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ABSTRACT

As exploration of the solar system continues, the need for the capability to land a spacecraft very
accurately on a planetary body has become apparent. Due to limitations on the achievable accuracy
of inertial navigation systems over long distances, relative navigation techniques are better suited to
fill this need. Chief among these techniques is terrain relative navigation. Terrain relative navigation
uses the surface features of a planetary body and an onboard map of the planetary surface to
determine the spacecraft’s position and update the inertial navigation system. One of the tasks of
terrain relative navigation is terrain relative localization, which entails matching a sensor image of the
planetary surface to the stored map of the surface. This correlation allows a position match to be
determined, which is used to update the spacecraft’s inertial navigation system.

This thesis focuses upon two terrain relative localization techniques and their applicability to lunar
entry, descent, and landing. These localization techniques are terrain contour matching (TERCOM)
and a crater matching routine. Both methods are tested using simulation environments that mimic
expected conditions in lunar navigation. The ability of each algorithm to generate a position match
with no noise is evaluated, as well as the performance of each algorithm under various sensor noise
conditions.

The terrain contour matching algorithm generates a high level of error in the position match and is
found to be unsuitable for lunar terrain relative navigation. The crater matching routine performs
quite well, with low processing speeds, moderate memory requirements, and a high level of position
match fidelity under moderate noise conditions. The crater matching routine is recommended for
continued work and potential application to lunar navigation during entry, descent, and landing.
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Chapter 1

Introduction

As planetary exploration continues to become more accurate and to demand more detailed scientific
data, the need for the capability to land precisely has been recognized by the space community. In the
past, planetary landing has been imprecise at best, usually involving large landing error dispersion
ellipses which encompassed tens of square kilometers of the planetary surface. More accurate
autonomous exploration, as well as the potential for manned planetary exploration, demands landing

precision on the order of ten meters.

In conjunction with the directives of the 2004 Vision for Space Exploration,’ the current planetary
exploration aims of the National Aeronautics and Space Administration (NASA) are focused upon

returning man to the Moon. In support of this goal, NASA has broadcast that several new

' A set of priorities developed by then President George W. Bush and NASA which was announced in 2004,
providing a roadmap for NASA. The main goals of the VSE are to return man to the Moon in preparation for
manned exploration of Mars and other planetary bodies in the solar system.

23



technological capabilities will be necessary in the near future. Among these is the capability for

precision lunar landing. NASA has requested the capability to precisely land a spacecraft on the lunar
surface, and to do so with a landing dispersion ellipse with maximum dimensions of 10 m by

10 m, with a preferred accuracy of 1 m by 1 m.

This is a tremendous increase in desired landing accuracy. Consider a few historical examples. In
1969, the Apollo 11 lunar landing had a landing error dispersion ellipse of 19 km by 5 km.' Also
in 1969, Apollo 12°s landing error dispersion ellipse was somewhat less, at approximately 13 km by

5 km.’ Even modern spacecraft attemptin lanetary landing have landing dispersion ellipses quite
P pung p g g aisp pses q

drastically larger than that desired by NASA. For example, the Mars Science Laboratory, scheduled

for launch in 2009, will have a dispersion ellipse similar in size to that of Apollo 11, witha 20 km

: 3
diameter.

These three landing dispersion ellipses are not atypical for a modern planetary landing. However,
NASA has requested a precision landing capability that is many times more accurate than what is
currently the norm — which is attested to by the fact that the desired error is measured in meters rather
than kilometers. Consider thata 20 km by 5 km dispersion ellipse has an area of approximately
78.5 km’. On the other hand, the dispersion ellipse desired by NASA has an area of 1 m”. That
is, the landing accuracy desired by NASA is approximately six billion (6.2 * 109) times more

accurate than the dispersion ellipses of Apollo-type missions!

To realize this drastic improvement in accuracy, seasoned entry, descent, and landing (EDL)
techniques for planetary landing are being revised. Rather than relying solely upon inertial guidance
and navigation techniques, many precision planetary landing efforts currently focus upon relative

navigation techniques as a means to achieve greater landing accuracy.



Inertial navigation and relative navigation are similar in their purpose, but distinct from each other in
the means used to achieve that end. Both types of navigation use measurements to update the
position knowledge of a spacecraft, but each uses a different type of measurement. Inertial navigation
measures the spacecraft’s pose in relation to the inertial frame', and updates the guidance computers
with this measurement. On the other hand, relative navigation techniques measure the spacecraft’s
pose in relation to a non-inertial frame, and use these values to update the spacecraft’s pose

knowledge."

Consider the situation of a spacecraft navigating from Earth to the Moon. To allow the spacecraft to
reach its desired destination, an inertial navigation system attempts to determine the spacecraft’s
position relative to an expected position on the trajectory. First, sensor input concerning the location
of the spacecraft is processed to determine the ‘measured position’ of the spacecraft. This ‘measured
position’ can then be used to update the inertial guidance system, allowing the guidance system to
correct for the effects of drift error and initialization errors. Either inertial measurements or relative
measurements can be used to provide a ‘measured position” for updates. Possible inertial
measurements include accelerometer, gyroscope, and star sensor measurements, to name a few.
Examples of relative measurements include those that reference the location of the Earth, the Sun,

another planetary body, or even a signal from another spacecraft.

Inertial navigation systems have been applied very successfully to a wide variety of space navigation
problems. However, current inertial navigation systems are unable to achieve the accuracy necessary
for precision planetary landing, as desired by NASA. Relative navigation techniques have been used
much less widely in space navigation, but they have been successful at allowing greater accuracy
when they are used. Therefore, engineers attempting to design a system to achieve a more precise

landing capability often turn to relative navigation as the most viable guidance option.

' The inertial frame is an absolute, non-rotating frame. Often, the celestial sphere is considered inertial for space
navigation applications.
" The author uses the term ‘pose’ to indicate both the position and orientation of the spacecraft.



For lunar landing, perhaps the most analyzed relative navigation technique is terrain relative
navigation (TRN). TRN can be described as the process of sensing some terrain surface beneath a
suspended vehicle, and using these sensor inputs to update the vehicle’s knowledge of its own
position, orientation, or velocity. Therefore, TRN allows a vehicle to navigate more precisely based
upon measurements of the terrain surface beneath the suspended vehicle. In the case of lunar landing,
the spacecraft will approach and eventually land upon the lunar surface. Therefore, lunar TRN
requires a spacecraft to navigate relative to the lunar surface. During this process, TRN has the

potential to enable a much more accurate landing.

TRN can take any of a number of forms; however, all TRN techniques will include the following

steps:

1. Obtain measurements of terrain surface using an onboard sensor.
2. Correlate the sensor input to a database containing terrain characteristics for the type of
sensor being used.

3. Use the information from the correlation to update the vehicle’s navigational computers.

For example, cruise missiles use TRN to increase their accuracy. In order to achieve precision
targeting capability, a cruise missile navigates to its target area by ‘looking’ at the ground beneath it.
As the missile senses features of the ground that it is flying over, the missile attempts to correlate
these features to an onboard database of terrain features that the missile is expected to encounter. If a
correlation is successful, the missile is able to update the knowledge of its own position in relation to
the target, thereby increasing the missile’s overall targeting accuracy. By relying upon TRN, cruise
missiles were able to achieve precision targeting capabilities long before the advent of the global

position system (GPS) based targeting.'

'GPS now allows for highly accurate targeting for many types of munitions, including cruise missiles, without the
use of TRN techniques. However, many cruise missiles retain their TRN capabilities although they have GPS
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This thesis will focus upon increasing the achievable accuracy of a lunar landing by relying upon
TRN techniques in addition to traditional inertial navigation operations. The author will address a
very specific problem encountered in applying TRN to lunar landing. As a fundamental requirement
for TRN, data from the sensors must be correlated with a stored reference map to allow for a position
fix. (Step 2 above). In the case of lunar landing, this entails correlating sensor data of the lunar
surface with a specific portion of a stored map of the lunar surface. This correlation process — which

is vital to lunar TRN — will be the topic of this thesis.

This paper will investigate two alternative correlation schemes for lunar TRN and attempt to
determine the applicability of each of these schemes to lunar EDL missions. The first of these
correlation schemes is based upon a process used by early cruise missiles to update the missile’s
position knowledge. This correlation process uses elevation data gathered by altimeters on the
spacecraft and attempts to match this data with a database of elevation data for the lunar surface. This
correlation technique is known as terrain contour matching (TERCOM). This algorithm tends to be
simple, reliable, and fast, as evidenced by its long tenure on many cruise missiles.' These
characteristics make the TERCOM algorithm a good option for implementation and testing for its

applicability to the lunar environment.

The second correlation scheme that will be addressed uses digital imagery and attempts to match the
craters in the sensor images with a database of lunar craters. This correlation technique falls into the
category of vision-based navigation (VBN). VBN encompasses a wide field of technologies that
employ optical sensors to determine the state of the sensor body. Successful application of VBN

technologies has been realized in many fields, including robotics, unmanned aerial vehicles, deep-sea

sensors, as the TRN capability is useful in GPS-deprived environments and because TRN enables the terrain —
following capability of cruise missiles.

' TERCOM, although modified from its original form, still exists on many US missile platforms. Several of these
include the AGM-86B, AGM-129 ACM, and the BGM-109 Tomahawk. Refer to http://www.af.mil/factsheets/ ,
referenced on 20 May 2007. TERCOM-like systems are also in use on the missile platforms of other countries.
Refer to http://en.wikipedia.org/wiki/Tercom , referenced on 24 May 2007.




operations, autonomous spacecraft maneuvers, and a host of others. For planetary EDL, terrain-
relative VBN presents the opportunity for high-precision navigation and the possibility of achieving a

planetary landing with precision on the order of tens of meters, as desired.

Lunar Terrain Relative Localization
Process Overview

Sensor Input

!

Isolate Craters from
Sensor Imagery

U

Identify which Craters are in Imagery
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1

Determine Spacecraft Pose and Position
from Knowledge of Sensor Image Position

gk

Navigation Update

Crater Database ——

Figure 1.1. Process Overview of Vision-Based Terrain Relative Localization.

Figure 1.1 gives an overview of the stages of lunar VBN. In the second half of this thesis, the author
will address the positive identification of optically-sensed craters by correlation with a lunar reference

map, which is the second step depicted in Figure 1.1.

For both TERCOM and the crater matching routine, this thesis will only address the process of
matching sensor data to a lunar reference database. Both correlation algorithms require sensor input,
match the sensor measurements to the stored database, and output the position of the measurements as

determined by the matching process.



This paper will not present an extensive analysis of the navigation process; rather, the focus of this
paper is upon generating a successful position match. Generating this match is the process of terrain
relative localization (TRL). However, the author will use TRN and TRL loosely throughout this
document to refer to the process of generating a position update and using that update to aid in

spacecraft navigation.

In Chapter 2, this paper will present the TERCOM algorithm and an analysis of its applicability to the
lunar EDL environment. Following the TERCOM discussion, Chapter 3, Chapter 4, Chapter 5, and
Chapter 6 address the ‘crater matching routine’ correlation process which is based upon digital
imagery. Chapter 3 discusses the basis for the crater matching routine and presents an overview of
the processes of the routine. Chapter 4 and Chapter 5 focus upon two sub-routines of the crater
matching routine. Chapter 4 details the pattern vector generation process, while Chapter 5 addresses
the perspective transformation. Finally, Chapter 6 describes the main processes of the crater
matching routine in detail. The implementation and results of the crater matching routine are
presented in Chapter 7. Chapter 8 presents an overview of the results of both TERCOM and the
crater matching routine, and draws conclusions from both. The author also makes several

recommendations for future work in Chapter 8.
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Chapter 2

Terrain Contour Matching

Terrain contour matching (TERCOM) is a method of terrain relative navigation (TRIN) that attempts
to match the profile of the terrain beneath a suspended vehicle with a database of terrain profiles. If a
match is made, the position of the vehicle can be determined and used as a navigational update. This
chapter details the TERCOM algorithm as well as the simulation environment used to test TERCOM
for potential applicability to TRN on the Moon. This chapter will also present the results of analysis

conducted using this simulation environment.

TERCOM is one of the earliest and simplest of relative navigation techniques. It has been in
development and/or use since 1958, when the concept was first put forth by LTV Electrosystems and
the Aeronautical Systems Division at Wright-Patterson AFB as a potential aid to cruise missile
guidance systems. Since then, TERCOM has been in use in a variety of capacities, among which its

long tenure as a vital cruise missile component is most notable.



Systems that are based upon the TERCOM concept are in use today in both commercial and military
applications. For example, Honeywell recently developed an Interferometric Synthetic Aperture
Radar Sensor with Integrated Map Correlation system called the Precision Terrain Aided Navigation
(PTAN) system. PTAN is currently used on the Tactical Tomahawk Cruise Missile. Since 2003, it
has also been marketed as a low-cost autonomous navigation solution in GPS-deprived environments
which boasts GPS quality accuracy.! The TERCOM concept has also been extensively and

successfully applied to the underwater navigation of submarines, among other areas.*

From Chapter 1, TRN can be described as the process of sensing some terrain surface beneath a
suspended vehicle and using these sensor inputs to update the vehicle’s knowledge of its own

position, orientation, or velocity. The following steps are essential to TRN:

1. Obtain measurements of terrain surface using an onboard surface.
2. Correlate the sensor input to a database containing terrain characteristics for the type of
sensor being used.

3. Use the information from the correlation to update the vehicle’s navigational computers.

The second step — the correlation between the sensor input and the surface — provides information
about the vehicle’s relative position, orientation, or velocity. The focus of the TERCOM algorithm is
to match elevation profiles recorded by an onboard altimeter with a database of terrain elevation
profiles that corresponded to the surface beneath the vehicle. After a successful match, the vehicle’s

position can be determined and is fed to the navigational computers to allow for update.

More rigorously, TERCOM operates by using air-to-ground level (AGL) and mean sea level (MSL)
altitude measurements in order to obtain a profile of the overflown terrain, and then attempts to
correlate this profile with the columns of an onboard ‘reference matrix’ of elevation data. This

correlation enables TERCOM to determine cross-track (lateral) and down-track (translational)

' 100 foot accuracy at altitudes of up to 30,000 feet; 10 foot accuracy at altitudes of up to 5,000 feet.



position knowledge error, which is then used to update the INS and make navigational corrections.
The TERCOM algorithm requires foreknowledge of the terrain data that is overflown to form the

reference map.

Sections as presented below rely heavily upon an internal document produced at Draper Laboratory
that explores the TERCOM concept as a potentially viable option for lunar entry, descent, and
landing.' The author is also the first author on the internal document, and a great deal of the algorithm
development and implementation in said document are the result of the author’s efforts. The lunar
surface simulator and the actual analyses were conducted by other Draper Laboratory staff who are
listed as the other authors of the internal document. This document is included here with permission

of the authors that provided significant contributions to the original internal document.

The remainder of this chapter discusses the feasibility of applying TERCOM to lunar navigation.
This discussion will include a description of the TERCOM process will be presented, followed by an
overview of the utilities used to simulate terrain on the lunar surface, the analysis of TERCOM’s
applicability to navigation on the Moon, and finally results and conclusions drawn from these

analyses.

2.1 The TERCOM Algorithm

The description of TERCOM outlined below is summarized from Baker and Clem’s “A Terrain

Contour Matching (TERCOM) Primer.” For the algorithm description included herein, the author

' Hale, M., Silvestro, M., Slagowski, S., and Wasileski, B. “Analysis of the Use of Terrain Contour Matching
(TERCOM) For Navigation In The Lunar Environment.” The Charles Stark Draper Laboratory, Internal
Research and Design Technical Paper. August 2006,



will present the basic TERCOM process as described by Baker and Clem. After this description, the

author will discuss the modifications made to this algorithm to facilitate lunar navigation.

TERCOM is a form of TRN that was first developed to aid the inertial navigation systems of cruise
missiles during flight to a target. Like GPS, TERCOM is able to provide a position update capability
in order to correct errors in the inertial navigation system of the spacecraft. There are two distinct
advantages of TERCOM over GPS; it cannot be jammed and it does not depend on existing
navigation infrastructure to operate. This second advantage is important for lunar navigation since
GPS cannot be used on the Moon. Other references found in literature have referred to TERCOM as
the Terrain Aided Inertial Navigation System or TERCOM Aided Inertial Navigation System

(TAINS).

2.1.1 Algorithm Overview
The TERCOM algorithm is based on a relatively simple concept. Using various sensors, the
spacecraft is able to determine the terrain profile' of the terrain beneath the suspended vehicle. By
comparing the surface elevation features measured beneath the vehicle with similar elevation data
stored onboard the vehicle, the position of the measured data can be determined. This position can

then be used to update the inertial guidance systems of the vehicle.

In order to compare the terrain profile of the terrain beneath the vehicle, an accurate way of
determining the terrain profile is necessary. Two separate sensors are traditionally used to generate
the terrain profiles for use by TERCOM. A barometric altimeter is used to obtain the MSL altitude of
the vehicle, and a radar altimeter is used to obtain the AGL altitude. The subtraction of the AGL

from the vehicle’s MSL results in the terrain profile altitude. Refer to Figure 2.1.

" A terrain profile is the contour of the surface overflown by the vehicle, reference 1o mean-sea-level.



Terrain Profiles:
Calculation Overview
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Figure 2.1. Overview of the Calculation of Terrain Profiles.

From Figure 2.1, the terrain profile is a series of these terrain profile altitudes that are produced by
several measurements from the suspended vehicle. Therefore, the terrain profile is essentially a

column of data that specifies the height of the terrain above mean sea level.

2.1.2 The TERCOM Process
The first step in the TERCOM process is the generation of a database of elevation maps of the surface
to be overflown. These maps will be used in the correlation process to determine the vehicle’s
absolute position. However, the database size can be prohibitive (especially for operations in space)
due to the memory space required to store elevation data for the entire overflown surface. Therefore,
certain areas along the planned trajectory of the vehicle will be selected prior to flight as position ‘fix

areas’. Using its INS, the vehicle will travel between these ‘fix areas.” After flight over one of these



‘fix areas’, the INS will be updated with a position fix generated from the TERCOM process. This

update will reduce INS error and allow for more precise navigation capabilities.

Maps of the pre-planned fix areas are generated prior to flight and stored on board the vehicle. These
maps are stored as reference matrices, with each matrix defining the terrain profiles for a fix area.

Figure 2.2 below shows a missile’s planned trajectory and the fix areas along the missile’s route.
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Figure 2.2%, An Example of the Use of TERCOM
for Position Fix During Missile Flight.

When the vehicle flies over a TERCOM fix area, it measures its altitude above the terrain using an
altimeter (such as a radar, LIDAR, etc.). This altitude is referred to as the AGL. In addition to the
AGL, the vehicle also measures its MSL altitude with a barometric altimeter. The difference between

these two values produces a profile of the terrain height above MSL that the vehicle has flown over.



This profile is then compared to the stored reference matrix using a correlation algorithm. Figure 2.3

below shows a graphical representation of the TERCOM process.

TERCOM Process Overview

Correlation
Processor

Measured terrain
elevation data

Elevation map
stored onboard

Figure 2.3". TERCOM Correlation Process Overview.

The primary task of the TERCOM algorithm is to correlate the terrain profiles from a ‘fix area’ with
the database of terrain profiles. This correlation must process the data quickly and allow for a

position fix with a high level of confidence.

An example of the simple correlation algorithm used in the original TERCOM process is the Mean
Absolute Difference (MAD) algorithm. There are two primary MAD scenarios that might be
encountered which involve the relative size of the terrain profile and the reference matrix. The first
of these scenarios is where the terrain profile has more elements than the reference matrix. This

situation is referred to as the Long Sample Short Matrix (LSSM) scenario. The second is where the



terrain profile has fewer elements than the reference matrix. This is referred to as the Short Sample

Long Matrix (SSLM) scenario. Refer to Figure 2.4.

MAD Scenarios:
LSSM & SSLM
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Figure 2.4. The Long Sample Short Matrix (LSSM) and
Short Sample Long Matrix (SSLM) TERCOM Scenarios.

The MAD algorithm will be present for each of these cases.

2.1.2.1 The Long Sample Short Matrix MAD Algorithm
The LSSM technique begins sampling at an estimated time prior to the expected arrival of the vehicle
over the fix area and the number of samples is greater than the number of rows in the reference

matrix. The main calculation of the MAD algorithm for the LSSM case is:



Equation 2.1

where:

1. H,  isthe (m,n)'h element of the pre-stored M x N reference matrix

2. K is the difference between the number of rows in the terrain profile and the number of rows
in the reference matrix'. Given k € [0 K ], this will allow one dimension of variation
between the terrain profile and the reference matrix.

3. h,., isthe (k + m)'h measured terrain elevation data point
4. MAD,,, is the mean absolute difference between the (k + m)'h terrain elevation data point

and the (m,n)" reference matrix data point

The MAD calculation presented in Equation 2.1 will determine the mean absolute difference between

the n™ column of the reference matrix and M elements of the terrain profile. However, the object
of the MAD calculation is to determine the best fit between the terrain profile and the reference
matrix. Therefore, the terrain profile must be iteratively ‘slid” over the reference matrix such that the
MAD of all the data points in the terrain profile is calculated. In addition, the terrain profile must be

‘slid’ across the columns of the reference matrix in a similar manner.

In other words, the MAD must be calculated for all possibilities of (k,n) given that k € [O K ] and

ne [1 N]. Refer to Figure 2.5.

' Assuming the terrain profile has more rows than the reference matrix. This is the LSSM scenario.
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Figure 2.5. An Example of an LSSM Correlation Attempt.

2.1.2.2 The Short Sample Long Matrix MAD Algorithm

The SSLM technique generates a single measurement profile when the vehicle is determined to be

within the fix area. This terrain profile has fewer elements than there are rows in the reference

matrix. The main calculation of the MAD algorithm for the SSLM case is:




Equation 2.2

where:

1. H,,  isthe (k+m, n)’h element of the pre-stored M x N reference matrix

2. K is the difference between the number of rows in the terrain profile and the number of rows
in the reference matrix'. Given k € [O K ] , this will allow one dimension of variation
between the terrain profile and the reference matrix.

3. h, isthe m™ measured terrain elevation data point

m

4. MAD, , isthe mean absolute difference between the m" terrain elevation data point and the

(k +m, n)'h reference matrix data point

As in the MAD algorithm for the LSSM case, the MAD calculation presented in Equation 2.2 will

determine the mean absolute difference between the 2™ column of the reference matrix and M
elements of the terrain profile. This algorithm must be applied to all arrangements of the terrain

profile and the reference matrix in the SSLM scenario.

In other words, for the SSLM the MAD must be also calculated for all possibilities of (k,n) given

that k € [O K] and ne [l N]. Refer to Figure 2.6.

" Assuming the terrain profile has fewer rows than the reference matrix. This is the SSLM scenario.
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Figure 2.6. An Example of an SSLM Correlation Attempt.

For this analysis of the TERCOM algorithm, only the LSSM technique was implemented.

2.1.2.3 MAD Algorithm Notes
The MAD algorithm assumes that the vehicle measures the overflown terrain along a path that aligns
with a single column of the map and maintains straight flight within that column. Any cross-track
skewing as a result of cross-track velocity errors of the vehicle will result in errors in the position fix.

In addition, any downrange velocity error will result in uneven sampling within the TERCOM cells.



That 1s, if the velocity of the vehicle is not precisely known, the sampling of the terrain profile will

not be able to properly determine where one terrain profile cell should end and another begin.'

Several reference map characteristics can be derived to give an estimate of that map’s feasibility as a
fix area for use with TERCOM. However, map characteristics should not be used as the sole
determination of a map’s feasibility. It should also be noted that the performance of the MAD
algorithm with a map along the matrix columns does not guarantee the same performance along the
matrix rows and vice versa. Simulations of reference matrix overflight must be performed to validate
that map’s use for TERCOM. Proper selection of the maps should provide the lowest estimated
Circle Error Probability (CEP) value as well as reduce or eliminate the probability of a false fix.

Refer to section 2.1.3.3 for an explanation of the CEP.

2.1.3 The VAR Correlation Algorithm
As discussed above, TERCOM uses a barometric altimeter in order to determine the vehicle’s altitude
above MSL for terrestrial applications. The measurement of the MSL altitude allows the AGL
altitude to be translated into terrain profiles. However, the mean sea level has no analogous quantity
on the Moon. Without some analogue to the MSL altitude, terrain profiles cannot be produced and

the MAD algorithm is unable to generate a position fix.

Considering this situation, the author developed a variance-based (VAR) algorithm to eliminate the
need for barometric altimeter measurements in obtaining a position fix. Considering the apparent
impossibility of obtaining an MSL altitude measurement near the lunar surface, this modification to

the MAD algorithm enhances the applicability of TERCOM to lunar TRN.

Conceptually, the VAR algorithm is quite simple. Consider the case in which the overflight path of a
vehicle is straight, level flight. Assume this vehicle is able to obtain only a terrain-referenced altitude

profile (AGL), using a LIDAR, radar altimeter, or similar sensor. Stored onboard is a terrain

' Typically, several measurements are averaged to determine the value of a terrain profile cell.



reference map comprised of a grid of elevation data referenced to MSL. The VAR algorithm sums
(‘stacks’) the profile of altimetry measurements with the values of the reference topography map as
depicted in Figure 2.7. When the AGL terrain profile is stacked atop the correct swath of the
reference map, the stacked altitude will be nearly constant, reflecting straight and level flight.
Therefore, if the variance value for each ‘stacking’ is determined, the smallest variance will produce

the best position fix.

VAR Correlation Algorithm

Generate
measurement profile
from altimetry &
relative vertical
motion correction

Onboard map
elevations in each
map column.

Stack profile with
each column of the
onboard TERCOM
map. Determine the
mean & variance of
the stacked values
for each column.

High variance, no fix. Low variance, No variance, fix.
potential fix.

Figure 2.7. Description of the VAR Correlation Algorithm.

This algorithm operates under the assumption that the vehicle is at a constant altitude relative to MSL.

If the vehicle’s altitude is changing, relative measurements of the vertical displacements need to be



determined. These vertical displacements can then be added to the altimetry measurements to

produce a set of measurements relative to a constant altitude.'

As in the case of the MAD algorithm, the VAR algorithm is also dependent upon whether the LSSM
or the SSLM scenario is being implemented. Both VAR algorithms will be presented below. Note,

however, that only the LSSM VAR algorithm will be used in the analysis.

2.1.3.1 The Long Sample Short Matrix VAR Algorithm

The VAR algorithm for the LSSM is shown below:

1 & _
VARI\‘J? = Gk.nz = mz (‘xk.m.n Xk )2
m=1

Equation 2.3

where:

— 1 & .
. x., = —-Z X¢.mn 18 the average over the column of ‘stacked’ reference data and measured

R
M m=1
data (k" displacement of the elevation profile, n column, M reference matrix rows).

2. VAR, , is the average variance of the ‘stacked’ data column (k™ displacement along the

elevation profile, n™ column).

3. ©0,, isthe standard deviation of the stacked data column (k" displacement along the

elevation profile, n” column).

. . h .
4. x,,=Terrain,,  +Map, k isthe (k,m,n)" element of stacked data (k" displacement

along the elevation file, 1" column).

"The concept of this algorithm was developed by Piero Miotto and Matthew Hale without reference to other sources.
Piero Miotto is an engineer at the Charles Stark Draper Laboratory.



5. M is the number of rows in the reference matrix. M is also the number of ‘stacked’ data
points for a VAR LSSM calculation.
6. N isthe number of reference matrix columns.

7. K is the maximum displacement along the elements of the measured terrain elevation file.

The VAR algorithm presented in Equation 2.3 will determine the variance of the n™ column of the
reference matrix stacked with M elements of the terrain elevation column, displaced by k elements
along the terrain elevation column. As in the MAD algorithm, the VAR algorithm will be iteratively

‘slid” across the reference matrix similar to the process in Figure 2.5.

In other words, the VAR algorithm must be calculated for all possibilities of (k, n) given that

kelo K]andnell NJ.

The LSSM VAR algorithm is implemented as the TERCOM method used to evaluate the potential
performance of TERCOM on the lunar surface. Therefore, an example of a position fix of the LSSM

VAR algorithm as plotted by Matlab is shown in Figure 2.8.

The portion highlighted in red indicates the portion of the terrain profile (the profile is in yellow) that
correlates to the reference matrix column (the matrix is in blue). For this figure, only the best fit is
plotted. This implies that this terrain profile has already been varied across all of the columns of the
reference matrix, and for all possible row displacements of the profile, to determine the location of

the best fit.
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Figure 2.8. An Example Position Fix Using the VAR Algorithm.'

2.1.3.2 The Short Sample Long Matrix VAR Algorithm

The VAR algorithm for the SSLM case is shown below:

' OFP refers to the overflight path of the vehicle



2 Y
VARkn:O-kn = Z(kan_xkn)
, M-K-1 m=1
Equation 2.4
where:
1 M-K
. x,,= 7K Z Xy mn isthe average over the column of ‘stacked’ reference data and
- m=1

i . : T
measured data (k™ displacement along the reference matrix rows, n" column, M reference

matrix rows).

2. VAR, , isthe average variance of the ‘stacked’ data column (k™ displacement along the

- h
reference matrix rows, #n column).

3. 0,, isthe standard deviation of the stacked data column (k™ displacement along the

. h
reference matrix rows, n” column).

. . ) .
4. x.,,=Terrain, +Map,,,  isthe (k,m,n)" element of stacked data (k" displacement

. h
along the reference matrix rows, n" column).
5. M is the number of rows in the reference matrix.
6. N isthe number of columns in the reference matrix.

7. K is the maximum displacement along the rows of the reference matrix.

The VAR algorithm presented in Equation 2.4 will determine the variance of M — K elements of the

n™ column of the reference matrix stacked with the entire terrain elevation column, displaced by
elements along the rows of the reference matrix. As in the MAD algorithm, the VAR algorithm will

be iteratively ‘slid’ across the reference matrix similar to the process in Figure 2.6.

In other words, the VAR algorithm must be calculated for all possibilities of (k,n) given that

kelo K]andnell NJ.



2.1.3.3 VAR Algorithm Notes
The limitations of the MAD algorithm also apply to the VAR algorithm. That is, the vehicle must fly
at a known velocity over the reference matrix and maintain straight flight within the column of the

reference matrix.

In addition, the Circle Error Probability can also be computed for the VAR algorithm. For both the
MAD and VAR algorithms, the minimum CEP is a function of the cell dimensions of the reference

map. This minimum CEP value is determined with the following equation.

CEP,, o = 0.389(d /12 +d 1312) = 339d

Equation 2.5

where:
1. d is the map cell dimension.

The CEP equation is taken from Baker and Clem.® It defines the radius from the correct position
match within which 50% of position match attempts will fall given the terrain on which the

matching occurs.

2.2 The CraterMaker and CraterMap
Utilities

The resolutions of current lunar topography maps are insufficient for use in verifying the feasibility of

TERCOM for use on the moon. The best lunar topography maps available today are from the



Clementine mission of 1994'. These maps provide horizontal resolutions on the order of kilometers.
TERCOM requires much higher resolutions than are available with Clementine data for any type of

realistic testing or operations.

However, the lack of lunar elevation data will be blunted with the launch of the Lunar
Reconnaissance Orbiter (LRO) in late 2008." The Lunar Orbiter Laser Altimeter (LOLA) instrument
on board the LRO will provide global topography maps for the Moon with a 100 meter horizontal
resolution and 1 meter vertical resolution. In some regions, these maps will be able to provide
horizontal and vertical resolutions as good as 25 and 0.1 meters respectively. It is assumed these

maps will be available prior to the execution of a lunar landing mission, and therefore available to use

to build TERCOM reference matrices.

In order to test the TERCOM algorithms without the data expected to be gathered by the LRO, a
simple lunar surface simulator tool was developed to provide topographic maps with sufficient
resolution to match the expected LOLA maps. Two Matlab utilities named the CraterMaker and the

CraterMap together provide this capability.

The CraterMaker routine generates a list of randomly varying craters across a given surface. The
CraterMap routine then builds off of the CraterMaker functionality by creating a virtual terrain from

the craters produced by the CraterMaker."

2.2.1 The CraterMaker Tool

The CraterMaker routine is supplied with a user-defined crater density, latitude and longitude ranges,

and an average radius for some given planet. CraterMaker then recreates the typical geometry of an

' Officially the Deep Space Program Science Experiment (DSPSE), more commonly known as the *‘Clementine’

mission, was a NASA mission to map the Moon, among other things.

" A NASA spacecraft scheduled for launch in late 2008 to characterize the lunar environment for entry, descent, and

landing. http:/lunar.gsfe.nasa.gov/index. htmi

™ Neither of these routines were created by the author. However, an understanding of them is essential to the

analysis that will be conducted on the author’s TERCOM algorithms.



impact crater, generating several physical characteristics. These features include crater depth, crater

radius, and rim height.

Using the user-defined crater density and the area of the surface under consideration, the CraterMaker
then computes the number of craters to be generated. Next, the CraterMaker code defines ranges for
the crater radii, depth, and height. The CraterMaker then assigns a random radius, depth and rim
height for each crater given the range for these quantities. For this step, it is important to note that the
crater radii distribution is not completely random like the depth and rim height. Instead, a probability
distribution function (PDF) of crater radii was defined using the New Neukum Crater Production

Function of Neukum, Ivanov, and Hatmann.” This PDF is heavily weighted towards smaller radius

craters, with very large (greater than 1 km diameter) craters occurring very infrequently.'

The shape of the ‘inside’ of the crater, as well as the shape of a outside, are both assumed to follow a
generic profile. From the center of the crater cavity to the rim, the profile is defined to follow a
hyperbolic curve. From the rim of the crater outward, the profile is one of exponential decay. To
make these profiles more realistic, a select amount of randomness is applied along these profiles. To
ensure that the two profiles form a piece-wise continuous curve, boundary value constraints are
defined for the profiles. This also ensures that the craters are of the desired shape and that the crater

surface height ultimately goes to zero at its outer edge.

After it is defined, the crater profile is incrementally transformed 360° about the vertical axis
through the crater center, creating a surface of revolution. In order to prevent the circular contours
inherent in these types of surfaces, random variation is again applied at each azimuth increment in the
transformation. This same procedure is then repeated for each desired crater until an entire list of

craters has been processed.

" This PDF is similar to a chi-squared distribution, but more heavily weighted towards the low end.



The Neukum crater distribution function discussed above provides a relatively low overall crater
density, which in turn makes it difficult to generate a TERCOM fix. This scenario is discussed in the
results section below. An additional function of the CraterMaker utility allows the user to force a
greater distribution of craters of a given size in the crater list. This capability represents the real-
world process of selecting a TERCOM fix area with the correct type of surface features to allow for a

position fix.

2.2.2 The CraterMap Tool

As mentioned previously, the CraterMap routine builds upon the functionality of the CraterMaker.
The CraterMap utility creates a virtual terrain using the list of craters generated by the CraterMaker.

