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We calculate the shape of the current pulse in an FCal-style tube electrode when the liquid argon in the 
gap is momentarily, uniformly illuminated with ionizing radiation.  To zeroth order the FCal pulse is 
triangular.  The first order correction adds a quadratic term a few percent of the triangle peak. 

 
1. Introduction 
 
When the Large Hadron Collider (LHC) turns on at the CERN laboratory it will become the world’s 
highest energy proton-proton collider.  Because the cross sections of interest are small, the LHC must 
operate at an exceptionally high luminosity.  This presents a particular challenge to the two detectors 
which will focus on “high pT physics”.  The plentiful ordinary “low pT” (aka minimum bias) collisions 
will illuminate all the detectors with background particles which leads to several problems.  For  the liquid 
argon calorimeters in the ATLAS detector, and particularly for the forward calorimeters (FCal) near the 
beam directions, there will be a nearly constant bombardment of particles creating a low level of 
ionization in the electrode gaps on every bunch crossing.  In order to minimize space-charge effects, the 
FCal electrodes were designed with smaller than normal gaps.  Each of the approximately 61,000 
electrodes in the FCal is constructed with a solid rod inside a thin-walled tube.  An insulating PEEK fiber 
is helically wound around this rod to ensure a concentric arrangement.  The gap between the rod and tube 
is filled with liquid argon, the ionizing medium.  A positive potential is applied to the rod while the tube 
(and the surrounding matrix) is held at ground, creating an electric field across the gap.  This mechanical 
design provides a practical method to mass produce narrow gaps with acceptable precision [1]. 
 
For planar electrodes the geometry, and hence electric field in the gap, is uniform so that the ionization 
per energy deposit and drift speed of the ionization electrons are constant across the gap.  This leads to a 
current pulse with a sharp rise and a linearly falling profile, terminating when the last electrons cross the 
gap.  That is, the current pulse versus time has a right triangle shape.  In contrast, the cylindrical geometry 
of the FCal tube electrodes gives an electric field which falls with radius.  The non-uniform geometry, the 
non-uniform drift speed, and the non-uniform ionization density can distort the current pulse.  We will 
show that the first order correction to the triangle pulse, due to the non-uniform drift speed, cancels out 
but the non-uniform geometry and the non-uniform ionization add to the triangle a small quadratic term 
which enhances the current between the fixed end points. 
 
We start the discussion with a description of the geometry.  Next we lay out the simplifying assumptions  
employed in the calculation.  Parameterizations of the non-uniform drift speed and the non-uniform 
ionization density are presented.  A careful discussion of the general formula for the current pulse is 
followed by the kinematics of the drifting electrons.  At this point all the ingredients are in hand and the 
result is easily obtained.  We conclude with a description of the result. 
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2. The electrode geometry 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each of the two forward calorimeters (one at each end of the 
ATLAS detector) is made up of three modules called FCal1, 
FCal2, and FCal3, one behind the other as viewed from the 
collision point.  The background ionization rate is largest in 
FCal1 and smallest in FCal3 so the size of the gap must be the 
smallest in FCal1; it can be larger in FCal2, and even larger in 
FCal3.  Table 1 shows the relevant electrode dimensions for 
each of the modules. 
 
We define 0 /2r g−  as the radius of the cylindrical surface of the rod and 0 /2r g+  as the radius of the 
inner surface of the tube.  Hence g  is the width of the liquid argon gap and 0r  marks the radius of an 
imaginary cylindrical surface mid way across the gap.  Sometimes we will denote positions via the 
coordinate r  but we will find it convenient to refer to locations within the gap relative to this mid way 
cylindrical surface using the coordinate x .  Thus 0r r x= + .  Because we assume cylindrical symmetry 
we won’t need the θ  and z  coordinates. 
 

 

 
 
Fig. 1. The ATLAS Forward Calorimeter electrode consists of a solid metal rod inside a thin walled copper 
tube.  A helically wound PEEK fiber holds the rod in place.  Liquid argon fills the gap between the outer 
diameter of the rod and the inner diameter of the tube.  A portion of the electrode is shown on the left.  On 
the right, the coordinate system used to specify the geometry of the gap is indicated.  The displacement 
vectors of magnitude r  and 0r  originate at the symmetry axis which is outside the frame of the drawing. 

