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ABSTRACT

In this thesis, we develop a framework for analyzing airlines' operational performances
under different strategic decisions. A detailed study is conducted to compare
differences between a major U.S. legacy carrier and a major U.S. low-cost carrier in
terms of their scheduling practices, flight-based delays and on-time performances,
network operations and mix of passengers, as well as passenger delays and disruptions.
One major contribution of this thesis is that the framework we develop to evaluate
airlines' performances is not restricted by the availability of proprietary airline data and
can be adopted to estimate itinerary-based passenger demand for any U.S. airline
included in the Bureau of Transportation Statistics database. Moreover, in this thesis,
we compute delay for local and connecting passengers and provide a powerful tool for
scenario analysis. Further, we: (1) identify root causes of delays as well as the impact
throughout the network; (2) gain insights about how passenger delay can be reduced
with different scheduling practices; and (3) guide the design of on-time performance
metrics.

Differences in scheduling practices, network operations, passenger mix, aircraft delays,
and passenger delays between different airlines arise from carrier-specific
characteristics. These characteristics should be considered when designing on-time
performance metrics. Characteristics specific to the legacy carrier are: (1) its hubs
experience heavy traffic volume and are often subject to ground delay programs (GDPs)
caused by poor weather conditions; and (2) it operates banked hubs where a set of
arriving flight legs are scheduled closely with a set of departing flight legs to allow
passenger connections between arriving and departing flight legs. Characteristics
specific to the low-cost carrier are: (1) it tends to fly into locations that are less impacted
by weather conditions and less frequently subjected to GDPs; (2) passenger traffic is



distributed more evenly in the system, unlike the case of the legacy carrier in which a
much larger portion of passengers connect through the major hubs; and (3) it has de-
peaked schedules at the major airports which allow the carrier to achieve higher
efficiency in turning aircraft. Another important distinction between the two airlines
that needs to be considered when designing on-time performance metrics is: the ratio of
passenger delay (especially disrupted passenger delay) to operated flight delay for the
low-cost carrier was higher than the corresponding value for the legacy carrier. This
difference indicates that flight-specific on-time performance metrics that ignore airline
heterogeneity can be an inaccurate measure of passenger experiences.

In this thesis, scenario representations pertaining to various levels of airport traffic
under different weather conditions are analyzed within our framework. We measure
passenger delays (that is, the positive difference between the actual arrival time of the
passenger at his/her destination and the scheduled arrival time) and passenger
disruptions, with a passenger disruption defined as a passenger who is re-booked on an
itinerary other than that planned due to a missed connection or flight cancellation. Our
results show that for the legacy carrier, an increase in flight operations of one percent on
the "high-delay" day translates to an increase in the percentage of disrupted passengers
(average disrupted passenger delay) of 22.2% (3.1%); for the low-cost carrier, an
increase in flight operations of one percent only increases the percentage of disrupted
passengers (average disrupted passenger delay) by 12.3% (2.7%). The above statistics
suggest that under poor weather conditions, increasing flight operations at busy
airports, compared to non-congested airports, can cause a much greater increase in
passenger delay and disruptions when airport capacity is reduced by adverse weather
condition.

Thesis Supervisor: Cynthia Barnhart
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

Owing to the growing economy of the 1990's, airlines increased service and sometimes

scheduled more flights than busy airports could handle, even in optimal weather

conditions. According to the Bureau of Transportation Statistics (BTS), from 1990 to

2006, the number of flights operated by commercial airlines in the United States grew

from 6.6 million in 1989 to 8.0 million in 2006, a 21% increase. In that same period,

airport capacity is increased by only 1%. As more and more flights were scheduled at

congested airports, ground congestion became a major hindrance to efficient operations.

One indicator is that aircraft taxi-out times at major US airports increased sharply: the

number of flights with taxi-out times exceeding one hour increased by 165% from 1995

to 2000, from 17,331 flights in 1995 to 45,993 flights in 2000 (Mead (2001) [22]).

Furthermore, the unbalanced increase in flight operations relative to total airport

capacity caused severe system congestion, and numerous flight delays as well as

cancellations, adversely affecting the traveling public.

1.1 Operations Service Reliability and Customer Satisfaction

Although flight schedules and ticket prices have proven to be the main drivers of airline

profitability (Gopalan and Talluri (1998) [16]), studies show that customer satisfaction

and loyalty drive long-term profitability (Heskett et al. (1994) [18]). Because the airline

industry is a highly competitive business, high service reliability can be a major

advantage to attract and retain passengers. In particular, business passengers who tend

to be more time sensitive (Belobaba and Simpson (1982) [2]) are especially valuable to



airline profitability. Similarly, low service reliability can result in decreasing average

fares (Janusewski (2002) [19]).

To provide consumers information on the quality of services provided by the airlines,

the current Department of Transportation (DOT) Air Travel Consumer Report uses six

types of information to evaluate airline service reliability: (1) flight delays, (2)

mishandled baggage, (3) oversales, (4) consumer complaints, (5) incidents involving the

loss or injury of animals during air transportation, and (6) customer service reports. (1),

(2), and (3) are reported by the BTS; (4) and (5) are reported by the DOT Aviation

Consumer Protection Division based on complaints submitted by customers; and (6) is

generated from information submitted to the Transportation Security Administration

related to airline and airport security. As illustrated in Figure 1-1 (Air Travel Consumer

Report (2006) [13]), the most common complaints are related to flight problems, defined

as "flight cancellations, delays, or any other deviations from schedule, whether planned

or unplanned" by the DOT.

Oversales 4.0%

Fares 1.6%

Figure 1-1: Distribution of passenger complaints in July, 2006



1.2 Flight Delay and On-Time Performance Measurement in the U.S.

Since 1987, flight delay statistics have been published in the Air Travel Consumer

Report on a monthly basis and maintained in the Airline Service Quality Performance

(ASQP) database, which is publicly accessible. The major airlines in the U.S. (defined as

airlines generating revenues of $1 billion or more annually) are mandated by federal

law to provide flight operation information, including actual departure time, arrival

time, cancellation and diversion, for each domestic U.S. flight serviced by jet aircraft. In

2006, 18 U.S. carriers met this requirement.

The metric currently employed by the DOT and airlines to estimate on-time

performance is the 15 minutes on-time performance (15-OTP), also referred to as the airline

dependability statistic. According to this metric, a flight is considered to be on time if it

arrives within 15 minutes or earlier of its scheduled arrival time and a canceled flight is

classified as a delayed flight. Based on the Air Travel Consumer Report for May 2008

[13], the industry achieved an average 79.0% on-time arrival rate for all airports

reported. Hawaiian Airlines reported the best performance with 88.9% on-time arrivals,

while American Airlines reported the worst performance with 67.3% on-time arrivals.

In terms of airports, Newark, NJ (EWR) experienced the worst on-time arrival

performance of 63.16% and Salt Lake City (SLC) achieved the best performance of

88.66%. Table 1-1 lists the percentage of flight operations arriving on time by carrier.

Table 1-2 displays the ranking of major airports' on-time arrival performance. For more

details on on-time performance, see http://airconsumer.ost.dot.gov/reports/index.htm.



HAWAIIAN AIRLINES

PINNACLE AIRLINES 114 85.9

AIRTRAN AIRWAYS 57 84.7

SKYWEST AIRLINES 143 84.5

DELTA AIR LINES 91 84.1

ATLANTIC SOUTHEAST AIRLINES 124 83.8

US AIRWAYS 82 83.6

SOUTHWEST AIRLINES 64 80.9

ALASKA AIRLINES 45 80.4

JETBLUE AIRWAYS 46 79.2

NORTHWEST AIRLINES 96 78.9

COMAIR 87 78.4

MESA AIRLINE 116 76.9

FRONTIER AIRLINES 45 76.5

AMERICAN EAGLE 114 76.3

EXPRESSJET AIRLINES 126 76.1

CONTINENTAL AIRLINES 63 75.4

UNITED AIRLINES 81 72.4

AMERICAN AIRLINES 67.3

Table 1-1: Percentage of flight operations arriving on time by carrier in May 2008

Source: Air Travel Consumer Report

88.9



Rank May 2008 %

1 Salt Lake City, UT (SLC) 88.66

2 Baltimore, MD (BWI) 86.65

3 Chicago, IL (MDW) 84.95

4 Orlando, FL (MCO) 84.67

5 Cincinnati, OH (CVG) 84.65

6 Atlanta, GA (ATL) 84.32

7 Tampa, FL (TPA) 84.28

8 Detroit, MI (DTW) 83.99

9 Charlotte, NC (CLT) 83.48

10 Washington, DC (DCA) 82.29

11 Fort Lauderdale, FL (FLL) 81.53

12 Minneapolis/St. Paul, MN (MSP) 81.50

13 Washington, DC (IAD) 79.79

14 Boston, MA (BOS) 79.78

15 Houston, TX (IAH) 79.74

16 Phoenix, AZ (PHX) 79.60

17 Oakland, CA (OAK) 78.96

18 Portland, OR (PDX) 78.50

19 St. Louis, MO (STL) 78.01

20 New York, NY (JFK) 77.27

21 Seattle, WA (SEA) 77.20

22 Las Vegas, NV (LAS) 76.01

23 Denver, CO (DEN) 75.92

24 San Diego, CA (SAN) 75.45

25 Philadelphia, PA (PHL) 75.15

26 Los Angeles, CA (LAX) 75.09

27 Miami, FL (MIA) 74.75

28 Chicago, IL (ORD) 74.07

29 San Francisco, CA (SFO) 71.65

30 Dallas/Ft.Worth, TX (DFW) 70.91

31 New York, NY (LGA) 64.11

32 Newark, NJ (EWR) 63.16

(Percent On-Time)

Table 1-2: Ranking of major airport on-time arrival performance in May 2008

Source: BTS, Airline On-Time Data



1.3 Causes of Flight Delays

The DOT divides the causes of flight delays into five categories1:

* Air Carrier Delay: The cause of the cancellation or delay was due to circumstances

within the airline's control (e.g. maintenance or crew problems, etc.).

* Extreme Weather Delay: Significant meteorological conditions (actual or forecasted)

that, in the judgment of the carrier, delays or prevents the operation of a flight.

* National Aviation System Delay: Delays and cancellations attributable to the

national aviation system (NAS) refer to a broad set of conditions -- non-extreme

weather conditions, airport operations, heavy traffic volume, air traffic control, etc.

* Security Delay: Delays caused by evacuation of terminal or concourse, re-boarding

of aircraft because of security breech, inoperative screening equipment and long

lines in excess of 29 minutes at screening areas.

* Late Arriving Aircraft Delay: The previous flight with same aircraft arrived late

which caused the present flight to depart late.

By definition of the DOT, a "cancelled" flight refers to "a flight that was not operated,

but was in the carrier's computer reservation system within seven days of the scheduled

departure." A "diverted" flight refers to "a flight which is operated from the scheduled

origin point to a point other than the scheduled destination point in the carrier's

published schedule." Figure 1-2 (Air Travel Consumer Report (2007) [13]) depicts the

distribution of the overall causes of flight delays for July, 2007. We observe that Late

Arriving Aircraft Delay (representing delay propagating to downstream flights)

contributes the greatest level of delay among all categories. Also note the percentage of

flights delayed as a result of late arriving aircraft (9.87%) is about the same as the

percentage of flights delayed by the NAS, extreme weather, and security (8.45% + 1.31%

1 Source: Air Travel Consumer Report [13]



+ 0.10% = 9.86%). This suggests, on average, for each flight delayed by extreme weather,

the NAS, and security, another flight is delayed due to the propagation of this delay. In

other words, when a total of 17.91% (8.05% + 1.31% + 8.45% + 0.1%) of flights are

delayed, 9.87% of flights have their delay propagated to the next flight in the trajectory.

LATE
SECURITY ARRIVING

DELAY AIRCRAFT
NATIONAL 0.10% DELAY
AVIATION 9.87%
SYSTEM
DELAY
8.45%

EXTREME
WFATHFR

Figure 1-2: Overall causes of flight delay for July, 2007

1.4 Airline Scheduling Practice

Between 1995 and 2000, in an attempt to improve flight on-time performance, U.S.

carriers responded to the 15-OTP metric by increasing the scheduled gate-to-gate times,

namely block times, for flights (Shumsky (1993) [23] and Hall (1999) [17]). During that

period, the total block hours were increased from 10,361,858 to 12,034,337 on average

for the major network carriers (Airline Data Project [21]). Caulkins et al. (1993) [11]



argue that airlines operating in congested airports are disadvantaged by the 15-OTP

metric compared to airlines flying to less congested secondary airports. This is a result

of two factors: (1) ground delay programs are implemented more frequently at these

congested airports; and (2) airlines flying into these congested airports are subject to

reduced efficiency because they schedule more buffers in their ground turn time in an

attempt to respond to this uncertainty. In this thesis, we examine the effects of airport

locations and flight scheduling practices on aircraft and passenger delays.

1.5 Passenger Delays

Barnhart and Bratu conducted a study on airline passenger delays and showed that 15-

OTP does not accurately measure the amount of passenger delay. They developed an

algorithm, called the Passenger Delay Calculator, to compute passenger delay statistics.

Using actual passenger bookings and flight operations information from a major US

airline, they discovered that simple flight-based statistics tend to underestimate

passenger delays because passengers whose travel plans are disrupted by cancelled

flights or missed connections (namely, disrupted passengers) experience much longer

delays on average than are reported for the corresponding flights. They proposed a new

metric based on the number of disrupted passengers and argued that it better

represented airline schedule reliability as experienced by passengers than did the

existing metric.

In other research, including that of Wang and Sherry (2006) [24] and Ball, Lovell,

Mukherjee and Subramanian (2005) [1], similar results have been derived. For instance,

Wang (2007) [25] estimates that 40% of the total trip delays accrued by passengers on

single segment flights are the result of delays due to cancelled flights, despite that only

a very small fraction of fights are cancelled. The remaining 60% of total trip delays are

attributed to flight delays. However, unlike the Passenger Delay Calculator developed

22



by Barnhart and Bratu, Sherry and Wang's analysis only considers non-stop segment

data and excludes the possibility of disruptions due to missed connections.

1.6 Data for the Assessment of Airline Operational Performance

The major data source for assessing airline operational performance in this thesis comes

from BTS. It includes T-100, The Airline Origin and Destination Survey (also known as

DB1B), Flight On-Time Performance (also known as ASQP), and the FAA Aircraft

Registry Database. The description of each data file is given in the following.

T-100 Domestic Segment (U.S. Carriers) contains domestic non-stop segment data

reported by U.S. air carriers by month. Useful information includes carrier, origin,

destination, available capacity, number of scheduled departures, number of performed

departures, number of passengers on each flight segment, and load factor when both

origin and destination airports are located within the boundaries of the United States

and its territories. The number of passengers in this data file is monthly aggregated over

each flight segment (BTS (2006) [10]).

DB1B is a 10% sample of airline tickets from reporting carriers collected by the Office of

Airline Information of the BTS. It consists of 3 parts: DB1B Coupon, DB1B Market, and

DB1B Tickets, described as follows.

DBIB Coupon provides coupon-specific information for each domestic itinerary of

the Origin and Destination Survey, such as the operating carrier, origin and

destination airports, and number of passengers, fare class, coupon type, trip

break indicator, and distance. The number of passengers in this data file is

quarterly aggregated over each domestic itinerary and the itineraries do not

contain flight schedules (BTS (2006) [6]).



DBIB Market contains directional market characteristics of each domestic itinerary

of the Origin and Destination Survey, such as the reporting carrier, origin and

destination airport, prorated market fare, number of market coupons, market

miles flown, and carrier change indicators (BTS (2006) [7]).

DB1B Ticket contains summary characteristics of each domestic itinerary on the

Origin and Destination Survey, including the reporting carrier, itinerary fare,

number of passengers, originating airport, roundtrip indicator, and miles flown.

The number of passengers reported in this data file is quarterly aggregated over

each domestic itinerary and the itineraries do not contain flight schedules (BTS

(2006) [8]).

Flight On-Time Performance (ASQP) contains daily on-time arrival data for non-stop

domestic flights by major air carriers, and provides information such as departure and

arrival delays, origin and destination airports, flight numbers, scheduled and actual

departure and arrival times, cancelled or diverted flights, taxi-out and taxi-in times, air

time, and non-stop distance (BTS (2006) [5]).

FAA Aircraft Registry Database is a database of all aircraft registered in the U.S. We

use this database to match an aircraft tail number to an aircraft type. Once the aircraft

types are identified, we can obtain the seating capacity information from the target

airline's official website (FAA [14]).

In summary, T-100 and DB1B contain only passenger segment or route information (no

flight schedule information) and ASQP provides only flight information (no passenger

information). The FAA Aircraft Registry Database is used to obtain the flight seating

capacity information. Due to the lack of detailed passenger itinerary and booking

information, special methods are required in order to quantify passenger delays. In



particular, we need algorithms that generate detailed passenger itineraries and estimate

passenger demand on each itinerary.

1.7 Definitions

To facilitate the description of our analysis, we introduce the following notations and

definitions. A non-stop flight f, also referred to as a flight leg, is associated with a flight

number, an origin airport, a destination airport, a Planned Departure Time, PDT(f), and a

Planned Arrival Time, PAT(f). In operations, AAT(f) stands for the Actual Arrival Time of

flightf at the gate and ADT(f), the Actual Departure Time from the gate. The Flight Arrival

Delay of flight f, denoted by FAD(f), equals max(AAT(f) - PAT(f); 0); the Flight Departure

Delay, denoted by FDD(f), equals max(ADT(f) - PDT(f); 0).

A Scheduled Itinerary, (SI) is a sequence of scheduled flights serving a group of

passengers. The group of passengers on a given SI is referred to as a Scheduled Passenger

Type (SPT). If a SI corresponding to a given SPT has only one flight then, passengers are

local, otherwise they are connecting. For a given day of operations, passengers are served

on a sequence of flights, called the Actual Itinerary (AI). We define an actual passenger

type APT(s,u) as the group of passengers originally scheduled on SI s who actually

travel on SI u. Other useful definitions are the Minimum Connecting Time (MCT); that is,

the minimum time required to walk between the arrival and departure gates of the

consecutive flights, and Maximum Layover Time (MLT); that is, the maximum allowable

waiting time at a connecting airport between the previous flight's arrival and the next

flight's departure. A passenger is disrupted if:

* One or more of the flights in his/her scheduled itinerary is canceled; or

* The time between consecutive flights in his/her scheduled itinerary is less than

the MCT; In this case, the passenger misses connections.



