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Abstract

The tight coupling expansion, appropriately generalized to include large-scale magnetic

fields, allows the estimate of the brightness perturbations of CMB anisotropies for typical

wavelengths that are larger than the Hubble radius after matter-radiation equality. After

discussing the basic features of the the pre-decoupling initial conditions in the presence of

fully inhomogeneous magnetic fields, the tight coupling expansion is studied both analyti-

cally and numerically. From the requirement that the amplitudes and phases of Sakharov

oscillations are (predominantly) adiabatic and from the inferred value of the plateau in the

temperature autocorrelation, the effects of the magnetized contribution can be systematically

investigated and constrained.
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1 Introduction

A distinctive signature of pre-decoupling (adiabatic) initial conditions is that the temperature

autocorrelation has the first (Doppler) peak for ℓd ≃ 220 [1, 2, 3]. For the same set of initial

conditions, the cross-correlation power spectrum between temperature and polarization will

have the first (anticorrelation) peak for ℓc ≃ 3 ℓd/4 < ℓd [1].

Defining as k the comoving wave-number and as csb the sound speed of the baryon-

photon system, the large-scale contribution to the temperature autocorrelation oscillates as

a cos (kcsbτdec), while the cross-correlation oscillates as sin (2kcsbτdec). The first (compres-

sional) peak of the temperature autocorrelation will then correspond to kcsbτdec ∼ π (i.e.

ℓd ≃ 220), while the first peak of the cross-correlation will arise for kcsbτdec ∼ 3π/4 (i.e.,

approximately, ℓc ≃ 3 ℓd/4). This result can be obtained analytically by working to first-

order in the tight-coupling expansion [4, 5, 6]. In this framework, the key assumption is

that the initial conditions of the Einstein-Boltzmann hierarchy are characterized, prior to

matter-radiation equality, by a solution that is, at least predominantly, adiabatic. A corol-

lary to the previous statements is that the peak in the cross-correlation occurs for typical

wavelengths that are larger than the Hubble radius at the the time of photon decoupling.

In a previous paper [7] it has been shown that large-scale magnetic fields, present prior

to equality affect the CMB initial conditions. If only the adiabatic mode is present, the fully

inhomogeneous magnetic fields contribute to the Sachs-Wolfe plateau as a subdominant

non-adiabatic component that may be either correlated or uncorrelated with the adiabatic

mode. If the pre-decoupling initial conditions are given by a mixture of adiabatic and non-

adiabatic modes, the magnetized contribution may also mix with the isocurvature modes so

that the total number of parameters defining the initial conditions increases. It is desirable

to complement and extend the analysis of [7] by scrutinizing the impact of pre-decoupling

magnetic fields on intermediate scales. Within the tight coupling expansion, appropriately

generalized to include the effects of fully inhomogeneous magnetic fields, the fluctuations in

the brightness induced by the (adiabatic and non-adiabatic) scalar modes can be estimated.

The effects of magnetic fields on the scalar brightness perturbations are typically ne-

glected. To give an example, let us consider how the impact of large-scale magnetic fields

is usually computed, for instance, in the Faraday effect. This case is interesting, since, the

rotation of the CMB polarization plane indeed presupposes that the magnetic fields do not

affect the process of formation of polarization. The influence of large-scale magnetic fields on

CMB polarization can be separated, for illustration, into two physically distinct effects. Prior

to decoupling, gravitating magnetic fields modify the initial conditions of CMB anisotropies

and affect the evolution equations of the photon-baryon system. Therefore, the induced de-

gree of polarization will be sensitive to the presence of magnetic fields whose role will be, at

this stage, to modify the features of the adiabatic initial conditions. This is the first effect.

Once the polarization is formed, the polarization plane of the CMB may be Faraday rotated

[8, 9]. From this second effect interesting bounds on the magnetic field intensity are usually
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derived.

This philosophy motivated various independent studies on the possible Faraday rotation

of the CMB polarization degree [10, 11, 12, 13]. In some cases the magnetic field has been

assumed just uniform [10], but there are also calculations analyzing the situation where the

magnetic field is fully inhomogeneous [11, 12]. In spite of the relevant technical differences,

the common assumption of the mentioned investigations is that the magnetic field is negligi-

ble in the process of formation of CMB polarization. The latter assumption can be rephrased

by saying that the initial conditions of the Einstein-Boltzmann hierarchy are set in such a

way that the magnetic fields are absent. In the absence of large-scale magnetic fields the only

source of polarization arises to first-order in the tight coupling expansion. The magnitude of

the obtained contribution is just a consequence of the adiabaticity of the solution. If large-

scale magnetic fields are consistently introduced before matter-radiation equality, the usual

adiabatic (as well as non-adiabatic) initial conditions of the Einstein-Boltzmann hierarchy

are modified and, consequently, also the degree of polarization of the CMB is affected.

This example motivates a systematic analysis of the impact of magnetized initial con-

ditions on the brightness perturbations of the radiation field. As anticipated above, this

calculation will be conducted within the tight-coupling approximation which is known to be

rather effective in obtaining the brightness perturbations for large and intermediate scales.

This analysis has never been done before, to the best of our knowledge. A related motivation

is that, in the absence of magnetic fields, the tight coupling approximation is employed in

numerical Boltzmann codes at early times to avoid the integration of stiff Euler equations.

The results of the present investigation allow to use the same strategy also in the presence

of fully inhomogenous magnetic fields.

Several aspects of CMB physics are germane to large-scale magnetization (see [14, 15] for

two topical review articles). The astrophysical evidence for large-scale magnetization can be

summarized as follows. Large-scale magnetic fields are an important element of the physics

of the interstellar medium and have been measured, through various techniques in galaxies

[16, 17] and in rich clusters [18, 19, 20, 21]. The determination of large-scale magnetic fields

associated with loosely gravitationally bound systems (like superclusters) is still debatable

[22, 23, 24], but, nonetheless, extremely intriguing. As far as galactic magnetic fields are

concerned, there is the hope that in the future all sky survey of Faraday rotation (achievable

through the Square Kilometer Array [SKA] [17, 18]) will allow a Faraday ”tomography”

of the Milky Way addressing the dark corners (number of reversals, pitch angle) of the

morphological structure of the closest large-scale magnetic field we observe through different

surveys of pulsars such as the Parkes and the southern galactic plane surveys (see [25, 26, 27]

and references therein). There is the hope, in the present framework, that the present-day

coherent field in spiral galaxies may keep the ”memory” of the structure of the initial seed

field (see [16] for a review of this long-standing problem). The morphological features of the

magnetic fields profiles in clusters are less understood than in the case of galaxies. However,

attempts have been made in constraining the radial profiles of magnetic fields in clusters
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[19, 20]. Determinations of intracluster magnetic fields through statistical samples of rich

clusters [21] seem to suggest that (ordered?) intra-cluster magnetic fields may be as large as

the µG (see, for instance, [28] for a review on the features of our magnetized Universe).

Compressional amplification (taking place during the gravitational collapse of the proto-

galaxy) allows to connect the observed field to a protogalactic field, present prior to gravita-

tional collapse, between 0.1 nG and 0.01 nG. It is plausible, within the dynamo hypothesis,

that the protogalactic fields could even be much smaller than the nG. In recent years, a lot

of progress has been made both in the context of small- and large-scale dynamos i.e. the

process by which the kinetic energy of the protogalactic plasma is transferred, by differential

rotation, into magnetic energy. This progress [29] (see also [30] for an introduction to astro-

physical dynamos) has been driven both by the higher resolution of numerical simulations

and by the improvement in the understanding of the largest magnetized system that is close

to us, i.e. the sun. In contrast with the previous lore, it is now clear that the dynamo action

demands a change in the topology of the flux lines. As a consequence, large-scale dynamos

should also produce small-scale helical fields that quench (i.e. prematurely saturate) the α

effect [29] (see also [31]). The morphology and strength of magnetic fields in clusters may

be related to the way the dynamo effect saturates.

The simplest way to understand why large-scale magnetic fields may be relevant for CMB

physics is to think of a protogalactic magnetic field in the nG range. If this field is naively

blue-shifted at the decoupling epoch, i.e. at a redshift zdec ≃ 1100 its strength could be as

large as the mG, i.e. roughly six orders of magnitude larger. In the past ten years, indeed

a lot of work has been done with the purpose of constraining large-scale magnetic fields

using CMB physics. Historically the first type of configurations used in this type of exercise

have been weakly uniform magnetic fields that would partially break the isotropy of the

background geometry [15]. It was than realized that this assumption induces a correlation

of the aℓ−1,m and aℓ+1,m multipole coefficients arising in the angular power spectrum (see

[32, 33, 34] and references therein). From this observation, uniform magnetic fields can be

constrained.