 FCal1 FCal2 FCal3
g (mm) 0.269 0.376 0.508 
r0 (mm) 2.491 2.653 3.001 
h (%) 2.6 3.4 4.1 

   
Table 1.  FCal electrode dimensions 
and triangle pulse correction 
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To make the mathematics a bit more transparent we will define the initial time to be 0/2t g v=−  where 
0v  is the electron drift speed at 0x = .  The time when the last electrons have drifted out of the gap will 

be defined to be 0/2t g v= + .  It will be apparent later that 0v  is defined in a self-consistent manner. 
 
3. Simplifying assumptions 
 
The calculation presented in this paper is carried out in the same spirit as the one for planar electrodes 
where the current pulse has the shape of a right triangle.  We ignore the current from the very slowly 
moving positive ions.  We assume the external circuit has zero impedance, that is, the potential across the 
electrode is constant, independent of the current.  We take the drifting electron charge to be much less 
than the charge stored on the electrode surfaces so that space-charge distortion of the electric field [2] can 
be ignored when calculating the drift speed.  We neglect the small magnetic fields set up by the currents 
and any constant external magnetic fields.  We ignore signal propagation delays.  And we ignore the 
transition effect [3], that is, we assume the energy deposit in the liquid argon at the initial instant of time is 
spatially uniform. 
 
4. Drift speed and initial recombination parameterizations 
 
Due to the cylindrical symmetry of the electrodes, the electric field in the gap is not uniform.  It falls off 
with radius r  from the center of the rod.  Because the electron drift speed depends on electric field, the 
speed will vary with the location of the electrons.  Figure 2 shows the electron drift speed in liquid argon 
at T = 88 K versus electric field [4].  At the middle of the gap (at 0r r= ) the electric field is  

0 0 / 1.0 kV/mmV gε ≡ = .  An arrow is drawn from the origin to this nominal operating point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At infinite electric field the initial ionization density 0ρ  would be uniform throughout the liquid argon in 
the gap because of our assumption that the argon is uniformly illuminated with radiation at the initial 

 

Fig. 2. Electron drift speed v  versus  relative 
electric field 0/ε ε  in liquid argon at T = 88 K. 

Fig. 3. Relative electron charge density 0/ρ ρ  
after initial recombination versus relative 
electric field 0/ε ε . 
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instant of time.  But because the electric field is finite, a small fraction of the initial ionization will 
recombine.  Since the electric field varies across the gap, the initial ionization density ρ  will vary across 
the gap.  Figure 3 shows one model [5] for the dependence of the ionization on electric field.  The vertical 
axis is the ratio of actual ionization density to the density at infinite electric field.  The nominal operating 
point is again shown via the arrow from the origin. 
 
For small variations of the electric field, the electron drift speed and the initial ionization density will vary 
to first order via the tangent lines shown in each of figures 2 and 3.  We will find it useful to define 
 

 0

0 00

dv dv d
vv d

α
ε ε

εε
      ≡ =         

  (4.1) 

and 

 0

0 00

V d d d
gv d

ρ ρ
β

ρ
ε
εε

      ≡ =         
  (4.2) 

 
where dv dε  and d dρ ε  are evaluated at 0ε .  Each of these gives the fractional change in v  or ρ  for a 

given fractional change in the electric field.  Or one can interpret the parameter α  or β  as the ratio of the 
slope of the tangent line to the slope of the nominal arrow.  For the electron drift speed 0.32α ≈  and for 
the initial ionization density 0.039β ≈  from reference [5] or 0.054β ≈  from reference [6]. 
 
 
5. Derivation of the current pulse [7] 
 
The electric field in the liquid argon gap has only a radial component and, in the absence of any free 
charges, is given by ( ) /r c rε =  where the constant c  is determined by requiring the line integral of the 
electric field across the gap equal the negative of the electric potential applied across the gap.  In our case 

0V  is the potential applied to the rod with the tube held at ground. 
 

 
0 0

0 0

/2 /2

0
0

0/2 /2

/2
( ) ln

/2

r g r g

r g r g

dr r g
V dr r c c

r r g
ε

+ +

− −

 +  = = =    − ∫ ∫  

 
Thus  

 0

0

0

/2
ln

/2

V
c

r g
r g

=
 +     − 

 

 
To lowest order in 0/g r  and 0/x r ,  
 

 0

0

( ) 1 where
2 2

V x g g
x x

g r
ε   = − − ≤ ≤ +   

  (5.1) 
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Now we imagine a concentric cylindrical surface of radius ( )1 1 0| | /2r r r g− ≤  with uniform surface 

charge density 1σ .  The electric field in the gap is now modified such that 
 

 
1

1

/ for 
( )