Additionally, in our future discussion, we adopt the conventional definition of route

(the sequence of one or more flight legs serving an origin/destination airport pair); in

other words, flight legs from an origin airport o to a destination airport d constitute a

route, while the return flight legs from d to o represent a different route, called the

opposite route.

1.8 Thesis Contributions

The primary goal of this thesis is to investigate the differences between a major U.S.

legacy carrier (labeled as "Airline A" in this thesis) and a major U.S. low-cost carrier

(labeled as "Airline B" in this thesis) in terms of their flight on-time performances,

network structures, scheduling practices, and passenger delays. Statistics will be

generated for both airlines on two different days in July 2006. The legacy carrier

operates a hub-and-spoke network in which three hubs serve 74 airports in the

domestic US. The low-cost carrier is the largest airline in the United States by number of

passengers carried domestically per year (as of December 31, 2007) and has consistently

received the lowest ratio of complaints per passenger boarded of all major US carriers.

We select the days such that they represent two scenarios: July 8, 2006 was a "low-

delay" day for both airlines as measured by fewer cancellations and higher flight on-

time performance; July 12, 2006 was a "high-delay" day with both airlines experiencing

more cancellations and greater delays. Additionally, July 8, 2006 was a Saturday while

July 12, 2006 was a Wednesday. In general, airlines schedule more flights on weekdays

and fewer flights on weekends, which is also the case for both airlines in this study.

We develop a 3-stage approach to quantify passenger delays using only the publicly

accessible data described in 1.6. In the first-stage, a new approach is used to generate

itineraries; in the second stage, we develop a linear integer programming model to



allocate passengers to the itineraries generated in the first stage; and in the third stage,

we use the Passenger Delay Calculator to compute passenger delay. The major

contribution of our methodology is that it provides a way to generate passenger

booking data for all scheduled flights using only publicly accessible data. Unlike

previous studies, the 3-stage approach is not restricted by the availability of proprietary

airline data and can be adopted to estimate itinerary-based passenger demand for any

U.S. airline included in the BTS database. Moreover, it can be used to compute delays

for local and connecting passengers and to provide a powerful tool for scenario

analysis. Further, it allows us to: (1) identify root causes of delays as well as the impact

throughout the network; (2) help gain insights about how passenger delay can be

reduced with different scheduling practices; and (3) guide the design of good on-time

performance metrics.

1.9 Thesis Outline

The framework we develop in this thesis includes the following objectives:

* Investigate the differences in the placement of slack time, often referred to as

schedule "padding," and other scheduling practices among airlines, and provide

the rationale behind the differences;

* Examine the sources of aircraft delays for different airlines and identify airports

contributing the majority of delays for each airline;

* Quantify and compare passenger delays between the legacy carrier and the low-

cost carrier;

* Use quantitative evidence to show that a better OTP metric should take into

account the carrier-specific characteristics and reflect passenger delays;

* Discuss future scenarios about trends in the airline industry, such as levels of

flight operations; and



Project passenger delays under different scenario representations within our

framework.

We explore the airlines' scheduling practices and the resulting impact on flight on-time

performance in Chapter 2. The analysis of flight delays is discussed in Chapter 3. We

develop the 3-stage approach to estimate passenger demand and passenger delay in

Chapter 4. Comparison of passenger delays between the legacy carrier and the low-cost

carrier is made in Chapter 5. Additionally, we establish relationships between

passenger delays and flight leg delays, cancellation rates, load factors, network

operations, passenger mix, and schedule designs. Chapter 6 provides conclusions and

recommendations for future work.



Chapter 2

Scheduling of Slack Time

2.1 Introduction

When designing schedules, airlines usually "pad" their schedules by inserting buffer or

slack time. The way airlines pad their schedules can have a significant impact upon on-

time performance and passenger delays. There are two methods of schedule "padding."

One is to plan slack into the ground turn time (i.e., the ground time to prepare an

aircraft for its next departure); the other is to plan slack into the block times (i.e., the

gate to gate times including taxi out, flying, and taxi in). Ground slack can reduce

departure delays caused by late incoming flights (i.e., propagated delays). However, it

has no effect on departure delays attributed to weather conditions, airport operations,

heavy traffic volume, air traffic control, etc., which are often referred to as NAS delays.

These departure delays in turn cause arrival delays, and hence, ground slack does not

help to reduce arrival delays. Slack in block times, however, can reduce the effects of

NAS delays and increase on-time arrival performance. This is the case when a planned

block time exceeds the actual block time resulting in an actual arrival time at the

destination airport that is earlier than expected when adding the planned block time to

the actual departure time. In Section 2.2, we derive mathematical formulas, given a

flight schedule as planned and as operated, for obtaining planned turn time, actual turn

time, actual turn time slack, planned block time, actual block time, and actual block

time slack. In Sections 2.3 and 2.4, we apply the methodology from Section 2.2 to obtain

relevant statistics for the legacy network carrier and the low-cost carrier. In Section 2.5,

we explain the rationale behind the statistics for each airline.



2.2 Methodology

Notations:

*:o PDT: Planned Departure Time

. ADT: Actual Departure Time

o PAT: Planned Arrival Time

. AAT: Actual Arrival Time

o PTTij: Planned Turn Time between flight i and flight j

o ATTi1 : Actual Turn Time between flight i and flight j

O ATTSiq: Actual Turn Time Slack (i.e., the difference between PTTi1 and ATTij)

. PBLK: Planned Block Time

o ABLK: Actual Block Time

o ABLKSiq: Actual Block Time Slack (i.e., the difference between PBLKi and ABLKij)

o ATSiq: Actual Total Slack (i.e., the sum of ATTSiJ and ABLKSjq)

PTTi = PDT - PAT

ATTiJ = ADT - AAT

ATTSZ = PTT - ATTzi = (PDT - PAT) - (ADT - AAT)

PBLKi = PATi - PDTi

ABLKi = AATi - ADTi

ABLKSij = PBLKi - ABLKi = (PATi - PDTi) - (AATi - ADTi)

ATSi = ATTSqj + ABLKSij

Table 2-1: Formulas for computing PTT, ATT, ATTS, PBLK, ABLK, ABLKS, and ATS



PDT, ADT, PAT, and AAT are available in the ASQP data2. In the following sections, we

will present, for each airline, the average statistics, the airport-specific statistics, and arc-

specific (airport origin-destination pair for a single flight segment) statistics.

Comparisons will be made between the common airports and arcs shared by the legacy

network carrier and the low cost-carrier.

2.3 Slack Time Statistics

Table 2-2 lists the average PTT, ATT, ATTS, PBLK, ABLK, ABLKS, and ATS of the

legacy network carrier and the low-cost carrier, respectively, on July 8, 2006 and July 12,

2006. The average statistics come from dividing the summary statistics by the number

of performed departures for each airline. Therefore, it represents an overall measure of

each airline's performance.

Average PTT ATT PTT-ATT = ATTS PBLK ABLK PBLK-ABLK = ABLKS ATS+ABLKS=ATS

A0708 199.48 215.10 -15.62 522.33 508.80 13.53 -2.09

A0712 171.10 212.80 -41.70 644.35 661.20 -16.85 -58.55

B0708 129.85 169.69 -39.83 558.54 522.05 36.50 -3.33

B0712 148.14 193.69 -45.55 692.07 669.92 22.15 -23.4

Table 2-2: The average PTT, ATT, ATTS, PBLK, ABLK, ABLKS, and ATS per flight (in minutes)

In Table 2-2, a more positive ATTS (ABLKS) means a greater actual turn time slack

(actual block time slack) for the airline. A negative ATTS (ABLKS) means the planned

buffer was insufficient and as a result, ATT (ABLK) was greater than PTT (PBLK).

Notice the following:

2 That is, the Airline On-Time Performance Data. Available:
http://www.transtats.bts.gov/Tables.asp ?DB_ID=120&DB_Name=Airline%200n-

Time%2 OPerformance%2 OData&DB_Short_Name=On- Time [5].



* Overall, the daily average PTT and ATT per aircraft were higher for Airline A

than for Airline B per day. On the other hand, the average PBLK and ABLK per

aircraft were slightly higher for Airline B than for Airline A per day.

* The daily average ATTS was negative for both airlines. However, Airline A had

a greater ATTS (than Airline B) on average per aircraft while Airline B had a

greater ABLKS (than Airline A) on average per aircraft per day. This difference

implies Airline A has more slack than Airline B in its ground turn time, while

Airline B has more slack than Airline A in its block time.

* The average RTB was also negative for both airlines. On July 8, the ATS was just

below zero for both airlines but on July 12, Airline A had an ATS value that was

more than two times than that of Airline B. This suggests that Airline A is much

more severely impacted, as measured by delay minutes, than Airline B when

NAS delays are present.

2.3.1 Airport-Specific PTT and ATT Comparisons

We compute the PTT and ATT between common airports of Airline A and Airline B.

We index these airports from 1 to 39. Figure 2-1 to Figure 2-4 give comparisons in PTT

and ATT of common airports shared by both Airline A and Airline B. Again, we see

Airline A tends to plan much higher ground turn times. Almost every airport of Airline

A has a greater PTT than that of Airline B. Furthermore, notice Airline B plans almost

identical amounts of PTT at each airport. Figure 2-5 and Figure 2-6 depict the

differences between ATT and PTT of each airline on July 8, 2006 and July 12, 2006,

respectively. For illustration purposes, we are subtracting PTT from ATT in Figure 2-5

and Figure 2-6. Hence, a positive value indicates a negative ATTS or insufficient

planned buffer. We observe:



* On July 8, 2006, both airlines' ATT values were only slightly greater than their

PTT values (Figure 2-5). Further, the differences were increased on July 12, 2006

for both airlines (Figure 2-6). Overall, the differences of ATT and PTT for Airline

B took on positive but insignificant values while Airline A had some negative

values but several of its airports showed very significant positive differences.

* Airline B's performance (i.e., the difference of ATT and PTT) at different airports

was more homogenous and less affected during the "high-delay" day than

Airline A. Airline B's value of actual minus planned turn time was less than

twenty minutes except for one 40-minute instance, while Airline A's value was

highly variable, with several instances at or exceeding 60 minutes and one as

great as more than 150 minutes.
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Figure 2-5: July 8: Comparison of (ATT-PTT) between the airlines' common airports
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Figure 2-6: July 12: Comparison of (ATT-PTT) between the airlines' common airports



2.3.2 Arc-Specific PBLK and ABLK Comparisons

Previous analysis focuses on the comparisons between the common airports of Airline

A and Airline B in PTT, ATT, and ATTS. In this section, the common arcs of the two

airlines are examined. Table 2-3 and Table 2-4 list the average arrival delays, PBLK,

ABLK, and ABLKS of each airline on July 8, 2006 and July 12, 2006, respectively. We

observe the following:

* Airline A and Airline B do not share many common arcs in their network

operations. This implies Airline A and Airline B have very different network

structures.

* For most of the common arcs, we see Airline B requires less actual block time

than Airline A and although the planned block times of A and B are not so

different, the effect is that Airline B has more slack in its block times as indicated

by its more positive ABLKS values, and in doing so absorbs arrival delays to

reduce the downstream propagation of delays. This result is consistent with our

previous findings on the average ABLKS comparisons between Airline A and

Airline B.

* Airline B must be delayed in departing Airport 20 because the arrival delay

exceeds the difference in actual minus planned block times. This is not true for

Airline A, so it suggests the delays are related to Airline B's operation not to NAS

conditions in Airport 20.



Origin Dest Avg. Arrival Avg. Arrival PBLK ABLK ABLKS PBLK ABLK ABLKS
Airport Airport Delay Delay (Airline B) (Airline B) (Airline B) (Airline A) (Airline A) (Airline A)
Index Index hours\minutes hours\minutes hours\minutes hours\minutes hours\minutes hours\minutes

minutes minutes

4 11 0 0 4:20 4:04 16 4:22 4:11 11

4 20 0 0 4:15 3:48 27 4:16 4:00 16

11 4 0 0 4:05 3:49 16 3:58 3:58 0

20 4 17 6 3:50 3:52 -2 3:47 3:58 -11

Table 2-3: Average arrival delay, PBLK, ABLK, and ABLKS for common arcs on July 8, 2006

Origin Dest Avg. Arrival Avg. Arrival PBLK ABLK ABLKS PBLK ABLK ABLKS
Airport Airport Delay Delay (Airline B) (Airline B) (Airline B) (Airline A) (Airline A) (Airline A)
Index Index (Airline B) (Airline ) hours\minutes hours\minutes hours\minutes hours\minutes hours\minutes hours\minutes

minutes minutes

3 4 8.6 10 1:10 1:07 3 1:20 1:35 -15

4 3 7.4 0 1:10 1:05 5 1:26 1:22 4

4 11 2 2.3 4:20 4:19 1 4:22 4:15 7

4 20 0 4.5 4:15 3:53 22 4:09 4:09 0

11 4 0 36.7 4:05 3:46 19 3:56 4:13 -17

20 4 28 0 3:50 3:35 15 3:49 3:44 5

Table 2-4: Average arrival delay, PBLK, ABLK, and ABLKS for common arcs on July 12, 2006

2.3.3 Ground Delay Programs

The goal of Ground Delay Programs (GDP) is to control air traffic volume to airports

where the projected traffic demand is expected to exceed the airport's acceptance rate

for a lengthy period of time. Lengthy periods of such instances are normally a result of

the airport's acceptance rate being reduced by external factors. The most common

reason for a reduction in acceptance rates is inclement weather, such as low ceilings and

visibility. GDPs work as follows: Flights that are destined to the affected airport are

issued Controlled Departure Times (CDTs) at their point of departure. Flights that have

been issued CDTs cannot depart until their assigned CDT. CDTs are calculated in such

a way as to meter the rate that traffic arrives at the affected airport; ensuring that



demand is equal to the acceptance rate. The length of delays that result from the

implementation of a GDP is a factor of two things: (1) how much greater than the

acceptance rate the original demand was, and (2) for what length of time the original

demand is expected to exceed the acceptance rate (FAA [15]).

Metron Aviation provided GDP data for all the GDPs from April 1, 2007 to March 31,

2008. According to that, the percentages of airports that have GDPs for Airline A and

Airline B are 39% and 27%, respectively. Moreover, one of the major hubs of Airline A

had the highest number of issued GDPs (approximately 190) between 2007 and 2008

among all airports with ground holds. This implies a GDP was issued basically every

other day at this airport with an average actual GDP length of 505 minutes. On average,

Airline A has the largest share of traffic (roughly 53%) among all airlines with flights

into and/or out of this airport (BTS (2006) [4]). The total number of issued GDP's

between 2007 and 2008 was 218 at Airline A's major hubs and only 31 at Airline B's

major airports. These statistics, together with the analysis above, begin to explain why

Airline A tends to add more slack into its turn time than does Airline B.

2.3.4 Explanations of Planned Differences among the Airlines in

Scheduling Slack Time

We speculate the major reason for Airline A to have a higher average PTT and lower

average PBLK compared to Airline B has to do with the hub choices of Airline A. The

three major hubs for Airline A are very busy airports with high traffic levels. When bad

weather occurs, flights planned to arrive in these affected airports are subject to GDPs

to ensure that demand for runway capacity does not exceed the reduced amount

available in bad weather. Most of the low-cost carrier's major airports are not frequently

impacted by GDPs, while the hubs of Airline A are often impacted. Further, as a legacy



network carrier, Airline A performs a hub-and-spoke operation, which means a

significant percentage of its flights will either fly out or into its hubs. Additionally,

Airline A operates two banked hubs where a set of arriving flight legs are scheduled

closely with a set of departing flight legs to allow timely passenger connections between

arriving and departing flight legs. Delayed flight legs cause downstream delays to

aircraft, crews and passengers, resulting in growing flight delays and cancellations as

the day progresses. Under these conditions, it is an effective strategy for Airline A to

plan a higher average turn time because ground slack can reduce departure delays

caused by late incoming flights (i.e., propagated delays) at its major hubs. Block time

slack, however, is not effective in getting aircraft back on schedule at airports that

frequently implement ground holds. To do so, given average durations of 505 minutes

for GDPs, would require exorbitant and impractical amounts of slack to be included in

the planned block times. Airline B, which tends to fly into busy airports less frequently

and has fewer airports subject to ground delay programs, however, faces a different

situation. Adding more slack to its block times becomes a more effective strategy than

placing slack in ground times because block time slack for improve on-time arrival

performance.

2.3.5 Peaking vs. De-peaking

In a de-peaked schedule, aircraft need not wait on the ground for connecting passengers

and can therefore save turn time, which can lead to increased aircraft utilization.

Additionally, de-peaked schedules are more robust in the sense that demand for airport

capacity, at least on the part of the airline operating the de-peaked schedule, is spread

more evenly in time and its maximum is much less than that of a peaked schedule.

Hence, reductions in capacity can have less impact on de-peaked than peaked schedule.

Later analysis in this thesis shows that Airline A has only one de-peaked hub and two



peaked schedules. Airline B, however, has de-peaked schedules at all of its major

airports. Airline B, then, has shorter turn times and higher aircraft productivity. Airline

A, however, must schedule longer ground turn times to "catch" banks at the hubs and

to allow adequate time for arriving passengers to connect between flights. As indicated

by the positive differences between ATT and PTT in Figure 2-5 and Figure 2-6, this slack

did not serve as a buffer. The most plausible reason is that flights were delayed in

departure due to the airlines' own problems, NAS, or security issues.



Chapter 3

Flight Delays and Cancellations

3.1 Introduction

Flight on-time performance has a direct impact on passenger delays. In this chapter, we

compare flight delays and cancellations of the legacy carrier to those of the low-cost

carrier on July 8, and July 12, in 2006. The flight delay analysis presented in this chapter

also helps explain the differences between the two airlines in scheduling practices

(discussed in Chapter 2) and passenger delays (to be discussed in Chapter 5). In Section

3.2, we compute and analyze flight performance statistics using information from the

BTS data. In Section 3.3, we quantify the sources of delays; i.e., whether a flight delay

was due to late incoming aircraft or due to other reasons.