Another (complementary) possibility is that magnetic fields are fully inhomogeneous. In

this case the magnetic fields do not break the spatial isotropy of the background but they

can affect virtually all observables relevant in the theory of CMB anisotropies. In particular,

in a series of papers, Barrow and Subramanian [35, 36, 37] pointed out possible effects of

magnetic fields on the induced vector CMB anisotropies as well as on the polarization power

spectra induced by the same modes. Within a slightly different approach the vector modes

(as well as the tensor modes) have been discussed in [38]. More recently [39] a full numerical

analysis of the vector and of the tensor modes induced by fully inhomogeneous magnetic

fields has been presented. In [40] the signatures of magnetic helicity have been studied

always in the perspective of the vector modes. Finally, in a series of papers, the evolution

of weakly inhomogeneous magnetic fields has been discussed within the covariant formalism

and in the presence of a uniform magnetic background [41].
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In spite of the fact that vector modes are probably one of the characteristic signatures

of large-scale magnetic fields, scalar modes are also induced [7, 42]. This statement can be

understood by noticing that the magnetic energy density, the magnetic anisotropic stress and

the magnetic pressure contribute, respectively, to the Hamiltonian and momentum constraint

and to the dynamical evolution of the curvature perturbations. Furthermore, within the

magnetohydrodynamical approximation, the divergence of the Lorentz force contributes to

the evolution equation of the divergence-full part of the baryon peculiar velocity.

What is missing, at the moment, is the analysis of the brightness perturbations induced

by magnetized initial conditions. As anticipated, one of the purposes of the present paper

will exactly be to bridge fill this gap and to allow an approximate evaluation of the brightness

perturbations, also at intermediate scales, as a function of the spectral properties of fully

inhomogeneous magnetic fields.

The present paper is then organized as follows. In Section 2 the initial condtions of

the Einstein-Boltzmann hierarchy will be discussed for typical wavelengths larger than the

Hubble radius prior to equality. In Section 3 the tight-coupling equations will be derived

and discussed analytically. The numerical treatment of the system is presented in Section 4.

Section 5 contains our concluding remarks.

2 Adiabatic and non-adiabatic modes

2.1 Zeroth-order tight-coupling approximation

By combining the Thompson cross section (defined, in the following, as σT) with the ioniza-

tion fraction xe and with the electron density ne, the differential optical depth is given by

κ′ = nexeσTa/a0. Since prior to decoupling the photon mean free path is much smaller than

the Hubble radius at the corresponding epoch, the inverse of κ′ can be used as an expansion

parameter. This is the basic idea of the tight coupling approximation. The lowest order,

the tight-coupling approximation implies 1/κ′ → 0 (or, equivalently, that σT → ∞). In this

limit the divergences of the peculiar velocities of photons (i.e. θγ) and baryons (i.e. θb) are

driven to a common value i.e. θγ ≃ θb = θγb. In the following, the consequences of the

zeroth-order in the tight coupling approximation will be investigated in the presence of fully

inhomogeneous magnetic fields. Consider, therefore, the case where large-scale magnetic

fields are fully inhomogeneous and characterized, in Fourier space,by the following two-point

function

〈Bi(~k, τ)B
j(~p, τ)〉 =

2π2

k3
P j

i (k)PB(k) δ(3)(~k + ~p), (2.1)

where

P j
i (k) =

(

δj
i −

kik
j

k2

)

, PB(k) = AB

(

k

kp

)ε

; (2.2)

In Eq. (2.2) kp is the ”pivot” scale at which the spectra are normalized (see also, below, Eq.

(2.35)). Since the magnetic fields are fully inhomogeneous the line element of the background
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geometry will not be anisotropic 2 (as it happens, for instance, in magnetized Bianchi-type

backgrounds) and it can be parametrized as

ds2 = a2(τ)[dτ 2 − d~x2]. (2.3)

Consequently, the evolution equations of the background geometry will be solely determined

by the total pressure and energy density of the system as

H2 =
8πG

3
a2ρt, H2 −H′ = 4πGa2(ρt + pt), ρ′t + 3H(ρt + pt) = 0, (2.4)

where H = a′/a and the prime denotes a derivation with respect to the conformal time

coordinate τ . Denoting the longitudinal fluctuations of the metric (2.3) as3

δsg00 = 2a2φ, δsgij = 2a2ψδij , (2.5)

and selecting the conformally Newtonian gauge [53, 54], the evolution equations of photons

and baryons can be obtained in terms of the density contrasts (i.e. δγ and δb) and in terms

of the divergence of the peculiar velocities (i.e. θγ and θb):

δ′γ = 4ψ′ − 4

3
θγ, θ′γ = −1

4
∇2δγ −∇2φ+ κ′(θb − θγ), (2.6)

δ′b = 3ψ′ − θb, θ′b = −Hθb −∇2φ+
~∇ · [ ~J × ~B]

a4ρb
+

4

3

ργ

ρb
κ′(θγ − θb). (2.7)

The term ~J × ~B parametrizes the Lorentz force contribution as it arises in a conducting

plasma which is, however, globally neutral (see, for instance, [45, 46]). In this situation,

typical of magnetohydrodynamics (MHD), the possible contribution of electric fields is sup-

pressed by inverse powers of the conductivity as it will be discussed later. By subtracting

the two equations for the velocities introduced in (2.6) and (2.7), the combination (θγ − θb)

obeys

(θγ − θb)
′ + κ′

(

1 +
4

3

ργ

ρb

)

(θγ − θb) = −1

4
∇2δγ + Hθb +

~∇ · [ ~J × ~B]

a4ρb

. (2.8)

The term at the right hand side of Eq. (2.8) can be viewed as a source term for the evolution

of the difference between the divergences of the photon and baryon peculiar velocities. In

spite of the magnitude of the source term at the right hand side of Eq. (2.8), (θγ − θb) will

quickly be driven to zero in the limit σT → ∞. Consequently, even if pre-decoupling magnetic

fields are present, the lowest order tight coupling expansion still implies that θγ → θb as

expected.

2If the expansion is anisotropic because of a uniform magnetic field oriented along a specific direction, as

in the celebrated Zeldovich models [43, 44], the angular power spectrum does not depend solely upon ℓ but

also upon m. These situations can be successfully constrained through WMAP data (see [32, 33, 34]) and

references therein.
3In Eq. (2.5) and in what follows, δs(...) denotes the scalar fluctuation of the corresponding quantity.
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In the tightly coupled limit, the evolution equation of θγb = θγ = θb can then be swiftly

obtained by summing up the equations for the velocity fields in such a way that the scattering

terms cancel. The result of this procedure is, in Fourier space,

θ′γb +
HRb

Rb + 1
θγb =

k2

4(1 +Rb)
δγ + k2φ+

k2

4(1 +Rb)
(ΩB − 4σB), (2.9)

where Rb = (3/4)ρb/ργ. For numerical purposes (see Section 4) the late-time cosmological

parameters will be fixed, for a spatially flat Universe, as 4

ωγ = 2.47 × 10−5, ωb = 0.023, ωc = 0.111, ωm = ωb + ωc, (2.10)

where ωX = h2ΩX and ΩΛ = 1 − Ωm; the present value of the Hubble parameter H0 will be

fixed, for numerical estimates, to 73 in units of km/(sec Mpc). In terms of the fiducial set

of parameters of Eq. (2.10) the baryon to photon ratio appearing in Eq. (2.9) becomes

Rb =
(

698

z + 1

)(

ωb

0.023

)(

ωγ

2.47 × 10−5

)−1

, (2.11)

where z+1 = a0/a is the redshift (for numerical purposes the scale factor will be normalized

in such a way that a0 = 1; see below, Eq. (2.25)). In Eq. (2.9) we traded the MHD current ~J

(appearing in the second equation of (2.7)) for a combination of the magnetic energy density

and of the anisotropic stress. More specifically, it can be easily shown that

3

4

~∇ · [ ~J × ~B]

a4ργ
= ∇2σB − 1

4
∇2ΩB, ΩB =

δρB

ργ
, δρB =

B2

8πa4
. (2.12)

Equation (2.12) holds since, in MHD, the total Ohmic current ~J is solenoidal (i.e. ~∇· ~J = 0)

and given by 4π ~J = ~∇× ~B [45, 46] (see also the appendix of [28]). In addition, the function

σB is nothing but a parametrization of the anisotropic stress that appears in the spatial part

of magnetic energy-momentum tensor, i.e.

