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Introduction
Animal proteins in a human diet are physiologically ac-

tive compounds; they have a direct action or are a substrate 
for enzymatic hydrolysis in processing and consumption of 
food. Biologically active peptides (BAPs) can be obtained 
through hydrolysis by intrinsic enzymes of meat raw ma-
terials, endogenous enzymes of the human gastrointestinal 
tract or microbial enzymes used in a technological process.

The integrity and structure of meat proteins change dur-
ing autolysis or long-term storage of meat raw materials in 
the frozen state. A great number of peptides with the physi-
ological activity are released during meat processing. The 
biological activity of food components is widely studied in 
vitro, and nowadays the attempts are made to study their 
in vivo effect on healthy people or patients with different 
pathologies.

This paper presents a complex review of the methods of 
biologically active peptide formation in meat raw materials 
and products.

Main part
The mechanisms of BAP formation in meat and meat 

products are similar (Table 1). During autolysis of muscle 
tissue, the proteolytic activity conditioned by endogenous 
enzymes (calpains and cathepsins) is a key process, which 
influences protein destruction and, consequently, generation 
and release of a large number of peptides and free amino 
acids [1,2].

Bauchart et al [4] in the study of aged beef found an in-
crease in the content of BAPs <5 kDa in meat after 14 days of 

storage at a temperature of 4 °C compared to their quantity 
in fresh meat. Fu et al. [23] also demonstrated that bioac-
tive peptides with a size of about 3 kDa can be generated in 
longissimus dorsi and semitendinosus muscles during meat 
aging after 20 days of proteolysis.

Generation of peptides can also be caused by the oxi-
dation processes during meat storage [24]. The oxidative 
status can regulate the endogenous enzymatic activity and, 
consequently, a degree of degradation of myofibrillar and 
sarcoplasmic proteins [25]. Changes in temperature and pH 
can affect the content of bioactive peptides due to changes 
in the activity of endogenous enzymes [3,26,27].

It is known that peptides with the biological activity are 
naturally formed in the mammalian gastrointestinal tract 
during metabolism of meat diet proteins under the action of 
the digestive enzymes such as pepsin, trypsin, chymotryp-
sin, elastase, and carboxypeptidase [3,28,29,30]. Therefore, 
to generate such potentially biologically active peptides, 
researchers model a process that simulates gastrointestinal 
digestion. The process is based on enzymatic hydrolysis 
with the use of different commercial exogenous proteinases 
obtained from animal tissues (pepsin and trypsin), plants 
(papain, ficin, and bromelain) and microbial sources (al-
calase®, flavourzyme®, neutrase®, collagenase or proteinase 
K) [30,31,32]. In addition to the meat sources, several BAPs 
are generated by enzymatic hydrolysis of collagen from 
meat or slaughter by-products (trimmings, organs, blood 
hemoglobin) as was highlighted in several studies [24,33].

For example, the release of potential BAPs — angiotensin-
I-converting enzyme (ACE-I, EC3.4.15.1), renin (EC3.4.23.15) 
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and dipeptidyl peptidase-IV (DPP-IV, EC3.4.14.5) — from 
bovine and porcine proteins including hemoglobin, collagen 
and serum albumin, was assessed in the study of 2014 [34] 
using the in silico methods, peptide databases and software 
as well as chemical synthesis and in vitro analysis to confirm 
bioactivity of peptides. These proteins are usually found in 
meat by-products such as bones, blood and meat trimmings, 
and play a key role in the control of hypertension, develop-
ment of type-2 diabetes and other diseases associated with the 
metabolic syndrome. New peptides included ACE-I inhibi-
tory tripeptide Ile-Ile-Tyr and DPP-IV inhibitory tripeptide 
Pro-Pro-Leu corresponding to the sequences f (182–184) and 
f (326–328) of porcine and bovine serum albumin, which 
can be released after hydrolysis by the enzymes papain and 
pepsin, respectively.