/ for 

a r r r
r

b r r r
ε

 <=  >
 

 

Applying Gauss’ Law 
r r

ρε εε ∂
∇ ⋅ = + =

∂ ε
  at that charged surface at 1r  and enforcing the line integral 

of ( )rε  across the gap to equal 0V  we get 
 

 

1 1 0
0

11 1
1

0

0

/2
ln

( ) ( ) where 
/2

ln
/2

g
g

r r g
V

c rr
r r r c

r r r g
r g

σ
σ

θε

 +  −    
= + − =

 +     − 

ε
ε

 

 

and where ( )1r rθ −  is the unit step function ( ) ( )1 1

d
r r r r

dr
θ δ

  − = −   
 and ( )1 1r rρ σ δ= − .  At the 

surface of the inner electrode (at 0 /2r r g= −  or equivalently at /2x g=− ) 
 

 ( )
0

/2
/2

gcx g
r g

ε = − =
−

 

 
and at the surface of the outer electrode (at 0 /2r r g= + , /2x g= + ) 
 

 
( )

1 1

0

1
( /2)

/2 g

r
x g c

r g
σε  = + = +   + ε

 

 
The surface charge density and charge on the inner electrode (again using Gauss’ Law) are 
 

 ( ) ( ) ( )
0

/2 /2 and /2 2
/2
g

g

c
g g Q g L c

r g
σ πε− = − = − =

−

ε
ε ε  

 
and on the outer electrode 
 

 ( ) ( ) ( ) ( )0 0
1 1

0

/2 /2 and /2 2
/2

g
g

c r
g g Q g L c r

r g

σ
σ π σε +

+ = − + = − + = − +
+

ε
ε ε  

 
With the charge at 1r  of ( )1 1 12Q r r Lπ σ=  we see that the total charge 

( ) ( ) ( )1/2 /2Q Q g Q g Q r= − + + +  is zero. 
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Now we allow the charges of surface charge density 1σ  at 1r  (or 1x )  to drift in the electric field to 
1 1r dr+  (or 1 1x dx+  where 1 1dx dr= ).  Then the surface charge density 1σ  will decrease as the area of 

the cylindrical surface increases.  If 0σ  is the surface charge density when the radius of the cylindrical 
surface is at 0r  then 1 1 0 0r rσ σ=  specifies how 1σ  changes as 1r  changes such that the total charge on the 
surface remains fixed.  Our assumption that the external circuit presents zero impedance guarantees that 

0V  is fixed as 1r  increases.  The change in electric field at the surface of the inner electrode per change in 
1r  is  

 
 

( )
( )

( ) ( )
( )

0 0 0 0
0 1

1 0 1 0 10 0

0 0

/2 1 1 1 1
ln /2 ln

/2 /2r /2 /2
ln ln

/2 /2

d g r d r
r g r

dr r g dr r g rg r g
r g r g

σ σε − −   = + − =       − −+ +        − −   

ε ε

 
and for the outer electrode 
 

 
( )

( )
0 0

1 0 1 0

0

/2 1 1
/2 /2

ln
/2

d g r
dr r g r r g

r g

σε +
=

 + +     − 

ε
 

 
If the charges making up 1σ  at 1r  drift with speed 1v  then the charges on the electrodes change as 
 

 
( ) ( ) 1 1 1 1

0

0

0

/2 /2
2 2

/2
ln

/2

dQ g dQ g v v
L r L

dt dt gr g
r g

σ σ
π π

− +
= − = ≈

 +     − 

 

This produces a current in the external circuit of 
 

 ( )
( ) 1 1

0

/2( /2)
2

dQ gdQ g v
i t r L

dt dt g
σ

π
+−

= = − ≈   (5.2) 

 
Because 1σ  and 1v  change as the charges drift across the gap, ( )i t  will not be constant (in contrast to the 
case with planar electrodes).  For additional simple cases see Ref. [2], section 6. 
 
