on the selections up to the (k - 1)-

th step; P(VIZFG ) is a known quantity at the k-th selection step. To choose sG*,

the conditional covariance P(V Z,, ZSFG) must be computed for all s E S, which is

followed by a determinant calculation. The computation time for the k-th selection

step in (3.48) linearly increases as N increases, and this process should be repeated n

times. Thus the overall computation time for FSGS grows linearly in nN, which could

still be large for large N. This suggests investigating the backward greedy selection

algorithm:

Backward Sequential Greedy Selection (BSGS)

sBG* = argmax 7-(Z, ZBG*) - R(Z, V, ZBG*)
sES k-1 k-1

= arg max log (Var(X, Z G*) + R) - log Var(XV, ZBG)± R)

(3.49)

for k E {1,...,n}, where ZsBG* {ZBG*.,..., ZSBG*}, and ZSBG* = 0. BSGS selects

the site where the difference between the entropy conditioned on previous selections

and that conditioned on the previous selections plus V, is maximized. The known

quantities for the k-th selection of BSGS are: P(Xs) in case k = 1, and P(XsZSkBG_*)

and P(Xs V, ZsBG*) in case k > 1. Two aspects that characterize the computational
k-2

benefits of this algorithm are: 1) BSGS does not involve the computation of the

determinant of a large matrix, but instead only a scalar, and 2) at the k-th step

(k > 1), only two covariance updates by a single observation Z BG* are needed to

compute P(Xs ZBG., ZSBG*) and P(Xs V, ZBG*, ZBG). Note however that BSGS

gives the same solution as FSGS:

Proposition 2. The forward sequential greedy selection and the backward sequential

greedy selection produce the same solution:

FG = S*, V k E [1, n] n Z. (3.50)
k -- I



Proof. The proof is by induction. Since Proposition 1 is true for n = 1, the above

statement is true for k = 1. Suppose that sFG* = BG*, Vk E [1, m] nZ with mn < n.

Because I(V; ZsIY) = I(Z8; V|Y) for any random vector Y, this identity should be

true for Y = Zs G.(= ZsBG*, by assumption). Therefore, the objective functions in

(3.48) an (3.49) are related as

'H (vlzsFG*) - H(V ZS, ZsFG*) = N(Z, ZsrG*) - H(ZV, ZG*), V s S, (3.51)

then it follows that s . = sB. Combining these results yields that ssG* -

sBG* V k E[1,n] n Z. O

3.3.2 Computation Time

Computation time for the EnSRF-based greedy algorithms can also be expressed

with the atomic time units defined in section 3.2.2. When neglecting the search

space shrinkage by the previous selections, FSGS computes the conditional covariance

P(V Z, ZSFG*) in (3.48), which takes M6LE + M(M + 1)LE, a total of N times for

every k, while it also computes the determinant of that covariance matrix the same

many times. Note that once the k-th sensing point is selected, additional ensemble

updates must be done to compute the conditional ensemble for Xs U V conditioned

on ZsFG* ZFG* U {ZFG*} that will be used for (k + 1)-th selection. This additional

ensemble update requires (N + M)6LE per k < n. Therefore, the estimated FSGS

computation time is

TFG =n MN (M6LE + M (M + 1)ULE + ) +ON]

update and det. comp. for current selection (3.52)
+ (n - 1) x (N +M)6LE

ens. updates for next step

which shows that most terms are proportional to nN.

In BSGS, the impact of V is only calculated at the first selection step, so the

cost of the ensemble update needed to pick the rest of the points is lower than that



required to pick the first. In particular, for k = 1, an ensemble update for Xs U V by

the fictitious measurement of V is needed, while for k > 1, two ensemble updates for

Xs by the measurement ZBG* given ensembles conditioned on ZBG* and on B* U

V, are conducted. Thus, the computation times for the first and the rest of the

ensemble updates are M(N + M)6LE and 2N6LE, respectively. Note that BSGS only

computes the diagonal elements of the covariance matrices for Xs, which provides

Var(X, .), Vs c S; this computation takes NaLE (in contrast to N(N + 1)aLE for a

full matrix computation). Then, the estimated computation time for BSGS is

TBG = M(N + M)6LE +(n - 1) x 2N 6 LE

ens. up. for k=1 ens. up. for k>1 (3.53)

+ n 2NOLE +nON.

var. comp.

These results show that BSGS scales better than FSGS as n increases, since the terms

proportional to n is O(NLE) in TBG while those in TFG are O(NM 2LE + NM 3).

For the asymptotic case, the complexities of the forward and backward sequential

greedy algorithms are

TFG " O(nM 2NLE), and TBG - O(max{M, n}NLE). (3.54)

Since O(nM 2) > O(max{M, n}) in both terms of M and n, BSGS scales better than

FSGS as n and/or M increase.

The efficiency of the backward method can be estimated as

M2 nNLE m 2

SFG/TBG (3M + 10n)NLE 10 + 3(M/n)' (3.55)

Mn/3, M > n (3.56)
(3.56)

M2/10, M < n.

using the relations between atomic time units and the flops. Note that the formula

in (3.55) is an increasing function of both M and n. Thus, the minimum value of



Table 3.1: Summary of the asymptotic complexity for the cases where N >
max{M,n}, LE > max{M,n}, min{M, n} > 1

Case (Section #)

Cov. Exhaustive (3.2.1)

EnSRF Exhaustive (3.2.2)

EnSRF Greedy (3.3.2)

Forward Complexity

O(N n max{M, n}3)

O(Nn max {M, n} 2LE)

O(nM 2NLE)

Backward Complexity

O(Nn 3)

O(Nnn3)

O(max{ M, n}NLE)

Table 3.2: Summary of relative efficiency for the cases where
max{M,n}, min{M,n} > 1

N > max{M, n}, LE >

Case (Section #)

Cov. Exhaustive (3.2.1)

EnSRF Exhaustive (3.2.2)

EnSRF Greedy (3.3.2)

Efficiency (Fwd + Bwd)

S3M + 3M
2 M

3

n 2 2 2n2
9L (1 + M + )M2

M2/(10 + 3M )
n

Min. Efficiency

9LE 12n
"18

the above ratio is at the smallest M and n to which the asymptotic analysis can be

applied. For instance, if this smallest value is M = n = 10, then it is inferred that

TFG/TBG > 8 for all larger problems.

3.3.3 Summary of Computation Time Analysis

The asymptotic results of the computational complexity of the presented methods

and the relative efficiency of the backward method compared to the forward one are

summarized in Table 3.1 and 3.2. The results clearly show that the scalability and

efficiency of the backward methods are never worse than the forward ones. In case

of the EnSRF-based exhaustive search, the benefit of using the backward form can

be significant since typically LE > n. Also, the polynomial-time approximation of

the backward method, BSGS, works at least about 8 times faster than the forward

approximation, FSGS, and this relative efficiency grows as the problem size increases.

I1L

I1L



3.4 Numerical Results

3.4.1 Ensemble-Based Targeting for Weather Forecast

Several sensor targeting scenarios are considered to numerically validate the compu-

tational advantages of the proposed backward scheme. For simulation, the Lorenz-95

model (or Lorenz-2003 model with Px = Py = 1) is used. In this model, there are

36 longitudinal grids and 9 latitudinal grids, and the size of each grid is equivalent

to 694kmx694km. A routine network of size 93 is assumed to already be deployed

over the grid space (black o in Figure 3-3). The static network is dense in two por-

tions of the grid space that could represent land, while it is sparse in the other two

portions of the space, which represent oceans. It is assumed that measurements are

taken every 0.05 time units (equivalent to 6 hours in real time), and the EnSRF data

assimilation scheme with ensemble size LE = 1024 is used to generate the initial

analysis ensemble at to by incorporating these measurements. The verification region

is the leftmost part of the land mass on the right (consisting of M = 10 grid points

depicted with red O in Figure 3-3), and the verification time tv = 0.55 (- 66hrs).

Targeting deploys sensors at a single time instance tK = 0.05 over the search space

defined by a total of N = 108 grid points in the left ocean, and the sensing noise

variance of Rs = 0.0004, Vs E S is used. With this setting, the targeting results,

with different numbers of targeting points, n, are obtained using the four algorithms:

FS/BS/FSGS/BSGS.

First note that the backward algorithm gives the same solution as the forward

algorithm for all of the cases, not only in terms of the optimal sensing locations but

also the objective function values (within 0.001% error). This agreement supports

the validity of the Gaussian assumption in computing the mutual information is

reasonable for this problem. In Figure 3-3, the optimal and the sequential greedy

solutions are illustrated for n = 1, 3, and 5. The shaded contour represents the local

reward value for each grid point, Z(V; Z,), which is the entropy reduction of the

verification site by a single measurement taken at location s. The differences between

the optimal and sequential greedy solutions are apparent for n = 5 in that the optimal
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result does not even select the two dark points that were selected for n = 3. Table 3.3

gives the resulting mutual information values by different the strategies for various n.

The results of two other strategies are also shown for comparison with the optimal

and the sequential greedy. The local greedy strategy simply selects n points in the

order of the largest single targeting performance as the following:

L* = arg max I(Z,; V) =-I (Z,) - (ZIV) (3.57)
sES\sk-1

where s* - {s(*, ... , sk*l}. The myopic strategy searches for the set of sensing

points that represents the largest prior entropy without consideration of the verifica-

tion region:

S*io = arg max N(Zs). (3.58)

First, it can be seen that the myopic strategy works never comparable to other strate-

gies; this indicates that simply selecting the most uncertain region in the search space

is never a good strategy to reduce the uncertainty in a separate verification region.

Amongst other strategies, the performance gap between strategies becomes more dis-

tinct as n increases; but note that BSGS (equivalently, FSGS) is always better than

the local greedy solution. This performance improvement occurs because, in contrast

to the local greedy strategy, the sequential one takes into account the correlation

structure over the search space by conducting conditioning processes based on pre-

vious selections. The benefit of the sequential decision over the local decision will

be addressed in more details in the multi-sensor platform targeting framework in

Chapter 4.

Tables 3.4 and 3.5 represent the actual and estimated computation time of each

algorithm for different n. The atomic time units for computation time estimation were

determined by Monte Carlo simulations in Fortran90 using LAPACK library [42] on

a PC with Pentium-4 3.2GHz CPU and 1GB RAM. The atomic time units have the

values: ,LE = 60.4 ps, aLE = 36.7 ps, and Oq = 8.1 x 10-3q ps. Regarding Tr, the

values for p < 10 are obtained by simulations (e.g. T3 = 0.95ps and T10 = 6.5ps).

Because these p values are not large enough, the cubic relation of -p oc p3 does not



Table 3.3: Mutual information values for the targeting solutions by different targeting
strategies (Backwards are all same as Forwards if both are available)

n BS(-FS) BSGS(-FSGS) Local Greedy Myopic
1 0.46 0.46 0.46 0.01
2 0.87 0.84 0.79 0.13
3 1.24 1.19 1.02 0.22
4 1.60 1.55 1.43 0.48
5 1.95 1.86 1.66 0.51

accurately predict the actual values. The results in Tables 3.4 and 3.5 show that the

estimated values of the computation time are accurate to within 40% error, which is

small enough to support their use as an indicator of the computational tractability

of a given problem.

Table 3.4 confirms that BS is a much faster algorithm that scales better with n

than FS. Given that a real weather forecast scenario is much more complex than

this example, it is clear that FS is not practical to implement for multiple targeting

problems. These results show that the backward algorithm should be practical for

selecting a few measurement locations (e.g., n < 4).

Table 3.5 also confirms that the superiority of the backward scheme extends to

the sequential greedy case as well. Although the computation time for FSGS exhibits

linear growth with n, the BSGS computation time is essentially constant for n < 5,

and TFG/TBG > 17 when n = 10. Of particular interest is the fact that the forward

sequential greedy algorithm is actually slower than the backward exhaustive search

algorithm when n = 2, which implies the optimal solution could be obtained by

the backward scheme for reasonably sized problems without sacrificing significant

computational resources.

3.4.2 Sensor Selection for EKF Target Tracking

For numerical experiments of the moving target tracking, the following parameter

values are used from [10]: At = 0.25, i = 0.01, pl = 2000, p2 = 100, and Rs = 1. A



Table 3.4: Solution time of exhaustive searches for ensemble targeting problems with
Lorenz-95 model

N n TF(s) TB(S)

108
108

108
108
108
108
108

0.27
15.6

646.9

0.27
0.28
0.81
20.6

583.4

TF (s)

0.29
20.1

893.8
8.0 hr

8.4 day
173 day
17000yr

TB(S)

0.50
0.51
0.89
16.13
440.5
2.8 hr
16 yr

Table 3.5: Solution time of sequential
lems with Lorenz-95 model

N n TFG (S)

108
108

108
108
108
108
108

0.25
0.50

0.75
0.98
1.22
1.47
2.44

greedy strategies for ensemble targeting prob-

TBG (S) IFG (S)

0.06
0.06

0.08
0.08
0.08

0.11
0.14

iBG (S)
0.28
0.58

0.87
1.16
1.45

1.74
2.90

0.07
0.08
0.10
0.11
0.12
0.14
0.19

total of N = 30 sensors are located at fixed locations determined randomly on a 15 x 15

two-dimensional space. The initial state value is xo = [0, 2, 0, 2]', which results in

the nominal position at the t-th timestep (0.5t, 0.5t). The sensor selection is addressed

at time t = 20, before which an EKF has used randomly selected no = 10 sensor

measurements for state estimation at every time step. Simulations are performed

with MATLAB7.1®.

Figure 3-4 illustrates the optimal sensor selection for n = 6 compared with the

local greedy solution that does not take into account any correlation amongst the sen-

sors. For this particular example, the sequential greedy solutions are the same as the

optimal ones. It can be seen that sensors located in the direction of target's move-

ment provide generally larger information gain than the sensors behind the target.

While the optimal solution is identical to the local greedy solution for n < 5, the

I I I ,I L[
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Figure 3-4: Optimal Sensor Selection for EKF Target Tracking

Table 3.6: Solution time for forward and backward methods for EKF sensor manage-

ment (N = 30)

n 3 4 5 6 7 8 9

TF (s) 0.52 2.77 15.0 64.7 228.8 679.7 1745.4

TB (s) 0.08 0.64 3.52 15.4 55.1 164.5 421.6

optimal strategy chooses a sensor that is distant from the previously selected ones as

the sixth choice. This avoids selecting the sensor right in front of the target that is

very close to (therefore, expected to be highly correlated with each other) one of the

previously selected sensors.

Table 3.6 shows the computation time needed for the forward and backward ex-

haustive searches for a range of selected sensors, i.e., n = 3,..., 9. The results confirm

that the backward search is always faster than the forward search, as it does not re-

quire any measurement updates. Also note that TB is only about 4 times smaller

than TF.
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Figure 3-5: Comparison of relative computational advantage of the backward formu-
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3.4.3 Summary

Figure 3-5 compares the ratio TF/TB of the ensemble-based targeting case and the

EKF target tracking case with respect to the total number of candidates, which

is taken here as an indication of the complexity of the problem. Four ensemble

targeting cases (n = 2,...,5 with N = 108) and seven EKF sensor management

cases (n = 3,...,9 with N = 30) are considered, and the estimated computation

time is used if the actual computation time is not available. Notice that TF/TB is

much bigger for the ensemble targeting than for the EKF sensor management; this

confirms the analysis in section 3.2. In other words, in the problem of targeting

sensor networks in an environment governed by a large-scale nonlinear dynamics,

the backward formulation is preferable over the forward formulation since the cost of

covariance update is significant for the large number of ensembles needed to accurately

represent the complex system.

Note also that the TF/TB values can be predicted with reasonable accuracy. Using

***m- EnSRF weather targeting
EKF sensor management



rp i p(p + 1) (2p + 1) + p flops, which applies better for small values of p, and the

other parameters as given previously, TF/TB for the EKF tracking example (n = 6)

is estimated as 3.6 while the actual ratio is 4.2. Likewise, for the EnSRF targeting

case, using n = 3, TF/TB is estimated as 1347 where the actual ratio is 796, which

corresponds to 70% error. This difference is mainly caused by error in estimating

Tn for small n since flops counting does not consider the overhead computation

expense such as memory access. However, this level of accuracy is sufficient to indicate

the order of magnitude of improvement of the backward selection compared to the

forward. For larger-scale problems in which the asymptotic assumptions are more

accurate, the efficiency can be accurately estimated using the expressions given in

Table 3.1.

3.5 Conclusions

This chapter presented a backward formulation for the large-scale sensor targeting

problem using ensemble-based filtering. It was shown that this backward formulation

provides an equivalent solution to a standard forward approach under some standard

assumptions, but significantly reduces the number of ensemble updates that must be

performed. The analysis of the computational efficiency of two approaches clearly

showed that the backward selection is provably faster than the forward selection, and

is particularly advantageous for large-scale systems.

The accomplishment in this chapter is expanded in the later chapters in the follow-

ing ways: the targeting algorithms for coordination of multiple sensor platforms is de-

veloped in Chapter 4, quantification of the mutual information in the continuous-time

domain is addressed in Chapter 5, and a sensitivity analysis of the ensemble-based

targeting in this chapter is given in Chapter 6.



Chapter 4

Multi-Sensor Platform Targeting

This chapter addresses the coordination of multiple sensor platforms with constrained

mobility in the targeting problems. The information reward for sensing paths is

defined by the mutual information between the measurements at a finite set of sensing

points and the future verification variables. Using the backward formulation presented

in Chapter 3, this information reward can be computed without having to do a

combinatorial number of computationally expensive ensemble updates.

The key aspects focused on in this chapter are: (a) an effective way of incorpo-

rating the vehicle mobility constraints into the backward selection process developed

in Chapter 3, and (b) further improvements in efficiency to maintain computational

tractability for large-scale decisions.

The limited vehicle mobility is addressed using the concept of the reachable search

space, which is defined as the set of sensing points in space/time that can be reached by

any admissible sequence of control actions, and utilizing the action space search, which

enumerates possible control sequences instead of waypoint sequences. These two

reduce the dimension of the search space leading to better computational efficiency.

For better efficiency in the decision making process, a cut-off heuristic utilizing a

simple cost-to-go function is also introduced. The cost-to-go function based on some

sparsity assumption of covariance matrices leads to a reduction of the number of

calculations of the mutual information values. In addition, approximation techniques

based on decomposition of a large-scale problem into small subproblems are presented
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Figure 4-1: Multi-UAV targeting in the grid space-time: In contrast to the sensing-

point targeting in Chapter 3, the motions of sensor platforms are constrained.

for better scalability.

Combining all these elements, this chapter presents an algorithmic framework for

the multi-sensor platform targeting problems. In addition, numerical studies for com-

parison of various decomposition topologies demonstrate that a sequential decision

topology better accounts for the spatial coupling of the information rewards compared

to a local decision topology.

4.1 Problem Formulation

The multi-sensor platform targeting in this chapter considers the gridded space-time

of finite dimension (Figure 4-1). In this grid space-time, the location of a vehicle can

be described as a positive integer by having the index set defined such that

r = s + At x nG (4.1)

when r and s represent two points that are spatially identical but temporally apart

from each other by At time steps, which is positive when representing posteriority;

nG denotes the spatial dimension of the grid representation. In this chapter, the



search space-time S C Z is defined be the set of location indices at which a sensor

platform may be located.1 Similar to the sensing point selection problem in section

3.1, it is assumed that a grid point s is associated with a single state variable X,

that can be directly measured; the measurement at this location is denoted as Z,

and Z, = X, + W, where W, is the white Gaussian noise with variance R, that is

independent of sensing noise at other locations and of any state variable. Likewise,

V represents the set of verification variables at verification time tv. Denote the

location index of i-th sensor platforms at time tk as si[tk] e Z, and the number of

sensor platforms as n,; also, let the set of locations of all the sensor platforms at time

instance tk be denoted as s[tk] E Zns. The transition of a sensor platform's location

at one time step to the next time step can be written as

si[tk+l] = Si[tk + Ui[tk] (4.2)

where i [tk] E U C Z is the control action taken by the sensor platform i at time

step tk. The set U defines all the possible control options that can be represented as

positive integer values in the grid space-time. Since a vehicle has limited capability

of motion, U should be a finite set. Also, the control vector is defined as u[tk]

[uI[tkl, U2[tk], ... , U,, [tk

The goal of the multi-sensor platform targeting is to find the optimal control

sequences u[tk], k E [1, K]nZ (or equivalently optimal waypoint sequences s[tk], Vk E

[1, K] nZ ) to maximize the mutual information between the verification variables V

and the measurement sequences by all the sensor platforms:

max Z(V; Zs[t], • , Zs[tK]) (4.3)
u[t],--- ,u[tK]

1This definition of S is equivalent to the definition in Chapter 1 with appropriate re-indexing of

locations.



subject to

S[tk+1] = S[tk] + U[tk], Vk E [1, K - 1] nZ (4.4)

s[ti] = s, = given, (4.5)

and

s [tk] E S, i E [1, nI] n , Vk E [1, K] nZ (4.6)

There are two types of constraints in this decision: The condition (4.4) describes the

vehicle dynamics, when initial (at tx) locations of vehicles are assumed to be given

as in (4.5). With regard to the control options of the sensor platforms, this work

particularly considers limited mobility of a sensor platform; thus, a legitimate control

action leads the vehicle to one of its neighboring locations at the next time step. The

condition (4.6) means that vehicles should remain in the grid space by their control

actions - call it the admissibility condition.

Before moving on to the algorithm description, it needs to be pointed out that

the formulation in (4.3) models the sensing process as "dwell and dash." A sen-

sor makes an observation of the environmental variables by loitering over (or slowly

passing by) a waypoint; then, it dashes to the next waypoint without sensing in-

between. With this sensing model, the targeting problem in 4.3 addresses the decision

of finding information-rich landmarks, which are sparsely distributed in time-space.

This abstraction is valid in which the environmental dynamics is of larger time- and

length-scales than vehicle dynamics, and therefore the environmental variables at the

endpoints of a path are highly correlated with those in the middle of the path.

4.2 Algorithm

This section presents an algorithm to solve the multi-sensor platform targeting de-

fined in section 4.1. The proposed targeting algorithm features four main aspects: a)
the backward selection formulation in computing the mutual information value for the



solution candidates, b) the reachable search space and action space search to effec-

tively incorporate vehicle mobility constraints, c) a cut-off heuristic that reduces the

number of solution candidates for which the objective values are actually calculated.

Details of these aspects are presented followed by a summary of the algorithm.