CraterMap is capable of generating both flat surfaces and spherical projection maps.

The CraterMap routine begins to build a terrain by generating a mesh of points over the given surface
area. All the points in the mesh initially have a z-value (height) of 0. CraterMap then iteratively
superimposes the surface mesh associated with any given crater onto the surface mesh representing
the simulated terrain. Using bi-directional interpolation, the CraterMap utility then determines the
crater height that corresponds with each relevant terrain grid location. These crater heights are then
stored as the z-value (height) of the terrain mesh. As craters are continually added, the local terrain
elevation mesh is updated with each crater’s height data. The end result is a very sophisticated and
realistic looking simulation of the lunar topography. It is worth noting that one of the main benefits
of this process is that the method provides an inherent ability to create overlapping impact craters, as
well as craters within previously created impacts. In addition, this functionality does not significantly
impact the computational effort required for simulating the terrain. Figure 2.9 gives an example

output of the CraterMap utility.
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Figure 2.9. An Example Terrain Output of the CraterMap Utility.

2.3 Analysis Assumptions & Description

In order to characterize the performance of the VAR algorithm in a simulated lunar environment, the
analysis included herein was initialized and conducted. The analysis was performed by executing a

series of position fix attempts. Each attempt generated a set of maps that were then used as input for
the TERCOM process. Multiple maps were utilized to increase the sample size for the analyses. For

each attempt, the following user-defined values are required:



1. 1-o sensor error term.

2. 1-oc map error term.

3. Mean crater density value in craters per square kilometer.
4. 1-o crater density term.

5. [Initial state of the random number generator.

6. Number of maps to generate.

7. List of crater radius values to force on each map of the run (optional).

The values of these user-defined quantities will be discussed with the results of the analyses as

necessary.

2.3.1 Setup of the Analysis
For each map, a set of terrain profiles is generated as simulated sensor input. The generation of these
profiles is accomplished by first creating a terrain profile vector that consists of random entries.
Next, part of the profile vector is overlaid with the data from a reference matrix (map) column with
noise added. From any given map, a series of terrain profile vectors can be created in this manner by
varying the map column to overlay onto the profile as well as by varying the profile location of the
map column. This generates a larger sample size for the analysis. The generation of the TERCOM
profiles is shown in Figure 2.10 below. The correlation process implements the LSSM technique

described in section 2.1.3.1.

The correlation of these simulated terrain profiles to the onboard reference map is outlined in the
Figure 2.11 below. This figure shows the correlation for only the profile set generated from the first
column. This same process is repeated for the profile sets generated with data from each map
column. As a result, a large number of terrain profiles can be determined and matched with the
reference matrix for any given initial map. This greatly increases the practical number of iterations of

the analysis.
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Figure 2.10. Overview of the Generation of Simulated
Terrain Profiles for TERCOM Analysis.

It is assumed that cell measurements in any given terrain profile are perfectly aligned with cells in the
map. This is an idealized case in order to simplify the analysis. In reality, the values of the measured

terrain profiles might be skewed due to velocity errors or initial knowledge error.

For this study, the maximum sample rate is assumed to be 100 Hz and the maximum vehicle ground
velocity is assumed to be 1700 meters per second. This correlates to an altimeter sample every 17
meters. It is assumed that this sample rate is sufficient to characterize the average height in a
TERCOM cell. Since the velocity of the vehicle will decrease during breaking and approach,

requiring that there be more samples per cell during breaking to ensure that the terrain profile cells



cover the same area of the lunar surface whether or not the spacecraft is breaking. Any error during

this breaking maneuver is assumed to be included in the single sensor error term outlined below.

Implementation of LSSM VAR Algorithm

Correlate each profile with each
column of the stored map. For each
profile, shift the starting cell (P-N)
times after first set of correlations.

This generates a (P-N+1) X M MAD or
VAR map for each profile.

Repeat correlation for each profile
generated. This will generate a total
number of MADNVAR maps equal to
(P-N+1) XM.

Determine the best fix and the error for
each MADNAR map generated.

Figure 2.11. Overview of the Correlation of Simulated Terrain Profiles
to the Reference Map for TERCOM Analysis.

A separate analysis should be performed to determine the validity of these assumptions and the
required number of measurement samples to properly characterize an elevation cell. Other than these
basic assumptions, the velocity of the vehicle and the sampling rate of the altimeter are not addressed

explicitly in this analysis.

Only two sources of error were introduced to the execution of the TERCOM algorithm. Both errors
are modeled with a zero mean Gaussian distribution that has an adjustable standard deviation value.

These error sources were the map error and the sensor error. The map error represents the error



between the map and the true terrain. The sensor error is the error that is added to the measured
terrain profile cells and has multiple potential sources. These sensor error sources include sensor
inaccuracies, imprecise attitude knowledge of the vehicle, and error caused by under-sampling the
altitudes for a given map cell. For simplification, all sensor error sources are modeled as a single

error term.

2.3.1.1 Simulating the Reference Map
For the generation of the reference matrix, craters are added to a flat base map with a nominal
elevation of zero as discussed above. This is assumed to be a worst case scenario, as it will require
the TERCOM algorithm to determine a position fix based only upon craters and not on any

underlying features such as hills, slopes, cliff faces, etc.

The CraterMap utility is used to generate 100 meter resolution TERCOM reference maps for this
analysis. Initially, the horizontal resolution of the maps created from the CraterMap utility is roughly
20 meters. These 20 meter resolution values are then averaged into 100 meter cells to provide a
lower resolution topographic map. Recall that the LRO mission will also provide lunar maps with
100 meter resolution. Therefore, these maps mimic the quality of the data expected to be available
for lunar navigation. Figure 2.12 provides an elevation plot of an example map created by the

CraterMap utility for this analysis.
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Figure 2.12. An Example Reference Map with 100m Cells
for TERCOM Analysis.

2.3.1.2 Reference Map Characteristics
Several of the characteristic values of these maps were derived in order to help measure the maps’
effectiveness in allowing a TERCOM fix. As mentioned previously, these characteristics should not
be used as the sole measure of a map’s effectiveness at generating a TERCOM position fix. The

characteristics include o, and 0,." The characteristic & is the standard deviation of the terrain

elevations in a map and represents the roughness of the map surface. It is calculated as



Equation 2.6

where:

Equation 2.7

A higher value for ¢ indicates a rougher terrain.

The other characteristic 0, is the standard deviation of the point-to-point changes in the terrain
elevation and also provides an indicator of the roughness of the map surface along either the rows or
columns of the map. The value of o, will differ whether TERCOM is attempting to correlate the
terrain profile to the map rows or the map columns. For this study, the profiles are always matched

with the map columns. The value of ¢, is determined with the following equations:

D

N _1 1=1
Equation 2.8

where:

Equation 2.9

A higher value of ¢, also indicates a rougher terrain.



A final map characteristic is the value of the terrain correlation length, X, . This parameter is the
distance between map rows or columns so the value of their normalized auto-correlation function is
minimized to ¢ . In other words, any two map rows or columns selected from the reference matrix

are assumed to be independent of one another if they are separated by a distance equal to X . It is

derived using the values of 0; and 0, . The equation relating 0, 0, and X is shown below.

”

o =201 —e_(xir]

Equation 2.10
The smaller the value of the X, parameter, the more independent the columns (or rows) of the

reference matrix. As the independence of the columns (or rows) increases, the likelihood of false

position match decreases.

For each map in this analysis, the mean and standard deviation of the position fix errors are
determined for each terrain profile. Each individual position fix error is determined by noting the
number of row and column cells between the calculated and true position for a given terrain profile.
This number of cells is then multiplied by the length of a cell. Finally, the position fix error is

calculated as the magnitude of the vector made up by these row and column error components. The

mean and standard deviation of the error are then plotted against the corresponding map values of O

and o, for all maps in a given run.



2.4 Analysis Results & Conclusions

Figure 2.13 below shows the expected trends for errors and the number of maps suitable for
TERCOM based on underlying surface types and crater distributions of a map of interest. For this

analysis, only the map types in the first row have been tested.

Reference Map Trends
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Figure 2.13. Expected Error Trends for the TERCOM Reference Maps.

Figure 2.14 through Figure 2.19 below show the results from several runs of the TERCOM algorithm
and shows the average fix errors for each map plotted against the corresponding o value. The

sigSensor term represents the error added to the sensor measurements in meters and the sigMap term

represents the amount of error added to the reference map in meters. As outlined in the Figure 2.13



above, these plots show that the error decreases as the density of craters increases. The error also

decreases with the addition of several larger, deeper craters.
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Figure 2.14. TERCOM LSSM VAR Analysis:
0.3 craters/km’ with standard dev. of 0.1 craters/km’.
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Figure 2.15. TERCOM LSSM VAR Analysis:
0.6 craters/km’ with standard dev. of 0.1 craters/km’.
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Figure 2.16. TERCOM LSSM VAR Analysis:
0.3 craters/km’ with standard dev. of 0.1 craters/km?,
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Figure 2.17. TERCOM LSSM VAR Analysis:
0.6 craters/km’ with standard dev. of 0.1 craters/km’,
Forced Large Craters of [1.0 1.0 1.5] km Radius.
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Figure 2.18. TERCOM LSSM VAR Analysis:
0.3 craters/km’ with standard dev. of 0.1 craters/km’,
Forced Large Craters of 2.5 km Radius.
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Figure 2.19. TERCOM LSSM VAR Analysis:
0.6 craters/km’ with standard dev. of 0.1 craters/km’,
Forced Large Craters of 2.5 km Radius.

From these analyses, it appears that TERCOM can produce correct position fixes — but only on a very
limited number of cratered surfaces. The algorithm tends to generate lower overall errors as the
‘roughness’ of a map increases. However, as discussed above, the ‘roughness’ measurement of a map
is not a clear indicator of its ‘uniqueness’ for generating a correct position fix. In specific, the
TERCOM algorithm does not seem to work well in the absence of large craters. Even with low noise
levels, the no large crater cases of Figure 2.14 and Figure 2.15 show an unacceptably high level of

error. Otherwise, the expected trends of Figure 2.13 are found to hold throughout the analyses.

The lack of a barometric altitude measurement which is required for the MAD algorithm appears to
be sufficiently addressed by the VAR algorithm implementation. The results of the VAR algorithm

nearly match the results from the MAD algorithm on the same set of data." This indicates that the

' These results are not presented here; however, they were found during the course of this analysis.



VAR algorithm is a valid alternative to the MAD algorithm for the lunar case — and potentially for

other uses.

Overall, the initial performance of the TERCOM algorithm is somewhat disappointing. Since there
must be a high level of confidence in any position fix to allow that position to update the inertial
navigation system, the probability of false fix must be very low. However, for all cases there are false
position fixes demonstrated by the outliers in the graph. Even with a nominal amount of sensor and

map noise, there were still false matches generated.

In addition, limitations upon the overall accuracy of the simulation are apparent in the analyses

presented above. For these analyses, the maximum achievable accuracy is the dimension of a terrain
profile cell, 100 m . However, in order to achieve precision landing, the position of the spacecraft

must be known much more accurately than 100 m by 100 m. Greater accuracy will require that
the reference matrix cells each cover a smaller surface area of the Moon. However, the position error
demonstrated exceeded the levels expected from the terrain cell size by hundreds — if not thousands —
of meters." This position fix error is unacceptable for the purposes of lunar navigation — and implies

that the error is not due to the reference map, but primarily the result of the correlation algorithm.

The initial analyses presented here demonstrate that TERCOM is not necessarily robust enough to be
able to generate position matches in the variety of conditions that will be encountered on the lunar
surface. Combined with the limited accuracy of the initial TERCOM correlation attempts, the author
has decided to look to other methods to use TRN to update the inertial navigation system of the

spacecraft.

' Sub-pixel interpolation might increase the error due to the terrain cell size. However, the large errors indicate that
the terrain cell size is not the causal factor in the TERCOM error levels.






Chapter 3
Preliminaries to the

Crater Matching Routine

The crater matching routine is a method of identifying craters in an image of the lunar surface by
matching the craters to a database of lunar craters. This chapter details both the matching routine and

the creation of the crater database.

The matching process involves several steps. First, a crater that must be identified will be chosen
from a sensor image. This crater will be referred to as the ‘boresight crater.” Next, a feature vector
describing the pattern of nearby craters will be built for the boresight crater. Finally, the boresight
crater will be identified by searching a database for the known crater whose feature vector is the

closest match to the feature vector of the boresight crater.
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The creation of the database of lunar feature vectors will be accomplished by building a feature vector
for each crater that may be visible in a sensor image. The feature vector itself is independent of the
location of the boresight crater within the input image. It is also independent of the in-plane rotation
of the image. This is true for the feature vectors built for the matching routine as well for the creation

of the database.

This chapter (Chapter 3) discusses the details that are necessary before a more focused discussion of
the crater matching routine is undertaken. The first section of this chapter, section 3.1, addresses the
use of the crater matching routine as a potential component of terrain relative navigation
architectures. The next section, section 3.2, goes on to further characterize the problem that the crater

matching routine is intended to solve.

3.1 Utility of Crater Matching in Terrain

Relative Navigation

As mentioned in Chapter 1, TRN can be described as the process of sensing some terrain surface
beneath a suspended vehicle, and using these sensor inputs to update the vehicle’s knowledge of its
own position, orientation, or velocity. TRN can take any of a number of forms'; however, all TRN

techniques will include the following steps:

1. Obtain measurements of terrain surface using an onboard sensor.

2. Correlate the sensor input to a database containing terrain characteristics for the type of

sensor being used.

"TERCOM, described in Chapter 2, and the crater matching routine described in this chapter, are two examples.
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3. Use the information from the correlation to update the vehicle’s navigational computers.

The second of these steps (TRL) is the heart of many TRN methods. The correlation between the
sensor input and the surface provides information about the vehicle’s relative position, orientation, or
velocity. This information can be used, in turn, to aid in navigation over the surface. For example,
Chapter 2 explains that the sensor in use for TERCOM was an altimeter. The focus of the TERCOM
algorithm was to match elevation profiles recorded by the sensor with a database of terrain elevations
that corresponded to the surface beneath the vehicle. After a successful match, the match information

is fed to the navigational computers to allow for update.

The crater matching routine is intended to fill this role as well. It is designed to match craters from
visual imagery of the lunar surface with a database of relative crater positions. A successful match by
the crater matching routine will allow information on the spacecraft’s pose in relation to the lunar
surface to be determined. The determined pose will then be used to update the spacecraft’s

navigational computers.

3.1.1 Vision Based Operations for Terrain Relative Localization
Computer vision first became an area of significant study and application in the 1970s when
computers had sufficiently matured, allowing large data sets to be processed. Since then, computer
vision has been applied to many ficlds — fields which are as varied as medical imaging, missile
targeting, and robotic maneuvering. Computer vision has also been applied very successfully to
autonomous vehicle guidance and control on Earth. For example, computer vision has been applied
to the navigation of military unmanned aerial vehicles extensively, achieving high levels of

autonomy. "

The application of computer vision to space operations is a reality as well. For years, star trackers,
sun sensors, and altimeters have been in use to complement inertial guidance systems. Autonomous

vehicle guidance has also been achieved with computer vision in space applications. In 1997, the
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Mars Pathfinder used computer vision to allow it to autonomously navigate the Martian surface.'
Since then, Opportunity and Spirit arrived on the Martian surface in 2004 and have traveled miles
over the red planet’s surface using computer vision to navigate the often complex terrain it found."?
Computer vision has found many other uses in space as well. One use of computer vision that is
currently being developed is the application of vision based operations to terrain relative navigation

for a landing spacecraft.

The National Aeronautics and Space Administration (NASA) is currently funding the Space
Technology 9 Project (ST9) as part of the New Millennium Program.'* Under ST9, the Jet Propulsion
Laboratory is developing a “terrain-relative guidance system, which integrates computer vision and
inertial sensing to perform terrain-relative navigation, hazard detection and landing-site targeting.”">
This system will be based upon computer vision and will accomplish terrain relative navigation. That
is, one of the objectives of the ST9 Project incorporates vision based navigation to achieve terrain

relative localization.

3.1.2 Crater Matching and Lunar Vision Based Terrain Localization
As ST9 demonstrates, developing a precision landing capability for planetary missions is currently of
importance to space exploration. In the past, planetary landing has been at best imprecise, usually
involving relatively large landing error dispersion ellipses encompassing tens of square kilometers of
planetary surface’. However, if a landing precision of ten meters is achieved as desired, the accuracy
of the lander will be approximately two hundred and fifty thousand times more accurate than the
landing error dispersion area of Apollo 11. To realize this drastic improvement, current precision
planetary landing efforts focus upon using relative navigation techniques to update more traditional

inertial guidance and navigation techniques.

: Apollo 11°s lunar landing in 1969 had a landing error dispersion ellipse of 19 km by 5 km. Apollo 12’s 1969
landing error dispersion cllipse was 4 km by 2.5 km. The Mars Science Laboratory, scheduled for launch in
2009, has a dispersion ellipse similar in size to that of Apollo 11 (20 km diameter).
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As mentioned above, computer vision presents an opportunity for both high-precision navigation and
the possibility of achieving a planetary landing precision on the order of tens of meters, as desired.
Many image processing problems are encountered in vision based terrain navigation. These include
optical flow considerations, feature tracking, hazard avoidance, and many others. However, one of
the most basic terrain navigation steps is terrain localization. Terrain localization can be described as

determining where the spacecraft is by comparing sensor inputs to a database.

The process of terrain localization is laid out in three steps in Figure 3.1.

Lunar Terrain Relative Localization
Process Overview

Sensor Input

!

Isolate Craters from
Sensor Imagery

!

Identify which Craters are in Imagery
Crater Database — by Coirelation with Crater Database

3!

Determine Spacecraft Pose and Position
from Knowledge of Sensor Image Position

!

Navigation Update

Figure 3.1'. Reprint of the Process Overview of
Vision-Based Terrain Relative Localization.

' Also Figure 1.1.
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In Figure 3.1, the first significant step in terrain localization is the isolation of craters from a given
sensor image. The author will refer to this step as crater identification. The second step in the
localization is to correlate the craters in the image with craters from a crater database. This step will
be referred to as crater matching. The final step before updating the spacecraft’s navigational
computers is to determine the pose of the spacecraft based upon the correlation between the sensor
image and the crater database. This final step will be referred to as pose estimation.! The calculated
pose of the spacecraft can then be used to update the inertial guidance systems, typically using a
covariance-based integration method such as the Kalman filter. The three steps depicted in Figure 3.1
will allow a spacecraft to use imagery of the lunar surface to update its inertial guidance systems.
Repeated systematically as the spacecraft travels over the lunar surface, these terrain localizations

will be critical in achieving precision landing capability.

The crater matching algorithm addresses a very specific problem encountered in lunar vision based
terrain localization. The algorithm attempts to correlate an image of the lunar surface with a specific
portion of a stored map of the lunar surface. This chapter will focus on this correlation process,

specifically utilizing lunar cratering as the object of correlation between imagery and reference maps.

" The author will imply both orientation and position estimation, and will refer to this final step as ‘pose estimation.’
This is due to the fact that the algorithms for pose estimation include position estimation.
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3.2 Crater Matching Problem Statement and

Characterization

As mentioned earlier, the crater matching routine must identify the absolute position of the craters in
a given image of the lunar surface. This is accomplished by building a feature vector based upon the

pattern of nearby craters and matching this feature vector to a database of lunar craters.

Before examining the crater matching routine in more detail, several topics will be addressed. First
the crater matching problem will be defined and characterized more fully in section 3.2.1. Then an
overview of the star tracking problem and the generic solution algorithms to the star tracking
algorithm will be presented in section 3.2.2. These star tracker algorithms will be studied due to the
similarity between the star tracking and crater matching problems. A comparison between the star
tracking methods will allow the author to identify a potential solution model for the crater matching
problem. Finally, section 3.2.3 will present the preliminaries to the crater matching routine, such as

essential terminology, units, and algorithm inputs and outputs.

3.2.1 Problem Statement
The statement of the crater matching problem has been made rather casually by the author in previous

sections. This section will define the crater matching problem more rigorously.

The statement of the crater matching problem is rather simple. Given the relative center positions and
radii of all the visible craters in an image of the lunar surface, determine the absolute position of the
craters in the image. A database of the absolute crater center positions and radii of all lunar craters is
provided. This database will allow the correlation between the image of the lunar surface and the

absolute position of the landmarks in that image.
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This correlation will be accomplished by a routine that is comprised of several steps:

1. Generate a database of patterns of nearby craters for any given crater on the lunar surface.
This database will be stored and queried during the correlation of the image to the database.

2. Determine the pattern of nearby craters for a given crater in the sensor image about which the
pattern is generated.

3. Generate a ‘signature’ for a given sensor image by repeating step 2 for every possible crater
in an image.

4. Correlate the patterns in the image signature with the database of patterns. Successful
correlation will allow the absolute location of the craters within the sensor image to be

determined.

Each of these steps is a lengthy series of operations in itself, and so each will be addressed in Chapter

4 through Chapter 6.

Figure 3.2 presents a flow diagram for the steps enumerated above. These steps are clearly divided
into two subsets — those that occur on the ground, and those that occur on the spacecraft. Both of
these subsets share the process of generating a signature for a given image in common with each
other. The ground operations consist of all those necessary to generate a crater database. The
operations that occur onboard the spacecraft aim to generate an image signature for a given sensor
image and to correlate that signature with the crater database. This correlation will determine the
inertial position of the image. The crater matching process presented in Figure 3.2 will be examined

in more details throughout the remainder of this chapter.
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The Crater Matching System Overview
Process Interactions

Database Formation Crater Matching / Correlation
{On the Ground) {Onboard the Spacecraft)

Select Desired

Sensor Image

Simulate Image

hroses, | dat Tong)
s> DB, |

Figure 3.2. An Overview of the Interactions Between the
Crater Matching Routine Processes.

The remainder of this section will continue to analyze the crater matching problem in more detail.

3.2.1.1 Requirements

As stated in the initial problem statement of section 3.2.1, the general requirement of this routine is to

determine the absolute position of the craters in a sensor image without any prior position

knowledge.' Because the crater matching routine is intended for eventual use on a lunar lander, there

are additional requirements that this intended purpose imposes. Several of these are explained below:

" Save that the image was taken at a defined altitude above the lunar surface
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1. Accuracy

This routine is crucial to the generation of a position fix for TRL operations. Therefore, the

probability of false crater match must be extremely low, on the order of 107 or 0.1% .
However, since the routine is intended as an initial position determination algorithm, the
precision requirements are rather lax. In other words, the dependability of this routine must
be very high, which is achieved by allowing the determination of the absolute position of the
craters to be less precise. Note that the precision of the crater matching routine is highly

dependent upon the crater database as well.
2. Robustness

With changing shadows and limited surface knowledge, the lunar environment presents a
challenging environment for vision based operations. The crater matching routine must be
able to adequately perform at any sun angle that may be encountered, allowing for the
possibility of newly formed craters, and be responsive to the variety of terrain characteristics

likely to be encountered on the Moon.
3. Processing Speed

This routine must be able to generate a positive crater match within three seconds. This will
allow adequate time for processing before and after the crater matching routine in order to
generate a position fix for the camera within ten seconds of sensor input. This processing

speed requirement will be derived from a 3.60 GHz processor.'

'On a Pentium 4 CPU
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4. Memory Requirements

This routine must be operable using 1.00 GB RAM and must have a maximum size of 5 MB.
This memory requirement will be especially crucial in considering the size of the stored

crater database.

These requirements were relevant design parameters in developing and refining the crater matching

routine.

3.2.1.2 Definition of Success
A successful crater match is defined as a correlation between the craters in a given sensor image and
their absolute positions with greater than 75% of the craters being properly matched to the absolute
position." The correlation for an individual crater is successful when the crater in the original sensor

image is matched with the crater of which that sensor image was taken.

A successful crater match does not necessarily equate to a successful position fix. Rather, a
successful match only underscores that the sensor image craters were accurately matched to the same
craters in the database. In addition, these measures of success only make sense for simulation

operations.

3.2.2 Star Tracking Algorithms & the Crater Matching Problem
If the crater matching problem is generalized, it requires a correlation between an image containing
distinct data features and a database of these features. Likewise, star tracker algorithms attempt to
correlate image features (stars) to a database of these features. In the process of addressing this

problem, the author noted this similarity between the crater matching task and the attitude

' These performance parameters are not analogous to the capabilities of spacecraft computers.
" Notice that the frequency of false matches is on the order of 0.1% , while the frequency of successful matches
must be more than 75% . The remainder of the matches are inconclusive match attempts.
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initialization problem for star trackers. Initial research demonstrated that the solution methods of the

star tracker algorithms had possible application to the crater matching routine.’

This section will characterize the attitude initialization problem, discuss its similarity to the crater
matching problem, and present the star tracker algorithm upon which the author chose to base this

crater matching algorithm.

3.2.2.1 The ‘Lost In Space’ Problem
One of the algorithms that a star tracker typically uses to determine the orientation of a spacecraft is
an attitude initialization algorithm, often known as a ‘lost in space’ algorithm. These algorithms are
designed to operate without any prior orientation knowledge, and their task is to determine the

attitude of a spacecraft to a fairly accurate degree.

Stated more rigorously, the attitude initialization problem is as follows: given a spacecraft with no
information about its current attitude other than a series of images taken of star patterns visible from
an onboard star tracker, determine the attitude of the spacecraft. For this problem, an onboard

database of stars is available for image correlation.

Due to the similarity of this ‘lost in space’ problem and the crater matching problem, the author
researched current solutions to the star tracker attitude initialization problem. The results of this

research will be briefly presented in the next section.

3.2.2.2 Star Tracker Algorithms for Crater Matching
The author limited his review of current star tracker algorithms to those that met the following

requirements:

" Star trackers are attitude sensors frequently used to determine a spacecraft’s three dimensional orientation in space.
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1. Requires no a priori attitude knowledge.
2. Suitable for relatively small field of view.

3. Memory requirements are modest and processing time is fast (several seconds or less).

As noted by Padgett, Kreutz-Delgado, and Udomkesmalee, the algorithms that met these
requirements generally fell into two broad categories; geometric algorithms and pattern-based

algorithms.'®

3.2.2.2.1 The Geometric Approach
One set of attitude initialization algorithms treats the stars in the sensor image as vertices, comparing
the angular separation and distance between sets of stars. In other words, geometric attitude
initialization algorithms used the angular separation and distances as the features to be compared
between the image and the database. While there are many variations of this geometric approach to

the attitude initialization problem, the fundamental correlation technique is quite simple:

1. Determine the angular separation and distance between sets of stars in the sensor image.

2. Compare these angular separation and distances to an onboard database of pre-calculated
distances and angles.

3. Determine the area of sky with the highest number of correlations between sensor image and
database sets. If this number of correlations reaches a certain threshold in relation to the total

number of sets in the sensor image, a positive image correlation is generated.

A subset of this geometric approach is a polygonal algorithm, in which the angles and distances are
recorded as polygons. Some of the most widely used attitude initialization algorithms are variants of
this polygonal approach, typically using sets of triangles to define the arrangement of stars in the

sensor image.
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One of the more applicable geometric algorithms was one developed by Mortari, Junkins, and
Samaan which used a pyramid-based geometric algorithm to solve the lost in space problem.'” This
algorithm uses only the angular separation of sets of four or more stars to form geometric pyramids
and attempts to match these pyramids to a star catalogue. In addition, this pyramid approach utilizes
a ‘k-vector’ approach for accessing the catalogue that does not require searching.'® As a result, this
algorithm is sufficiently fast to be a viable star tracking algorithm. In addition, a confidence is
analytically determined for each match, allowing the star matching to be used only within confidence

bounds.

3.2.2.2.2 Pattern-Based Approach
The second set of attitude initialization algorithms treats the stars in the sensor image as a cohesive
set and generates a pattern based upon the relative arrangement of these stars. These algorithms

typically form a pattern by the following process:

—

Select a guide star and determine its closest neighboring star.

2. Orent a grid with a specified cell size on the guide star with the closest neighboring star on
the positive x-axis.

3. Generate a pattern from all stars within a certain distance of the guide star. If a star falls
within a grid cell, that cell is considered ‘full’; otherwise, the cell is considered ‘empty.” A
simple bit vector is typically utilized to store this information. This vector is termed the
‘pattern vector.’

4. Repeat steps 1 through 3 for all possible guide stars in the sensor image, forming a set of
image pattern vectors.

5. Compare the set of image pattern vectors to a database of pattern vectors. The area of sky

with the highest number of correlations, above some threshold, generates an position match.
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This approach is quite different from the geometric approach because each time a correlation occurs,

all the stars within a defined radius of the guide star are considered.

3.2.2.2.3 Comparative Cost-Benefit Assessment

There are both costs and benefits to the geometric and pattern-based approaches. The most important

aspects of each method are presented in Table 3-1.

Based upon the advantages enumerated in Table 3-1, the author chose to pursue the pattern-based
approach to inform a solution to the crater matching problem. Refer to the article “Evaluation of Star
Identification Techniques” by Padgett, Kreutz Delgado, and Udomkesmalee for a more detailed

comparison and analysis of the attitude initialization approaches presented in this section."

Table 3-1. An Overview of the Costs and Benefits
of Star Tracker Algorithms

Benefits Costs

1 Utihzes very imited # of stars from the
image to generate correlations

2 Database size is often prohibitive
1 Geometric algonthms are widely proven 3 Database size and processing ime

G eO m etrIC and implemented both increase quickly as sources
2 Many modifications available that can of error are introduced / greater
M eth o) dS mitigate some of the downsides to accuracy demanded
these algonthms 4 Algorithm generates spurnous matches

and performance degrades
noticeably with any significant

notlse

1 Pattern vector includes most of the stars

from an image
2 The database can be stored efficiently, 1 Th
Patte rn-B as ed resulting in a small database size e pattern-based approach IS not as

widely implemented as geometric

3 The corrslation can be performed very algonthms  Therefore not as

M eth Ods quickly using a look-up table operationally proven

4 Initial analysis Indicates that the pattern
matching approach is quite robust to
Image noise
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3.2.2.3 Star Tracker Algorithm Selected for Application
In the comparative studies of these star tracker approaches, specific attention was paid to the
robustness of each approach in relation to image noise. This concern with robustness reflects the fact
that high levels of image noise are expected in the lunar entry, descent, and landing scenario. As in
any software intended for space application, memory requirements, processing speed, and

dependability were key considerations in weighing both of these types of algorithms as well.

3.2.3 Initialization of the Crater Matching Routine
3.2.3.1 Terminology
Several terms will be used throughout the remainder of this chapter which will require further

explanation:

1. Image Plane — synonymous with the focal plane of the camera. Refer to section 3.2.3.2.

2. Principle Axis — the line through the camera center and perpendicular to the image plane.

3. Principle Point — the point of intersection of the image plane and the principle axis.

4. Data Points — the data points consist of the position of all crater centers and their respective
radii for all craters under consideration. The crater centers are in pixels and the crater radii
are in units of distance (typically kilometers). These points are either coupled with a sensor
image or are those used in the formation of a crater database.

5. Image Data Points — the image data points consist of the position of all crater centers and
their respective radii visible in a given sensor image. The crater centers are in pixels and the
crater radii are in units of distance (typically kilometers). The author will also refer to the
image data points as the ‘image’.

6. Pattern Vector — a vector containing information to identify the pattern of nearby craters for a

given boresight crater.
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3.2.3.2 Unit Systems

The crater matching routine will require only a single frame of reference, the camera’s focal plane.
This plane will also be referred to as the ‘image plane.” Since the given sensor image lies in this
plane, and all crater matching routine operations are image operations, this is the only frame required

for the routine. The perspective transform algorithm, discussed more fully in Chapter 5, will require

additional coordinate frames. These frames will be introduced in section 5.1.2.

Although only one frame of reference is used in the crater matching routine, several different unit

systems for the image plane will be utilized in the solution to this problem. Figure 3.3 depicts these

unit systems.

Sensor Input
Image Plane

ge [1 re..r]

re [1 res]

Image Plane Unit Systems

MN (pixelated)
Image Plane

UV (true)
Image Plane

ixels
me [1 res]
ne [1 res]

) w(2)
) ()

* - represents image plane origin
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Two abbreviations utilized in Figure 3.3 require further explanation: res refers to the resolution of

the original sensor image in pixels, and fov is the camera’s field of view in radians.

The initial sensor input ‘image’ is provided as a data set with the crater centers in pixels and radii in
units of distance (typically kilometers). This data is recorded with the origin at the lower left of the

image, with the +¢ axis to the right and the +r axis toward the top of the image. This frame is

awkward to use with matrices due to the alignment of the ‘rows’ (r) and ‘columns’ (q) in relation to

the way rows and columns are stored and referenced in Matlab matrices. As a result, the sensor input
is initially converted from the sensor input frame to a more useable unit system.' In this unit system,

the physical area covered by each pixel is affected by the altitude of the spacecraft.

The pixelated image frame is useful because image data can be intuitively stored in Matlab matrices

using this frame. The origin for this frame is at the top left, with the +m direction downward and the

+n direction to the right. Any ordered pair (m n) in this frame can also be interpreted as the

(row column) location of the image data stored in Matlab matrix form.

The true image frame is analogous to the camera focal plane. It is located at unit distance from the
camera along the principle axis of the nadir-pointing camera. The origin of this frame is located at
the center of the image with the +u and + v directions aligned left and upward, respectively.

Distances in this frame are measured in units of focal length; therefore, the bounds of the true image

frame are defined by the field of view of the camera, ( f()v). See Figure 3.4 . These bounds are:

"'The sensor input frame is used only because this is the format of the input data. Otherwise, the pixelated and true
image planes are much more useful for the crater matching routine.
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Equation 3.1
The units of the true image plane are defined by the units of distance being used throughout the
problem (the ‘unit focal distance’ of the image plane from the camera will be in the same units as the

altitude and the radius of the moon). For the crater matching routine, the focal length will therefore

be 1 km. Although this focal length is not representative of a practical camera focal length, the

perspective transform equations of Equation 5.27 can be re-derived for any focal length.

UV (True) Image Plane:
Detail

- Note:

Image plane is defined as
unit distance from camera along
the camera BS

Sy m[fﬂ _r
2 ) 1

This determines the boundaries
of the image plane.

Bounds:

Figure 3.4. A Detail of the UV (True) Image Plane.
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3.2.3.3 Unit Conversions
Based on the image plane unit systems described in section 3.2.3.2, conversions between these units

can be implemented.

