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Abstract

Acoustic vector sensors, which measure scalar pressure along with particle motion (a
vector quantity), feature many advantages over omnidirectional hydrophone sensors.
A sizable literature exists on the theory of processing signals for many vector sen-
sor array applications. In practice, however, mismatch (the difference between the
assumed and actual system configurations), several noise processes and low sample
support can pose significant problems. Processing techniques should be robust to
these system imperfections and practical complexities.

This thesis presents analytical results which quantify the effect of system mismatch
and low sample support on acoustic vector sensor array performance. All arrays are
susceptible to perturbations in array element locations; vector sensor arrays, how-
ever, are also sensitive to changes in sensor orientation. This is due to the fact that
the particle motion vector measurement must be placed in a global reference frame.
Gilbert and Morgan (1955) developed a statistical analysis with system mismatch
for an array of scalar, omnidirectional elements. This thesis includes a vector sensor
extension to their analysis by including sensor orientation perturbations. Theoretical
expressions for the mean and variance of the vector sensor array spatial response are
derived using a Gaussian perturbation model, with excellent comparisons between
theory and simulation. Such analysis leads to insight into theoretical limits of both
conventional and adaptive processing in the presence of system imperfections. One
noteworthy result is that the vector aspect of the array "dampens" the effect of ar-
ray mismatch, enabling deeper true nulls. This is accomplished because the variance
of the vector sensor array spatial response (due to rotational, positional and filter
gain/phase perturbations) decreases in the sidelobes, unlike arrays of omnidirectional
hydrophones. As long as sensor orientation is measured within a reasonable tolerance,
the beampattern variance dominates the average sidelobe power response.

Results from random matrix theory are used to characterize the effect of low
sample support on signal detection using a vector sensor array. When using vector
sensors, the effects of low sample support potentially increase by a factor of four since
each element in a vector sensor array consists of a scalar hydrophone and up to three



spatially orthogonal particle motion sensors.
Also presented is an analysis of vector sensor array performance in ocean noise

given an arbitrary spatial array configuration, sensor orientation and particle mo-
tion sensor type (velocity or acceleration). Several different ocean noise models exist,
including isotropic noise, directional noise and realistic surface generated noise. The-
oretical expressions are derived for array data covariance matrices in these different
noise models for arbitrary array configuration and sensor orientation, which can in
turn be used with optimal MVDR beamforming weights to analyze array gain. Using
Monte Carlo simulations, we present examples of signal, noise and array gain vari-
ability as a function of mismatch intensity. Our analysis suggests that vector sensor
array gain performance is less sensitive to rotational than to positional perturbations
in the regions of interest.

Hydrophones and particle motion sensors have very different response and noise
characteristics. For instance, particle motion sensors are more sensitive to non-
acoustic, motion-induced noise than hydrophones. In a towed line array configuration,
those sensors orthogonal to the direction of motion are exposed to higher intensities
of flow noise at low frequencies than those coincident to the array axis. Similarly,
different dipole sensors may be exposed to varying degrees of rotational mismatch.
Sensors may also rest on the seafloor, creating asymmetries. Recognizing these prac-
tical issues, we derive a new adaptive processing method customized to the unique
characteristics of vector sensors and robust to mismatch and finite sample support.
This new approach involves using multiple white noise gain constraints.

During the past couple of decades, stationary vector sensor arrays have been built
and tested, demonstrating improved gain and ambiguity lobe attenuation. Up until
recently, however, very few towed vector sensor arrays had been built and tested.
As such, many of the advantages of vector sensor arrays had only previously been
shown in theory and/or with stationary arrays. We present results from sea trials
in Monterey Bay, CA (2006) and Dabob Bay, WA (2007) towing a relatively short
vector sensor array. Results highlight several of the distinct practical advantages of
vector sensor arrays: resolution of spatial ambiguity (e.g., port/starboard and conical
ambiguity), the ability to "undersample" an acoustic wave without spatial aliasing,
quiet target recovery via clutter reduction, immunity to mismatch, improved array
gain and enhanced detection performance.