δsT j
i = −δpB + Π̃j

i , ∂i∂
jΠ̃j

i = (pγ + ργ)∇2σB, (2.13)

where

δpB =
δρB

3
, Π̃j

i =
1

4πa4

(

BiB
j − B2

3
δj
i

)

. (2.14)

In various context the force-free approximation is often employed [49, 50] (see also [28] and

references therein). Such an approximation amounts, in practice, to set (~∇× ~B) × ~B → 0.

4The values of the cosmological parameters introduced in Eq. (2.10) are compatible with the ones

estimated from WMAP-3 [2, 3] in combination with the “Gold” sample of SNIa [47] consisting of 157

supernovae (the furthest being at redshift z = 1.75). We are aware of the fact that WMAP-3 data alone

seem to favour a slightly smaller value of ωm (i.e. 0.126). Moreover, WMAP-3 data may also have slightly

different implications if combined with supernovae of the SNLS project [48]. The values given in Eq. (2.10)

will just be used for a realistic numerical illustration of the methods developed in the present investigation.
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In this limit, from Eq. (2.12) σB → ΩB/4. In the present framework this assumption shall

not be invoked.

According to Eq. (2.12), the leading contribution of fully inhomogeneous magnetic fields

to the scalar modes of the geometry is given by the magnetic energy density and by the

divergence of the MHD Lorentz force. These two quantities, affect the perturbed Einstein

equations and, in particular, the Hamiltonian constraint

∇2ψ − 3H(Hφ+ ψ′) = 4πGa2[δρt + δsρB], (2.15)

and the total (scalar) anisotropic stress

∇4(φ− ψ) = 12πGa2[(pν + ρν)∇2σν + (pγ + ργ)∇2σB]. (2.16)

Equations (2.15) and (2.16) follow, respectively, from the (00) and (i 6= j) components of the

perturbed Einstein equations written in the conformally Newtonian coordinate system; the

quantity δsρt is the (total) scalar fluctuation of the energy-density of the fluid sources. It is

relevant to remark that, in Eq. (2.16), on top of the anisotropic stress of the magnetic field,

the only source of the anisotropic stress of the fluid is provided by the neutrinos that are

collisionless after weak interactions fall out of thermal equilibrium for typical temperatures

of the order of 0.8 MeV. In analogy with Eq. (2.13), the anisotropic stress of the neutrinos

has been parametrized as

δsT
j
i = −δspt + Πj

i , ∂i∂
jΠj

i = (pν + ρν)∇2σν . (2.17)

The quantity δspt is the fluctuation of the total pressure. The last constraint on the dynamical

evolution us derived from the (0i) components of the Einstein equations and it is

∇2(Hφ+ ψ′) = −4πGa2
[

(pt + ρt)θt +
~∇ · ( ~E × ~B)

4πa4

]

. (2.18)

The second term at the right hand side of Eq. (2.18) is the divergence of the Poynting vector.

In MHD the Ohmic electric field is subleading and, in particular, from the MHD expression

of the Ohm law

~E × ~B =
(~∇× ~B) × ~B

4πσ
. (2.19)

Since the Universe, prior to decoupling, is a very good conductor, the the ideal MHD limit

[46] can be safely adopted in the first approximation (see also [51]); thus for σ → ∞ the

contribution of the Poynting vector vanishes. In any case, even if σ would be finite but large,

the second term is suppressed in comparison with the first term at the right hand side of

Eq. (2.18); such a term is given by the sum of the divergence of the peculiar velocity of each

fluid component weighted by the specific enthalphy (i.e. (pa + ρa) for a generic a-fluid):

(pt + ρt)θt =
∑

a

(pa + ρa)θa, (2.20)
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or, in more explicit terms,

(pt + ρt)θt ≡
4

3
ρνθν +

4

3
ργθγ + ρcθc + ρbθb =

4

3
ρνθν + ρc +

4

3
ργ(1 +Rb)θγb. (2.21)

The second equality in Eq. (2.21) follows from the zeroth order in the tight-coupling expan-

sion and from the definition of the baryon to photon ratio (2.11). Every regular solution to

lowest order in the tight coupling expansion has to satisfy the momentum constraint of Eq.

(2.18). Such a requirement implies, in particular, a restriction on the form of the peculiar

velocity fields for comoving wave-numbers larger than the Hubble radius (i.e. kτ ≪ 1).

The evolution of the cold dark matter (CDM) component only feels the presence of the

magnetic field through the modifications induced by ΩB and σB on of the two conformally

Newtonian potentials, i.e. φ and ψ:

δ′c = 3ψ′ − θc, θ′c + Hθc = k2φ. (2.22)

A similar situation occurs for the evolution of the neutrino component where, however,

the effect of the magnetic field enters the not only the Newtonian potentials but also the

anisotropic stress that is constrained from Eq. (2.16). The relevant equations for the neu-

trinos are then, in Fourier space,

δ′ν = 4ψ′ − 4

3
θν , θ′ν =

k2

4
δν − k2σν + k2φ, σ′

ν =
4

15
θν −

3

10
kFν 3. (2.23)

The quantity Fν 3 appearing in Eq. (2.23) is the octupole of the (perturbed) neutrino phase

space distribution while σν (i.e. the anisotropic stress of the neutrinos introduced in Eqs.

(2.16) and (2.17)) is related to the quadrupole moment of Fν as σν = Fν 2/2. The rationale

for the inclusion of Fν 3 in the fluid description is that neutrinos are collisionless for tem-

perature smaller than 0.8 MeV when the Universe is still deep into the radiation-dominated

regime. In this regime the neutrinos do not interact, and, consequently, they should be rather

described by the collisionless Boltzmann hierarchy of the (perturbed) neutrino phase space

distribution. To address this problem, the usual approach is to use an improved description

where on top of the monopole and dipole of the (perturbed) neutrino phase space distribu-

tion (connected, respectively, with δν and θν), one also takes into account the quadrupole,

i.e. σν and sometimes (as in the case of specific non-adiabatic modes) also the octupole.

With all these ingredients in mind, the evolution of the longitudinal fluctuations of the ge-

ometry is determined from the trace spatial components of the perturbed Einstein equations,

and can be written as

ψ′′ + H(φ′ + 2ψ′) + (H2 + 2H′)φ+
1

3
∇2(φ− ψ) = 4πGa2(δspt + δpB), (2.24)

where δspt is the fluctuation of the total pressure introduced in Eq. (2.17). In the present

situation it will be mandatory to set initial conditions for the fluctuations of the geometry

and for the various species of the plasma before radiation-matter equality but, also, after
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neutrino decoupling. In the conformally flat case described by Eq. (2.3), the scale factor that

interpolates between the radiation epoch and the matter-dominated epoch can be obtained

by integrating Eqs. (2.4):

a(τ) = aeq

[(

τ

τ1

)2

+ 2
(

τ

τ1

)]

, 1 + zeq =
1

aeq

=
h2Ωm0

h2Ωr0

, (2.25)

where Ωm0 and Ωr0 are evaluated at the present time and the scale factor is normalized in

such a way that a0 = 1. In Eq. (2.25) τ1 = (2/H0)
√

aeq/Ωm0. In terms of τ1 the equality

time is

τeq = (
√

2 − 1)τ1 = 119.07
(

h2Ωm0

0.134

)−1

Mpc, (2.26)

i.e. 2τeq ≃ τ1. In this framework the total optical depth from the present to the critical

recombination epoch, i.e. 800 < z < 1200 can be approximated analytically, as discussed in

[52]. By defining the redshift of decoupling as the one where the total optical depth is of

order 1, i.e. κ(zdec, 0) ≃ 1, we will have, approximately

zdec ≃ 1139
(

Ωb

0.0431

)−α1

, α1 =
0.0268

0.6462 + 0.1125 ln (Ωb/0.0431)
, (2.27)

where consistently with Eq. (2.10), h = 0.73. From Eqs. (2.27) and (2.25) it follows that

for 1100 ≤ zdec ≤ 1139, 275 Mpc ≤ τdec ≤ 285 Mpc.