3.2.3.3.1 Sensor Input Image Plane Units (¢ r)to Pixelated Image Plane Units (m n)
The unit conversion from the sensor input image plane to the pixelated image plane entails a rotation
of the axes counter-clockwise by —90° about [0 0 1] and a translation of the origin from the

lower left to the upper left of the image. That is,
m| [0 -1 0] q—| res |

nl=1 0 0O *|r +| 0
olfj [0 0 1 |0 [0]]

Equation 3.2

This rotation and translation is identical to modifying the sensor input image plane order pairs

(q r) as follows:

m=res—r

n=gq
Equation 3.3
3.2.3.3.2 Pixelated Image Plane Units (m 7) to True Image Plane Units (w v)
The unit conversion from the pixelated image plane to the true image plane requires a 180° counter-
clockwise rotation of the axes about [l -1 O] and a translation of the origin from the upper left to

the center of the image. That is,

u] 0 -1 0] m] [1]
;J:tan(ﬁzﬂ) _ol g —Ou*(é) gf <1)J

Equation 3.4
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The {m n} image points are converted from pixels to true image frame units before the rotation is

applied. This unit conversion (partially factored out on the right side of Equation 3.4) is

2- tan(fov )
N2

res

pix2uy =

Equation 3.5

The rotation and translation for this unit conversion is identical to modifying the pixelated image

plane ordered pairs (m n) as follows:

U= tan[%]— n- pix2uv
fov

= tan( 5 j— m- pix2uy

Equation 3.6
3.2.3.4 Inputs, Outputs, & Algorithm Constants
The inputs, outputs, and constants for the crater matching routine are listed below. Several of these
parameters have not yet been explained in full. These parameters will be detailed as they are
necessary throughout the crater matching process. For now, it will suffice to say that these are the

inputs, outputs, and constants necessary to the crater matching routine.
Inputs:

1. Sensor image data points in the original image frame.

2. Database of stored pattern vectors for lunar craters.

3. Camera altitude (ah‘) above the lunar surface.
4. Camera field-of-view ( fov) and resolution (res).

5. Camera attitude (aZt).
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User Defined Constants:

1. Pattern Radius (PR).
2. Buffer Radius (BR).

3. Grid Number (g).
Algorithm Constants:
1. Radius of the Moon, r,, =1737.4 km

QOutputs:
1. Latitude and longitude of correlation between the sensor image and the crater database.

3.2.3.5 Assumptions
The author made various assumptions in the implementation of the crater matching routine. Each
assumption, the necessity of the assumption, and the relative validity of the assumption are discussed

here.

3.2.3.5.1 Camera is an ideal camera
The camera is assumed to be a point camera without noise or aberration. This assumption does not
accurately model physical hardware. However, the validity of this assumption is based on the
understanding that a camera can be modeled and a significant amount of the image noise can be
filtered out. If this filtering occurs before the sensor image is inputted into the perspective transform
algorithm, the ideal camera assumption is relatively valid. At the same time, analyses examining
algorithm performance with varying amounts of pixel error added to the original sensor image are

certainly warranted to better understand the robustness of the overall crater matching technique.
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3.2.3.5.2 Craters are circular

The generation of a pattern vector for the crater matching routine assumes that all craters are circular.
This allows a crater to be uniquely identified by the position of the crater center and its radius. In
general, lunar craters are elliptical, not circular. However, image pre-processing will allow elliptical

craters to be modeled as circular craters for the purpose of crater matching.

In the future, the capability to model caters as ellipses may prove beneficial to the accuracy of the

crater matching algorithm. In this case, the storage of the crater center in a defined grid cell may not

be the most beneficial means

3.2.3.6 Algorithm Notes

The explanation of the crater matching routine that is contained in Chapter 4, Chapter 5, and Chapter

6 will benefit from the use of an example data set to be processed. For the remainder of this chapter,

of pattern generation.

the data set plotted in Figure 3.5 will be used as an example data set.
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Pattern Vector Generation:
Example Data Points
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Figure 3.5. Example Data Points for Pattern Vector Generation.
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The data points in Figure 3.5 are craters that were recognized by image processing software in use by
the Charles Stark Draper Laboratory for lunar mission design and were derived from Clementine

images.! This data was obtained by a simulated camera with the following initial conditions:

Jov=90°

res =512 pixels

alt =100 km
at=0° 0" 0]
lat =80°

long =85°

Equation 3.7

where lat and long are the latitude and longitude of the camera location. Other initial conditions

that will be needed for these example problems are:

PR =50 km
BR =10 km
g=24

Equation 3.8

where g is the number of rows and columns of the g x g grid used to create the pattern vector.
Reference section 4.3.1 for a more detailed explanation for g . The pattern radius (PR ) and buffer
radius (BR) have not yet been explained. However, these parameters will be introduced in more

detail as they are needed in the pattern vector generation process.

Pattern vector generation will also require a crater upon which the remainder of the pattern generation

process can be based. This crater will be centered at:

' The Deep Space Program Science Experiment (DSPSE), more commonly known as ‘Clementine’, was a 1994
mission to test small sensors in prolonged space exposure. This mission was also tasked with mapping the lunar
surface. The data sets and imagery from this mapping process is widcly available online. Reference
http://nssdc.gsfe.nasa.gov/planetary/clementine.html
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BS, =[-0.328 -0.105]

Equation 3.9
in true image frame units. The crater at this location in the image is highlighted by a filled green dot

in Plot A of Figure 4.1, and will be referred to as the ‘boresight crater’.

91






Chapter 4
The Pattern Vector and the
Crater Matching Routine

The crater matching routine is tasked with matching the craters in an image of the lunar surface to a
database of lunar craters. This matching is accomplished by examining the pattern of nearby craters
for any given crater in the image. A feature vector — called the pattern vector — will define the pattern
of nearby craters for a given crater. This pattern vector will enable the correlation between the crater
in the sensor image and a database of lunar craters. This correlation will be accomplished using a
process similar to that in use by pattern-based star tracker algorithms described in section 3.2.2.2.2.
The remainder of this chapter will describe the generation of the pattern vector, while a specification
of the process of correlation between the pattern vector and the crater database will be reserved for

Chapter 6.
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A pattern vector is generated for a given sensor image so that the pattern of nearby craters can be
matched to a database of patterns. However, the data points in the sensor image are not referenced to
an inertial coordinate system. As a result, these image data points can be, and often are, rotated from
data points stored in a database of lunar craters. This rotation of the image data points from a
nominal value is the ‘rotational offset” of the image data points. In a similar manner, the image data
points may also be translated from a nominal position. This difference between the image data

points’ position and the nominal position is the ‘translational offset’.

The pattern generation process must be invariant to rotational and translational offsets in the data
points. If two sets of data are given and the second set is identical to the first except that the second
set is rotated and/or translated in relation to the first, the pattern vector generated for both sets of data
points must be the same. Therefore, it is necessary to reference the image data points in some way so
that any translational and rotational offset in the image will not cause an incorrect correlation of a

pattern vector to the database.

Take the data points plotted in Figure 4.1, for example.,
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Figure 4.1. Translational and Rotational Invariance.

The data points displayed in both Plot A and B are identical to each other save for a rotation and a

translation between the sets of data. Specifically, the rotation angle between the first and second data

’

sets is a rotation of 135° clockwise about the origin, and a translation of [— 035 -0.1 O] true

image frame units between the data sets. The new data set is calculated as follows:

Data, = R* Data, +T

Equation 4.1

where R represents a rotation matrix generated from the rotation angle and 7" represents the

translation vector.,
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The situation presented in Figure 4.1 is expected to be encountered frequently in the crater matching
task. Therefore, the process of generating a pattern for a desired boresight crater must account for the
variation in the orientation and translation of the data points in relation to the desired boresight.
Establishing the translational and rotational reference will comprise the first two steps in the pattern

vector generation process.

The generation of a pattern vector will require three steps:

1. Establish a translational reference for the data points.
2. Establish a rotational reference for the data points.

3. Generate a pattern vector based upon the rotational and translational references.

These steps are shown in Figure 4.2, with some of the steps broken into component steps. The flow
diagram of Figure 4.2 also presents the inputs and outputs of each step. These inputs and outputs will
be discussed in more detail as the pattern vector generation is explained in the remainder of this

section.

The remainder of this section will present the pattern vector generation in its component steps.
Section 4.1 examines a means to establish a translation reference, section 4.2 determines a rotational
reference, and section 4.3 generates a pattern vector based upon a given set of data points. This
section will describe the pattern generation process, but correlation algorithms will not be addressed

until Chapter 6.
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The Pattern Vector Generation
Process Overview
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Figure 4.2. Overview of the Pattern Vector Generation Process.

4.1 Establish the Translational Reference

A pattern vector must be invariant to the Euclidean translation of a set of data points. To allow this
invariance, a point of reference will need to be identified such that data point translation will not
affect the pattern generation outcome. The simplest choice for this point of reference is the boresight
crater itself. If the boresight crater is always translated to the center of the image before generating

the pattern of nearby craters, the generation of this pattern will be invariant to any translational

offsets.
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This process of translating the boresight crater to the center of an image before generating a pattern
vector will be referred to as establishing a translational reference. Two methods of establishing such

a translational reference will be presented, a Euclidean translation and the perspective transform.

4.1.1 Euclidean Translation
One method of establishing a translational reference is to use a simple Euclidean translation to center
the desired boresight in the image. A Euclidean translation simply adds (or subtracts) a horizontal
and vertical distance to all ordered pairs. This has the effect of translating the entire data set by a

specified step in a certain direction. Reference Figure 4.3.

Translational Reference:
Euclidean Translation

<> - Desired Boresight Crater
@ - Principle Point

Figure 4.3. Euclidean Translation: An Example.
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Figure 4.3 shows the translation of a desired boresight crater to the principle point. As mentioned,
this translation can be determined geometrically, and is implemented by simply moving all data

points by a specified amount in a specified direction. In other words, the desired translation T is

/

T= [— Am - An 0]
Equation 4.2

where {A An} represent the original offset of the desired boresight crater from the principle point

m

inthe m and n directions respectively. This desired translation is applied to the existing data set by

Translated Data = Data+T
Equation 4.3

If the given set of data points was derived from an image on a plane parallel to the camera’s focal
plane, this Euclidean translation is an acceptable image translation. The Euclidean translation of the
desired boresight crater to the center of the image will be representative of an image where the
camera’s principle point coincides with the desired boresight crater.” However, if the original image
includes any perspective effects, the set of data points resulting from a Euclidean translation will not
match the correct positions of the craters ‘seen’ by the nadir-pointing camera when its principle point
is aligned with the desired boresight. The Euclidean translation results will not ‘look’ like they

should because the perspective of the problem has been ignored.

In general, the image is affected by perspective in the crater matching routine. The camera in the
crater matching routine takes an image of the lunar surface, which has significant curvature. Due to

this curvature, the lunar surface cannot usually be considered planar and parallel to the camera’s focal

' Given a nadir-pointing camera, which is assumed for this algorithm.
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plane. In the case of the crater matching routine, a Euclidean translation will only provide a rough

approximation of the image if it had been taken with the desired boresight at the principle point.

Consider the illustrations in Figure 4.4 and Figure 4.5.

Euclidean Translation:
Explanation of Usefulness
® v "
[ Original SR / Translated
A Image Plane R Image Plane
g} o T Camera +—_/ °
: Position
Y Lunar Surface i |
. ' / \ : .
v
Initial Camera Translated Camera
* Projected Principle Point
o Previous Principle Point
<4+ Desired Boresight Crater

Figure 4.4. Euclidean Translation: An Explanation of Its Usefulness.

Figure 4.4 depicts the situation where a Euclidean translation is useful. The lunar surface in Figure
4.4 is parallel to the image plane. For this case, the relative position of craters in the original and
translated image planes will accurately correlate to the position of the craters on the lunar surface.
That is, the projection of the craters on the lunar surface onto the image plane is merely a scaling of

the crater positions. As a result, there are no warping or skewing effects on the image data points

" There are certain cases where the Euclidean translation may be applicable to the crater matching routine. These
cases occur when the curvature of the lunar surface has minimal impact upon the sensor image. For example,
low altitudes and small fields-of-view both decrease the impact of the Moon’s curvature on a sensor image.



from the camera’s perspective. Therefore, a Euclidean translation will accurately simulate the sensor

image as if it had been taken over another point on the lunar surface.

Euclidean Translation:
Explanation of Usefulness, cont'd
Translated

Former :
! H Image Plane
Camera T / Imag

Position P

1k Original
1/ Image Plane

v
)

; ] £
\/ Lunar Surface\\\‘,-\o’/.{

Initial Camera Translated Camera

¢ Projected Principle Point
© Previous Principle Point
<4~ Desired Boresight Crater

Figure 4.5. Euclidean Translation: An Explanation of Its Usefulness cont’d.

Figure 4.5 depicts a situation where the image will include effects from the camera’s perspective in
the data points. For this situation, images taken at different location over the lunar surface will appear
skewed or warped. The images appear different because the lunar surface and the camera’s image
plane are not parallel to one another. As a result, any image taken by the camera in this situation will

include the effects of perspective.

For the situation presented in Figure 4.5, a Euclidean translation of the original data points will not

accurately describe the image generated by the translation of the camera position. As mentioned
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above, simply translating the data points from the original image does not account for the change in

effects caused by the camera’s perspective of the ground.

The perspective transformation which is introduced in the following section, section 4.1.2 allows a

solution to the problem of data point translation while accounting for perspective.

4.1.2 Perspective Transformation
The perspective transformation is a process that allows image data points to be modified so that the
principle point of the image appears shifted to coincide with the desired boresight. The transform
accounts for the perspective of the problem, which in this case is the spherical lunar surface. The
perspective transformation is derived from the relationship between the points on the lunar surface

and their three dimensional position relative to the camera’s image plane.

Figure 4.6 gives an overview of what the perspective transform will accomplish.

The perspective transform converts data points in the original image plane (u v) to data points in

the transformed image plane (L? \7), as shown in Figure 4.6. As a result, the transform will

effectively modify the original data points so that they appear as if they were ‘seen’ by the camera

when it was centered over the desired boresight. The perspective transform equation is:

. /]

c v :[Rl _Tl]* d, v,

1) 1]JJ

Equation 4.4



where ¢, and d; are the z" components' of the crater positions on the lunar surface in the
transformed and original camera frames, respectively. R, and 7, are the rotation and translation

matrices between the original and transformed camera frames. The set of points {“1 v, l} are the

original image plane points, whereas the points {17 ; Vv j IJL are the transformed image plane points.

The perspective transform problem, its solution, and the utility of the perspective transform in the

crater matching task will be discussed in more detail in Chapter 5.

Perspective Transform Problem Overview

Desired BS Desired BS

‘#— Transformed Image Plane
/ alt

/ Utilizing the perspective transform

Original Image Plane —_|

alt

| will allow pattern generation to
/ account for the curvature of the
/ lunar surface in image translations.
Inputs:
b 1. Altitude

2. Image Plane location of desired BS
3. Camera FOV & resolution

Outputs:
1. Transformed Image Plane with
desired BS

Figure 4.6. Overview of the Perspective Transform.

’
" For an explanation of the camera frame and the < axis, see section 5.1.2 .
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4.1.3 Data Point Translation Example
It is instructive to present an example of the translation of the desired boresight to the principle point

of the image. An example of both Euclidean translation and the perspective transform will be given.

Euclidean Translation

Plot A

Example Data Points
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FIO0T B

Figure 4.7. Euclidean Translation of the Example Data Points.

Figure 4.7 presents the Euclidean translation of the desired boresight, originally located at

BS, = [— 0.328 —0.105] (according to Equation 3.9). The desired boresight is translated to the

principle point of the image by a Euclidean translation. This translation does not account for any

perspective effects. In this plot and the following plots, the desired boresight is highlighted in green.



Perspective Transform
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Figure 4.8. Perspective Transform of the Example Data Points.

Figure 4.8 presents the perspective transform that translates the same desired boresight crater to the

principle point of the image. In this case, the translation does account for the perspective of the

problem. Although it is hardly noticeable, the relative position of the craters after the transform is

slightly modified. In order to highlight the differences, Plot B from both Figure 4.7 and Figure 4.8

are overlaid in Figure 4.9.
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Figure 4.9. Overlay of the Euclidean Translation and the
Perspective Transform of the Example Data Points.

The slight difference between these two plots is due to the fact that Plot B from Figure 4.8 accounts

for the perspective of the problem, whereas Plot B from Figure 4.7 does not.

See section 5.7 for a more detailed comparative analysis of these two translation methods.

4.2 Establish the Rotational Reference

In addition to the translational reference established in section 4.1, a rotational reference for the
pattern vector is also required. The rotational reference defines a method of orienting the data points
such that the pattern formed from nearby craters is always formed at the same rotational orientation
about the boresight crater. This section will characterize the rotational reference, and introduce a

method of establishing and utilizing this rotational reference in the crater matching routine.



Figure 4.10 applies the concept of rotational reference to a simple spatial orientation brain teaser.

Rotational Reference:
Example Set-Up
Given
A B C

Figure 4.10. Set-up of the Rotational Reference Brain Teaser Example.

Based upon the model given in Figure 4.10, the reader must determine which of the three choices is a
rotated — but identical — copy of the model. This problem is somewhat difficult as presented.
However, it becomes quite rudimentary if each of the choices is rotated so that they have the same

orientation relative to one another. See Figure 4.11.
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Rotational Reference:
Example — Same Orientation

Given - Rotated

A B - Rotated C - Rotated

Figure 4.11. Reoriented Rotational Reference Brain Teaser Example.

It is quite simple to determine that choice C is the correct answer.

By rotating the choices in this example, the pattern of squares and lines within each choice is able to
be directly compared to the original. The process of rotating each choice in the example to a nominal
orientation greatly simplifies the task of matching one of the choices with the original. Similarly, the
establishment of a rotational reference in the crater matching problem allows for data points with

different original orientations to be compared directly with each other much more easily.

The combination of a defined translational and rotational reference will ensure that each time a

pattern of nearby craters is generated for a given crater, that it is done so in a standardized and
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repeatable manner. It is crucial for the pattern generation to be repeatable — as the patterns generated

for sensor images must be able to be compared to patterns stored in the database.

In the crater matching problem, the ‘direction of travel’ of the camera relative to the lunar surface is
unknown. Therefore, although the orientation of the camera and image in relation to the spacecraft is
known, the orientation of the camera and image in relation to any absolute frame is unknown. If the
absolute orientation of the camera were precisely known, a rotational reference would be
unnecessary, as the inertial frame of reference for the sensor image would be known. In this case, all
images (for both the database and the sensor image) could be rotated such that the lunar north is at the

top of the image, and the pattern generated with this absolute orientation.

4.2.1 Reference Point Selection
In order to establish a rotation that can be applied to pattern generation in general, some point of
reference in each image must be found that allows this image rotation to occur in a predictable
fashion. For the example in Figure 4.10 and Figure 4.11, the point of reference selected was the red
dot in the corner of each choice. For each choice, the dot is unique (there is only one dot per choice)
and easily identifiable. Each choice in this example was re-oriented so that the red dots all appeared
in the same relative position. As a result, the final comparison between the choices and the original

was very simple.

Although there are a variety of possibilities for this point of reference in the crater matching problem,
the author has chosen the closest neighboring crater as the simplest choice for a point of reference.
The data points will be rotated so that this point of reference is always on the same horizontal level as
the boresight crater and to the right of the boresight crater. In other words, the crater nearest the
boresight crater will serve as the reference point in establishing a rotational reference for a given
boresight crater. The closest neighboring crater is a unique and easily identifiable point of reference

within the image. The choice of the closest neighboring crater as the rotational reference was based
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in part on work presented in the article “A Grid Algorithm for Autonomous Star Identification” by
Padgett and Kreutz-Delgado.” In order to determine the closest nei ghboring crater, the normalized
distance between the boresight crater and all other crater centers is calculated. Based upon these
normalized distances, the nearest neighbor to the boresight crater is selected as the rotational

reference point for a given set of data points.

This choice of the closest nearby crater as a point of reference is easy to determine for any given set
of data points. However, if the closest neighboring crater is very close to the boresight, the possibility

of a significant amount of error being introduced by rotating the data points based upon this point is
heightened. As a result, a buffer radius (BR ) is introduced. This buffer radius defines the minimum

allowable distance between the closest neighboring crater and the boresight crater and serves to

prevent excessive rotational error.

If the closest neighboring crater is not selected properly (for whatever reason), the pattern vector
generated for that boresight crater may be completely wrong. Therefore, the selection of the proper
boresight is critical to the correlation of a crater to its corresponding location from the database.
Reference section 8.3 for the author’s recommendations on methods to mitigate the probability of

misidentifying the closest neighbor crater.

4.2.2 Rotation of Data Points
Once the closest neighboring crater has been identified, the rotation of the data points is accomplished
in a fairly standard manner. First, the desired angle of rotation about the boresight in the image plane
1s determined. Next, a two-dimensional rotation matrix is formed, and finally the rotation is applied

to the data points by matrix multiplication.

The rotation angle (6) 1s the counter-clockwise angle about the boresight through which the data

points must be rotated. A rotation of this nature will position the closest neighboring crater to the

110



right of the boresight on the same horizontal axis as the boresight crater. To determine this rotation

angle, a right triangle is defined with the hypotenuse the distance between the boresight crater and

closest neighboring crater and one of the legs as the horizontal axis to the right of the boresight.

Reference Figure 4.12.

Rotational Reference:
Data Point Rotation
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cos(d) —sin(g) 4+ - Desired Boresight Crater
| sin(6) cos(6) + - Closest Neighboring Crater

Figure 4.12. Establishing the Rotational Reference.

Simple trigonometry allows the determination of this rotation angle.

A
6= tan'*[iJ
A”

Equation 4.5



Depending upon the position of the closest neighbor in relation to the boresight, this angle may need
to be checked to ensure that the tangent properly accounted for the original quadrant location of the

closest neighbor.

The determination of this rotation angle allows the formation of the standard rotation matrix to rotate

data points counter-clockwise.’

B cos(@) —sin(8)]
k= [sin(ﬂ) cos(8) IJ

Equation 4.6

Finally, simple matrix multiplication allows the data points to be rotated appropriately. Allow a

representative data point to be {a b} and the same rotated data point {a' b'}. Then

{a'—| [cos(ﬁ) - sin(&)!_| ) I:a‘|
]

b']J - sin(@)  cos(6) b]J
Equation 4.7
If this rotation is applied to every data point, the resulting data will be oriented properly about the
boresight with the closest neighbor to the right of and on the same horizontal axis as the boresight

crater.

The rotation angle defined here is not the same as the rotation angle (ﬂ,) that will be defined in

Chapter 5.

4.2.3 Data Point Rotation Example
To demonstrate both the reference point selection and the rotation of data points, the example of
Figure 4.8 will be continued here. This example assumes the desired boresight crater is already

properly translated to the principle point of the image, as in Plot B of Figure 4.8.

" Which can be found in almost any textbook dealing with the rotation of axes or data points.
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4.2.3.1 Select the closest neighbor.

Figure 4.13 demonstrates the determination of the closest neighbor for the given data points.

Rotational Invariance:
Closest Neighbor Selection
Sensor Image Plane, <m,n> Sensor Image Plane, <m,n>
Map Horiz. Axis, pixels Map Horiz. Axis, pixels
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Plot A Plot B
e Desired Boresight *  Crater Center .
— Pattern Radius ~—— Crater Rim w/in Pattern Radius
Buffer Radius - Crater Rim outside of Pattern Radius

Figure 4.13. Establishing the Rotational Reference:
Closest Neighbor Selection for the Example Data Points.

Plot A in Figure 4.13 displays the crater centers and rims visible in the original sensor image (after
the perspective transform centered the desired boresight crater). This is the same initial data as that
used in the example in section 4.1.3. Plot B highlights the selection of the closest neighboring crater.

Once again, the desired boresight crater is a filled green point. The outer limit of the buffer radius
(BR) is overlaid on the plot with a dashed green circle. The patter radius (PR) is also shown as a

solid green circle. Only the data within the pattern radius will be considered in the formation of the
pattern vector. Therefore, the pattern radius must be the same for both the sensor image and the
database. Otherwise, the pattern vector in the database and that of the sensor image will include
different amounts of data. The closest neighboring crater is indicated by a green asterisk in Figure

4.13.



4.2.3.2 Rotate the Data Points.

Figure 4.14 demonstrates the rotation of the data points to the desired orientation for pattern

generation.
Rotational Invariance:
Rotation of Data Points
Sensor Image Plane, <m,n> Sensor Image Detail, <m',n">
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Figure 4.14. Establishing the Rotational Reference:
Rotation of the Example Data Points.

Plot A in Figure 4.14 is the transformed data set with the closest neighbor, buffer radius, and pattern

radius identified. Like Plot A and B from Figure 4.13, this is also a plot of the data after the

perspective transform has been applied to center the data points about the desired boresight. Note that

Plot A in Figure 4.14 is identical to Plot B in Figure 4.13. The boresight crater, closest neighboring

crater, buffer radius, and pattern radius are all identified according to the standard described in the
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previous section. Plot B in Figure 4.14 ‘zooms in’ on the original data points so that the pattern
generated only includes those craters within the pattern radius. The portions of this plot that are not

included in the pattern generation are indicated by shading these areas gray. In addition, the data in

Plot B has been rotated clockwise by 47° about the desired boresight so that the closest neighboring

crater is rotated to the horizontal level of the boresight and to the right of the boresight.

Plot B in Figure 4.14 is an example of data points that have an established translational and rotational

reference. These data points are properly processed for pattern generation.

4.3 Generate the Grid-Based Pattern Vector

Sections 4.1 and 4.2 detail a method to determine a reliable translational and rotational frame of
reference. Once this frame of reference is established for a given image, the pattern of neighboring
craters for the selected boresight crater must be established. The pattern will then be used to correlate

the sensor image with the crater database, and thereby determine the absolute location of the image.

The next several sections will detail the process of determining the crater pattern and generating a
pattern vector. The pattern of nearby craters is recognized by overlaying a grid onto the image. Then
the crater pattern referenced to the grid is stored in a bit vector that specifies whether or not a crater

center occupies a given grid cell.

4.3.1 Derivation of a Pattern from the Image
Before the pattern of craters for a specified boresight crater can be determined, the author will again
emphasize that the data points must be translationally and rotationally referenced. Plot B in Figure

4.14 is an image that has an established translational and rotational reference. Reference sections 4.1
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and 4.2 for a procedure to establish these frames of reference. By establishing these references, a
given image may be compared to the database regardless of the orientation of the original image in

relation to the inertial lunar frame.

Given a set of data points with an established translational and rotational reference, the pattern of
surrounding craters can be generated for a given boresight crater. This pattern will be determined in

several steps:

1. Overlaya g x g grid on the image, where g is the user-defined number rows and columns

of the grid overlay.

2. For each grid cell, determine if a crater center lies within the cell.
3. Record the grid patternina g x g ‘grid matrix’. For every grid cell containing a crater

center, input the radius of the crater into the matrix. For empty cells, enter a zero into the

matrix.

An example of these steps will serve to demonstrate the pattern generation in more detail. The

example presented below is a continuation of the example that has been used throughout Chapter 4.
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Pattern Vector Generation:
Grid Overlay & Pattern
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Figure 4.15. Pattern Vector Generation for the Example Data Points.

Plot A in Figure 4.15 is identical to Plot B in Figure 4.14. Plot A in Figure 4.15 has been rotationally
and translationally referenced and data outside the pattern radius has been ignored, in preparation for

the grid overlay and pattern generation.

Plot B in Figure 4.15 combines the grid overlay and the initial cell status determination (Steps 1 and 2
above). The crater positioning is exactly the same in Plot A and Plot B. However, Plot B has forgone
displaying the crater rims. For the first step in creating the pattern of nearby craters, a grid has been

established in Plot B. This g x g grid is based on g =24, the initial condition stated in section

3.2.3.6. The second step in determining the crater pattern is to determine if any crater center lies in a
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given grid cell. These ‘full’ cells have been indicated in Plot B by filling the grid cell in dark gray.

Every full grid cell has a corresponding crater center that lies within the bounds of the cell in Plot B.

From the pattern of ‘full’ and ‘empty’ cells in Plot B, the grid matrix can be populated. The grid
matrix is the 24 x 24 (thatis, g x g ) matrix that contains zeros in the grid cells where no crater
centers were found, and the crater radius in the cells where there was a crater center. This grid matrix
will contain all the pattern information for the specified desired boresight crater and the initial

conditions given.

If more than one crater center falls within a given grid cell, there is ambiguity in which radius is
recorded for that grid cell. This situation will not be addressed in the implementation of the
transform. However, several possibilities for resolving this ambiguity will be discussed in the

recommendations for future work, section 8.3.

4.3.2 Pattern Vector Format
Once the grid matrix is populated, it can be stored and accessed more efficiently in the form of a

vector. This section will present a method for converting the grid matrix into the pattern vector.

From Figure 4.15, the grid matrix can be determined.
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Example Grid Matrix

0

22288

0

20384 1]

0

0

0

33378

0

18144 1]

0

o

Equation 4.8

Perhaps the simplest method for storing the grid matrix as a vector is to concatenate the rows of the

grid matrix into a single row vector. In other words,

1

ﬂ
J

row n

row 1

row 2 :>[row 1 row 2

row Hn

Equation 4.9

This ‘pattern vector’ format of the grid matrix is desirable for a number of reasons. Perhaps most

importantly, by simply appending other pattern vectors as additional rows in a matrix of pattern

vectors, many pattern vectors can be stored in one data structure. This is extremely useful for the

formation and storage of a database of pattern vectors. The crater database will be addressed more
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extensively in section 6.2. In addition, this pattern vector format allows for simple conversion
between the grid matrix and the pattern vector without the loss of any data. The author has decided

that the benefits of converting the grid matrix into pattern vector merit the data format conversion.

4.3.3 Sparsity Considerations
The pattern vector format presented in section 4.3.2 is an effective means of storing grid matrices
when they are fully populated. However, the grid matrices generated by this crater matching routine
are typically quite sparsely populated. For sparse matrices, the pattern vector format in Equation 4.9

is highly inefficient because it unnecessarily stores many empty grid cells.

This section will demonstrate the inadequacy of storing the pattern vector according to Equation 4.9,
present several common methods for storing sparse matrices, and develop the method chosen by the

author to store the sparse grid matrices.

From Equation 4.8, the first row with a nonzero element in this example is the 9 row. Once
translated into the format in Equation 4.9, the first 215 elements of the concatenated pattern vector are
zeros, followed after one full cell by 90 zeros, and so on. For the entire grid matrix, there are only
four nonzero elements — which means that less than 0.7% of the grid cells are full! The sparsity of the
data as evidenced in this example is common for images of the lunar surface. Therefore, significant
processing and memory savings can be realized by taking advantage of the sparsity of the pattern

vector.

The most typical storing technique for general sparse matrices is the compressed row storage format.'
This storage technique makes no assumptions as to the sparsity of the data structures or symmetry of
the matrices being stored. The compressed row storage method does not lose any data, as the method

stores every nonzero element in the original matrix. However, if matrices are stored in this format,

' The compressed column format is cqually as common. However, the process is nearly the same, with no
significant disadvantages or advantages. Therefore, the author will present only the compressed row format.
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any matrix operations will become highly inefficient. For the crater matching routine, this
inefficiency with operations is irrelevant, as no matrix operations will be conducted upon the stored
database besides a search routine, However, the author has chosen not to utilize the compressed row
format for data storage, and it will be instructive to analyze the method in more detail to understand

why the author chose not to use this storage format.

The compressed row format stores three arrays to completely characterize the data in a given matrix.
The first array (A) is a row vector of all nonzero elements in the original matrix. The second array
(B ) is a row vector of the column index for each nonzero element in the original matrix. The third
array (C ) records the element number of each nonzero data point that begins a new row in the

original matrix. By storing the third array in this manner, it eliminates the need to repeat the row

location for nonzero elements that are located on the same row in the original matrix.

In compressed row format, the example matrix from Equation 4.8 is

A=[22.288 44576 20.384 33376 18.144]
B=[23 18 22 14 13]
C=[0 000000010002000000O0405°00 6]

Equation 4.10
For this example, the compressed row format results in having to store the row index for every row-
column ordered pair. The benefit of this method is in storing very large matrices, where it is likely
that each row has multiple entries. For entries on the same row, the row number will only be
recorded once for the entire row, which could result in significant savings. However, the cost of the

compressed row format is the need to store placeholders if a row contains no crater centers.

For a typical grid matrix produced by the crater matching routine, there are usually more rows that
have no ‘full’ cells than there are rows that do have ‘full’ cells. This situation makes the need to store

zeros as row placeholders prohibitive for memory size. In addition, the compressed row format



would create the need to access three separate matrices in order to correlate a sensor image to the
database. This need to load three separate matrices could have a significant cost in processing speed.
The author has concluded that the potential benefit in the reduction of the size of the database would
be negligible in light of the grid matrix sparsity patterns and the potential cost in correlation

processing speed for the compressed row format storage technique.

Due to the costs of storing the pattern vector using the compressed row format, the author decided to

generate his own method. An explanation of this method and its costs and benefits follows.

Consider the uncompressed pattern vector which has been generated by the horizontal concatenation
of the rows of the grid matrix. (Equation 4.9) This vector will be a row vector with g* elements,

and many of these elements will be zero. To eliminate the storage of zero elements, record the

column index and the grid cell value (which will be the crater radius) of all the ‘full’ cells in the
pattern vector. In other words, the ordered pair < pattern _vector _column, crater _ radius> is

recorded for each “full’ pattern vector cell. Store these ordered pairs as consecutive elements in a
compressed pattern vector. In this storage scheme, the odd elements in the compressed pattern vector

will contain the column indices of the nonzero elements in the decompressed pattern vector. The
1

i" even element of the compressed pattern vector will contain the crater radii for the crater that

corresponds to the (i - 1)”' location in the decompressed pattern vector.

For example,’ the decompressed pattern vector

O o5s000700-3900002000 I

Equation 4.11

can be stored as the compressed pattern vector

' This example does not correspond to the example in use throughout Chapter 4.



35 7 7 10 -3 119 16 2 20 1]

Equation 4.12

which is comprised of the index-value ordered pairs

(3 5) (7 7) (o =3) (11 9) (16 2) (20 1))
Equation 4.13
This format will be referred to as the consecutively indexed form. The consecutively indexed form
will only save memory if less than half of the elements in the decompressed pattern vector are
nonzero. In addition, this form requires only one data structure to store the compressed pattern vector
rather than three. Due to the relatively random dispersion of nonzero elements in the decompressed
pattern vector and the low number of nonzero elements, the consecutively indexed form will be used

to store the pattern vectors.

For the example grid matrix in Equation 4.8, the formation of the condensed pattern vector is

presented in Table 4-1 and Equation 4.14.

Table 4-1. Grid Matrix Entries for the Example Data.

Grid Cell Pattern Vector | Crater Radius | Ordered Pair
(row, column) Cell (pixels)

(9, 23) 215 22.288 (215,22.288)
(13, 22) 310 20.384 (310, 20.384)
(20, 14) 470 33.376 (470, 33.376)
(22, 13) 517 18.144 (517, 18.144)

<215 22.288 310 20.384 470 33.376 517 18.144>

Equation 4.14
The grid matrix rows and columns are labeled in Matlab matrix notation, with the first row and

column located at the upper left of the grid.