4.2.1 Backward Selection

The targeting algorithm employs the backward selection (BS) formulation presented

in Chapter 3. Thus, the mutual information value in (4.3) is computed as

Z(V; ZS[tl:tK]) = 7(ZS[tl:tK]) - (ZS[tl:tK V)

= log det (P(Zs[t:tK) + Rs[t, ) (4.7)

- log det (P(Zs[t,:tKV) + Rs[tl:tK])

where s[ti : tK] U= 1 s[tk]. In the EnSRF framework, the ensemble augmentation

procedure in section 3.1.1 can be used to obtain the prior and the posterior ensembles

for the search space S, and the covariance matrices in (4.7) are computed using these

ensembles as in (3.12).

4.2.2 Reachable Search Space

The targeting decision in this chapter is not simply a decision of picking a fixed

number of points out of a fixed search space, because of the constraints in vehicle

motions. In the backward selection framework, an ensemble update is needed to

compute the posterior ensemble over the search space by fictitious measurements at

V. Because the motions of sensor platforms are limited, not all of the points in S can

be reached by the sensor platforms; therefore, a set smaller than S effectively works

as the search space over which the posterior ensemble is calculated. This reduced

search space should be as small as possible, but must be sufficiently exhaustive to

consider all of the admissible and reachable candidates.

To find the smallest possible search space, first, define the one-step reachable

set that represents the set of all possible location vectors that the team of sensor



platforms at location s[tk] at time tk can reach at the next time step tk+1 by applying

a legitimate control vector:

R(s[tkl) ={ r C S : r = S[tk] + u[tk]; S[tkl C , U[t] C Un (4.8)

Then, the reachable search space denoted as Sz consisting of all the points in S that

can be visited by some sensor platform by some control actions can be defined as

K-1

Sz = U Rk (So), (4.9)
k=1

where so is the initial vehicle locations at time tl as defined in (4.5), and

Rk+l(so) = (Rk(So)) , Vk E [1, K - 1] n Z. (4.10)

This Sz is minimal in the sense that every element in Sz will be referred to at least

once in computing the mutual information for a feasible solution candidate. Since

the right-hand side of (4.9) is a union of disjoint sets, the cardinality of Sz becomes

K-1 K-1 UJ nsK_ /u, ns

Sz = IRk(So) k 0 (l ns(K-1)) (4.11)
k=1 k=l1 Un -1

Note that the size of Sz is exponential in n, and K - 1; thus, the optimal targeting

problem with many sensor platforms for a long time horizon needs a larger Sz. Using

the atomic time units defined in section 3.2.2, the computation cost of performing

the ensemble update over Sz takes

TimeUpdates z = (ISz l(Szl + M) 6LE (4.12)

As an instance of the vehicle mobility constraints, this work considers the mini-

mum and maximum speed of a sensor platform.

Umin < DM(Si[tk],Si[tk+l]) < Ymax. (4.13)
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Figure 4-2: Reachable zones by a single agent in two-dimensional grid space

DM denotes the Manhattan distance defined as

d

M(s, r) = E Isj - r 1 (4.14)
j=1

where d denotes the dimension of spatial coordinates; sJ and rj denote the j-th spatial

coordinate values of the gridpoints s and r in S, respectively. Figure 4-2 illustrates

the reachable zones by a single agent from location s in a two-dimensional grid space,

in case vmin - 1 and vmax = 2. Note in this case that

k (So) = r E S[tk+l] : DM(, r) k X Vmax, Vk E [2, K - 1] n Z (4.15)

where S[tk+1] C S denotes the set of gridpoints whose time index is tk+1. Thus, the



size of Sz for a single sensor in a two-dimensional space becomes

K-1 / kvmax Vmax

SZsingle.2d = + 1+4 j +4 y j . (4.16)
k=2 j=1 j=vmin

In case each sensor platform has identical moving capability, the reachable zone by

a team of sensor platforms is nothing more than the union of each agent's reachable

zone:

ns

Sz (s) = U Sz(si [ti]) (4.17)
i=1

Then, the size of Sz for the multi-agent case will be

Sz < n, x Sz single (4.18)

where equality holds when the reachable zones of the agents are disjoint. Note that

conflicting assignment is not explicitly prohibited with this Sz; different sensor plat-

forms might take measurements at the same location at the same time. However, the

optimal targeting decision will never select this option, since it is always suboptimal:

I(V; Z, Z) = I(V; Z,)

= -(V) - H(VIZ) (4.19)

7-(V) - -(V Z, Z)

= z(V; Z, Z), Vs € q.

4.2.3 Action Space Search

With fixed initial location vector so, the targeting problem finds the optimal s[t 2 : tK]

consisting of n,(K - 1) grid points. The reachable search space Sz defines the set

over which the ensemble update needs to be done; every point in Sz can be reached

by some control actions of some sensor platform. However, this does not mean that

every set s C Sz with Isl = n,(K - 1) comprises some feasible waypoint sequences.

Thus, a simple n-choose-k-type search considered in Chapter 3, is not an efficiency



way when the vehicle motions are constrained.

For this reason, this work suggests to search over the action space rather than the

grid index space. In other words, the search process works as

1. Pick a feasible control sequence u[ti : tK],

2. Find the corresponding location vector sequence s[tl : tK],

3. Evaluate I(Zs[tl:tK]; V),

When using the action space search, the total number of solution candidates

to consider becomes simply Unus(K-1); this is much smaller than n Sz1)I for the

n-choose-k-type search, which could be O(8 hin(K-1) 2 ) in the worst case.

It is conceivable that the action space search allows for dealing with more gen-

eralized problems than given in section 4.1. For instance, the problems of finding

sensing paths with much denser temporal/spatial resolutions can be addressed in the

same action space of dimension (|U n(K-1)2), if the control action is parameterized

in terms of the start and end points.

4.2.4 Cut-Off Heuristics

Although BS does not involve a combinatorial number of ensemble updates, it still

requires the computation of a determinant of

P(Zs[t2:tK1Zso), P(Zs[t2:tK1]V, Zso), (4.20)

a total of IUIns(K - 1) times. 2 For instance, with the mobility constraint in (4.13),

U ns(K-1) = m ] (K-)= [2(Vmax + Vmin)(Vmax - Vmin + 1 )]n (K - 1), (4.21)
j=Vmin

for a two-dimensional problem. Therefore, if vmax and/or n,(K - 1) becomes large,

the number of covariance matrices in (4.7) to be considered in the decision rapidly

2 Since the measurement at initial time has common effect on all the solution candidates, the

measurement update with Zso can be done in advance of the solution search process.



grows. Moreover, as n,(K - 1) becomes larger, the unit time for computing the

determinant of one covariance matrix also increases - proportional to n3 (K - 1)

when utilizing the Cholesky factorization. Thus, in order to address a large-scale

problem, it is necessary to reduce the number of solution candidates whose mutual

information values (equivalently, the determinants of prior and posterior covariance

matrices) are actually calculated.

For this purpose, this thesis proposes a cut-off heuristic that provides an indication

of which measurement choice would render a high information reward. For notational

simplicity, the following notations are used in this section: P(Xs[t2:tK Zso) Pst 2:tK]

and P(Xs[t2tK]|V,Zso) Ps[t2 :tK] It was noted in Burer and Lee [43] that for a

legitimate covariance matrix P >- 0,

log det(P) < log det(P o E) (4.22)

where o denotes Haddamard (or, entry-wise) product, and E is a symmetric positive

definite matrix satisfying

diag(E) = 1. (4.23)

With the simplest choice of E = I, upper bounds for the prior and posterior

entropies for the candidate s will be

(Zs[t2:tK] I Zo) - n(- 1)log(2re)

H(Z[t 2 tK] V, Zo)- (- 1)log(2re)2

= log det P_ t2K Rs[t2tK]
2 S s[t2tK] S[t2:tK]

< - E log [Pt:tK(i,i) + Rs[t2:tK](i, )(i
2

a' tK (4.24)s[t2:tK]

1 /

2 log det (Ps[:tK] + RS[t2:tK])

1 ns(K-1)2 +\Ss2 S('7 0

5 -2 log [Pt 2:tK i)+ RS[t 2:tK ]
-2i=1

- S 2 K (4.25)
= 's[t2:tK]"



Note that calculation of -s_[&t2:tK] and +jt21K is computationally much cheaper than

the original entropy computation, since it only requires simple scalar operations.

Based on the above upperbounds, this thesis proposes using

-HK (4.26)'S[t2:tK] [t2:tK] - s[t2:tK] (4.26)

as an indication of whether the candidate s[t 2 tK] is worth being considered in the

mutual information computation. Suppose that s[t 2 • tK] is the m-th candidate in

the list, then the cut-off decision for s[t 2 tK] is made by

(pass, if I(s[t2 :tK]) > 'LBD
Io(s[t2 "tK]) = -(4.27)

fail, otherwise,

where ILBD is the tightest lowerbound on the optimal information reward based on

the previous (m -1) solution candidates. The actual mutual information of candidate

s[t 2 tK] is computed, only if I,,co(s[t 2 :tK]) = pass.

It should be noted that the relations in (4.24) and (4.25) can also be described in

information-theoretic terms. Suppose that s[t 2 :tK] = [rl, 7r2, n -, Tn(K-1)]', then

n,(K-1)

'-(Zs[t 2:tK] Z s o) = '(Zri Zso) + "(Zri Zo, Z, ,... , Zri_) (4.28)
i=2

n 8(K-1)

< H(ZrllZso) + 7(ZjZso), (4.29)
i=1

because the marginal entropy of a random variable is always greater than equal to its

conditional entropy. The similar inequality relation can be derived for 7-((Zs[t2:tK V, Zso)

using the information-theoretic notion.

Also note that if

Is[t2:tK < Z (Zs[t2:tK]; V) (4.30)

for all s[t 2 tK], the optimal solution is guaranteed to lie amongst the pass-ed can-

didates. Notice that if the mutual information I(Z; V) is submodular, then (4.30)

is satisfied. However, as will be discussed in Appendix A, the information reward



in this work is not submodular. Thus, the search process using the cut-off heuristic

in (4.27) does not guarantee that it will find the optimal solution. However, it can

be experimentally verified that Zs[t2:tK] is a sufficiently good approximation of the

true mutual information I(Zs[t2:tK]; V, Zso). Thus, this thesis proposes the following

modification to the cut-off indicator function to improve the likelihood of finding the

optimal solution:

(s[t2 : K) f pass, if Z(s[t 2 : tK]) > ZLBD - 6 (4.31)
fail, otherwise,

with a positive relaxation parameter E. Thus, every time a candidate s[t 2 : tK] is being

considered, its approximate cost-to-go Z(s[t 2 : tK]) and cut-off indicator IlIo(s[t2 : tK])

are evaluated; the actual payoff value is computed if it pass-es the cut-off criterion

in (4.31).

An alternative way of implementing the idea of cut-off is to postpone the cut-off

decision until after the calculation of the approximate mutual information values of

all the candidates. By evaluating the actual information reward in the order of the

largest cost-to-go heuristics, ILBD is likely to be tighter; therefore, more candidates

will be cut-off. However, this way requires more memory space than making the

cut-off decision every time the cost-to-go is calculated.

A more accurate approximation of Z(Zs[t2:tK]; V) than 's[t2:tK] in (4.26) can be

obtained either by utilizing more sophisticated E such as block-diagonal and tri-

diagonal, or by extending the information-theoretic discussion in (4.29) as

n,(K-1)

H(ZS[t 2:tK] Zso) = '-(Zri Zso)+ '(Zri Zso, Zr, . .. , Zri-1) (4.32)
i=2

ns(K-1)

< (Z IZso) + E R(Zri Zso, Zri-,). (4.33)
i=2

The use of more accurate approximations can cut-off more suboptimal solution can-

didates; but calculation of individual cost-to-go becomes more expensive.



Algorithm 1 Ensemble-Based Multi-Sensor Platform Targeting Algorithm

1: Initialize ILBD to zero.
2: Determine Sz from so, Vmin, and Vmax
3: Obtain prior perturbation ensembles corresponding to Sz U V, Xxszuv

4: From Xxszuv, extract Xxsz and compute the posterior ensemble Xxszlv

5: Update with the prior and posterior ensembles with initial measurement Zso.

6: Compute mutual information for the initial measurement Z(Zso; V)
7: for all u[tl: tK-1] E Uns(K- 1) do

8: s[tk] G SZ, Vk ? If yes, proceed; otherwise, goto step 7.
9: Evaluate covariance matrices, P(Zs[t2:tKI Zso) and P(Z[t2 :tK] IV, Zso)

10: Compute the heuristic cost-to-go Z'[t2:tK]
11: if Is[t2:tK] > ILBD - E then
12: Compute I(Zs[t2:tK]; V Zo)
13: if I(Zs[t2 :tK]; V Zso) > ILBD then
14: ILBD = Z(ZS[t2 :tK ; V Zso)
15: ULBD = U[tl tK-1]

16: end if
17: else
18: Goto step 7.
19: end if
20: end for
21: Return u*[tl : tK-1] = ULBD and Z(Zs*[tl:tK]; V) = I(Zso; V) + -

LBD

4.2.5 Algorithm Summary

Algorithm 1 demonstrates the overall procedure of the ensemble-based multi-sensor

platform targeting presented in this section, specifically the cheapest implementation

that uses the cost-to-go in (4.26) and calculates the actual objective value for every

pass-ed candidate. Other types of cost-to-go heuristics and cut-off procedures can

easily be incorporated with a slight modification of Algorithm 1, although all the

numerical results in this thesis will be based on this version of algorithm.

It should be pointed out that other constraints such as communication budget

and power budget can also be involved in the targeting decision, and the algorithm

in this Chapter can easily be modified to address those constraints.
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Figure 4-3: Schematics of team-based decomposition with two different communica-

tion topologies

4.3 Decomposition Schemes

The proposed cut-off heuristics can reduce the number of computations of matrix

determinant; however, it still requires calculation of cost-to-go values combinatorially

many times. Thus, a further approximation scheme that breaks down the original

problem into a set of small pieces of problems is needed to address a larger-scale

problem. This section presents a team-based receding horizon approximation of the

original targeting problem. In addition to speeding up the computation, this de-

composition provides useful implications on the distributed decision making for the

targeting approach.

Recall that the search process of targeting starts with two covariance matrices -

P(Xsz) and P(Xsz IV); the impact of measurements taken at the initial vehicle loca-

tions can be incorporated in advance. Before starting a search process, the following

two covariances are available.

P(Xsz Zso), and P(Xsz V, Zso). (4.34)

The decomposition approach in this section is applied after computing the above two

a priori covariances.

Figure 4-3 illustrates the schematics of the problem decomposition in case of two

teams. Instead of finding n,(K - 1) control actions at once, a set of subproblems



are considered in which nt sensor platforms having an nH-long lookahead window.

Assuming that nT divides n, and nH divides K - 1 for simplicity, the number of

subproblems becomes 's(K-1)

The approximation scheme starts with solving the first subproblem that deter-

mines the optimal control actions of the first nT platforms during the first nH time

steps (i.e. for the time window [t2, tnH+l] as the initial location vector s, is fixed.) -

decision making for team 1 for the first planning horizon in Figure 4-3. Afterwards,

the second subproblem associated with the next nT agents with the same time window

is taken into account. There are a total of n,/nT subproblems for the first horizon;

as soon as decisions for all the sensor platforms within the first planning window

have been made, the "execution step," in which covariance information is updated

incorporating those decisions will follow. From the implementation point of view,

the existence of the execution step implies that the actual time interval between the

first and next planning horizon is sufficiently large to incorporate all of the decisions

made in the first horizon and to share the updated information. Thus, the (1- - + 1)-th

subproblem determines the optimal control actions for agents 1 to nT for the next

time window [tnH+2, t2nH+1] based on the updated covariances:

P(Xsz Zs[t 2:tnH+], Zso), and P(Xsz V, Zs[t2 :tnH+1l, Zso). (4.35)

This sequence of decision making and execution continues in the temporal direction

until the final planning horizon [tKnH+1, tK].

Regarding the transition from the first subproblem to the second subproblem,

this work considers two types of transition in this direction: local and sequential

schemes. In the local scheme, a decision of each team is made without any knowl-

edge about the other teams' decisions. In decision making for the planning window

[tknH+2, t(k+l)nH+]l, every team determines its best control actions by treating the



following matrices as a priori ones:

P(Xsz ZS[t 2 :tknH+1 ], Zs), and (4.36)

P (XsZ V, ZS[t2:tknH+1], ZSo). (4.37)

On the contrary, in the sequential scheme each team knows the decisions of pre-

ceding teams and incorporates them into its decision. In other words, a team of

sensors (mnT + 1) to (m + 1)nT will compute their best control decisions based on

the covariance matrices:

P(XSz Zs:1 mny}[tk"H+2:t(k+l)nH+l], Zs[t2:tknH+] , Zso), and (4.38)

P(Xsz V, Zs{l:mn}[tknH+2:t(k+l)nH+ll, Zs[t2 :tknH+1 , Zso). (4.39)

where A ImnT Z[tkn+:t(kl1.
where Zsl:mnT [tknH+2:t(k+l)nH+11 - i=l Zsi[tknH+2:(k+l)nH+1l]

Figure 4-3 contrasts the information flows for these two spatial decomposition

schemes. The distinction between the local and the sequential schemes is related

to the communication topology amongst agents. The local scheme assumes that

only inner-team communication is available during a given decision horizon, while

the sequential scheme assumes the existence of inter-team communication. Note that

decisions for members in the same team are free of conflicts due to (4.19), but decisions

for members in different teams can be in conflict, in particular, with the local scheme.

4.4 Numerical Simulations

4.4.1 Setup

For validation of the proposed algorithm, numerical simulations with the two-dimensional

Lorenz-2003 model with Px = Py = 2 are considered. This model has 72 longitudi-

nal grids and 17 latitudinal grids, and the size of each grid corresponds to 347km x

347km. The routine network with size 186 is assumed to be already deployed over the

grid space, which is depicted with black * in Figures 4-4 and 4-5. The static network



is dense in two portions of the grid space representing lands, while it is sparse in

the other two portions of the space representing oceans. The routine network takes

measurement every 0.05 time unit (6 hrs in real). The leftmost part consisting of

27 grid points in the right land is selected as the verification region, over which the

forecast uncertainty reduction 0.6 time units (~3 days) after the targeting time is

interested in; it is plotted with red Ol in the figures. The planning window [tl, tK is

from 0.025 time unit(-3 hours) through 0.375 time unit (-15 hours) after to with

K = 5; time steps are equally spaced by 0.025 time units (-3 hours). Thus, the tar-

geting problems is posed for 12hr missions from tl = 3hr to tK = 15hr. The analysis

ensemble at to with size 1224, which is same as the size of the grid space, is obtained

by running an EnSRF incorporating the routine observations for 1000 cycles. The

contour plots in Figures 4-4 and 4-5 shows a typical shape of the error variance field

with this routine configuration. The measurement noise variance is Rroutine = 0.22 for

routines and R, = 0.022 for additional observations, assuming that high-resolution

sensors will be equipped on the mobile platforms. Flight speed of the sensor platform

is limited as vmin = 1 grid/timestep and vma = 2 grids/timestep, which correspond

to Vmin = 116km/hr, and vmax = 232km/hr.

4.4.2 Effect of Cut-Off Heuristics

As pointed out in section 4.2.4, the cost-to-go heuristics I(s[t2 " tK]) can underes-

timate the actual mutual information; the relaxing parameter e is needed for better

optimality. In order to verify the computational effectiveness of the heuristics and to

figure out the effect of the relaxing parameter on the solution optimality, the following

two-sensor targeting problem is considered. Two sensors are initially located at (45, 7)

and (45, 9) in the Lorenz-2003 grid space, which are in the middle of the eastern part

of the wider ocean (representing the Pacific ocean). A Monte-Carlo simulation with

5 different initial ensembles- five different Xa(to) - is performed.

Table 4.1 shows the average mutual information value, the average number of can-

didates whose actual rewards are computed, and the computation time, with respect

to different values of E. e = oc means no cut-off decision, while e = 0 means no



Table 4.1: 5-simulation average performance of the cut-off heuristics for different E

e Z(Zs*[tl:t ; V) # mutual info comp. (x 103) 1 Comp. time (sec)

0 6.185 454 545
0.1 6.193 782 547
0.2 6.198 1319 551
1.0 6.199 31847 754
00 6.199 401688 3187

relaxation of the cut-off criterion. It is first noted that the cut-off heuristics enor-

mously reduces the number of candidates to be considered in the mutual information

calculation, while optimality degradation is very small. In fact, for four out of five

cases, the cut-off heuristics does not cause any performance degradation even with

E = 0. As c = 0.2 gives a sufficiently close answer to the optimum without substantial

increase of computation time, this value of E is used for later simulations. It is also

seen that improvement in the actual computation time is relatively small compared

to the reduction in the number of candidates; this is because the cut-off heuristic

requires additional computational resources to evaluate the cost-to-go function for

every candidate. This implies that more complicated cost-to-go functions might not

be preferred, because they could result in longer computational times due to increase

in time spent for calculation of individual cost-to-go values.

4.4.3 Comparison of Decomposition Schemes

In order to discuss the validity of the decomposition schemes, simulation studies

varying the values of nT and nH, and altering the inter-team communication scheme,

are conducted. A problem with n, = 4 and K -1 = 4, which would take thousands of

years to find the optimal solution by an exhaustive search on a usual PC, is considered.

Regarding the initial locations of the sensor platforms, two configurations in Ta-

ble 4.2 are considered. The first configuration represents the case where sensors are

located relatively close to each other at the initial time, while sensors are more dis-

persed in the second configuration. Three values of nT = 1, 2, 4 and three values



Table 4.2: Initial Locations

Config # sensor-1 sensor-2 sensor-3 sensor-4 Avg. initial dist. (km)

1 (45,7) (45,9) (46,7) (46,9) 606

2 (48,3) (47,7) (47,11) (47,15) 2326

Table 4.3: Average value of I(Zs*[tl:tK]; V) for 4 sensors with dense configuration

(I(Zsnd[tl:tK; V) = 6.5098)

nH = 1 nH = 2  nH = K-1= 4

nT = 1L 6.4419 6.1147 6.0655

nT = is 9.9142 9.9749 10.2611

nT = 2L 7.5253 7.7506 8.2679co

nT = 2s 9.9947 10.1854 10.5615co

nT = n, = 4 10.0064 10.3363' N/A

of nH = 1, 2, 4 are taken into account; in case nT = 1, 2, both local and sequential

communication schemes are considered, while nT = 4 means full spatial coopera-

tion across the entire fleet. Thus, a total of 15 different settings with various nT

and nH, and with either local or sequential are compared with each other as well as

with a feasible random strategy; for the cases of (nT, nH) = (4, 2), (2, 4), the cut-off

heuristics with E = 0.2 is implemented. Recall that the full optimal solution equiv-

alent to (nT, nH) = (4, 4) cannot be obtained within a reasonable amount of time.