2.2 Magnetized adiabatic mode

In the limit τ/τ1 ≪ 1, the solution of the whole system of governing equations corresponding

to the adiabatic mode can be obtained as an expansion in powers of kτ . When the given

wavelength is larger than the Hubble radius before equality (i.e. kτ < 1 for τ < τeq )the

solution of the coupled system introduced in the previous subsection can be written as5

δν = δγ = −2φ∗ −RγΩB, δc = δb = −3

2
φ∗ −

3

4
RγΩB (2.28)

θc =
k2τ

2
φ∗, θν =

k2τ

2

[

φ∗ −
RγΩB

2
+ 2

Rγ

Rν
σB

]

, (2.29)

θγb =
k2τ

2

[

φ∗ +
RνΩB

2
− 2σB

]

, (2.30)

ψ∗ = φ∗

(

1 +
2

5
Rν

)

+
Rγ

5
[4σB −RνΩB], σν = −Rγ

Rν
σν +

k2τ 2

6Rν
(ψ∗ − φ∗), (2.31)

5In the following, all the perturbed quantities will be defined in Fourier space and will depend on the

comoving wave-number k.
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where the fractional contribution of photons to the radiation plasma, i.e. Rγ has been

introduced and it is related to Rν , i.e. the fractional contribution of massless neutrinos, as 6

Rγ = 1 − Rν , Rν =
r

1 + r
, r =

7

8
Nν

(

4

11

)4/3

≡ 0.681
(

Nν

3

)

. (2.32)

In Eq. (2.31) φ∗(k) and ψ∗(k) denote the values of the Fourier modes of the longitudinal

fluctuations of the geometry that are (approximately) constant in time. Equations (2.28),

(2.29) and (2.31) define a solution that is adiabatic since the density contrasts in matter (i.e.

δc and δc) are exactly 3/4 of the density contrasts in radiation (i.e. δγ and δν). In the limit

ΩB → 0 (vanishing magnetic energy density) and σB → 0 (vanishing magnetic anisotropic

stress), Eqs. (2.28), (2.29) and (2.31) reproduce the standard adiabatic mode deep in the

radiation dominated epoch [42, 57]. From the second equation reported in (2.31) it is clear

that the neutrino anisotropic stress is partially counterbalanced by the magnetic anisotropic

stress. This aspect is entirely due to the presence of the magnetic anisotropic stress and it

has been verified in different situations involving also entropic fluctuations [58].

In view of the forthcoming numerical applications, it is useful to characterize the adiabatic

mode in fully gauge-invariant terms. In fact the quantity introduced so far are meaningful in

the longitudinal gauge. The spectrum of curvature perturbations used as initial condition for

the numerical evaluation of the brightness perturbations is often introduced [1, 2, 3] in terms

of the curvature perturbations on comoving orthogonal hypersurfaces [55, 56], customarily

denoted with R. In the longitudinal gauge we have that this quantity is simply given by

R = −ψ − H(Hφ+ ψ′)

H2 −H′
. (2.33)

In spite of the fact that R is here defined in terms of the variables of the longitudinal

gauge, its value is invariant under infinitesimal coordinate transformations. In terms of R
the longitudinal fluctuations of the geometry entering the solution of Eqs. (2.28), (2.29) and

(2.31) become:

φ∗ = − 10R∗

15 + 4Rν
− 2Rγ(4σB − RνΩB)

(15 + 4Rν)
,

ψ∗ = −2(5 + 2Rν)

15 + 4Rν
R∗ +

Rγ

15 + 4Rν
[4σB − RνΩB], (2.34)

where R∗(k) is the constant value of curvature perturbations prior to matter-radiation equal-

ity. Within the notations followed in this paper, the spectrum of R∗(k) is defined as

〈R∗(~k)R∗(~p)〉 =
2π2

k3
PR(k)δ(3)(~k + ~p), PR(k) = AR

(

k

kp

)nr−1

. (2.35)

6In the present paper h2Ων = 1.68× 10−5, i.e., recalling Eq. (2.10), h2Ωr0 = h2Ωγ +h2Ων = 4.15× 10−5.

According to Eq. (2.25) this implies that 1+ zeq ≃ 3228.9(ωm/0.134). Possible mass terms for the neutrinos

in the meV range will be neglected here but can be introduced with a modification of the neutrino Boltzmann

hierarchy used to derive the relations reported in Eq. (2.23).
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In Eq. (2.35) kp is the ”pivot” scale (already introduced in Eq. (2.2)) at which the spectra

are normalized. Typical choices of kp range from 0.05 Mpc−1 down to 0.002 Mpc−1 [1, 2, 3].

Equations (2.1) and (2.2) allow to determine the spectra of ΩB(k) and σB(k). In the

present notations 7

〈ΩB(~k)ΩB(~p)〉 =
2π2

k3
PΩ(k)δ(3)(~k + ~p), 〈σB(~k)σB(~p)〉 =

2π2

k3
Pσ(k)δ(3)(~k + ~p), (2.36)

where

PΩ(k) = F(ε)Ω
2
B L

(

k

kL

)2ε

, Pσ(k) = G(ε)Ω
2
B L

(

k

kL

)2ε

. (2.37)

The power spectra of Eq. (2.37) follow from the definitions of ΩB and σB by using the

two-point function of the magnetic field, i.e. Eq. (2.1). In fact, according to Eqs. (2.12)

and (2.14), ΩB and σB are quadratic in the magnetic field intensity, and, therefore, lead to

two mode-coupling integrals that have been estimated in in the nearly scale-invariant limit

(i.e. ε < 1) where the functions F(ε) and G(ε) are determined to be

F(ε) =
4(6 − ε)(2π)2ε

ε(3 − 2ε)Γ2(ε/2)
, G(ε) =

4(188 − 4ε2 − 66ε)(2π)2ε

3ε(3 − ε)(2ε+ 1)Γ2(ε/2)
. (2.38)

In the opposite limit (i.e. ε ≫ 1) the mode-coupling integrals arising in the expressions of

ΩB and σB are dominated by (small scale) diffusive effects ( see, for instance, [35, 38]) and

the power spectra are sensitive to the specific scale of the diffusion (Alfvén) damping. In

Eq. (2.37) the quantities

ΩB L =
ρB L

ργ

, ρB L =
B2

L

8π
, ργ = a4(τ)ργ(τ) (2.39)

have been introduced. Notice that BL measures the magnetic field intensity smoothed over

a comoving length-scale L. In fact, by using a Gaussian window function e−k2L2/2 for each

magnetic field intensity, the (real space) magnetic autocorrelation function at two coincident

spatial points is

B2
L = 〈Bi(~x, τ)B

i(~x, τ)〉 = AB

(

kL

kp

)ε

Γ
(

ε

2

)

(2π)−ε (2.40)

7In the present paper the calculations are consistently conducted within the parametrization introduced

in Eqs. (2.1) and (2.2). Different authors use slightly different conventions which can be, however, easily

translated in the present parametrization. For instance, the magnetic spectral index defined as n in [14,

35, 38, 39] correspond, in the present notations, to ε − 3. In [14, 35, 38, 39] the factor 2π2/k3 appearing

in Eq. (2.1) is omitted. These definitions are clearly conventional but we regard as preferable the notation

adopted here since it agrees with the usual way of assigning the power spectrum of curvature perturbations

in CMB physics. The other remark is that the magnetic fields considered here are not helical (see, for

instance, [40] and references therein). This is not a limitation since it can be easily appreciated that the

helical contribution does not affect the scalar modes which are the main subject of the present investigation.
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where kL = 2π/L. Equation (2.40) implies that the amplitude of the magnetic power

spectrum appearing in Eqs. (2.1) and (2.2) can be directly characterized in terms of B2
L as

AB = (2π)ε B2
L

Γ(ε/2)

(

kp

kL

)ε

. (2.41)

It should be mentioned, incidentally, that nearly-scale invariant magnetic energy spectra

can be achieved both in some class of inflationary models [59] and in the case of pre-big

bang models [60]. It is not our purpose here to endorse any specific model. The spirit of

this investigation is more modest since we shall be content of understanding if large-scale

magnetic fields can be consistently included in the picture of pre-decoupling physics and

in the framework of the usual techniques commonly employed for the description of scalar

CMB anisotropies.

On top of the curvature fluctuations on comoving orthogonal hypersurfaces, another class

of gauge-invariant quantities is related to the density contrasts both total and partial (i.e.

pertaining to each single species of the plasma). The total density contrast on uniform

density hypersurfaces can be defined as a functional of the longitudinal degrees of freedom

ζ = −ψ − H(δρt + δρB)

ρ′t
, (2.42)

coincides, for wavelengths larger than the Hubble radius, with R. In fact, using the def-

initions (2.33) and (2.42) into the Hamiltonian constraint of Eq. (2.15) it can be verified

that

ζ = R +
∇2ψ

12πG(ρt + pt)
. (2.43)

Having introduced ζ , related to the total density contrast, it is also useful to introduce the

following 4 variables

ζν = −ψ +
δν
4
, ζγ = −ψ +

δγ
4
, ζc = −ψ +

δc
3
, ζb = −ψ +

δb
3
, (2.44)

which are interpreted as the density contrasts for each independent fluid on uniform curvature

hypersurfaces.