For the remainder of this paper, the term ‘pattern vector’ will refer to the compressed pattern vector

stored in consecutively indexed form, as shown in Equation 4.14.



Chapter 5
The Perspective Transform
and
the Crater Matching

Routine

As described briefly in section 4.1.2, the object of the perspective transform is to modify an image to
appear as if it was taken with the principle point focused over a different location in the original
image. Specifically, this new principle point will be over the boresight crater center in the original

image. By ‘centering’ the original sensor image this way, a reliable and repeatable context is



established to allow the crater matching algorithm to generate a pattern from the other craters in the

sensor image.

The transformation will be presented in detail throughout the remainder of this section. The
algorithm initializations will first be presented, including the inputs, outputs, assumptions, and other
critical algorithm details. Next, the calculation of the rotation matrix between the original and desired
camera frames will be detailed. The rotation matrix calculation will be followed by the calculation of
the translation vector and the perpendicular depth to each crater center in the original camera frame.
Finally, the results of these calculations will allow the perspective transform to be presented and

calculated. Each of these steps will be detailed below.

5.1 Problem Statement and Characterization

5.1.1 Problem Statement
Given a nadir-pointing sensor image of the lunar surface from a specified altitude with crater centers
and radii identified, modify the pattern of crater centers in the image in such a way as to simulate the
image as if it had been taken at another point over the lunar surface. Allow this other point to be
defined as the point over an arbitrary crater center in the given image from the same altitude. This
arbitrary crater will be referred to as the desired boresight crater. Refer to Figure 5.1 for a pictorial

problem overview.



Criginal Image Plane —_|
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Perspective Transform Problem Overview
Desired BS Desired BS
* Transformed Image Plane
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Utilizing the perspective transform

/f’fw R will allow pattern generation to

account for the curvature of the
lunar surface in image translations.

Inputs:
1. Altitude
2. Image Plane location of desired BS
3. Camera FOV & resolution

Outputs:
1. Transformed Image Plane with
desired BS

Figure 5.1. Reprinted Overview of the Perspective Transform.

In Figure 5.1, the term ‘BS’ refers to the boresight crater. This abbreviation will be used throughout

the remainder of this chapter. The original camera location is designated as P1 and the desired

camera position as P2.

The transformation between these two image frames will be accomplished by implementing a

perspective transformation. The perspective transformation process will entail several steps:

1. Calculate the rotation matrix between the image frames.

2. Calculate the translation vector between the image frames.

3. Calculate the perpendicular depth to each crater center.

4. Execute the perspective transform to generate the transformed image plane.

! Also Figure 4.6
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The Perspective Transform
Process Overview
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Figure 5.2. Overview of the Processes of the Perspective Transform.

Figure 5.2 presents an overview of the perspective transform process, demonstrating the interaction
between the four main steps in the perspective transform. In addition, Figure 5.2 demonstrates the
inputs and outputs of each step. The four steps presented in list form above and in Figure 5.2 will be
analyzed in more detail in the remainder of this chapter. As each step is presented, the necessary

inputs and outputs which are visible in Figure 5.2 will be defined more precisely.

The remainder of this chapter will demonstrate the coordinate frames and unit conventions in use for
this algorithm, detail the transformation algorithm itself, and present several proofs concerning the
functionality of the algorithm. Hereafter, the author’s use of ‘the transform’ will be in reference to
the perspective transform characterized herein. Refer to section 5.6.3 for more details on the

definition of the transform.



5.1.2 Coordinate Frame Definitions
Three separate coordinate frames will be utilized in the derivation of this perspective transform. All
are right-handed frames. Refer to Figure 5.3 which shows the relationship between these frames.
Two terms will assist in describing these frames. The principle axis is defined as the vector
beginning at the camera center and perpendicular to the camera’s image plane. The principle point is

the point at which the principle axis intersects the image plane.

The lunar frame is the reference frame for this problem and is assumed to be inertial. The origin is
located at the center of the Moon. The + x component points toward O° lunar longitude and the +z
component points toward the lunar north pole. The + y component is defined by the right hand rule

since the +x and + z directions are given. The lunar frame is necessary for the geometric derivation

of the perspective transform algorithm, but is not required in any actual calculations for the transform.

The camera frame is centered upon the camera with the + z' axis along the principle axis. Due to the
assumption that the camera is nadir-pointing, the + z' axis is therefore oriented *downward’ toward
the lunar surface. The + x' axis is oriented ‘forward’, in the direction of motion of the spacecraft.

The + y' axis is defined by the right hand rule. This frame is non-inertial due to the movement of the

spacecraft, which defines the origin of this frame.

The camera’s image plane is defined by {u v}. The origin is located at the center of the focal plane
(the principle point) with the +u component pointing toward the left and the +v component toward
the top of plane. The third component is not listed for the image plane. Strictly speaking, this

component of the image plane is actually defined by being unit distance in the + ' direction from the
origin of the camera frame (because the camera’s focal distance is also defined to be unit distance, see

section 5.1.3). As aresult,

&y =l v
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Equation 5.1
For the remainder of this paper, the terms image frame and image plane will both describe this

coordinate frame.

Coordinate Frame Definitions

& Ry @

X 14z lunar surface !
\ alt ‘"
% Principle Axis 1 BS
Image Plane j
Principle Point Mm

( v 1) -Image Frame

Notes: . (" ' 2)-Camera Frame
1. All frames are right-handed.

(x » z) - Lunar Frame

Figure 5.3. Definition of the Coordinate Frames Used for the
Perspective Transform Calculations.

Although all three coordinate frames detailed here are necessary for the derivation and understanding
of the perspective transform, only the image frame and camera frame are utilized in the

implementation of the equations derived herein.

Strictly speaking, the coordinate frame conversion between the camera frame and the image frame is
simply a translation along the z' axis. Although this translation will align the axes and origins, the

conversion from the camera frame to the image plane involves a projective frame conversion from
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R* — R>. This conversion is inherent in the perspective transform process. For simplicity, the

ordered pair {u v} represents a vector in the image plane, the ordered triplet {u v 0} represents

a vector in the camera frame that also lies in the image plane, and the ordered triplet {u 1% l} isa

vector in the camera frame with an endpoint in the image plane.

The camera frame and the image plane are dependent upon the location of the camera in relation to
the lunar frame. In addition, the perspective transform will simulate the image as if it had been taken
at another point over the lunar surface (see Figure 5.1). As a result, it will be useful to refer to the
original and transformed camera frame, as well as the original and transformed image plane. The
original camera and image frame will describe the frames that characterize the original sensor image.
The transformed camera and image frame will be characterized by the simulated camera position after

the perspective transform.

5.1.3 Unit Systems
Section 3.2.3 presents a fairly comprehensive overview of the units systems that will also be utilized

throughout the perspective transform problem.

Figure 5.4 is repeated here for ease of reference. Two abbreviations utilized in Figure 5.4 will be

highlighted again: res refers to the resolution of the original sensor image in pixels, and fov is the

camera’s field of view in radians.

As mentioned previously, the true image frame in this problem is also the camera focal plane, located
a focal length from the camera along the + z' axis with the origin at the center of the image and the

+u and +v directions aligned left and upward, respectively.'

' This definition of the +u and + v directions is defined such that they are aligned with the + x’ and + Y’ axes
of the camera frame, respectively. The author chose to define the image plane axes in this manner to allow the
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Image Plane Unit Systems
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Figure 5.4'. Reprinted Unit Systems of the Image Plane.

5.2 Initialization of the Perspective Transform

Algorithm

This section will introduce the terminology, inputs, outputs, constants, and assumptions that will be

crucial to the discussion of the perspective transform.

R matrix from Equation 5.14 to be identity, R = I, ;. Therefore, this definition of the image plane axes

~ allows further simplification of the final perspective transform equations.
' Also Figure 3.3
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5.2.1 Terminology
It is necessary to introduce several terms that will be applied throughout the discussion of this

algorithm.

1. Principle Axis — the line from the camera center and perpendicular to the image plane.

2. Principle Point — the point at which the principle axis intersects the image plane.

3. Perspective Transform — the image transformation described briefly in sections 4.1.2 and
5.1.1.

4. Desired Boresight Crater — the desired principle point of the transformed image which
coincides with a crater in the original image plane.

5. Transformed Image Plane — the image plane in which the perspective transform simulates the
transformed image was taken. See Figure 5.1.

6. Image Data Points — the positions of all crater centers and their respective radii visible in a

given image. Craters are assumed to be circular.

5.2.2 Inputs, Outputs, & Algorithm Constants

Inputs:

1. Sensor image data points in the original image frame.

2. Image frame coordinates of the crater center which is desired to be the principle point in the
transformed image frame.

3. Spacecraft altitude.

4. Camera field-of-view and resolution.

Constants:

1. Radius of the Moon, r, =1737.4 km
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Outputs:

1. Transformed image frame data points with the desired crater center located at the principle

point.

5.2.3 Assumptions

Several assumptions have been made in the implementation of this algorithm. These assumptions, the

necessity of each assumption, and their relative validity are discussed here.

5.2.3.1 Moon is spherical
For the perspective transform, a spherical model of the Moon is assumed. This greatly simplifies
calculations but still allows the center of gravity and center of mass to remain in their actual positions.

This assumption is not expected to have a significant impact upon the transform results since the

oblateness of the Moon is very small. In actuality, J2,,, =2.027-10™* for the Moon compared to

=1.083-107" for the Earth.*! The spherical moon model also assumes that the topography

earth —

J2
of the lunar surface does not significantly affect calculations. In general, lunar surface elevations
vary by as much as 12 km and are an average of about 1.9 km higher on the far side of the Moon than

on the near side. Refer to Figure 5.5.%

As a result, topography may have a significant effect on the accuracy of the perspective transform.
This may necessitate the effects of elevation being accounted for in practical application of this

algorithm.

"The J2 coefficients are used in determining the effect of the oblateness of a spheroid on its gravity potential.
Therefore, the magnitude of these coefficients is generally utilized as a measure of the oblateness of the body.
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Figure 5.5'. Topography of the Lunar Surface.

5.2.3.2 Camera is nadir-pointing.
This algorithm assumes sensor images that were obtained from a nadir-pointing camera. This
assumption is a simplifying assumption. With the addition of another perspective transform — or
perhaps of its inclusion within the current transform — this algorithm could allow for non-nadir-

pointing cameras as long as accurate attitude information is known.

5.2.3.3 Spacecraft altitude does not change over transform.
The transform is intended to transform an image taken at point Pl to appear as if it were taken at
point P2 at the same altitude. See Figure 5.1. However, with simple modification of the translation
vector calculation in section 5.4, the point P2 could theoretically be allowed to be any point above

the lunar surface. For the purposes of this perspective transform, constant altitude will be assumed.

" This image is a topographic model based off of the spherical harmonic model developed by the US Geographical
Survey, USGS359. The lunar geoid was obtained from the lunar gravity model LP150Q.



5.2.3.4 Image plane is unit distance from camera.
The algorithm also assumes that the image plane is located at unit distance from the camera along the
+ z' axis. In other words, the focal length is unit length in the units of distance utilized in the
problem. To change this assumption, the perspective transform equation, Equation 5.27, must be
derived again from the projection equations in section 5.6.2.1. In general, however, the image plane
being unit distance from the camera does not affect the validity or applicability of the perspective

transform process; rather, it merely scales the results.

5.2.3.5 The shape of any given crater is constant over the transform.
It is assumed that perspective only has a significant effect on crater centers, not upon the crater’s
shape. This assumption is not valid. However, the crater matching algorithm depends upon precise
crater center knowledge, and only loosely upon the crater radius. Therefore, this assumption can be
made to simplify the algorithm. To take the effects of the perspective transform upon the crater’s
shape into effect, many points along any given crater rim would need to be identified and the
perspective transform equations applied to these points. The result would be a slight change in the

relative position of these points over the transform.

5.2.3.6 Craters are circular.
Craters are assumed to be circular in order that the radius can be used for matching purposes. This
assumption complements the assumption of section 5.2.3.5 in allowing the crater radius to be stored
rather than having to identify many points along the crater rim in order to identify the shape of the

crater.

To implement some more sophisticated mode! of crater shape, the parameters of that model must be
stored for use in crater matching purposes. In addition, a database must be generated based upon the
same crater model, and the model parameters pertinent to each crater must be stored for that crater.

For example, craters could be modeled as ellipses. A focus and the semi-major and minor axes would
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be stored in this case. Either the explicit center of the ellipse or the two foci would be used to define

the position of the crater.

Note that this assumption was also made for the crater matching routine, noted in section 3.2.3.5.2.

5.2.3.7 Camera is an ideal camera

The perspective transform assumes an ideal camera, with no sensor noise. This assumption was also

made for the crater matching routine, noted in section 3.2.3.5.1.

5.2.4 Algorithm Notes
Several indices in use in this algorithm allow for cyclic processing of craters within a given image.

These indices require explanation:

1. i iterates on the potential boresight selected as the desired boresight selected from craters in
the sensor image. Therefore {“, V,} represents the desired boresight in the original sensor

image.

2. j iterates through all craters in the sensor image for a given desired boresight . Therefore

{ul v, } represents an arbitrary crater center in the sensor image.

5.3 The Perspective Transform Rotation

Matrix Calculation

As is explained in section 5.1.1, the perspective transformation will modify an image so that the

transformed image has the desired boresight crater at the principle point. This process will require the
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rotation matrix between the original image plane and the desired image plane. This rotation is
completely characterized by a rotation axis and angle. Therefore, the calculation of the rotation

matrix will require the following steps:

1. Determine the desired rotation angle.
2. Determine the axis of rotation.

3. Use the rotation axis and angle to determine the rotation matrix.

This process is based primarily upon the geometry of the problem. The convention of the right hand
rule is used throughout these calculations; therefore, a counter-clockwise angle is, by convention,

positive. This section will present the rotation matrix calculation in the three steps listed above.

5.3.1 Rotation Matrix Calculation Initialization

Inputs:

1. Sensor image data points in the original image frame.

2. Image frame coordinates of the i” crater center, which is the desired boresight.

3. Spacecraft altitude.

Outputs:

1. Crater angle , for every sensor image crater j. The j™ crater angle is the angle between
the principle axis and the radial line from the center of the Moon to the j™ crater center in

the original sensor image. The i" crater angle, J. . is also the rotation angle for the i"
potential boresight. Refer to section 5.3.2 for a more detailed explanation.

2. Rotation matrix R, for every selected boresight i. The rotation matrix is a function of the

rotation angle, /3 .
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Constants:

1. Radius of the Moon, », =1737.4 kmn

m

Assumptions:

1. Moon is spherical.

2. Camera is nadir-pointing.

W

Spacecraft altitude does not change over transform.

>

Image plane is unit distance from the camera along + z' axis.

5.3.2 Rotation Angle Derivation

The rotation angle ( yil ) is the angular separation between the original and the transformed boresight

vectors (or principle axes). Since the camera is assumed to be nadir-pointing, these boresight vectors
are also radial vectors pointing from the center of the Moon to points on the lunar surface. Therefore,
the angular separation of the radial vector to the current boresight and the radial vector to the crater
center of the desired boresight on the lunar surface can also be understood to be the rotation angle.

Refer to Figure 5.7.

In the geometric determination of the rotation angle, the apparent camera angle (a,) to the i" crater

is calculated first using the Pythagorean Theorem and simple trigonometry. Refer to Figure 5.6.

139



Image Rotation:
Alpha Angle Calculation

|Pt!= Vuiz +V,.2
a;= tan'l(]pjl)

Note:
<u,v,> represents a crater
center in the Image Frame.

Figure 5.6. Image Rotation: Alpha Angle Calculation.

By geometry,

Equation 5.2

Relying upon the geometry of the problem and utilizing the Law of Sines, the angle ¥, can be

determined. Refer to Figure 5.7.



Image Rotation:
Rotation Angle Calculation

by Law of Sines:

sinfa) _ sin(y)

r, r, +alt

y, =sin™ [('%d‘l sin(a, )]

Figure 5.7. Image Rotation: Rotation Angle Calculation.

yi=sin‘(£a—h-sin(ai)} %J/:ye [E JTJ}
T 2

Finally, the rotation angle (ﬁ,) follows from the sum of the interior angles of a triangle, considering

Equation 5.3

that the values for &, and }, already determined. Refer to Figure 5.7.

ﬂi =n-a;— Y,
Equation 5.4

The rotation angle (and therefore @ and ¥ as well) need only be calculated once for each desired

boresight, as explained section 5.3.4. However, the calculation of the perpendicular distance to each
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crater center in the image requires the crater angle to cach crater center, as stated in section 5.5. This

is the reason that the crater angle calculation will be completed for every crater before the boresight is

selected. For the i desired boresight, the i” crater angle will also be the rotation angle. That is, if

j=ithen § =4

5.3.3 Rotation Axis Derivation
The rotation axis is the axis about which the rotation of data points will occur according to the right
hand rule. In conjunction with the rotation angle, this three-component vector will uniquely define
the desired rotation. The rotation axis will not only be used in the calculation of the rotation matrix,
but also in the calculation of the translation vector. Both of these calculations are necessary once per

desired boresight.

The rotation axis is defined as the vector perpendicular to the plane of rotation. This plane of rotation
is the plane of the triangle in Figure 5.7. The direction of the rotation axis is defined by the right hand
rule as follows: the rotation of the desired boresight vector to the original boresight vector is in the

‘positive’ right hand rule direction (that is, counter-clockwise).

Therefore, define

z=[0 0 1]
Equation 5.5
UV, =u, v, 0
Equation 5.6

The cross product between z and UV, will generate a vector that is perpendicular to the plane of

rotation and in the proper direction. Therefore, this cross product yields the rotation axis. Refer to

Figure 5.8.
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Image Rotation:
Rotation Axis Calculation

i z=[0 0 1]

uv,=lu, v 0
7
zx UV,
RotAx, = —————
|z x|

Figure 5.8. Image Rotation: Rotation Axis Calculation.

Equation 5.7

The rotation axis is normalized for ease of future use.

5.3.4 Rotation Matrix Calculation
The rotation matrix is calculated next from the rotation angle and axis. The rotation matrix is

calculated once per desired boresight crater.
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There are a variety of methods for calculating a rotation matrix from its associated axis and angle.
The following method was chosen by the author for its simplicity and ease of implementation in any

matrix-friendly computer language.'

Procedurally,

0 —RotAx,(3) RotAx,(2) |
N, =| RotAx,(3) 0 — RotAx (1
—RotAx,(2)  RotAx(1) 0 |
Equation 5.8
N2, = RotAx * RotAx, — I, ,
Equation 5.9

R =1,,+N, sin(8)+N2,-(1-cos(B))

[

Equation 5.10

In application, it is quite easy to confuse the sign of the rotation angle and the direction of the rotation
axis, which can cause the generation of a rotation matrix that does not accomplish the desired
rotation. To ensure the veracity of these calculations, Figure 5.9 breaks the angle-axis combination

down into four cases, depending upon the image plane quadrant in which the desired boresight lies.

The z vector (which is into the page) and UV, are given, the rotation axis can be calculated, as

t
shown. Based upon the diagram, it is then ascertained that a positive rotation angle will indeed rotate

the boresight vector from UV to the origin. This holds for all cases.

" Equations to determine a rotation matrix from a given axis and angle were taken from the notes of Gerhard Besold
hitp://www.memphys sdu.di/~besold/INDEX/axis-angle.pdf. The algorithm was verified against other, more traditional
algorithms.
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Image Rotation:

Sign of Rotation Angle
Case | Case |l| Desire R and B such that:
I ‘ I 5 0
’ o|=R(p ) w¥,
0

For all cases, B must be
CCW to rotate p to the origin
about defined RotAx vectors.

Case |V Therefore, B is defined as a
I i 11 positive for all cases.
RotAXx, |
Note:
"""" LT 1. z-axis points into the page

Vs 2. R is defined as a CCW

D S rotation for a positive angle.

IVaadpag i I 3. RotAx defined by
RotAx, = XUy, _

lzxv¥|

Figure 5.9. Image Rotation: The Sign of the Rotation Axis.

5.4 The Perspective Transform Translation

Vector Calculation

The previous section, section 5.3, detailed the calculation of the rotation matrix between the original

camera frame and the transformed camera frame, which is necessary for the execution of the

perspective transform algorithm. The translation vector between these two frames is also necessary to



execute the perspective transform. The calculation of the translation vector between these frames will

require the following steps:

1. Determine the translation vector magnitude.
2. Determine the translation vector direction.

3. Combine the translation direction and magnitude to generate the translation vector.

These calculations are derived from the geometry of the transform. Since the translation vector is
uniquely defined by the current boresight and the desired boresight, its calculation is executed once

for every boresight crater,

The translation vector must be calculated as the translation between the original and transformed

camera frames, and not as the translation between the original and desired principle points.

5.4.1 Translation Vector Calculation Initialization

Inputs:

1. Image frame coordinates of the i " crater center, which is the desired boresight.

2. Spacecraft altitude.

3. Rotation angle S for desired boresight crater i .

Outputs:

R .. ot .
1. Translation vector T, between the original and " desired camera frames.

Constants:

1. Radius of the Moon, r,, =1737.4 km.

Assumptions:
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1. Moon is spherical.
2. Camera is nadir-pointing.

3. Spacecraft altitude does not change over transform.

5.4.2 Translation Magnitude Derivation
The translation magnitude is calculated geometrically by utilizing an isosceles triangle. The long legs
to the triangle highlighted in Figure 5.10 are equal by the assumption of constant altitude over the
transform, which makes the triangle in question an isosceles triangle. As a result, the bisector of the
angle between the two legs of equal length will also be perpendicular to the ‘base’ leg of the same
triangle. Therefore, simple trigonometry allows the length of T to be determined using the definition

of sine.

Translation Vector:
Inttial Image Plane Translation Magnitude Calculation

Sy

alt

Transformed Image Plane

Figure 5.10. Translation Magnitude Calculation.
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Tmag(x) = |2 ) (rm + alt) Sln(%]

Equation 5.11

5.4.3 Translation Direction Derivation

The geometric derivation of the translation direction 7, ,, is somewhat more rigorous than that of

the translation magnitude. For simplicity, the derivation will be presented procedurally:

1.

From the triangle highlighted in Figure 5.10, the angle between 7, and the original boresight

. /4 . o .
vector can be determined to be Tﬂ' radians by the sum of interior angles to a triangle and

the nature of an isosceles triangle. This angle is also the same angle as that between 7, and

the desired boresight vector.

u, |

In addition, the boresight vector is normal to the image plane. Therefore, vector UV, =| v

t

01]

is perpendicular to original boresight vector. Consequently, the angle between UV, and T,

can be determined to be % as shown in the detail of Figure 5.11.

{

If UV, is rotated in a clockwise direction by —'g— radians in the plane of the highlighted

triangle in Figure 5.11, the resulting vector will be in the direction of translation. The
rotation axis will be defined as it was in Equation 5.7, (the rotation axis will point out of the
page in this case). Since the necessary rotation is clockwise, the angle of rotation will be
negative. Therefore, the rotation matrix can be determined by Equation 5.8, Equation 5.9,

and Equation 5.10, with the caveat that the rotation matrix will be calculated for a rotation

14

radians.

angle of
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Translation Vector:
Initial Image Plane Translation Direction Calculation

Transformed Image Plane

o

al RotAXx points out of this image,

toward the reader. Therefore,

UV, must be rotated through

a negative (that is, clockwise) angle
to obtain the translation vector

direction.
Ill.
Ty = R{%}" ¥
0

o (Tr-3,)/2

Equation 5.12

where R{%) indicates that the rotation angle for the rotation matrix calculation is ?* radians in

a clockwise direction. The resultant vector, T, ., is a unit vector in the direction of the translation

ir(i)

vector.
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5.4.4 Translation Vector Calculation

After T, ;, is normalized, a simply scalar multiplication of the vector T, ;, by the magnitude T,

ir(i) mag (i)

will yield the desired translation vector, 7.

Translation Vector:
Initial Image Plane Translation Vector Calculation

Transformed Image Plane

alt

Translation Vector Equations:

2:(r, + alf) mn[%]‘

T

mag()

’f
Ty = &[—Tﬂi]‘ %
0

1, =Ty Twvary

Figure 5.12. Translation Vector Calculation.

0]
L. =|2-(rm +alt)-sin(&]-Ri(_ﬁ" ]* V;
2 2 5

|

Equation 5.13
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5.5 The Perspective Transform Point-wise

Depth Calculation

The previous two sections, sections 5.3 and 5.4, detail the calculation of the rotation matrix and

translation vector necessary for the perspective transform. The transform also requires one other
piece of information; the point-wise depth of each crater center. The j ™ point-wise depth refers to
the perpendicular (i.e. parallel to the principle axis) distance from the camera center to the altitude of
the j crater center on the lunar surface. In other words, the point-wise depth is the z' component
of the position vector of the actual crater centers in the camera frame. Refer to Figure 5.13, where the

point-wise depth is labeled as d , - This depth can be obtained in a single algebraic step after

geometric derivation.

5.5.1 Point-wise Depth Calculation Initialization

Inputs:

4. Image frame coordinates of the j ™ crater center.
5. Crater angle S, for j™ crater center.

6. Spacecraft altitude.

Outputs:

1. Perpendicular depth to each j ™ crater center in the original sensor image.
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Constants:

1. Radius of the Moon, »  =1737.4 km.

> 'm
Assumptions:

1. Moon is spherical.

2. Camera is nadir-pointing.

5.5.2 Point-wise Depth Derivation

The point-wise depth can be obtained by geometric derivation in a single step and requires only the

use of simple trigonometry. The point-wise depth, d , » only needs to be found once for each crater in

the original sensor image. The selection of the desired boresight crater has no impact upon this

calculation.
From Figure 5.13, if A , can be determined, the point-wise depth will follow with ease.

From Figure 5.13, the j" crater angle p , defines the quantity A . As a result, A | is calculated the

trigonometric definition of [ ,- With A known, the point-wise depth 'd j' follows as

‘d,] =alt+A,
fd,‘ =alt+r, -(l—cos(ﬁj ))
Equation 5.14

The point-wise depth is a scalar value.
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Point-wise Depth

For all {j } crater centers visible in the
Image Frame, { d; } is the perpendicular
distance to the location of the crater
center on the lunar surface.

alt

cos(ﬂj )= (l',,, _AJ')

In

A =r, -(l—ccs‘pj ))

|djl=a”+Af

ld,|=alt+ 1, b= cos(ﬂj))

Figure 5.13. Calculation of the Point-wise Depth.

5.6 The Perspective Transform Equation

As explained in the perspective transform problem statement (see section 5.1.1), the transform entails

four steps. These steps are:

1. Calculate the rotation matrix between the image frames.
2. Calculate the translation vector between the image frames.
3. Calculate the perpendicular depth to each crater center.

4. Execute the perspective transform to generate the transformed image plane.
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The first three of these steps are all preparatory for the fourth step, the implementation of the
perspective transform. Sections 5.3, 5.4, and 5.5 have addressed these preparatory steps. This section

will combine the results of those steps in the execution of the perspective transform.

The perspective transform is necessary to the crater matching algorithm because it allows for the
modification of a given sensor image in such a way as to simulate the relocation of the principle point
over various crater centers in the original image (for example, from point Pl to P2 in Figure 5.14).
The perspective transform allows this simulated principle point relocation to account for the
perspective differences between the two viewpoints. This perspective difference is caused by the
projection of the spherical lunar surface and its features onto the flat image plane. The differences
that will occur in the image plane are those apparent when ‘looking’ at the spherical lunar surface
from two different points in space. The perspective transform will allow the transformed image plane
to “look’ like the camera is centered over the desired crater center and ‘looking’ down upon a portion

of the spherical lunar surface.

Each time the perspective transform is executed, it will be applied to all of the j craters in a given

sensor image. For a given image, the transform will be executed i times, once for each potential
boresight. Therefore i will identify the desired boresight for a given iteration of the transform, and

J will iterate through all the craters in the sensor image for a given boresight. Reference section

5.2.4 for more details on these indices.

Figure 5.14 is included here again as pertinent reference.
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Perspective Transform Problem Overview

Desired BS _ Desired BS
B /

Original Image Plane —_ ‘_7
/

— 7L Transformed Image Plane

/
Jalt

Utilizing the perspective transform
will allow pattern generation to
account for the curvature of the
lunar surface in image translations.

\\

Inputs:
1. Altitude
2. Image Plane location of desired BS
3. Camera FOV & resolution

Outputs:
1. Transformed Image Plane with
desired BS

Figure 5.14'. Reprinted Overview of the Perspective Transform.

5.6.1 Perspective Transform Initialization

Inputs:

1. Sensor image data points in the original image frame, {u iV }

th

2. Rotation matrix for i desired boresight, R, .
3. Translation matrix for i" desired boresight, 7.

4. Point-wise depth for all j craters in the sensor image, d ; .

Outputs:

' Also Figure 4.6
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1. Transformed image data points, {17 , 17]} forall j craters in the sensor image.

Constants:
1. None
Assumptions:

1. Moon is spherical.

2. Camera is nadir-pointing.

3. Spacecraft altitude does not change over transform.
4. Image plane is unit distance from the camera.

5. Camera is an ideal camera.

5.6.2 Perspective Transform Derivation
This section will derive the perspective transform as a mapping between the original and transformed
camera frames. In order to do this, a generalized perspective transform will first be derived. After
the derivation of the generalized transform, it will be modified so that it will apply to the crater

matching routine and will be simplified accordingly.

5.6.2.1 Generalized World Frame to Camera Frame Mapping
Define the generic camera frame to be a Euclidean frame centered at the center of projection’ of a
camera. Define the generic world frame to be a specific right-handed three-space different from the

generic camera frame.

For sections 5.6.2.1 and 5.6.2.2, the generic camera frame will always be referred to using the word
‘generic’ to differentiate it from the camera frame specified in section 5.1.2. (After these sections, the

generic camera frame will no longer be referenced.) The generic world frame will be referred to as

" The center of projection for a camera is the point at which the lens focuses all incoming rays of light.
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the world frame because it does not overlap terminology previously used in coordinate frame

definitions.

When considering a pinhole camera,’ the general mapping from the world frame into the generic

. . 2
camera frame is given by:”

X
X7 YW
v =M*R*|I, -T]*
Z’J

Equation 5.15

where

1. {X Y 7 } represents an ordered triplet in the world frame,
2. {X Y Z '} represents an ordered triplet in the generic camera frame

3. Risthe 3 x 3 rotation matrix from the world frame to the generic camera frame

4. T isthe 3 x 1 translation vector to align the world and generic camera frame origins

fy O px'—l
5. M= 0 fr py
0 0 1]

Equation 5.16
6. {fx fy} isthe X' and Y' units in terms of focal length

~

{ Px py,} is the principal point location in the generic camera frame coordinates.

5.6.2.2 Application of Generalized Mapping to Perspective Transform Camera Model and
Coordinate Frames

The application of Equation 5.15 will allow the transform from the camera frame to the image frame

as defined in section 5.1.2 to be found. Allow the following conditions to be made:

" A pinhole camera is a camera with a small aperture and no lenses. It is useful due to the relative simplicity of the
projection of the image onto the image plane.
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1. Allow the generic world frame to be the camera frame defined in section 5.1.2; that s,

x v z}={x y 7}

Equation 5.17
2. Allow the generic camera frame to be the image frame defined in section 5.1.2; that is,

x" v zt=w-{u v 1}
Equation 5.18

where

v v wi=w-{u v 1}
Equation 5.19
Equation 5.18 highlights that W is the perpendicular distance from the camera to the crater

center on the lunar surface in the transformed camera frame.

3. Since the image frame is a planar subspace of the three-space camera frame (defined in

’

section 5.1.2). Refer to Equation 5.1. Therefore R=1, , and T = [O 0 O] . This
definition of {R T} means that the {x v F={x y’} coordinate axes are aligned. Refer
to Figure 5.3.

4. Allow the focal length f,. = f,, = f =1. This implies that scaling is identical in both the

X’ and Y’ directions.
5. Allow the principal point to be the origin of the image frame. This means that the origin of

the image plane lies in the center of the image. Refer to Figure 5.3 and Figure 5.4.

Applying these conditions to Equation 5.15 yields:

" The author realizes that specifying the three dimensional generic camera frame as the planar image frame may
introduce added complexity. Other simplifications made will cause this difficulty to become irrelevant.
Reference the remainder of the derivation for more details.
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U] 0]
VIi=L,* 1% 1y OI * z,
al o 1
u x']
Wyl =)
1 L2l

Equation 5.20
This equation defines the projection of points in the camera frame into points on the image frame for

the given camera assumptions and pertinent coordinate frames.

5.6.2.3 Application of Generalized Mapping to this Perspective Transform

Allow two equations of the form of Equation 5.20 to be constructed such that

’
wal X
’
V/.l = W ’ yj.l
J ’
1 _I Zl-l_J
Equation 5.21
u,, X,
1 1 i
Vol =Yy
J.2 }.2
W, )
1 _| l Z/‘Z_l
Equation 5.22

Let Equation 5.21 represent the image plane at point P1 from Figure 5.1, and Equation 5.22 to
represent the image plane at point P2 from the same figure. Since the perspective transform must
transform the original image frame into the transformed image plane. In other words, the transform

must generate the ordered triplet {”;.2 Vi, 1} given the ordered triplet{u Vo 1}. Therefore,

i
a relationship between these two ordered triplets must be found to allow for the derivation of the

perspective transform.
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The transformation between any two Euclidean three-spaces can be defined as

X, | x|
Yo =R*| y
ZzJ 2

-T

J

Equation 5.23

From the derivation of R, and T, the relationship between the original and transformed camera

frames is

x',.ﬂ x;J_I

Yia| =R *| ¥yl =T,
Z2' Z'
Equation 5.24
where the ordered triplet {x;l y'L1 Z;,l } is a point in the original camera frame, and
{x’/.z y;Az z;z} a point in the desired camera frame.
By substitution of Equation 5.24 and Equation 5.21 into Equation 5.22,
u,, 1 x;.z 1
Vo, = ’
7.2 J.2
1 J sz ZI
1.2 J
u /,2—| x;ql
Wavial =R* vy, -1,
1 .] % J
u,, 1 u, 1
W, Vol = R, *W_/,l vl -1
L L 1]
Equation 5.25

This can be rewritten as

160



Equation 5,26
This equation is the perspective transform that characterizes the relationship between points in the

original image plane and the transformed image plane.

5.6.3 The Perspective Transform Equation for this Problem

If Equation 5.26 is rewritten to utilize the notation in use throughout the rest of this paper, the result is

: T

I

Equation 5.27

where {17 ; v s 1} represents the transformed image plane coordinates and ¢, is the point-wise
depth of the transformed image points. In other words, ¢, is the point-wise depth of the image points

if the principle axis passed through the desired camera location (P2) and the desired boresight crater.