Monte-Carlo simulations are performed using 10 different initial ensembles.

Looking at the results for Configuration 1, Table 4.3 shows the average perfor-

mance of each strategy. The superscript 'co' in the table represents the use of the

cut-off heuristics, and the subscripts 'L' and 'S' mean the use of local and sequential

communication scheme, respectively. It is first noticeable that the local communica-

tion causes significant performance degradation. All of the three cases with nT = 1L

reveal inferior performance even to the reference random strategy. Furthermore, in-

crease of the planning horizon deteriorates optimality in these cases; this can be

interpreted as selecting many points based on outdated information is exceedingly

suboptimal. Another noticeable comparison is between nT = 2 L and nT = is: al-



though each team consists of more sensors for nT = 2L, the lack of inter-team commu-

nication results in poorer optimality. In contrast to the cases of nT = 1L, increase of

the team size and/or the horizon size enhances optimality for the cases of sequential

schemes.

Figure 4-4 shows one exemplary targeting solution, contrasting two sets of sensing

paths corresponding to strategies nT = 1L, nH= 4 (left) and nT = 2 s, nH = 4 (right).

These two setups provide the worst and the best performance, respectively. In the

left picture, due to the lack of inter-sensor communication all four sensors collapse

to one trajectory that must be the single-sensor optimal (but obviously multi-sensor

suboptimal) solution, while sensors in the right picture are exploring a relatively large

portion of the space.

The average computation time for each strategy is tabulated in Table 4.4. For

every case except the three cases with nTnH = 8, the targeting decision takes just

about 3 to 6 seconds. Computation time for the remaining three cases are all about a

thousand seconds. Compared with extremely long expected computation time (about

thousands of years) for the full optimization problem, it can be verified that decom-

position schemes considerably enhance computational effectiveness.

Table 4.5 and Figure 4-5 show the results for the second configuration in which

sensors are relatively distant to each other at the initial time. The performance gap

between the local strategies and the sequential strategies is smaller in this configu-

ration because the chance of conflicting assignment is reduced because of the initial

dispersion of the agents. However, the qualitative message regarding the communica-

tion topology and the size of planning horizon is consistent with that of Configuration

1: a) with nT = 1L, increase of nH deteriorates performance, and b) nT = is out-

performs nT = 2 L. It is found in Figure 4-5 that multiple sensors are assigned to the

same location at the same time - same colors of different markers, in case of the local

scheme (on the left).
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Figure 4-4: Targeting solutions for the sensors initially close to each other: Different markers represent different sensors and

different colors represent the waypoints at different time instances. The starting locations are in green. Local decisions (left)

lead to collapsed sensing paths providing poor performance, while sequential decisions (right) create paths for wide exploration.
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Figure 4-5: Targeting solutions for the sensors initially dispersed widely: Different markers represent different sensors and
different colors represent the waypoints at different time instances. The starting locations are in green. Local decisions (left)
still lead to multiple sensors taking measurements at the same location/time.



Table 4.4: Average computation time (seconds) for 4-sensor problems

nH = 2

3.0
4.4

3.7
4.8

1001.9co

nH =K - 1 = 4

3.1
4.1

1088.0co
1075.0 co

N/A

Table 4.5: Average value of I(Zs*[tl:tK];
( I(Zsrnd[tl:]; V) = 5.7066 )

V) for 4 sensors with dispersed configuration

nT = 1L

nT = 1s

nT = 2L

nT = 2s

nT = n, = 4

Table 4.6: Average value of
networks ( Z(Zsrnd[t:tK]; V) =

nH = 1

8.7646
9.5129
9.1316
9.5757
9.8511

nH = 2

8.5795
9.7168
9.2557
9.8560

9.9705c0

nH = K - 1 = 4

7.4195
9.6681

9.2071co

10.2609Co

N/A

I(Zs,[tl:tK]; V) for 4-sensor case with smaller routine
1.8037)

nH = K - 1 = 4

3.1887

4.2118
3.9021co

4.2499c0

N/A

nT = 1L

nT = 1s

nT = 2L

nT = 2s

nT = n, = 4

nH= 1

3.8
5.9

3.9
5.3
4.7

nT = 1L

nT - is

T = 2L

n T = 2 s

nT = n, = 4

nH =1

3.4065
3.8024
3.6649
3.8177

3.9028

rH= 2

3.2438
4.0597
3.6939
4.0276

4.1575co

II I I

I I I ~I



4.4.4 Effect of Routine Networks

In addition, this numerical study also investigates the influence of the static obser-

vation network. By deleting six routine observation sites in the oceanic region, the

average and maximum squared analysis error are increased approximately eight times

compared to the case in section 4.4.3. Table 4.6 represents the performance of each

strategy. It is first noted that information rewards are generally smaller than those

with a denser routine network; this implies that targeting is of less help when the

prior information is inaccurate. Also, the performance gaps amongst strategies de-

crease as the overall performance levels decrease; but, the qualitative features as to

the communication topology are still coherent.

4.5 Conclusions

This chapter presented a targeting algorithm for multiple sensor platforms with lim-

ited mobility, which featured the backward selection algorithm and the cut-off heuris-

tics for enhancement of computational efficiency. Several decomposition schemes that

break down a large-scale problem into small pieces of subproblems were proposed, with

pointing out their interpretation in terms of sensor coordination. Numerical simu-

lations using the Lorenz-2003 model verified the proposed targeting algorithm and

quantitatively supported the importance of coordinated information sharing amongst

sensor platforms.

In the later part of this thesis, planning of motions of sensor platforms in the

abstraction of smaller time- and length-scales will be addressed (Chapter 5) with a

continuous representation of vehicle paths and information rewards.



Chapter 5

Continuous Sensor Motion

Planning

Chapters 3 and 4 addressed the discrete targeting problem to find information-rich

landmarks, and these decisions were associated with relatively large time- and length-

scale (e.g. examples in Chapter 4 considered a 12hr mission with waypoints dis-

tributed every 3 hrs). The motion planning problem in this chapter considers much

shorter time- and length-scale in the sense that it concerns the information continu-

ously extracted along the motion of sensors, and determines the steering commands

of the sensor platforms.

In this chapter, the mutual information in the continuous-time domain is quan-

tified for linear (time-varying) systems that represent the short-term behavior of the

original nonlinear dynamics of the environmental variables. This chapter first presents

the filter form, which is a straight-forward extension of the previous work [20-22], by

treating the forecast problem as a filtering problem with a longer time window. How-

ever, three reasons are then given for why this form might not be suitable for motion

planning for a long-term forecast: sensitivity to linearization error, computational

cost, and the lack of on-the-fly knowledge of the accumulated information.

The first two issues arise because the filter form requires integration of matrix

differential equation for the time window [0, T] where T is the verification time in the

far future. Integration for a long time interval accumulates the linearization error,



and requires more computation resource than integration for a short time interval.

The computation burden can be problematic, especially, when the filter form is used

as a subroutine for an optimization process that needs to evaluate many different

options of measurement choices.

Alternatively, this work suggests the smoother form, which regards forecasting as

fixed-interval smoothing. The equivalence of the smoother form to the filter form is

proven based on the conditional independence of the measurement history and the

future verification variables for a given present state value. Utilizing the covariance

equations for a two-filter type Kalman smoothing in Wall et al. [44], this chapter

derives an expression for the mutual information in the forecast problem involving

matrix differential equations that are only integrated over the planning time window.

This reduction of the duration of integration mitigates the effect of the linearization

error, and offers better computational efficiency.

Moreover, the smoother form simplifies the process of quantifying the informa-

tion accumulated along the path on-the-fly. In the smoother form, the accumulated

information can be calculated in parallel with the process of computing the ultimate

information reward. This concurrent knowledge of information accumulation allows

for exploring various path planning algorithms as well as plays an important role in

receding-horizon approximations to the optimal motion planning (discussed in Ap-

pendix B). Thus, the smoother form resolves all three problems in the filter form and

provides an efficient and more informative way of calculating the information reward

along the path.

This work presents a general methodology of continuous motion planning for fore-

cast problems by combining the smoother form for quantifying the information associ-

ated with a temporally continuous measurement, and the spatial interpolation-based

representation of spatially continuous sensing paths. In addition to an optimal path

planning formulation that maximizes the mutual information, a real-time steering law

based on the spatial gradient of the time derivative of information is proposed. A

numerical example of a linearized Lorenz-2003 model validates the proposed frame-

work.



During 0 to T At T

ForecastS,

Figure 5-1: Continuous motion planning of a sensor for best information forecast: a

mobile sensor senses some environmental variable shown in contour along the path

designed to achieve best forecast for the verification region.

5.1 Problem Description

This chapter addresses continuous motion planning for mobile sensors to improve

forecast over the specified region. In Figure 5-1, a mobile sensor continuously takes

measurements of environmental field variables along a continuous path during the

time interval [0, T], while the quantity of interest is the forecast performance over the

verification region at the verification time T. The objective of the motion planning

is to design steering commands for the sensor that leads to the largest uncertainty

reduction in the forecast, which is represented by the notion of mutual information

in the continuous-time domain. In the context of adaptive sampling for weather

prediction, this motion planning problem can be posed as decisions over some local

search space with an appropriate length-scale (e.g., the 3 x 3 world in Figure 5-1

represents some local region of the entire globe). However, in the later part of this

chapter, the localized view will not be emphasized, because main results can apply

to other problems of smaller scales.

There are two main aspects in this problem: 1) quantification of the information

reward associated with a continuous (in both the temporal and spatial sense) mea-

surement, and 2) path planning techniques that provide optimal (or good suboptimal)

s9
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solutions. Effective quantification of the information reward in the continuous-time

domain will be first presented; then, a finite dimensional representation of a spatially

continuous path will be provided. This chapter will formulate an optimal motion

planning problem and also present a real-time motion planning law based on the

information potential field.

5.2 Information by Continuous Measurement

5.2.1 Linear System Model

Consider the environmental dynamics of state variables Xt E R nx described by the

following linear time-varying system:

Xt = A(t)Xt + Wt (5.1)

where Wt E R n is a zero-mean Gaussian noise with E[WtW'] = Ew6(t - s), Ew b 0,

which is independent of Xt. The prime sign ' denotes the transpose of a matrix. The

initial condition of the state, Xo is normally distributed as Xo - AV(po, Po), Po >- 0.

This work considers a linear measurement model for Zt E Rm with additive Gaussian

noise:

Zt = C(t)Xt + Nt (5.2)

where Nt E R tm is zero-mean Gaussian with E[NtN'] = EN6 (t - s), EN >- 0, which is

independent of Xt and Ws, Vs. A linear sensing model can be a good representation

of observation of environmental variables distributed in field, such as temperature

and pressure.

With this environmental system model, this work is interested in determining the

impact of a measurement history in the past on the uncertainty reduction of some

1For notational convenience, the subscript represents the time argument in contrast to the location
index as does in other chapters. Also, this chapter will use different notations for the verification
time, the state dimension, and the size of verification region.



verification variables in the future. A measurement history up to time t is defined as

Zt = {Z, : a [0, t]}. (5.3)

The verification variables are a subset of the state variables that can be expressed as

Vt= MvXt e ]RnV  (5.4)

where Myv {0, 1}y" vx" x , nv < nx with every row-sum of My being unity. Although

this work is specifically interested in the case entries of My are zero or one, the results

can be easily extended to a general My e Rnvxn x .

Employing entropy as a metric of uncertainty, the uncertainty reduction of a

random quantity by another random quantity is expressed as the mutual information

between them. The information reward by a measurement path, in this work, is

defined as follows:

Jv(T, 7) A (VT; Z,), 0 < T, (5.5)

which is the mutual information between VT and Z,. This represents the entropy

reduction of the verification variables in the future time T by the measurement history

up to time T, and also the entropy reduction of Z, by knowledge of VT.

5.2.2 Filter Form

For linear Gaussian systems, there are known expressions for the mutual information

between the state variables at a given time and the measurement history up to that

time [20-22]. Therefore, one way to compute the information reward is to consider a

filtering problem that estimates XT based on the measurement history up to time T

denoted as

ZT A ZT U 0(r,T] (5.6)



where 0(T,T] means that no measurement is taken during (T, T]. Then,

Z(XT; ZT) = Z(XT; Z), (5.7)

because no information is gathered by null measurement. This procedure of obtaining

Z(XT; Z,) can be extended when our interest is in Z(VT; ZT), as outlined in the

following proposition:

Proposition 3. (Filter Form) For the linear system described in this chapter, the

information reward can be computed as

JVF(T, T) a Z(VT; Z,, 0(,T]) (5.8)

1 1
= 2 log det(MvPx(T)MV) - log det(MvQx(T)M7 ) (5.9)

where the superscript 'F' stands for the filter form, and Px (T) and Qx (T) are ob-

tained by integrating the following matrix differential equations:

Px(t) = A(t)Px(t) + Px(t)A'(t) + Ew (5.10)

Qx(t) = A(t)Qx(t) + Qx(t)A'(t) + Ew - I[o,](t)Qx(t)C(t)'EN1C(t)Qx(t) (5.11)

with initial conditions Px(0) = Qx(0) = Po - 0, and I[0, ](t) : + {0, 1} is the

indicator function that is unity for t E [0, T] and zero elsewhere. The above equations

are well-defined for finite T with P >- 0.

Proof. Note that

I(VT; Z) = Z(VT; VT) (5.12)

where VT = E[VTIZ,], because VT is the sufficient statistic that captures all informa-

tion contained in Z, about VT [22]. Since the remaining randomness in VT for a given

VT, is the estimation error VT A VT - VT, the mutual information

I(VT; Z) = R (VT) - 'H(VT). (5.13)



For a linear system with Gaussian noise, both VT and VT are normally distributed

with covariance of:

P(VT) = MvPx(T)M, P(VT) =MvQx(T)Mr, (5.14)

when Px(T) and Qx(T) are obtained as (5.10) and (5.11). From (2.3), the entropy

of the Gaussian random vector VT is computed as

1(VT) = [log det P(VT) + nv log(2re)], (5.15)

and likewise, the entropy of VT can be computed; this finally gives the expression for

J'"(T, 7) in (5.9). O

The filter form provides a simple expression for the information reward for a

continuous history of past measurement, which is described in terms of the solution

of a Lyapunov equation and a Riccati equation. However, this form of computation

involves the following issues, particularly, in case the forecast horizon is much longer

than the planning horizon, i.e. T > T:

Remark 2. (Issues in filter form)

* As done in this thesis, a linear model is often used to represent the short-term

(and localized) dynamic behavior of a nonlinear system. Since the filter form

of the information reward relies on integration of linear dynamics for the time

horizon [0, T], it can be sensitive to linearization error if T is large.

* The computational complexity of numerical integration is linear in the integra-

tion time interval if the differential equation is integrated using a fixed-time

step integration scheme. Even in case a variable time-step scheme is used, it is

typical that integration of a same type of differential equation for longer time

consumes more computational resource than that for shorter time. Thus, the

computation time for computing JVF(T, T) increases with respect to T. This is

not a problem when one is interested in computation of the information reward



for few measurement histories. However, if the goal is to design an optimal

measurement path, and the computation of information rewards for many dif-

ferent candidate measurement histories is needed, long integration can cause

computational inefficiency.

The concurrent knowledge about the information gathered by the measurement

taken thus far, I(VT; Z,) for some a < T, can be useful for real-time adaptive de-

cision making. However, in the filter form expression, this information requires

significant amount of further computation, as the expression (5.9) computed at

a does not represent the information rewarded thus far; in other words,

Z(VT; Z,) I [log det(MvPx (a)MV') - log det(MvQx (a)M2')] = I(V,; Z).

(5.16)

Instead, calculation of I(VT; Z,) requires additional integration of Qx (t) over

19, T]:

Qx(t) = A(t)Qx(t) + Qx(t)A'(t) + Ew(t), (5.17)

starting with initial condition Qx(a), in order to propagate the influence of Z

until the verification time T. Further discussion on the on-the-fly information

will be given in section 5.2.4.

5.2.3 Smoother Form

This section proposes a smoother form for quantification of the information reward,

which resolves all the issues in the filter form listed in Remark 2. It can be shown

that the differential equations for the smoother form are integrated for the planning

time horizon, and that the information attained by the measurement thus far can be

immediately computed without significant computation. This section first suggests

an alternative expression of the mutual information that applies to any nonlinear

non-Gaussian case:

Proposition 4. (Information Identity) If state dynamics satisfy the Markov property,

i.e. the future state is conditionally independent of the past state given the present



state, and the measurement noise is independent of future process noise, then

I(VT; Z,) = Z(X,; Z,) - Z(X,; ZIVT). (5.18)

In other words, Z(VT; Z,) can be interpreted as the difference between the information

about X, contained in Z, before and after VT is revealed.

Proof. Utilizing the relationship between the mutual information and the conditional

entropy, and commutativity of mutual information, the right-hand side of (5.18 can

be manipulated as

Z(X,; Z,) - Z(X,; Z, VT) = (Z,; x,) - (Z,; X, VT)

= N(Z,) - R(Z, X) - R(ZIVT) + R (ZIX, VT)

= z(z,; VT) - Iz(z; VT x,)

= z(VT; Z) - I(VT; Z IX). (5.19)

Notice that

z(VT; Z, X') = 0o, (5.20)

because Z, - X, - VT forms a Markov chain; i.e., Z, and VT are conditionally inde-

pendent of each other for given X,. Thus, finally it follows

(5.21)

For linear systems with Gaussian noise described by (5.1) and (5.2), the mutual

information between X, and Z, can be easily computed by using a known expres-

sion in the literature [20-22]. The conditional mutual information Z(X,; Z, IVT) can

be quantified by posing a fixed-interval smoothing problem that incorporates the

continuous measurement history Z, and the discrete noise-free measurement of the

verification variables at time T:

IZ(V; Z,) = Z(X,; Z,) - Z(X,; 2,| Vr).



Proposition 5. (Smoother Form) If Poy A P(Xo VT) >- 0 is available, the informa-

tion reward Z(VT; Z,) can be computed as

JS (T, T) A Z(X; Z) - I(X; Z I VT)

1
Jo(T) - - log det(I + Qx(T)As(7))2

where

(5.22)

(5.23)

1 l
0(T) I log det Sxlv(T) -JO(F)

1
I log det Sx(T)2

AS(T) A SXV(7) - SX(T), (5.25)

and Sx(T), SxlV(T), and Qx(T) are determined by the following matrix differential

equations:

Sx(t) = -Sx(t)A(t) - A(t)'Sx(t) - Sx(t)Ew(t)Sx(t) (5.26)

Sx (t)= -Sxlv(t)(A(t) + w(t)Sx(t)) - (A(t) + Ew(t)Sx(t))'Sxlv(t)

+ Sxiv(t)Ew(t)Sx1v(t) (5.27)

Qx(t) = A(t)Qx(t) + Qx(t)A(t)' + Ew(t) - Qx(t)C(t)'ZE 1(t)C(t)Qx(t) (5.28)

with initial conditions Sx(O) = Po-l , Sxiv(O) = PoT, and Qx(0) = Po. The super-

script 'S' denotes the smoother form.

Proof. First, the unconditioned mutual information I(X,; Z,) can be expressed as

1 1
I(X; Z) = 2 log det Px(T) - 2 log det Qx(T) (5.29)

where Px(7) is the solution to the Lyapunov equation:

Px(t) = A(t)Px(t) + Px(t)A(t)' + Ew(t), (5.30)
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with Px(O) = Po, and Qx(t) is the solution to the Riccati equation:

Qx(t) = A(t)Qx(t) + Qx(t)A(t)' + Ew(t) - Qx(t)C(t)'EN 1(t)C(t)Qx(t). (5.31)

Regarding the conditional mutual information term, note that

1
z(X,; Z,| VT) = -(log det P1 - log det P2) (5.32)

2

where P is the covariance of X1 A X, - E[X, VT] and P2 is the covariance of X 2 _

X, - E[X,I VT, Z]. Namely, P2 is the error covariance of the fixed-interval smoothing

with the past measurement Z, and the future measurement VT; Wall et al. [44]

suggested the expression for the error covariance for the fixed-interval smoothing

Q xv(t) a P(Xt VT, Zt) = Qx(t) + xPv(t) - Pxj(t) (5.33)

where Pxlv(t) is the estimation error covariance accounting for the future measure-

ment plus a priori information. Pxlv(t) is computed as a solution of a Riccati-like

equation that is integrated backwards. Since, in this work's setting, there is no future

measurement except a discrete measurement at T, Pxlv(,) is same as P1 and can be

computed by the following Lyapunov-like equation integrated backwards:

Pxlv(t) = (A(t) + Ew(t)Pxj(t))Pxlv(t) + Pxlv(t)(A(t) + Ew(t)Px1-(t))' - Ew(t)

(5.34)

with terminal condition Px lv(T) = P(XTIVT) to time 7. Note that P(XTIVT) is all

zero except the part corresponding to P(XT \ VT VT). It should be noticed that this

equation need not to be integrated backwards, because every quantity on the right-

hand side is available at time t by the past knowledge. It can be integrated forward

with initial condition Pxiv(O) = Pojv, which is assumed to be available. Thus, P2

can be computed by the forward integration of three matrix differential equations: a

Lyapunov equation for Px, a Riccati equation for Qx, and a Lyapunov-like equation

for Pxlv, so can the information reward Jvs (T, 7).
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In addition, equations for Px and PxIv can preferably be written in terms of

the information matrices, Sx - Pi 1 and Sxv = Plv; this removes the need for

performing matrix inversion in (5.34). Using

d ) = - M1  
(5.35)

for a symmetric positive definite M1 , equations for Sx and Sxlv are obtained as

Sx(t) = -Sx(t)A(t) - A(t)'Sx(t) - Sx(t) Ew (t) Sx (t) (5.36)

Sx v(t) = -Sxv (t)(A(t) + Ew(t)Sx(t)) - (A(t) + Ew(t)Sx(t))'Sx v(t)

+ Sxiv(t)Ew(t)Sxiv(t). (5.37)

Finally, using the properties of the determinant function: log det M71 = - log det M

and det(M 1 M 2) = det M1 det M12 for square matrices M1 and M2 ,

JVS(T, 7) = I(X,; Z,) - I(X,; Z,I VT)

Slog detPx(T) - 2 lo det Qx(T) 2 log det PxIv(T) - log det Qxlv(T)]

= [ - log det Sx(T) - log det Qx(T) + log det SxIv(T)

- log det (Qx1 () + Sx (t) - Sx(T))]

= [log det Sx v (7) - log det Sx(T)

-1 [log det (Qx(7T)[Qx(T) + SXIv(t) - Sx(T)])]

1
= Jo(T) - - log det(I + Qx(T)As(T)),2

(5.38)

0 1 1
with Jo(r) 9 log detSxIv(T) - -log det Sx() and As(T) A Sx v(r) - Sx(T). [

2 2

Remark 3. (Computation of Conditional Initial Covariance) For the linear setting

given defined by (5.1) and (5.2), Poyv can be computed by the covariance update

formula:

Poiv = Po - PoTr,o)M' [MvPx(T)M{]- Mv1(T,o)Po. (5.39)
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where D(T,o) is the state transition matrix from time 0 to T. Since the final state XT

can be represented by the initial state and the process noise history as

XT = 4(r,o)Xo + j (T,a)Wda, (5.40)

the covariance between the initial state and the final state becomes

PXO,XT a P(Xo, XT) = PO(T,), (5.41)

because Wt, t E [0, T] is independent of Xo.2 Therefore, P(Xo, VT) becomes MVy(T,o)Po,

which leads to the conditional covariance expression in (5.39). If the system is time-

invariant, the state transition matrix C(T,o) = exp(AT), which can be calculated

without integrating any differential equations. The final covariance Px(T) is com-

puted by integrating the Lyapunov equation

P(t) = A(t)'P(t) + P(t)A(t) + Ew (5.42)

starting from Po. Note that the inverse on the right-hand side exists for finite T with

Po > - O.