3.2 Information of Flight Performance from the BTS Data

3.2.1 Flight Performance Statistics

Based on information from ASQP (BTS (2006) [5]), we compute the flight performance

statistics for Airline A and Airline B on July 8, 2006 and July 12, 2006 (shown in Table 3-

1). Our analysis is restricted to jet-operated flight legs because ASQP includes only jet-

operated flight leg information.



Airline A Airline B Airline A Airline B

(07/08/2006) (07/08/2006) (07/12/2006) (07/12/2006)
Number of flight operations 727 2698 922 3116
(domestic U.S.)
15-minute on time performance 87.60% 89.00% 60.60% 75.80%
(15-OTP)
Percentage of delayed flights* 12.40% 11.00% 39.40% 24.20%
(only flights operated)
Percentage of cancelled flights 0 0.44% 1.52% 0.89%

Average delay of operated flights 6.36 4.82 38.75 12.28
(minutes)

Average delay of flights with 19.36 17.5 67.16 25.74
positive delays (minutes)3

* Delayed flights are the flights with delays greater than 15 minutes

Table 3-1: Flight delay statistics based on ASQP

From Table 3-1, we observe the following for July 8, 2006:

* Airline B operated 3.7 times more domestic flights than Airline A.

* Airline A and Airline B achieved comparable 15-OTP.

* Airline A had no cancellations while Airline B had 0.44% of flights cancelled.

* The average delay of Airline A's operated flights (6.36 minutes) was higher than

that of Airline B's operated flights (4.82 minutes).

* The percentage of Airline A's delayed flights (12.40%) was higher than that of

Airline B's delayed flights (11.00%).

* For flights that experienced positive delays, the average delay for Airline A was

slightly higher than that for Airline B.

3 The average flight delay (only for flights that experienced positive delays) for Airline A was 41.52

minutes and for Airline B 8.0 minutes in July 2006.



For July 12, 2006, we observe the following:

* Airline B operated 3.4 times more domestic flights than Airline A.

* Both airlines had worse performance than that on July 8, 2006.

* Compared to July 8, the numbers of flight operations were increased by a factor

of 1.27 for Airline A and 1.15 for Airline B, respectively.

* Airline B achieved a higher 15-OTP than Airline A.

* The average delay of Airline A's operated flights was 3.16 times higher than that

of Airline B's operated flights.

* The percentage of Airline A's delayed flights (39.40%) was higher than that of

Airline B's delayed flights (24.20%).

* For flights that experienced positive delays, the average delay for Airline A was

2.61 times higher than that for Airline B.

* Compared to July 8, the average delay of flights with positive delays was

increased by a factor of 3.47 for Airline A and a factor of 1.47 for Airline B.

* The percentage of delayed flights was increased by a factor of 3.18 for Airline A

and 2.18 for Airline B.

3.2.2 Causes of Flight Cancellations and Delays

This section investigates the causes of flight delays and cancellations, using the U.S.

DOT's definition. In Chapter 1, we present the DOT-defined causes of flight delays as:

carrier delay, extreme weather delay, national aviation system (NAS) delay, security

delay, and late arriving aircraft delay. In the ASQP data, the amount of delay attributed

by each of the above-mentioned causes is reported. For example, a flight with a total

arrival delay of 107 minutes has 32 minutes delay attributable to carrier delay, 4

minutes attributable to NAS delay, and 71 minutes attributable to late aircraft delay.



With such information, we compute the percentage of arrival delay attributed by each

cause. In Figure 3-1, we depict these percentages for Airline A on July 8 and July 12,

respectively. In Figure 3-2, we depict these percentages for Airline B on July 8 and July

12, respectively (BTS (2006) [5]).

On the "high-delay" day of July 12, we find extreme weather problems contributed 8%

of the total arrival delay to Airline A's operation while only 4% to Airline B's operation.

By comparing the amount of delay attributed to extreme weather conditions to the

amount of total departure delay and arrival delay, respectively, we conclude that

departure delays represented 90.03% of the total delay caused by extreme weather in

Airline A's system. In other words, the extreme weather conditions resulted in GDPs

that kept aircraft on the ground, delaying departures, at departure airports. Moreover,

one hub in Airline A's network contributed 94.14% of the total delays caused by

weather and 74.04% of the total departure delays caused by weather. A distinction

between the two airlines is that Airline A suffered almost three times more NAS delay

than Airline B. On July 12, NAS delay accounted for nearly half of the total delay in

Airline A's system. NAS delay is a mixed result of non-extreme weather conditions,

airport operations, heavy traffic volume, air traffic control, etc. We think the difference

in NAS delay is attributable to the fact that Airline A has a significant percentage of

flights flying into or out of congested hubs that are often affected by weather conditions

and GDPs.
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Figure 3-1: Causes of flight delay for Airline A on July 8 (left) and July 12 (right) in 2006
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Figure 3-2: Causes of flight delay for Airline B on July 8 (left) and July 12 (right) in 2006

Also on the "high-delay" day, out of the fourteen flight cancellations of Airline A, seven

of them (half of the cancellations) were due to weather problems at four airports. Of

these seven cancelled flights due to weather problems, there were four departures from



a single hub. All cancellations of Airline B, however, arose from carrier problems rather

than weather.

3.2.3 Weighted 15-OTP Arrival Rates

Table 3-2 provides rankings of the 15-OTP arrival performance over all US airlines by

major airports in July 2006, reported by the BTS [5]. We compute the percentage of

flights in Airline A's and Airline B's networks based on their respective T-100 Segment

data, which contains information regarding the total number of flight departures

performed in each month and the origin/destination airports of these flights. We then

multiply these percentages of flights by the 15-OTP rates in Table 3-2 to obtain

weighted 15-OTP rates at each major airport for Airline A and Airline B (Table 3-3 and

Table 3-4). We then make the following observations:

* Airline A has approximately 80% of its flights operating at the 31 busiest US

airports. T-100 segment data reports that Airline A schedules and performs flight

operations at all 31 airports.

* Airline B has only approximately 50% of flights operating at the 31 busiest US

airports. T-100 segment data reports that Airline B schedules and performs flight

operations at only 16 of the 31 airports.

* The sum of the weighted 15-OTP for Airline A is 70% and for Airline B is 75%.

The overall 15-OTP arrival performances of the two airlines in July 2006,

respectively, are 69% for Airline A and 77.7% for Airline B, according to Air

Travel Consumer Report [13]. Airline A's performance can therefore, be

estimated as a function of the performance at the major airports at which it

operates. Airline B's performance, however, is better than that of the major



airports at which it operates. Hence, Airline A's reliability is impacted to a

greater extent by changes in capacity and demand at the major airports.

Rank July 2006 %

1 Salt Lake City, UT (SLC) 85.05

2 Cincinnati, OH (CVG) 82.00

3 Minneapolis/St. Paul, MN (MSP) 80.90

4 Dallas/Ft.Worth, TX (DFW) 80.54

5 Oakland, CA (OAK) 79.52

6 Denver, CO (DEN) 78.97

7 Phoenix, AZ (PHX) 78.80

8 Los Angeles, CA (LAX) 77.38

9 Detroit, MI (DTW) 76.83

10 San Diego, CA (SAN) 76.70

11 San Francisco, CA (SFO) 76.39

12 Orlando, FL (MCO) 75.71

13 Las Vegas, NV (LAS) 75.09

14 Chicago, IL (MDW) 74.55

15 Fort Lauderdale, FL (FLL) 74.17

16 Baltimore, MD (BWI) 74.11

17 Tampa, FL (TPA) 73.09

18 Houston, TX (IAH) 73.01

19 Atlanta, GA (ATL) 72.95

20 Charlotte, NC (CLT) 72.60

21 Seattle, WA (SEA) 72.57

22 Miami, FL (MIA) 70.37

23 Washington, DC (DCA) 70.19

24 Chicago, IL (ORD) 69.44

25 Boston, MA (BOS) 68.51

26 Washington, DC (IAD) 67.67

27 Pittsburgh, PA (PIT) 67.40

28 Philadelphia, PA (PHL) 64.19

29 New York, NY (JFK) 62.98

30 New York, NY (LGA) 59.94

31 Newark, NJ (EWR) 59.03
(Percent On-Time)

Table 3-2: Ranking of major airport on-time arrival performance in July 2006

Source: BTS, Airline On-Time Data



CVG 1 0.00 82.00 0.00

MSP 136 0.63 80.90 0.51

DFW 326 1.52 80.54 1.22

OAK 91 0.42 79.52 0.34

DEN 422 1.96 78.97 1.55

PHX 333 1.55 78.80 1.22

LAX 783 3.65 77.38 2.82

DTW 184 0.86 76.83 0.66

SAN 364 1.69 76.70 1.30

SFO 481 2.24 76.39 1.71

MCO 614 2.86 75.71 2.16

LAS 520 2.42 75.09 1.82

MDW 94 0.44 74.55 0.33

FLL 449 2.09 74.17 1.55

BWI 215 1.00 74.11 0.74

TPA 383 1.78 73.09 1.30

IAH 7699 35.85 73.01 26.17

ATL 413 1.92 72.95 1.40

CLT 1 0.00 72.60 0.00

SEA 492 2.29 72.57 1.66

MIA 313 1.46 70.37 1.03

DCA 364 1.69 70.19 1.19

ORD 449 2.09 69.44 1.45

BOS 569 2.65 68.51 1.82

IAD 9 0.04 67.67 0.03

PIT 59 0.27 67.40 0.19

PHL 220 1.02 64.19 0.66

JFK 93 0.43 62.98 0.27

LGA 378 1.76 59.94 1.05

EWR 4930 22.95 59.03 13.55

Table 3-3: Weighted major airport on-time arrival performance in July 2006 of Airline A

85.05 0.36SLC 0.43



Table 3-4: Weighted major airport on-time arrival performance in July 2006 of Airline B
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3.3 Independent Delay and Propagated Delay

We classify all flight delay into the following two types of delay:

* Propagated Delay is flight delay caused by waiting for incoming aircraft. This

delay is a function of an aircraft's routing. Late arriving aircraft is the sole

cause of propagated delay. In Figure 3-1 and Figure 3-2, we show that

propagated delay on July 8 (July 12) accounts for approximately 31% (33%) of

total arrival delay for Airline A, and 52% (57%) of the total arrival delay for

Airline B.

* Independent Delay is flight delay caused by all reasons other than delay

propagation4 . In Figure 3-1 and Figure 3-2, we show that independent delay

on July 8 (July 12) accounts for approximately 69% (67%) of total arrival delay

for Airline A, and 48% (43%) of the total arrival delay for Airline B.

Notice in Figure 3-1 and Figure 3-2, on July 8 and July 12, only 45% and 49% of

independent arrival delays propagated to downstream flights for Airline A (i.e.,

translated into propagated delay), respectively. For Airline B, 100% of independent

arrival delays' propagated to downstream flights on both days.

4 Air carrier delay, extreme weather delay, NAS delay, and/or security delay cause independent delay. In

particular, airport congestion affects the degree of independent delay of arrivals, while carrier delays,

adverse weather conditions, airport operations, heavy traffic volume, and/or air traffic control affects the

degree of independent delay of departures.

s Note on both days the percentages of delayed aircraft (52% and 57%, respectively) were greater than the

sum of percentages of weather delay, carrier delay, NAS delay, and security delay (48% and 43%,

respectively)



3.3.1 Computation of the Independent and Propagated Delay

Lan, Clarke, and Barnhart (2006) [20] have developed a way to compute propagated

delays and independent delays. Figure 3-3 illustrates the concepts of propagated delays

(PD) as well as independent arrival delays (IAD) and independent departure delays

(IDD). The formulas are provided in Table 3-5.

PAT AAT

P T ADTAD

Planned flight leg -------- Actual flight leg

Figure 3-3: Scheme for computing PD, IDD, and IAD



Notations:

TDD: Total Departure Delay

PDT: Planned Departure Time

ADT: Actual Departure Time

TAD: Total Arrival Delay

PAT: Planned Arrival Time

AAT: Actual Arrival Time

PDi1: Propagated Delay of flight j due to flight i

IDD: Independent Departure Delay

IAD: Independent Arrival Delay

MTTii : Minimum Turn Time between flight i and flight j (aircraft type dependent)

Slacki: Slack planned into ground turn time between flight i and flight j

PTTij: Planned Turn Time between flight i and flight j

Table 3-5: Formulas for computing Slack, PD, IDD, and IAD

PTTi = PDT - PAT

Slackij = PTTi - MTT = PDT - PATi- MTTij

TADi = AAT - PATi

PDij = MAX (TADi - Slacki, 0) = MAX (AATi- PATi - PDT + PATi+ MTTij, 0)

= MAX (AATi + MTT - PDT, 0)

IDD= TDDj- PDi

IADj= TAD, - PDi



Our approach in this study will consist of four major steps:

1. Compute the Slack, PD, IDD, and IAD of each flight segment recorded in ASQP.

This procedure will be applied to both Airline A and Airline B. A useful

technique, tail number tracing, is described as follows:

a) Group flights with the same tail number (indicating the same aircraft).

b) For each group, sort the flights by PDT from the earliest scheduled to the

latest scheduled and then apply formulas provided in Table 3-2 to each

group.

2. Compute and compare the average PD, IDD, and IAD of all flights operated in

Airline A's and Airline B's systems, respectively.

3. For each airline, compute the contribution (percentage) of IDD and IAD from

each airport and identify the airports that are major sources of delays in this

system.

* The total IDD of an airport is the sum of IDD for each flight leg that

departs the airport.

* The total IAD of an airport is the sum of IAD for each flight leg that

arrives at the airport.

* The total PD of an airport is the sum of PD for each flight arriving at and

departing the airport.

4. For each airline, compute the average IDD and IAD at each airport and compare

these average delays among airports in the system.

* The average IDD of an airport is the sum of IDD for each flight leg that

departs the airport divided by the total number of flight legs departing the

airport.



The average IAD of an airport is the sum of IAD for each flight leg that

arrives at the airport divided by the total number of flight legs arriving at

the airport.

3.3.2 PD, IDD, and IAD Results

Table 3-6 displays the average PD, IDD, IAD, and the percentage of flights experiencing

delay propagation for Airline A and Airline B, respectively.

Total Number of Percent of
PD IDD IAD

AVERAGE (minutes) (minutes) (minutes) Number Flights Flights
(minutes) (minutes) (minutes)

of Flights with PD with PD

Airline A
1.58 5.1 3.48 727 25 3.4%

(07/08/06)
Airline A

12.48 20.65 25.43 922 121 13%
(07/12/06)
Airline B

2 4.74 1.83 2686 188 7%
(07/08/06)
Airline B

6.19 7.27 4.63 3116 580 18.7%
(07/12/06)

Table 3-6: The average PD, IDD, and IAD (in minutes)

Note the average IDD and IAD of Airline A are significantly greater than those of

Airline B on July 12, 2006, the "high-delay" day. Moreover, IDD plus IAD are together

more than triple the propagated delay for Airline A on that day. For Airline B, IDD

plus IAD is almost double that of PD. Airline A experienced twice as much average PD

as Airline B on July 12; however, the percentages of flights experiencing delay

propagation were higher for Airline B than for Airline A on both days. The fact that

Airline A had a smaller percentage of flights experiencing delay propagation but

greater average propagated delay on the "high-delay" day perhaps has to do with its

airport choices and hub-and-spoke operation; in particular, Airline A has a higher
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percentage of flights connecting at busy airports and two of its major hubs are located

where bad weather can often reduce airport capacity and affect flight take-off and

landings. Therefore, when bad weather occurs, flights into these locations are delayed

by ground holds, while most of Airline B's major airports are not as prone to delays.

When delays occur at Airline A's airports, the delay that propagates to downstream

flights is likely to be larger than that of Airline B. More flights experience delay

propagation for Airline B because there is little turn time slack in its operation and an

arrival delay is likely to propagate to the next flight, unlike Airline A, which has

relatively more turn time slack.

The following section quantifies the amount of delay contributed by the major airports

of Airline A and Airline B, respectively.

3.3.3 IDD, IAD, and PD Results by Airport

In this section, we present delay statistics by airport for each airline and then compare

average delay per aircraft at the major airports of Airline A and Airline B. Figures 3-4 to

3-7 display IDD, IAD and PD by airport for both airlines. We index airports of Airline A

from 1 to 54 and airports of Airline B from 1 to 60. For Airline A, hub airports are 1, 5,

and 26. For Airline B, "hub" airports are 1, 5, 7, 9, and 14. Evaluating IDD and IAD by

airport provides useful information regarding the total independent delays contributed

by each airport in an airline's network. We also compare the average delay per aircraft

at the major airports of Airline A and Airline B (Table 3-7).



Statistics by Airport for July 8, 2006

For Airline A, the airport with the largest values of IDD, IAD, and PD was one of the

airline's hubs. In particular, that hub contributed 62.55% of the total IDD, 49.91% of the

total IAD, and 49.48% of the total PD to the entire system.

For Airline B, the airport with the largest values of IDD, IAD and PD is also one of the

airline's "hubs". Specifically, this "hub" contributed 12.67% of the total IDD, 14.76% of

the total IAD, and 7.42% of the total PD. Another major airport of Airline B contributed

the second largest percentage of IDD (9.75%) and PD (7.09%) to the entire system and

only 3.75% of IAD. A third airport in Airline B's network contributed 9.4% of IDD,

12.87% of the IAD, and 6.32% of the PD to the entire system. Interestingly, these 3

airports contributed far less, percentage-wise, of the system-wide IDD, IAD, and PD

than does a single airport in Airline A's network.

Statistics by Airport for July 12, 2006

For Airline A, 44.95% of IDD, 42.59% of IAD, and 42.69% of PD came from its three

hubs. In particular, to the entire system, one hub contributed 20.09% of the total IDD,

22.36% of the total IAD, and 34.25% of the total PD; a second hub contributed 16.37% of

the total IDD, 13.97% of the total IAD, and 4.48% of the total PD; and the third hub

contributed 8.49% of the total IDD, 6.26% of the total IAD, and 3.95% of the total PD.

For Airline B, 36.81% of IDD, 39% of IAD, and 25.38% of PD came from four airports. In

particular, to the entire system, one airport contributed 15.69% of the total IDD, 24.35%

of the total IAD, and 8.59% of the total PD; another contributed 12.85% of the total IDD,

8.22% of the total IAD, and 5.92% of the total PD; a third contributed 6.61% of the total

IDD, 7.35% of the total IAD, and 2.33% of the total PD; and the fourth contributed 8.27%

of the total IDD, 6.43% of the total IAD, and 10.87% of the total PD.