Equation 5.27 defines the relationship between the original image frame and the transformed image

frame. It requires the rotation matrix R, and translation vector 7, between both of these frames, as

well as the point-wise depth d , to each point in the original camera frame.

The perspective transform equation will be utilized in the crater matching routine to modify the
original sensor image such that a selected ‘boresight’ crater will coincide with the principle point of
the image plane after the transformation. From this transformed image, the pattern of craters

surrounding the centered boresight crater will be used to uniquely identify the boresight crater. That
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1s, the crater pattern in the original sensor image will be compared with the patterns in the database of
lunar crater patterns and a match determined. If most of the boresight craters selected from the
original image match to a cluster of craters in the same general area from the database, the image can
be correlated to that geographic area of the lunar sphere. This information will then allow the

spacecraft pose to be estimated.

In order for the transformation to be realistic (and therefore useful), it must accurately model the shift
in location of the craters relative to one another across the transform. This shift in the relative crater
pattern is due to the curvature of the moon, which changes the apparent crater pattern as the camera

boresight is shifted from one point to another on the lunar surface.

The perspective transform given in Equation 5.27 proves useful precisely because it accounts for the
expected shift in the relative pattern of craters in the sensor image across a boresight shift. In other
words, it allows the sensor image to be modified in such a way as to simulate that the image had been
taken with a different principle point. Due to this characteristic, this perspective transform will be
utilized in the crater matching routine to ‘center’ the image upon various crater centers, allowing the

pattern of surrounding craters to be identified for each selected ‘boresight” crater.

For the remainder of this paper, the entire process of generating the proper {R, T. d ]}

components as well as executing the perspective transform equation (Equation 5.27) on a given set of

data will be referred to as the perspective transform.



5.7 Perspective Transform Implementation

and Results

After the derivation of the transform, it was implemented and the overall performance of the
algorithm was tested in preparation for its use in the crater matching routine. This section will
present several analyses conducted to better characterize the perspective transform algorithm. These
analyses are intended to allow a better understanding of the algorithm and its role in application to the

crater matching routine.

For several of these analyses, a Euclidean translation of the image was implemented as well to serve
as a basis of comparison. This Euclidean translation simply shifted the image such that the desired
boresight crater was relocated to the principle point of the image, and all other craters shifted to

maintain their relative position.’
The following is a brief description of the analyses presented here:
1. Accuracy of Centering the Desired Boresight

An analysis of how accurately the transform centers the desired boresight in the transformed

image.

2. Image Translation vs. Image Transformation

"It is interesting to note that this simple Euclidean translation of the image was used by the star tracker algorithms
on which this crater matching routine was based. This follows from the assumption that the stars are at an
infinite distance from the star tracker.
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A comparative analysis between Euclidean translation of the image and the perspective

transform of the image.
3. Change in the Normalized Distances between Crater Centers

An analysis of the change in the normalized distance between any two given craters in the

image over the perspective transform.

In addition, an overview of the coding of the algorithm will follow these result sections. The
algorithm was coded in Matlab version 7.1 to allow for ease of testing and analysis. This code is not

intended for use onboard the spacecraft.

5.7.1 Analysis Initialization

For the following analyses, the algorithm initialization parameters will be as follows:

Inputs:

1. Spacecraft Altitude: 100 km
2. Spacecraft attitude: 0° roll, 0° pitch, and 0° yaw
3. Camera Field of View: 90°

4. Camera Resolution: 512 x 512 pixels
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5. Original Sensor Image (as data points):

Original Sensor Image

Sensor Image Plane, <m,n>

8

Map Vertical Axis, pixels
g B

O o
O
O

Figure 5.15'. Reprint Example Data Points for Pattern Vector Generation.

(image taken at 80° latitude and 85° longitude)

' Also Figure 3.5
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6. Potential Boresight Craters:

Desired Boresight Craters

Sensor image Plane, <u, v

—— Onginal Crater Rim
Original Crater Center

O
O

)

o
o

(i/
® ~ @
()

1 ['}:] (1 04 02 '] 02 04 06 a8
Map Honz Awis

Map Vertical Axis
& & &
@ - o o

&
®

Figure 5.16. Example Data Points with Potential
Boresight Craters Highlighted.

The potential boresight craters are numbered in this image. The examples presented

throughout these analyses will refer to the boresight craters in this order.

5.7.2 Accuracy of Centering the Desired Boresight
One expected effect of the perspective transform is to center the transformed image on the desired
boresight crater. As a result, a complete analysis of the transform must verify that the desired

boresight crater is actually the principle point in the transformed image.

See Figure 5.17 and Figure 5.18, which presents the centering for the first potential boresight crater.
The desired boresight crater is shown first in both the original and translated images, and secondly in
the original and transformed images. Both of these figures demonstrate the effective centering of the

boresight.
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Figure 5.17. Euclidean Translation of the Example Data Points.
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Original and Transformed Images

Sensor Image Plane, <uy> i Sensor Image Plane, <uy>
1 p
Original Crater Rim O @ \"@ )
08 Original Crater Center Q 08} @
06 @® Original Desired BS @ ogl
0.4F 0.4
@ E
< 02 < 02}
© .
(=] o
€ Or 2 o} ® @
@ @ J]
s ® : s
a 02f @ ® 802 o @
= =
0.4 O] O s 04} O
06 06 m [©)]
O G Transformed Crater Rim O
08t C) 08 - Transformed Crater Center
) ) . ® Transformed Desired BS .
1 05 0 05 05 0 05
Map Horiz. Axis Map Horiz. Axis

Figure 5.18. Perspective Transformation of the Example Data Points.

The offset of the transformed position of the desired boresight crater and the principle point of the

image is presented in {m’ n’} pixels. See Table 5-1.
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Table 5-1. Comparison of Euclidean Translation and Perspective Transform Error.

Euclidean Translation Error Perspective Transform Error

m' n' m' n'
BS #1 0 0 1.42x 10" 455x 10"
BS #2 0 0 227x 100 1.25x 10"
BS #3 0 0 8.53x 10" -512x 10"
BS #4 0 0 -5.68 x 107 568x 10"
Average 0 0 1.78 x 10 3.13x 10"

It was verified that the offset of the translation of the desired boresight crater image and the principle
point is effectively zero, as expected. This verifies that the offset error of the transformed case is the

result of the computer processor, and not the perspective transform process.

5.7.3 Image Translation vs. Image Transformation
In addition to centering the desired boresight upon the principle point in the transformed image, the
perspective transform will also cause slight differences in the relative positions of the other crater
centers. This is because the camera’s view of the craters in relation to one another will change over
the transform because the lunar surface is curved. This effect is somewhat more difficult to test than
the centering of the boresight crater. However, a comparison between a Euclidean translation of the
image and the perspective transform will highlight the differences in relative position of the crater
centers over the re-centering. Due to the constancy of the relative position of the craters in the
Euclidean image translation, this comparison will effectively show the effects of perspective
introduced by the perspective transform algorithm. For Figure 5.19, Figure 5.20, Figure 5.21, and
Figure 5.22, note the offset between the crater centers and rims centered by the Euclidean translation

and those repositioned by the perspective transform.
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Figure 5.19'. Reprint Overlay of the Euclidean Translation and the
Perspective Transform of the Example Data Points.
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Figure 5.20. Overlay of the Euclidean Translation and the Perspective
Transform of the Example Data Points for Boresight Crater # 2.

! Also Figure 4.9
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Figure 5.21. Overlay of the Euclidean Translation and the Perspective
Transform of the Example Data Points for Boresight Crater # 3.
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Figure 5.22. Overlay of the Euclidean Translation and the Perspective
Transform of the Example Data Points for Boresight Crater # 4.
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Figure 5.19, Figure 5.20, Figure 5.21, and Figure 5.22 present two overlaid images. The first of the
overlaid images in each figure is that of the Euclidean image translation, where the original sensor
image was translated to align the desired boresight crater and the principle point. The second of the
overlaid images is that of the perspective transform of the original sensor image. There is a slight, but

definite, difference between these two images in each of the four cases present in these figures.

To better characterize this difference between the two images, the offset between the corresponding
transformed and translated craters was calculated. For the given original sensor image, the minimum,
maximum, and mean distance between the translated and transformed crater centers was calculated,
along with the standard deviation of the distances. These calculations were repeated for all four
potential boresight craters selected from the original sensor image. Table 5-2 presents the results of

this analysis.

Table 5-2. Distance between the Translated and Transformed Crater Centers.

Mean Dist. | Minimum Dist. | Maximum Dist. | Std. Dev.
(pixels) (pixels) (pixels) (pixels)
BS #1 2.06 476 x 10" 5.49 1.57
BS #2 3.38 1.27 x 102 7.36 2.33
BS #3 3.47 9.94 x 107 11.09 3.52
BS #4 3.68 8.04 x 10" 12.11 3.65
Average 3.15 7.06 x 10 9,01 2.78

5.7.4 Change in the Normalized Distances between Crater Centers
Section 5.7.3 demonstrated that the relative position of the craters will change due to the perspective
transform and calculated the variation using the Euclidean translation craters as a point of reference.
Another way to verify this relative position change is to calculate the distance between craters before
and after the transform. Rather than solely providing the difference between the translated reference

and the transformed craters, this calculation of the distance between craters will highlight the changes

172



due to the transform in relation to all the craters. As a result, this calculation will provide greater
detail as to the effect of the transform on the image as a whole rather than looking at individual

craters.

The author demonstrates that the normalized distance between two given points in the original sensor
image should vary over the perspective transform in Appendix B. Therefore, this analysis serves as
an additional database of numerical results to solidify the conclusions of the counter-example given in

Appendix B.

This analysis will first calculate the distance between every crater center in the original image, and
compare these distances to the distances calculated between craters in the transformed image. The
raw calculated differences in distances between the same craters in the original and transformed

images are presented in Table 5-3, Table 5-4, Table 5-5, and Table 5-6.

Differences of Crater Centers over Perspective Transformation
Desired Boresight Crater #1

1 2 3 4 5 6 7 8 9 10 1" 12 13 " 15 16 17
1 0 |003 067 [036 [119 | 043 | 155 |09 | 103 (059 | 120 |078 312 | 333 | 367 | 258 | 293
2|0 0 043 | 043 | 113 | 031 | 145 | 082 | 091 (076 (186 [ 1.06 | 300 | 411 | 353 | 289 | 3.10
3|0 0 0 |032|183 110|221 | 163 | 170 | 1.37 | 231 | 161 [379 | 455 | 434 | 333 | 371
4 0 0 0 0 165 | 079 | 204 | 1.40 | 1.40 | 1.46 | 324 | 1.90 | 358 | 549 [ 407 | 320 | 365
5|0 0 0 0 0 108 (017 (043 | 078 | 250 | 462 | 300 | 104 [ BE3 | 1.15 | 287 | 336
6 |0 1] 1) 0 0 0 140 | 069 | 061 [ 147 (355 (198 | 284 | 566 | 328 | 271 | 320
70 0 0 0 0 0 0 |07 [102|277 | 490 | 326 (148 | 686 | 159 | 305 | 354
8|0 0 1] 0 0 0 0 0 |040 | 207 | 420 | 2567 (218|622 | 271 | 277 | 328
9|0 0 0 0 0 0 0 0 0 175 | 388 | 224 [ 230 | 585 | 268 | 240 | 291
0|0 0 0 0 0 0 0 0 0 0 |213 | 051|397 [419 | 411|199 | 235
1|0 o i} o 0 1] 0 0 0 0 1} 166 | 607 [ 228 [ 611 | 315 | 313
2] 0 0 0 0 a 0 0 0 0 0 0 0 441 | 369 | 449 | 196 | 220
3|0 0 0 0 0 0 0 0 0 0 0 0 0 7.78 | 055 | 360 | 402
“|0 0 0 0 0 0 0 0 0 o 0 0 0 0 |762 | 429 |40
15| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33% |32
%0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |05
7|0 0 0 0 0 0 1] 0 0 ] 0 0 D] ] 0 0 0

Table 5-3. Distances Between Crater Centers over the
Perspective Transform for Boresight Crater #1.
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Differences of Crater Centers over Perspective Transformation

Desired Boresight Crater #2

1 2 3 4 5 6 7 L] 9 10 " 12 13 114 15 1% 1w
1 0117 | 249 | 391 | 175 | 289 | 107 | 166 | 182 | 279 | 1.5 25| 41| 102|351 | 047 | 029
2 0 007525 | 282|163 (211 (055 | 069|099 | 07205 |515)| 333 | 463 | 155 | 209
3 1] o 0 14 | 424 | 033 (357 | 063 (058 (011 | 146 | 027 | 661 | 407 | 601 | 249 | 299
4 1] 1] 0 0| 605|104 | 537 | 245|202 | 199|399 | 259 | 831 | 659 | 753 | 426 | 487
5 0 0 0 1] 0| 53|093 38| 471|755 | 983 | B8.19 25| 122 | 362 | BO5 | B74
6 0 0 0 0 0 0| 454|154 (098 23| 454 | 29 | 735 | 703 | 6.49 | 393 | 461
7 0 0 0 o 0 ] 0301|367 |674|902)737 305|113 |328 712|781
8 0 ] 0 1] 0 0 0 0|09 |375| 603|439 | 586 | B42 | 518 | 468 | 539
9 0 0 0 o 1] 0 1] 1] 0| 287 | 517 35| 648 | 749 | 553 | 375 | 447
0| 0 0 0 0 0 0 0 0 0 0|22 | 065|926 |472 (793|263 | 309
n 0 0 1] 0 1] 0 0 0 1] 0 0|168 | 115 | 259 | 101 36 | 354
12 0 0 1] 0 1] 0 0 0 0 0 0 0983|407 | 848 | 256 | 285
13| 0 0 0 0 1} 0 0 0 0 0 0 ] 0| 135|221 | 881 | 94
" 0 0 0 1] 1] 0 0 1] 0 0 0 0 0 0| 118|466 | 446
15| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|702|753
16 0 0 0 0 0 0 0 0 0 0 0 0 1] 0 0 0}072
17 1] 0 0 0 0 0 0 0 0 0 0 0 1] 0 0 0 0

Table 5-4. Distances Between Crater Centers over the

Perspective Transform for Boresight Crater #2.
Differences of Crater Centers over Perspective Transformation
Desired Boresight Crater #3

1 2 3 4 5 6 7 L] 9 10 1 12 13 11 15 16 17
1 0| 277 | 297 | 426 294 | 412 | D9 | 171 | 452 | 652 | 493 | B.16 | 769 | 564 | 265 | 285
2 0 013|219 0.78 | 667 | 145 | 048 | 2B9 | 567 | 3.45 | 106 71| 798| 093|121
3 0 0 o131 003|701 | 207 | 125|176 | 434 | 226 | 111 | 574 | 861 | 015 | 01
4 0 0 0 0 X 128 | 747 | 303 | 25| 068 | 288 | 1.14 | 119 | 446 | 9.74 12| 091
5 0 0 1] 0 075317259 | 627 | 724|586 | 695 261 | 384 3| 552|537
6 0 0 0 0 0 0|597 (1589|122 | 023|166 | 05| 105|353 |644 | 008 | 01
7 0 0 0 0 0 0 0| 430 | 466 | 564 | 427 | 535 (391 | 221 | 21 38 | 365,
L] 0 0 0 0 0 0 0 0|039|128| 01)|099|883 (209|655 019|009
9 0 0 0 0 1] 0 0 0 0|09 |038|069|913 ) 243|721 | 012|022
10 0 0 1] 0 1] 0 0 0 0 0137|028 | 101|331 |83 | 167 | 1686
1" 0 0 1] 0 1] 0 0 0 1] 1] O|106 [B73 147 | 698 | 124 | 151
12 0 0 1] 0 0 0 0 0 0 0 0 0 986|303 604|201 |19
13 0 0 0 0 0 0 0 0 0 0 0 0 0[|649 | 225 | 764 | 739
14 0 0 0 0 0 0 0 0 0 0 0 0 o 04866 | 107 | 074
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| 574 | 545
16 0 0 0 0 0 0 0 0 0 0 0 1] 0 0 0 0 0.1
17 0 0 1] 1] 0 1] 0 0 0 1] 1] 1] 1] 0 1} 0 0

Table 5-5. Distances Between Crater Centers over the
Perspective Transform for Boresight Crater #3.
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Differences of Crater Centers over Perspective Transformation

Desired Boresight Crater #4

1 2 3 4 5 6 7 1] 8 10 1 12 13 " 15 16 7
1 0313|298 | 318|516 | 1.44 | 424 | 028|009 | 192 | 327 | 204 | 929 | 293 | 819 | 1.36 | 152
2 1] 0| 144 | 094 | BA5 | 093|713 (291|251 | 028 | 268 | 061 | 121 | 265 | 108 | 313 | 3.18
3 1] o ojo23 8| 153|714 |325| 306 | 0.79 13| 055|122 | 124 | 1.2 | 413 | 422
4 1] 1] ] 0751|171 | 675|317 |32 | 038|171 | 001 1221191 | 112|391 | 389
5 1] o 1] 0 0]|598|1.23|462| 486 | 583 | 499 | 568 | 347 | 4.02 | 357 | 494 | 5.02
6 0 0 1] 0 1] 0|509)|143)| 152|001 |09 |0.14 | 102 | 1.686 | 95 19| 195
7 1] 1] 1] 1] 0 1] 0| 367|381 | 484 | 401 | 466 | 483 | 293 | 344 | 372 | 379
L] 0 o o o o 0 o 0|03 |121| 037|106 | 863 |05 79 | 1.7 | 1.4
9 1] o o 1] 1] 0 0 o 0)104 |022 | 086|871 | 0B4 | 797 | 101 | 1.14
10 0 1] 1] 1] 0 0 0 0 0 0|082|013|964 | 165|878 | 3.28 | 343
1" 0 0 o [1] 1] o 0 1] 1] 0 0| 061|877 | 004 78 24 | 288
12 0 3] 0 0 0 ] 0 0 0 0 0 0| 938|151 | 846 | 313 | 3.47
13 0 0 0 1] 0 1] 1] [1] 0 0 1] 0 0|71 202|719 71
" 0 0 1] 0 0 (1] 1] [1] 0 0 1] 0 0 0|59 |021 | D52
15 0 0 0 0 0 1] 0 0 o o 1] 0 0 0 0577|558
16 0 0 0 1] 0 0 ] 0 0 0 0 0 0 1] 1] 0013
17 1] 0 0 0 ] 0 1] 0 o 0 0 0 0 1] 1] 1] 0

Table 5-6. Distances Between Crater Centers over the
Perspective Transform for Boresight Crater #4.
The data is upper triangular because the distance between crater ¢ and crater r is equal to the
distance between crater r and crater g . The redundant data is eliminated from the table to prevent

analysis of this data from being skewed.

In order to better visualize the information being presented in Table 5-3, Table 5-4, Table 5-5, and

Table 5-6, these tables were plotted as contour plots. The rows and columns form the y and x axes,

respectively, and the value in each cell of the tables (which is the difference between points over the

perspective transform) is plotted as the contour level.
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Figure 5.24. Characteristics of the Distances Between
Crater Centers for Boresight Crater #2.
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Figure 5.25. Characteristics of the Distances Between
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Figure 5.26. Characteristics of the Distances Between
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The contour plots highlight the similarity between the differences over the transform for the first and
second, and the third and fourth potential boresight craters. (Compare Figure 5.23 and Figure 5.24,
Figure 5.25 and Figure 5.26.) This is expected, as the original position of the first and second
potential boresight craters is relatively near to one another. The same holds for the third and fourth
potential boresight craters. (Refer to Figure 5.16). The craters positioned closest to the original
principle point also have the lowest crater number. Therefore, the greatest differences in relative
position over the perspective transform are expected in the upper right hand corer of the contour
plot, between craters that are the farthest away from one another. These are also the highest and
lowest crater numbers. The position of these craters will be influenced the most by the camera’s
perspective, and so they should demonstrate the greatest difference between their original position
and their transformed position, in relation to all the craters around them. This general trend is noted
in the contour plots above, with the greatest differences being concentrated toward the right half of

the plot.

The data in Table 5-3, Table 5-4, Table 5-5, and Table 5-6 and Figure 5.23, Figure 5.24, Figure 5.25,
and Figure 5.26 demonstrates that the effect of the perspective transform upon the data changes the
entire relative arrangement of crater centers. Table 5-7 presents the minimum, maximum, mean, and
standard deviation of the position differences over the perspective transform for all four potential

boresight craters.
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Table 5-7. Change in Position of Crater Centers Relative to
All Other Craters Over the Transform.

Mean Dist. | Minimum Dist. | Maximum Dist. | Std. Dev.
(pixels) (pixels) (pixels) (pixels)
BS #1 2.29 0 7.78 1.75
BS #2 3.82 0 13.51 3.12
BS #3 348 0 11.86 3.16
BS #4 3.38 0 12.23 3.21
Average 3.24 0 11.35 2.81

The results presented in Table 5-7 are very similar to those presented in Table 5-2. This demonstrates
that the change in the relative position of craters is essentially the same whether you are looking at the
change of all craters in relation to the desired boresight or if you are looking at all craters and their

change in position relative to all of the other neighboring craters.

5.7.5 Coding of the Perspective Transform Algorithm
The perspective transform is coded as a callable function. This function executes the transform upon
a set of data with a given desired boresight crater. For each potential boresight crater, this function is
invoked to shift the data so that the desired boresight is translated to the principle point of the
transformed image. In making this shift, the transform accounts for the curvature of the lunar surface
and how that will affect the appearance of the transformed image. This transform will effectively
establish the required translational reference to allow for pattern vector generation which was

discussed in section 4.1.

The practical inputs and outputs of the perspective transform function are similar to the inputs and
outputs for the theoretical algorithm listed in section 5.2.2. The practical inputs, outputs, and

constants are listed here.
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Inputs:

1. Sensor image data points in the original image frame, {u ;Y }

2. Desired i"” boresight crater.

3. Rotation matrix for i" desired boresight, R .
4. Translation matrix for i" desired boresight, T .

5. Point-wise depth for all j craters in the sensor image, d e

6. Spacecraft altitude, (alt).

7. Camera field-of-view ( fov) and resolution (res).
Outputs:

1. Transformed image data points, {ﬁft ; n ; } forall j craters in the sensor image.

Constants:

1. Radius of the Moon, r,, =1737.4 km.

The difference between the practical and theoretical inputs is that the practical perspective transform
function requires the rotation matrix, the translation vector, and the point-wise depth as inputs.
Although these quantities are technically part of the perspective transform, there is a significant
reduction in processing speed that can be gained by calculating the rotation matrix, the translation
vector, and the point-wise depth separately from the transform. By allowing these three calculations
to occur separately from the transform, all the rotation matrices, translation vectors, and the point-
wise depth for all potential boresight craters can be calculated at the same time. In other words,
before the transform, an array of rotation matrices is formed, one for each potential boresight crater in

a given sensor image. In addition, an array of translation vectors is also calculated, one for each
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potential boresight crater. Finally, the point-wise depth to each crater in the original sensor image is
calculated.! These three quantities then become inputs into the transform algorithm. By calculating
these quantities before the execution of the transform, the need to recalculate them for every iteration
of the transform is bypassed. As a result, a significant amount of processing time can be saved in this

manner.

The coding of the perspective transform algorithm followed the transform equation, Equation 5.27,

very closely. After the transform is executed, the data units are converted from true image plane units
(u v) to pixelated image plane units (m n) This unit conversion prepares the transformed data

points for the remainder of the pattern vector generation process.

In general, the practical implementation of the perspective transform closely parallels the theoretical
explanation contained in this chapter. The perspective transform was coded in Matlab version 7.1

revision 14.

" The point-wise depth does not depend upon the desired boresight crater at all. Therefore, the point-wise depth
calculation yields a matrix rather than an array of matrices.
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Chapter 6
The Main Processes of the

Crater Matching Routine

The crater matching routine is a correlation method designed to match a sensor image with a crater
database and determine the position of the craters in the sensor image on the lunar surface. To

accomplish these goals, the crater matching routine has three distinct main processes;
1. The sensor image generation process.

This process generates a ‘fingerprint’ for a given senor image based upon the pattern of
craters in the original sensor image. This image signature will allow the sensor image to be

quantified so that it can be matched to the database.

183



2. The process of crater database population.

This process will create a database of lunar craters based upon the use of pattern vectors,
effectively forming a ‘reference map’. This database will be stored as a look-up table

onboard the spacecraft to reduce the memory requirements.
3. The correlation process.

The correlation process matches the image signature to the crater database and generates a
position match. This position match will identify the location of each crater within the sensor

image.

Each of these processes will be presented sequentially is sections 6.1, 6.2, and 6.3.

6.1 The Sensor Image Signature

Stated simply, the crater matching problem is to correlate an image of the lunar surface with a
database of lunar craters. This matching will be accomplished by comparing the pattern of craters in
the image with pre-determined patterns for lunar craters, which are stored in the database. Chapter 4
detailed a method to determine and record the pattern of nearby craters for a given boresight crater in
the sensor image. The pattern vector that is determined by the process detailed in Chapter 4 contains
all the information needed to appropriately correlate the boresight crater (for that pattern vector) to

the database crater.

However, for most sensor images, there are several craters in the image that might be correlated to the
lunar database. In other words, the pattern vector only correlates a single crater from the image to the

database. If there are other craters in the image, the pattern of nearby craters can be developed for
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each of them, and these patterns can then be matched to the database independently. The result will
be correlation between multiple craters from the original image and the lunar database. If enough of
these craters correlate to a single area on the lunar surface, the location of which the original sensor

image was taken can be determined.

The several pattern vectors generated for a single image will be combined into a single variable — the
sensor image signature. The generation of the image signature corresponds to step 3 from the crater
matching process as detailed in section 3.2.1. Each pattern vector contained in the signature

correlates to a database crater, and the signature itself correlates to a location of the original image.

This section will analyze the process of determining the signature for a sensor image and will also

continue the example problem from Chapter 4 to clarify the signature generation process.

6.1.1 Signature Generation Process
The process of generating an image signature is fairly simple, but relies heavily upon the pattern
vector generation detailed in section Chapter 4. Figure 6.1 gives an overview of pattern vector
generation. The reader is encouraged to review the overall process detailed in Chapter 4 if the

process in the figure is unclear.
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The Pattern Vector Generation
Process Overview

Establish Translational Reference
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Figure 6.1'. Reprint Overview of the Pattern Vector Generation Process

The signature generation process can be broken down into three steps:

1. Pre-processing:
a. Identify all potential boresight craters from the given sensor image.
b. Calculate inputs for the perspective transformation.

2. Generate a pattern vector for each potential boresight.

3. Post-processing:
a. Format each pattern vector for signature storage.

b. Save each pattern vector to the image signature.

' Also Figure 4.2
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The pre-processing of the sensor image can be broken down into two sub-steps, the identification of
potential boresight craters and the perspective transform initialization operations. The identification
of potential boresight craters simply identifies those craters within the given sensor image that are fit
for pattern generation. In order to meet this requirement, a given crater must be more than a pattern
radius distance from the edge of the sensor image. This will ensure that the entire pattern of nearby
craters can be determined from the sensor image. That is, if a crater center is less than a pattern
radius distance from the edge of the image, there may be nearby craters that are essential to the
pattern that cannot be seen in the sensor image. In addition to this requirement, there must also be at
least two other craters within the pattern radius for any given crater to be considered a potential
boresight. This allows each potential boresight to have a crater as a closest neighboring crater and

ensures there is at least one other crater to form the pattern.

The second sub-step of the pre-processing of the sensor image is the calculation of several inputs for
the perspective transform. This will include the calculation of a rotation matrix and translation vector
from the principle point of the original sensor image to each crater center. In addition, the point-wise
distance from the camera location to the crater location will be calculated for each crater. These

calculations are explained in more detail in Chapter 5.

After these pre-processing calculations, a pattern vector can be determined for each potential
boresight by iteratively executing the process detailed in Chapter 4. The result of this process is a

series of pattern vectors, each condensed as demonstrated in the example given in section 4.3.3.

Finally, the post-processing step converts the series of pattern vectors into an image signature. Before
this pattern vector can be stored to the signature, the vector must be formatted to tag the vector with
its boresight crater from the original sensor image. This will allow the pattern vector to be identified

with the boresight crater around which it was formed. The format for this ‘tagging’ will be:
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[Crater _# BS, BS, (PV_Cell Crater _Radius) (PV _Cell Crater _Radius)...]

Equation 6.1

where Crater _# refers to the list number of the potential boresights for the signature. The ordered
pair <BS v BS v> refers to the location of the given boresight crater in the original sensor image,

given in the true image plane units (UV ). The (PV _Cell Crater _ Radius). .. ordered pairs are

the components of the condensed pattern vector. (Reference section 4.3.3 and Equation 4.14.) In this
format, each pattern vector can then be appended to the signature matrix. The signature matrix will

therefore have i rows, where i is the number of potential boresight craters from the original image.’

Figure 6.2 presents these three steps, along with the included substeps, in the signature generation

process. Signature generation encompasses the process of pattern vector generation.

The following section will present an example of signature formation based upon the example data
utilized throughout section Chapter 4. This example will serve to clarify the details of the signature

generation process.

" Unless a potential boresight is dismissed during the pattern vector generation process for being ill-suited for pattern
gencration. For each potential boresight that is dismissed, the number of rows in the image signature matrix will
decrease by one.
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Figure 6.2. Overview of the Signature Generation Process.

6.1.2 Example Signature Formation
The example data used throughout section Chapter 4 will be continued here. The initial conditions
for this example are listed in section 3.2.3.6. The example presented in section Chapter 4 detailed the
pattern generation for a single boresight crater. This section will detail the generation of an image
signature for the example data points which will include the generation of four separate pattern

vectors.

Figure 6.3 shows the determination of the potential boresights from the original sensor image. The
center of the potential boresight craters are highlighted in green. Only four of the seventeen craters in
the original sensor image are suited as potential boresight craters. For this data set, this is due to the

fact that most craters in the sensor image lie too close to the edge of the image. As a result, a full
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pattern radius will not fit within the bounds of the image, which makes these craters ill-suited as

boresight craters.

Signature Generation:
Potential Boresight Identification
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Figure 6.3'. Reprint Example Data Points with Potential
Boresight Craters Highlighted.

Based upon these four potential boresight craters, four pattern vectors can be generated, iteratively
selecting a boresight crater from the list of potential boresight craters. Figure 6.4, Figure 6.5, Figure
6.6, and Figure 6.7 demonstrate the generation of these pattern vectors. Equation 6.2, Equation 6.3,
Equation 6.4, and Equation 6.5 give the pattern vectors for each of these cases, respectively. The

process of generating these pattern vectors is detailed in section Chapter 4.

! Also Figure 5.16
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Crater #1: (215 22.288 310 20.384 470 33376 517 18.144)

Equation 6.2
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Crater #2: <209 22.288 295 12.544 465 33.376 512 18.144 544 11.872)

Equation 6.3
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Crater #3: (111 22.288)

Equation 6.4
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Figure 6.7. Signature Generation for Example Data Point Boresight #4.

Crater #4: (471 22.288)

Equation 6.5

These four pattern vectors — in combination with each other — form the components to the image
signature. However, in order to reference each pattern vector to its boresight crater, each vector must
include the list number and location in the original image of the boresight crater. Then, each of these
pattern vectors can be appended as a new row in the signature matrix. Equation 6.6 is the signature

matrix for the image given in Figure 6.3.
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1 -0.3281 -0.1055 215
2 -04922 0.0703 209
3 02578 -0.4805 111
4 04297 -0.3867 471

22.288
22.288
22.288
22.288

310
295
0
0

20.384 470 33.376 517 18.144 0 0 |
12.544 465 33.376 512 18.144 544 11.872
0 0 0 0 0 0 0
0 0 0 0 0 0 0 |

Equation 6.6

This example demonstrates the process for developing the image signature from individual pattern

vectors. After being generated, the signature will be used to correlate the craters within an image to a

location on the lunar surface.

6.2 The Crater Database

To this point, the discussion of the crater matching routine has focused upon the sensor image.

However, the crater database is also a critical element in the correlation process. The crater database

stores the pattern vectors for each crater on the lunar surface as well as the absolute position of these

craters. By correlating the pattern vectors from a given sensor image to the database, the absolute

location of the sensor image can be determined.

This section will examine the generation of the database and the format in which the database is

stored.

6.2.1 Generation of the Database

The generation of the database is very similar to the generation of the image signature, which is

described in section 0. The main difference between database generation and the signature

determination lies in the method of obtaining original image. For signature determination, the image

195



1s given as an input from the sensors. However, for the database generation, the image must be

developed using simulated or previously recorded lunar data.

For the author’s implementation of the crater matching routine, the images necessary for the

generation of a lunar database were based upon imagery of the lunar surface taken on the Deep Space
Program Science Experiment’ mission in 1994. The imagery from this mission allows a sensor image
to be ‘simulated’ by selecting the data from the mission imagery that would be visible to a camera at a

given altitude and position with a defined field-of-view.

The database generation can be accomplished in several steps.

—

Select a desired camera location.

2. Isolate the craters that lie within the field of view of the camera.

3. Generate the pattern vectors for all potential boresight craters in the image.

4. Store the pattern vectors for future correlation to sensor image craters.

5. Repeat steps 1 - 4, selecting a new camera location and storing the information to the same

database.

For a complete database of craters on the lunar surface, the selected camera locations become crucial.
The camera location must be specified such that a pattern vector is generated for every crater on the
lunar surface. Therefore, it is important that the images overlap each other so that every crater is

more than a pattern radius distance from the edge of an image for at least one camera location.

The database formed for analytic purposes does not cover the entire lunar surface. Rather, the
database is limited to latitude bands. These bands are based upon where the available imagery of the
lunar surface is of high enough quality to allow craters to be recognized from the image easily.

Therefore, the database formation requires user-defined latitude and longitude bounds. These factors

i See the footnote for section 2.2 for further details.
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define the outer extent of the database that is formed for these analyses. All the sensor images used in
the analysis of the crater matching routine must fall within these bounds in order to correlate properly

with the crater database. For these analyses, the latitude bands of

lat, ={ [-80 -50]', [s0 so]'}
Equation 6.7

will be used.

In addition, it becomes important to filter the pattern vectors generated for the database to ensure that
if the same crater is selected as a boresight crater from two separate images, that the pattern vector is
only stored once for that crater. This will ensure that the database does not include duplicate copies

of the pattern vector for a single crater.

Figure 6.8 presents the process of generating the crater database. The database generation calls upon

the process of determining an image signature, which is presented in section 0.

The database must be generated with the same initial conditions as those that will be used in the

signature determination. Specifically, the field of view ( fov), the camera altitude (alt), the pattern

radius (PR ), the buffer radius (BR), and the grid size (g) must be the same for both the signature

and database generation processes. The mitigation of this requirement will be discussed in the

author’s recommendations for future work in Chapter 8.