For a time-varying case, a fixed-point smoothing using state augmentation can be

applied for finding Polv. By augmenting Xt with Xo, the dynamics of the augmented

state is expressed as

Xt A (t) 0 [] + Wt (5.43)
Xo. 0 0 Xo. 0

The covariance propagation for this augmented state is represented as the following

Lyapunov equation:

Px Pxt,xo A (t) 0 Px Pxt,xo Px Pxt,xo A(t) 0[ Ew 0

Pxo,x Po 0 o Px, , Po Pxo,, Po 0 0 0
(5.44)

2 As defined in Chapter 2, the notation P(Y1 ,Y 2) a E[(Yl - E[Y,])(Y2 - E[Y2 )'] for two random

vectors Y1 and Y2 .
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Integration of this equation with initial condition Po 0 12 over [0, T] provides Px (T)

and PXo,XT.

In case the linear system is used to approximate a short-term behavior of a nonlin-

ear system whose long-term behavior is tracked by some nonlinear estimation scheme

such as an ensemble forecast system, Pol0 can be provided by this nonlinear estima-

tor. The ensemble augmentation technique presented in section 3.1.1 can be used for

this purpose. Given initial ensemble X0 E IRnx LE, the forecast ensemble at T is

computed by

XT = Xdt, (5.45)

and a measurement update process (as in (2.17)) for the augmented ensemble

Xaug Xo E R(nx+nv)xLE (5.46)

with noise-free measurement with observation matrix

Haug = [Onvnx Inv xn (5.47)

results in the conditional perturbation ensemble Xolv. Then, the conditional initial

covariance Polv is calculated as

Polv L  
- lvX01 v (5.48)

Remark 4. (Resolution of Issues in Filter Form)

* Note that given Polv, every differential equation for the smoother form is in-

tegrated forward up to time r. The only part for which a long integration is

required is the calculation of the conditional initial covariance Polv, which is

performed only once before incorporating the measurement history using tech-

niques given in Remark 3.
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* With regard to the issue of sensitivity to linearization error, if Po1v is provided

from a nonlinear estimation scheme, calculation of Polv is not affected by lin-

earization error. Therefore, the linearization error propagates only for the short

time interval [0, T], which provides better robustness to linearization error than

the filter form. Even when there is no such nonlinear estimator, the smoother

form allows for pinpointing the possible effect of the limited model validity

to the just the Pov term, which enables a separate analysis of improving the

quality of this term.

* Regarding computational complexity, only one quantity, Qx(T) is dependent

on the measurement history; Jo(T) and As(T) can be pre-computed in advance

of computing Qx(r). Thus, if one needs to evaluate the information rewards

for different measurement histories, then one can simply integrate the Riccati

equation in (5.28) over [0, T] to get Qx (7) for various measurement options,

while all other information has been computed without regard to the measure-

ment choice. Therefore, compared to the filter form, the computation cost of

evaluating rewards for different measurement options is reduced by the factor

of T/7, because the same matrix differential equation (i.e., Riccati equation) is

integrated for a shorter time interval [0, T].

* For the smoother form, the information gain accomplished by a partial mea-

surement history Z,, U < T is straightforwardly computed as JvS(T, a), the

same expression as (5.23) with the matrix values evaluated for time a. Since all

the matrix differential equations are integrated forward, JTS(T, a) is available

in real time without further computation. This on-the-fly information will be

discussed in detail in section 5.2.4 with the notion of mutual information rate.

Remark 5. (Interpretation as Weighting) Conventional path planning problems [33]

focus on reducing the uncertainty in the state estimate at the end of the planning

window: i.e. min log det Qx (7). Recalling that the forecast problem written in the

smoother form considers min log det(I + Qx(T)As(T)), the smoother form objective

function can be regarded as some weighted version of the conventional objective
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function. Depending on As(r), the solutions of the two problems can be very different;

however, a planning algorithm for the conventional decision can be easily extended

to the forecast problem, since the smoother enables projection of the decision space

from a long forecast horizon [0, T] on to a short planning horizon [0, T]. O

Remark 6. (Information Form Riccati Equation) The smoother form can also be

computed using the information form Riccati equation instead of the covariance form

Riccati equation in (5.28); in other words,

1
J S(T, T) = Jo0() - - [- log det Jx(T) + log det(Jx(T) + As(T))] (5.49)

2

where Jx(T) A Qx(T) -1 is determined from forward integration of

Jx(t) = -A(t)Jx(t) - Jx(t)A(t)' - Jx(t)EwJx(t) + C'(t)ENIC(t) (5.50)

with initial condition Jx(O) = Po1 . The information form can be preferred in the

cases where a) there is no process noise, i.e., Ew = 0, and b) the observation matrix

C represents the measurements by multiple sensor platform. If Ew = 0, the Riccati

equation in (5.50) becomes a Lyapunov equation that is easier to integrate. When C

is expressed as

C= C ; .. . (5.51)

with Ci representing the observation matrix for i-th sensor platform, the last term in

the right-hand side of (5.50) becomes

C1

=7 ... = c ] N. (5.52)

Cni=

Compared to the covariance form Riccati equation in (5.28), the information form is

preferable in that the contribution of individual sensor platform is easily quantifiable.

In this work, main results will be given in the covariance form as it provides some

important insights such as weighting matrix discussed in Remark 5. EO
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5.2.4 On-the-fly Information and Mutual Information Rate

This section discusses the on-the-fly information available in the process of computing

the filter form and the smoother form mutual information, and identifies important

features of the smoother form in terms of information supply and dissipation. More-

over, this analysis facilitates building an information potential field that can be used

to visualize the spatial distribution of information quantity and is used to develop a

real-time steering law for a mobile sensor in section 5.4.2.

Filter-Form On-the-fly Information (FOI)

Information Since the Lyapunov equation in (5.10) and the Riccati equation in

(5.11) are integrated forward from time 0, the available matrix values at time t < T

are Px (t) and Qx (t). With these, the mutual information between the current state

variables and the measurement thus far can be evaluated as

1 1
I(Xt; Zt) = - log det Px (t) - -log det Qx(t). (5.53)

2 2

Information Rate The expression of the time derivative of FOI was first presented

in [21]; its interpretation as information supply and dissipation was provided in [22].

The rate of FOI can be derived as

d dl 1
I(Xt; Z) = log det Px(t) - - log det Qx (t)

dt dt 2 2

= -trace Px -1Qx

= trace CQxC - trace w(Q - (5.54)
2 N_2 _ _ _ _ _ _ 

(554)

Info Supply Info Dissipation

where every matrix is evaluated at t. The first term depends on the measurement

and represents the rate of information supply, while the second term depends on the

process noise and represents the rate of information dissipation [22]. It can be proven
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that the signs of the supply and the dissipation term are non-negative:

trace YN1CQxCI > 0, trace {w(Q1 - Pl)} > 0,

since CQxC' > 0, Qx 1 - P I >- 0, and trace of the product of two symmetric

positive definite matrices is non-negative [45]. Thus, measurement tends to increase

FOI while the process noise tends to decrease it; FOI can be decreasing over time if

the information dissipation dominates the information supply.

Note that previous work [33] derived a quantity identical to the information supply

term in developing some information potential field. The author of [33] considered the

entropy of the current state, H(Xt), which is -- log det Jx(t) + x log(2we), where

Jx(t) A Qx1 (t) is the Fisher information matrix at time t. Then,

d ld
d (Xt Zt) = log det Jx(t) (5.55)

dt 2 dt
I trace J (-JxA - A'J x - JxEwJx + C' I- C)

1I trace {JjC'EN'C - trace A + J-'A'Jx + Ewlx)

- trace E{N CQxC'} + a(t) (5.56)

where a(t) consists of terms that are not dependent on the observation matrix C.

Note that a(t) # 1trace(Qx - Pjl); thus, the procedure given in [33] does not

provide the expression of the rate of FOI.

Note that the dissipation term in (5.54) is zero if Px(t) = Qx(t), which cor-

responds to the case where no measurement is ever taken up to time t. Thus, the

information supply term represents the rate of information accumulation assuming no

measurement has been taken up to the current time. Consider the case no measure-

ment is taken over [0, T], i.e. Z, = 0; then, at some t < 7r, the rate of FOI in (5.54)

equals to zero regardless of the process noise. However, in this case, the remainder

term a(t) in (5.56) derived from the information form Riccati equation is positive in

case Ew > 0, representing the increase of the entropy due to the process noise.
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Projected Filter-Form On-the-fly Information (PFOI)

Information Similar to FOI, the mutual information between the current verifica-

tion variables and the measurement thus far can also be computed on the fly, while

computing the filter form mutual information:

1 1
(Vt; Zt) = -log det Pv(t) - - log det Qv(t). (5.57)

2 2

where Pv(-) MvPx(')M and Qv(') _ MvQx(.)MV'.

Information Rate The time derivation of PFOI can also be expressed in terms of

Px(t) and Qx(t) as follows.

d(v; z) = trace PXPv - QlQ}

= trace E QxM, QV Q +(t), (5.58)

Direct Supply

where 0(t) represents all the remaining terms that do not depend on the observation

matrix C. The first term, underbraced as "Direct Supply" represents the immediate

influence the measurement on the current verification variables; the remaining term

P(t) captures all the correlated effect due to coupling in dynamics on the information

supply/dissipation. The sign of 0(t) is indefinite, while the direct supply term is

non-negative as CQxMQ v MvQxC' > 0. Although P(t) is indefinite in general,

it is zero if Px(t) = Qx(t) and no measurement is taken at t. Thus, in case no

measurement is taken over [0, 7], the value of PFOI is always zero in the time interval

[0, 7] regardless of the process noise.

5.2.5 Smoother-Form On-the-fly Information for Forecasting

(SOIF)

Information The smoother form can quantify, on the fly, the information accumu-

lated by the measurement thus far. In the smoother form framework, the mutual
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information between the future verification variables VT and the measurement up to

the current time t can be calculated as

Z(V; Z) = Z(Xt; Zt) - Z(Xt; Zt VTr)
1

= J0 (t) - I log det(I + Q(t)As(t)).
2

(5.59)

The values of matrices Jo(t), Q(t), and As(t) are calculated in the process process

of the forward integration (5.26)-(5.28).

Information Rate The temporal derivative of the smoother form mutual informa-

tion can be written as follows.

Proposition 6. (Smoother-form Information Rate) The temporal derivative of the

smoother form information reward at t, Js (T, t) A Jo(t) - log det(I + Qx(t)As(t))

is written as:

(5.60)
d t 1
dtS(T, t)= trace (,'C(t)II(t)C(t)')

where

11(t) - Qx(t)(Sxiv(t) - Sx (t))[I + Qx(t)(Sxv(t) - Sx (t))]-Qx(t). (5.61)

Proof. For a symmetric positive definite matrix, M1 , the time derivative of its log det

value is expressed as d logdet M) = trace(Mi- Mi). Using this expression, the

rate of change of JS(T, t) can be written as:

[j(t) log det(I + Qx()As(t))

[ (log det Sx v(t) - log det Sx(t)) - log det(I + Qx(t)As(t))]

= trace{S vSxjv - Si-Sx

- trace{[I + Qx(SXIV - Sx)] -[Qx(SXIV - Sx) + Qx(Sxiv - Sx)]
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Consider the first term:

trace{S v Sxv - SSx}

= trace {Sxv(-Sxlv(A + EwSx) - (A + EwSx)'Sxlv + SxlvEwSxlv)

- Sx'(-SxA - A'Sx - SxEwSx)}
(5.62)

=trace - A - EwSx - A'SxivSj - SxEwSxIvSJ'r + ZwSxiv

+ A + A'SxS1 + EwSx}

= trace Ew(Sx v - Sx) ,

where the transition from the second to third lines uses the property of trace function:

trace(ABC) = trace(BCA) = trace(CAB). The second term can be expanded as:

trace {[+ QxAs]-s [xAs + QxAs]

= trace (I + QxAs) - 1 x [(AQx + QxA'+ Ew

- QxC'E'CQx) As + Qx(-sA - A'sA + AwAs)] }
= trace (I + QxAs)-'AQx s + (1 + Qxs)-1 QxA'As + (I + QxAs)-'EwAs

- (I + QxAs)- 1QxC'EN1CQxAs - (I + QxAs)-1 QxAsA

- (I + QxAs)-QxA'As + (I + QxAs)-AsEwAs}

=trace ( I + QxAs)-AQx s - (I + QxZs)-'QxzsA

+ (I + QxAs)-l(I + QxAs)EwAs - (I + QxAs)-QxC'C'ECQxAs}

= trace QX [As(Q21 + As)- Q 1 - Q X (Ql + A)-'A] A + Ew~s

- (I + QxAs)- QxAsAQxCE N ICQxAs}

=trace wAs - (I + QxAs)-IQxC'ENICQxAs},

where the expression of As can be derived from SxIv - Sx. Therefore, J S(T, t)
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can be written as

d s(T, t)= 2trace TEwAs - Zws + (I + QxAs) vQxC'-lCQxAs
dt 2 +N XS

1

2t race { CQx(Sx v - Sx)(I + Qx(Sxjv - Sx))-QxC')

2 trace C'EC10 (5.63)

= trace {EZC(t)nC'} (5.64)

with II = Qx(Sx iv - Sx)(I + Qx(Sxiv - Sx))- Qx. O

Proposition 7. (Non-Negativity of Information Rate) The rate of the smoother-form

on-the-fly information for forecasting (SOIF) is non-negative:

d 1
S-(VTt; Z) = -trace ENC(t)I(t)C(t)' I 0 (5.65)

Info Supply

Proof. One way to prove this is to utilize some properties of symmetric positive

definite matrices. By the matrix inversion lemma [46], the matrix H _ QxAs[I +

QxAs]-1 Qx is symmetric:

H = QxAsQx - QxAs(QxI + As)-IAsQx = II'

The Wigner's theorem [47] states that a product of multiple symmetric positive defi-

nite matrices is positive definite if the product is symmetric; thus, II > 0. This leads

to CIIC' _ 0, and finally trace {E 1CIIC'} > 0, because the trace of two positive

definite matrices is non-negative [45].

Another way to prove (5.65) is to use the principle of "information never hurts [35]."

By definition of the time derivative,

dt(VT; Z ) = lim (I(VT; Zt+e) - I(VT; Zt+e)) /e (5.66)

For a positive E, Zt+, D Zt; therefore, Z(VT; Zt+,) > Z(VT; Zt), because the additional

information by measurement over (t, t + e] does not increase the entropy of VT. Like-
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wise, I(VT; Zt+E) < Z(VT; Zt) for a negative c. For both cases, the right-hand side of

(5.66) is non-negative. This second way of proof can apply to nonlinear non-Gaussian

cases as well. O

Since the influence of the future process noise has already been captured in Sxlv,

the mutual information rate for the smoother form is non-negative regardless of the

process noise as proven in Proposition 7. If one stops taking measurement at time

t, the information reward stays constant. Thus, the mutual information rate for the

smoother form can extract out the pure impact of sensing on the entropy reduction

of the verification variables, while the rates for the filter forms depend on the process

noise.

Remark 7. (Information Rate for Multiple Sensors) Consider the case where there

are multiple sensor platforms, and the observation matrix of i-th sensor is Ci, consti-

tuting the overall observation matrix of

C= c ... ' (5.67)

Then, the smoother-form mutual information rate in Proposition 6 can be preferably

written as

-y(T, t) = trace EN'C(x, y)IIC(x, y)'
dt 1

= trace{ I x C(x, y)'EN1C(x, y)

= 2trace II x Ci(xiYi)i 1Ci(ii)}

1 c , i)' (5.68)
= 2trace {ICi(xi, yi) i ii)

n
= -trace II(xi, yi)E C (xil Yi)

"1
i= ltrace { CIC(xi, yi)II(t)Ci(x, yi)'}

where (x, y) represents the positions of all the sensor platforms, and EN, is the (i, i)-

th entry of EN. In other words, the total rate of change of mutual information is the

113



sum of rate of change of mutual information of individual sensor platforms. ]

Remark 8. It is noted that when Qx(t) = Sjl(t),

1(t) = S' (t) - S V(t). (5.69)

This specifically means, at initial time, rI(0) = Po - Pov, which leads to

d .(V;Zt) t 1 (trace EN1C(Po - PoIv)C'}. (5.70)
-(v Z t=O =

This should be contrasted to the filter-form information rate, which becomes

I(Xt; Z = traceE N CPoC (5.71)
dt ,t=o 2

at the initial time. Ol

Example 1. Figure 5-2 compares the time histories of three on-the-fly quantities: the

smoother-form on-the-fly information JS(T, t) = Z(VT; Zt), the filter-form on-the-fly

information I(Xt; Zt), and the projected filter-form on-the-fly information Z(Vt; Zt).

In this example, the following system matrices are used with 7 = 2 and T = 5:

0.1 1 0.01 0 1 0.5
A= Ew= Po=

1 -0.5 0 0.01 0.5 1

C=[0.5 0.5] E = 0-01, MV [0 11

First, notice that JVS(T, t) at t = 7 is the same as $(V; Zt) at t = T, as

Z(VT; Z,) = Z(VT; ZT) with null measurement during (T,T]; this agreement in the

plots numerically confirms the equivalence of the filter form and the smoother form.

For JVS(T, t), it is found that information increases in the presence of measurement

(before 7) and stays constant in the absence of measurement (after T). In the history

of I(Xt; Zt), the information supply over [0, T] increases the information while the

information dissipation over (T, T] decreases the information. The history of Z(Vt; Zt)

is fluctuating; it can decrease with measurement (around t = 0.5) and can increase
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Figure 5-2: On-the-fly information by a partial measurement path Zt

without measurement (at t = 2), because information can be supplied/dissipated

from/to the other state variables Xt \ Vt via dynamics. Thus, this simple example

clearly demonstrates the information supply/dissipation analysis in this section.

As a consequence, the filter form quantities, I(Xt; Zt) and Z(Vt; Zt), are not good

indicators of the accumulated information I(VT; Zt); only the smoother form quantity

JvS(T, t) accurately represents the accumulated information. FO

5.3 Path Representation

The previous section suggests a formula to quantify the information reward for a con-

tinuous measurement history in a finite-dimensional linear system framework. This

section shows how to relate the motion of a sensor in continuous space to a mea-

surement history in the time domain, starting with the spatial interpolation method.

This method describes the continuous field of the environmental variables in terms of

a finite number of variables associated with the specified grid points.

This work assumes that the environmental variables at location r can be repre-
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sented as a linear combination of those at a finite number of grid points ri's:

nG

t (r) = i (r, ri) t(ri) (5.72)
i=l

where nG is the number of grid points, qt(.) E RnE represents the environmental

variables associated with a given location at time t with nE denoting the number

of environmental variables associated with a single grid point, and the coefficient Ai

is determined as a function of the location vectors r and ri. This thesis considers

time-invariant Ai, although the results can be easily extended to time-varying cases.

Many spatial interpolation techniques such as Kriging [28] and Gaussian processes

regression (GPR) [29] provide expressions of the form in (5.72). In determining the

coefficients for the linear combination, this thesis specifically considers the zero-mean

GPR method, which is equivalent to Simple Kriging, with squared exponential co-

variance function. The coefficients Ai(r, ri) are expressed as

nG

Ai(r, ri) = -caijp(r, r/) (5.73)
j=1

where p(r, rj) is defined as

1 1
p(r, rj) Aexp [ 2 2 ( j)2 _ y _ yj)2 (5.74)

in the two-dimensional space, and cij is the (i, j)-th element of the matrix [p(ri, rj)] -1

The parameters lx and 1, represent the correlation length scales in each direction. For

an isotropic environment, 1x = ly can be assumed, but for the atmospheric application

in this thesis, it is more reasonable to consider different length scales in each direction

because the zonal and meridional variations of the weather are very different.

Under the assumption in (5.72), the environmental dynamics over the whole con-

tinuous space can be fully described by the dynamics of the finite number of variables

at grid points. The state vector Xt E R nx , nx = nG X nE , is defined as

Xt = [Ot(ri)'. t- t(rnG)']', (5.75)
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and this work considers linear dynamics for Xt as in (5.1).

Consider a sensor located at r at time t that receives measurement of Ot(r). Since

t (r) is a linear combination of t (ri)'s, the observation equation for this sensor can

be expressed as Zt = C(t)Xt + Nt where C(t) E IRnExnx is

C(t) = [Al(r, rl)InE " AnG(r, rnG)IlE]. (5.76)

For notational convenience, a single-sensor case will be considered in the later part

of this chapter on; extension to multiple sensors is straightforward.

If a sensor is continuously moving, its motion is fully described by the time his-

tory of the location vector r(t). Thus, the effect of the sensor's motion on the

estimation system is through the evolution of the observation matrix C(t) due to

changes in Ai (r, ri)'s in time. Consider a sensor moving along a specified path

p, = {r(t) : t E [0, T]} where r(t) is known for all t E [0,7]. Then, the evolution of

observation matrix C, = {C(t): t E [0, T]} can be derived by relating C(t) and r(t).