Observations from the Statistics

On July 8, 7 (4) airports accounted for 100% (80%) of the PD in Airline A's network

while 57 (23) airports accounted for the PD in Airline B's network. On July 12, 37 (12)

airports accounted for 100% (80%) of the PD in Airline A's network while 60 (27)

airports accounted for the delay in Airline B's network. We believe the fact that Airline

B has delay propagation spread among many more airports than Airline A is due to

Airline B's scheduling practice of limiting turn time slack.



Figure 3-4: Airline A (07/08/2006): IDD, IAD, and PD by airport

Figure 3-5: Airline A (07/12/2006): IDD, IAD, and PD by airport
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Figure 3-6: Airline B (07/08/2006): IDD, IAD, and PD by airport

4400
4200 .......... ......... .
4000
3800
3600
3400
3200

3000
2800.... ... ....... ...... .
2600

2400

2200

100

1600

1400

1 2 0 0 ------

1000

800

600
200
200 5 62

0

9 5 6 7 1611 1 4 46 312142 14 26 2 22 2038 3 24 39 48 8 13 27 1923 2S 29 4032 4936 3518 SO 10 4134 30 5147 12 33 28 52 17 S343 54 SS37 44 S657 5859 60

Figure 3-7: Airline B (07/12/2006): IDD, IAD, and PD by airport
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Comparison of Average PD, IAD, and IDD Statistics for Both Airlines

As the above statistics indicate, for both airlines, the majority of IDD, IAD, and PD were

contributed by their major airports, as expected. However, when the airport delay

statistics are normalized by the number of flight operations at that airport, as shown in

Table 3-7, we find that the magnitudes of independent delay per flight were much less

for the major airports of Airline B than for those of Airline A on July 12. For instance,

IDD (IAD) per flight was 17.17 minutes (27.66 minutes), 8.96 minutes (10.5 minutes),

and 28 minutes (27.18 minutes) for the three major hubs of Airline A, respectively. IDD

(IAD) per flight was only 5.81 minutes (3.76 minutes), 7.53 minutes (11.85 minutes), 3.05

minutes (0 minutes), 5.01 minutes (3.92 minutes), and 2.47 minutes (1.37 minutes) for

the five major airports of Airline B, respectively.

We also compute the average IDD, IAD, and PD per flight over Airline A's three major

hubs and Airline B's five major "hubs" on July 12, as follows.

July 12, 2006
bA ~iiA 13.77 17.98 6.62

H . 4.96 4.81 6.41

A B 2.78 3.74 1.03

Airline A experienced 2.78 (3.74) times more average IDD (IAD) per flight over its three

major hubs than did Airline B. Airline A had a slightly higher average PD per flight

over its three major hubs (1.03 times as much as Airline B's PD value). We believe this

difference resides in the fact that Airline A has a significant percentage of flights flying

into or out of hubs with high congestion. Because independent delays can often be

attributed to airport congestion, higher NAS delays mean higher degrees of congestion

and hence, more independent delays. As shown in 3.2.2, NAS delay accounted for



nearly half of total delay in Airline A's network, while it accounted for only 17% in

Airline B's network on July 12, 2006.

We also compute the changes in IDD, IAD, and PD per flight (in minutes and percent)

between July 8 and July 12 for both airlines. These results are displayed in Table 3-8. We

find both independent delay and propagated delay at two hubs of Airline A are

significantly greater on July 12, 2006, the "high-delay" day, than on July 8, 2006, the

"low delay" day. In terms of absolute differences, Hub 2 had an increase of 15.81

minutes for IDD per flight, 26.89 minutes for IAD per flight, and 15.57 minutes for PD

per flight on July 12. Hub 3 had an increase of 26.97 minutes for IDD per flight, 26.77

minutes for IAD per flight, and 6.31 minutes for PD per flight on July 12. In terms of

changes in percent, the average IDDs per flight were increased by 1163% and 2618% for

Hub 2 and Hub 3, respectively. The average IADs per flight were increased by 3492%

and 6529% for Hub 2 and Hub 3, respectively. Because Hub 2 and Hub 3 had no PD on

July 8, the changes in percent are undefined.

Between the "high-delay" day and "low-delay" day, the differences in independent

delay and propagated delay of Airline B's three largest "hub" airports were on the

order of one hundred 6, much less than those of Airline A's two hubs. "Hub" 1 of Airline

B had an increase of 3.82 minutes for IDD per flight, 2.97 minutes for IAD per flight,

and 3.07 minutes for PD per flight on July 12. "Hub" 2 of Airline B had an increase of

4.95 minutes for IDD per flight, 11.2 minutes for IAD per flight, and 5.23 minutes for PD

per flight on July 12. "Hub" 3 of Airline B had a decrease of 0.78 minutes for IDD per

flight, a decrease of 0.91 minutes for IAD per flight, and an increase of 0.86 minutes for

PD per flight on July 12. In terms of changes in percent, the average IDDs per flight

were increased by 193% and 192% for "Hub" 1 and "Hub" 2, respectively. The average

6 except one instance of "Hub" 2 where the IAD per flight was increased by 1723%
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IDD per flight was decreased by 20% for "Hub" 3. The average IADs per flight were

increased by 372% and 1723% for "Hub" 1 and "Hub" 2, respectively. The averageIAD

per flight was decreased by 34% for "Hub" 2. The average PDs per flight were increased

by 170%, 228%, and 34% for "Hub" 1, "Hub" 2, and "Hub" 3, respectively.

The conclusion here is that between the "high-delay" day and "low-delay" day, the

increases in independent delay and propagated delay of Airline B's three largest "hub"

airports were much less than those of Airline A's two East Coast hubs.

Date 7/8/2006 7/12/2006 7/8/2006 7/12/2006 7/8/2006 7/12/2006

Average IDD 7.85 8.96 1.36 17.17 1.03 28

Average IAD 6.11 10.5 0.77 27.66 0.41 27.18

Average PD 0.64 1.24 0 15.57 0 6.31

Date 7/8/2006 7/12/2006 7/8/2006 7/12/2006 7/8/2006 7/12/2006

Average IDD 1.98 5.81 2.58 7.53 3.81 3.03

Average IAD 0.8 3.76 0.65 11.85 2.66 1.75

Average PD 1.81 4.88 2.29 7.52 2.51 3.37

Table 3-7: Average IDD, IAD, and PD per flight (in minutes)



Date
Differences

(min)
Change Differences

(min)
Change Differences

(min)
Change

AverageIDDAverage 1.11 14 15.81 1163 26.97 2618
IDD

AverageAverage 4.39 72 26.89 3492 26.77 6529
IAD

Average PD 0.60 94 15.57 N/A 6.31 N/A

Date Differences Change Differences Change Differences Change
(min) % (min) % (min) %

Average 3.82 193 4.95 192 -0.78 -20
IDD

Average 2.97 372 11.20 1723 -0.91 -34IAD

Average PD 3.07 170 5.23 228 0.86 34

Table 3-8: The changes in IDD, IAD, and PD per flight between July 8 and July 12 for both

airlines (in minutes and %)



Chapter 4

Passenger Demand and Delay Estimation

4.1 Literature Review

Using proprietary airline data, Barnhart and Bratu (2005) [3] developed a Passenger

Delay Calculator (PDC) to investigate the impact of delayed flights, cancelled flights

and missed connections on passenger trip time. They estimated that disrupted

passengers, those who missed one or more of their connections, due to delayed flights,

or with one or more of their flights cancelled, experienced an average delay that was

about 20 times greater than the average flight delay in that same period. Their research

quantified the gap between passenger delays and flight delays with real data, as well as

demonstrated that flight based metrics alone are a poor proxy for passenger delays in

hub-and-spoke airlines.

Ball, et al. (2005) [1] developed an analytical passenger delay model as part of the

National Aviation Space (NAS) Strategy Simulator. The model is based on a decision

tree which determines the probability of delayed flight leg, missed connection,

cancelled flight leg, and on-time flight leg. A major limitation of their work is that they

assume a fixed passenger delay (7 hours) for all the passengers experiencing missed

connections or flight cancellations. This assumption assumes a homogenous

transportation network and neglects airport and route specific characteristics.

Sherry and Wang (2007) [26] expanded Barnhart and Bratu's model to a national scale

study with detailed analysis on various O-D pairs, departure and arrival airports, as

well as load factor levels. Their model uses a large quantity of publicly accessible data



and provided rankings of O-D pairs, airports and other results in the measure of

passenger on-time performance. However, there are two major drawbacks in their

research:

1. The algorithm assumes flights in peak hours have the same load factor as flights

in non-peak hours and fails to use actual passenger enplanements and aircraft

size to validate this assumption.

2. Unlike the PDC, Sherry and Wang's analysis considers only non-stop segment

data and excludes the possibility of disruptions due to missed connections.

4.2 Contributions of Our Methodology

Our work uses the PDC algorithm to quantify passenger delays. However, one

limitation of Bratu and Barnhart's research is that the PDC depends on the availability

of detailed passenger booking data provided by airlines. In this research, we recognize

that itinerary information and airline booking data are not generally accessible and

therefore, we develop a method to determine passenger booking information for all

scheduled flights using only data available from the BTS. Our method consists of two

core parts:

* An algorithm that generates itineraries, and

* A linear integer programming formulation that computes the number of

passengers on each of the generated itineraries.

To address the heterogeneity in passenger demand or load factors for different days of a

week and different times of a day, we consider an airline's historical passenger booking

profile for July 2000. Although far from being an accurate source to draw passenger

demand profiles, this database serves our purpose of conducting a system-wide study

and provides us an approximation of air-travelers' behavior across different days of a

week and different times of a day for the major domestic markets.
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The outline for this chapter is as follows: we first illustrate how to generate itineraries

using the publicly accessible data from BTS; then, we discuss the linear integer

programming formulation that allocates the passengers to our generated itineraries;

last, we input the results of these steps to the PDC to compute passenger delay

statistics. Figure 4-1 illustrates the framework of our Itinerary Generation Algorithm

(IGA), Passenger Allocation Process (PAP), and Passenger Delay Calculator (PDC).

Figure 4-1: The framework of the Itinerary Generation Algorithm (IGA), Passenger Allocation

Process (PAP), and Passenger Delay Calculator (PDC)



4.3 Data Descriptions

We use the publicly accessible data described in Chapter 1.6 to generate itineraries and

allocate passengers so that "estimated" passenger booking information can be derived

and input to our PDC for computing passenger delay statistics. DB1B provides only

passenger route information (no flight schedule information) and ASQP provides only

flight information (no passenger information). The FAA Aircraft Registry Database is

used to obtain the flight seating capacity information, which is then applied to the PAP

and the disruption recovery process in the PDC. In addition to data described in

Chapter 1.6, an airline's historical passenger booking profile for July 2000 is also

included. It provides passenger booking and no-show information for July 2000. We use

this database to derive passenger demand profiles for different days of a week and

different times of a day, which are input to the PAP.

4.4 The 3-Stage Approach

The major difficulty in utilizing the passenger booking information from BTS is that

most of its data (such as DB1B) do not provide any schedule information but only route

or market information. This chapter provides a model to strengthen the linkage

between passenger booking information and flight schedules using public data. Given

an O-D market in DB1B of a certain quarter, we look into the ASQP data (e.g. a 90-day

span) in the same quarter and enumerate all possible flight combinations that serve this

O-D pair using MCT and MLT as selection rules. It is relatively simple to build

passenger itineraries by linking ASQP (detailed flight information) with DB1B

(aggregated passenger booking information). Our model includes an algorithm that

generates itineraries and a passenger allocation scheme that determines the passenger

flow on each itinerary for every airline under study.
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4.4.1 Itinerary Generation Algorithm (IGA)

Problem Description: Given a particular airline, construct its itineraries using publicly

accessible data such as DB1B and ASQP.

Assumptions: In the following development, our itineraries will contain no more than

two flight legs as the majority of domestic passengers make no more than two

connections. Moreover, we only consider itineraries within a single airline at a time; in

other words, itineraries operated by multiple airlines will not be generated. These

restrictions can be lifted and our approach is still applicable; they are in place only to

limit the number of itineraries generated that are likely to have no passengers.

Inputs to IGA include:

1) Aircraft routings (origin airports, connecting airports, if any, and destination

airports) from DB1B. We will refer to the routings as O-T-D (Origin-Transfer-

Destination) or O-A-D (Origin-Absence of Transfer-Destination) in the following

discussion for simplicity.

2) Planned flight schedules from ASQP:

a. PATi - Planned Arrival Time of flight i (available in ASQP data, Column

"CRSArrTime")

b. PDTj - Planned Departure Time of flight j (available in ASQP data,

Column "CRSDepTime")

3) User-Defined Parameters:

a. MLT- Maximum Layover Time

b. PRT - Passenger Ready Time

The steps of the IGA algorithm are illustrated below:



STEP 1: For each airline, identify the O-T-D airports served during a quarter from

DB1B. O-A-D is used to indicate a local itinerary route. For instance, ATL-IAH-EWR is a

connecting itinerary for the O-D pair ATL-EWR while ATL-A-EWR is a local itinerary

for the O-D pair ATL-EWR. The roundtrip indicators in DB1B Ticket are used to separate

coupons with round trips7 .

STEP 2: For each O-A-D or O-T-D identified in STEP 1, construct the corresponding

sequence of flight legs, or itineraries, from ASQP in a stepwise fashion, with the

itineraries for O-A-D pairs served by non-stop flights constructed first, and the

itineraries with two legs (O-T-D) constructed next. Discriminators such as Minimum

Connecting Time (MCT) and non-stop market frequency can be used to determine

whether a particular itinerary should be selected or not.

Itinerary Feasibility: Determining the feasibility of itineraries for each O-A-D or O-T-D

for each airline requires the following sequential algorithm:

= For each O-A-D,

The flight leg's departure and arrival airports in ASQP correspond to the

origin (0) and destination (D) airports in DB1B, respectively

= For each O-T-D,

The first flight leg's departure and arrival airports in ASQP correspond to

the origin (0) and connecting (T) airports in DB1B, respectively;

The second flight leg's departure and arrival airports in ASQP correspond

to the connecting (T) and destination (D) airports in DB1B, respectively;

The second flight leg departs later than the passenger ready time (PRT); that

is, the time between the arrival of the first flight leg and the departure of

7 Flight legs from an origin airport o to a destination airport d constitute a route, while the return flight
legs from d to o represent a different route, called the opposite route.



the second flight leg in the itinerary must be no less than MCT (Minimum

Connecting Time); and

The time between the arrival of the first flight leg and the departure of the

second flight leg in the itinerary must be no greater than MDT (Maximum

Layover Time).

Suppose flight i serves as the first leg and flight j serves as the second leg

PRT = PATi+ MCT : PDTi.

Thus, PATi + MCT will be used to select the second flight from ASQP in the IGA

algorithm. A typical value for MCT is 15 minutes. However, because different airports

require different connecting time, we set MCT based on the connecting airport. For

instance, Chicago O'Hare connecting passengers may need 25 minutes to make a

connection.

4.4.2 Passenger Allocation Process (PAP)

Problem Description: Given a particular airline, a particular day of the year, and a

vector of O-D based passenger demands (quarterly aggregated), estimate the number of

passengers transported on each itinerary. This requires allocating passenger flows to the

itineraries generated by IGA. DB1B, a 10% sample of airline tickets from reporting

carriers, provides counts of passengers transported on each O-D pair on a quarterly-

basis. From this, we get estimates of the total number of passengers transported on an

O-A-D or O-T-D itinerary daily, and then allocate these passengers to itineraries

throughout the day using the T-100 information and passenger booking profiles. The T-

100 segment database with its count of passengers transported on each non-stop flight



segment on a monthly-basis is to constrain passenger allocations to match those

observed in actuality.

Researchers have tried different approaches to tackle this problem. A typical way is to

apply discrete choice models and quantify passengers' travel preferences, referred to as

itinerary choice problems (Coldren et al. (2003) [12]). We develop a linear integer

programming formulation to solve this problem. To the best of our knowledge, this has

never been done by others. The basic idea is to minimize the deviation of estimated

passenger flows and actual passenger flows subject to a set of flow constraints and a

flight seating capacity constraint. This optimization-based approach has a major

advantage in handling quantitative constraints associated with highly aggregated data,

such as BTS data. Additionally, compared to most itinerary choice models, an

optimization approach does not have to work at the level of individual observations

and consequently, circumvents many data issues relevant to choice models. We

describe the constraints, right-hand-side (RHS) parameters, and objective function in

the following.

Notations

I: the set of itineraries generated by the IGA

R: the set of routes in DB1B

F: the set of operated flights in ASQP

S: the set of non-stop segments in T-100 segment data8

M: the set of O-D markets

P: the set of periods

8 An element of S is the set of operated flights with the same origin and destination in F.
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Constraint Set 1: the flight seating capacity constraints. The seating capacity for each flight

in the airline's network can be derived using the following procedures:

a) Obtain the tail number of each of the airline's flights in ASQP and match the

aircraft tail number to its aircraft type using the FAA Aircraft registry database

[15].

b) After identifying aircraft types, obtain from the target airline's official website

the seating capacity, denoted by T, for each flightf.

The PAP should assign passengers to itineraries in the way such that the flight seating

capacity is never exceeded by the passenger flow on a plane.

Constraint Set 2: the route passenger flow constraints. A route can be either a local or

connecting route. The right-hand-side (RHS) parameters are target values that we

estimate from DB1B market data for a particular day d, and the particular airline, using

the following procedures:

a) Aggregate the number of passenger bookings for the airline over coupons (DB1B

Coupon) with the same O-T-D or O-A-D airports to obtain quarterly route

passenger flow.

b) Obtain the percentage of annual passengers transported (by airline) for the

month in which day d falls, using BTS data (2006) [4]. Divide this percentage by

the sum of the percentages corresponding to the three months in the quarter

containing day d.

c) Compute the relevant monthly route passenger flow by multiplying a) and b)

and, to obtain the weekly average route passenger flow, divide this value by the

number of weeks in that month.

d) Derive a weekly passenger demand profile, represented by the percentage of

booked passengers that travel on each day of the week over a week, using an

airline's actual historical passenger booking data. Multiply c) by the percentage



corresponding to day d to obtain the daily route passenger flow for d, denoted by

TR.