The evolution for the density contrasts described by Eqs. (2.6), (2.7), (2.22) and (2.23)

become, in terms of the variables introduced in (2.44),

ζ ′γ = −θγb

3
, ζ ′ν = −θν

3
, ζ ′c = −θc

3
, ζ ′b = −θγb

3
. (2.45)

Equations (2.44) and (2.45) are a useful tool for the discussion of the non-adiabatic solutions

of the system as it will now be explicitly shown.
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2.3 Magnetized non-adiabatic modes

The inclusion of fully inhomogeneous magnetic fields not only affects the adiabatic mode

but also the other (non-adiabatic) modes whose physical features have been investigated

in the conventional case (see, for instance, [58, 61, 62, 63, 64, 65] and references therein).

The adiabatic solution obtained in Eqs. (2.28), (2.29) and (2.31) implies, in terms of the

quantities defined in Eq. (2.44), that

ζν = ζγ = ζc = ζb = R∗ −
Rγ

4
ΩB. (2.46)

Equation (2.46) is not accidental. It implies, in fact, that the entropy fluctuations of the

mixture of fluids are vanishing. The entropy fluctuations are indeed defined as

Si j = −3(ζi − ζj), (2.47)

where the indices run over the four components of the fluid defined previously. Equation

(2.46) implies, therefore, that the the entropy fluctuations vanish for the adiabatic mode.

The pre-decoupling system also admit solutions where entropy fluctuations do not vanish.

These modes are called non-adiabatic. If there are entropy fluctuations, the perturbation of

the total pressure, appearing in Eqs. (2.17) and (2.24), can be written as

δspt = c2sδρt + δpnad (2.48)

where

δpnad =
1

6Hρ′t
∑

i j

ρ′iρ
′

j(c
2
s i − c2s j)Si j, c2s =

p′t
ρ′t
. (2.49)

In Eq. (2.49) c2s i and c2s j are the sound speeds of each (generic) pair of fluids of the mixture.

According to Eq. (2.48), the fluctuation in the total pressure may arise either because

of a inhomogeneity in the energy density or thanks to the chemical inhomogeneity of the

plasma. Chemically inhomogeneous means, in this context, that the plasma is constituted by

various fluids with equations of state that are different and that entail necessarily a spatial

variation of the sound speed. As a consequence of Eqs. (2.48) and (2.49), the evolution of ζ

can be directly obtained from the evolution of δsρt stemming from the first-order covariant

conservation equation:

δsρ
′

t + 3H(δsρt + δspt) − 3ψ′(ρt + pt) + (pt + ρt)θt =
~E · ~J
a4

. (2.50)

Neglecting the Ohmic electric field we do obtain the wanted evolution of ζ , i.e.

ζ ′ = − H
pt + ρt

δpnad +
H

pt + ρt

(

c2s −
1

3

)

δρB − θt
3
. (2.51)

By using Eqs. (2.51) and (2.44) together with the explicit form of the evolution equa-

tions in the longitudinal gauge, the analytic form of the non-adiabatic contributions can be
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obtained. In the following, as an example, the magnetized CDM-radiation mode and the

magnetized neutrino entropy mode will be presented. For the case of the CDM-radiation

mode the solution, in the limit τ < τ1 and kτ < 1 can be written as

φ = φ1

(

τ

τ1

)

, ψ = ψ1

(

τ

τ1

)

,

δγ = δν = 4ψ1

(

τ

τ1

)

−RγΩB,

δc = −
[

S∗ +
3

4
RγΩB

]

+ 3ψ1

(

τ

τ1

)

, δb = 3ψ1

(

τ

τ1

)

− 3

4
RγΩB,

θc =
k2τ1
3
φ1

(

τ

τ1

)2

, θγb =
k2τ1
2

(φ1 + ψ1)
(

τ

τ1

)2

+
k2τ

4
[RνΩB − 4σB],

θν =
k2τ1
2

(φ1 + ψ1)
(

τ

τ1

)2

+
kτ

4

(

4
Rγ

Rν
σB − ΩB

)

,

Fν3 =
8

9
kτ

[

4
Rγ

Rν

σB − ΩB

]

, σν = −Rγ

Rν

σB +
k2τ 2

1

6Rν

(ψ1 − φ1)
(

τ

τ1

)3

, (2.52)

where

ψ1 =
15 + 4Rν

8(15 + 2Rν)

[

S∗ +
3

4
RγΩB

]

, φ1 =
15 − 4Rν

8(15 + 2Rν)

[

S∗ +
3

4
RγΩB

]

. (2.53)

In the case of this solution, the longitudinal fluctuations of the geometry are vanishing for

τ < τ1 and the relevant entropy fluctuations, i.e. Scγ and Scν are constant and proportional

to S∗. In the limit ΩB → 0 and σB → 0 the solution (2.52) reduces to the conventional

CDM-radiation mode. While in the standard case the octupole moment of the (perturbed)

neutrino phase-space distribution vanishes, in the magnetized case it is proportional to kτ

and is negligible for length-scales larger than the Hubble radius prior to equality. In analogy

with Eq. (2.35), the spectrum of entropy perturbations will be parametrized as

〈S∗(~k)S∗(~p)〉 =
2π2

k3
PS(k)δ(3)(~k + ~p), PS(k) = AS

(

k

kp

)ns−1

, (2.54)

where kp is the same pivot scale introduced in Eq. (2.35) while ns is the spectral index of

the entropy fluctuation. In the case of the magnetized neutrino entropy mode, the solution

can instead be presented as:

φ = φ0, ψ = −φ0

2
, φ0 =

8RγRν

3(4Rν + 15)

[

S̃∗ −
3

Rν
σB +

3

4
ΩB

]

,

δγ = −2φ0 +
4

3
S̃∗Rν − ΩBRγ , δν = −2φ0 −

4

3
S̃∗Rγ − ΩBRγ ,

δb = δc = −3

2
φ0 −

3

4
ΩBRγ,

θc =
k2τ

2
φ0, θγb =

k2τ

4

[

2φ0 −
4

3
S̃∗Rν +RνΩB − 4σB

]

,
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θν =
k2τ

4

[

2φ0 −
4

3
S̃∗(Rγ + 1) + 4

Rγ

Rν
σB − ΩBRγ

]

σν = −Rγ

Rν
σB − k2τ 2

4Rν
φ0. (2.55)

In the case of the neutrino-entropy mode Sνγ 6= 0 and it is proportional to a constant that

has been denoted in Eq. (2.55) as S̃∗(k); the spectrum of S̃∗(k) can be defined in full analogy

with Eq. (2.54). An interesting feature of the magnetized neutrino-entropy mode (common

to the conventional case when magnetic fields are absent) is that the curvature perturbations

on comoving orthogonal hypersurfaces (i.e. R defined in Eq. (2.33)) vanish for wavelengths

larger than the Hubble radius before equality. This statement can be verified by using Eq.

(2.55) into Eq. (2.33) with the result that R = −ψ − φ/2 = 0 for kτ ≪ 1.

3 Higher-order tight coupling expansion

After having taken the derivative with respect to the conformal time τ of the first relation

appearing in Eq. (2.6), Eq. (2.9) can be used to eliminate the baryon-photon velocity; the

result will of this manipulation is:

δ′′γ +
HRb

Rb + 1
δ′γ +

k2

3(Rb + 1)
δγ = 4

[

ψ′′ +
HRb

Rb + 1
ψ′ − k2

3
φ

]

+
k2

3(Rb + 1)
[4σB − ΩB], (3.1)

where, according to Eq. (2.12), the Lorentz force has been traded for a combination of

the magnetic energy density and of the normalized anisotropic stress. Equation (3.1) stems

directly from the zeroth order in the tight-coupling expansion.

To discuss the polarization, we have to go (at least) to first-order in the tight coupling

expansion. For this purpose, it is appropriate to introduce the evolution equations of the

brightness perturbations of the I, Q and U Stokes parameters characterizing the radiation

field. Since the Stokes parameters Q and U are not invariant under rotations about the axis

of propagation the degree of polarization P = (Q2 +U2)1/2 is customarily introduced [6, 66].

The relevant brightness perturbations will then be denoted as ∆I, ∆P. This description,

reproduces, to zeroth order in the tight coupling expansion, the fluid equations that have

been presented in Section 2 to set initial conditions prior to equality. For instance, the photon

density contrast and the divergence of the photon peculiar velocity are related, respectively,

to the monopole and to the dipole of the brightness perturbation of the intensity field, i.e.