Then, the information reward associated with this path, denoted as Jv(T, T; P,), can

be computed by evaluating Qx(T; C,), which is the final value of the Riccati equation

corresponding to observation matrix history C,, while Jo(T) and As(T) have been

computed in advance independently of p,.

To account for the limited mobility of the sensor, the path is, in general, repre-

sented as a set of equations of the location vector and its time derivatives:

gdyn (r(t), r (t), (t), u(t)) = 0 (5.77)

where u is the control input for the sensor motion. For instance, a two-dimensional

holonomic motion of a UAV sensor platform with constant speed v can be written as

(t) = v cos 0(t), 7)(t) = vsinO(t) (5.78)

where O(t) is the flight path angle, which is treated as a control input in this model.
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5.4 Path Planning Formulations

5.4.1 Optimal Path Planning

The optimal motion planning determines the path pT, or equivalently the time his-

tory of the control input, that maximizes the smoother form information reward

Js(T, T) = Jo(T) - log det(I+Qx(r; C,)As(T)). The prior and posterior initial co-

variance Po and Polv, respectively, are computed first; Jo(7) and So(r) are computed

using these information. Then, the optimization problem only involving the compu-

tation of Qx(T; C,) is posed. This optimization problem is indeed a nonlinear optimal

control problem (OCP) with a terminal cost functional. The control variables for this

OCP are the controls for the sensor motion, e.g. 0(t) for two-dimensional holonomic

motion, while there are two types of state variables: the vehicle position variables, x

and y, and the entries of the Qx(t) matrix. The optimal path planning problem for

a two-dimensional holonomic mobile sensor is stated as

0*(t) E arg min log det(I + Qx(r; CT)As(T)) (5.79)
0(t)

subject to

Qx = AQx + QxA' + Ew - QxC(x, y)'ENC(x, y)Qx

S=vcos , y =vsin

Qx(0) = Po, x(0) = zo, y(0) = Yo (5.80)

where C(x, y) is expressed as a function of x and y to emphasize that dependency

in time is only through the evolution of x and y. Regarding the size of this OCP,

there is one control variable and the number of state variables is nx(nx + 1)/2 + 2.

Constraints in the sensor's motion such as endpoint restriction, waypoint requirement,

nonholonomic aspect of motion can be easily incorporated by modifying the vehicle's

dynamics and by imposing additional constraints. Also, multiple sensor problems can

be dealt with by adding associated dynamic/kinematic constraints and by modifying
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the expression of the observation matrix.

5.4.2 Information Field and Real-Time Steering

Optimal path planning gives a motion plan for maximum information reward, but,

solving a nonlinear optimal control problem can incur substantial amount of compu-

tation cost, especially, when nx is large. Thus, it is beneficial in practice to devise a

computationally cheap feedback guidance law. One way to derive a real-time steering

mechanism is to build some potential field and to move along the gradient of that

field. The mutual information rate discussed in section 5.2.4 can be utilized to con-

struct an information potential field. This type of information potential field extends

a similar notion presented in [33], which derived the expression of (log det Qx'(t))

and neglected terms unrelated to the observation matrix to build a potential field.

This section builds a potential field with the smoother form information rate in (5.60),

which consists of a single term explicitly dependent on the observation matrix.

For the two-dimensional holonomic sensor motion in (5.78), the guidance law is

presented as

OG(t) = atan2 -JJ (T, t) , ( (Tt) (5.81)

where JT - (T, t) is the smoother form mutual information rate, and atan2 denotes

the four-quadrant arctangent.

Since the relationship between C(x, y) and (x, y) is known, the mutual information

rate can be particularly written as a function of spatial coordinates:

(TI t) = trace R- 1C(x(t), y(t)) (t)C(r(t), y(t))', (5.82)
d S T t) -trace

and the gradient of the above expression can be evaluated accordingly. In case

C(x(t), y(t)) E RIW x , namely, there is only one environmental variable of interest,
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the spatial derivative can be written as

S(dsF- ) , Y0(xr(t) (t))
S- (T,t) = EC((t) y(t))II(t) C ( x ( t ) y(t)) (5.83)

-- I 1C(x(t), y(t))II(t)dc(x) (5.84)

S J(T t) = () y())() C ( ( t ) y(t)) (5.85)

= EN C(x(t), y(t))II(t)dc(y) (5.86)

where dc(x) and dc(y) are nx-dimensional column vectors whose i-th elements are

d(x)i = -12 aijp(r, r)(x - X), (5.87)

d(y)i= -1 2 Z- aijp(r, rj)(y - yj). (5.88)

In case C is not a row vector, the relation in (5.68) suggests that the mutual infor-

mation rate and its gradient are nothing more than the sum of those with individual

row of the observation matrix.

5.5 Numerical Simulations

This section deals with numerical implementation of the proposed path planning

formulations, to confirm that the linear estimation theoretic formula together with the

path representation technique realizes the continuous measurement path for mobile

sensors.

5.5.1 Scenarios

The path planning problem is posed for the linearized weather dynamics for some local

region defined by the indices (i, j) [Lmin , Lax] x [Lin, Lmax]. A linear invariant

model is obtained by deriving the Jacobian matrix of the Lorenz-2003 dynamics in

(2.18) (with Px = py = 2) around the ensemble mean for eij's at the grid points in

the local region. Thus, the state vector Xt E Rnx represents the perturbation of
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Table 5.1: Scenarios for continuous motion planning

Scenario 1 , [L n X ] [L ,an, L nG = Ix I ly (X, Yo) v (grid/hr)

1 [46,49] [5,7] 12 1.5 1.0 (47.5, 6) 1/3
2 [47,50] [12,14] 12 1.0 0.7 (49, 13) 1/2

the ij's from the ensemble mean. In this linear model, the dependence of the local

dynamics on the evolution of the outside dynamics is ignored in deriving the Jacobian

matrix (or A matrix). Instead, this effect is incorporated in the process noise term,

i.e. the states on the boundary of the local region, which may be affected by outside

dynamics more substantially, are assumed to be subject to larger process noise. The

goal is to design a 6-hr flight path (7 = 6 hrs) for a single sensor platform to improve

the forecast over the right-most grid points in the local region in 72 hrs (T = 72

hrs). The motion of the sensor is described as 2-D holonomic motion and it flies at

constant speed v grid/hr (= 347v km/hr). The prior and posterior initial covariance

matrices, Po and Pov are provided by the EnSRF data assimilation scheme, where

Pov is computed by the ensemble augmentation method presented in Remark 3.

Two scenarios with different configurations of local region, correlation length scale

parameters, vehicle speed, and vehicle initial location, are considered. The sensing

noise intensity EN = 0.0025 is used, and other parameter values for each scenario are

given in Table 5.1.

5.5.2 Results

Two proposed path planning methods, optimal path planning and gradient-based

real-time steering, are compared with the myopic versions of them. Myopic path

planning takes into account Z(X,; Z,) instead of I(VT; Z,), the underlying hypothe-

sis being that uncertainty reduction in the current estimate would lead to uncertainty

reduction in the future forecast. More specifically, the optimal myopic solution mini-

mizes log det Qx (T), and myopic real-time steering utilizes the filter form information
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Table 5.2: Information rewards for different strategies

Scenario Optimal Real-Time Myo. Opt I yo. RT Best SL Worst SL

1 1.04 0.85 0.86 0.79 0.93 0.29
2 0.69 0.62 0.20 0.14 0.43 0.14

rate in (5.54) to construct an information potential field. Since the information dissi-

pation term of the filter form information rate, !trace(P 1 - Q- 1) is not an explicit

function of (x, y), the myopic real-time law results in a formula that has Qx instead

of II in the gradient expression. Especially, at initial time, I(0) = Po - Polv, while

Qx(0) = Po0.
Each of the two optimal control problem is formulated as a nonlinear program

(NLP) by parameterizing the control history as a piecewise linear functions with 12

segments. TOMLAB/SNOPT v6.0 [48] is used to solve NLPs; real-time steering solu-

tions, and various straight-line solutions are used as initial guess for the optimization.

Both optimization solutions are obtained within two minutes (per initial guess) and

satisfy first-order optimality criteria. Also, as references, the best and the worst

straight-line paths are also considered. The best straight line solves an NLP to find a

constant 00 that maximizes the smoother form information reward, assuming vehicle

dynamics of ± = v cos 00, ) = v sin 00.

Table 5.2 represents the information rewards JVS (T, 7) for all the methods consid-

ered. It is first found that the real-time steering provides relatively good performance

for both scenarios, while the two myopic strategies provide very poor performance

in Scenario 2. It is also noticed that the best straight-line solutions offer a better

performance than the real-time steering for Scenario 1.

Figures 5-3 and 5-4 depict the sensor trajectories in the first scenario overlaid

with the initial information potential fields - the smoother form information field

in Figure 5-3, and the filter form information field in Figure 5-4. Similarly, Figures

5-5 and 5-6 show the trajectories for the second scenario. Note that in scenario 2

the shape of the smoother form information field substantially differs from the filter
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form one, while they are similar in scenario 1. Thus, in Scenario 2, moving toward

the information-rich region in the north-western corner from the filter point of view is

never a good strategy from the smoother point of view, because most of the smoother-

form information is concentrated in the southern part of the region. This example

confirms that reducing the uncertainty in the current state variables may not be a

particularly good way for reducing the uncertainty in the future verification variables.

Figures 5-7, 5-8, and 5-9 give snapshots of the vehicle trajectories in scenario 1 for

the optimal, real-time steering, and best straight-line strategies, respectively, overlaid

with the information field at the corresponding time instances. Note that the shape of

the information field changes a lot as measurements are taken along the path. Since

the smoother form information rate has only one term that is directly dependent

on the observation matrix, the information field stays the same if no measurement is

taken. This is not true for the filter form field, although in this particular example that

background variation of field happens not to be significant because of slow dynamics

and small process noise.

In Figure 5-8, the real-time steering leads the sensor to climb up to the information-

rich peak in the north; at t = 3hr the sensor has taken most of information around

the north peak, which is not a peak any more. The sensor then steers to the west, but

time is limited to extract much information. However, the optimal solution in Figure

5-7 first heads toward to a south peak; at t =2hr the sensor turns back to the north

in order to gather the information around the north peak. Notice that the initial

behavior of the best straight-line solution in Figure 5-9 is very similar to the opti-

mal solution, which leads to good performance. Thus, in terms of the performance,

the real-time steering may not be better than an optimized simple strategy, because

it cannot take into account a global shape of the information field. But, since the

real-time steering consumes a trivial amount of computation resource than solving

an optimization problem, it can be a useful suboptimal strategy in practice. (See

Appendix D for more results.)

Figures 5-10 and 5-11 illustrate the time histories of the accumulated information

I(VT; Zt) for t E [0, 7] for different strategies in Scenario 1 and 2, respectively. For

125



the first scenario, it can be seen that the optimal solution gains a large amount of

information during two distinctive time intervals, which correspond to visiting two

information-rich regions in the south and north. In scenario 2, a large amount infor-

mation is obtained only in the interval t = 2-4 hr because information is concentrated

in one region in the scenario as shown in Figure 5-5.

5.6 Additional Discussion

5.6.1 Backward Selection and Smoother Form

Since the information identity in Proposition 4 holds for more general nonlinear, non-

Gaussian, discrete (or hybrid) systems, it is also possible to apply the smoother form

in this chapter to the targeting problem presented in Chapter 3 and 4. This section

compares the key characteristics of the backward selection and the smoother form

from the perspective of Bayesian inference, as it provides an important insight on the

reasonable methodology for different levels of abstraction of the problem space.

Figure 5-12 illustrates the key conceptual differences amongst all the method-

ologies considered in this thesis - forward and backward selections, and filter and

smoother forms - using a graphical structure that represents conditional indepen-

dence. In this graph, if two nodes are separated by some subgraph, the entities in

these two nodes are conditionally independent each other conditioned on the entities

in the subgraph. For instance, Z, = {Zo,. - - , Z} and XT are conditionally indepen-

dent each other for a given X, as they come to belong to different subgraphs if the

node X, is deleted.

The goal of informative selection is to find the best measurement sequences Z, A

{Z0, -- , Z}, which can be either finite-dimensional or continuous, to maximize the

mutual information between the future verification variable VT and itself. To do this,

the backward selection first performs a single backward inference to build the joint

distribution of the measurement choices over [0, 7]; then, the remaining decision is

a static combinatorial selection problem in the domain of Z,. On the other hand,
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Figure 5-10: Time histories of information accumulation in Scenario 1
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Figure 5-11: Time histories of information accumulation in Scenario 2
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Figure 5-12: Graphical structure of the presented approaches

the smoother form performs a single backward inference to figure out the marginal

distribution of the state at the end of the planning horizon, X,; then conducts a

combinatorial number of forward inferences that incorporates the effects of the mea-

surement choices.

Therefore, the main source of the computational expense of the backward selection

is quantification of the conditional (on VT) entropy of Z, while that of the smoother

form is forward inference over [0, 7] and quantification of conditional (on Z) entropy

of X,. Hence, in case the forward inference is very expensive (e.g. nonlinear integra-

tion of large-scale differential equations) and/or the state dimension is large incurring

significant cost in the computation of the entropy, the backward selection can pro-

vide better computational efficiency than the smoother form. In contrast, in case the

forward inference process is expedited by some approximations (e.g. linearization or

learning), and/or the state dimension is smaller than the measurement dimension,

the smoother can be more effective than the backward selection, even for the discrete

decision problem.

Recall that this thesis addresses problems at two levels of abstraction: the tar-

geting problem for a large-scale decision with nonlinear dynamics, and the motion

planning problem for a smaller-scale decision with linear dynamics as an approxima-

tion of nonlinear dynamics. It should be noted that for this two-level setting, the

presented combination of strategies - backward selection for the targeting and the

smoother form for the motion planning, renders the best computational efficiency,
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even in case the smaller-scale decision is posed in the discrete domain.

5.7 Conclusions

A methodology for continuous motion planning of sensors for information forecast

was presented. The smoother form formula of the information reward, which ex-

hibits better computational efficiency than a more conventional filter form formula,

enabled calculation of accumulated information and the rate of information accu-

mulation on-the-fly. An optimal path planning formulation was presented, as was a

real-time steering law based on information potential field. Numerical examples using

a linearized Lorenz-2003 model validated the proposed motion planning methodology.
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Chapter 6

Sensitivity Analysis for

Ensemble-Based Targeting

This chapter analyzes the sensitivity of the targeting solutions in Chapter 3 to the

ensemble size. Monte-Carlo experiments with the Lorenz-95 targeting example char-

acterizes three important aspects of sensitivity: discrepancy of the predicted and

actual information reward value, performance degradation of the targeting solution,

and inconsistency in the targeting solution with respect to the choice of ensemble. In

addition, based on the analysis of the statistics of entropy estimation, this chapter

proposes new predictors of the degree of impact that limitation of ensemble size might

have on the solution optimality: the range-to-noise ratio (RNR) and the probability of

correct decision (PCD). Numerical investigation of the Lorenz-95 targeting example

validates the effectiveness of these predictors.

6.1 Limited Ensemble Size

The quality of the state representation by statistical ensembles tends to be enhanced

as the ensemble size increases, while theds to be degraded as the state dimension

increases. Thus, the ratio of the ensemble size to the state dimension, LE/Lx can be

used as the simplest indicator of the quality of a set of ensembles for representing the

true state, although how to select each ensemble member to build the ensemble set
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of a given size also affects the quality of resulting ensembles.

Consider this ratio LE/Lx for the numerical examples in the previous chapters,

the Lorenz-2003 model with Px = Py = 1, 2 have 324 and 1224 state variables,

respectively; LE = 1024, 1224 ensembles were used for data assimilation of the cor-

responding system. These sets of values of Lx and LE lead to LE/Lx = 3.2 and 1,

which is - 0(1). It should be noted that for a realistic weather model, LE/Lx is typ-

ically much smaller than 0(1); the typical size of operational ensemble is maximum

0(100), while the state dimension is 0(106), which results in LE/Lx being less than

0(10-4). Thus, the accuracy of the ensemble representation of the realistic weather

model can be very low compared to that of the Lorenz-2003 models used in this work.

This limitation in the ensemble size is caused by the computational expense of

integrating forward a large-scale nonlinear system, and storing the large ensemble data

sets; there have been studies that either tried to speed up the ensemble forecasting

process or to figure out and mitigate the effect of small LE/Lx on the quality of

forecast and data assimilation [30, 31]. The work in [30] showed that the impact

of ensemble size on the forecast performance is highly dependent on the choice of

metric. The ensemble mean is less sensitive to the ensemble size, while the spread-

skill relation and the outlier statistic are more sensitive to the ensemble size. Also,

[31] suggested a distance-dependent ensemble Kalman Filter (EnKF) that mitigates

the effect of erroneous estimation of correlation coefficients due to limited ensemble

size on the quality of data assimilation.

In spite of the limitation of ensemble diversity, the ensemble forecast system has

been an attractive concept for numerical weather prediction because it can incorpo-

rate the state-dependent uncertainty information into data assimilation in a relatively

efficient way compared to the extended Kalman filter. However, the success of the

ensemble-based approaches in data assimilation and forecasting (using 0(102) ensem-

ble members) does not necessarily mean that the currently available ensemble size

is sufficiently large enough to create reliable targeting decisions. This is because the

quantity of primary interest in data assimilation is the accuracy of tracking the mean

behavior of the weather dynamics, whereas in the targeting problem the quantity
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of primary interest is the accuracy of the uncertainty (or covariance) representation.

Given this distinguishing aspect of the targeting problem from data assimilation, it is

important to conduct a sensitivity analysis of the targeting algorithms developed in

Chapters 3 and 4. This chapter focuses on the analysis of the sensing point targeting

algorithm in Chapter 3, because its extension to the multi-sensor platform targeting

algorithm is straightforward.

6.2 Effects of Limited Ensemble Size on Targeting

Recall that the forward and the backward ensemble-based targeting algorithms are

written as:

1 1
SFEn = arg mm -log det XvizsXzs , (6.1)

ssn -2 LE 1 IS

SB,En = arg max - log det X xss + Rs
sE s, 2 LE - 1 X1 1

- log det XivX'xVy+ Rs. (6.2)
2 (LE - I XS

Note that for each measurement candidate Zs with Isj = n, the forward ensemble

targeting computes the covariance of a M(= |VI)-dimensional random vector using

LE ensembles, while the backward one computes the covariances of a n-dimensional

random vector using the same number of ensembles. Accuracy of the covariance

estimate using samples is dependent on both the number of samples and the size of

the random vector (see section 6.3.1 for further details.) Thus, the forward and the

backward algorithms represent different characteristics regarding the sensitivity to

the ensemble size. The first step is an investigation of well-posedness of the forward

and the backward algorithms.

6.2.1 Well-Posedness

The first concern regarding the limited ensemble size is well-posedness of the algo-

rithm, since the log det function is not defined for a rank-deficient matrix. Note that
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for a (perturbation ensemble) matrix X E Rkx L E

rank(XX') = rank(X) < min{k, LE}. (6.3)

A necessary condition for XX' to be full-rank is k < LE; thus, k needs to be larger

enough than LE to have positive definite XX'. On the other hand,

rank(XX' + R) = k, (6.4)

for a positive definite matrix R, whether or not XX' is full-rank. From these facts,

note that:

1. The forward algorithm might suffer from rank-deficiency unless the ensemble

size is much larger than the size of the verification region (i.e., M < LE).

2. The backward algorithm is not subject to rank-deficiency for nontrivial mea-

surement noise with R, > 0.

3. In case of perfect measurement (i.e., RS - 0), the backward algorithm can also

be subject to rank-deficiency unless the ensemble size is sufficiently larger than

the number of sensing points (i.e., n < LE).

The above three aspects indicate that the backward algorithm is preferred to the

forward algorithm in terms of the well-posedness of the algorithm and the accuracy of

the covariance estimate. The rationale is that: a) most sensors have noise that cannot

be ignored in the targeting decision, b) M tends to be larger than n, because the

verification region is determined by the mission objective while the number of sensing

points1 can be tuned by the designer. As will be shown in section 6.3.1, the sample

estimate of a smaller-size covariance matrix is more accurate than that of a larger-size

covariance matrix. Since the backward selection offers better computational efficiency

(as discussed in Chapter 3) and less possibility of ill-posedness as discussed in this

1In a multi-sensor platform scenario, n in this well-posedness discussion is not the total number
of sensing points but the size of the covariance matrix whose determinant is calculated, i.e. nTnH
using terminology in section 4.3.
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section, the analysis in the later part of this chapter will focus on the backward

algorithm.

6.2.2 Numerical Studies

Well-posedness of the backward algorithm does not mean that it provides the optimal

solution independent of the ensemble size. Even in case n <C LE, inaccuracy in the

covariance estimate might lead to an incorrect targeting decision. In this section,

Monte-Carlo experiments are performed to quantify the degree of performance degra-

dation caused by the limited ensemble size. The same ensemble targeting scenario as

in section 3.4.1 is considered: an EnSRF with 1024 ensemble members is used for the

data assimilation of the Lorenz-95 model (Lx = 324) with 93 routine observations;

the sizes of the verification region and the search space are M = 10 and N = 108,

respectively. The number of sensing point is fixed to n = 2.

The (backward) ensemble targeting is conducted with various ensemble sizes. The

full ensemble set in the targeting problem is constructed by the ensemble augmenta-

tion process (section 3.1.1) using the whole ensemble members used for data assimi-

lation. Denote the full ensemble set as XLo and the corresponding ensemble size

as LE; i.e., LO = 1024 in this experiment. This work assumes that the covariance

approximation using the full ensemble set:

1 j o  o (6.5)
P(X -) LO X XE X(6.5)

is sufficiently close to the true value, and regards the targeting solution using the full

set as the true optimal solution.

For another ensemble size LE, 50 different ensemble combinations are randomly

chosen from the full ensemble set as

Xxuv = "xsuv x ULE (6.6)XSV SU XUL
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with some ULE c {0, 1}L'ExLE that satisfies

UL ELO = 1 LE, and ULELL < 1LO. (6.7)

The ensemble matrix in (6.6) is used to evaluate both the prior and the posterior

covariances in the targeting decision. This specifically means that the posterior en-

semble XL, is not taken from XL, but is computed using the ensemble update

formula (2.17) with the reduced ensemble set in (6.6).

Two quantities are defined to represent the performance of the targeting solution

with a limited number ensemble members: the predicted optimal reward and the actual

optimal reward. The predicted optimal reward is the perceived optimal objective

value in the targeting with a limited ensemble size:

1 /
* Lmax - log det 1 XE (xLE) ± )

- -log det X xc LEV(XLE
2 1(LE-  X X l )V  + Rs

while the actual optimal reward is the value that the optimal solution of (6.8) will

exhibit with "true" covariance (equivalently, with full ensemble set):

- 1 x°xLO LO
E 2 logdet LO 1 x+ (XRs

2 log det LL, -X E lV)' + R

where s*E is the solution of the optimization in (6.8).