The intuition behind the route passenger flow constraints is that passenger demand for

an O-D route varies by day. Although procedure d) assumes different airlines have

similar weekly passenger demand profiles, constraint set 1 enforces the assignment of

passengers to match the daily seating capacity provided by the airline and the other

constraint sets 2, 3 and 4, work to ensure that the assignment of passengers mimics the

T-100 segment data.

Constraint Set 3: the segment passenger flow constraints. The total flow on a flight

segment consists of local and/or connecting passengers. For example, assume the flight

segment A-B has 100 passengers: 50 of these passengers connect at B and continue

flying; the other 50 passengers, who might have connected or originated at A, have their

final destination at B. The total number of passengers on a segment, that is the RHS

target values, is derived from T-100 Segment data, using the following procedures:

a) Aggregate the number of transported passengers of the airline over its non-stop

segments (T-100 Segment) with the same O-D airports to obtain the monthly

segment passenger flow.

b) To obtain the weekly average segment passenger flow, we divide a) by the

number of weeks in the month of day d.

c) Using the weekly passenger demand profile (i.e., a typical share of booked

passengers on each day of a week) computed for constraint set 2, multiply the

share on day d by b) to obtain the daily segment passenger flow, denoted by Ts.

Similar to the route passenger flow constraints, the segment passenger flow constraints

are to match, as closely as possible, the assignment of passengers and the actual

passenger demand on each segment s, estimated as Ts.



Constraint Set 4: the period passenger flow constraints. The RHS parameters represent the

airline's passenger flow in each market, commencing in each period. A market is

defined to be any O-D pair between which passengers travel. The RHS passenger flow

parameters are derived from DB1B and an airline's historical data, using the following

procedures:

a) Aggregate the number of passenger bookings for the airline over coupons (DB1B

Coupon) in the same market to obtain quarterly market passenger flow.

b) Obtain the percentage of annual passengers transported (by airline) for the

month in which day d falls, using BTS data (2006) [4]. Divide this percentage by

the sum of the percentages corresponding to the three months in the quarter

containing day d.

c) Compute the monthly market passenger flow for the airline by multiplying a)

and b). To obtain the weekly average market passenger flow, divide the monthly

flow by the number of weeks in that month.

d) Derive the weekly passenger demand profile (i.e., a typical share of booked

passengers on each day of a week) using an airline's actual historical passenger

booking data.

e) Multiply c) by d) to obtain the airline's daily market passenger flow for the

particular day under investigation.

f) Derive a "time of day" passenger demand profile (i.e., the share of booked

passengers for each non-overlapping, pre-defined period in a day) using an

airline's historical passenger booking data. For our work, we define three

periods: 0600-1200 (morning), 1200-1800 (afternoon), and 1800-2400 (evening).

g) Multiply e) by f) to obtain the market passenger flow for each period of a day. In

other words, the period passenger flow is the product of the total passengers in a

given market m on a particular day and the fraction of passengers in that market

during period p. TMP denotes period p passenger flow in market m.
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When applying the above procedures, we find that connecting markets and local

markets have different "time of day" passenger demand profiles (in other words, local

and connecting passengers show different travel behavior).

The intuition behind the period passenger flow constraints is that passenger demand

varies by time of day and different markets are likely to have different passenger

demand profiles. For example, demand for a business market may peak at a different

time of day compared to that of a leisure market. To approximate better the number of

passenger bookings on each itinerary, we include these time-of-day considerations in

our PAP.

The objective function attempts to minimize the sum of all slack or surplus variables,

normalized by the corresponding target values (RHS parameters), i.e., the total

deviation of all constraints. w's represent the "weights" ,where wrslack = Wrsurplus = 0.5,

Wsegslack = Wsgsurplus= 0.5, Wschslack = Wsh_surplus = 0.3, and wseat = 0.5. The weights reflect

how close we want the left hand side values to match the right hand side parameters.

Because the RHS of constraint set 4 is derived from an airline's historical passenger

booking profile for July 2000, which has less accuracy than the other parameters, we

assign a smaller weight to its corresponding slack and surplus variables in the objective

function. The final weights are chosen based on a trial-and-error process.



The Optimization Model

Decision Variables9

Xi e Z : number of passengers assigned to itinerary i, where i E I

Route slackr e Z*: slack variable for each route constraint r, where r E R

Route_surplusre Z*: surplus variable for each route constraint r, where r E R

Segslacks e Z+: a non-negative slack variable for each segment constraint s, where s E S

Seg_surpluss e Z+: a non-negative surplus variable for each segment constraint s

Period_slackmp E Ze: a non-negative slack variable for each period constraint mp, where m

E M, p E P, and mp E M X P (the cartesian product of M and P indicating market m

during period p)

Periodsurplusmp a Z*: a non-negative surplus variable for each period constraint mp,

where mp is defined the same as above

Indicator Parameters

1. & = 1 if itinerary i corresponds to route r; 0 otherwise

2. qis = 1 if itinerary i contains segment s10; 0 otherwise

3. Ai = 1 if itinerary i is served by flightf; 0 otherwise

4. 7i,mp = 1 if itinerary i serves market m and departs in period p; 0 otherwise

5. 7r= 1 if route r is a connecting route; 0 otherwise

9 We solve the optimization problem for each airline and each day. For simplicity, the target values for

that day are denoted without the index indicating the day. We also drop the index denoting the airline.

10 Note a segment corresponds to the set of non-stop flights throughout the day with a given origin and

destination.



Constraints"

(1) iI Aifxi <- Tf V f E F;

(2) CieI irXi + Route_slackr - Route_surplusr = Tr V r E R;

(3) LZeI isXi + Seg_slacks - Seg_surpluss = Ts V s E S;

(4) XiEl 1ri,mpxi + Period_slackmp - Period_surplusmp = Tmp V m E M and p E P.

Objective Function

Minimize: Wr slackRoute slackr Wr surplusRoutesurplusr- + -
Tr TrrER

+ ( W s  +Wge gs a ck  s l a c k s  WsegsurplusSegsurplUSs

SES

+- E ( -mp slackPeriod slackmp WmpsurplusPeriod surplusmp

pEP mEM mp mp

We solve this optimization problem with CPLEX on OPL 5.0. The outputs include the

number of passengers assigned to each itinerary generated in IAG, that is, an estimation

of passenger booking information. These outputs are combined with the flight

schedules from ASQP and input into the PDC to compute passenger delay statistics.

11 Because the left hand side of the constraints is an integer matrix with linearly independent rows and the
right hand side is an integer vector, by Unimodularity Theorem, there exists an integer optimal solution
to the linear program version of this problem. Therefore, even though the problem is formulated as a
linear integer program, it can be solved to optimality by its linear relaxation.
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4.4.3 Passenger Delay Calculator (PDC)

Most of the following discussions are based upon the work of Stephane Bratu (2005) [3],

who originally developed the PDC algorithm.

Definition of Disruptions. The core of PDC is to distinguish between disrupted and

non-disrupted passengers, as well as to recover the disrupted passengers. As defined

earlier, a passenger is disrupted if:

* One or more of the flights in his/her scheduled itinerary is canceled; or

* The passenger misses connections.

Consequently, disrupted passengers must be re-accommodated on alternative

itineraries, while non-disrupted passengers have the same scheduled and actual

itineraries. Because scheduled and actual itineraries are different for disrupted

passengers, the set of passengers P can be divided into two mutually exclusive and

collectively exhaustive subsets: D and ND, corresponding to the set of disrupted and

non-disrupted passengers, respectively. We denote the queue of passengers to be re-

accommodated by the airline at time t as DQ(t) and let DT(p) be the time of disruption

for passenger p. Let d(p) be the Passenger Arrival Delay for p, computed as the maximum

of zero and the difference between p's actual arrival time and scheduled arrival time.

Hence, d(p) = max(AAT(L(p)) - PAT(L(p)); 0), where L(p) denotes the last flight in p's

actual itinerary, (AI(p)).

PDC Assumptions. PDC provides only approximate delay estimates. The assumptions

underlying our PDC are likely to lead to underestimates of actual passenger delays. We

present them in the following:

a. Perfect information: we assume at any point in time that future operations are

known exactly. Consequently, disrupted passengers, once they are assigned to
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recovery itineraries, cannot be disrupted again. Additionally, we assume in PDC

that the airline has perfect knowledge of the number of seats available for each

flight. In reality, airlines do not have this information, as some passengers might

not show-up for their flights, especially business passengers who sometimes

have fully refundable tickets.

b. Instantaneous information: we assume that a disrupted passenger is

instantaneously rebooked on the best feasible recovery itinerary, that is, the one

which arrives earliest at the disrupted passenger's destination, has an available

seat, and has at least the minimum connect time between the passenger

disruption time and the departure of the first flight in the recovery itinerary.

Regarding service priorities, based on current industry practices and available

information, we have made the following assumptions:

c. Booking priority: Consistent with industry practice, non-disrupted passengers

have priority over disrupted passengers. Therefore, non-disrupted passengers

are not reassigned to an itinerary different from their scheduled itinerary.

d. No bumped passengers: We assume all non-disrupted passengers fly their

booked itineraries, with passenger bumping not allowed.

e. Rebooking order: Disrupted passengers are re-accommodated under a First-

Disrupted-First-Recovered (FDFR) policy. When a flight is canceled, the order in

which disrupted passengers are re-accommodated depends on the disrupted

passengers' check-in times. Because we do not know this information, we rank

the disrupted passengers randomly in our disruption queue.

f. Time passengers are informed about flight schedule disruptions: We do not have

information pertaining to the time at which passengers are informed that their

schedules are disrupted. We have, therefore, assumed that passengers disrupted

by a canceled flight are notified when the flight is scheduled to depart.
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g. Passengers re-accommodated on the next-day's flights or on other airlines'

flights: In PDC, there are two situations where disrupted passengers are

recovered by other airlines:

* Situation 1: For some disrupted passengers, if the airline has only one fight

per day for certain routes (between the disrupted airports and their final

destination), these groups are assumed to be recovered either the next day

or by other airlines on the same day. If these passengers are disrupted

before 6pm, we assume they are recovered by other airlines; otherwise,

they must wait to be re-accommodated on the next day's flight.

* Situation 2: If a passenger delay exceeds the predefined Maximum

Passenger Delay (MPD) threshold (of 15 hours, see Bratu, 2003, for analysis

supporting this selection), then he/she is re-accommodated on a different

airline. In effect, this limit serves as a crude model of inter-airline

passenger re-accommodation. To be more accurate in estimating the

resulting delay to these passengers, information regarding seat

availabilities on other airlines and airline policies are required.

h. Passenger Minimum Connection Time: Passengers require at least the MCT to

transfer to their outgoing flights. Although MCT varies for each connecting

passenger at each airport because of differences in the distances between gates

and disembarking times, we set MCT to 15 minutes.

i. No Luggage Disruption: Although checked-in luggage is another important

dimension of passenger service, we do not consider luggage disruption in our

analysis.

PDC Algorithm. Inputs to the PDC include: (1) flight schedules with given aircraft

routings; (2) itineraries generated by the IGA; (3) for each scheduled itinerary, the

number of booked passengers (that is, the outputs from the PAP); and (4) the planned
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and actual flight departure time, arrival time, departure delay and arrival delay for each

flight in the schedule as well as each canceled and diverted flight (from ASQP). The

steps of the PDC algorithm are illustrated in Figure 4-2. In STEP 1, for all flights in the

schedule, we determine which itinerary is disrupted. The recovery queue is built in

STEP 2, according to our specified recovery policy. In STEP 3, each disrupted passenger

is re-accommodated on a feasible itinerary that arrives as early as possible at the desired

destination or on a different airline (sees Assumption g). In STEP 4, disrupted

passengers, for whom there is no efficient recovery itinerary within a specified time

frame, are assumed to be recovered on different airlines. In STEP 5, passenger delay

estimations are aggregated and passenger schedule reliability statistics are computed.
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Figure 4-2: Passenger Delay Calculator schematic

Details of the steps of PDC are as follows:

D STEP 1: Identifying disrupted and non-disrupted itineraries.

If a passenger schedule is disrupted, the airline will search for a recovery itinerary to re-

accommodate the disrupted passenger. A recovery itinerary is defined as a sequence of

flights with at least one seat available on each flight to re-accommodate a disrupted

passenger to his/her desired destination. For each passenger p on an itinerary

containing, for example, flights f(1) followed by f(2), Figure 4-3 illustrates the sequential

algorithm that determines if passengers are disrupted:

SSTEP 5

-^ I



SIs f(1) cancelled?

4 If yes, passenger p is disrupted, p E D and disruption time DT(p) = PDT(f(l))

*. Else is f(2) cancelled?

E4 If yes, passenger p is disrupted, p E D and disruption time DT(p) = PDT(f(2))

o Else, is ADT(f(2)) - AAT(f(1)) < MCT?

4 If yes, passenger p is disrupted, p E D and disruption time DT(p) =

ADT(f(2))

o Otherwise, passenger p is not disrupted, p E ND, and arrival time is

AAT(f(2)), and d(p) = Max(O; AAT(f(2)) - PAT(f(2))).

Figure 4-3: Passenger disruption checking algorithm

Given the partitioning of passengers into the disrupted passenger subset D and the non-

disrupted passenger subset ND, the algorithm reserves seats first for each non-

disrupted passenger, as it is industry practice to give them priority over disrupted

passengers (as discussed in the service priority assumptions). Then, delay statistics for

non-disrupted passengers are recorded and available seat inventories are decremented

to reflect their assignments.

O STEP 2: Ordering the disrupted passengers.

The second step of PDC is to build the queue of disrupted passengers. Various service

policies are possible, including: (1) re-accommodating passengers in the order in which

they are disrupted, called First-Disrupted-First-Recovered (FDFR); (2) re-

accommodating passengers in the order of decreasing fare class value; or (3) re-

accommodating passengers in the order of decreasing frequent flyer status. In this

analysis, we sort the disrupted passengers in D according to the first policy because

detailed information on fare class value and frequent flyer status are not available.



When two different passengers are disrupted at the same time, we randomly select

whom to re-accommodate first.

O STEP 3: Re-accommodating disrupted passengers.

For each passenger, the PDC algorithm finds the recovery itinerary commencing at the

airport where the passenger is located and arriving the earliest to the passenger's

desired destination. Two lists of recovery itineraries for disrupted passenger p are

generated: the Direct Itinerary List (DIL(p)) for which itineraries have one flight leg only,

and the Connecting Itinerary List, CIL(p,H), for which itineraries have multiple flight legs

and connect through hub airport H. Once DIL(p) and CIL(p,H) are constructed for each

hub airport, the combined list is sorted according to arrival time and passenger p is re-

assigned to the earliest arriving itinerary with seat availability. For details of the

recovery itinerary search algorithm, refer to Bratu and Barnhart (2005) [3].

O STEP 4: Generating outputs.

The output of the PDC algorithm is a vector of passenger delay statistics, including

average delays for each passenger, and numbers of passengers in different groups, such

as local, connecting, disrupted, non-disrupted, disrupted and recovered on the same

day, and disrupted and stranded overnight.



Chapter 5

Passenger Delay Analysis

5.1 Introduction

In this chapter, we compare passenger delay statistics between the legacy network

carrier and the low-cost carrier on the two different days. As mentioned in Chapter 3,

passenger delays arise from flight delays and cancellations. Additionally, other factors

such as network structures, passenger mix, load factors, and flight schedule design, also

have a significant impact on passenger on-time performance. This chapter aims to

establish relationships between passenger delays and flight leg delays, cancellation

rates, load factors, network structures, passenger mix, and schedule design. In the next

section, we compare the network structures and passenger mixes of Airline A and

Airline B. We also discuss how flight schedules differ between the two airlines and

present a load factor analysis. We then show the differences in passenger delay and

disruption activities of the two airlines. Explanations of these differences are provided.

5.2 Network Structure and Passenger Mix

Airline A operates a "hub-and-spoke" network, while Airline B operates more of a

"point-to-point" network, although many connecting opportunities are provided at

"hub" networks. In this section, we compare the network operations and passenger mix

(local and connecting) of Airline A and Airline B. We first identify the three largest

airports (in terms of total enplaned passengers) at which each airline operates (Figure 5-

1) using data provided by BTS [4]. Then, for each major airport of the two airlines, we

compute the number of aircraft operations and connecting passengers in each one-hour



time window. Along the "time-window" axis, "1" represents 4:00am - 4:59am, "2"

represents 5:00am - 5:59am, and so on. The last label "20" represents 11:00pm -

11:59pm. Between 0:00am and 3:59am, neither Airline A nor Airline B operates domestic

flights.

The analysis of passenger mix (local vs. connecting) by airport (Figure 5-2 to Figure 5-7)

provides us useful insights into the airlines' passenger operations. For Airline A and

Airline B, the percentages of connecting passengers at their respective major airports are

comparable. Like Airline A, Airline B also exhibits a "hub" operation at its three largest

"hubs" (indicated by the high percentages of connecting passengers). However, there is

a difference in the level of connecting passenger traffic between the major airports of

Airline A and Airline B. In particular, the major hubs of Airline A accommodate a larger

share of A's connecting passenger traffic compared to the share of B's connecting

passengers captured at the major airports of Airline B. In other words, connecting

passengers are distributed more evenly in Airline B's system and hence, the shares of

connecting passengers in Airline B's major airports are not as significant as Airline A's.