δγ = 4∆I0 and θγ = 3k∆I1. The evolution equations of the brightness perturbations can

then be written, within the conventions set by Eqs. (2.3) and (2.5) as

∆′

I + (ikµ + κ′)∆I + ikµφ = ψ′ + κ′
[

∆I0 + µvb −
1

2
P2(µ)SP

]

, (3.2)

∆′

P + (ikµ+ κ′)∆P =
κ′

2
[1 − P2(µ)]SP, (3.3)

v′b + Hvb + ikφ+
ik

4Rb

[ΩB − 4σB] +
κ′

Rb

(vb + 3i∆I1) = 0. (3.4)
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Equation (3.4) is nothing but the second relation obtained in Eq. (2.7) having introduced

the quantity ikvb = θb. The source terms appearing in Eqs. (3.2) and (3.3) include a

dependence on P2(µ) = (3µ2 − 1)/2 ( Pℓ(µ) denotes, in this framework, the ℓ-th Legendre

polynomial); ; µ = k̂ · n̂ is simply the projection of the Fourier wave-number on the direction

of the photon momentum. In Eqs. (3.2) and (3.3) the source term SP is defined as

SP(k, τ) = ∆I2(k, τ) + ∆P0(k, τ) + ∆P2(k, τ). (3.5)

The evolution of the longitudinal fluctuations is dictated by Eq. (2.16) and by Eqs. (2.15)–

(2.18). According to the definitions used to derive Eqs. (3.2), (3.3) and (3.4), the ℓ-th

multipole of the brightness perturbations is defined as
∫ 1

−1
Pℓ(µ)∆I(k, µ, τ)dµ = 2(−i)ℓ∆Iℓ(k, τ),

∫ 1

−1
Pℓ(µ)∆P(k, µ, τ)dµ = 2(−i)ℓ∆Pℓ(k, τ).

(3.6)

Equations (3.2) and (3.3) con now be expanded in powers of τc = |1/κ′|. In particular we

can write

∆Iℓ(k, τ) = ∆Iℓ(k, τ) + τcδIℓ(k, τ), ∆Pℓ(k, τ) = ∆Pℓ(k, τ) + τcδPℓ(k, τ),

vb = vb(k, τ) + τcδvb
(k, τ). (3.7)

Equations (3.2) and (3.3) will be preliminarily phrased in terms of a Boltzmann hierarchy

coupling together the different multipoles of the brightness perturbations. Then the obtained

equations will be expanded according to (3.7). The result of the first step of this procedure

is

∆′

I0 + k∆I1 = ψ′, (3.8)

∆′

I1 +
2

3
k∆I2 −

k

3
∆I0 =

k

3
φ− κ′

[

∆I1 +
vb

3i

]

, (3.9)

∆′

I2 +
3

5
k∆I3 −

2

5
k∆I1 = − κ′

10
[9∆I2 − (∆P0 + ∆P2)], (3.10)

∆′

Iℓ + κ′∆Iℓ =
k

2ℓ+ 1
[ℓ∆I(ℓ−1) − (ℓ+ 1)∆I(ℓ+1)], ℓ > 2. (3.11)

Equations (3.8), (3.9) and (3.10) are obtained, respectively, by multiplying each side of Eq.

(3.2) by P0(µ), P1(µ) and P2(µ) and by integrating over µ with the help of Eq. (3.6). The

same calculation can be repeated in the case of Eq. (3.3); the result is:

∆′

P0 + k∆P1 =
κ′

2
[∆P2 + ∆I2 − ∆P0], (3.12)

∆′

P1 +
2

3
k∆P2 −

k

3
∆P0 = −κ′∆P1, (3.13)

∆′

P2 +
3

5
k∆P3 −

2

5
k∆P1 = − κ′

10
[9∆P2 − (∆P0 + ∆I2)], (3.14)

∆′

Pℓ + κ′∆Pℓ =
k

2ℓ+ 1
[ℓ∆P(ℓ−1) − (ℓ+ 1)∆P(ℓ+1)], ℓ > 2. (3.15)
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Having derived Eqs. (3.8)–(3.11) and Eqs. (3.12)–(3.15), the system can now be expanded

to the wanted order in τc. As anticipated, to zeroth order in the tight coupling expansion

Eq. (3.1) can be reobtained. In fact, to lowest order in τc,

vb(k, τ) = −3i∆I1(k, τ), ∆
′

I0 + k∆I1 = ψ′, (3.16)

while, from Eqs. (3.12)–(3.15),

∆P0(k, τ) = 0, ℓ ≥ 0, ∆Iℓ(k, τ) = 0, ℓ ≥ 2. (3.17)

Summing up Eq. (3.8) (multiplied by 3i) with Eq. (3.4) (multiplied by Rb) and eliminating,

from the obtained relation, ∆I1 in favour of ∆
′

I0 (see Eq. (3.16)) the decoupled expression

for the evolution of the zeroth-order monopole becomes, as expected,

∆
′′

I0 +
HRb

Rb + 1
∆

′

I0 +
k2

3(Rb + 1)
∆I0 =

(

ψ′′ +
HRb

1 +Rb

ψ′ − k2

3
φ

)

+
k2(4σB − ΩB)

3(Rb + 1)
, (3.18)

which is the same of Eq. (3.1) if we recall that 4∆I0 = δγ . The presence of the magnetic

field modifies the evolution of the zeroth order monopole and, consequently, according to Eq.

(3.16), the zeroth order dipole. Such a modification also implies an effect on the polarization.

In fact, to first-order in the tight coupling expansion, ∆P0 6= 0 and it is proportional to the

zeroth order dipole. Recalling the notations of Eq. (3.7) and expanding Eqs. (3.8)–(3.11)

and (3.12)–(3.15) to first order in τc it can be verified that

δP0(k, τ) =
5

4
δI2(k, τ), δP2(k, τ) =

1

4
δI2(k, τ), δI2(k, τ) =

8

15
k∆I1(k, τ), (3.19)

which also implies

∆I2(k, τ) ≃ τcδI2(k, τ) ≃
8

15
kτc∆I1(k, τ). (3.20)

Since τc grows very fast during decoupling, to have a better quantitative estimate of the

effect the procedure outlined in [6] can be followed. By taking the first derivative of the

definition of SP and by using Eqs. (3.11) and (3.15) we can get, directly the following

evolution equation for SP

S ′

P +
3

10
κ′SP =

2

5
k∆I1. (3.21)

Equation (3.21) can be used to estimate the source term in Eq. (3.3) and, therefore, the

polarization can be determined as

∆P(k, τdec) = − 3

10
(1 − µ2)∆I1(τdec)kσdecI1, (3.22)

where σdec ≃ 70–80 Mpc is the width of the visibility function κ′e−κ which has a Gaussian

form[67]. The quantity I1 appearing in Eq. (3.22) is

I1 =
∫

∞

0
e−

7

10
κdκ

∫

∞

1

dx

x
e−

3

10
κx ≃ 1.719. (3.23)
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Let us now perform an oversimplified estimate. Let us ignore neutrinos and magnetic

fields and let us compute out of Eq. (3.2) the ordinary Sachs-Wolfe contribution assuming a

constant adiabatic mode that propagates smoothly through the matter-radiation transition.

The constant mode will be ψm ≃ −(3/5)R∗ where R∗ is the constant mode of curvature

fluctuations. Then, from Eqs. (3.18) and (3.22)–(3.23)

∆I(k, τdec) ≃
ψm

3
cos (kcsbτdec), ∆P(k, τdec) = −0.17(1 − µ2)(σdeckcsb)ψm sin (kcsbτdec).

(3.24)

which implies that the cross-correlation between temperature and polarization oscillates as

sin (2kcsbτdec).

It is finally interesting to compute the expression of the characteristic damping scale of

the fluctuations arising from the dispersion relations. From Eq. (3.4), by taking the Laplace

transform, i.e. vb(k, τ) = ei
∫

ω(τ ′)dτ ′

vb(k, ω) (and similarly for the brightness perturbations),

we will have that the following relation holds to second order in the tight-coupling expansion

vb(k, ω) = −3 i∆I1(k, ω)
[

1 − i
ω Rb

|κ′| − ω2R2
b

|κ′|2
]

+ O(φ) + O(ΩB, σB). (3.25)

In the standard derivation of the dispersion relations the metric fluctuations are neglected.