The database pattern vectors could easily be stored in a format similar to the format of the signatures,
simply as a matrix of pattern vectors. However, this format is prohibitive in terms of the final
database size as well as in limiting the speed of correlation. Instead, the database will be stored as a
look-up table referenced by the column number of the uncondensed pattern vector. This storage
format of the database is markedly different than that of the signature. It will be presented in the

following section, as well as a more detailed explanation for the utility of this format.
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Figure 6.8. Overview of the Database Generation Process.

6.2.2 The Look-Up Table

The lunar database can be efficiently stored as a look-up table without sacrificing any data contained
within the pattern vector. This section will examine the process for storing the data as a look-up

table, the advantages and disadvantages of the look-up table, and some sparsity considerations that

allow the size of the database to be reduced significantly.

6.2.2.1 Storing the Data

The process of storing the database as a look-up table begins with the generation of the first database

pattern vector. This condensed pattern vector will indicate that one or more pattern vector cells are

‘full’. For example, perhaps the first condensed pattern vector is
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(4 1265 19 234 32 567 63 8.33)

Equation 6.8

This condensed pattern vector indicates that cells {4 19 32 63} are “full’. For each “full’ cell, a

unique crater identifier and the crater radius will be appended to the end of the row that corresponds

to the column number of the uncondensed pattern vector cell that is ‘full’. Assuming that the pattern

vector in Equation 6.8 is the first pattern vector to be formed in the process of database generation,

the look-up table will be

19
32

63

1.01 12.65
1.01 234
1.01 5.67
1.01 8.33

Equation 6.9

Equation 6.9 assumes that the unique crater identifier is 1.01 and the equation only shows the rows in

the look-up table that have entries. If the next database pattern vector for this example is

(5 327 32 5.09)

Equation 6.10

and the unique crater identifier for this pattern vector is 1.02, then the look-up table will be
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1.01 12.65
5 102 327

19 101 234
32 1.0l 5.67 1.02 5.09

63 1.01 833

Equation 6.11
In similar fashion, as each database pattern vector is formed, the unique crater identifier and the crater

radius will be appended to the end of the row indicated by the pattern vector elements. In general, the

look-up table will have g* rows with a series of crater identifiers and crater radii in each row.

In addition to the look-up table, another reference table is necessary. This table will contain a list of
the unique crater identifiers and the absolute location in lunar latitude and longitude that corresponds
to each crater. This table will allow the correlation of sensor image craters with the database to

determine the latitude and longitude of each crater in the sensor image.

6.2.2.2 Advantages & Disadvantages

The database will be stored as a look-up table for several reasons. The two most significant
considerations ~ processing speed and file size — were already mentioned. The look-up table has
distinct advantages in both of these areas over other storage methods. Due to the format of the look-
up table, the pattern vector is not stored as an entire vector. Instead, the look-up table contains a list
of all pattern vectors that have a ‘full’ grid matrix cell for the first cell, for the second cell, and so on

for every grid matrix cell. By referencing the look-up table to the grid matrix cells, the number of
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rows in the look-up table is limited to the number of grid matrix cells. As a result of the storage of

the database as a look-up table, the file size of the database is greatly reduced.

In addition, the look-up table format allows the correlation to be accomplished very quickly. By
simply looking to see which craters have ‘full’ grid cells in all of the cells that the signature pattern
vectors have ‘full’ cells, a correlation can be established very quickly. If the database pattern vectors
were stored simply as a vector rather than a look-up table, each correlation would require a

comparison between a signature pattern vector and all the database pattern vectors.

The main disadvantage of the look-up table format for storage of the database is that the pattern
vectors are no longer visible as pattern vectors. In order to derive the pattern vector for a given crater
from the database, each row of the database must be searched to determine if that grid cell was ‘full’
for the given crater. However, this disadvantage is relatively inconsequential, as the database pattern

vectors are not needed as vectors by the crater matching routine.

These reasons merit the use of the look-up table as the preferred database format.

6.2.2.3 Utilizing Sparsity
Section 4.3.3 considers the sparsity of the pattern vector and uses the condensed pattern vector format
to reduce the size of the image signature. Since the database is stored as a look-up table, using the
condensed pattern vector format during the crater matching routine has no effect on the database size.

However, there are several means of compressing the size of the database.

Consider the grid overlaid upon the example crater pattern from Plot B of Figure 4.15, which is the

basis for Figure 6.9 below.
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Figure 6.9. Database Compression Using the Circular Nature
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The grid cells that lie outside of the pattern radius but still within the bounds of the sensor image have
been shaded in Figure 6.9. For a 24 x 24 grid, these cells will always be outside of the pattern
radius.’ As a result, there will never be any crater centers that lie within these cells that will be
included in the pattern vector. In other words, these grid cells will always be ‘unseen’ due to the size
of the pattern radius. When the look-up table is being formed, the rows that correspond to these

shaded elements will never have any entries because they are always outside of the pattern radius.

If these shaded grid cells are ignored in the formation of a pattern vector, a significant amount of
memory saving may be realized in the look-up table. If the ‘unseen’ cells are ignored, the rows that
are concatenated to form the uncondensed pattern vector by Equation 4.9 will be of varying lengths,
and the rows themselves will not include any of the shaded elements from the grid matrix. In this

case, the first grid matrix row to be added to the uncondensed pattern vector will consist of 10

i In general, approximately 21.5% of the area enclosed by a square of side 2 r is not enclosed in an inscribed
circle of radius r .
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elements. The second row to be added will consist of 14 elements, the third row 16 elements, and so
on. (Refer to Figure 6.9.) If the shaded cells are ignored in the formation of the pattern vector from a
24 x 24 grid matrix, a total of 92 elements of the pattern vector will be eliminated without losing any
pattern information. As a result, 92 rows of the look-up table will be eliminated as well, which is
approximately a 16% reduction in the number of rows in the look-up table. This reduction in the
number of rows included in the look-up table may cause a significant reduction in the file size of the

database.

The pattern vector formed using this compression technique will be referred to as a ‘circular
condensed pattern vector’. For the remainder of this paper, a reference to a pattern vector will assume

that the pattern vector is a circular condensed pattern vector.

In forming a pattern vector, the closest neighboring crater has been excluded from the pattern all
along. Although the closest neighbor could be of benefit in the pattern formed for each boresight
crater, the closest neighboring crater always is rotated to the positive x-axis to the right of the
boresight (see section 4.2). As a result, if the closest neighbor is included in the pattern vector, the
look-up columns that correspond to the grid cells to the right of the principle point will artificially
have significantly more entries than other rows in the look-up table. This will increase overall file
size of the look-up table by increasing the number of columns in the look-up table. Therefore, the
author has chosen to remove to the closest neighboring crater (and the boresight crater) from pattern

vector formation.

6.2.3 Database Characteristics
In the generation of the database, the author noted that the grid cells immediately surrounding the
center point of the grid have a much higher frequency of being ‘full’ than other grid cells. As a result,
the rows of the look-up table that correspond to these four grid cells are much longer than the rest of

the rows in the look-up table. Fora 24 x 24 grid matrix, the four grid cells that would have a higher
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occurrence of being ‘full’ would be the (row column) pairs (12 12), (12 13), (13 12), and

(1 3 13) . For the database generated by the author, the average row in these four locations was

more than 70% greater in length than the average size of any of the other rows in the look-up table.’

This increase in length is most likely due to the fact that craters are often found clustered together on
the lunar surface. As a result, the selection of one of these clustered craters as a boresight heightens

the likelihood of craters being ‘seen’ in the cells surrounding the boresight.

Figure 6.10 shows the length of each row of the look-up table. For this plot, each row of the look-up
table was correlated to the original grid matrix cell to which it corresponds, and the length of the row

was plotted on the vertical axis.

Look-Up Table:
Row Size of the Look-Up Table

Look-Up Table Row Size

LUT Row Size.

Gnd Matnx Column

Figure 6.10. Row Size Analysis of the Look-Up Table.

" The average size of these four grid cells was 2094.5 elements, while the average size of the other rows was

1225.8 elements.
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The center grid cells are drastically higher than the other cells. This effect may also add significantly
to the size of the look-up table. There are many possible ways of counteracting this effect — for
example, the four central grid cells could easily be ignored (although this would result in ignoring
valuable pattern data). However, the author has chosen not to counteract this effect, as initial results
indicate that removing these longer rows does not have enough effect on the size of the look-up table

to warrant the loss of pattern data.

6.3 The Correlation Algorithm

This chapter has covered several topics in the development of the crater matching routine, including
the determination of a pattern vector, the concept of an image signature, and the generation of a
database of lunar crater patterns. The final essential topic in the crater matching routine is the

algorithm which allows correlation between an image signature and the crater database.

The task of the correlation algorithm is to compare the pattern vectors in an image signature from the
sensors with the database of lunar crater patterns, and to determine what area of the lunar surface
appears in the original sensor image. Although the objective of the correlation algorithm seems rather
mundane, the actual implementation of the correlation is complicated by the size of the lunar crater

database.

The correlation technique implemented for the purposes of the crater matching routine is relatively
simple. However, it does allow for successful correlation between the image signature and the crater

database. This process is shown in Figure 6.11.
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Figure 6.11. Overview of the Crater Matching Process.

Figure 6.11 includes the generation of an image signature for a given sensor image, which precedes
any correlation efforts. The correlation task is relatively simple. The algorithm presented here is
functional; however, the author realizes that significant benefit might be realized with a more intricate
correlation process. Several recommendations for improvements to this correlation algorithm — or the
implementation of an entirely different correlation algorithm — will be made in the recommendation

for future work, section 8.3.

The correlation algorithm assumes the input of an image signature and the lunar crater database. For

a given image signature, assume that the k" pattern vector from the signature indicates that the /"

circular condensed grid cell is ‘full’. The correlation algorithm will compare the radius associated



with the I circular condensed grid cell to all the radii in the I™ row of the look-up table'. If any of
the radii in the " row of the look-up table match the radius of the / " circular condensed grid cell

within a user-specified error margin (81 ) , the crater identifier for the crater with that radius is

recorded from the look-up table as a potential match to the k™ pattern vector. This process is

repeated for all the ‘full’ grid cells of the k " pattern vector.

Once all the “full’ grid cells for the k™ pattern vector have been compared to the crater database in
this way, there will usually be many crater identifiers that were recorded as potential matches. The
crater identifiers for these potential matches are then sorted to determine the potential match that
appears with the highest frequency. Consider only the most frequent potential match. This potential
match must meet two requirements to be considered a match between the crater and the pattern
vector. First, the frequency associated with this potential match must be above a second user-defined
threshold (82) relative to the total number of pattern vectors in the signature. Secondly, the ratio of
the frequency associated with this potential match to the frequency of the second most frequent

potential match must be greater than a third user-defined threshold (83 ) If these two conditions are

met, the potential match is recorded as the crater that correlates to the k th pattern vector. In this

manner, a pattern vector is correlated to a single crater from the lunar crater database.

This process for matching a pattern vector to a crater from the lunar database is repeated for all m
pattern vectors contained in the image signature. The result will be m craters that correlate to the
pattern vectors in the image signature. Ideally, all m of these craters will lie in a tightly confined
area of the lunar surface, which will be the same as the area that appears in the original sensor image.

In practice, however, the correlation process is not perfect. Therefore, a third user-defined threshold

(64) defines the percentage of the m craters that must lie within an area that is the size of the field of

' Which corresponds to the [ * circular condensed grid cell
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view of the camera for the correlation to be successful. If the correlation is successful, the latitude
and longitude of the craters that lie within this area are recorded as the actual location of these craters

in the original image.

In this correlation process, there are three user-defined error bounds. These are

1. &, - the amount of error acceptable in the radius match between the signature pattern vector
cell and the look-up table.

2. &, -the ratio that defines how often a given crater identifier must appear in the overall
matching of the signature to the look-up table relative to the total number of pattern vectors.
This threshold requires that the correlation between a signature and the database is strong

enough to base a position match upon. The strength of correlation is measured by the number

of component pattern vectors that match the database and determine the same image location.
3. &, - the minimum ratio between the most frequent and the second most frequent craters for a

given pattern vector. This threshold ensures that the match between the signature pattern

vector and the database is clearly a definitive match in comparison to the second best match.
4. &, -the ratio that defines how many correlated craters must lie within an area the size of the

camera’s field of view in order to consider the correlation of the signature to the lunar surface
a success. This threshold essentially requires the correlation between pattern vectors in the
image signature and those in the database to be grouped closely together on the lunar surface,

or else the position match is inconclusive.

These error bounds are set by the user. The higher these bounds are set, the more difficult it is to
generate a successful match between a given image and the lunar database. On the other hand, if the

error bounds are set higher, the probability of an erroneous match is decreased.
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These bounds are intended to prevent any significant number of false positions matches to occur by
requiring the correlation to surpass these measures of the ‘fit’ of the correlation. Depending on how
these correlation factors are set, any level of accuracy can be required of the crater matching routine
before a position fix is generated. It is always preferable to have the crater matching routine fail to

find a position match rather than to generate a false position match.'

After a successful correlation, the latitude and longitude of the craters within the original sensor
image can be outputted to an algorithm that can calculate the pose of the spacecraft. These calculated
values for the spacecraft pose can then be used to update the inertial guidance system of the

spacecraft."

' This is because false matches can have a significant impact on generating navigational updates for the spacecrafts
pose. Therefore, it is better to fail to match than to generate a false match.

" The author developed the crater matching routine for this purpose at the Charles Stark Draper Laboratory in
Cambridge MA., Draper Labs use the crater matching routine as just one component in a larger lunar landing
simulation, which is comprised of a simulated lunar environment, an algorithm that identifies the craters from a
sensor image, the crater matching routine, the pose estimation algorithm, and a Kalman filter to incorporate the
pose updates.
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Chapter 7
Implementation and
Analysis of
the Crater Matching

Routine

In order to characterize the performance of the crater matching routine, it was coded and several error
analyses performed. In this section, the coding of the crater matching routine will first be discussed.
Then the results of several of the analyses performed will be presented below, as well as the inputs to

initialize these analyses.



7.1 Coding of the Crater Matching Routine

Although the mathematics of the crater matching routine is rather rudimentary, the procedural nature
of the routine is quite involved. The coding of the crater matching routine naturally inherits this
procedural nature, which requires the execution of steps and substeps in a very specific order. In
addition, since the signature formation components of the routine are required to be compatible with
both the crater matching and the database generation processes.  As a result, the coding of the

matching routine is rather complex and merits attention here.

The coding of the crater matching routine can be broken into three major subroutines: the signature
generation process, the formation of a crater database, and the crater match / correlation process.
These subroutines are not independent of each other. As indicated in Figure 7.1, there is interaction
between all of these processes. The interaction is indicated by the arrow s in the figure, which show

the flow of the crater matching routine.

Sequentially, the first process to occur is the formation of the crater database.' This database
formation occurs on the ground, before the spacecraft launches. The database(s) that are formed as a
result of this process are then stored onboard the spacecraft for reference during the correlation
process. The database formation iteratively calls the signature generation process, once for each

simulated image of the lunar surface.

" In the form of look-up tables.
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The Crater Matching System Overview
Process Interactions

. Database Formation Crater Matching / Correlation
. (Onthe Ground) (Onboard the Spacecraft)
Select Desired ‘
. Image Position Sensor Image

Simulate Image

Figure 7.1'. Reprint Overview of the Interactions Between the
Crater Matching Routine Processes.

The crater matching / correlation process occurs onboard the spacecraft in real-time. The crater
matching / correlation subroutine calls the signature generation process as well, but just a single time.
The signature that is passed back to the subroutine allows the correlation process to match the

signature with the crater database that is stored in the onboard computer’s memory.

The final significant subroutine is the signature generation process itself. The signature generation
process entails two other important components; the pattern vector determination and the perspective
transform. However, both of these components always fall within the context of signature generation,

so they will not be considered on-par with the three major subroutines of the crater matching routine.

The generation of the image signature is iterative as well, requiring the determination of a pattern

" Also Figure 3.2
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vector for each potential boresight crater from the original image. The output of the signature
generation process is the image signature, containing the pattern vector for every potential boresight

in the image.

To clarify, there are three iterative processes in the crater matching routine. These are:

1. The signature generation process iteratively calls the pattern vector determination function,
once for every potential boresight crater in a given image.

2. The process of database formation iteratively calls the signature generation function, once for
every simulated image of the lunar surface that is determined as input for the database
formation. This loop can include thousands of iterations, depending primarily upon the field-
of-view of the camera, its altitude, and the database latitude and longitude bounds.

3. The analysis of the crater matching routine requires an iterative process. This process selects
a sensor image and conducts an iteration of the matching routine to compile the results.
These analyses are not technically a part of the crater matching routine; however, they are
included as an iterative process because the analysis functionality is programmed into the

routine itself. This iterative process is not indicated in Figure 7.1,

The author coded the crater matching routine as a series of callable functions. This allows the
database formation subroutine and the crater matching / correlation subroutine to both invoke the
same callable functions to perform common tasks when possible. For example, the signature
generation subroutine is coded as a callable function. This allows both the database and crater
matching subroutines to call the signature generation function, providing an image and obtaining an
image signature from the function. The final crater matching routine consists of almost forty callable

functions.

In addition, the formation of the crater database requires the simulation of an image of the lunar

surface. This process was addressed briefly in section 6.2.1. The simulation of this image is
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accomplished by using data from the Deep Space Program Science Experiment to map the lunar
surface. This data includes digital imagery of the surface. However, due to the duration of the
mapping mission, the imagery was taken with a variety of sun angles relative to the lunar surface and
the camera. Given a desired lunar surface area, a routine developed by the Charles Stark Draper
Laboratory' in 2006-2007 allows a composite image to be formed and the craters within this image to
be identified as craters. Further discussion of this routine is outside the scope of this paper. Suffice it

to say that this routine effectively simulates the images required for database formation.

With these considerations taken into account, the remainder of the coding of the crater matching
routine occurred in a fairly standard fashion. The coding of the routine used for the analyses of
sections 7.2 and 7.3 does have room for improvement. Rather than presenting results based upon a
final version of the code, the results presented in these sections are intended to demonstrate the
functionality of the crater matching routine and to encourage further examination of and improvement

upon the crater matching routine.

The crater matching routine was coded in Matlab version 7.1 revision 14."

! Draper Labs, 555 Technology Square, Cambridge MA 02139-3563
 Matlab is an engineering language that facilitates simple matrix math and data processing. The language has a

significant number of callable functions to perform standard operations.
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7.2 Crater Matching Routine Analysis

Initialization

The inputs, outputs, and constants for the analysis of the crater matching routine are listed below.

Initial Conditions:

1. Spacecraft altitude: alt =100 km

2. Camera field-of-view: fov =90°

3. Camera resolution: res =512 pixels

4. Camera attitude: art = [0 0 0]°

5. Pattern Radius: PR =65 km

6. Buffer Radius: BR=6.5 km

7. Grid Number: g=24

8. Closest Neighbor Number: m=1

9. Latitude Bounds: lat, ={ [-80 -5s0]', [50 sol}

10. Longitude Bounds: long, ={ [0 360]°}
Inputs:

1. Sensor image data points in the original image frame.

2. Database of stored pattern vectors for lunar craters.
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Algorithm Constants:

1. Radius of the Moon: r =17374 km

m

User-Defined Constants:

1. Correlation Factor 1: & =2 pixels

2. Correlation Factor 2: £, =075

3. Correlation Factor 4: £ =0.75

4. Correlation Factor 3: £,=0.80

5. Minimum Crater Radius Limit: RadLim = 0.8 km
Outputs:

1. Latitude and longitude of the position match between the sensor image and the crater

database.

The pattern radius and buffer radius in these initializations differ from the pattern and buffer radii in
the example problem presented throughout this chapter thus far. These factors are defined by the user
and indicate the amount of data to be included in the pattern vectors. The author chose to increase the
pattern radius and slightly decrease the buffer radius in comparison to the example problem. The
increased pattern radius will result in more data being included within each pattern vector, but fewer
potential boresights for any given image.' The decreased buffer radius will result in a higher potential
for rotational error resulting from the closest neighbor’s position but might also allow pattern vectors

to be formed for craters that have very few craters within the pattern radius.

" This results from the stipulation that any potential boresight must lie a distance of PR or greater from any edge of
the image. A larger pattern radius indicates that fewer craters will meet this requirement.
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Several other user-defined constants are included as well. The four correlation factors introduced and
detailed in section 6.3 are assigned a value here. These factors define how precise the correlation
between the sensor image and the crater database must be in order to consider the correlation an
actual match. In addition, the minimum crater radius limit is defined. This initialization will allow

the crater matching routine to disregard craters that have a very small radius.

Analyses are conducted for a spacecraft with a camera that is orbiting the Moon at an altitude of

100 km with perfect attitude. There is a camera on this spacecraft that has a 90° field-of view and a
resolution of 512 pixels. The Moon is considered a spherical body with a radius of 1734.7 km
which is a generally accepted value for the lunar radius.”* This spacecraft will take a variety of
pictures of the lunar surface in the latitude bands of [— 80 - 50]° and [50 80]°. Individually, the
crater matching routine will attempt to correlate these pictures with the crater database that was
formed of craters in the same area.' The correlation attempts will use a pattern radius of 65 km and

a buffer radius of 6.5 km . The grid overlay will have 24 rows and the same number of columns.

Finally, the correlation factors are

{e, =2 pixels) (£,=075) (e,=075) (e, =08)}
Equation 7.1

and the minimum radius that a crater must have to be considered in the correlation algorithm is

0.8 km.

These initial conditions represent a plausible situation encountered by a spacecraft attempting to use

the lunar surface for a terrain relative position update of the spacecraft’s inertial guidance systems.

" This spacecraft does not fly on a trajectory. Rather, the ‘simulated spacecraft’ parameters were used to generate
representative sensor images that are randomly distributed between the latitude and longitude bounds.
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Noise added to the sensor images to determine the crater matching routine’s response to error will be

discussed with each analysis below,

7.3 Crater Matching Routine Analysis Results

The analysis of the crater matching routine is conducted in four parts; an examination of the causes
for the routine to not generate a positive position match, an analysis of the generation of positive
position matches that are incorrect, a presentation of the processing speed of the routine, and an

analysis of the crater matching routine’s response to error in the sensor image.

Each of these analyses will use the initial conditions presented in section 7.2. Additional

considerations will be present as necessary for each analysis.

For all of these cases, a successful position correlation occurs when the true latitude and longitude of
the sensor image is matched to the latitude and longitude of the sensor image as determined by the
crater matching process. The true latitude and longitude are known because the sensor input is

simulated based upon a desired camera position, in latitude, longitude, and altitude.

7.3.1 Inconclusive Algorithm Results: Causes for No Match Possible
As a component of a system intended to update the inertial guidance system of a spacecraft, the
fidelity of the crater matching routine must be very high. In other words, the position correlation
produced by the crater matching routine must be generated with high confidence in the veracity of the
match. To ensure a minimal frequency of incorrect position correlation, the correlation factors of

section 7.2 were set to rather stringent levels for the analyses. These factors serve to ensure that the
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match between an image signature and the database is a very good match before allowing a position

correlation is generated from the match.

Since these correlation factors effectively weed out weak matches between an image signature and
the crater database, it is informative to consider the matches that are weeded out. For this analysis, a
crater matching attempt will be considered an attempt to match a single sensor image with the crater

database. There are several reasons that a crater matching attempt might fail. These are:

1. Inability to generate a signature from the sensor image.
a. Because there were no craters within the pattern radius for all / some pattern vectors.
b. Because there were too few craters within the pattern radius for all / some pattern vectors.
c. Because there were no craters outside the buffer radius for all / some pattern vectors.

2. The attempt to match the signature to the database was inconclusive

a. Because the £, correlation threshold was not met for all / some pattern vectors. The &,

threshold requires that the correlation between a signature and the database is strong

enough to base a position match upon.
b. Because the &, correlation threshold was not met for all / some pattern vectors. This

threshold ensures that the match between the signature pattern vector and the database is
clearly a definitive match in comparison to the second best match.

¢. Because the £, correlation threshold was not met for the signature.

d. Because no database entries even closely matched a pattern vector from the signature.
This threshold essentially requires the correlation between pattern vectors in the image
signature and those in the database to be grouped closely together on the lunar surface, or

else the position match is inconclusive.
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Although an image signature may have been generated, there is still the possibility that attempts to
generate pattern vectors for potential boresight craters within the image were not successful. Reasons

that the signature generation might have succeeded but a pattern vector generation failed are:

1. Pattern vector generation failed because there were no craters within the pattern radius.
2. Pattern vector generation failed because there were too few craters within the pattern radius.

3. Pattern vector generation failed because there were no craters outside the buffer radius.

Even though the matching attempt may have succeeded, there is the possibility that individual pattern
vectors could not be matched to the crater database. The reasons that this might have occurred are

fewer:

1. The pattern vector failed to correlate because the £, correlation threshold was not met. The

£, threshold requires that the correlation between a signature and the database 1s strong
enough to base a position match upon.

2. The pattern vector failed to correlate because the £, correlation threshold was not met. The

£, threshold ensures that the match between the signature pattern vector and the database is

clearly a definitive match in comparison to the second best match.

All of these possibilities result in an inconclusive crater matching attempt. However, all of these
cases are recognizable to the routine, and the routine does not output a position correlation.

Therefore, any of these cases will not result in a navigational update. Although the goal of the crater
matching routine is to generate navigational updates, it is far better to have inconclusive crater
matching routine iterations than to have position matches that are false. As a result, the correlation
factors were set high enough to prevent as many false position matches as possible without generating

too many inconclusive matches.



The data presented here is based upon 1000 iterations of the crater matching routine.' For every
iteration, the routine attempted to correlate a sensor image to the crater database, and the results were

recorded. No noise is added to the sensor image data points for this analysis.

Abbreviations that will be used in the tables and figures throughout the rest of the analysis section are

listed in Table B-2 in Appendix B.

Table 7-1 presents several general statistics on the iterations for this analysis.

Table 7-1. General Success / Failure Statistics from
the Analysis of the Routine.

# of iterations: 1000

# of unsuitable images: 151 15.1%

# of correlation attempts: 849 84.9%
# of successful signature gen.: 825 97.17%"
# of signature gen. failure: 24 2.83%'
# of correct position match: 742 87.4%'
# of incorrect position match: 0 0%
# of inconclusive position match: | 83 9.78%'

From Table 7-1, the number of correlation attempts was less than the 1000 iterations for which the
data analysis was initialized. For some of these 1000 iterations, there were either no craters within
the image or no suitable boresight craters within the image. Therefore, the correlation attempt was
terminated at that point. As a result, the number of correlation attempts is less than 1000. For all the

following percentages in bold type for the remainder of this section, the percentage will be in

reference to the number of correlation attempts (849).

The indentation of the left column in Table 7-1 is intended to indicate the hierarchy of the

frequencies. Frequencies listed for the correct / incorrect / inconclusive position matches are the

' The data presented in scctions 7.3.1, 7.3.2, and 7.3.3 are the result of the same set of 1000 iterations.
" Percent relative to the total number of correlation attempts.
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percentages relative to the number of correlation attempts (849). The same is true of the signature
generation statistics from the same table. Although this hierarchy scheme does not affect the data in
Table 7-1 significantly, it is pertinent to Table 7-2, Table 7-3, Table 7-4, and Table 7-5. For these
same tables, all the numeric entries indicate if they are counting the number or signatures or pattern
vectors for a given case. For those entries that are counting pattern vectors, the percentages were
determined by tallying all counts at the specified hierarchy and determining the percentages relative
to that total. For example, rows 2 thru 4 in Table 7-2 are all at the same hierarchy and are counting
pattern vectors. Therefore, the percentages in these rows are determined by tallying column 2 for

these rows (which yields 31 pattern vectors) and determining the percentages relative to this total

(}_ =0.0968 28 =0.9032 9 = 0.0).
31 31 31

Table 7-2 shows the list of reasons that the crater matching routine might fail to correlate to a

position, and the frequency with which that scenario occurred.

Table 7-2. Reasons and Frequencies the Routine Failed to Generate a Position Match.

Inability to generate a signature from the sensor image: 24 sigs. 2.83%'
Because there were no craters w/in the PR for all / some PVs: 3 Pvs 9.68%
Because there were too few craters w/in the PR for all / some PVs: 28 pvs 90.32%
Because there were no craters outside the BR for all / some PVs: 0 pvs 0%

The attempt to match the signature to the DB was inconclusive: 83 sigs. 9.78%'
Because the £, or £, correlation thresholds were not met for the signature: | 83 sigs 100%

Because the £, correlation threshold was not met for all / some PVs: 0 pvs 0%

Because the &, correlation threshold was not met for all / some PVs: 371 pvs | 100%
Because the £, correlation threshold was not met for the signature: 0 sigs. 0%
Because no DB entries even closely matched any PV from the signature: 0 sigs. 0%

Table 7-3 shows the reasons why a signature generation might succeed while one or more component

pattern generation attempts failed, and the frequency with which each occurred.

' Percent relative to the total number of correlation attempts.
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Table 7-3. Reasons and Frequencies the Routine Generated a Signature
but a Component Patter Vector Generation Failed.

Signature gen. succeeded but at least one component PV gen. failed: 8pvs | 0.94%'
Pattern vector gen. failed because there were no craters within the PR: 0 pvs 0%
Pattern vector gen. failed because there were too few craters w/in the PR: 9 Pvs 100%
Pattern vector gen. failed because there were no craters outside the BR: 0 pvs 0%

Table 7-4 shows the reasons why a matching attempt might succeed while at least one component

pattern vector matching attempt failed, and the frequency with which each occurred.

Table 7-4. Reasons and Frequencies the Routine Successfully Determined a
Position Match but a Component Patter Vector Matched Incorrectly.

Matching attempt success but at least one component PV matching failure: | 87 pvs 10.25%"

The PV failed to correlate because the £, correlation threshold was not met: 0 pvs 0%

The PV failed to correlate because the &, correlation threshold was not met: | 127 Pvs 100%

From Table 7-1, 87.4% of all crater matching attempts successfully identified the correct position of
the image. Given the stringency of the correlation factors — this is a definite success. Perhaps more
promising is that there were no position matches that falsely identified the position of the sensor
image. Given that there was no noise added for this analysis, this is not wholly unexpected.

However, it does indicate that the pattern vectors are unique from one another for the given database.

In addition there are several other trends that merit attention. Table 7-2 lists that 100% of the
failures to generate signatures result from images with too few craters within the pattern radius. This
indicates that it may be appropriate to screen the sensor images for a minimum number of total craters
before passing the images to the crater matching routine. These screening operations would save
processing time for spacecraft computers and identify images that are likely to have very sparse

pattern vectors anyway — which are ill-suited for correlation.

" Percent relative to the total number of correlation attempts.




The second noteworthy trend is that 100% of the failed correlation attempts were due to the £,
threshold not being met. Section 6.3 explains that £, is the minimum ratio between the most

frequent and the second most frequent craters for a given pattern vector. This indicates that the
correlation attempts fail most frequently — by a huge percentage — because there are other pattern
vectors in the crater database that match with the pattern vectors for the sensor image almost as well

as the selected match.

Finally, there are also signatures that were successfully generated that had one or more component
pattern vectors fail to generate. Likewise, there are successful correlation attempts that had one or

more component pattern vector matching attempts that failed. The reasons for the component failures
in both cases were too few craters within the pattern radius and failure to meet the £; correlation

threshold, respectively. Despite the failure of these individual components, the overall crater

matching routine succeeded in generating a position correlation in each of these cases.

7.3.2 Failure of the Algorithm: Incorrect Position Correlation
Although the correlation factors can be modified to minimize false position matches, there is always
the possibility that an image signature will be matched to the crater database and result in an incorrect

position correlation. However, the possibility of this occurrence is mitigated by many factors.

1. The correlation factors are set to require a very good match between the database and the
signature.

2. The signature usually contains multiple pattern vectors, which decreases the impact of a
single pattern vector that is matched incorrectly.

3. Each pattern vector usually contains multiple grid cells which are ‘filled’” by the presence of
other crater centers. As a result, pattern vectors for individual boresight craters are rarely

similar to one another.



This list also draws attention to two tendencies that will increase the frequency of an incorrect

position correlation.

1. If the signature contains only one — or a very few — pattern vectors, the likelihood of a false
match increases.
2. If the pattern vector only contains one — or a very few — ‘full’ grid cells, it is much more

likely that the pattern vector may be matched incorrectly to the database.

If the signature contains only one pattern vector, a false match between that vector and the database
will result in a false position correlation. With fewer position vectors, it becomes easier for a false
match between one vector and the database to sway the overall success of the position correlation.
Likewise, if a position vector only has one ‘full’ grid cell, even a slight amount of error can cause a
100% correlation to the incorrect database entry. This is due to the fact that the error will only need

to affect a single grid cell — and can thereby completely change the pattern vector.

This analysis uses a grid size of g =24 . Therefore, there are a total of 24° =576 grid cells and

2°7% =2.47-10'" possible pattern vectors. In other words, there are almost a trillion raised to the
15

quadrillion (1012 )m possible pattern vectors. That is far more than a googol of possibilities!

However, with only one grid cell ‘full’ in a pattern vector — the number of possibilities is severely

limited. The number of possibilities becomes the combination C;’® =576 . With two ‘full grid

cells, C;" =1.66-10° . Due to the large number of pattern vector possibilities — even with only two

‘full’ grid cells, it is highly unlikely that image noise will change a pattern vector from that image into

a pattern vector of another image. That is, with one exception. When there is only one “full’ grid

n!
K n—k)

size 1 without the same clement of 71 being able to be selected more than once for a given group.

1 n

X . It represents the number of groups of k components that can be selected from a data set of
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cell, it is conceivable that image noise might affect this single ‘full’ cell enough to make the noisy

pattern vector exactly — or closely — identical to some other pattern vector.

Both of the cases which increase the potential for false position correlation can be warded off by
requiring more than one pattern vector in a given signature, and more than one ‘full’ grid cell in a
given pattern vector. However, the author has chosen not to implement these filters to allow the
effects of noise in the sensor image to be more apparent. These filters should be in place for an

operational version of the crater matching routine.

The data presented in Table 7-5 is based upon 1000 iterations of the crater matching routine.” For
every iteration, the routine attempted to correlate a sensor image to the crater database, and the results

were recorded. No noise is added to the sensor image data points for this analysis.

Table 7-5. Correct and Incorrect Position Matches.

# of correlation attempts: 849 sigs.
# of incorrect position matches: 0 sigs. 0%
# of correct position matches with at least one false component PV match: 87 pvs 10.25%

Although it makes analysis somewhat duller, the author is pleased that there were no incorrect
position matches for this analysis. As mentioned in the previous section, there were several times
when the correlation of individual pattern vectors failed. These failures were exclusively the result of

the &; threshold not being met.