In Figure 5-8 to Figure 5-10, we show airports with fewer operations and smaller

percentages of connecting passengers compared to the three largest "hubs" in Airline

B's operation. This suggests that in B's system, some airports act like "connecting hubs"

with higher percentages of connecting passenger traffic than at other airports in B's

network; airports which accommodate more local passengers. Strictly speaking, "point-

to-point" service is an inaccurate description of our low-cost carrier's network

operations. Rather, Airline B uses "hubs" to serve various levels of connecting

passenger traffic in the network. Further evidence to support this finding is that our

estimates show that an overall connecting share for the legacy carrier (the low-cost

carrier) of 35% (48%), and a local passenger share of 65% (52%).
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Figure 5-1: Market share in Airline A's (left) and Airline B's (right) total enplaned passengers 12

12 Enplaned passengers: the total number of revenue passengers boarding aircraft
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Figure 5-2: Scheduled flight operations (left) and percentage of connecting passengers (right) in

each one-hour time window at Hub 1
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Figure 5-3: Scheduled flight operations (left) and percentage of connecting passengers (right) in

each one-hour time window at Hub 2
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Figure 5-4: Scheduled flight operations (left) and percentage of connecting passengers (right) in

each one-hour time window at Hub 3
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Figure 5-5: Scheduled flight operations (left) and percentage of connecting passengers (right) in

each one-hour time window at "Hub" 1
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Figure 5-6: Scheduled flight operations (left) and percentage of connecting passengers (right) in

each one-hour time window at "Hub" 2
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Figure 5-7: Scheduled flight operations (left) and percentage of connecting passengers (right) in

each one-hour time window at "Hub" 3
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Figure 5-8: Scheduled flight operations (left) and percentage of connecting passengers (right) in

each one-hour time window at Secondary Airport 1
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Figure 5-9: Scheduled flight operations (left) and percentage of connecting passengers (right) in

each one-hour time window at Secondary Airport 2
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Figure 5-10: Scheduled flight operations (left) and percentage of connecting passengers (right)

in each one-hour time window at Secondary Airport 3

Peaked Schedules vs. De-peaked Schedules

Figure 5-2 (left) and Figure 5-4 (left) depict the number of flight operations for each one-

hour window at two major hubs of Airline A. As illustrated by the figures, these two

schedules create departure peaks at the hub with each peak planned to last about one to

two hours. Airline A operates one de-peaked hub (Figure 5-3), while, as shown in

Figures 5-5, 5-6, and 5-7, Airline B has de-peaked schedules at its three largest "hubs".

In a de-peaked schedule, aircraft need not wait on the ground for connecting passengers

and therefore ground turn times are reduced, leading to increased aircraft utilization.

This is evidenced by Table 5-1, which displays the daily utilization per aircraft of

Airline A and Airline B from 2005 to 2007, respectively. For both block hours and

airborne hours, Airline B achieved a higher utilization per aircraft than did Airline A.



Note that the numbers of departures performed by Airline B are almost twice as many

as those performed by Airline A, indicating (with the airborne hours information) that

Airline B flies shorter flights on average.

Daily utilization per 2005 2006 2007
aircraft (Airline A) ..............

Block hours 9.08 9.57 10.07
Airborne hours 7.46 7.8 8.2

Dep artures 3.3 3.47 3.65

Daily utilization per 2005 2006 2
aircraft (Airline B)

Block hours 11.13 11.22 11.19
Airborne hours 9.58 9.68 9.59

Departures 6.53 6.49 6.37

Table 5-1: Daily utilization per aircraft for Airline A (top)

Source: MIT Airline Data Project

and Airline B (bottom)

De-peaked schedules are more robust in the sense that airport capacity reductions

resulting from weather can have less of an impact than in the case of peaked operations

with their high-levels of peak demand for capacity.

5.3 Load Factors

Using information from T-100 Segment data (BTS (2006) [10]), we compute average load

factors per flight leg of the two airlines in July, 2006. Airline A had an average load

factor of 83.43% per flight leg and Airline B had 77.23%. Using the PAP method



developed in Chapter 4, we estimate the average load factor to be 79.20% (78.00%) for

Airline A and 81.20% (74.30%) for Airline B on the two days under consideration. With

our PAP, we find that Airline B transported 4.4 times more passengers on its domestic

flights than Airline A on non-week days like July 8 and 3.2 times more passengers on

week days like July 12. The numbers of passengers we estimate are 60.2k (86.4k) for

Airline A and 262.8k (278.0k) for Airline B on July 8 (July 12). In Figure 5-11, we plot the

percent of flight legs with load factors greater than or equal to selected values, for both

airlines in July 2006. The vertical gap between the two curves represents the difference

in the percentage of flight legs with load factors greater than or equal to a fixed value.

According to these plots, we find:

* 58.58% of Airline A's flights had a load factor greater than or equal to 85%

compared to only 33.72% for Airline B;

* 40.05% of Airline A's flights had a load factor greater than or equal to 90%

compared to only 21.14% for Airline B;

* 15.71% of Airline A's flights had a load factor greater than or equal to 95%

compared to only 7.34% for Airline B;

* 2.39% of Airline A's flights had all seats sold out compared to only 1.60% for

Airline B.
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Figure 5-11: Percent of flight legs with load factor greater than or equal to various levels in July,

2006

5.4 Passenger Delay Statistics

As in Chapter 3, our analysis applies only to jet-operated flight legs because the ASQP

data set includes only jet operated flight leg information. Using the 3-stage approach

described in Chapter 4, we compute the passenger delay statistics for the two airlines on

July 8 and July 12, 2006 (shown in Table 5-2). Flight delay statistics from Chapter 3 are

retained in Table 5-2 to assist our understanding of differences in the airlines' passenger

delays. In Table 5-3 (Table 5-4), we display the differences (ratios) between statistics of

the two airlines and between statistics of the two days for the same airline.



Airline AI (07/0812006)1
Airline B

(07/08/2006)
Airline A

(07/12/2006)

Airline B
(07/12/2006)
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* Delayed flights (delayed passengers) are the flights (passengers) with delays

Table 5-2: Passenger and flight delay statistics

greater than 15 minutes

727 2698 922 3116

60.2 262.8 86.4 278.0

79.20% 81.20% 78.00% 74.30%

87.60% 89.00% 60.60% 75.80%

12.40% 11.00% 39.40% 24.20%

0 0.44% 1.52% 0.89%

6.36 4.82 38.75 12.28

19.36 17.5 67.16 25.74

8.11 8.74 53.84 21.28

13.63% 14.79% 43.49% 36.77%

0.40% 0.44% 2.80% 1.25%

7.31 5.03 41.48 14.23

185 105 457 230

261.76 409.39 482.99 578.25

25.78 26.47 84.97 44.07

1.28 1.81 1.38 1.73

1.15 1.04 1.07 1.16

41.16 84.94 12.46 47.09

1.75 3.92 15.09 9

0.95 0.21 2.73 1.95

255.4 404.57 444.24 565.97

I!--- I - --I



-1971 -2194 195 418

-202.6 -191.6 195 15.2

-2.00% 3.70% -1.20% -6.90%

-1.40% -15.20% -27.00% -13.20%

1.4% 15.2% 27% 13%

0 0.01 0.02 0

1.54 26.47 32.39 7.46

1.86 41.42 47.8 8.24

-0.63 32.56 45.73 12.54

-1.16% 6.72% 29.86% 21.98%
-0.04% 1.55% 2.40% 0.81%

2.28 27.25 34.17 9.2

80 227 272 125

-147.63 -95.26 221.23 168.86

-0.69 40.9 59.19 17.6

-0.53 -0.35 0.1 -0.08
0.11 -0.09 -0.08 0.12

-43.78 -34.83 -28.7 -37.85
*A8-B8: The differences between statistics of Airline A on
**A12-B12: The differences between statistics of Airline A
***A12-A8: The differences between statistics of Airline A
****B12-B8: The differences between statistics of Airline B

July 8 and statistics of Airline B on July 8
on July 12 and statistics of Airline B on July 12
on July 12 and statistics of Airline A on July 8
on July 12 and statistics of Airline B on July 8

Table 5-3: Absolute differences in passenger and flight delay statistics

:::.-
I A8-B8* A12-B12** A12-A8*** B12-B8****



2. Number of onboard passengers0 0.23 0.31 1.44 1.06

3. Average load factor per flight leg 0.98 1.05 0.98 0.92

4.15 minutes on time performance 0.69 0.85
0.98 0.8 0.69 0.85

(15-OTP)

5. Percentage of delayed flights 3.18 2.18
1.13 1.63 3.18 2.18

(only flights operated)

6. Percentage of cancelled flights 0 1.71 NA 2.02

7. Average delay of operated flights 1.32 3.16 6.09 2.55i iiiiiiii i~i ii 1.32 3.16 6.09 2.55

(minutes)
8. Average delay of flights with delays 1.11 2.61 3.47 1.47
(minutes)

i~tl ~ ~8 ..0.93 2.53 6.64 2.43

10. Percentage of delayed passengers 0.92 1.18 3.19 2.49

11. Percentage of disrupted passengers 0.91 2.24 7 2.84

12. Average delay of non-disrupted 1.45 2.91 5.67 2.83
1.45 2.91 5.67 2.83

eassen ers (minutes)
13. Maximum delay of non-disrupted 1.76 1.991.76 1.99 2.47 2.19
passengers (minutes)

14. Average delay of disrupted 0.64 0.84

i i-i 0.97 1.93 3.3 1.66

9 to 7 0.71 0.80 1.08 0.96

12 to 7 1.11 0.92 0.93 1.12

14 to 7 0.48 0.26 0.30 0.55

*A8/B8: The ratios of statistics of Airline A on July 8 to statistics of Airline B on July 8

**A12/B12: The ratios of statistics of Airline A on July 12 to statistics of Airline B on July 12

***A12/A8: The ratios of statistics of Airline A on July 12 to statistics of Airline A on July 8

****B12/B8: The ratios of statistics of Airline B on July 12 to statistics of Airline B on July 8

Table 5-4: Ratios in passenger and flight delay statistics

1.27 1.150.27 0.3



From the tables above, several observations are made for July 8, 2006 in terms of

passenger delays and disruptions:

1. The maximum delay of non-disrupted passengers for Airline A was 1.76 times

greater than that for Airline B.

2. Airline B's non-disrupted passengers experienced less delay than Airline A's.

Notice that Airline A's operated flights experienced an average delay of 6.36

minutes while Airline B's operated flights experienced an average of 4.82

minutes. Additionally, the percentage of Airline A's delayed flights (12.40%) was

higher than that of Airline B's delayed fights (11.0%). These differences resulted

in a higher average delay for Airline A's non-disrupted passengers.

3. The overall percentages of disrupted passengers were comparable for both

airlines with Airline B having a slightly higher percentage.

4. All passenger disruptions of Airline A were due to missed connections because

there were no flight cancellations. On the other hand, passenger disruptions of

Airline B arose from a mix of cancelled flights and missed connections.

5. Airline B had a higher load factor than Airline A.

6. Airline B's disrupted passengers experienced 1.56 times more average delay than

Airline A's disrupted passengers. The fact that Airline A had no flight

cancellations and lower average load factors explains in part why Airline B's

disrupted passengers had a higher average delay than Airline A's. When a

disruption is caused by a flight cancellation rather than a missed connection, the

cancellation causes all passengers on the flight to compete for seats. In contrast, a

delayed rather than cancelled flight results in fewer missed connections to a

given flight, which makes the recovery process easier. Additionally, the

frequency of markets served by each airline also affects its disrupted passenger

delay in the sense that higher market frequency translates into a quicker recovery

when disruptions occur.
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7. Overall, the average delay of all passengers (disrupted and non-disrupted) and

the average delay of passengers with positive delays were slightly higher for

Airline B than for Airline A.

8. The percentage of delayed passengers was slightly higher for Airline B than for

Airline A.

9. The ratio of overall passenger delay to operated flight delay was higher for

Airline B than for Airline A.

10. The ratios of non-disrupted passenger delay to operated flight delay were

comparable for both airlines.

11. The ratio of disrupted passenger delay to operated flight delay for Airline B was

twice as much as that for Airline A.

For July 12, 2006, the following observations are made from the tables above, regarding

passenger delays and disruptions:

1. On average, Airline A had a higher load factor (78.00%) than Airline B (74.30%)

per flight leg.

2. Airline A had 1.71 times more cancellations than Airline B. In contrast to July 8,

2006, Airline B's cancellations doubled and Airline A's cancellations increased

from none to a significant number (1.52% of flights were cancelled).

3. The maximum delay of non-disrupted passengers for Airline A was twice as

much as that for Airline B.

4. The average delay of non-disrupted passengers for Airline A was three times as

much as that for Airline B. Notice that the average delay of Airline A's operated

flights was 3.16 times higher than that of Airline B's operated flights.

Additionally, the percentage of Airline A's delayed flights (39.40%) was higher

than that of Airline B's delayed flights (24.20%). For flights with positive delays,

the average delay for Airline A was 2.61 times higher than that for Airline B.
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These differences resulted in a higher average delay for Airline A's non-

disrupted passengers.

5. In contrast to July 8, 2006, the overall percentage of disrupted passengers was

increased by a factor of 7 for Airline A and a factor of 2.84 for Airline B.

6. The overall percentage of disrupted passengers for Airline A was 2.24 times

more than that for Airline B.

7. Airline B's disrupted passengers experienced 1.20 times more delay on average

than Airline A's.

8. Overall, the average delay of all passengers (disrupted and non-disrupted) for

Airline A was 2.5 times higher than for Airline B.

9. The average delay of passengers with positive delays was 1.93 times higher for

Airline A than for Airline B. The percentage of delayed passengers was also

higher for Airline A than for Airline B.

10. The ratio of overall passenger delay (and non-disrupted passenger delay) to

operated flight delay was higher for Airline B than for Airline A.

11. The ratio of disrupted passenger delay to operated flight delay for Airline B was

almost four times as much as that for Airline A.

Compared to July 8, 2006 (the "low-delay" day), passenger on-time performances were

worse for both airlines on July 12, 2006 (the "high-delay" day). This is also true in terms

of both airlines' flight on-time performance. In particular, compared to July 8, 2006, the

average delay of operated flights was increased by a factor of 6.09 for Airline A and a

factor of 2.55 for Airline B. The average delay of flights with positive delays was

increased by a factor of 3.47 for Airline A and a factor of 1.47 for Airline B. Also, the

percentage of delayed flights was increased by a factor of 3.18 for Airline A and 2.18 for

Airline B. In particular, we observe:
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1. The percentage of delayed passengers was increased by a factor of 3.19 for

Airline A and 2.49 for Airline B.

2. The overall percentage of disrupted passengers was increased by a factor of 7 for

Airline A and a factor of 2.84 for Airline B on July 12, 2006.

3. The maximum delay of non-disrupted passengers was increased by a factor of

2.47 for Airline A and a factor of 2.19 for Airline B.

4. The average delay of all passengers was increased by a factor of 6.64 for Airline

A and a factor of 2.43 for Airline B.

5. The average delay of passengers with positive delays was increased by a factor of

3.30 for Airline A and a factor of 1.66 for Airline B.

Summary of the Delay Statistics

For each airline, the average delay of its operated flights and the average delay of its

non-disrupted passengers were comparable on the two days. However, the

discrepancies between delay of operated flights and average delay of all passengers

were increased for both airlines on the "high-delay" day. This is because the overall

percentages of disrupted passengers were increased significantly for both airlines on

July 12, 2006. This result confirms findings from previous studies (Bratu and Barnhart

(2005) [3], Wang et al. (2007) [25]) that simple flight-based statistics tend to

underestimate passenger delays on a "high disruption" day because disrupted

passengers experience longer delays on average than do flights.

Highlight Finding 1 - Differences in Aircraft and Passenger Delay between Airline A

and Airline B on the "High-Delay" Day

One of the key observations from Table 5-2 is that although both airlines had "high-

delay" in flight operations on July 12, Airline A suffered almost three times as much

aircraft delay and 2.5 times as much passenger delay in absolute minutes as Airline B.
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In Chapter 3.2.2, we find that on July 12, 2006, Airline A had 13% of flights experiencing

delay propagation and Airline B had 18.7%. However, Airline A suffers twice as much

propagated delay (12.48 minutes) on average as Airline B (6.19 minutes). Airline B, then,

had a higher percentage of flights with propagated delay than Airline A but

experienced much less passenger delay. We believe the fact that Airline B had a higher

percentage of flights with propagated delay (than Airline A did) lies in an important

difference between Airline A and Airline B in how they build their schedules; i.e.,

Airline B plans less turn time slack (than Airline A does). Additionally, Airline B can

afford to schedule its turn time with less slack and on "high-delay" days let delay

propagate with fewer passengers being disrupted because Airline B plans longer

connection times for its passengers than Airline A does. Our analysis shows that the

average passenger connecting time for Airline A's passengers was 97.87 (99.41) minutes

compared to 134.65 (135.29) minutes for Airline B on July 8 (July 12), 2006.

Highlight Finding 2 - Discrepancy between Various Delay Measures

One interesting finding is that on both days, the ratios of passenger delay to operated

flight delay for Airline B were higher than the corresponding values for Airline A. This

difference is most obvious in terms of the ratio of disrupted passenger delay to operated

flight delay, although on the "high-delay" day, the percentage of disrupted passengers

was much higher for Airline A than for Airline B. In particular, the following

observations are made:

* On July 8 (July 12), the ratio of overall passenger delay to operated flight delay

was 1.81 (1.73) for Airline B and 1.28 (1.38) for Airline A.

* On July 8 (July 12), the ratio of disrupted passenger delay to operated flight

delay was 84.94 (47.09) for Airline B and 41.16 (12.46) for Airline A.
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Further, the discrepancy between average delay of disrupted passengers and non-

disrupted passengers was also much higher for Airline B than for Airline A:

On July 8 (July 12), 2006, for Airline A, the disrupted passengers experienced 35.8

(11.6) times more average delay than the non-disrupted passengers. For Airline

B, the disrupted passengers experienced 81.4 (40.6) times more average delay

than the non-disrupted passengers.

These observations indicate that the relationship between flight delay and passenger

delay might be carrier-specific. In particular, we believe the cause of the above

differences is the longer average time for Airline B's disrupted passengers as they wait

for the next available itinerary to their destinations, relative to that of Airline A's

disrupted passengers. We define scheduled waiting time until the next available

itinerary with seat availability and commencing at the airport where the disrupted

passenger is located and arriving the earliest to the passenger's desired destination as

the difference between the disruption time of the passenger and the scheduled

departure time of that itinerary. Similarly, we define actual waiting time until that

itinerary as the difference between the disruption time of the passenger and the actual

departure time of that itinerary. Scheduled waiting time and actual waiting time

reported in Table 5-5 are averaged over all disrupted passengers on that day. We

discover the following:

1. Table 5-5 shows that compared to Airline A, Airline B had greater average

scheduled waiting time and average actual waiting time, on July 8 and July 12,

respectively 13 .

2. Table 5-6 shows that the average number of recovery alternatives for each Airline

A disrupted passenger is 1.3 times as much as that for each Airline B disrupted

13 The calculation of average waiting time only considers alternative itineraries within the same airlines

and excludes waiting time for the availability of alternative itineraries from other airlines.
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passenger on July 8, and 1.2 times on July 12. The average scheduled and actual

waiting time for each Airline B disrupted passenger is 2.92 (2.66) times as much

as that for each Airline A disrupted passenger on July 8 and 1.59 (1.15) times as

much on July 12.