Figure 6-1 compares the predicted optimal reward and the actual optimal reward

for various LE. The average is taken over the different ensemble combinations, and

the errorbar represents the 5th and the 95th percentiles. As a reference, the average

predicted and actual reward for the random selection strategy is also plotted, while

the red horizontal line crossing 0.84 in the y-axis represents the mutual information

value for the optimal solution computed with the full ensemble set.

Note that there is discrepancy between the predicted and actual information re-
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Figure 6-1: Errorbar plots of predicted/actual optimal reward values: Small ensemble

size increases the gap between the predicted and the actual objective values A1, de-

creases average performance A2, and leads to large variation with respect to ensemble

selection A 3.

ward values (A1 in the figure), which increases as the ensemble size is reduced. This

discrepancy indicates the magnitude of the estimation error by the limitation of en-

semble size. It is found that the average magnitude of discrepancy increases to 0.29

for LE = 100. In addition to the discrepancy, a small ensemble size causes perfor-

mance degradation (A2 in the figure). The average value of performance degradation

grows to 13% (= 0.11 in the raw objective value) of the true optimal solution value as

LE decreases to 100. Another aspect that should be noted is inconsistency among the

targeting solutions with a small number of ensemble members, which is represented

by the size of the error bar. For LE = 100, the size of the error bar increases to

32%(= 0.27 in raw objective value) of the true optimal solution value. It can be also

found that the predicted optimal reward tends to be larger than the true optimal

solution. As will be discussed in section 6.3.1, the variance of the mutual information
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estimate does not vary too much for different measurement selections for a given en-

semble size; but, it is highly dependent on the ensemble size. Thus, as the ensemble

size decreases, the likelihoods of the ensemble approximation overestimating or un-

derestimating the true covariance both increase. As the targeting process searches for

the largest value, it tends to select the overestimated mutual information; this leads

to the predicted optimal reward being larger than the true optimal reward.

To ensure that the sensitivity aspects found in Figure 6-1 is caused by the lim-

itation in the ensemble size rather than the choice of the information metric or the

ensemble selection mechanism, additional experiments are conducted: First, instead

of using the ensembles from the EnSRF data assimilation, the ensemble matrices are

created by random sampling from a known true covariance. In this simulation, the

results turn out to represent similar sensitivity features (although they are not plot-

ted in this thesis). Second, instead of the mutual information, a conventional trace

measure that was employed in [4] is used for targeting. In this case, the uncertainty

reduction of the verification region is represented by the difference between the trace

of the prior and the posterior covariance matrix of the verification variables. Since

the commutativity does not hold for this trace metric, the forward method is used

to find the optimal solution. The predicted and the actual optimal trace metric are

defined as

1
E -ax trace ( E) (6.10)LE sSn LE - 1 {XE ) (6.10)

and

P .A max - trace XLE(XLE - X ~ ,VIZT* (6.11)
Sen LE -1 LE S LE

where sT* is the optimal solution of (6.10). Figure 6-2 shows similar sensitivity fea-

tures identified for the mutual information metric - discrepancy, performance degra-

dation, and inconsistency. Moreover, in this example, the size of verification region

is larger than the number of sensing points; the impact of the limited ensemble size

becomes more significant in the targeting with the trace measure that evaluates co-

variances of a larger vector using ensembles.
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Figure 6-2: Error bar plots of predicted/actual optimal objective values when using

trace measure: Similar sensitivity characteristics to the ensemble size are found with

the conventional trace metric.

6.3 Analysis of Effects of Limited Ensemble Size

Given the experimental findings of the optimality degradation and the solution incon-

sistency due to the limited ensemble size, this section investigates how the ensemble

size is related to the solution optimality of the targeting algorithm and discusses why

nontrivial amount of inconsistencies can occur, even for the cases where LE is two

orders of magnitude larger than n.

6.3.1 Sample Entropy Estimation

As the simplest analysis, this section starts with the estimation of population entropy

h - logp (the factor 2 and the additive term are neglected for notational simplicity;

but they can be incorporated without any difficulty) and the population variance p

for comparison for a scalar Gaussian random variable X. Estimation is assumed to
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be based on LE = m + 1 randomly drawn samples (ensembles)2 . Unbiased estimators

for these two quantities exist [49]:

1 m+1
p = (xi -( )2 (6.12)

m
i=1

h l og - ( (6.13)

where xi's and t denote each sample realization and the sample mean, and V)(-) is a

digamma function defined as b(x) = - (log F(x)) = (x)

Since the pdfs of the estimation errors p --- -p and h = h - h are

expressed as

f(x) = fx2 (x + p) , (6.14)

fj(x) - 2ex+b(m/ 2)fx. (2ex+O(m/2)) (6.15)

where f() = )m/2-1 /2, x > 0. Also, the second and third central moments

are computed as:

E [(p- p)2 = 22 E ( - p)] = 82 (6.16)

and

E ( h)k] - (k-1) ), k = 2, 3 (6.17)

where (k-1) is the (k - 1)-th derivative of the digamma function. It is noted that the

pdf of h does not depend on the true value h, while that of pj depends on p. Figure

6-3 depicts the pdfs for both estimation errors for the case m = 99 and p = 1; it can

be seen that for this value of p the second moment of f is almost same as that of

h for any m (Figure 6-4). Since the variance of f is proportional to p, the shape of

a pdf with a larger p will be more dispersed. In Figure 6-3 the shapes of Gaussian
2The variable m = LE - 1 rather than LE will be used in this chapter's analysis for notational

convenience.
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Figure 6-3: Probability density of estimation error (m = 99)

pdfs with same variances, which are E[p ],=l = 0.14212 and E[h2] = 0.14292, are also

plotted for comparison. Also, it is observed that pdf of f is positively skewed (right

long tail) while that of h is slightly negatively skewed. Since the skewness is relatively

small for h and it is reduced further for large m, the pdf of h is well approximated as

a Gaussian.

As Figure 6-4 shows the standard deviation of h with respect to m that almost

coincides that of 5 in case p = 1, it is conceived that the estimation error of entropy

estimation decreases on the order of 1/v/ as m increases. For instance, in order to

estimate p with estimation error standard deviation being less than 10% of the true

value, more than 200 ensembles are needed. When regarding p itself as a signal not

the variance of another signal, this can be interpreted as more than 200 samples are

needed to have bigger than 20 dB SNR.

This analysis of the statistics of estimation error can be extended to a multivariate

case. The same sort of unbiased estimator of log det P for P >- 0 E Rnxn is written

as
n-1

H = log det 2 2 (6.18)
i=0
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where P = XX'/m is the minimum-variance unbiased estimator of P [49]. Then, the

estimation error variance becomes

n-1 __

E [ -)2] ( M ) (6.19)
i=0

which depends on the dimension of the random vector n, the sample size m + 1, but

not the true value of 'H. Figure 6-5 depicts the error standard deviation for various

values of n and m. The plots shows that large n and small m lead to large estimation

error (on the order of n1). This dependency of error standard deviation on the

order of n/rm will be utilized to figure out the impact of limited ensemble size on

the performance of the ensemble-based targeting, in the following section.

6.3.2 Range-to-Noise Ratio

The ensemble-based targeting problem must distinguish the best measurement candi-

date from other suboptimal measurement candidates. An important predictor of the

degree of impact that limitation of sample size might have on the solution optimality
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is the range-to-noise ratio of the mutual information values:

sups I(s ) - infs -(s)(RNR = (6.20)0

where 2(s) and I(s) denote the predicted and the actual mutual information value

for Zs. Utilizing the statistics of the entropy estimation described in the previous

section, the sup value in the denominator can be obtained without regard to the true

values of I(s). Estimation of mutual information can be treated as estimation of the

two - prior and posterior - entropies and substraction of those two. Since the bias

term fl=0 7J ( ) is the same for the prior and posterior entropy estimation, the
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estimation error of the mutual information can be expressed as

E[ ( _H _ -- H1- 2

1 1=E ( -)21 E +1- -)2] E[(+

SE -2 2( -- )(* - +)]. (6.21)

i=O

where superscripts '-' and '+' denote the prior and posterior. It can be shown that the

cross correlation term in the final expression is always non-negative; so the estimation

error of the mutual information is upper-bounded by

2[ I1 n-1 i-
E (s) - I(s)) (1) a 2 (6.22)

-2 Om,n
i=o

where equality holds if the prior and posterior entropy estimators are uncorrelated,

which corresponds to infinite mutual information. With this upper bound, the RNR

can be approximated as

sups Z(s) - infsZ(s)RNR - (6.23)
Om,n

In contrast to the denominator, the numerator of (6.23) is problem-dependent.

Moreover, the sup and inf values cannot be known unless the true covariances (and

equivalently true entropies) are known. Regarding the inf value, note that I(s)

is lower-bounded by zero; therefore, it is reasonable to say that infs Z(s) is a very

small positive quantity. This suggests that we can approximate the inf value in the

numerator of (6.23) as zero. With regard to the sup value, since the 95%-confident

interval estimator of I(s) is i(s) ± 2Om,n, the interval estimate for RNR is

RNR = max O, - 2 , + 2 (6.24)
Lm,n J m,n

with confidence level 95%. The max function that RNR is positive. If the objective
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of computing RNR is to predict whether or not a small RNR would cause significant

performance degradation of the targeting, the following one-sided interval estimator

can also be used:

RNR = 0 sup, (s) + 1.7 (6.25)

with 95% confidence level.

6.3.3 Probability of Correct Decision

This section considers the probability that the ensemble-based targeting provides the

true optimal (or (1 - e)-optimal) solution, which is referred to as probability of correct

decision (PCD) hereafter, for given values of RNR, m, n, and the total number of

candidates q. To do this, the following are assumed:

1. There are a total of q measurement candidates denoted as s,..., sq. Without

loss of generality, si corresponds to the i-th best targeting solution.

2. The true mutual information values are uniformly distributed over the corre-

sponding range Z(si) - Z(sq). In other words,

I(si) = Z(sl) - (i - 1)6 (6.26)

where

6 - (sl)- I(Sq) = RNR Um,n (6.27)
q-1 q-l

3. The estimation error of each mutual information value is distributed with KN(O, om )

4. The estimation errors of the mutual information for each measurement candi-

date are uncorrelated each other. In other words,

E [(±(si) - I(si)) ((sj) - Z(sj))] = 0, Vi # j. (6.28)
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Under these assumptions, it can be shown that for i < q - 1

Di  () - SI(s) , " ((i - 1)6, 2U,) (6.29)

and

P(Dj, Dj) = E[(D - (i - 1)6)(Dj - (j - 1)6)] = a2,, Vi # j. (6.30)

Given that the PCD can de interpreted as the probability that the ensemble-based

targeting declares s1 to be the best candidate, the PCD can be written in terms of

Di's as

PCD = Prob [Di > 0, Vi]. (6.31)

Using (6.29) and (6.30), the PCD can be computed as

RNR RNR RNR
PCD= ...... -1

-00 -00 100 (6.32)

fN(o,) (X , xq, )dxl . . dzq_l

where fn(o,E) is the pdf of the zero-mean multivariate Gaussian distribution with the

covariance matrix of

qE = 11 + 1 q-1 lq-. (6.33)

where I,_1 denotes the (q - 1) x (q - 1) identity matrix, 1q-1 is the (q - 1)-dimension

column vector with every element being unity, and 0 denotes the Kronecker product.

That is, all the diagonal elements of Eq are 2, while all the off-diagonal elements are

one.

Note that the PCD is expressed as a cdf of a (q - 1)-dimensional normal distri-

bution. In the special case of q = 2,

PCDq=2 = 4 R ) (6.34)
(RNR2
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where ((.) is the cdf of the standard normal distribution. For the case with q > 2,

eigenvalue decomposition of the inverse of E in (6.33) leads to PCD being a product

of univariate normal cdfs, and there exists an efficient numerical algorithm based on

Cholesky factorization [50].

Figure 6-6 shows how PCD changes with q and RNR. the plots shows that PCD

is monotonically increasing with respect to RNR, while it is monotonically decreasing

with respect to q. The dependency of PCD on q is crucial, since q is a very large

number in practice- recall that q = (N). Thus, PCD can be meaninglessly small

for a large-scale selection problem. In addition, to calculate PCD for such large q

is computationally very expensive, because it requires a cdf evaluation of a large-

dimensional normal distribution.

For this reason, for a large q case, this work suggests to utilize the probability of

e-correct decision (e-PCD) defined as

E-PCD = Prob U (I(s) > (sj), Vj i) , (6.35)
i=1

since it can still be used as an indicator of the impact of limited sample size on the

degree of optimality, and also it can be computed can be computed tractably.

By the symmetry of the distribution of the true mutual information values, the

lower bound of this -PCD can be computed by

PCDL1/J < e-PCD, (6.36)

where equality holds if LEqJ and [1/E] are integers. In other words, if dividing q

candidates into 1/e groups such that the i-th group consists of s(i-l1)q+l through Sicq,

then the decision of declaring one of the candidates in the first group to be the optimal

solution is equivalent to the decision of distinguishing the best candidate out of 1/E

candidates.

With this, Figure 6-6 can be used to interpret the relation between RNR and

[q]-PCD. For instance, the graph of PCD for q = 10 represents the relation between
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Figure 6-6: Probability of Correct Decision for targeting with q candidates

RNR and 10%-PCD for any size of targeting problem. In the picture, the dotted

line indicates the RNR value above which 10%-PCD is greater than 90%, which is

16.5. This is interpreted as in order to have a 90%-optimal targeting solution with the

confidence level of 90%, RNR should be greater than 16.5. In terms of the one-sided

interval estimator of RNR in (6.25), this implies that

sup (s) > 18.2arm,, ? 18.2/rn/m (6.37)
S

for the same qualification with 95% confidence level. The last approximate expression

comes from om,n rm for a small n. In addition, the relation in Figure 6-6 can

be utilized to figure out the level of performance for a given RNR. For instance, as

the curve for q = 4 crosses the horizontal line of PCD=0.9 when the corresponding

RNR is smaller than 6, it can be inferred that RNR=6 guarantees 75% optimality

with 90% confidence.
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Figure 6-7: Range-to-noise ratio for Lorenz-95 example for various m and n

6.3.4 Confirmation of Analysis with Lorenz-95 Targeting Ex-

ample

The results of Figure 6-1 showed a nontrivial performance degradation for the target-

ing example using the Lorenz-95 model. This section will verify that that performance

degradation can be predicted in terms of RNR and c-PCD. The RNR expression in

(6.23) is considered under the assumption that L° = 1024 ensembles are sufficiently

large to correctly estimate sups Z(s) and infs Z(s).
Figure 6-7 depicts the RNR values for m [100, 800 900 1000,5]. Note

that for a given n, RNR decreases as m increases, while for a given m, it increases as

Sincreases. For an = 1, the requirement of RNR>16.5 that achieves 90%-optimality

with 90% confidence is not satisfied even with m orenz-1000, while m = 400 meets the

same requirement for enz- = 5. Dependency of RNR on m is simply reflecting the fact

that am,n is an increasing function of m for fixed n. The increasing tendency of RNR

with respect to n is caused by the fact that the optimal mutual information value
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grows faster than O(\/n-). Since

sups (s)RNR sup ((6.38)

for a small n, RNR becomes an increasing function of n if the sup value in the

numerator grows faster than O(v/-n), which is the case for the Lorenz-95 example

in this work. Also, seeing that the marginal increment of RNR diminishes as n

increases, it is conceivable that there exists a threshold h over which increasing n no

more improves RNR.

The Monte-Carlo simulation for Figure 6-1 considered n = 2; it can be seen

that the size of error bar becomes smaller than 10% of the optimal solution value

when the ensemble size is larger than 700. This result is consistent with Figure 6-7

which indicates that more than 750 ensembles are needed for 90%-optimality. Also, if

m = 100 and n = 2, Figure 6-7 shows that RNR=6.1; in Figure 6-6, it can be found

that the graph that crosses the dotted line of PCD=0.9 at RNR=6 is the one for

q = 4. Since PCDq= 4 = 25%-PCD, it is conceived that the ensemble targeting with

m = 100 will provide 75%-optimal solutions with 90% confidence, which is consistent

with the result in Figure 6-1.

6.4 Conclusions

This chapter quantified the impact of the limited ensemble size on the performance

variation of the targeting solutions in both experimental and theoretical ways. The

concepts of range-to-noise ratio and probability of correct decision were proposed to

derive mathematical relations between the ensemble size and the solution sensitivity,

which were verified to be coherent with the numerical results.
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Chapter 7

Conclusions

7.1 Contributions

This thesis developed information-theoretic frameworks for efficient planning of mo-

bile sensor networks in the context of adaptive sampling for numerical weather pre-

diction. While addressing key challenges of this decision making, this thesis has

also made important technological contributions to the sensor networks and robotics

communities, as outlined below.

In the area of sensor networks, this thesis has:

e Clearly showed the potential improvements in computational efficiency provided

by the backward formulation of the mutual information that is achieved by

reducing the number of covariance updates in the combinatorial sensor selection

problem.

- Presented computation time analysis to prove that the backward approach

works significantly faster than the forward approach for the ensemble-based

representation, and that it is never slower than the forward one, even for

the conventional covariance representation.

- Identified the types of systems for which the backward method provides

a substantial computational improvement over the forward by contrast-

ing the adaptive sampling problem to a smaller-scale sensor management

153



problem.

* Demonstrated the importance of coordinated update of the covariance informa-

tion to achieve good overall targeting performance over the sensor networks.

* Presented a novel smoother form of the mutual information in the continuous-

time domain that projects the decision space from the long forecast horizon to

the short planning horizon.

- Identified the advantages of the smoother form over a filter form in terms

of computational efficiency, robustness to modeling error, easiness in ex-

tension of existing path planning techniques, and capability of concurrent

tracking of accumulated information.

- Clearly demonstrated that the smoother form quantifies the pure impact of

measurement on the uncertainty reduction of the verification variables, by

proving that the rate of smoother-form mutual information is non-negative

regardless of the process noise.

In the area of robotics, this thesis has:

* Developed algorithms for multi-sensor platform targeting problems that effi-

ciently incorporate the vehicle mobility constraints into the backward selection

framework.

* Presented a framework of continuous motion planning of sensor platforms that

combines the quantification tool of the continuous-time information reward and

the representation technique of continuous paths using spatial interpolation

methods.

- Presented the information potential field for the smoother form expression

to be used in developing a real-time steering law and in visualizing the

information-rich regions.

In the area of numerical weather prediction, this thesis has:
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* Introduced a information-theoretic methodology to adaptive sampling problems

that can better account for the correlation amongst verification variables and

exploit the properties of commutativity and conditional independence to im-

prove computational efficiency.

* Characterized important sensitivity aspects of the targeting solution to the lim-

ited ensemble diversity, with specifically indicating similar features in traditional

targeting schemes.

- Proposed theoretical tools to relate the ensemble size and potential per-

formance variation in the targeting solutions.

7.2 Future Work

* Future research will implement the proposed planning methods to adaptive

sampling problems for a realistic weather model. Specifically, integration of the

presented technology into the Coupled Ocean/Atmosphere Mesoscale Prediction

System (COAMPS) [51] is on-going.

* Given inherent limitation in the ensemble diversity for a large-scale systems,

a mechanism that provides robustness to the ensemble variation will an be

important topic for future research.

* Decentralized and distributed implementation of the presented methods is an-

other venue of interest. This will include incorporation of more details of the

communication models.
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Appendix A

Analysis of Submodularity

A.1 Conditions for Submodularity

For the discrete selection problem with a submodular reward function, the sequential

greedy strategy guarantees that

SGRD > 1 - (I - 1/n) > 1 - 1/e (A.1)
OPT -

where SGRD and OPT denote the objective value for the sequential greedy solution

and the optimal solution. It was shown in [6] that the entropy is a submodular

reward function, while the mutual information is not in general. Thus, FSGS (and

equivalently, BSGS) in section 3.3 does not guarantee (1 - 1/e) - OPT performance

in the sensor targeting problem with objective function of I(V; Zs) in general:

I(V; ZFG*) < (1 - 1/e) x I(V; Z,*). (A.2)

where X means either can happen depending on the problem. Nevertheless, this

section will analyze the conditions where the information reward for the targeting

problem becomes submodular, as this analysis provides good insights on the rela-

tionship amongst the mutual information, correlation coefficients, and sensing noise

variance.
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Submodularity means the diminishing marginal gain of a set function. With this

work's information reward, submodularity is equivalent to the following statement:

Z(V; Z, Zso) - Z(V; ZsZq, Zs) > 0, Vs, q E S, Vso C S. (A.3)

In other words, submodularity means for measurement selection Z,, its contribution

to the entropy reduction of V diminishes by another measurement selection Zq, con-

ditioned on any previous selection Z,,o. From this point on, for convenience, the

conditioning on previous selection Zso will be presumed; thus, "prior" or "uncondi-

tioned" means already being conditioned on Zso.

The left-hand side of (A.3) can be manipulated as

I(V; ZIZso) - I(V; Zs Z, Zso)

= Z(Zs; V Zso) - Z(Zs; V Z, Zso)

= '(Z 8 Zs) - '-((ZsIV, Zso) - 'k(ZsIZq, Zso) + H(Zs Zq, V, Zso) (A.4)

= [H(ZsIZs) - 'H(ZsIZ, Zo)1] - [H(Z V, Zso) - (Zs IZ, V, Zso)

= Z(Zs; Zq|Zso) - I(Z,; Zq|V, Zso)-

Namely, the difference between the contribution of Z, to entropy reduction of V

without and with another measurement Zq is the same as the difference between

the unconditioned and the conditioned mutual information between Z and Zq where

conditioning is on V. Thus, the information reward is submodular if the prior mutual

information between any two measurement selections is larger than the posterior

mutual information between them; therefore, submodularity is equivalent to:

Z(Zs; ZqZso) - I(Z ; ZqIV, Zso) > 0, Vs, q C S, Vso C S. (A.5)
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One representative case that satisfies (A.5) is when V = Xs, as then

I(Z,; Z, Xs, Zso) = 7(Z IXs, Zso) - H (Z Xs, Z, Zso)

= H(Z8,X s , Zso) - H(ZSXs, Zso) (A.6)

= 0,

because Z, and Zq are conditionally independent of each other given Xs. The prior

mutual information I(Z,; Zq Zso) > 0, because any mutual information value is non-

negative [35]. Thus, if V = Xs mutual information is a submodular metric. Note

that the sensor management problem in section 3.1.2 belongs to this case; therefore,

the information reward is submodular for the sensor management decision and the

greedy strategy guarantees (1 - 1/e) optimality.