This procedure is also justified in the present case provided the spectrum of the magnetic

energy density is not too steep in frequency. In practice this is the case for ε sufficiently

smaller than 1. In this case also the magnetic contribution can be neglected. In this situa-

tion, we can Laplace transform also the other equations (i.e. for the monopole, dipole and

quadrupole). Then the first-order tight coupling expressions can be used into Eqs. (3.9) and

(3.25) to eliminate vb. The resulting expression will then be

−ω2(Rb + 1) +
k2

3
+ i

ω

|κ′|

[

16

45
k2 + ω2R2

b

]

= 0, (3.26)

which implies that ω = ω1 + iω2 where

ω1 =
k

3(1 +Rb)
, ω2 =

k2

kd
, k−2

d =
∫ τ

0

dτ̃

2κ′(τ̃)

[

16

45(Rb(τ̃) + 1
+

R2
b(τ̃ )

3(1 +Rb(τ̃))2

]

. (3.27)

In practice, for the typical set of parameters introduced around Eq. (2.10) k−1
d ≃ 3 Mpc,

which sets, grossly speaking, the typical scale of diffusion damping.

4 Numerical analysis

The evolution equations in the tight coupling approximation will now be integrated numeri-

cally. The normalization of the numerical calculation is enforced by evaluating, analytically,

the Sachs-Wolfe plateau and by deducing, for a given set of spectral indices of curvature and

entropy perturbations, the amplitude of the power spectra at the pivot scale. Here is an
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example of this strategy. The Sachs-Wolfe (SW) plateau can be estimated analytically from

the evolution equation of R (or ζ) by using the technique of the transfer matrix appropri-

ately generalized to the case where, on top of the adiabatic and non-adiabatic contributions

the magnetic fields are consistently taken into account. The result of this calculation can be

expressed, for ℓ < 30, as [7]

Cℓ =
[AR

25
Z1(nr, ℓ) +

9

100
R2

γΩ
2
BLZ2(ǫ, ℓ) −

4

25

√

ARASZ1(nrs, ℓ) cos γrs

+
4

25
AS Z1(ns, ℓ) −

3

25

√

ARRγ ΩBL Z3(nr, ε, ℓ) cos γbr

+
6

25

√

AS RγΩB L Z3(ns, ε, ℓ) cos γbs

]

, (4.1)

where the functions Z1, Z2 and Z3

Z1(n, ℓ) =
π2

4

(

k0

kp

)n−1

2n
Γ(3 − n)Γ

(

ℓ+ n−1
2

)

Γ2

(

2 − n
2

)

Γ
(

ℓ+ 5
2
− n

2

) , (4.2)

Z2(ε, ℓ) =
π2

2
22εF(ε)

(

k0

kL

)2ε Γ(2 − 2ε)Γ(ℓ+ ε)

Γ2

(

3
2
− ε

)

Γ(ℓ+ 2 − ε)
, (4.3)

Z3(n, ε, ℓ) =
π2

4
2ε2

n+1

2

√

F(ε)
(

k0

kL

)ε(k0

kp

)
n+1

2
Γ

(

5
2
− ε− n

2

)

Γ
(

ℓ+ ε
2

+ n
4
− 1

4

)

Γ2

(

7
4
− ε

2
− n

4

)

Γ
(

9
4

+ ℓ− ε
2
− n

4

) .(4.4)

We recall the meaning of the various spectral indices appearing in Eqs. (4.2), (4.3) and (4.4).

The spectral index ε has been introduced in Eq. (2.2) (see also Eq. (2.37) for the magnetic

energy spectrum); k0 = τ−1
0 where τ0 is the present observation time. In Eqs. (4.2), (4.3)

and (4.4), n stands either for nr (i.e. the spectral index of the adiabatic mode defined in Eq.

(2.35)) or for ns (i.e. the spectral index of the entropic mode defined in Eq. (2.54)) or for

nrs (i.e. the spectral index of the cross-correlation). In principle one could also introduce a

different spectral index for each cross-correlation. However, following, for instance [65] we

will assume that the spectrum of the cross-correlation is solely determined in terms of the

spectrum of the autocorrelations, i.e., for instance, nrs = (nr + ns)/2. In Eq. (4.1) γrs, γbr

and γsb are the correlation angles. From the request that the SW plateau is dominated by

the adiabatic mode it is possible to constrain ΩBL and, consequently, BL (see, indeed, Eq.

(2.39)). The nature of the bound, however, depends on the parameters that enter Eq. (4.1).

In the absence of magnetic and non-adiabatic contributions and for Eqs. (4.1) and Eq. (4.2)

imply that for nr = 1 (Harrison-Zeldovich spectrum) ℓ(ℓ + 1)Cℓ/2π = AR/25 and WMAP

data [12] would demand that AR = 2.65 × 10−9.

If the SW plateau is determined by an adiabatic component supplemented by a (sub-

leading) non-adiabatic contribution both correlated with the magnetic field intensity the
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Figure 1: Bounds on the protogalactic field intensity as a function of the magnetic spectral

index ε for different values of the parameters defining the adiabatic contribution to the SW

plateau.

obtainable bound may not be so constraining (even well above the nG range) due to the

proliferation of parameters. A possible strategy is therefore to fix the parameters of the

adiabatic mode to the values determined by WMAP-3 and then explore the effect of a mag-

netized contribution which is not correlated with the adiabatic mode. This implies, in Eq.

(4.1) that AS = 0 and γbr = π/2. Under this assumption, in Fig. 1 the bounds on BL

are illustrated. The nature of the constraint depends, in this case, both on the amplitude

of the protogalactic field (at the present epoch and smoothed over a typical comoving scale

L = 2π/kL) and upon its spectral slope, i.e. ε. In the case ε < 0.5 the magnetic energy

spectrum is nearly scale-invariant. In this case, diffusivity effects are negligible (see, for

instance, [14, 15]). As already discussed, if ε ≫ 1 the diffusivity effects (both thermal and

magnetic) dominate the mode-coupling integral that lead to the magnetic energy spectrum

[14, 15]. In Fig. 1 (plot at the left) the magnetic field intensity should be below the differ-

ent curves if the adiabatic contribution dominates the SW plateau. Different choices of the

pivot scale kp and of the smoothing scale kL, are also illustrated. In Fig. 1 (plot at the left)

the scalar spectral index is fixed to nr = 0.951 [3]. In the plot at the right the two curves

corresponding, respectively, to nr = 0.8 and nr = 1 are reported. If ε < 0.2 the bounds are

comparatively less restrictive than in the case ε ≃ 0.9. The cause of this occurrence is that

we are here just looking at the largest wavelengths of the problem. As it will become clear in

a moment, intermediate scales will be more sensitive to the presence of fully inhomogeneous

magnetic fields.

According to Fig. 1 for a given value of the magnetic spectral index and of the scalar

spectral index the amplitude of the magnetic field has to be sufficiently small not to affect

the dominant adiabatic nature of the SW plateau. Therefore Fig. 1 (as well as other similar
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plots) can be used to normalize the numerical calculations for the power spectra of the

brightness perturbations, i.e.

k3

2π2
|∆I(k, τ)|2,

k3

2π2
|∆P(k, τ)|2, k3

2π2
|∆I(k, τ)∆P(k, τ)|. (4.5)

Let us then assume, for consistency with the cases reported in Fig. 1, that we are dealing

with the situation where the magnetic field is not correlated with the adiabatic mode. It is

then possible to choose a definite value of the magnetic spectral index (for instance ǫ = 0.1)

and a definite value of the adiabatic spectral index, i.e. nr (for instance nr = 0.951, in

agreement with [3]). By using the SW plateau the normalization can be chosen in such a

way the the adiabatic mode dominates over the magnetic contribution. In the mentioned

case, Fig. 1 implies BL < 1.14×10−8 G for a pivot scale kp = 0.002 Mpc−1. Since the relative

weight of the power spectra given in Eqs. (2.35) and (2.37) is fixed, it is now possible to set

initial conditions for the adiabatic mode according to Eqs. (2.28)–(2.31) and (2.34) deep in

the radiation-dominated phase. The initial time of integration will be chosen as τi = 10−6τ1
in the notations discussed in Eq. (2.25). According to Eq. (2.26), this choice implies that

τi ≪ τeq.

The power spectra of the brightness perturbations, i.e. Eq. (4.5), can be then computed

by numerical integration. Clearly the calculation will depend upon the values of ωm, ωb,

ωc and Rν . We will simply fix these parameters to their fiducial values reported in Eqs.

(2.10) (see also (2.11)) and we will take Nν = 3 in Eq. (2.32) determining, in this way

the fractional contribution of the neutrinos to the radiation plasma. The first interesting

exercise, for the present purposes, is reported in Fig. 2 where, in the left column, the power

spectra of the brightness perturbations are illustrated for a wave-number k = 0.1 Mpc−1; in

the right column the power spectra of the same quantities are illustrated for k = 0.2 Mpc−1.