Airline A Airline A Airline B Airline B
(07/08/2006) (07/12/2006) (07/08/2006) (07/12/2006)

Scheduled waiting(inScheduled waiting 98.81 164.36 288.33 261.59(in minutes) I I

Actual waitingActual waiting 110.38 238.28 293.17 274.80
(in minutes)

Table 5-5: The average waiting time (scheduled and actual) per passenger until the next

available itinerary

Number of recovery Scheduled Actual
alternatives (A to B) waiting (B to A) waiting (B to A)

07/08/2006 1.3 2.92 2.66

07/12/2006 1.2 1.59 1.15

Table 5-6: The ratios per passenger of the number of recovery alternatives, scheduled waiting

time, and actual waiting time of Airline A to those of Airline B, respectively

A further comparison of the degree to which passengers are disrupted is shown in

Table 5-7. Chapter 4.4.3 discusses the situations where disrupted passengers are

assumed to be re-accommodated on the airline's own flights on the same day, on the

next-day's flights, or on other airlines' flights. We observe that, on both July 8 and July

12, Airline B had a lower percentage of disrupted passengers recovered within its own

system on the same day than did Airline A. As a result, disrupted passengers of Airline

A experienced a lower average delay than those of Airline B.
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Airline A Airline B Airline A Airline B

(07/08/2006) (07/08/2006) (07/12/2006) (07/12/2006)

Average delays of disrupted passengers (minutes) 261.76 409.39 482.99 578.25

*Percentage of disrupted passengers recovered by the airline on 45.87% 36.62% 36.08% 29.45%
the same day

Average delays of disrupted passengers recovered by the airline 149.77 218.55 240.75 290
on the same day (minutes)

*Percentage of disrupted passengers recovered by other airlines 44.50% 41.07% 39.54% 34.64%

Average delays of disrupted passengers recovered by other 265.36 356.08 446.9 503.46
airlines (minutes)

*Percentage of disrupted passengers experiencing overnight 7.80% 20.61% 24.38% 35.91%
delays

Average delays of disrupted passengers experiencing overnight 900 888 900 886.8
delays (minutes)

*Percentage of disrupted passengers who were rebooked to 1.83% 1.69% 0.21% 0. 85%
earlier flights

*Percentage of diverted passengers 0 0.21% 1.60% 0.21%

Table 5-7: Degrees of passenger disruptions (* out of all disrupted passengers)

The above facts and their corresponding outcome (that Airline B had a much higher

ratio of disrupted passenger delay to operated flight delay than did Airline A) are

rooted in the difference in the level of connecting service at Airline A's major airports

and at Airline B's major airports. Because Airline A concentrates flight operations at its

three major hubs more than Airline B does at its major airports (which spreads its flight

operations among many airports), when a disruption occurs, Airline A has more

alternative flights to re-accommodate the disrupted passengers. To summarize, fewer

recovery alternatives provided by Airline B itself, together with the longer average

waiting time for an alternative itinerary made the average disrupted passenger delay

higher for Airline B than Airline A. We conclude that, the multiplier which equalizes

flight delay and passenger delay are airline dependent. Further, the difference in the

values of this multiplier between Airline A and Airline B indicates that flight-specific

on-time performance metrics that ignore airline heterogeneity might be an inaccurate

measure of passenger experiences. Based on our results, a better on-time performance

metric should: (1) take into account carrier-specific characteristics; and (2) reflect

passenger delay.

107



Highlight Finding 3 - The Impact of Traffic Levels

Due to a weaker economy and soaring fuel costs, some airlines recently announced

capacity cuts. For example, in June 2008, American Airlines said it plans to shed

capacity by as much as 12% in the fourth quarter of this year. Chicago, Dallas, and

LaGuardia will feel the biggest effects after American's action (The New York Times,

June 26, 2008). Similarly, Frontier Airlines has cut its mainline capacity by 17% from

September through March in 2008 (Yahoo Finance, June 25, 2008). Rather than reducing

capacity, Northwest Airlines has responded to the situation by cancelling two routes to

Europe and suspending another in October 2008. The routes being canceled are Detroit-

Dusseldorf and Hartford-Amsterdam, and the Minneapolis/St Paul-Paris service will be

suspended through March (Market Watch, June 26, 2008). At the same time, Southwest

Airlines is adding service in high-demand markets (for example, Denver) to take

advantage of other carriers' capacity cuts. With its hedging program, Southwest is able

to pay less for fuel than most of its rivals (The Wall Street Journal, June 26, 2008).

With these trends in the current airline industry, we expect significant changes in

airport traffic and airline route structures. In this thesis, we develop a methodology to

evaluate, on an on-going basis, changes in the underlying aviation market. Unlike

previous studies, the framework developed in this thesis is not restricted by the

availability of proprietary airline data and can be adopted to estimate itinerary-based

passenger demand and delays for any US airline included in the BTS database.

Underlying our study, there are two scenario representations, which pertain to various

levels of airport traffic under different weather conditions. The "low-delay" day

"mimics" a scenario with good weather and low levels of flight operations for both

airlines. As a second scenario, on the "high-delay" day, Airline A experienced a number

of flight cancellations and higher delays caused by adverse weather conditions in the
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East Coast (8% extreme weather delay and 48% NAS delay). These delays along with

increasing flight operations resulted in significant capacity reductions at affected

airports. The changes in flight and passenger delay statistics from July 8 to July 12, 2006

for each airline (Table 5-8) reflect the impact of increasing flight traffic on passenger

delays and disruptions when airport capacities are reduced by poor weather conditions

for different airlines. Based on Table 5-8, we divide the changes in average delay by the

percentage increase in flight operations and obtain the following results:

* For Airline A, an increase in flight operations of one percent corresponds to an

increase in the average operated flight delay (average delay of flights with

positive delays) of 18.9% (9.1%). For Airline B, an increase in flight operations of

one percent corresponds only to an increase in average operated flight delay

(average delay of flights with positive delays) of 10.3% (3.1%).

* For Airline A, an increase in flight operations of one percent corresponds to an

increase in overall passenger delay (average delay of passengers with positive

delays) of 20.9% (8.5%). For Airline B, an increase in flight operations of one

percent corresponds only to an increase in overall passenger delay (average

delay of passengers with positive delays) of 9.5% (4.4%).

* For Airline A, an increase in flight operations of one percent corresponds to an

increase in percentage of disrupted passengers (average disrupted passenger

delay) of 22.2% (3.1%). For Airline B, an increase in flight operations of one

percent corresponds only to an increase in percentage of disrupted passengers

(average disrupted passenger delay) of 12.3% (2.7%).

The above statistics suggest that under poor weather conditions, increasing flight

operations at busy airports, compared to non-congested airports, can cause a much

greater increase in passenger delay and disruptions when airport capacity is reduced by

adverse weather condition. This impact is most pronounced with the numbers of
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disrupted passengers. In our case, Airline A suffered almost twice as much increase in

the number of passenger disruptions as Airline B.

Table 5-8: Changes (%) in passenger and flight delay statistics from July 8 to July 12 in 2006

14 The legacy carrier had zero flight cancellations on July 8, 2006 and 1.52% of its flights cancelled on July

12.
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Highlight Finding 4 - The Impact of Independent Delay on Passenger Delay

Figure 5-12 and Figure 5-13 depict the cumulative distributions of passengers with

delays greater than or equal to a certain value. Figure 5-14 and Figure 5-15 depict the

cumulative distributions of disrupted passengers with delays greater than or equal to a

certain value. Note that the horizontal gap between the solid curve (July 8, 2006) and

the dashed curve (July 12, 2006) represents the difference in delays for a fixed

percentage of passengers. The vertical gap between the solid curve and the dashed

curve represents the difference in the percentage of passengers for a fixed delay. As

seen from these plots, Airline A has much greater horizontal and vertical gaps than

does Airline B. Once again, this shows on July 12, 2006, a "high-delay" day for both

airlines in terms of flight operations, Airline A suffered more passenger delay than

Airline B. This outcome is not because Airline A does not plan enough turn time slack

(in fact, the opposite is evidenced by its lower percentage of flights with propagated

delay despite that it had longer average delay per flight). Rather, it is attributable to the

higher values of independent delay, most of which are due to weather and air traffic

control (ATC). Hence, the only thing Airline A can do to improve on-time performance

is to increase its block time. However, for the magnitude of independent delay it can

experience on high-delay days, increasing block time would be prohibitively expensive

and cause unacceptably long scheduled travel times for passenger.
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5.5 Passenger Disruption Analysis

Recognizing the significance of disrupted passengers in understanding passenger

delays and schedule performance, we further investigate the characteristics that

influence the degree of disruption, such as time-of-day, as well as departing and

connecting airports. Table 5-9 lists the percentages of disrupted passengers caused by

flight cancellations and missed connections, respectively.

Airline A Airline B Airline A Airline B
(07/08/2006) (07/08/2006) (07/12/2006) (07/12/2006)

Percentage of disrupted 0.40% 0.44% 2.80% 1.25%
passengers
Percentage of passengers on

cancelled flights 0.09% 1.03% 0.91%cancelled flights
Percentage of passengers 0.40% 0.35% 1.77% 0.34%
missing connections

Table 5-9: Disrupted passengers due to flight cancellations and missed connections

From Table 5-9, the following observations are made:

* On July 8, 2006, the majority of disrupted passengers were due to missed

connections as both airlines had very low cancellation rates (in the case of Airline

A, the cancellation rate was 0). The percentage of disrupted passengers due to

missed connections for Airline B was slightly lower than that for Airline A.

* On July 12, 2006, for Airline A, 36.79% of disrupted passengers were due to

cancellations and 63.21% due to missed connections.

* On July 12, 2006, for Airline B, 72.80% of disrupted passengers were due to

cancellations and 27.20% due to missed connections.
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Explanations of the Above Observations

Notice on both days, missed connections caused the majority of passenger disruptions

for Airline A (100% on July 8, 2006 and 63.21% on July 12, 2006). In addition, on July 12,

the percentage of disrupted passengers due to missed connections for Airline A was

5.21 times greater than that for Airline B. Our estimates show that the overall passenger

mix of Airline A (Airline B) is 35% (48%) connecting passenger traffic and 65% (52%)

local passenger traffic. Moreover, the average passenger connecting time for Airline A's

passengers was 97.87 (99.41) minutes compared to 134.65 (135.29) minutes for Airline B

on July 8 (July 12), 2006. Hence, the greater percentage of passengers who misconnected

on Airline A compared to Airline B can be explained by longer delays per flight and

shorter connecting times.

Time of Disruptions

The time at which disruptions occur has an important impact on passenger delay. Past

studies have shown that passenger delay can be more affected by the time of disruption

than route frequency (Bratu and Barnhart (2005) [3]). Late disruptions leave limited

options to re-accommodate the resulting group of disrupted passengers. Therefore,

passengers with disruptions later in the day tend to experience greater delays than

those with earlier disruptions. In Figure 5-16, we depict the total number of disruptions

occurring in each two-hour window for both airlines on July 8 and July 12. We observe:

The majority of Airline A's disruptions happened during the later part of both

days. Moreover, Airline A had a significant percentage of passengers connecting

during the later part of the day at its major hubs. As shown in Figures 5-2 and 5-

3, the highest percentage of connecting passenger traffic happened from 9:00pm

to 9:59pm at both Hub 1 (81% of passengers are connecting) and Hub 2 (73% of

passengers are connecting). The late-in-the-day cancellations and delays left
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limited time for Airline A to re-accommodate the disrupted passengers who

missed their connections or encountered a cancelled flight.

On July 8, 2006, Airline B had the highest number of disruptions between 8am

and 10am, with flights cancelled during those two hours. In contrast, on July 12,

most of Airline B's passenger disruptions occurred during the later part of the

day, where disruptions mainly arose from cancelled flights caused by carrier

problems.
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Figure 5-16: Number of disrupted passengers in each two-hour time window

(Left: Airline A, Right: Airline B)
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5.6 Disruption Analysis by Airport

5.6.1 Aggregating Disruptions by Airport

Aggregating disrupted passengers by airport provides useful information on the

number of disrupted passengers at different airports within the airline's system. Figure

5-17 to Figure 5-22 give the percentages of disrupted passengers at different airports.

Airline A (Airline B) has a total of 12 (30) airports contributing passenger disruptions

and we index these airports from 1 to 12 (1 to 30). For Airline A, hub airports are 1, 2,

and 3. For Airline B, "hub" airports are 1, 2, 4, 6, and 9. For both airlines, the major

airports had a large number of disrupted passengers. This makes sense because these

airports have higher passenger shares compared to the secondary airports. However,

we observe that Airline A's hubs experienced passenger disruptions to a greater extent

percentage-wise than did Airline B's major airports. In contrast to Airline A, Airline B's

disruptions are spread out among many more airports. We also observe that for Airline

A, the three hubs had the highest percentages of disrupted passengers on both days. For

Airline B, however, some secondary airports had higher percentages of disrupted

passengers than did the major airports. This indicates that passenger disruptions are

more related to airport congestion levels rather than airport passenger shares.
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Figure 5-17: Percent of disrupted passengers at different airports on July 8
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Figure 5-18: Percent of disrupted passengers at different airports on July 12

118

25 4 12 26 3 27 6 28 8 2 5 29 16 9 21 11 30

Airline B (07/08/2006)

"""" ""~""' '~111



0.9

0.8

0.7

0.5

0.4 ---- -- -------- ----- ---- --

0.3

0.2

0.1

0

25 12 4 26 3 27 28 8 16

Airline B (07/08/2006)

Figure 5-19: Percent of disrupted passengers due to cancelled flights at different airports

of Airline B on July 815
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Figure 5-20: Percent of disrupted passengers due to missed connections at different

airports of Airline B on July 8

15 Airline A had no flights cancelled on July 8, 2006. Hence, the number of disrupted passengers due to
cancelled flights was zero and the number of disrupted passengers due to missed connections was the
same as Figure 5-17.
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Figure 5-21: Percent of disrupted passengers due to cancelled flights at different airports

on July 12
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Figure 5-22: Percent of disrupted passengers due to missed connections at different

airports on July 12
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5.6.2 Percentage of Disruptions by Airport

In the following analysis, we compute: (1) the percentage of all disrupted passengers;

(2) the percentage of disrupted passengers due to flight cancellations; and (3) the

percentage of disrupted passengers due to missed connections, attributed to the

different airports of each airline on July 8 and July 12, respectively (shown in Figure 5-

23 to Figure 5-28). For passengers with missed connections, the airport that causes the

disruption is not necessarily the same as the disruption location. For example, consider

Passenger p on a 2-leg itinerary A-B-C, whose first leg f (A-B) departs 1 hour after the

scheduled departure time. The total delay experienced by f (A-B) is 1 hour and 10

minutes, where the additional 10 minutes may be due to a wait-to-land at Airport B

and/or longer flying time than scheduled. In this case, Passenger p misses his/her

connection and is disrupted at Airport B mainly due to the departure delay at Airport

A. We therefore claim that the disruption is mainly attributable to Airport A. If f (A-B)

departs only 10 minutes after the scheduled time, however, but must wait for an hour

after it is ready to land at Airport B, we say the disruption is mainly attributable to

Airport B. Therefore, when a disruption is due to a missed connection, the following

rule is adopted to decide the percentage of the disruption attributed to its

corresponding late departure and late arrival, respectively:

First, we compute the total delay (TD) of f(A-B) at Airport B, which is defined as

TD (f (A-B)) = AAT (f (A-B)) - PAT (f (A-B)),

where AAT represents the actual arrival time and PAT the planned arrival time.

Second, we compute the total departure delay (TDD) off (A-B) at Airport A, which is

TDD (f (A-B)) = ADT (f (A-B)) - PDT (f (A-B)),
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where ADT represents the actual departure time and PDT the planned departure time.

Last, we compute the percentage of delay at Airport B explained by the departure delay

at Airport A as:

Percentage of D (f (A-B)) at Airport A = Max (100%, TDD (f (A-B)) / TD (f (A-B))) 16,

which is also the percentage of the disruption attributed to Airport A when a passenger

misses his/her connection at Airport B. Hence, we compute the percentage of delay at

Airport B caused by delay at Airport B as

Percentage of D (f (A-B)) at Airport B = 1- Percentage of D (f (A-B)) at Airport A,

which is also the percentage of the disruption attributed to Airport B when a passenger

misses his/her connection at Airport B. If Percentage of D (f (A-B)) by Airport A is 60%

of the total delay, we say 60% of the disruption is attributed to Airport A.

With such a rule, we observe the following:

* For Airline A, the majority of overall passenger disruptions resulted from Hub 2

and Hub 1. On July 8, 2006, these two airports caused all disruptions of Airline

A. In particular, Hub 2 caused 25% of the disruptions and Hub 1 caused 75% of

the disruptions. Furthermore, all disruptions on July 8 were due to missed

connections. On July 12, 94.8% of disruptions resulted from these two airports. In

particular, Hub 2 caused 58% of the disruptions and Hub 1 caused 36.8% of the

disruptions. The third hub of Airline A, contributed only 3.4% of the disruptions

and a non-hub airport contributed 0.7%. Furthermore, of disruptions due to

flight cancellations, Hub 2 caused 89.5%, the non-hub airport 2.3%, and Hub 3

16 It is possible for TDD to be greater than TD.
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6.3%. Of disruptions due to missed connections, Hub 2 caused 43.51%, Hub 1

53.29%, and Hub 3 0.36%17.

* These results for Airline A make sense because both Hub 1 and Hub 2 are very

busy airports, with weather often impacting flight operations. Because the

percentage of connecting passengers at Hub 1 for Airline A is much higher than

at Hub 2 (Figures 5-2 and 5-3), Hub 1 has the majority of disruptions due to

missed connections.

* In contrast to Airline A, Airline B's disruptions are spread out more evenly

among airports. Another striking difference is that the major airports of Airline B

did not contribute to the majority of passenger disruptions. This perhaps has to

do with the fact that passenger traffic is distributed more evenly in Airline B's

system, unlike Airline A's, where a much larger portion of passengers connect

through its major hubs (c.f. Section 5.2), and the longer passenger connecting

times in Airline B's operation. In addition, the relationship between the number

of disruptions and a particular airport may be strengthened in a system like

Airline A whose hubs tend to locate in very busy airports which are highly

impacted by capacity reductions due to weather.