Now we assume that at one instant of time the liquid argon in the gap is uniformly illuminated with 
ionizing radiation.  The ionization electrons will not be uniform across the gap because initial 
recombination depends on the electric field which varies across the gap.  These free electrons start to drift 
across the gap creating an induced current ( )i t  in the external circuit.  The electrons produced nearest the 
outer electrode (the cathode) are the ones which cross the whole gap and are the last to reach the anode.  
We define ( )ex t  to be the radial coordinate of these last electrons.  Then the current pulse (the current as 
a function of time) is given by 
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 ( ) ( ) ( )

( )

0

/2

2
,

ex t

g

r L
i t dx x t v x

g
π

ρ
−

= ∫   (5.3) 

 
where ( )v x  is the electron drift speed in the liquid argon and ( , )x tρ  is the density of drifting electrons in 
the liquid argon.  Note that we’ve simplified the constant outside the integral using the approximation 

0/2g r . 
 
In this section we’ve seen that the electric field is modified by the presence of unbalanced charges in the 
liquid argon.  In many practical applications, these unbalanced charges are so small that, for purposes of 
calculating the drift speed and initial recombination, we can neglect them and use the electric field of 
equation (5.1).  In order that this be a good approximation we require 
 

 ( ) ( ) ( ) ( )
/2

0

/2

2 , /2 /2
g

g

L dx r x x t Q g Q gπ ρ
+

−

+ − ≈ +∫  

 
 
6. Kinematics of the drifting ionization electrons 
 
Here our goal is to find the expressions we will need to put the 
integrand of equation (5.3) into a form we can easily integrate 
and interpret.  This requires that we find simple expressions for 
the kinematics of the drifting ionization electrons.  We will take 
all expressions to lowest order in 0/2g r , 0/x r , and 0 0/v t r  for 

/2 /2g x g− < <+  and 0 02 2g v t g v− < < +  (see the end of 

section 2 for the definition of time).  Starting with equation (5.1) 
we see that 
 

           
( )

0

0 0

x x
r

ε ε
ε
−

= −                                                   (6.1) 

 
Now applying the result from section 4 we see that 
 

         
( ) ( )

0 0

0 0 0

v x v x x
v r

α α
ε ε

ε
 − − = = −  

                        (6.2) 

 
which immediately gives  
 

 0
0

( ) 1
x

v x v
r

α
  = −   

  (6.3) 

 
Now integrating this expression we find 
 

Fig. 4. Path followed by the last 
ionization electron.  Straight line 
path is to 0th order while the 
quadratic path is to 1st order. 
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 ( )
2

2 2
0 0

02 4e

g
x t v t v t

r
α  = − + −   

  (6.4) 

 
which describes the motion of the last electrons to leave the gap.  For an electron which starts at position 

1x  at the initial time 0/2t g v=−  its subsequent motion is described by 
 

 ( ) ( ) ( )
4

2

1 0 1 0
0

/2 /2
2 4
g

x t x v t g x v t g
r
α  = − − + − − −   

  (6.5) 

 
Now we consider an interval 1x∆  at 1x .  Electrons at the head of this interval starting at time 

0/2t g v=−  will separate a bit from those electrons starting at the same time at the tail of this interval 
such that the interval ( )x t∆  stretches with time as 

 ( ) ( )0 1
0

1 /2x t g v t x
r
α 

 ∆ = + + ∆  
  (6.6) 

 
This will cause the density of electrons to tend to decrease with the drift time.  Now given ( )x t  at time t  
we can let time run backwards to find 1x  at time 0/2t g v= −  via 
 
 ( ) ( )22

1 0 0
0

/2 /2
2

x x v t g x x v t g
r
α  = + + + − + +     (6.7) 

 
Figure 4 shows a plot of ( )ex t  versus t  in zeroth order and in first order.  These last electrons to drift out 
of the gap start at /2x g=  next to the cathode at time 0/2t g v=−  and hit the anode at /2x g=−  at 
time 0/2t g v= + .  To zeroth order, the drift speed is constant at 0v .  To first order, these electrons start 
with speed 

 0
0

( /2) 1
2
g

v x g v
r
α  = + = −   

  (6.8) 

and end with speed 

 ( ) 0
0

/2 1
2
g

v x g v
r
α  = − = +   

  (6.9) 

 
 
7. The current pulse 
 
Here we gather all the expressions we need to insert into equation (5.3) and we redefine 0ρ to be the 
electron charge density at 0x = at time 0/2t g v= −  after initial recombination. 
 