If V f Xs, the posterior mutual information Z(Z,; ZqIV, Zs.) can be greater than

the prior one I(Z,; Zq, Zso); there is no general theory that guarantees the minimum

performance of the sequential greedy strategy. However, further analysis can relate

the submodularity to the correlation coefficient amongst the measurement choices:

Suppose that the prior covariance of X, U Xq U V is expressed as

P(Xs Zs) P(X,, XqZso) P(Xs, V Zso)

P(Xs UXq U VZZso) = P(Xq, X, Zso) P(Xq Zso) P(Xq, V Zso)

P(V, X I Z) P(V, Xq I Zso) P(V| Zso) (A.7)

Ps Ps,q Ps,v

Pq, s Pq Pq, V

Pv,s PVq Pv

Since the measurement noise at location s and location q are independent each other,

the covariance of X, U Xq U V becomes

Ps + Rs Ps,q Ps,v

P(Zs U ZqU V|Zso) = Pq,s Pq + Rq Pq,v (A.8)

Pv,s PV, Pv
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The unconditioned mutual information I(Zs; ZqZso) can be expressed in terms of the

elements in (A.8) as

= N(Z Zso) - N'(Zs Z,, Zo)

= (Z, Zso) + N(Zq Zso) - N(Zs, Z, Zo)

= log det Ps + Rs -log det Ps+ R
O P,+ R, P, I

= -log det , P+ R s Ps ,, + Rs)-
SPq,s P + Rq P,

- I Ps,q(Pq + Rql= - log det
Pq,s(Ps + R9) (Pq + R,) 1

= - log det (I - Ps,q(P + R,) - P,s(Ps + Rs) .

Ps,q

Pq + RqJ

0

Pq+ Rq)- 1 )

(A.9)

As s| = q| = 1 (although the derivation in (A.9) holds for other

mutual information can be expressed as

cases as well), the

Z(Z,; Zq Zso) = - log [1 - p(Zs, Zq Zso)2] (A.10)

= -log [1 - p(Xs, Xq Zso) 2 x (1 + R/Ps)-'(1 Rq/Pq)- 1] (A.11)

where p(AI, A 2 A3) denotes the conditional correlation coefficient between two ran-

dom variables A, and A 2 conditioned on A 3 . Since - log(1 - p2 ) is a monotonically

increasing function of p, the mutual information between Zs and Zq equivalently

means the degree of correlation between them. In terms of the state variables X, and

Zq, the mutual information I(Z; Zq Zso) represents the degree of correlation with

some scaling factor that takes into account the sensing noise level. In addition, it is

noted that Z(Z,; Zq Zso) is a decreasing function of measurement noise Rs and Rq,
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since

oz(Zs; ZqZso)

ORs

1z(Zs; ZqIZso)
&Rq

p(Z, Zq|Zso) 2

(Ps + Rs)(1 - p(Z,, ZqZs

p(ZS, Zq Zso) 2

(Pq + Rq)(1 - p(Z,, Zq) 2 )

zI(Zs;ZqlZso) - 1

o) ) Ps + Rs
eZ(Zs;ZqZso) - 1

Pq Rq

Specifically, if Rs = Rq = 0, Z(Z,; ZqZso) is equivalent to the correlation of X,

and Xq, while if R, = Rq = oc, the mutual information becomes zero regardless of

p(Xs, Xq I Zso)

In a similar manner, the conditioned mutual information Z(Z,; Zq; V) can be ex-

pressed as

Z(Zs ; Zs2 IV, Zso) = - log det (I - Ps,q PqP,svP)

= - log [1 - p(Zs, Z, V, Zso)2]

(A.14)

(A.15)

= -log [1 - p(X,,XXqV) 2 x (1 + RIP v)- 1 (1 + Rq/Pqv)- ']

(A.16)

where the conditional covariance elements are related to the unconditioned ones as

Pslv

Pqlv

Ps,qlV

Pq,slv

= Ps - PsvpPvs

= Pq - Pq,P 1 PVq

SPs,q - Ps,VP 1PilV,q

Pq,s - Pq,VPVV1Pv,s

(A.17)

(A.18)

(A.19)

(A.20)

Thus, for submodularity, the following should be satisfied:

(Z; ZIZso) - Z(Zs; ZIV, Zso)

= -log 1 -p( Z, Z)2 + log 1p(Z,, Z ZsO)2 > 0, Vs,q ES,

(A.21)

which is equivalent to:
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Proposition 8. The information reward Z(V; Zs) is a submodular set function of

the measurement choice s, if

p(ZS, ZqZso)2 > p(Zs, Zq V, Zso) 2 , Vs, q S, Vso C S. (A.22)

In other words, if knowledge of V always reduces the correlation amongst the observa-

tion in the search space S, then the entropy reduction of V by measurement selection

s is submodular. ]

Think of the variability of the difference between the unconditioned and the condi-

tioned mutual information, or I(Z,; Z, Zso) - I(Z,; Zq; V, ZsO) in terms of the sensing

noise variance. For simplicity, assume that Rs = Rq = Ro. Then,

R0 ((s; Z Zso) - I(Z,; zV, Zso)

= -[e(Zs ;Z q lZso) - 1] [(Ps + Ro)- 1 + (Pq 0Ro)-1 (A.23)

+ [ez (Zs;Z q I v Zso) - 1] [(Pslv + Ro)- + (Pqv + R 0 )-1]

The mutual information and covariance elements are related as

1 P, + Ro
= - log

2 Plv + Ro
1

z(V; Zq Zso) = -2
log Pq + Ro

Pqlv + Ro'

which equivalently means

(Pslv + Ro) - 1 = (Ps + Ro) -le 2 (V;ZSIZSo), (Pqlv + Ro)- 1 = (Pq Ro)-1e2(V;ZqIZso)

(A.25)
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Thus, the derivative in (A.23) can be written as

R (I(Zs;Z| Zso) - Z(Z,;Z, Zso))

= (Ps + Ro)- {e21( V ; Z) (e(Z s ;Z q V) - 1)- (e(Zs;z) -Z )}

+ (Pq + Ro) - 1 {e2Z(V ;Z) (eZ (zs;zI V) - 1) - (eZ(Z;Z 1)

= (Ps + Ro)- {(e2(V;Z,Izso)) 1(e(zs;zqjV) - 1) - (eI(z;z lz so) - ez(Z;zq V))}

+ (P, + Ro) (e2(V;Zq|Zso) - 1) e(Z;ZIVZso) ) - (Zs;ZIZso) - e(Z;ZqIVZso))

(A.26)

Since every mutual information term is non-negative and diminishes as Ro goes to

infinity, the following observations can be made regarding the expression in (A.26):

1. yIRo (Z,; ZqIZso) - Z(Z,; ZqIlV, Zs)) >_ 0, if I(Zs; ZqIZso) <_ ZE(Z; Zq|V, Zso)

2. R -(Z; Zq Zso)-(Zs;Zq V, Zso)) e [al, a 2], if I(Z,; ZqIZso) I(Z,; Zq I V, Zs o )

3 . limRo- 0 o (i(Z; Zq Zso) - I(Z; Zq V, Zso) = 0,

where al < 0 and a 2 > 0 corresponds to the right-hand side of (A.26) obtained by

replacing cases where Z(V; Z,sZso) and Z(V; ZqZso) as zero, and where Z(Z,; ZqZso)

by Z(Z,; ZqIV, Zo), respectively.

Because in the limit of Ro - oc, both the unconditioned and the conditioned

mutual information become zero, the difference between them also becomes zero.

Therefore, from the relations above, the following statements can be made:

1. If I(Zs; ZqZso) > Z(Z,; ZqIV, ZsO) for Ro = 0, then the former will remain

greater than the latter for all non-negative Ro.

2. If -oc < z(Z,; ZqZso) - I(Z,; ZqV, Zso) < 0 for Ro = 0, there exists Ro such

that Z(Z,; Zq) > I(Zs; ZqV, Zso) for every Ro > Ro.

3. I(Z,; ZqZso) -I(Zs; ZqV, Zso) will converge down to zero as Ro increases from

a positive value.
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4. (Generalization of statement 1) If the information gain I(V; Zs) is submodular

for Ro = 0, then it will be submodular for all Ro > 0.

5. (Generalization of statement 2) Even if the information gain Z(V; Z,) is not

submodular, it will become submodular as Ro increases.

To sum up, submodularity of the mutual information, I(V; Zs), can be interpreted

as diminishing correlation coefficients over the search space by knowledge of the ver-

ification variables V. Also, since the information reward tends to be submodular as

the sensing noise increases, the non-submodular aspect of the sensor targeting prob-

lem can be of more concern in design of networks with high quality sensing devices.

However, in terms of the performance of the sequential greedy strategy for the sensing

point targeting problem in this chapter, numerical results in the later section will em-

pirically demonstrate that it exhibits good performance for both the non-submodular

and submodular information rewards.

A.2 Numerical Results with Sensing-Point Target-

ing

Regarding submodularity of the information reward, the maximum and the mini-

mum values of the difference between the prior and the posterior mutual information

between two points in the search space are evaluated:

max1(Z,; Zq) - Z(Z,; Zq V), and min Z(Z,; Zq) - I(Z,; Zq V). (A.27)
s,qES s,qES

The non-negativity of the above min value is a necessary condition for submodularity

of mutual information T(V; Z,), because the if and only if condition of submodularity

is Z(Z; ZqIZso) > Z(Z,; ZqZso), Vs E Sn. Figure A-1 shows the max and the

min values in (A.27) with respect to the sensing noise variance R. Note that for

R = 0.0004, the min value of the gap is less than -0.2, which means that Table 3.3

indeed compares the performance of the strategies for a non-submodular information
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Figure A-1i: The maximum and minimum value of gap between the prior and the pos-
terior mutual information: negativity of the min value indicates non-submodularity
of the information reward.

reward while the sequential greedy strategy provides good suboptimal solutions. In

addition, as predicted in section A.1, the mutual information tends to be submodular

as the sensing noise variance increases.
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Appendix B

Extension of Smoother Form to

Tracking Problems

This appendix extends the smoother form developed in Chapter 5 to another setting

of information-theoretic path planning - the optimal tracking problem, in which the

objective is to reduce the uncertainty in the quantity at the end of the sensing rather

than in the far future, by analyzing the mutual information rate for the corresponding

information reward function and proposing an effective receding-horizon formulation.

The optimal tracking problem can then be written as

max I(V,; Z,). (OTP)

In other words, (OTP) finds the best (continuous) measurement history over [0,7]

that represents the largest mutual information achieved between the verification vari-

ables at 7.
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B.1 Smoother-Form On-the-fly Information for Track-

ing (SOIT)

B.1.1 Information

In the process of computing the tracking mutual information I(X,; Z,) by integrat-

ing forward the Lyapunov and Riccati equations in (5.10) and (5.11), the only two

available matrix quantities are Px (t) and Qx(t). Using these, the mutual information

between the current state and the measurement thus far, I(Xt; Zt can be calculated as

discussed in section 5.2.4. However, this does not represent the information gathered

by Zt for the final verification variables V,, which is I(V,; Z,).

This accumulated information for V, can be quantified by considering a forecasting

problem with replacing T by T and 7 by t; then,

I(V; Zt) = X(Xt; Zt) - I(Xt; Zt IV,) (B.1)

= [log det Sxv, (t) - log det Sx (t)]

1 log det (I + Qx(t)(Sx i (t) - Sx(t))) (B.2)

where Sxiv (t) A P(XtIV,) - , which is computed by integrating forward the following

differential equation

SxIsV = -Sxiv,(A + EwSx) - (A + wSx)'Sxlv

+ Sxv EwSxjv. (B.3)

The initial condition is given Sxlv (0) = PoT , which can be expressed as

POIV, = P - PO (r,o)M{,Pv(T) 'Mv 4(,o)P

where c(,,0) is the state transition matrix from time 0 to 7.

Note that the expression in (B.2) is not well-defined at t = r, because Sxlv, (T)

is singular. However, the relation in (B.1) holds even at time T, and SOIT at time 7
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can be computed as:

I(V; Z) = Z(X,; Zt) - I(X,; Zt V,) (B.4)

= z(X,; Z,) - Z(Vc; Z,| V,) (B.5)

where VC A X, \ Vc, or equivalently, V = MvcX, for some Mvc such that M(,c

spans the null space of My. Alternatively, SOIT at 7 can be calculated by the value

of FOI at T, because FOI and SOIT are identical at 7 by definition.

B.1.2 Information Rate

The rate of SOIT can be quantified by adopting the expression of the rate of SOIF

in Proposition 6; the only change is that Sxlv,(t) replaces Sxlv(t) as follows.

I(V,; Zt) = ltr {E1CIIr,(t)C'}. (B.6)

Info Supply

where I, A Qx (Sxl v - Sx)[I + Qx(Sxlv - Sx)]-'Qx.

Notice that, unlike the rate of FOI in (5.54) and the rate of PFOI in (5.58), the

quantity in (B.6) is non-negative (except at t = 7 where it is not defined), because

the effect of the future process noise over [t, T] is all encapsulated in Sxiv,. Thus,

by employing the smoother form expression derived for the forecasting problem, the

pure impact of sensing for the tracking problem can be quantified.

B.2 On-the-fly Information for Receding-Horizon

Formulations

The previous section analyzes the time derivatives of the on-the-fly information quan-

tities from the perspective of the information supply and dissipation. Despite theo-

retically important features, the on-the-fly information quantities are not essential if

the goal is simply to solve the optimal path planning problems in (OTP). However,
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receding-horizon approximations of the original optimization problem are often used

for better computational tractability and/or for better adaptation to changes in the

environment. In this case the computation of on-the-fly information can be essential

for this receding-horizon approximation, because the effect of a partial measurement

history should be quantified. This section discusses the role of the smoother-form on-

the-fly information quantities for the purpose of determining the cost-to-go functions

of the receding-horizon formulations.

Consider a tracking decision for the horizon of [0, a], a < T when the ultimate

goal is to maximize Z(V,; Z,). For this problem, this work suggests the following

formulation based on the smoother-form on-the-fly information:

max Z(V,; Z,) ZI(X,; Z,) - I(X,; Zco Vr). (S-RH)
Z'

In other words, the decision for the time window [0, a] maximizes the SOIT at the

end of the current receding-horizon, which can be calculated by evaluating (B.1) at

a. Since the time derivative of SOIT is non-negative over [0, T), the objective value of

(S-RH) increases as a increases. It is important to contrast (S-RH) to the following

formulation based on the filter-form on-the-fly information:

maxz(X,; Z,). (F-RH)za

In other words, (F-RH) aims to minimize the entropy of the current state X,, and

the underlying premise of this formulation is that an accurate estimate of the current

states tends to result in an accurate estimate of the future verification variables.

The formulation (F-RH) is equivalent to the formulation in [33] that maximizes

log det Jx(a) for the interval [0, a]. Note that the objective value of (F-RH) is

not necessarily an increasing function of a for EN > 0, because the rate of FOI

can be negative if the information dissipation dominates the information supply, in

particular, with large Ew.

In case Myv = I (i.e., V, = X,) and there is no process noise over (a, T], (F-

RH) becomes equivalent to (S-RH), because then I(X,; Z4,X,) = 0 as there is no
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remaining uncertainty in X, for a given X,. However, in general I(X,; Z,IV,) > 0;

therefore, the solutions to (S-RH) and (F-RH) differ. Also, the objective value of

(F-RH) always overestimates that of (S-RH).

The difference between (S-RH) and (F-RH) can be explained in terms of infor-

mation diffusion. It was shown in [23] that

z(£x,]; Z,) = Z(X,; Z), Vs > a (B.7)

where X[tl,t 2] {X, : s E [tl, t2]}. This is because the sufficient statistics for estima-

tion the future state history X[,,s] is X, A E[X, Z,], which is identical to that for

estimating the current state X, based on the past measurement history Z,.

The relation in (B.7) specifically holds for s > 7. In this case, the verification

variables at 7 become a subset of the future state history: i.e., V, C X[El. Thus, what

the filter-form on-the-fly information quantifies is the influence of the past measure-

ment on the entire future, while the smoother-form on-the-fly information pinpoints

the impact on some specified variables at some specific instance of time in the future.

In this sense, the smoothing term in (S-RH), I(X,; ZIV,) represents the portion of

information gathered by Z, but will be diffused out to the space that is orthogonal

to V,:

z(X,; Z, V,) = I(X[,,r] \ V,; ZI V) (B.8)

In case Mv = I, (B.8) specifically means the information diffused through the future

process noise: Z(W(o,]; ZX,) where W(,,] {W, : s C (o, T]}. It should be noticed

that I(W(a,r]; ZIX) can be non-zero, although Z, and W(,,] are uncorrelated each

other, because conditioning on X, can correlate Z, and W(,,,].

The formulations (S-RH) and (F-RH) are written for the horizon starting from

the initial time; extension to the decisions for a later horizon [ak, ak+1] is straight-

forward: they simply consider the conditioned mutual information conditioned on the

previous measurement decision Z*.
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B.3 Numerical Examples

B.3.1 Tracking Interpretation of Example in Chapter 5

Note that the weather forecasting example in Chapter 5 that finds the measurement

history over [0, 7] to reduce the entropy of VT A MVXT can be interpreted as a

receding-horizon subproblem of the tracking problem with T being replaced by 7 and

7 begin replaced by a. In this case, the "optimal" and the "optimal myopic" solu-

tions correspond to S-RH and F-RH formulations, respectively. Thus, the results

in Chapter 5 demonstrates that a decision based on the smoother-form on-the-fly in-

formation and the filter-form on-the-fly information can be very different depending

on the problem. In this example, the process noise turns out not to be a dominant

factor that causes the difference, but the dominating factors are the fact that T > a

and Myv I.

B.3.2 Sensor Scheduling

A sensor scheduling problem with some artificial dynamics is considered as the second

example; the key comparison made with this example is on the overall performance

of solutions from S-RH and F-RH. The system matrices are

0.1 -0.01 1 -0.6
A = , PO =

0.005 0.07 -0.6 1 (B.9)

Ew = diag(0, 3), N 1,

and T = 5. The size of planning horizon is 1, and for each horizon a decision is made

either to measure the first state or the second one. Thus, the true optimal solution

(OPT) can be found by simply enumerating possible 32(=25) cases; S-RH and F-RH

solutions can also be found by enumeration.

Figure B-1 illustrates the switching sequences for the three solutions. It is first

noticed that the three solutions are very different; especially, the filter-form reced-

ing horizon solution behaves in an opposite way to the true optimal solution. Fig-
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ure B-2 shows the information accumulation in the three solutions, where both the

smoother-form accumulated information I(X,; Zak) and the filter-form accumulated

information Z(X,,; Zk) for ak = 1, 2,..., 5 are shown for comparison. Looking at the

decisions for the first horizon: OPT and S-RH choose to measure state 1, but F-RH

selects state 2. While the filter-form information indicates that measuring state 2

(follow dotted red line with marker x) is slightly larger than that of measuring state

1 (follow dotted black line with marker 0), the smoother-form information says that

the reward for observing state 1 is much larger than the other. It can be seen that

the difference in this first decision leads to a larger gap in the final performance.

One important characteristics of the system in (B.9) is that a relatively large

process noise is injected only to the dynamics of the second state variable. F-RH

keeps measuring the second variable to compensate for the increase in the uncertainty

in state 2 by the impact of the process noise over the time interval of size 1; however,

in a long term view, the dynamics of the two variables are coupled and the effect

of process noise is propagated to the first state variable. This results in a situation

that F-RH is far from optimal. S-RH provides relatively good performance by taking

account of the effect of the future process noise in the decision for each horizon.

B.3.3 Target Localization

The third example, which is adapted from [33], considers localization of a target whose

location is fixed in a nominal sense using a mobile sensor. The main purpose of this

example is to validate the presented receding-horizon formulation with consideration

of nonlinearity in the measurement and replanning based on the actual measurement

data.

The state vector Xt is defined to represent the position of the target, xtg and

Ytg. Since the target is assumed to be stationary, the system matrix A = 0 2x2. The

process noise represents the drift of the target position in x- and y-directions;

Ew = diag(0.22, 0.01 2)
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is used. Note that the target is subject to a larger drift in x-direction than y-direction.

The sensor measures the bearing angle between the target and itself:

Zt = atan{(ytg - y,)/(xtg - x,)} + Nt (B.10)

where the sensor's motion is described by (5.78). The target location is tracked by

a discrete extended Kalman filter (EKF) using the bearing measurement taken with

frequency of 16Hz with noise standard deviation of 2.5deg. Although the underlying

estimator is discrete, the sensor planning problem for a horizon [ak, ak+1] is posed in

a continuous domain by linearizing (B.10) around the state estimate at ak. Then, the

sensing noise intensity for this continuous planning becomes EN = 2.5 2 (7/180)2 /16.

Once the plan for [ak, k+1] is made, the sensor executes it by moving along the

planned path and taking discrete measurements every 1/16 seconds. The decision for

the next horizon, [ak+l, ak+2] is made by incorporating the actual measurement up to

ak+1. The total length of the planning window is 14 seconds, which is divided into

14 receding planning horizons. Also, P0 = 0.521 is used.

Figure B-3 shows the trajectories for S-RH and F-RH solutions with the true

target locations over [0, T], which are very different from each other. The sensor

moves mainly in y-direction in the S-RH solution but in x-direction in the F-RH

solution. It can be seen in Figure B-4 that this difference in the path results in

different characteristics in reducing the uncertainty of the target location. The top

pictures that depict the time history of the entropy in the target's x- and y-position,

respectively, indicate that the S-RH solution mainly reduces the uncertainty in the

estimate of ytg, while F-RH reduces that of xtg. The entropy in xtg is even increasing

along the S-RH path up to 8 seconds, but it can be seen in the bottom picture that the

overall entropy is decreasing over time. Since the target drifts largely in x-direction,

F-RH tries to reduce the uncertainty in xtg due to the process noise. However, S-RH

takes a different option of reducing the uncertainty in ytg and increasing the correlation

between the estimates of xtg and ytg. The thinner lines in the bottom picture represent

the summation of the entropy of xtg and ytg; a large gap between this summation and
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Figure B-5: Smoother-form and filter-form on-the-fly information values used for
planning

the overall entropy means high correlation between two position estimates. By looking

at the overall entropy at T=14s in the bottom picture of Figure B-4, it can be also

seen that S-RH provides a slightly better performance than F-RH in this example.