7.3.3 Processing Speed Analysis
The crater matching routine is designed to work in conjunction with several other software
components to process sensor imagery and to generate a navigational update for the inertial guidance
system of the spacecraft. Due to the relatively short amount of time that entry, descent, and landing

requires, the process of modifying the spacecraft’s trajectory to account for the navigational updates

' The data presented in sections 7.3.1, 7.3.2, and 7.3.3 is the result of the same set of 1000 iterations.
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must occur close to real-time. Consequently, the crater matching routine must be able to generate
results in several seconds in order for the results to be useful. The requirements listed in section
3.2.1.1 state that the routine must be able to generate a position match in three seconds.' This will
allow enough time for ancillary program operations and still yield a navigational update in a

reasonable amount of time.

The analyses detailed below are performed using the crater matching routine programmed in Matlab
version 7.1 revision 14. The code was not optimized for processing speed and the computer language
is not intended for practical implementation. In addition, the code has many additional analysis and
graphing tools incorporated, which will not be present in the flight code. These additional features of
the code are necessary for the initial analysis of the code, but they also slow the overall processing
time of the routine. Despite these considerations, the analyses presented below still give some

indication of the order of magnitude for the speed of the routine.

The processing speed data presented here was generated from 1000 iterations of the crater matching
routine." For every iteration, the routine attempted to correlate a sensor image to the crater database,

and the results were recorded. No noise is added to the sensor image data points for this analysis.

Figure 7.2 presents the processing time of the routine as a function of the number of potential
boresight craters in the sensor image. The data distribution will also be fitted with a polynomial
curve to more precisely characterize the relationship between processing time and the number of

potential boresight craters in the sensor image.

" Time states as a benchmark performance time.
" The data presented in sections 7.3.1,7.3.2, and 7.3.3 is the result of the same sct of 1000 iterations.
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Processing Speed Analysis:
Processing Time vs. Number of BS Craters

Processing Time vs. Number of BS Craters
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Figure 7.2. Processing Time vs. the Number of Potential Boresight Craters
in the Sensor Image.

Figure 7.2 demonstrates that the processing time increases as a cubic in relation to the number of

potential boresight craters in the sensor image. The best-fit cubic to match the data distribution is

y=0.00061%* x> —0.012* x* +0.2* x — 0.36
Equation 7.2

For each desired boresight crater, a pattern vector must be generated and eventually correlated to the
crater database. Therefore, it is expected that the processing time increases as the number of
boresights increases. However, the processing time is not linear in relation to the number of
boresights. In considering possible reasons for the cubic relationship between these quantities, the
author returned to the code. The code for the routine includes many loop structures that are required
to iterate over the sensor data. As a result, the author believes that the additional number of potential
boresights causes a greater number of loop iterations for each boresight — thereby increasing the

overall processing time at a greater-than-linear rate.
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For the results presented above, the approximate processing time is presented for several
representative numbers of potential boresight craters. This processing time was estimated by the

cubic polynomial in Equation 7.2

Table 7-6. Processing Time vs. the Number of Potential
Boresight Craters in the Sensor Image.

Number of Desired Cubic Fit to the
BS Craters Processing Time (s)
5 042
10 1.05
15 2.00
18 291
20 3.72
25 6.67
30 11.31
35 18.09
40 2748

Based upon Equation 7.2, the crater matching routine can process a maximum of 18 potential

boresight craters and still remain within the 3 second processing time window.

The processing time is also dependent upon the total number of craters in the sensor image. Figure
7.3 presents the processing time as a function of the total number of craters in the original sensor
image. A polynomial fit more precisely characterizes the relationship between the processing time

and the total number of craters in the sensor image.
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Processing Speed Analysis:
Processing Time vs. Total Number of Craters
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Figure 7.3. Processing Time vs. the Number of Total Craters
in the Sensor Image.

Figure 7.3 demonstrates that the processing time is a cubic function of the total number of craters.

The best-fit' cubic polynomial to the data set of Figure 7.3 is

y =0.0000024 * x* — 0.00048 * x* +0.044 * x —0.72
Equation 7.3
Intuitively, there is a relationship between the number of potential boresight craters and the total
number of craters in a sensor image. As the number of total craters in a sensor image increases, there
will be more craters that fall near enough to the center of the image to be considered a potential
boresight crater. Therefore, the relationship between the processing time and the total number of
craters should be similar to the relationship between the processing time and the number of potential

boresight craters. The processing time is a cubic function of the number of potential boresight

" The best-fit polynomial will be determined by a least-squares approximation.
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craters, as noted previously. Therefore, the cubic relationship between the processing time and the

total number of craters makes sense.

Notice as well the residuals in Figure 7.3 and those in Figure 7.2. The residuals from the total
number of craters are very small initially, but then grow rather quickly. The residuals from the
number of potential boresight craters is slightly more diffuse initially, but tends to grow less quickly.
This indicates that the processing time has a greater dependency upon the number of potential
boresight craters than upon the total number of craters as the number of both increases. However, it
is difficult to determine which has a greater effect with lower number of potential boresight and total

craters.

For the results presented in Figure 7.3, the approximate processing time is presented for several
representative total numbers of craters. This processing time was estimated by the cubic polynomial

in Equation 7.3

Table 7-7. Processing Time vs. the Number of
Total Craters in the Sensor Image.

Number of Cubic Fit to the
Total Craters | Processing Time (s)
25 0.12
50 0.58
75 0.89
100 1.28
125 1.97
147 3.00
150 3.18
175 5.14
200 8.08
250 17.78
300 34.08




Based upon Table 7-7, the crater matching routine can process a maximum of 147 craters in a sensor

image and still remain within the 3 second processing time window.

As mentioned above, there is a definite relationship between the number of potential boresight craters
and the total number of craters in an image. Figure 7.4 presents the total number of craters as a
function of the number of potential boresight craters. In addition, the best-fit polynomial to the data

set is included in the plot as well.

Processing Speed Analysis:
Number of BS Craters vs. Number of Total Craters
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Figure 7.4. Number of Total Craters vs. Number of Potential Boresight Craters.

Figure 7.4 demonstrates a scattered linear relationship between the total number of craters and the

number of potential boresight craters.” This linear best-fit relationship is

y=62%x+22

Equation 7.4

" The author fit a quadratic to the data set, but the polynomial fit showed only very slight improvement over the
linear fit. Therefore, the author decided to utilize the linear fit as the best-fit option.
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For several representative values for the number of potential boresight craters, the estimated number

of total craters is presented. This estimate was obtained from Equation 7.4.

Table 7-8. Number of Total Craters vs.
Number of Potential Boresight Craters,

Number of Desired Number of
BS Craters Total Craters

5 53

10 84

15 115
18 134
20 146
25 177
30 208
35 239
40 270

The residuals for this fit are large, indicating the relatively weak relationship between these two
quantities. In addition, the entry in Table 7-8 for 18 potential boresight craters yields 134 total
craters. This quantity is relatively close to the limit of 147 total craters determined from Table 7-7.
As a result, this validates that approximately 18 potential boresight craters and 140 total craters is

the maximum that the routine — as programmed — can process in 3 seconds or less.

These results indicate that the crater matching routine is able to process images with a large number
of total craters and many potential boresight craters within a few seconds. This processing speed
meets the desired bounds — and demonstrates that with proper coding, this routine might run
extremely quickly. These analyses also suggest that limits on the number of total craters to be
considered in any one image, along with the number of potential boresight craters may be of

significant benefit to the routine’s processing speed.
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7.3.4 Error Analysis
One aspect of the crater matching routine that has not yet been the topic of any serious discussion is
the routine’s response to error. There are several ways in which error might enter the routine,

including:

1. Error in the image data points (i.e. the image does not match up with the database). This
could be either error in the location of the crater centers or in the crater radii, or both.

2. Error in the altitude knowledge of the spacecraft.

3. Error in the attitude knowledge of the spacecraft / camera.

4. Error in the knowledge of the field-of-view of the camera.

The author will not analyze the effects of error in the altitude, attitude, and field-of-view knowledge.
However, a brief analysis on the effects of image noise will be conducted. This analysis will consider
noise in the position of the crater centers.' The noise in the image might result from any of a number
of sources — lens aberration, inaccuracies in the database due to the imagery from which it was

formed, assumptions in the routine such as the spherical Moon assumption, etc.

This analysis is not based upon 1000 iterations of the routine, as the past three analyses have been.
Rather, this analysis added varying levels of white, Gaussian noise to 250 sets of image data points.
For each of 43 levels, white, Gaussian noise was added to 250 sensor images and the images were

each processed by the crater matching routine. The noise levels were selected to be bounded by
[500 2] signal-to-noise ratio (SNR). Each level was determined by raising the previous SNR to
0.95, resulting in a series of 43 SNRs. These bounds and this method of determining the next level

were chosen to give a desired distribution of analysis points,

' The effect of noise in the crater radii can be mitigated by the correlation factor €. This correlation factor specifies
the acceptable error range in the cells of a match between patiern vectors.
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First, a characterization of the noise levels will be introduced in Figure 7.5, Figure 7.6, and Figure
7.7. Next, Figure 7.8, Figure 7.9, and Figure 7.10 analyze the overall performance of the routine,
primarily considering the success or failure rates of the routine and its components. Figure 7.11 and
Figure 7.12 present the causes for signature generation failure. Figure 7.13, Figure 7.14, and Figure
7.15 address the correlation results — specifically looking at inconclusive position matches and

component failures.

The author also chose to randomly select ordered pairs, with each element randomly selected from the
range [0 5 12] . These ordered pairs represent the pixel location of random points within a sensor
image with a resolution of 512 pixels." Then noise was added to these simulated data points at
varying SNRs along the range of [500 2] . The results are plotted in Figure 7.5, Figure 7.6, and

Figure 7.7. To better characterize the amount of noise that is actually being added — the maximum

noise level, as well as the standard deviation, are presented here versus the image error in pixels.

' Random pixel locations are selected to enable a greater sample size for the analysis.
" These ordered pairs will be considered the signal.
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Crater Matching Routine Analysis:
Sensor Image Noise — for Sensor Signal
Sensor Image Noise - for Sensor Signal
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Figure 7.5. Analysis of the Routine: Signal-to-Noise Ration and
Error in Image Pixels.

Figure 7.6 presents a detail focusing on SNRs under 75.

Crater Matching Routine Analysis:
Sensor Image Noise — for Sensor Signal (detail)

Sensor Image Noise - for Sensor Signal (detail)
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Figure 7.6. Analysis of the Routine: Signal-to-Noise Ration and
Error in Image Pixels, Detail #1.
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Figure 7.7 looks exclusively at the SNR range of [65 40]. This range is important as the maximum

noise being added crosses the 1 pixel threshold in this range.

Crater Matching Routine Analysis:
Sensor Image Noise — for Sensor Signal (detail #2)

Sensor Image Noise - for Sensor Signal (detail)

ecMaxEr | L
+Std of Em
=+ Mean of Err |

Pixels

S T S S T S S st

50
Signal-to-Noise Ratio

Figure 7.7. Analysis of the Routine: Signal-to-Noise Ration and
Error in Image Pixels, Detail #2.

At an SNR of 50, the mean added noise in pixels is right below 1 pixel. The standard deviation of
the added noise is also right below 1 pixel. The maximum added noise is almost 4 pixels. The error
added was white Gaussian noise. Because this is a normal distribution — the standard deviation

indicates that approximately 68% of the data points lie within one standard deviation of the mean.

In other words — at an SNR of 50- 68% of the magnitude of the noise added will lie within the
range of [O 3] pixels, approximately. That also means that 32% of the noise added was greater

than 3 pixels in magnitude, which is a significant amount of noise. The effects of this added noise

will be seen in the following analyses.
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Figure 7.8 is a plot of the general response of the routine to noise levels. This plot records the overall
success and failures of the routine. Figure 7.9 is a detail of Figure 7.8 that focuses upon the SNR

range of [40 2].

Crater Matching Routine Analysis:
Response of the Routine to Sensor Image Noise

Response of the Routine to Sensor Image Noise

100 T T e T ~— T
wow % Comect Pos. Match
0 * % Incorrect Pos. Match
# % Inconcl Pos. Match ARRPTRTY!
8ol ¢ % PV Fail but Sig. Corr. Succ
- * % Incomrect Matches of PVs
B 70k * % Sig. Gen. Succ
£ + % Sig. Gen. Failure
g sl -#% Sig. Gen. Succ. wiComp. Fail
k]
]
§ @t
o
B
g 40r
s
£
e 30
3
o
24
" L R AR -
10F
0 2 ITESEIT HETILI] T R TR [y
500 450 400 350 00 20 a0 150 100 50

Signakto-Noise Ratio

Figure 7.8. Analysis of the Routine: Response of the
Routine to Sensor Image Noise.
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Crater Matching Routine Analysis:
Response of the Routine to Sensor image Noise (detail)

Response of the Routine to Sensor Image Noise (detail)
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Figure 7.9. Analysis of the Routine: Response of the
Routine to Sensor Image Noise, Detail.
Based upon Figure 7.8 and Figure 7.9, it appears that the routine is fairly stable for SNRs of
(approximately) [500 75] . For this range, the routine demonstrates a 80 —90% successful

correlation rate, a 10 —20% inconclusive position match rate, and 0% occurrence of incorrect

position matches.

As the SNR continues to drop, these stable characteristics change dramatically. Between the SNR
range of [75 25] , the percentage of correct matches plummets, reaching 0% correct matches
when the SNR falls just below 30. However, the occurrence of inconclusive matches increases just a
quickly, reaching a rate of 80 —90% inconclusive matches. At the same time, the number of

incorrect matches also increases from 0% to 3—6% as the SNR drops.

The data for ‘Incorrect Position Match’ and ‘Incorrect Matches of PVs’ lie directly atop one another
in Figure 7.9. This implies that every false match results from the incorrect match of one pattern

vector to the crater database. In other words, all of the incorrect matches result from high noise levels
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and image signatures that are comprised of only one pattern vector — and this pattern vector only has
one ‘full” grid cell. Refer to section 7.3.2 for a more in depth discussion of the effects of a pattern

vector with a single “full’ grid cell.

Figure 7.10 concentrates on the correct, incorrect, and inconclusive position matches, and plots the

percentage of each of these quantities as a stacked area graph.

Crater Matching Routine Analysis:
Response of the Routine to Sensor Image Noise (detail)
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Figure 7.10. Analysis of the Routine: Response of the Routine to
Sensor Image Noise, Position Match Success and Failure.

Figure 7.10 highlights the relative proportions of each quantity in relation to the total number of
correlation attempts. The sum of the percentages of correct, incorrect, and inconclusive matches does
not (typically) equal 100% . This results from the failure of the signature generation for a portion of
the correlation attempts, which are not included in this plot. In addition, there are no false position
fixes until the SNR drops to about 75. This meets the requirement stated in section 3.2.1.1 that there
are less than 0.1% false position matches. The percent of correct matches remains well above 75%

until the SNR drops to approximately 50, meeting the success criterion of section 3.2.1.1.
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Figure 7.11 presents the reasons that the generation of a signature failed as a function of the noise

added to the sensor image.

Crater Matching Routine Analysis:
Noise Response of the Routine: Signature Generation Failures
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Figure 7.11. Analysis of the Routine: Response of the
Routine to Sensor Image Noise, Signature Generation Failure.

For all noise characteristics, all of the signature generation failures that were experienced resulted
from too few — or no - craters within the pattern radius. Without any craters within the pattern radius,
the grid matrix is completely empty and a pattern vector cannot be formed, and therefore the signature
generation fails as well. The total number of signature generations does not include images that were

initially disqualified for having no suitable boresight craters.

There are typically multiple pattern vectors in one image signature. As a result, it is possible to have
one — or even several — pattern vectors fail to generate, but still have a successful signature formation.
It is interesting to consider the scenario when the signature generation succeeds, but one or more
component pattern vector formation attempt fails. Figure 7.12 analyzes the causes for component

pattern vectors to fail to generate properly — but yet have a successful signature generation.
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Crater Matching Routine Analysis:

Noise Response of the Routine: Successful Signature Generation
Failure w/Component Failure
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Figure 7.12. Analysis of the Routine: Response of the Routine to Sensor Image
Noise, Signature Generation Success with Component Failures.

From Figure 7.12, as in Figure 7.11, the exclusive cause of these component failures is that there are

too few craters within the pattern radius.

Figure 7.13 begins to examine the correlation process rather than signature generation. This figure

presents an analysis of the reasons that the correlation routine returns an inconclusive position match.
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Crater Matching Routine Analysis:
Noise Response of the Routine: Inconclusive Correlation Attempts

Noise Response of the Routine: Inconclusive Corelation Altempts
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Figure 7.13. Analysis of the Routine: Response of the Routine to
Sensor Image Noise, Inconclusive Correlation Attempts.

Nearly all of the inconclusive correlation attempts were caused by the £, or &, correlation thresholds

not being met. For this analysis, & =0.75 and £, =0.75. Figure 7.14 will dissect the €, and &,

correlation threshold error further, examining each threshold individually to further characterize the

cause of the inconclusive correlation attempts.

244



Crater Matching Routine Analysis:
Noise Response of the Routine: “E2 & E3 Threshold Not Met” Attempts

Noise Response of the Routine: "E2 & E3 Thresh Not Met" Attempts.
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Figure 7.14. Analysis of the Routine: Response of the Routine to Sensor Image
Noise, “E2 & E3 Threshold Not Met” Attempts.
From Figure 7.14, it is apparent that at lower noise levels, all of the inconclusive correlation attempts

are caused when correlation attempts fall short of the £, correlation threshold. The &, correlation

threshold defines the minimum ratio between the frequency of a positive position match and the

second most frequent crater from the list of possible crater matches. As noise increases, however, a
greater number of correlation attempts fall short of the £, correlation threshold. The &, threshold is
a ratio that describes the percentage of pattern vectors that must identify the same image location for a

successful position match. For example, if a signature consists of 10 pattern vectors, an &, threshold

of £, =0.8 would require that at least 8 pattern vectors identify the same image location before a

positive position match for that image could be declared.

Figure 7.15 is an analysis of the situation where one or more pattern vectors fails to generate, but the
signature for the given sensor image is still successfully generated. This figure analyses the reasons

that these pattern vectors failed to generate.
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Crater Matching Routine Analysis:
Noise Response of the Routine: “PV Correlation Attempt Failures but
“Signature Correlation Success” Attempts
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Figure 7.15. Analysis of the Routine: Response of the Routine to Sensor Image
Noise, Signature Matching Success with Component PV Matching Failures.

The reasons evident in Figure 7.15 for pattern vector generation failure closely parallel the patterns

evident in Figure 7.14.

These error analyses indicate that the crater matching routine, as initialized, performs well at a SNR
above 50. Although this SNR may seem rather high — it correlates to a mean error of 1 pixel with a
standard deviation of 1 pixel. In other words, 68% of the data points have 2 pixels or less noise —

with the remainder having a greater amount of noise added. For images with a SNR in the range of
[50 2], the frequency of incorrect matches remains rather low, at 3 —6% . These analyses also
indicate that signature generation fails almost exclusively because there are too few craters within the
pattern radius. The failure of correlation attempts is due to both the £, and &, correlation thresholds
most often. At high levels of noise, the £, threshold causes the majority of the correlation failures,

while at lower noise levels, the &, threshold causes most of the correlation failures.



As varying levels of noise can be expected in the sensor images of the lunar surface, it is crucial for
the crater matching routine to be robust to these conditions. The four correlation factors provide a
great deal of user control in encountering a variety of noise conditions. In addition, there are other
factors that can greatly influence the amount of noise that the routine can handle. Chief among these

is the grid size, g . Each grid cell covers multiple pixels from the image. Therefore, if the grid size is

increased, the routine can naturally handle a greater amount of image noise and still generate a

positive position match.

The correlation factors also allow the routine to process images that have either ‘extra’ craters or
craters that ‘disappeared.” In other words, if an image has an additional crater in it that did not appear
in the imagery used to form the crater database, the routine will still be able to generate a position
match. The same can be said if a crater is missing from the sensor image that was there in the crater
database. The routine is able to handle these cases with ease due to two aspects of the crater
matching routine. First, the routine assumes that only a percentage of the pattern vectors from the
signature are going to correlate to the true image location. Secondly, the routine also assumes that
only a percentage of the ‘full’ grid cells for each pattern vector in the signature are going to correlate
to the pattern vectors in the database. The addition or subtraction of ‘full’ grid cells will change the
percentage of ‘full” grid cells that match the pattern vectors from the database, and may impact the
percentage of signature pattern vectors that correlate to the true image location. However, because
there are two thresholds that limit the impact of the addition or subtraction of ‘full’ grid cells, the
routine should handle the ‘extra’ or ‘disappearing’ craters easily. This assumes that the appearance of

‘extra’ craters or having craters ‘disappear’ is a relatively infrequent occurrence.
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7.4 Crater Matching Routine Conclusions

Although conceptually the crater matching routine is rather simple, the implementation of the routine
is quite process intensive. That is, the steps required to execute the routine are numerous, and they
must be completed in a very specific order. The main steps to the crater matching routine that were

first presented in section 3.2.1, which can be listed simply as:

1. Generate a database of patterns of nearby craters for any given crater on the lunar surface.
This database will be stored and queried during the correlation of the image to the database.

2. Determine the pattern of nearby craters for a given crater in the sensor image about which the
pattern is generated.

3. Generate a ‘signature’ for a given sensor image by repeating step 2 for every possible crater
in an image.

4. Correlate the patterns in the image signature with the database of patterns. Successful
correlation will allow the absolute location of the craters within the sensor image to be

determined.

These four steps — database generation, pattern vector determination, signature development, and
correlation — are the crux of the crater matching routine. Each of these steps has been individually

and extensively detailed in the preceding chapter.

The overall implementation of the crater matching routine has been very successful. The results
displayed above in the analysis section indicate that the grid-based pattern vector is an effective
means of ‘tagging’ a crater for future identification. In addition, the database size was not

prohibitive, the processing time was reasonable, and the achieved accuracy promising.
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More specifically, the author was very pleased with the processing speed of the algorithm. As
mentioned in section 7.3.3, the routine is programmed in an engineering analysis computer language
— which is not designed to match the speed of operational code. In addition, there are many extra
features in the code that will be removed for operational code. Therefore, the ability to process sensor
images with 18 potential boresight craters and about 140 total craters in less than 3 seconds is a

significant accomplishment.

The correlation between the current program size and the (eventual) operation program size is
difficult to gauge. Currently, the crater matching program files are approximately 2400 lines of
code and occupy 100KB on the computer’s hard drive. The graphing files are approximately 550
lines of code and occupy 22.5KB of memory. In total, the crater matching routine, as currently
coded, is almost 3000 lines of code and requires about 125KB of memory for storage. The
database is saved as a look-up table and is 1.66MB in size.! Considering the magnitude of the crater

matching task, the size of the crater matching routine is within acceptable bounds.

The routine, with the initializations presented in section 7.2, proved able to generate correct position
matches for images with signal-to-noise ratios as low as 50. While the frequency of correct matches
declines quickly at signal-to-noise ratios below 50, the frequency of incorrect matches remains
relatively low at 3— 6% for these low signal-to-noise ratios. In addition, the modification of the
user-defined correlation factors will allow the crater matching routine to be prepared for situations

with either a higher or a lower level of noise. These same correlation factors also enable the crater

' The database being referenced was made by acquiring a series of 1000 images of the lunar surface within the

latitude and longitude bounds of [— 80 - 50]° and [50 80]c . All of the potential boresight craters were

identified from the images and a pattern vector formed for each potential boresight crater. Then each pattern
vector was saved to the database in the form of a look-up table. Note that the database does not necessarily
cover the entire lunar surface between these bounds. In addition, this database requires that the sensor images
used for the crater matching routine (pre-noise) must be the same as the images used for the database generation.
This assumption does not negate the validity of the analysis accomplished herein; rather, it is merely a
simulation requirement that will not be encountered once a database covering the entire lunar surface can be
generated.
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matching routine to be proficient at generating a positive position match when there are craters in the
image that were not in the database.” The initial analysis of the crater matching routine’s response to
error in the sensor image demonstrates that the routine is robust to significant levels of noise, and still

producing accurate results.

The author was unable to find any published results from another crater matching algorithm.
Attempts to compare the results of this crater matching routine with analogous results from published
star tracker algorithms, such as those presented by Padgett, Kreutz-Delgado, and Udomkesmalee®,
proved unfruitful. Therefore, the author will suffice to present the results of this crater matching

routine.

There were several difficulties encountered in the implementation of the routine. As noted in section
3.2.2.3, the crater matching routine and grid-based pattern vector determination is based upon a
process developed as a ‘lost in space’ algorithm for star trackers. The star tracker problem is very
similar to the crater matching problem. Both require that an image from a sensor be paired with a
database of image features so that the position and/or orientation of the spacecraft can be determined
more accurately. Both require speed and reliability, while limiting the available disk space for
operations. In both cases, imagery that correlates to possible future sensor images is available, which
allows the generation of a database before the spacecraft launches. However, there are also inherent
differences between the star tracker problem and the crater matching problem. Chief among these is
the problem of frame of reference. In the case of star trackers, the imagery is taken of a portion of the
celestial sphere. In comparison to a typical spacecraft, the celestial sphere can be considered an
inertial frame. In the case of the crater matching routine, the images are not taken of an inertially
static object. In other words, the position of the spacecraft will affect the relative appearance of the

features in the image.

' This situation might be encountered due to the frequent meteor strikes on the lunar surface. Since the database is
based off of lunar imagery, the time between the images collected for database formation and those taken by the
spacecraft’s sensor may demonstrate some of the effects of these meteor strikes in the form of ‘extra’ craters.
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This difficulty with the frame of reference was the author’s most significant modification to the grid-
based star tracker algorithm. Stated more simply, the problem is that as the spacecraft moves in
three-space in relation to the surface of the Moon, the appearance of any specific location on the lunar
surface changes from the camera’s point of view. These changes in appearance are due to the
curvature of the lunar surface in relation to the planar nature of the image plane, as well as due to the

changing altitude of the spacecraft.

In fact, the problem was only partially solved. The author decided to separate the problem of the
spacecraft’s changing altitude (in relation to the lunar surface) from the problem of the curved lunar
surface being projected onto a two-dimensional image plane. The author determined a solution to the
later problem, but did not address the situation of a spacecraft’s changing altitude. The author will

suggest several solution methods in the recommendations for continued work in section 8.3.

The difficulty with the spherical lunar surface and a two-dimensional image plane is described more
completely in section 4.1. The solution method is the application of the perspective transform. This
transform allows a given sensor image to be ‘morphed’ so that it appears as if the spacecraft was at a
different location relative to the lunar surface when the image was taken. This eradicates the need for
the database to include multiple feature positions (which would have been otherwise necessary to

account for various spacecraft positions relative to the image location on the lunar surface).

The analyses presented herein demonstrate that the crater matching routine is a functional technique
for generating a position correlation from an image of the lunar surface. This method merits further
development and analysis to determine if it is both suitable and better than other crater matching
methods. If it suitable and better than other methods, this crater matching method may be appropriate
to implement on hardware and send to the Moon. If not, the crater matching routine has still served to

increase understanding of relative navigation techniques.






Chapter 8

Conclusions

This paper investigated two alternative correlation schemes for lunar terrain relative localization
(TRL) in an attempt to determine the applicability of each of these schemes to lunar entry, descent,
and landing (EDL) missions. The theoretical and functional basis for each of these algorithms is
detailed in the preceding chapters. In addition, the author has presented analyses to characterize the
performance of each algorithm. These analyses invoke initial conditions that were chosen to mimic
conditions that are expected in the lunar terrain relative navigation (TRN) task. These analyses are
presented in full detail in the body of this paper. This section contains a brief summary of results, the
author’s comments on the meaning of these results, and several recommendations for future work are

presented in this chapter.

The author also performed functional analyses of the perspective transform, which is a component of

the crater matching routine. However, these analyses were merely intended to ensure the proper
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functionality of the transform rather than to characterize its performance. These analyses do not
directly provide insight into the main thesis of the topic. That is, the results to the perspective
transform analyses do not answer the question as to whether or not the crater matching routine is
suitable as a TRN component to the lunar EDL mission. Therefore, the results to the perspective
transform analyses and conclusions based upon them will not be presented here. Suffice it to say that

the perspective transform analyses demonstrated that the transform functions as expected.

8.1 Summary of Results

The results of the implementation and analysis of the terrain contour matching (TERCOM) algorithm
and the crater matching routine will be presented below. These results are presented in greater detail

in Chapter 2 and Chapter 7.

8.1.1 TERCOM

The analysis of TERCOM focused upon the ability of TERCOM to generate a correct position fix
given varying levels of image noise. The initial conditions of the analysis attempted to mimic actual

conditions that might be encountered in lunar TRN.

For the analysis, the CraterMap utility is used to generate 100 meter resolution TERCOM reference
maps. The Lunar Reconnaissance Orbiter mission will also provide lunar maps with 100 meter
resolution. Therefore, these maps mimic the quality of the data expected to be available for lunar
navigation. To simulate the sensor measurements which will be processed to yield terrain profiles,
the maximum sample rate is assumed to be 100 Hz and the maximum vehicle ground velocity is
assumed to be 1700 meters per second. This correlates to an altimeter sample every 17 meters.

Several of these samples are averaged to obtain a cell in the terrain profile.
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Only two sources of error were introduced to the execution of the TERCOM algorithm, map error and
sensor error. Both error sources are modeled with a zero mean Gaussian distribution that has an
adjustable standard deviation value. The map error represents the error between the map and the true
terrain. The sensor error is the error in the measured terrain profile cells and has multiple potential
sources. These sources include sensor inaccuracies, imprecise attitude knowledge of the vehicle, and
error caused by under-sampling the altitudes for a given map cell. For simplification, all sensor error

sources are modeled as a single error term.

The TERCOM matching algorithm performed poorly under various surface conditions. Figure 8.1
and Figure 8.2 below are TERCOM’s best and worst responses to image noise, respectively." The

sigSensor term represents the error added to the sensor measurements in meters and the sigMap term
represents the amount of error added to the reference map in meters. The quantity ¢, referenced in
these figures is a measure of how rough the terrain is, with a greater ¢, value corresponding to a

rougher terrain.

' In these figures, LSSM and VAR stand for the Long Sample Short Matrix and the Variance algorithm, two
specifications of the type of TERCOM algorithm implemented.



TERCOM Analysis: LSSM VAR

Error vs. Sigma T, 0.6 craterskm?, 0.1 density 1 sigma, Large Craters (1.0, 1.0, 1.5 km Radius)

crater mean dens = 060 sigcraterden= 0.10 Forced CraterRad=101015

- * sigSensor 1.0sigMap 1.0
* #  sigSensor 10.0 sigMap 1.0
*  sigSensor 25.0 sigMap 1.0
* 2 *  sigSensor 50.0 sigMap 1.0
» :
1000 f e - . \ p—— . - i
B : : ‘ :
o) :
@ T
E : *
- L d z
g * o
5001 - * :
LI *
* * 3 : #* :
: »
* i . :
x 0 ¥ : : *
0 * i § A H ¥ 1 Ly J
40 60 80 100 120 140 160
sigmaT
Figure 8.1'. Reprint TERCOM LSSM VAR Analysis:
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Figure 8.2". Reprint TERCOM LSSM VAR Analysis:
0.6 craters/km2 with standard dev. of 0.1 craters/km2.

' Also Figure 2.17
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In general, the error levels in the TERCOM position fix are unacceptably high. Even for the best case
scenario, with a high density of craters and many large craters, any sensor noise above 10 meters — at
any altitude — usually results in a position fix error of more than 500 m . The worst case results, for
a scenario with a high crater density but no large craters, results in position fix errors well above

500 m for all &, values. These results demonstrate that TERCOM is not able to generate position

fixes for the terrain likely to be encountered in a lunar EDL mission."

8.1.2 The Crater Matching Routine
The initial conditions used for the analysis of the crater matching routine represent a plausible
situation encountered by a spacecraft attempting to use the lunar surface for a terrain relative position

update of the spacecraft’s inertial guidance systems. The analyses are conducted for a spacecraft with
a camera that orbits the Moon at an altitude of 100 km with perfect attitude. There is a camera on

this spacecraft that has a 90° field-of view and a resolution of 512 pixels. The Moon is considered

a spherical body with a radius of 1734.7 km , which is a generally accepted value for the lunar
radius.”® This spacecraft takes a variety of pictures of the lunar surface in the latitude bands of

[—— 80 - 50]° and [50 80]". Next, the crater matching routine attempts to correlate these pictures

m

with the crater database that was formed of craters in the same area.” The correlation attempts used a

pattern radius of 65 km and a buffer radius of 6.5 km . The grid overlay had 24 rows and the

same number of columns. The correlation factors, which define ‘how close’ a correlation between an

image and the database must be for a position match, are set as

' Also Figure 2.15

" However, TERCOM has been used extensively for cruise missile guidance. It is expected that the increase in
position fix error that was commented upon is caused by the altitude difference between cruise missile
application of TERCOM and the use of the same in spacecraft navigation.

" In other words, this ‘simulated spacecraft’ does not fly on a simulated trajectory. Rather, the ‘simulated
spacecraft’ parameters were used to generate representative sensor images that are randomly distributed between
the latitude and longitude bounds.
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{le, =2 pixels) (e,=0.75) (e,=075) (e, =08)}
Equation 8.1

and the minimum radius that a crater has to have to be considered in the correlation algorithm was

0.8 km.

Correlation is considered to be successful when the true latitude and longitude of the sensor image
match the latitude and longitude of the sensor image as determined by the crater matching process.
The true latitude and longitude are known because the sensor input is simulated based upon a desired

camera position, in latitude, longitude, and altitude.

Using these initial conditions, the analysis of the crater matching routine is initiated. The results of
this analysis focus upon several areas; the success/failure of the routine to generate a position fix, the

processing speed of the routine, and the routine’s response to image noise.
The overall success and failure of the routine is summarized in Table 8-1,

Table 8-1'. Reprint General Success / Failure Statistics from
the Analysis of the Routine.

# of iterations: 1000

# of unsuitable images: 151 15.1%

# of correlation attempts: 849 84.9%
# of successful signature gen.: 825 97.17%"
# of signature gen. failure: 24 2.83%"
# of correct position match: 742 87.4%"
# of incorrect position match: 0 0%
# of inconclusive position match: | 83 9.78%"

From Table 8-1, 87.4% of all crater matching attempts successfully identified the correct position of
the image. Given the stringency of the correlation factors — this is a definite success. Perhaps more

promising is that there were no position matches that were generated that falsely identified the

' Also Table 7-1
" Percent relative to the total number of correlation attempts.
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position of the sensor image! Given that there was no noise added for this analysis, this is not wholly
unexpected. However, it does indicate that the pattern vectors are unique from one another for the
given database, and the crater matching routine can successfully generate a position fix for a given

image.

In addition, there are several other trends that merit attention. Analysis indicates that 100% of the
failures to generate a signature resulted from multiple potential boresight craters with too few craters
within the pattern radius. This indicates that it may be appropriate to screen the sensor images for a
minimum number of total craters before passing the images to the crater matching routine. These
screening operations would save processing time for spacecraft computers and identify images that

are likely to have very sparse pattern vectors anyway — which are ill-suited for correlation.