In another work [35], the inhibitory and antioxidant 
activities of ACE-I sarcoplasmic proteins extracted from 
the pectoral muscle (Pectoralis profundus) of cattle (Bos 
taurus) and hydrolyzed by papain at 37 °C for 24 hours were 
studied. Sarcoplasmic protein hydrolysates were subjected 
to membrane ultrafiltration and filtrates 10 kDa and 3 kDa 
were obtained. As a result, 11 peptides were characterized 
from the total hydrolysate fraction: 15 from the fractions of 
10 kDa filtrate, 9 peptides from the fractions of 3 kDa filtrate. 
The similarity between amino acid sequences of peptides 
identified in this investigation and known antioxidant and 
ACE-I inhibitory peptides described in the database of bio-
logically active peptide sequences BIOPEP was found [36].

A promising source of BAPs are porcine myofibrillar 
proteins [37]. The enzymes pepsin, trypsin and chymotryp-
sin were used for in silico proteolysis. In intact proteins and 
after simulation of gastrointestinal digestion, the inhibitory 
peptide sequences of dipeptidyl peptidase-IV were observed 
most frequently. In total, the authors found 399 peptides with 
the antioxidant, hypotensive, antiamnesic and stimulating 
or regulating different body functions activities, as well as 
enzyme inhibitors [38].

Other mechanisms, such as the processes of freezing and 
cooking can affect release and availability of meat BAPs. 
Freezing can denature proteins due to different chemical 
and physical stress mechanisms including ice formation, 
pH changes and low temperature [39], which leads to an 
increase in BAPs. Cooking can influence peptide genera-
tion and their biological activity [23,27] due to changes in 
the native conformation (denaturation) and disruption of 
intramolecular bonds caused by heating [40].

It was shown that several BAPs are also released from 
meat products during drying or aging [41]. Proteolytic deg-
radation, which occurs during aging of dry cured ham or 
during sausage fermentation and forms aroma and texture, 
results in generation of peptides with low molecular weight 
(3–5 kDa) and free amino acids [7,42]. In fermented meat 
products, protein degradation is influenced by different 
variables such as product composition, processing conditions 
and starter cultures. Proteolytic degradation by endogenous 
enzymes and lactic acid bacteria affects the peptide content. 
In particular, the presence of lactic acid bacteria causes a 
decrease in pH, which leads to higher activity of muscle 
endogenous proteases [43].

Generation of bioactive peptides in meat autolysis
Biologically active peptides can be generated under 

the action of endogenous proteases in the process of meat 
autolysis. Proteolysis by endogenous enzymes is the most 
important phenomenon that takes place during meat aging. 
Endopeptidases, such as calpains and cathepsins, first of all, 
are responsible for hydrolysis of proteins into large fragments 
and oligopeptides, which influences meat texture during 
aging and the initial stages of the rigor mortis processes. 
Later due to exopeptidases, such as aminopeptidases and 
carboxypeptidases, small peptides and free amino acids 
will be formed [44].

Meat aging influences its taste, tenderness, moisture 
binding capacity (MBC), color and juiciness. A detailed 

Table 1 . Brief characteristics of the processes of generation of meat biologically active peptides [3]

Product Process Carrier/Regulation Functionality Peptide sequence Reference

Muscle 
tissue

Proteolysis, 
oxidation Endogenous enzymes ACE*-I activity APPPPAEVPEVHEEVH, PPPAEVPEVHEEVH, 

IPITAAKASRNIA, LPLGG, FAGGRGG, APPPPAEVP [4,5,6]

Enzymatic 
hydrolysis Exogenous enzymes

ACE-I, antioxidant, 
antithrombotic, 
antimicrobial and 
antitumor activities

KRQKYD, EKERERQ, KAPVA, PTPVT, RPR, 
GLSDGEWQ, GFHI, DFHING, FHG [7–15]

Preparation High temperature ACE-I SPLPPPE, EGPQGPPGPVG, PGLIGARGPPGP [4]