Since both S-RH and F-RH are suboptimal strategies and the (linear) model used

for planning is updated using the actual (nonlinear) measurement in this example,

consideration of the modeled future process noise in S-RH does not necessarily lead

to significantly superior performance to F-RH. However, it is important to notice the

characteristics of the two receding-horizon formulations.

Figure B-5 illustrates the on-the-fly information (both S-Form and F-Form) used

for the planning. The glitches seen every second are due to the modification of the

linear model with the actual measurement values. Comparing the filter-form and

the smoother-form information for the F-RH solution - blue solid line and blue dash-

dotted line, it can be seen that the smoother-form information gathers a large amount

of the information in the final phase (after 12s), while the filter-form assumes that

it gathers almost a constant amount of information every time step after 2s. This

information from the earlier time periods will experience the process noise for a longer

time, and thus tends to be discounted in the smoother-form. Since in this example,

177177



the dynamics of Xt, and ytg are decoupled from each other, this discounting effect

stands out.
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Appendix C

An Outer-Approximation

Algorithm for Maximum Entropy

Sensor Selection

This appendix presents an efficient algorithm for selection of sensing points repre-

senting the largest uncertainty, which is called maximum entropy sampling. In the

backward selection framework, the maximum entropy sampling is equivalent to the

sensing point targeting problem in Chapter 3 with the conditional covariance being

diagonal. The specific method presented in this appendix is the outer-approximation

algorithm that formulates the sensing point selection process as a mixed-integer con-

vex program. The methodology in this appendix can provide better efficiency in the

targeting decision, if extended to the cases with non-diagonal conditional covariance.

C.1 Introduction

The decision making in this thesis to find a set of measurement points that leads

to the largest reduction in entropy of certain random variables of interest, which

can be referred to as maximum information gain sampling (MIGS). As a similar

concept addressed in different contexts, maximum entropy sampling (MES) is decision

making to select a set of design points representing the largest entropy, which was first
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introduced for design of experiments [52] and was named by Shewry and Wynn [53].

In the case that all of the random variables are jointly Gaussian, MES corresponds

to finding the submatrix of the covariance matrix that has the largest determinant;

however, it was shown to be NP-hard even if all the entries of the covariance matrix

are rational, independent of whether the size of the submatrix is predetermined or

not [7].

MIGS is a different (and usually harder) problem than MES, since information

gain, unlike entropy, is not submodular in general as discussed in section A. 1; however,

MIGS and MES are closely related. MIGS for which the posterior covariance matrix is

diagonal can be reduced to a decision very similar to MES, which this appendix refers

to as generalized maximum entropy sampling (GMES). Since submodularity holds

for GMES, solution techniques for MES can incorporate GMES without extensive

modification. A sensor selection problem for moving target tracking presented in

Williams et al. [54] is a GMES problem. GMES is further reduced to MES, if the

posterior covariance matrix is a scalar multiplier of the identity matrix and the number

of selection points is given. Although results in Table 3.3 showed that MES decision

is not particularly good for the observation targeting for the weather prediction, it

has been approximated MIGS when the computation of the conditional entropy is

computationally intractable [12], Thus, developing a good solution strategy for MES

(or GMES) can be conducive to solving MIGS.

One approach to find the optimal solution of MES (or MIGS) for the Gaussian

case is to formulate it as an optimization problem employing binary variables to

indicate which rows and columns of the covariance matrix will be chosen. This type of

approach has been quite successful, and all existing optimization-based methods have

been based on the branch-and-bound (BB) algorithm with various upper bounding

mechanisms: largest eigenvalues of the covariance matrix [7, 15, 55, 56], nonlinear

programming relaxation using rational and exponential mixture function of the binary

variables [15, 57], partition-based spectral bound [58], linear-integer programming

bound for improving the spectral bound [59], and factored mask spectral bound [43]
that generalizes the eigenvalue bound and the partition-based bound.
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In contrast, this appendix addresses the generalized maximum entropy sampling

problem within the outer-approximation (OA) framework. The OA algorithm, which

was first developed by Duran and Grossmann [60], extended to a general mixed-integer

convex program (MICP) [61] and to mixed-integer (nonconvex) nonlinear programs

(MINLP) [62, 63], alternately solves a primal problem and a relaxed master problem.

The primal problem is a nonlinear program (NLP) with all the integer variables being

fixed in value, and the relaxed master problem is a mixed-integer linear program

(MILP) constructed by linearizing the objective function and the constraints around

a solution point of the primal problem. At each iteration, the best primal solution so

far provides a lower bound (LBD) (in case of maximization), while the relaxed master

problem gives a upper bound (UBD) on the optimal solution value and determines

the next integer value to visit. The algorithm terminates at the point that UBD

converges to LBD, thus guaranteeing global optimality.

The comparison of OA and BB in terms of computation time is controversial and

problem-specific; however, OA has the following nice properties, which are exploited

in the algorithm presented herein. First, it is no longer a concern to devise algorithmic

heuristics such as the branching order and node selection, which make a lot of differ-

ence in BB, because the order of integer values to visit is automatically determined

by the relaxed master problem. Second, for pure integer-convex programs (ICP), the

primal problem becomes just a function evaluation and only a sequence of MILPs

needs to be solved. Thus, with a reliable solver for MILP such as CPLEX [64], an

ICP can be solved very efficiently by OA.

This appendix presents a mixed-integer semidefinite program (MISDP) formula-

tion for generalized maximum entropy sampling, in which binary variables indicate

selection of the corresponding rows and columns, and continuous variables enable a

convex reformulation of the objective function and the constraint functions. It will be

shown that this formulation does not require the solution of any primal semidefinite

program (SDP), since the primal feasible set is reduced to a singleton; therefore, only

MILP relaxed master problems need to be solved. Algorithmic details of the proposed

approach are described while highlighting the relative convenience of the computa-
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tion of gradient and Hessian information in contrast to the case of the nonlinear

programming-based BB (BB-NLP) algorithm. Numerical experiments validate the

suggested method and compare its computation time with the BB-NLP method. In

particular, the sensor management problem, which addresses measurement selection

under a limited communication budget in order to minimize tracking uncertainty of a

moving target, is presented to distinguish the performance of the proposed algorithm

from that of the BB-NLP algorithm.

C.2 Problem Formulation

C.2.1 Generalized Maximum Entropy Sampling

Maximum entropy sampling determines the set of sensing points from a given search

space that represents the largest entropy amongst them. If the joint probability

distribution for any subset of the search space is Gaussian, MES corresponds to

picking a principal submatrix of the covariance matrix for the search space P E RNxN

that provides the largest determinant:

max log det P[s, s] (MES)scS:sl=n

where S A [1, N] nZ and P[s, s] denotes the n x n principal submatrix of P consisting

of rows and columns indicated by index set s. For the sake of well-posedness of the

problem, P should be symmetric positive definite. The cardinality of s is usually

specified, as otherwise the solution of (MES) is trivially S by the principle of "infor-

mation never hurts." [35] The existence of other constraints may allow for removal of

the cardinality restriction, although most existing algorithms for MES have assumed

specified cardinality.
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This appendix considers the following constrained decision called generalized MES:

max log det P[s, s] - log det Q[s, s]
sCS

s.t. Aeqy = beq, Ay < b (GMES)

yTGky <g9k, k= 1, - , m,

with Q >- 0 being diagonal. The i-th element of the binary vector y E {0, 1}N is

related to s such that yi = 1 if i E s, and 0 otherwise. In the context of sensor

networks, Q may represent the posterior covariance matrix for the search space by

the backward selection formulation described in Choi et al. [65]. Since Q is diagonal,

log det Q[s, s] = Ei=1 Yi log qij where qii is the (i, i) element of Q. Regarding the

constraints, a linear equality constraint can represent the cardinality constraint, while

a linear inequality constraint can model power (or economic) budget limitation. The

quadratic constraints can be used to represent restriction of communication capability.

Note that the quadratic constraints defined by Gk E RNxN and gk E R are in general

nonconvex. To the authors' best knowledge, no optimization algorithm for MES has

taken into account quadratic constraints, although information maximization with

consideration of communication budget has been one of the most important issues in

sensor network applications.

C.2.2 Mixed-Integer Semidefinite Program Formulation

This appendix poses the following mixed-integer semidefinite program (MISDP),

which is a mixed-integer convex program (MICP), to address (GMES) described
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in the previous section:

max f(y, x) - log det S(y, x) + cTy + dTx (P)
y,x

s.t.

S(y, x) I + N iyY+ = 1 E j>ixijXj >- 0 (C.1)

Xij5 Yi, Xij , Xij Yi Yj -l, Vi, Vj > i (C.2)

Aeqy + Beqx = beq, Ay + Bx < b (C.3)

y C {0, 1}N ,  x E [0, 1]N(N- 1)/2 (C.4)

where Y and Xij are defined as

= (pii- 1)[eieT], Xij = pij[eie + ejeT]. (C.5)

pij is the (i, j) element of the matrix P, and ei is the i-th unit vector. The set of

linear constraints in (C.2) equivalently represent the bilinear relation xij = YiYj when

yi and yj are integers. Thus, (C.2) being satisfied, S(y, x) is related to the original

covariance as follows

[S(y, x)]ij = Pij, if yi = Yj 1 (C.6)
I 6j, otherwise

where ij is a Kronecker delta. Thus, the determinant of S(y, x) is equal to that of

P[s, s]. The linear matrix inequality (LMI) constraint in (C.1) maintains the positive

definiteness of S(y, x); note that positive definiteness is always satisfied with binary

y and corresponding x that satisfies (C.2). Also note that a nonconvex quadratic

constraint in (GMES) can be written as a, linear constraint in terms of both y and

x by replacing yS by yi and yiyj by xij for binary yi's. Similarly, the linear term dTx

in the objective function enables consideration of a bilinear cost function, although

it is not involved in (GMES).

Observe that (P) becomes a convex program if integrality of y is relaxed, since
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LMI and linear constraints comprise a convex feasible set and log det(.) is a concave

function in the space of symmetric positive definite matrices [46]. It should be pointed

out that (P) is not the only possible way to formulate a MICP for GMES; however,

the authors have found that the rational-exponential mixture formulation given in

[57] is not suitable for the purpose of applying the outer-approximation algorithm

because the gradient and Hessian are not defined everywhere for that formulation,

while (P) might not be suitable for implementing branch-and-bound because of the

computational burden of solving a large SDP relaxation.

C.3 Algorithm

C.3.1 Primal Problem

The primal problem for the k-th iteration of the OA algorithm is, in general, a convex

program finding a best real decision vector x*(yk) for a given integer decision vector

yk. In the case of pure integer programming, this reduces to a function evaluation

using y . It is noticed that the latter is the case for (P), although continuous decision

variables xij's are apparently involved. For any integer yk, constraint (C.2) restricts

the feasible set for x to a singleton; the primal optimal solution is

xj(yk) = Ykj (C.7)

for a feasible yk. Then, the primal optimal objective value f(yk, x*(yk)) becomes an

underestimate of the optimal value of (P); if it is larger than the tightest lower bound

LBD, it replaces LBD.

The integer vector yk is the optimal solution to (k - 1)-th relaxed master problem

(section C.3.2) for k > 1; such yk is always a feasible solution to (P), if (P) itself is

a feasible problem. In order to generate the initial binary vector yl, this appendix

proposes a MILP feasibility problem:

max EN yi logpii + cTy + dTx
y,x
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subject to the same linear constraints as (P). This MILP provides an upper bounding

solution to feasible (P) [66]; its infeasibility means (P) is an infeasible problem. In

case the only constraint is cardinality restriction, the greedy solution [65] is a good

feasible candidate for yl.

C.3.2 Relaxed Master Problem

The relaxed master problem is, in general, a mixed-integer linear program that op-

timizes the linear outer approximation of the objective function linearized at primal

solution points over the feasible set. The relaxed master problem of (P) for the k-th

iteration is written as follows:

max Trk (Mk)
77k, y,x

s.t.

Ik < f(ym,x*(ym))

X - x*(y m )

Xij < Yi, Xij < yj, Xij _ Yi + Yj - 1, Vi, Vj > i (C.9)

AeqY + BeqX = beq, Ay + Bx < b (C.10)

rk E R, y E {0, 1}N , X E [0, 1]N (N - 1)/ 2  (C.11)

The outer approximation of the LMI constraint in (C.1) can be neglected because

(C.9) defines a subset of the feasible set of the LMI. Note that rk is non-increasing in

k because one constraint is added at every iteration, and it provides an upper bound

on the optimal value f*. Thus, at every iteration TJk represents the tightest upper

bound UBD. The algorithm terminates when UBD = LBD at a global optimum;

every (Mk) is feasible before termination, if (P) is feasible.
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The gradient of the objective function Vf(y, x*(y)) can be computed as

S= [S(y, x) ]i (pii- 1) + ci (C.12)

fxI* = 2 [S(y, x) - ]ij Pij + dij (C.13)

by exploiting the self-concordance of the log det function [67] where c, and dij are cor-

responding elements in the linear objective term. It is noted that computation of the

above gradient does not require inversion of a (possibly) large matrix S(y, x), which

was often required for the case for the NLP-based branch-and-bound algorithm [57],

since S(y, x) -1 is a sparse matrix with a very special form. It can be shown that

[S(y, x ) - ] ii = 1, if yi = 0 (C.14)

[S(y,x) - 1] : i = 0, unless yi y = 1. (C.15)

Therefore, S(y, x) - 1 can be computed effectively by inverting the submatrix corre-

sponding to those y2 = 1.

C.4 Numerical Experiments with MES

For validation of the proposed method, unconstrained MES problems that involve

only the cardinality condition are first considered. Monte-Carlo experiments are

performed using MATLAB 7.1 with TOMLAB/CPLEX 10.0 [68] to solve the MILP

relaxed master problems. The covariance matrix is randomly generated as:

P = 1 XX', X E RNXLE (C.16)LE-1

where each entry X(i,j) is i.i.d with .'(0, 1). For the purpose of comparison, NLP-

based branch-and-bound (BB-NLP) [57] is also implemented for the same setting,

with TOMLAB/BARNLP [69] being used to solve the associated NLP relaxations.

The greedy rule [7] is adopted to determine the branching order, and a node cor-

responding to the largest upper bound is selected first. Optimality of the solutions
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Table C.1: Average Computation time (sec.) [# of UBD computations]

N rn OA BB-NLP # of cand.

20 10 3.5 [19.4] 11.1 [3.4] 184756

30 10 10.7 [20.8] 124.9 [8.6] 30045015

30 15 288.9 [122.8] 103.6 [10.6] 155117520
40 10 46.4 [36.0] >1000 [N/A] 847660528

by OA and BB-NLP is verified by comparing them with the solution from explicit

enumeration with small-size problems.

Table C.1 represents the average computation time and the average number of

upper-bounding problems - MILPs for OA and NLPs for BB-NLP - of both algo-

rithms. Five different P matrices for each (N, n) setting are generated with M(=

10N) sample vectors. The initial binary value yl is selected in a greedy way. It is

found that both algorithms perform comparably in general; but, for a certain size of

problem OA performs much faster than BB-NLP.

C.5 Constrained Sensor Management Problem

C.5.1 Problem Description

This appendix addresses the same sensor management problem described in (3.1.2),

with the backward selection formulation:

max H(zizo:t-1) - -(z'xt, zo:t-_). (C.17)

The selection decision incurs communication cost depending on the communica-

tion topology. This appendix assumes that direct communication between two sensors

incurs a cost proportional to the squared distance between them:

B Yj = | Il- || (C.18)
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with an appropriate scaling coefficient 7, and that distant sensors can communicate

each other using a multi-hop scheme. Thus, the communication cost between two

arbitrary sensors is the accumulated cost along the shortest (in a squared distance

sense) path:
nij

Bij = Bik-lik (C.19)
k=1

where {io, , ij} is the shortest path from the sensor i = io to j = inij. this ap-

pendix considers a particular worst case scenario in which every sensor must commu-

nicate to every other sensor in the selected set. The communication budget constraint

in this case is written as

Ei,jest Bij < Bmax. (C.20)

Thus, sensor selection with a communication constraint can be written as a gen-

eralized maximum entropy sampling problem:

max log det Ps[st, st] - :N 1lyi log Ri
st (GMES-S)

s.t. E1 jiBijyiyj < B,,max

where the covariance matrix of the search space

Ps A HsP(xtlzo:t-1)H' I C R RNxN (C.21)

Note that the cardinality of s is not specified in advance. In this appendix, the state

covariance estimate P(xtlzo:t-1) is provided by an extended Kalman filter (EKF).

Given this information, the presented outer-approximation algorithm can be imple-

mented to (GMES-S) straightforwardly.

C.5.2 Modification of BB-NLP

A modified version of BB-NLP method is considered for comparison with the proposed

outer-approximation algorithm; modification is needed because the original BB-NLP

cannot handle quadratic constraints and unspecified cardinality. Introducing addi-

189



tional real variables xij = YiYj with the set of constraints in (C.2) enables BB-NLP

to deal with quadratic constraints. The original BB-NLP explicitly utilizes cardi-

nality information to effectively construct the branch-and-bound tree. Two types of

modification can be conceived regarding unspecified cardinality. One way is solving

(GMES-S) with an additional cardinality constraint 1Ty = n for reasonably chosen

values of n - call this way BB-NLP(1). The other way is modifying the branch-and-

bound tree in such a way that lower bounds are computed for intermediate nodes as

well as the leaf nodes, and leaf nodes are determined by infeasibility of the communi-

cation constraint rather than by the cardinality - denote this as BB-NLP(2). It was

found empirically that the first way is usually faster than the second for small-size

problems, while the opposite is the case for large-size problems.

C.5.3 Numerical Results

For numerical experiments, the following parameter values are set to be the same as

in [54]:

At = 0.25, w = 0.01, pi = 2000, p2 = 100, Ri = 1. (C.22)

A total of N sensors are located at fixed locations determined randomly on a 20 x 20

two-dimensional space; the pairwise communication cost values Bij's are computed

by solving a shortest-path problem using dynamic programming [70]. The initial

state value is xo = [0, 2, 0, 2]', which results in the nominal position at t-th time

step (0.5t, 0.5t). The (GMES-S) sensor selection is addressed at time t = 20, before

which an EKF has used randomly selected no = 10 sensor measurements for state

estimation every time step.

N = 30, 40 are used; five randomly generated sets of sensor deployments are

considered for each N, while three different values of Bmax = 100, 200, 300 are taken

into account for each deployment. The modified branch-and-bound method, BB-

NLP(2) is used, as it performs faster than BB-NLP(1) for most problems of this size.

Every MILP relaxed master problem in OA is solved using TOMLAB/CPLEX 10.0;

TOMLAB/KNITRO [71] is utilized to solve NLP upper bounding subproblems for
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Figure C-1: An illustrative solution representing trade-off between information and

communication (N = 40)

BB-NLP(2).

Table C.2 shows average computation times and numbers of upper bounding prob-

lems for OA and BB-NLP(2) for various (N, Bmax) settings. The maximum cardinal-

ity of feasible sensor selection, nmax, is also tabulated as an indicator of the problem

complexity. Optimality of the solutions from OA and BB-NLP(2) are verified by

crosscheck. First, it is noticeable that OA performs an order-of-magnitude faster

than BB-NLP(2) with less than 100 subproblem calculations being needed for all the

cases. BB-NLP requires a much larger number of subproblem computations than OA,

while it solved less subproblems than OA for unconstrained MES cases. Seeing as

unit computation time per UBD computation for BB-NLP is small, it can be inferred

that the main cause of large computation time for BB-NLP is not merely introduction

of additional variables xij's but weakness of upper bounds from its NLP relaxations.

The linear representation in (C.2) is equivalent to the bilinear relation xij = yiyj for

integral y; however, such xij can be far from yiyj if integrality of y is relaxed.
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Table C.2: Avg. Comp. time (sec.) [# of UBD computations] for SMP

N Bmax I OA BB-NLP I nmax

30 100 8.9 [7.0] 633.6 [4216] 6
30 200 20.2 [14.3] 870.6 [6794] 7
30 300 69.9 [27.8] 1419.8 [12017] 7.75
40 100 101.8 [38.0] >lhr [N/A] 7
40 200 216.7 [37.3] >lhr [N/A] 7.67
40 300 934.9 [83.5] >1hr [N/A] 8.33

Regarding scalability of OA, bigger N leads to longer computation time in two as-

pects: first, it increases the number of decision variables and constraints, and second,

it results in a larger total number of feasible candidates for a given Bma. For the

same value of Bmax, computation time for N = 40 is about ten times longer than for

N = 30. It is also found that bigger Bma,, leads to longer computation time for given

N; however, the total number of UBD computations does not increase as fast as the

computation time in this case. This implies that the computation time grows mainly

because unit computation time for solving each MILP increases rather than because

upper bounds provided by the MILPs weaken. Note that the feasible set becomes

larger as Bmax,, increases; thus, each MILP has to consider a bigger branch-and-cut

tree (CPLEX utilizes branch-and-cut algorithms for solving a MILP).

The optimal selection for larger Bmax usually consists of more sensors than that

for smaller communication budget - on average, 5 and 6.75 sensors for Bmax = 100

and 300 for both N = 30 and 40. On the other hand, Fig. C-1 illustrates the

case for which both the solutions for Bmax = 200 and 300 consist of 7 sensors, to

effectively represent the trade-off between information and communication. The solid

and dashdotted lines depict the actual and estimated trajectories of the target until

t = 20 at which the one-step lookahead sensor management decision is made. The

optimal solution for Bmax = 300 (blue diamonds) turns out to be the optimal solution

for unconstrained MES with fixed cardinality of 7; thus, it is the best way choosing

7 sensors if an infinite amount of communication is allowed. Under the limitation

of the communication budget Bmax = 200, the optimal solution (red squares) selects
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two nearby sensors instead of two sensors far from the other five.

C.6 Concluding Remarks

This appendix presented the outer-approximation approach to a generalized maxi-

mum entropy sampling problem. The mixed-integer semidefinite programming for-

mulation was newly proposed; the outer-approximation algorithm resulting in a se-

quence of mixed-integer linear programs is presented. Numerical experiments verified

that the performance of the suggested method is superior to the existing nonlin-

ear programming-based branch-and-bound method especially in solving quadratically

constrained problems such as communication-constrained sensor management. Fu-

ture work will extend the presented outer-approximation algorithm to more general

maximum information gain sampling. Also, other outer-approximation-based algo-

rithms such as LP/NLP-based branch-and-bound [72] and branch-and-cut [73] can

be adopted within the same MISDP framework.
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Appendix D

More Numerical Results for

Chapter
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