The second noteworthy trend is that 100% of the failed correlation attempts were due to the failure
of the correlation process to meet the £, threshold. This threshold defines a minimum ratio between

the certainty associated with the best and second best matches between a pattern vector and the
database. This trend indicates that the correlation attempts fail most frequently — always, for this
analysis — because there are more than one pattern vectors in the crater database that match a given
pattern vector for the sensor image very well. This can be mitigated by requiring each image
signature to include several pattern vectors before correlation is attempted. In addition, requiring

multiple ‘full’ grid cells per pattern vector will reduce the number of failed correlation attempts due

to the &, threshold.

The analysis also demonstrated that occasionally signatures were successfully generated while one or
more component pattern vectors of the signature failed to generate. This was due to a very limited
number of craters within the pattern radius for these cases. Likewise, there were successful

correlation attempts that had one or more component pattern vector matching attempts that failed.
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This was due to a failure of the correlation process to meet the £, correlation threshold for the given

crater. Despite the failure of these individual components, the overall crater matching routine

succeeded in generating a position correlation in each of these cases.
Processing time is another important performance characteristic for the crater matching routine. The
analysis of the routine’s processing time focused upon the relationship between the number of potential

boresight craters, the number of total craters in the sensor image, and the processing speed of the routine.
Table 8-2 and
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Table 8-3 present the numeric results of this analysis, obtained by fitting a cubic polynomial curve to

the processing time data for all of the analysis iterations.

Table 8-2'. Reprint Processing Time vs. the Number of Potential
Boresight Craters in the Sensor Image.

Number of Desired Cubic Fit to the
BS Craters Processing Time (s)
5 042
10 1.05
15 2.00
18 291
20 3.72
25 6.67
30 11.31
35 18.09
40 27.48

' Also Table 7-6
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Table 8-3'. Reprint Processing Time vs. the Number of
Total Craters in the Sensor Image.

Number of Cubic Fit to the
Total Craters | Processing Time (s)
25 0.12
50 0.58
75 0.89
100 1.28
125 1.97
147 3.00
150 3.18
175 5.14
200 8.08
250 17.78
300 34.08

These results indicate that the crater matching routine is able to process images with a large number
of total craters and many potential boresight craters within a few seconds. Specifically, an image
with 18 potential boresight craters and 140 total craters can be processed by this routine in under 3
seconds. This processing speed meets the desired bounds — and suggests that with proper coding, this
routine might run very quickly. These analyses also support limiting the number of total craters in
any one image, along with the number of potential boresight craters, to provide significant benefit to

the routine’s processing speed.

For the final analysis, varying amounts of noise were added to the center position of the craters in the
original sensor image to analyze the response of the crater matching routine to image noise. For each

case, the amount of noise added and the error of the position fix generated were recorded.

A detail of the routine’s tendency to generate a correct, incorrect, or inconclusive position match is

highlighted in Figure 8.3.

' Also Table 7-7
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Crater Matching Routine Analysis:
Response of the Routine to Sensor Image Noise (detail)

Response of the Routine to Sensor Image Noise (detail)
T r

I % incorrect Pos. Match
Inconcl Pos. Match
Correct Pos. Match

Percentage of Correlation Attempls

250
Signakto-Noise Ratio

Figure 8.3'. Reprint Analysis of the Routine: Response of the
Routine to Sensor Image Noise, Position Match Success and Failure.

Figure 8.4 shows the relationship between the signal-to-noise ratio of the noise added to the image

and the resulting error in the crater center position in pixels.

' Also Figure 7.10

263



Crater Matching Routine Analysis:
Sensor Image Noise — for Sensor Signal (detail)

Sensor Image Noise - for Sensor Signal (detail)

Pixels

Signakto-Noise Ratio

Figure 8.4'. Reprint Analysis of the Routine: Signal-to-Noise Ration and
Error in Image Pixels (detail).

Right around a signal-to-noise ratio of 50 the routine’s general tendency to generate correct position
matches turns into a general tendency to generate inconclusive position matches. This signal-to-noise
ration correlates to a 1 pixel mean, 1 pixel standard deviation in the position of the crater center.
These results demonstrate that the routine can determine a position fix even in the presence of

significant amounts of noise.

' Also Figure 7.5
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8.2 Observations

The author has made several observations based upon the analysis of the TERCOM algorithm and the
crater matching routine. Some of these comments will be presented below. The author’s

observations are presented in greater detail in Chapter 2 and Chapter 7.

8.2.1 TERCOM

It appears that TERCOM can produce correct position fixes — but only on a very limited number of
cratered surfaces. The algorithm tends to generate lower overall errors as the ‘roughness’ of a map
increases. However, the roughness of the terrain does not necessarily make that terrain unique, which
is required for the generation of an effective position fix. The fix error also decreases as the density
of craters in a given position fix area increases. In addition, initial results indicate that the TERCOM
algorithm does not work well in the absence of large craters. Even with low noise levels, a lack of

large, deep craters causes an unacceptably high level of position fix error.

The initial performance of the TERCOM algorithm is disappointing. Any position fix generated by
the TERCOM algorithm for lunar TRN must have a very low probability of a false position fix. For
all tested cases of the algorithm, false position fixes were generated, many with significant amounts
of error. Even with very low amounts of sensor and map noise, false matches were generated. In

addition, the maximum achievable accuracy for TERCOM is the dimension of a terrain profile cell,
which was 100 m for these analyses. In order to achieve precision landing, the position of the

spacecraft must be known much more accurately than 100 m . Greater accuracy will require that the

reference matrix cells each cover a smaller surface area of the Moon.! However, the high frequency

' Sub-pixel interpolation of the match might allow for greater-than-cell-size accuracy. However, the decision to
investigate other correlation algorithms is rooted in the high frequency of false position fix for TERCOM, not in
the achievable accuracy.
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of false fix greatly outweighed the limits on the achievable accuracy in the analysis of TERCOM.
TERCOM’s position fix error is unacceptable for the purposes of lunar navigation — and the
magnitude of the error implies that it is not due to the reference map, but primarily the result of false

correlation.

The TERCOM algorithm did yield several positive results. Chief among these was the successful
implementation of the VAR algorithm. Although both the MAD and VAR' algorithms perform
poorly under lunar TRN conditions, the VAR algorithm does allow TERCOM to function without a
barometric altitude measurement. On most given sets of data, the results of the VAR algorithm
nearly match the results from the MAD algorithm. This indicates that the VAR algorithm functions

properly as an alternative to the MAD algorithm for the lunar case — and potentially for other uses.

Analysis demonstrates that TERCOM is not robust enough to be able to generate position matches in
the variety of conditions that will be encountered on the lunar surface. Combined with the high
frequency of false position fixes for the initial TERCOM correlation attempts, the author decided that

other TRN methods are more appropriate for lunar EDL purposes.

8.2.2 The Crater Matching Routine
The overall implementation of the crater matching routine was very successful. The results indicate
that the grid-based pattern vector is an effective means of ‘tagging’ a crater for future identification.
In addition, the database size was not prohibitive, the processing time was reasonable, and the

achieved reliability promising.

More specifically, the author was very pleased with the processing speed of the algorithm. The
routine is programmed in an engineering analysis computer language, which is not designed to

execute as quickly as operational code. There are also many extra features coded into the current

' The MAD algorithm is the Mean Absolute Difference algorithm. The VAR algorithm is the Variance Algorithm.
Both are algorithms that are used by the TERCOM process.
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routine that will be removed for an operational implementation. Therefore, the ability to process
sensor images with 18 potential boresight craters and about 140 total craters in less than 3 seconds

is a significant accomplishment.

The correlation between the current program size and the (eventual) operational program size is
difficult to gauge. Currently, the crater matching program files are approximately 2400 lines of
code and occupy 100KB on the computer’s hard drive. The graphing files are approximately 550
lines of code and occupy 22.5KB of memory. In total, the crater matching routine as currently
coded is almost 3000 lines of code and requires about 125KB of memory for storage. The database
is saved as a look-up table and is 1.66 MB in size.! Considering the magnitude of the crater matching

task, the size of the crater matching routine is within acceptable bounds,

The routine proved able to generate correct position matches for images with signal-to-noise ratios
(SNR) as low as 50. For SNRs higher than 75, there were no false position matches, meeting the
requirement for less than 0.1% false matches. For SNRs higher than 50, there were around 85%
correct position matches, meeting the requirement for at least 75% correct position matches. While
the frequency of correct matches declines quickly at SNRs below 50, the frequency of incorrect
matches remains relatively low at 3—6% for these low SNRs. The remaining position match
attempts were inconclusive. The fact that false position matches are rarely generated is crucial to the
possibility of using the crater matching routine for lunar TRN. In addition, the modification of the
user-defined correlation factors will allow the crater matching routine to be prepared for situations
with either a higher or a lower level of noise. These same correlation factors also enable the crater

matching routine to be proficient at generating a positive position match when there are craters in the

" This simulated database stores 1000 images of the lunar surface. This corresponds to over 30 million square
kilometers of the lunar surface with the given initial conditions.
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image that were not in the database.’ The initial analysis of the crater matching routine’s response to
error in the sensor image demonstrates that the routine is robust to significant levels of noise, and still

produces accurate results.

The author was unable to find published results from any similar crater matching algorithm.
Attempts to compare this crater matching routine’s results with analogous results from published star
tracker results, such as those presented by Padgett, Kreutz-Delgado, and Udomkesmalee’, proved not

to be useful.

The analyses presented herein demonstrate that the crater matching routine is a functional technique
for generating a position correlation from an image of the lunar surface. This method merits further
development and analysis to determine if it is both suitable and better than other crater matching
methods. If 1t is suitable and better than other methods, this crater matching method may be

appropriate to implement on hardware for further lunar TRN application testing.

8.3 Recommendations for Future Work

The author’s recommendations for future work will be presented below. These recommendations are
intended to suggest possible areas for improvement upon and refinement of the ideas detailed in this
thesis. They do not encompass all possibilities for improvement; rather, they are intended to suggest
several topics which the author believes might be of benefit in understanding and optimizing the

correlation algorithms.

" This situation might be encountered due to the frequent meteor strikes on the lunar surface. Since the database is
based off of lunar imagery, the time between the images collected for database formation and those taken by the
landing craft’s sensor may demonstrate some of the effects of these meteor strikes in the form of ‘extra’ craters
in the images.
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8.3.1 TERCOM
Although the current level of analysis shows that TERCOM is not a very robust or accurate approach
to lunar navigation, more analysis is recommended to validate these conclusions. These conclusions
are based upon a relatively small amount of analysis. Additional analyses are likely to confirm the
author’s decision to look to other methods for determining a position update for the spacecraft’s
inertial navigation system. However, although the author thinks it unlikely, it is possible that
TERCOM may be proven more robust than it initially appears. If the robustness and the reliability of

TERCOM are improved, the algorithm may be suitable as a lunar navigation technique.

To continue the analysis of TERCOM, several of the simplifying assumptions in this analysis should

be addressed in future work. These include:

1. Constant Altitude — the assumption that the spacecraft will maintain constant altitude over the
reference matrix may not be true, depending upon the stage in the EDL process.

2. Cross-Track Velocity Knowledge — the algorithm assumes that the spacecraft has perfect
knowledge of its cross-track velocity. However, if there is even a slight skewing caused by
unaccounted or unknown cross-track velocity, the entire matching may fail because the
terrain profile includes data from two or more reference matrix columns.

3. Down-Track Velocity Knowledge — the algorithm also assumes perfect down-track velocity
knowledge. If this knowledge is not perfect, the size of the terrain profile cells will not
properly match with those of the reference matrix, and correlation errors may result.

4. Attitude Knowledge — errors in the spacecraft’s attitude knowledge may cause errors in

recording the terrain profile properly.

These simplifying assumptions should be considered and addresses appropriately. At the least,

analysis to determine the probable effects of these assumptions is warranted.
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The error sources that contribute to the sensor error should be explicitly identified and simulated as

well. These error sources include:

5. Horizontal velocity errors (down range & cross track)
6. Vertical velocity errors

7. Attitude errors

8. Errors due to insufficient cell sampling

9. Relative vertical measurement error

10. Position knowledge error

Modeling these sensor error factors will enable the TERCOM simulation to more accurately represent

the conditions that are likely to be encountered in lunar TRN.

To more accurately simulate the lunar surface environment, terrains that include underlying features
such as sloped surfaces and hills should also be included in the analysis. It is expected that the
overall TERCOM error will decrease when such underlying surface features are included. This

expectation should be confirmed with analytic results.

The simulation should also be expanded to include the landing vehicle dynamics in the following

manners:

11. Simulated trajectories of the landing vehicle over a fix area or set of fix areas.

12. Closed loop simulation of the landing vehicle over a fix area or set of fix areas.

These and other modifications to the TERCOM correlation algorithms may make the algorithm more
robust to the lunar TRN environment. If modification does allow the TERCOM algorithm to perform
well under conditions representative of those expected in lunar EDL, it may be appropriate to
reconsider the algorithm for lunar landing. Otherwise, TERCOM is not the best choice for lunar

TRN.
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8.3.2 The Crater Matching Routine
The implementation and analysis of the crater matching routine suggest that the routine may be
appropriate for further development and analysis. The topics presented below are the author’s

recommendations for where future efforts may be of the greatest import in regards to the routine.

8.3.2.1 Required Improvements for Operability
In order for the routine to operate with full functionality, these conditions must be considered and

resolved:
13. Two Craters in Same Grid Cell.

The current implementation of the crater matching routine does not address what occurs when
two crater centers are located in the same grid cell. In order for the pattern vector to
incorporate all available data, all craters within the same grid cells should be included in the
pattern vector. A method for accommodating this occurrence should be developed and

implemented.
14. Closest Neighboring Crater Misidentification

The determination of a pattern vector is highly dependent upon the identification of the
closest neighboring crater. If the wrong crater is selected as the closest neighbor (for
whatever reason), or if the closest neighboring crater is significantly impacted by sensor
noise, the rotation of the image will be incorrect and all of the craters in the image will be
rotated to the wrong position for pattern vector determination. If the offset of the closest

neighbor is great enough, the resultant pattern vector could be entirely incorrect.

The author sees several potential methods to correct this situation:
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Use Polar Coordinates

If the entire pattern vector generation process is accomplished in polar coordinates,
rotational error is much simpler to counteract. However, this would require the entire

pattern vector determination to be reconfigured.

Generate Pattern Vectors for Second Closest Neighbor, etc.

If the closest neighbor is overlooked, the pattern vector determination will select the
second closest neighbor and determine a pattern based upon that crater. To counteract
the misidentification of the closest neighbor, the database could include pattern vectors
for the second closest neighboring crater for all craters. If desired, the third closest
neighboring crater pattern vector might be included as well, etc. This process will greatly
increase the size of the database. In addition, this process will not account for the
situation where sensor noise significantly affects the closest neighboring crater and
causes improper rotation. The routine is already programmed to allow the second (or
third, etc.) closest neighboring crater to be selected. The closest neighbor number m
allows the user to specify which neighboring crater to use as the rotational reference

point.

Reference Boresight Crater — Closest Neighbor Pairs.

The correlation technique might impose the requirement that the radius of the boresight
crater and the radius of the closest neighboring crater must match those of the pattern
vector to which they match. This would effectively set up another filter that discards any
pattern vector match between the image and the database where the boresight and closest
neighboring crater radii of the image do not match those of the same craters from the

database. This method would account for the selection of the wrong closest neighboring
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15.

16.

crater, but would fail to account for the situation where sensor noise significantly impacts

the position of the closest neighboring crater.

Crater Visibility at Altitude

Depending upon the altitude of the spacecraft, different numbers of craters are visible to the
camera. A method to determine which craters from the database will be ‘seen’, depending

upon the altitude of the spacecraft, must be developed and implemented.

Altitude Independency

The current implementation of the crater matching routine does not account for any

spacecraft altitude variations. The crater database was specifically generated for spacecraft at

100 km and all the analyses conducted were based upon this altitude. However, the lunar
EDL environment will require the routine to function at all altitudes that might be
encountered during EDL. Therefore, a means of making the matching routine independent of

altitude is necessary.

The author sees several methods that might allow this functionality for the algorithm

d. Generate Multiple Databases

If databases are generated and are applicable only for a range of spacecraft altitudes, a
series of databases could be generated to cover the range of all altitudes that are expected
to be encountered. This would also allow a simple method to vary the number of craters
expected to be visible at different altitudes. However, it would greatly increase the size

of the database storage requirement.
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e. Scale the Data to Selected Closest Neighbor Distance

The data might be scaled so that the closest neighboring crater center is always a certain
distance from the desired boresight crater. This would force all data sets into the same

relative scale and allow the crater matching to function for all altitudes.

f.  Use Radius Scaling with Polar Coordinates

If polar coordinates are used in pattern vector generation, the radius associated with each
crater position might be scaled based upon the altitude of the spacecraft, which is known
via sensor measurement. This scaling would allow the matching process to function over

all altitudes.

17. Attitude Independence

As currently implemented, the crater matching routine assumes that the spacecraft has perfect
attitude. An operational version of the routine must account for the possibility of attitude
variations of the spacecraft. These attitude variations are most likely able to be accounted for

by modifying the perspective transform to include attitude terms.

8.3.2.2 Translation of the Routine into Operational Code'
There are several tasks that will be required to translate the routine into operation code. These

include:

18. Optimize the Routine

The crater matching routine is not currently programmed to run efficiently. Rather, the code

is analytic, intended to allow the author to analyze the routine’s applicability to lunar TRN.

" The author uses the term ‘operational code’ to imply code that is neither analytic code nor flight code. Rather,
‘operational code’ is code that is programmed for testing and is intended to be very close to a flight version of
the code, allowing a better understanding of the code to be gained during testing.
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To more fully characterize the routine, the code must be stripped of much of the analytic
functionality. In addition the user defined constants must be analyzed and optimized for the

lunar environment.

19. Program Routine into Operational Code

The routine must be programmed in operational code that will allow the performance of the

routine to be more precisely understood.

20. Incorporate Routine into an End-to-End Simulation

The operational code can be integrated into and end-to-end simulation to allow overall
performance analysis of the navigation update process. This simulation will demonstrated the
effectiveness of the navigation update process in allowing the inertial guidance system of the

spacecraft to help keep the spacecraft on its desired trajectory.

8.3.2.3 Possible Modifications to the Routine
There are many possible modifications to the routine that might improve its performance. Some of

these include:

21. Program a Baseline

It may be appropriate to program a triangle-based star tracker algorithm as a crater matching
method. This algorithm would be a potentially useful baseline for performance comparison.
In general, triangle-based approaches are the standard for the ‘lost-in-space’ algorithm of star

trackers. Reference section 3.2.2.2.1.
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22. Probabilistic Modeling

23.

24.

The incorporation of some type of probabilistic modeling into the matching process might
prove useful in the correlation results. As currently programmed, the pattern vector indicates
if a grid cell is “full’ or ‘empty’. Rather than each cell containing merely a O ora 1
(effectively) indicating the presence of a crater, crater centers might be modeled as some type
of mean distribution. This would allow the cells that are very near a ‘full’ cell to indicate
such. Therefore, if image noise causes a crater center to appear shifted by a cell or so, the

probabilistic modeling might account for that shift.
Confidence Measures

A measure of confidence attached to each position match would be helpful. This confidence
measure would need to incorporate all factors that indicate how closely a given image

matches the correlated area of the database.
Investigate Other Matching Possibilities

There are many other possibilities for the crater matching task. Some of these may perform
better than this crater matching task. These other possibilities should be considered and

investigated as appropriate.

Some possibilities that were of interest to the author were a genetic algorithm and a neural
network approach to solving the star tracker problem.” In addition, a pyramid scheme based
upon the standard triangle-based star tracker algorithm is another method that might deserve

more attention.”

276



25.

26.

27.

Complete Analysis

The analysis of the routine was by no means exhaustive. Many of the areas that would
benefit from more in-depth analysis were mentioned in Chapter 7. Most importantly, the
response of the routine to various types and levels of noise should be more fully

characterized.

Matching Techniques

The current matching technique is very basic. A more complex matching scheme may allow
the correlation process to account for ‘near matches’ between grid cells of the pattern vector

and the database, which does not currently occur.

Database Searching Techniques

The database is stored as a look up table, and is searched by referencing the cell number of
‘full’ cells. There may be other methods that are more suited to searching the database. One
suggestion might be a modification of the k-vector approach for accessing the database as

described by Martari, Junkins, and Samaan.™
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Appendix A: Perspective Transform Proofs

During the course of the derivation and implementation of the perspective transform, the author found
it useful to prove various traits of the algorithm. Two of these proofs lend particular insight to the

nature of the transform and will be included here.
Proof # 1: Proof that the Normalized Distance Between the Original and

Desired Principle Point does not Vary Due to the Perspective

Transform.

This proof demonstrates that the distance between the principle point and the desired principle point
in the original image will be equal to the distance between the same points in the transformed image.

Pictorially, this is represented in Figure A-1. The proof itself can be broken into two steps:

28. Prove that the angle between the original and desired principle points, measured from the

origin of the camera frame, is equal across the transform. That is, prove that & =

29. Given & = &2, prove that the distance between the original and desired principle points is

equal across the transform. In other words, prove that d, =d,.

279



Constancy of the Normalized Distance
between Boresight Vectors
over the Perspective Transform

Given:
fa @ B r, ai

Demonstrate:
di=d;

m

Figure A-1. Proof that the Normalized Distance Between
Two Boresight Vectors is Constant Over the Transform.

Proof #1, Step A: Prove that o, = ,.

30. By isosceles triangle with the included angle as /3, , itis evident that ¥, =¥, = ¥.

31. By adjacent exterior angles of this isosceles triangle, I, =TI, =I'=7—y.
32. By side-angle-side, the highlighted triangles are congruent (and equal).

SAS = {alt T C}. See Figure A-1.

33. Since the highlighted triangles are congruent, all angles must be equal. Therefore, &, = &, .
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Proof #1, Step B: Demonstrate that if o, = ¢, then the distance between the current

principle point and the desired principle point in the original image plane is

equal to the same distance in the transformed image plane.

Since the image planes UV, and UV, are both defined as unit distance from the camera, the

normalized distance between any two points on the image plane can be defined by Equation 5.2 as:

Jur+v? :tan(a/)

Equation 8.2

Reference Figure 5.6. In the first step of this proof, it was shown that &, = &, . Therefore, it follows

that tan(a!l ) = tan(az) and \/ u12 + vf = \/ ug + v§ , which implies that the normalized distance

between the original principle point and the desired principle point in the image plane will not vary

due to the transform.
Proof #2: Demonstration that the Norm of an Arbitrary Vector May Vary
Over the Perspective Transform.
This proof is somewhat more difficult than the previous proof, as it attempts to prove that any
arbitrary vector in the original image plane does not necessarily stay constant over the perspective
transform. This demonstration will not show that the norm of an arbitrary vector must change over

the transform; rather, it shows that the norm of an arbitrary vector will change over the transform for

some case(s).’

Thus, a single example demonstrates that the statement is indeed true.

i Refer to section 5.7.4 for an example of the norm of an arbitrary vector remaining constant.



The counter-example presented below follows this logic. This method of counter-example is not

considered a proof. Nevertheless, it does demonstrate that the statement is true.

alt

Example of Variation of a Vector's Norm
over the Perspective Transform

Given:
a =30° r =1737.4km
@, =45  ait=100km

B =10°

Demonstrate:
drd

From Previous Equations:
B, =1.923
B;=3.401°

Figure A-2. Demonstration that the Normalized Distance Between Any Two

Points in the Image Plane is not Constant Over the Transform.

Proof #2: Example Problem Setup

Given:

a, =30°
o, =45°
B =10

r =1737.4km

m

alt =100km
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Show that:

Proof #2: Example Problem Calculations

34. From Equation 5.2, Equation 5.3, and Equation 5.4.

B, =1.923°
B, =3.401°

35. From manipulation of Equation 5.2

QL
Il

tan(c, ) - tan(e, )
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Equation 8.6



Example of Variation of a Vector's Norm
over the Perspective Transform Detail

Triangle A Triangle B

Figure A-3. Demonstration that the Normalized Distance Between Any Two
Points in the Image Plane is not Constant Over the Transform, Detail.

36. Triangle A: Use the rules for interior angles of a triangle and the Law of Sines to solve for &,

in terms of known quantities. Refer to Figure A-3.

Y =”‘(ﬂ1 “ﬁa)_&l
Equation 8.7

sin(@,) _ sin(v,)

r r, +alt

m

Equation 8.8
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Sin(&1) Sin(ﬂ-_(ﬁl _183)—&1) _ Sin(ﬂl + 5, +&1)

I, r, +alt v, +alt
_ sin(f, + p )COS(&I )+COS(151 + [ )Sin(&l)
r, +alt
r,+alt _sin(f + B,)cos(@&, )+ cos(B, + p, )sin(&,)
e sin(@, )
BB, o5 4.5,)
tan(¢, )

Equation 8.9

tan(@) =SB +4) ,(071:07]6[0 %j}

r +alt

- COS(ﬁl + ﬁ} )

m
Equation 8.10

Substituting known values into Equation 8.10

& =69.042°

Equation 8.11
377. Tnangle B: Use the same process to solve for &, in terms of known quantities.

D, =”_(,B1 _,Bz)_&z

Equation 8.12

tan(072)= . _Hj;?(ﬂ] +ﬂ2) s %&2 Lo, € (0 %j}
= : —Cos(ﬂl +,Bz)

m
Equation 8.13

a, = 69.906°
Equation 8.14

38. Use Equation 8.6 to determine d and d.

d =0.423
d =0.123
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Equation 8.15

This demonstrates that  is not necessarily equal to d when d is an arbitrary vector in the image
plane. Therefore, this example shows that in general, the norm of a given vector will not necessarily

remain constant over the perspective transform as defined in this paper.
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Appendix B: Abbreviations and Acronyms

Table B-1. Acronyms.

Acronym Meaning
AGL Air-to-ground Level
CEP Circular Error Probability
DSPSE Deep Space Program Science Experiment
EDL Entry, Descent, and Landing
GPS Global Positioning System
INS Inertial Navigation System
LIDAR Light Detection and Ranging
LOLA Lunar Orbiter Laser Altimeter
LRO Lunar Reconnaissance Orbiter
LSSM Long Sample Short Matrix
MAD Mean Absolute Difference
MSL Mean Sea Level
NASA National Aeronautics and Space Administration
PDF Probability Distribution Function
PTAN Precision Terrain Aided Navigation
SSLM Short Sample Long Matrix
ST9 Space Technology 9
TAINS TERCOM Aided Inertial Navigation System
TERCOM Terrain Contour Matching
TRL Terrain Relative Localization
TRN Terrain Relative Navigation
VAR Variance
VBN Vision Based Navigation
VSE Vision for Space Exploration




Table B-2. Abbreviations.

Abbreviation Meaning
B/c Because

BR Buffer Radius
BS Boresight

Corr. Correlation

DB Database

Err. Error

FOV Field of View
Gen. Generation
Inconcl. Inconclusive
Max. Maximum

OFP Over Flight Path
Pos. Position

PR Pattern Radius
Pts. Points

1 24Y% Pattern Vector
Ref. Reference

Sig. Signature

SNR Signal-to-Noise Ratio
Std. Standard Deviation
Succ. Success

Thresh. Threshold

TP Terrain Profile
wi* With
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Appendix C: Matlab Code for the Crater Matching Routine

The code presented in this appendix is the code used to implement all theory presented in this thesis,

as well as used to generate all results presented as the author’s own.

The code was written in MatLab v7.1 (R14) licensed to The Charles Stark Draper Laboratory.
MatLab is a high-level computer language with an extensive array of built-in functions, and a wide
variety of downloadable toolboxes with additional functions. The language is widely used in the
astronautical engineering field (and other similar engineering fields) for initial implementation and
testing of code. A wide variety of graphical and analytic tools are accessible in MatLab to simplify

this process. However, MatLab code is not suitable for real-time purposes.

The author’s code is highly function-based. To simplify the presentation of the code, an outline of the
overall structure of the code is first presented, arranged by the order in which functions are called.

Following this, the code for all functions is presented alphabetically.

Note that the top-level code files for the crater matching routine and the crater database generation are

CM_Main.m and DB_Main.m, respectively.
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Called Function Outline

CM_Main.m
1. CM_LoadParam.m
1. Gen_DefaultAsk.m
39. Gen_DefaultSet.m
2. Gen_InitialOps.m
1. PT RMat.m
3. Gen_ProcessImage.m
4. CM_Signature.m
1. Gen_BSList.m
40. PlotCraters.m
2. PT _RTDCalc.m
41. PT_DCalc.m
42. PT_RTCalc.m
g. PT_RMatm
h. PT_TVec.m
1. PlotTrans.m
3. PV_Main.m
43, PT_Main.m
a. PlotOrigCraters.m
1. PlotCraters.m
b. PT_Analysis.m
1. PV_EuclideanTrans.m
2. PT_PtsNorm.m
3. PlotCraters.m
44. PV_SensorView.m
c. PlotCraters.m
d. PlotOverlay.m
e. PlotSensorView.m
45. PV_CloseNeighbor.m
f.  PlotOverlay.m
46. PV_PatternGen.m
g. PlotPatternGen.m
4. PlotCraters.m
5. PlotOverlay.m
6. PlotSensorView.m
7. PlotGrid.m
i. PlotOverlay.m
47. PV_Save.m
h. Gen_CircleSquare.m
8. Gen_CompressPV.m
4. CM_Save.m
CM_Matching.m
CM_Analysis.m
7. CM_Analysis_Proc.m

o



DB _Main.m
1. DB_LoadParam.m
1. Gen_DefaultAsk.m
48. Gen_DefaultSet.m
Gen_InitialOps.m
1. PT_RMat.m
Gen_CircleSquare.m
Gen_CompressPV.m
DB_CRMain.m'
Gen_ProcessImage.m
CM_Signature.m
1. Gen_BSList.m
49. PlotCraters.m
2. PT_RTDCalc.m
50. PT_DCalc.m
51. PT_RTCalc.m
1. PT_RMat.m
j. PT_TVec.m
1. PlotTrans.m
3. PV_Main.m
52. PT_Main.m
k. PlotOrigCraters.m
1. PlotCraters.m
I.  PT_Analysis.m
1. PV_EuclideanTrans.m
2. PT_PtsNorm.m
3. PlotCraters.m
53. PV_SensorView.m
m. PlotCraters.m
n. PlotOverlay.m
0. PlotSensorView.m
54. PV_CloseNeighbor.m
p. PlotOverlay.m
55. PV_PatternGen.m
q. PlotPatternGen.m
4, PlotCraters.m
5. PlotOverlay.m
6. PlotSensorView.m
7. PlotGrid.m
i. PlotOverlay.m
56. PV_Save.m
r. Gen_CircleSquare.m
s.  Gen_CompressPV.m
4. CM_Save.m
8. DB_Save.m

9

No AW

BSTranslator.m (obsolete, replaced by PT_Main.m)

' DB_CRMain.m is a program used by Draper Labs to simulate sensor images of the lunar surface given a camera
orientation and position. In addition, this program identifies the crater centers and radii from the given image.
This program will not be presented in detail herein.
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Called Functions, Alphabetical

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

CM_Analysis.m

This function contains functionality for automated analysis of the crater matching routine. It parses
the success / failure / inconclusive and error readings for analysis.

CM_Analysis_Proc.m

This function processes the results from CM_Analysis.m and displays and graphs the results
automatically.

CM_LoadParam.m

This function loads the initial parameters necessary for execution of the crater matching routine. It
also will load default parameters if initialized to do so.

CM_Main.m
The main function for the crater matching routine.
CM_Matching.m

The correlation subroutine of the crater matching process, which attempts to match the signature to
the database.

CM_Save.m

This function saves the data from signature generation.
CM_Signature.m

This function generates a signature for a given sensor image.
DB_LoadParam.m

This function loads the necessary initialization parameters that are necessary for the database
population.

DB_Main.m

The main function for the database population
DB_Save.m

This function saves pattern vector data to the database.
Gen_BSList.m

This function generates a list of potential boresight craters given a sensor image.



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Gen_CircleSquare.m

This function is involved in numbering only those grid cells that have part of the cell inside of the
pattern radius.

Gen_CompressPV.m

This function is involved in numbering only those grid cells that have part of the cell inside of the
pattern radius, and can either compress the pattern row vector or decompress the compressed row
vector.

Gen_DefaultAsk.m

This function asks the user if default initialization parameters should be used.

Gen_DefaultSet.m

This function sets initialization parameters to default values, if requested by the user.

Gen_InitialOps.m

This function performs initialization operations, such as defining constants and defining empty
variables that must be predefined.

Gen_ProcessImage.m

This function filters the original sensor image and converts it to a usable format. It also can add noise

to the image if set to do so.

Other_LUTRowLengthGraph.m

This function generates a plot of the row length of the look up table.

PlotCraters.m

This function plots the craters from a given set of data points.

PlotGrid.m

This function plots the full and empty grid cells, along with the grid lines themselves.
PlotOrigCraters.m

This function plots the original sensor image craters.

PlotOverlay.m

This function can plot the desired boresight crater, the potential boresight crater, the closest

neighboring crater, the buffer radius, and the pattern radius. It can do so for images in different units

as well.
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31.

32.

33.

35.

36.

37.

38.

39.

40.

41.

42.

PlotPatternGen.m

This function plots the generation of the pattern from an image and the desired boresight.
PlotSensorView.m

This function plots only the craters and portions of crater rims that fall within the pattern radius.
PlotTrans.m

This function plots the translation vector calculation.

. PT_Analysis.m

This function is an analytic tool to measure the performance of the perspective transform.
PT_DCalc.m

This function calculates the pointwise distance for the perspective transform.

PT_Main.m

This 1s the main function for the perspective transform.

PT_PtsNorm.m

This function calculates the normalized distance between every possible set of points in a matrix.
PT_RMat.m

This function calculates the rotation matrix for the perspective transform.

PT_RTCalc.m

This function serves as a header function for the calculation of the rotation matrix and translation
matrix for the perspective transform.

PT_RTDCalc.m

This function serves as a header function for the calculation of the rotation matrix, translation matrix,
and the pointwise distance for the perspective transform.

PT_TVec.m
This function calculates the translation vector for the perspective transform.

PV_CloseNeighbor.m

This function determines the closest neighbor for a given image and desired boresight crater.
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43.

44,

45,

46.

47,

PV_EuclideanTrans.m

This function performs the Eulcidean translation of data points to center a desired boresight.
PV_Main.m

This is the main function for the patter vector determination.

PV_PatternGen.m

This function rotates the image data and generates a pattern vector from the data points within the
pattern radius.

PV_Save.m
This function saves the pattern vector.
PV_SensorView.m

This function determines which craters are within the pattern radius.
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