 ( )
( )

0 1 1
0 0 0

0 0 0 0/2

2
( ) 1 1 1 /2 1

ex t

g

r L x x x x
i t dx g v t v

g r r r r
π β α α

ρ
−

     −          = + − − + −                    ∫   (7.1) 
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The first bracket corrects the electron charge density for the bunching of the electrons as they drift to 
smaller r , the “geometry effect”.  (See equation (6.7) for the definition of 1x .)  To first order this 
correction depends only on time.  The second bracket corrects the electron charge density for the 
dependence of the initial ionization on electric field.  (See section 4 for the definition of β .)   The third 
bracket corrects the electron charge density for the stretching of x  intervals between drifting electrons as 
calculated in equation (6.6).  The last bracket corrects the electron drift speed for the dependence on 
electric field as displayed in equation (6.3).  The upper limit of integration ( )ex t  is given by equation 
(6.4) and itself includes a first order term depending on α .  Keeping only first order terms the expression 
becomes 
 

 ( ) ( ){ }
( )

0
0 0 0

0/2

2 1
( ) 1 1

2

ex t

g

r L g
i t v dx v t x

g r
π

ρ α β α β
−

   = + − − + − +    
∫   (7.2) 

 
The integral is straightforward and yields 
 

 ( )
( )0 0 0

0 0
0

1 /22
1

2 2
r L v g g

i t v t v t
g r

βπ ρ  −      = − + +        
  (7.3) 

 
Note that the dependence on α , the variation of speed with electric field, has cancelled out. 
 
 
8. Interpretation 
 
Equation (7.3), normalized such that the initial current (at time 0/2t g v= − ) is 1.0, is plotted as the top 
curve in Figure 5.  This is the first order pulse.  Progressing down the plot, the next is the zeroth order 
right triangle current pulse.  Shown at the bottom is the first order correction which, when added to the 
zeroth order pulse gives the first order pulse.  Values of 0(1 /2)/4h g rβ= −  are shown in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The normalized zeroth order pulse (right triangle), the first order pulse, 
and the first order correction are plotted versus time. 
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The dominant contribution to the first order correction comes from the “geometry effect”.  Let us start by 
neglecting the drift speed gradient α  (which has canceled out anyway) and the initial recombination 
variation β  for the moment.  Then if we divide the initial charge in the gap into bins of equal width dx , 
the bins at larger x  will contain more charge because the volume of these bins is larger.  As the electrons 
in a given bin drift to smaller values of x  the electron charge density increases because the volume of the 
bin shrinks.  This increase in density boosts the current pulse relative to the triangle. 
 
Initial recombination is larger at large x  where the electric field ε  is smaller.  This small effect tends to 
counter the “geometry effect”. 
 
The insensitivity of the current pulse shape to the speed gradient α  might have been anticipated.  As the 
electrons speed up the electron density drops (relative to the case with 0α = ).  Since the current depends 
on the product, these effects tend to cancel.  Or one could argue that the way we have defined 0v  ensures 
the α -dependence will cancel.  It is straightforward to show that the total charge in the current pulse is 
independent of α .  This total charge constrains the integral under the first order correction.  Since the first 
order correction is quadratic equaling zero at the ends of the time interval, the shape is completely 
determined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Normalized pulse shape at the ADC without and with the first order correction.  Also shown is the 
ratio of these pulses before and after time-shifting to line up the peaks and zero crossing points. 
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We have fed these current pulses through a spice simulation of the FCal electronics chain.  At the end of 
the chain, i.e. at the output to the ADC on the Front End Board (after pedestal subtraction), the shaped 
pulse for FCal1 is as shown in Figure 6.  The solid (red) line shows the 0th order triangle and the dashed 
(green) line the triangle with the 1st order correction.  These two pulses have been normalized so that both 
peak heights are unity.  On this scale it is difficult to see much difference.  To highlight the differences we 
have calculated the ratios of the two pulses.  The solid (dark blue) curve shows the ratio of the 1st order 
pulse to the 0th order pulse.  Here one can see that the peaks and the zero crossing points of the two pulses 
do not line up.  The 1st order pulse is pushed to slightly later times relative to the starting point.  The spice 
program reports the shaped pulse relative to the start of the triangle pulse on the electrode.  But when we 
compare spice shapes to measured shapes we will use some other method to line up the pulses.  For 
instance we might line up the peaks. 
 
If we shift the 1st order pulse earlier so that the peaks and zero crossing points line up, then the ratio is as 
shown by the dashed (purple) curve.  The scale for these ratio curves is at the right of the plot.  One can 
see that the shape of the time-shifted 1st order pulse relative to the 0th order pulse is within a few percent 
except at the beginning where the 1st order pulse is much larger.  There are additional, subtle effects which  
contribute to this excess at the leading edge of the measured pulse shape [8]. 
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