Collagen Enzymatic 
hydrolysis

Bacterial collagenase, 
exogenous enzymes, proteases 
from Aspergillus oryzae

ACE-I and antioxidant 
activities

AKGANGAPGIAGAPGFPGARGPSGPQGPSGPP, 
PAGNPGADGQPGAKGANGAP, GAXGLXGP, 
GPRGF, VGPV, QGAR, LQGM, LQGMH, LC

[16–19]

Dry-cured 
products Proteolysis Endogenous enzymes

antioxidant activity DSGVT, IEAEGE, EELDNALN, VPSIDDQEELM, 
DAQEKLE, ALTA, SLTA, VT, SAGNPN, GLAGA, 

DLEE
[20,21]

Fermented 
products Proteolysis Presence of starter cultures antioxidant activity FGG, DM [22]

* ACE — Angiotensin converting enzyme
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study of the biochemical processes occurring during meat 
aging improves the understanding of their development. 
Monitoring of these processes allows revealing biomarkers 
of meat product quality [45]. Di Luca et al. [46] studied 
changes in proteome of muscle exudate during the normal 
period of meat aging (seven days) in genetically simi-
lar pigs from one population with the same meat quality 
characteristics. It was found that several quality meat in-
dicators significantly changed during autolysis especially 
at the latest stage of aging. For example, from the 3rd to 
the 7th day, meat tenderness significantly increased, color 
parameter CIE b* of muscles also changed compared to the 
period of rigor mortis, and cooking losses changed as well. 
These data illustrate structural changes that take place in 
pork muscles during their aging, which was significantly 
reflected on their proteomic profiles. Three key protein 
groups (stress proteins, metabolic enzymes and structural 
proteins), which significantly changed during meat aging, 
were identified [47].

Another significant peculiarity resided in the fact that 
quantity of proteins associated with stress reduced. Monitor-
ing of these changes is usually performed using myofibrillar 
or sarcoplasmic proteomic fractions. These observations in 
the more available substrate, that is, in the muscle exudate, 
allows complimenting previous studies, showing, for example, 
that vinculin correlates with the moisture binding capacity 
and peroxiredoxin-6 with meat tenderness. These protein 
biomarkers have potential for monitoring fresh meat quality 
and predicting a course of autolysis [47,48].

Hydrolysis by enzymes of different origin
The most common methodology of BAP generation is 

hydrolysis of proteins by commercial enzymes of microbial, 
plant or animal origin. In meat and meat products, Fla-
vourzyme from Aspergillus oryzae, as well as Neutrase and 
Alcalase from Bacillus subtilis and Bacillus lincheniformis, 

respectively, are most widely used for generation of bioac-
tive peptides. In addition, proteases of plant origin, such as 
bromelain and papain, were described as interesting enzymes 
for meat protein hydrolysis due to their role in meat tender-
ization. These enzymes show wider specificity compared to 
other enzymes, such as trypsin and pepsin, cleaving peptide 
bonds from a wide spectrum of areas and often acting either 
as endopeptidases or as exopeptidases hydrolyzing amino 
acids from N- and C-terminal ends [45].

Conclusion
Meat and meat products are one of the main sources of 

biologically active peptides.
With proteins as the main meat components, BAP genera-

tion occurs either under the action of endogenous muscle 
enzymes in the processes of autolysis and aging, or exog-
enous enzymes during digestion in the gastrointestinal tract, 
or with the use of commercial enzymes in laboratories or 
industrial processes under controlled conditions. During 
meat storage, peptide formation can also be caused by the 
oxidation processes. In addition, freezing processes and 
cooking can affect recovery and availability of meat BAPs. 
BAPs can be released from meat products during drying 
or aging. Mechanisms of BAP formation in meat and meat 
products are similar.

However, despite clear identification of BAPs, there is 
a growing need for studying interactions of a food matrix, 
especially when the aim is to use bioactive peptides as a 
functional ingredient. Qualitative assessment of these pep-
tides for the better understanding of their impact on health 
and bioavailability is necessary for advance in this field. We 
will discuss this question in the second part of the review.
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