Concerning the results reported in Fig. 2 different comments are in order:

• for ε = 0.1 and nr = 0.951, the SW plateau imposes BL < 1.14 × 10−8 G; from Fig. 2

it follows that a magnetic field of only 30 nG (i.e. marginally incompatible with the

SW bound) has a large effect on the brightness perturbations as it can be argued by

comparing, in Fig. 2, the dashed curves (corresponding to 30 nG ) to the full curves

which illustrate the case of vanishing magnetic fiels;

• the situation where BL > nG cannot be simply summarized by saying that the am-

plitudes of the power spectra get larger since there is a combined effect which both

increases the amplitudes and shifts slightly the phases of the oscillations;

• from the qualitative point of view, it is still true that the intensity oscillates as a

cosinus, the polarization as a sinus;

• the phases of the corss-correlations are, comparatively, the most affected by the pres-

ence of the magnetic field.
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Figure 2: The power spectra of the brightness perturbations for two typical wave-numbers.

The values of the parameters are specified in the legends. The pivot scale is kp = 0.002 Mpc−1

and the smoothing scale is kL = Mpc−1 (see Fig. 1).
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Figure 3: A detail of the cross-correlation (left plot). The autocorrelation of the intensity at

τdec as a function of ε, i.e. the magnetic spectral index (right plot).

The features arising in Figs. 1 and 2 can be easily illustrated for other values of ǫ and for

different choices of the pivot or smoothing scales. The general lesson that can be drawn is

that the constraint derived only by looking at the SW plateau are only a necessary condition

on the strength of the magnetic field. They are, however, not sufficient to exclude observable

effects at smaller scales. This aspect is illustrated in the plot at the left in Fig. 3 which

captures a detail of the cross-correlation. The case when BL = 0 can be still distinguished

from the case BL = 0.5 nG. Therefore, recalling that for the same choice of parameters the

SW plateau implied that BL < 11.4 nG, it is apparent that the intermediate scales lead to

more stringent conditions even for nearly scale-invariant spectra of magnetic energy density.

For the range of parameters of Fig. 2 we will have that BL < 0.5 nG which is more stringent

than the condition deduced from the SW plateau by, roughly, one order of magnitude.

If ε increases to higher values (but always with ε < 0.5) by keeping fixed BL (i.e. the

strength of the magnetic field smoothed over a typical length scale L = 2π/kL) the amplitude

of the brightness perturbations gets larger in comparison with the case when the magnetic

field is absent. This aspect is illustrated in the right plot of Fig. 2 where the logarithm (to

base 10) of the intensity autocorrelation is evaluated at a fixed wave-number (and at τdec)

as a function of ε. The full line (corresponding to a BL = 10 nG) is progressively divergent

from the dashed line (corresponding to BL = 0) as ε increases.

In Fig. 4 the power spectra of the brightness perturbations are reported at τdec and as

a function of k. In the two plots at the top the autocorrelation of the intensity is reported

for different values of BL (left plot) and for different values of ε at fixed BL (right plot). In

the two plots at the bottom the polarization power spectra are reported always at τdec and

for different values of BL at fixed ε. The position of the first peak of the autocorrelation
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Figure 4: The power spectra of the brightness perturbations at τdec for the parameters

reported in the legends.
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of the intensity is, approximately, kd ≃ 0.017 Mpc−1. The position of the first peak of the

cross-correlation is, approximately, 3/4 of kd. From this consideration, again, we can obtain

that BL < 0.3 nG which is more constraining than the SW condition.

Up to now the adiabatic mode has been considered in detail. We could easily add,

however, non-adiabatic modes that are be partially correlated with the adiabatic mode. It

is rather plausible, in this situation, that by adding new parameters, also the allowed value

of the magnetic field may increase. Similar results can be achieved by deviating from the

assumption that the magnetic field and the curvature perturbations are uncorrelated. This

aspect can be understood already from the analytical form of the SW plateau (4.1). If there

is no correlation between the magnetized contribution and the adiabatic contribution, i.e.

γbr = π/2, the SW plateau will be enhanced in comparison with the case when magnetic

fields are absent. The same situation arises when the two components are anti-correlated

(i.e. cos γbr < 0). However, if the fluctuations are positively correlated (i.e. cos γbr > 0) the

cross-correlation adds negatively to the sum of the two autocorrelations of R and ΩB so that

the total result may be an overall reduction of the power with respect to the case γbr = π/2.

5 Concluding remarks

In the recent past, various attempts have been made to constrain large-scale magnetic fields

from CMB physics. While interesting results have been obtained for the vector and tensor

modes of the geometry, the scalar modes have been, comparatively, less studied. In this

study a systematic strategy to tackle this problem has been proposed and developed. The

basic inspiration of the present approach can be summarized by stating that the effects of

fully inhomogeneous magnetic fields on CMB anisotropies is not univocal. In the standard

lore the only relevant parameters to define the effects of large-scale magnetic fields on CMB

anisotropies are the ones related to the magnetic field itself. For instance, if the magnetic field

is uniform the only parameter will be its intensity; if the magnetic field is fully inhomogeneous

the only two parameters will be the spectral amplitude and the spectral slope. The point

of view of the present investigation is that this way of thinking is ambiguous and, to some

extent, not so productive. In fact, the spectral parameters of the magnetic field are certainly

a necessary ingredient of the analysis. They are, however, not sufficient to conduct the

calculation of the brightness perturbations. The information on the spectral parameters

must be complemented by the specific pre-decoupling initial conditions. According to the

results of this investigation, a sound procedure to be followed can be summarized as follows:

• include the magnetic fields in the system of scalar modes before matter radiation

equality;

• solve the system in the long wave-length approximation prior to decoupling;

25



• use the obtained solutions for the numerical evaluation of the brightness perturbations,

for instance, in the tight coupling approximation.

The ambiguity mentioned above arises during the first step of the procedure we just outlined.

In fact, the inclusion of magnetic fields prior to equality does not lead to a single solution

but to different solutions. We will then have quasi-adiabatic and quasi-entropic modes where

a magnetized contribution can be accommodated.

In some sense, the present proposal is more conservative than previous attempts: the

signature of magnetic fields on CMB physics is not directly accessible but it is mediated

by the (supposedly rich) parameter space of the pre-decoupling initial conditions of CMB

anisotropies. This approach is indeed common when mixtures of adiabatic and non-adiabatic

modes are studied in the absence of magnetic fields. In the latter case the philosophy is to

specify what kind of non-adiabatic mode we want to study and constrain. Here the situation

is similar and we do hope, that, in the future, the considerations reported here will serve as

an inspiration for analyzing the effects of fully inhomogeneous magnetic fields on the scalar

CMB anisotropies.

This analysis reported in this paper allowed to extend the tight-coupling approximation

to the case when large-scale magnetic fields participate to the dynamics of the plasma. The

evolution equations, in the tight coupling approximation, have then been integrated numeri-

cally using, as normalization, the analytical estimate of the Sachs-Wolfe plateau modified by

the presence of large-scale magnetic fields. The reported results allow not only to set con-

straints but also to include a magnetized contribution in the current strategies of parameter

extraction.

From the combined analysis of the Sachs-Wolfe plateau and of the phases of Sakharov

oscillations at intermediate scales, a fully inhomogeneous magnetic field uncorrelated with

the adiabatic mode can be constrained to be smaller than 0.5 nG for a slightly blue spectral

slope ε = 0.1 and for typical comoving wave-number of 1 Mpc−1. The conditions implied

by the SW plateau ssem to be necessary but not sufficient since magnetic fields compatible

with the SW bound may alter Sakharov oscillations at smaller length-scales. In the most

general situation, correlation angles may proliferate: there may be correlations between the

magnetized contribution and the adiabatic or even non-adiabatic modes. In this case the

bounds on large-scale magnetic fields become much weaker and sizable magnetic fields may

be allowed.

The present analysis also shows that magnetic fields can affect the process of formation

of CMB polarization. For instance, the usual approach to the Faraday rotation of CMB

polarization is to assume that the polarization itself is only due to the adiabatic mode while

the rotation of the polarization plane is only due to the magnetic field. This picture has been

complemented by the observation that the magnetic fields affect the pre-decoupling initial

conditions and, consequently, modify the evolution of the degree of polarization.

The tight coupling expansion is rather useful to discuss the integration of brightness

perturbations in some simple cases. Moreover, it is an essential ingredient of Boltzmann
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codes since it is used, at early times, to avoid the integration of the (stiff) Euler equations.

It will be interesting, for future studies, to analyze the space of magnetized initial conditions

by solving directly the whole Boltzmann hierarchy.
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