17 The remaining 1.1% of passenger disruptions was from 7 other airports.
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Figure 5-23: The percentage of disrupted passengers contributed by different airport
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Figure 5-24: The percentage of disrupted passengers contributed by different airports
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Figure 5-25: The percentage of disrupted passengers due to cancelled flights contributed

by different airports"8
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Figure 5-26: The percentage of disrupted passengers due to cancelled flights contributed by

different airports

18 Airline A had no flights cancelled on July 8, 2006 and the number of disrupted passengers due to
cancelled flights was zero.
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Figure 5-27: The percentage of disrupted passengers due to missed connections

contributed by different airports1 9
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Figure 5-28: The percentage of disrupted passengers due to missed connections contributed by

different airports

19 Airline A had no flights cancelled on July 8, 2006. Hence, the number of disrupted passengers due to
cancelled flights was zero and the number of disrupted passengers due to missed connections was the
same as Figure 5-23 (left).
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Summary of the Findings

Airline A has passenger operations concentrated in its three hubs, two of which are in

the eastern US. As stated in Chapter 3.2.2, out of the fourteen flight cancellations, half of

them were due to weather problems at airports located in the east. All cancellations of

Airline B, however, arose from carrier problems rather than weather. A network carrier

like A that concentrates its passenger operations at very busy airports can be at a

disadvantage when weather adversely affects the hubs. Carriers like Airline B, in

contrast, distribute passenger traffic more evenly in the system and thus are less

impacted when some of the major airports suffer severe delays. Furthermore, as our

analysis in Chapter 3.2.2 shows, Airline A suffered almost three times more NAS delay

than Airline B (Figure 3-1 and Figure 3-2). On July 12, NAS delay accounted for nearly

half of the total delay in Airline A's system while only 17% in Airline B's system. The

difference in NAS delay is attributable to the fact that Airline A has a significant

percentage of flights flying into or out of very busy hubs subjected to weather

conditions and ground delay programs (GDP)20 . This difference further explains why

the major hubs of Airline A experienced a much higher number of passenger

disruptions on the "high-delay" day than those of Airline B.

20 The percentage of airports with GDPs is 39% for Airline A and 27% for Airline B. One of the major hubs

of Airline A had the highest number of issued GDP's between 2007 and 2008 among all airports with

ground holds, approximately 190. This implies a GDP was issued basically every other day at this airport

with an average actual GDP duration of 505 minutes (Source: Metron Aviation).
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Chapter 6

Conclusions

6.1 Summary Findings

This thesis aims to develop a framework for analyzing airlines' operational

performances under different strategic decisions. A detailed study is conducted to

compare differences between a major U.S. legacy carrier ("Airline A") and a major U.S.

low-cost carrier ("Airline B") on two different days, a "low-delay" day and a "high-

delay" day. We evaluate the impact of scheduling practices, network structures,

passenger mix, and load factors on flight-based delays and on-time performances, and

passenger delays and disruptions. The major components of this thesis consist of:

* Investigating the differences in the placement of slack time and other scheduling

practices among the two types of airlines, and providing the rationale behind

and effectiveness of these different strategies;

* Examining the sources of aircraft delays for the different airline types and

identifying airport contributions to the delays experienced by these airlines;

* Developing a methodology to quantify passenger delays using publicly

accessible data; and

* Comparing flight delays, passenger delays, and passenger disruptions between

the two airlines with their different network structures and scheduling practices.

We conclude that differences in scheduling practices, network structure, and passenger

mix result in differences in aircraft delays, and levels of passenger delays and

disruptions. Hence, carrier-specific characteristics influence carrier performance and

should be considered when designing on-time performance metrics. Characteristics that
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particularly affect the hub-and-spoke legacy carrier A are: (1) its hubs that experience

heavy traffic volume, and are often subject to ground delay programs (GDPs) caused by

poor weather conditions; and (2) its banked operations at two hubs, with a set of

arriving flight legs scheduled closely with a set of departing flight legs to allow

passenger connections between arriving and departing flight legs. Characteristics that

particularly affect the low-cost carrier B are: (1) its flight network and passenger traffic

is distributed more evenly across airports in the network; (2) it operates at a set of

airports that are overall less congested than those of the major airports of legacy carrier

A; and (3) its de-peaked (de-banked) flight schedule that provides longer passenger

connection times on average, thereby reducing the chance of missed passenger

connections.

In Chapter 2, we compare the scheduling practices of Airline A and Airline B and

evaluate the resulting impact on flight on-time performance. This analysis is important

because the way airlines buffer their schedules has a significant effect on flight on-time

performance and passenger delays. We observe:

1. The legacy carrier A tends to plan more slack in its ground turn time while the

low-cost carrier B tends to plan more slack in its block time. Furthermore, carrier

B schedules almost identical amounts of turn time at each airport.

2. The differences between actual and planned turn times at different airports were

more homogenous and smaller for the "high-delay" day for B, relative to those

for carrier A.

3. The two airlines do not share many common arcs in their network operations.

This implies carrier A and carrier B operate at different airports. Carrier A's

major operations are at busier airports.
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We believe the differences in schedule padding between the two airlines have to do

with that Airline A operates banked hubs in which ground turn times, by necessity,

must be longer on average to accommodate connecting passengers.

Airline B, however, operates de-banked hubs and schedules more rapid turns at

airports to maximize productivity of aircraft and crews. To stem delay propagation and

improve on-time performance, Airline B schedules, more slack in its block times.

In Chapter 3, we first compare flight delays and cancellations of the legacy carrier to

those of the low-cost carrier. We observe:

1. On the "high-delay" day, extreme weather problems contributed 8% of the total

delay to the legacy carrier's system while only 4% to the low-cost carrier's

system.

2. The legacy carrier suffered almost three times as much NAS congestion delay

than did the low-cost carrier. On the high delay day, NAS delay accounted for

nearly half of the total delay in carrier A's network.

3. On the "high-delay" day, out of the fourteen flight cancellations of the legacy

carrier, half of them were due to weather problems at four East Coast airports.

All cancellations of the low-cost carrier, however, resulted from carrier problems

rather than weather.

Additionally, we find that the overall 15-OTP performance of each airline is the sum

over all airports of the average airport-specific 15-OTP weighted by the percentages of

the airline's flights at that airport. This suggests that the extent of an airline's delays are

impacted significantly by the airports at which they operate, independent of their

scheduling practices, NAS delays being a distinguishing factor. NAS delays impact

more significantly congested airports, and hence, NAS delays have more of an impact

on Airline A than Airline B.
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We decompose flight delays into "propagated delay" caused by late incoming flights

and "independent delay" caused by issues attributable to airport congestion, carrier

operations, NAS congestion, security, and/or extreme weather. We observe that:

1. The average IDD and IAD of the legacy carrier are significantly greater than

those of the low-cost carrier on July 12, 2006, the "high-delay" day. Moreover,

IDD plus IAD are together more than triple the propagated delay for the legacy

carrier on that day. For the low-cost carrier, IDD plus IAD is almost double that

of PD. The legacy carrier experienced twice as much average PD as the low-cost

carrier on July 12; however, the percentages of flights experiencing delay

propagation were higher for the low-cost carrier than for the legacy carrier on

both days and the legacy carrier achieved a slightly lower average PD per flight

(90% of the low-cost carrier's PD).

2. On July 8, 7 (4) airports accounted for 100% (80%) of the PD in the legacy

carrier's network while 57 (23) airports did in the low-cost carrier's network. On

July 12, 37 (12) airports accounted for 100% (80%) of the PD in the legacy carrier's

network compared to 60 (27) airports in the low-cost carrier's network. We

believe the fact that the low-cost carrier has delay propagation spread among

many more airports than the legacy carrier is due to the low-cost carrier's

scheduling practice of limiting turn time slack.

3. For both airlines, the majority of IDD, IAD, and PD were contributed by their

major airports. However, when the aggregated delay statistics for July 12 are

normalized by the number of flight operations at each airport, the magnitudes of

independent delay were much less at the major airports of the low-cost carrier

than at those of the legacy carrier. Specifically, the legacy carrier experienced 2.64

(2.99) times more average IDD (IAD) per flight at its three major hubs than did

the low-cost carrier.
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4. Both independent delay and propagated delay at two of the hubs of the legacy

carrier were significantly greater on July 12, 2006, the "high-delay" day, than on

July 8, 2006, the "low-delay" day. Between the "high-delay" day and "low-

delay" day, the percent changes in independent delay and propagated delay of

the low-cost carrier's major airports were much less compared to those of the

legacy carrier.

We believe these differences are largely attributable to the fact that the legacy carrier

has a higher percentage of flights connecting at congested airports that are often subject

to weather conditions that reduce airport capacity. Most of the low-cost carrier's major

airports are not as congested and not as impacted by reductions in capacity due to

weather. When delays occur at the legacy carrier's airports, delay that propagates is

likely to be larger than that of the low-cost carrier. However, more flights experience

delay propagation for the low-cost carrier because there is little turn time slack in its

operation and an arrival delay is likely to propagate to the next flight, unlike the legacy

carrier, which has relatively more turn time slack. Further, on July 12, 2006, NAS delay

accounted for almost half of total delay in the legacy carrier's system while it

represented only 17% in the low-cost carrier's system.

Chapters 4 and 5 focus on passenger delay. In Chapter 4, we develop a 3-stage approach

to estimate passenger demand and quantify passenger delay using only publicly

available data. Our approach includes: (1) a search algorithm that generates itineraries;

(2) a linear integer programming formulation that allocates passengers to the generated

itineraries; and (3) a Passenger Delay Calculator (PDC) that computes passenger delay

statistics. The major contribution of our methodology is that it provides a way to

estimate passenger booking information for all scheduled flights using data from BTS.
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In Chapter 5, we compare passenger delays and disruptions for the legacy carrier and

the low-cost carrier. This chapter explores relationships between passenger delays and

flight leg delays, cancellation rates, load factors, network structures, passenger mix, and

schedule design. Our findings are as follows:

Like the legacy carrier, the low-cost carrier exhibits a "hub" operation at its major

airports. However, there is a difference in the level of connecting passenger

traffic at the legacy carrier's major airports and at the low-cost carrier's major

airports. Connecting passengers are distributed more evenly in the low-cost

carrier's system and hence, the share of connecting passengers at the low-cost

carrier's major airports is not as significant as that of the legacy carrier. Strictly

speaking, "point-to-point" service is an inaccurate description of our low-cost

carrier's network operations. Rather, the low cost carrier provides "hub-and-

spoke" network service but with more "hubs" serving various levels of

connecting passenger traffic in the network. The overall passenger mix of the

legacy carrier (the low-cost carrier) is 35% (48%) connecting passenger traffic and

65% (52%) non-connecting passenger traffic.

Of the three major hubs of the legacy carrier, two of them are banked hubs, while the

low-cost carrier has de-peaked schedules at its major airports. This explains why the

low-cost carrier schedules shorter aircraft turns on average. By adding more slack into

block time, the low-cost carrier is able to increase on-time arrival performance. The

legacy carrier, however, schedules more slack in ground turn times so that flights can

"catch" a bank at the hubs.

In terms of passenger delays, our results confirm findings from previous research that

flight delays can severely underestimate delays of passengers who encountered

cancelled flights or missed connections (namely, disrupted passengers). Several key
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differences between the two airlines in terms of passenger delay statistics are

highlighted in the following:

1. We find that on July 12, 2006, the low-cost carrier had a higher percentage of

flights with propagated delay than the legacy carrier but experienced much less

passenger delay. The low-cost carrier can schedule its turn time with less slack

and let delay propagate and still disrupt fewer passengers than the legacy carrier

because the low-cost carrier offers longer connection times for its passengers

than does the legacy carrier. As our analysis shows, the average passenger

connecting time for the legacy carrier's passengers was 97.87 (99.41) minutes

compared to 134.65 (135.29) minutes for the low-cost carrier on July 8 (July 12),

2006.

2. The ratios of passenger delay to operated flight delay for the low-cost carrier B

were higher than the corresponding values for the legacy carrier A (Table 6-1).

This difference is most pronounced in terms of the ratio of disrupted passenger

delay to operated flight delay even though on the "high-delay" day, the

percentage of disrupted passengers was much higher for carrier A than for the

carrier B. Also on July 8 (July 12), 2006, for carrier A, the disrupted passengers

experienced 35.8 (11.6) times more average delay than the non-disrupted

passengers. For carrier B, the disrupted passengers experienced 81.4 (40.6) times

more average delay than the non-disrupted passengers.

Carrier A Carrier B Carrier A Carrier B
(07/08/2006) (07/08/2006) (07/12/2006) (07/12/2006)

Average delay of all passengers to average 1.28 1.81 1.38 1.73
delay of operated flights

Average delay of disrupted passengers to 41.16 84.94 12.46 47.09
average delay of operated flights _ I

Table 6-1: Ratios of Passenger Delay to Flight Delay
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The second observation indicates that the relationship between flight delay and

passenger delay is far from being linear, but rather, a complex function of many airline-

specific factors. The fact that the low-cost carrier had a much higher ratio of disrupted

passenger delay to operated flight delay than did the legacy carrier is because:

Unlike the legacy carrier (which concentrates flight operations at its three major

hubs), the low-cost carrier spreads its flight operations among many airports.

Therefore, when a disruption occurs, the low-cost carrier has fewer alternative

flights to re-accommodate disrupted passengers than does the legacy carrier.

Having fewer recovery alternatives provided by the low-cost carrier itself results in

longer average waiting times for an alternative itinerary and consequently longer

delays for the low-cost carrier's disrupted passengers than for the legacy carrier's. From

these facts, we conclude that the multiplier which equalizes flight delay and passenger

delay are airline dependent. Further, the difference in the values of this multiplier

between the legacy carrier and the low-cost carrier indicates that flight-specific on-time

performance metrics that ignore airline heterogeneity can be an inaccurate measure of

passenger experiences.

We find that under poor weather conditions, increasing flight operations at busy

airports, compared to non-congested airports, can result in much greater increases in

passenger delay and disruption. This phenomenon is most pronounced with the

numbers of disrupted passengers. Supporting statistics are summarized in the

following:

For the legacy carrier, an increase in flight operations of one percent corresponds

to an increase in the average operated flight delay (average delay of flights with

positive delays) of 18.9% (9.1%). For the low-cost carrier, an increase in flight
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operations of one percent corresponds only to an increase in average operated

flight delay (average delay of flights with positive delays) of 10.3% (3.1%).

* For the legacy carrier, an increase in flight operations of one percent corresponds

to an increase in overall passenger delay (average delay of passengers with

positive delays) of 20.9% (8.5%). For the low-cost carrier, an increase in flight

operations of one percent corresponds only to an increase in overall passenger

delay (average delay of passengers with positive delays) of 9.5% (4.4%).

* For the legacy carrier, an increase in flight operations of one percent corresponds

to an increase in the percentage of disrupted passengers (average disrupted

passenger delay) of 22.2% (3.1%). For the low-cost carrier, an increase in flight

operations of one percent corresponds only to an increase in the percentage of

disrupted passengers (average disrupted passenger delay) of 12.3% (2.7%).

The fact that the legacy carrier suffered more passenger delay than the low-cost carrier

on the high-delay day is not because the legacy carrier does not plan enough turn time

slack (in fact, the opposite is evidenced by its lower percentage of flights with

propagated delay despite that it had longer average delay per flight). Rather, it is

attributable to the higher values of independent delay, most of which are due to

weather and air traffic control (ATC). Hence, the only thing the legacy carrier can do to

improve on-time performance is to increase its block time. However, for the magnitude

of independent delay it experiences, commensurate increases in block time would be

prohibitively expensive and cause unacceptably long scheduled travel times for

passenger. This suggests that airlines at congested airports subjected to weather and

ATC delays cannot adequately adjust their planned schedules to avoid excessive delays

at all times.

In terms of passenger disruption causes, we find that missed connections contributed

the majority of passenger disruptions for the legacy carrier (100% on July 8, 2006 and

136



63.21% on July 12, 2006). In addition, on July 12, the percentage of disrupted passengers

due to missed connections for the legacy carrier was 5.21 times greater than that for the

low-cost carrier. The greater percentage of legacy carrier passengers who misconnected

compared to the low-cost carrier can be explained by longer delays per flight, shorter

connecting times, and larger percentages of passengers connecting.

For the legacy carrier, the majority of passenger disruptions occurred at its major hubs,

while disruptions of the low-cost carrier were spread out more evenly among airports.

Another striking difference is that the major airports of the low-cost carrier did not

contribute the majority of disruptions. This perhaps has to do with the fact that

passenger traffic is distributed more evenly in the low-cost carrier's system, in contrast

to the legacy carrier, where a much larger portion of passengers connect through its

major hubs. In addition, the relationship between the number of disruptions and a

particular airport may be strengthened in a system like the legacy carrier whose hubs

tend to locate in airports with high levels of congestion and frequent GDPs caused by

poor weather conditions.

6.2 Future Directions

This thesis evaluates two major U.S. airlines on two different days to reveal the

differences in scheduling practices, aircraft delays, and passenger delays and

disruptions. In future work, more airlines and more days of operation should be

studied to gain more insights into the passenger delays in the entire National Air

Transportation System (NATS). Additionally, actual passenger enplanements from

proprietary airline passenger data should be used to validate our findings.

Another limitation of this study is that in our PDC, we allow passengers to be rebooked

on other airlines using a "rule-of-thumb" estimation in which schedules and passenger
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booking information for the other airlines is unknown. Therefore, an inaccurate

estimate of disrupted passenger delays may occur in our approximation. Future work

should consider explicitly itineraries of other airlines.

Future research should consider scenarios of various load factors and airline network

structures and sensitivity analyses should be conducted. In Figure 6-1, we provide the

scheme for future scenario and experiment development and sensitivity analyses.
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IDD, IAD, and PD statistics based

on various scenarios

NATS Scale (The National System)

A I

Interactions between the

two layers

Passenger and flight delay statistics based

on various scenarios

Airline Scale (A System Component)

Sensitivity Analysis

Scenario 1 - Various

Air Traffic Levels 7
Exp 1 Exp2 Exp3

Scenario 2 - Various

Network Structures

Exp 4 Exp 5

Scenario 3 - Various

Load Factor Levels

Exp 6
Exp 6 Exp 7 Exp 8

Figure 6-1: Scheme of the sensitivity analysis
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