Thesis Supervisor: Arthur B. Baggeroer
Title: Ford Professor of Engineering
Secretary of the Navy/Chief of Naval Operations
Chair for Ocean Sciences
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Chapter 1

Introduction

The hydrophone, an underwater microphone, is the most common sensor for listen-

ing to underwater sound. Hydrophones are often designed with an omnidirectional

response, i.e., near identical response characteristics in all directions. Directional

acoustic sensors, however, have many important applications. One important class

of directional sensors is the vector sensor.

As the name suggests, vector sensors measure vector (and often scalar) quantities.

Several different types of vector sensors exist. Many seismometers utilize accelerom-

eters to record ground motion due to seismic waves and to analyze properties of

earthquakes [88, 92]. Similarly, three-component geophones measure ground motion

(velocity) for geophysical exploration. Current meters are an important tool used

by oceanographers to measure properties of ocean currents. Electromagnetic vector

sensors are used to measure wave polarization and for source localization [73]. The

sensor discussed in this thesis is the acoustic vector sensor.

1.1 Advantages/Complexities of Vector Sensors

Acoustic vector sensors measure the scalar acoustic pressure along with the acoustic

particle motion (velocity or acceleration). With this additional vector measurement,

these directional sensors feature many advantages over omnidirectional hydrophone

sensors. A single vector sensor can steer an unambiguous beam in three-dimensional



space, albeit typically with course resolution. In any array configuration, these sensors

are capable of attenuating spatial ambiguity lobes. In the important special case of a

line array configuration, vector sensors can eliminate conical or left/right ambiguity.

Other directional sensors exist with a fixed directional response with respect to

sensor orientation. The only way to "steer" such a sensor is to physically rotate the

sensor. Vector sensors, on the other hand, can be "electronically" steered by changing

the weight vector applied to the sensor data. For example, one can steer a null to a

directional interferer while simultaneously steering a beam to a desired look direction

with a single vector sensor. This is done using processing methods similar to those

for an array of spatially separated sensors.

Vector sensors also provide the ability to "undersample" the acoustic wave without

spatial aliasing. Omnidirectional elements in a linear equally spaced array must be

spaced less than half a wavelength apart in order to avoid aliasing. Vector sensors

can be spaced further apart without aliasing, enabling a longer aperture with a given

number of sensors.

Vector sensors feature improved array gain and detection performance over omni-

directional sensors. As a result, vector sensors can be an enabling technology when

the length of an array (or acoustic aperture) is limited. Because of limited thrust ca-

pacity, some platforms cannot tow arrays with excessive length or drag. Furthermore,

the longer the acoustic aperture, the more restrictive the tow platform's maneuvering

becomes, making a shorter array desirable. The increased gain and performance of

vector sensors can greatly enhance a "short" array.

Along with their advantages, vector sensors also pose additional complexities and

practical issues. Vector sensors are more sensitive than hydrophones to flow noise at

low frequencies. This non-acoustic motion-induced noise can be quite significant and

must be taken into account when processing acoustic vector sensor data. Another

important difference from hydrophones is that since these sensors measure a vector

quantity, vector sensor measurements must be placed in a global reference frame,

requiring knowledge of each sensor's orientation. Furthermore, when combining the

particle motion and hydrophone channels, one must be careful to process each channel



with similar "units". This entails scaling the particle velocity measurements by the

acoustic impedance. As a result, vector sensors must be carefully calibrated. Finally,

since each acoustic vector sensor has four acoustic channels, adaptive beamforming

can become difficult in a snapshot limited environment, especially with many sensors.

1.2 Literature Review

Acoustic vector sensors have been in use over the past several decades [32, 93]. This

section presents a brief survey of some of the results currently found in the literature.

Several engineers and scientists have developed sensors for measuring acoustic

particle motion. For examples of such sensors, see [54, 61, 55, 94, 30, 7, 62, 63, 84].

Methods for measuring acoustic particle motion can be classified as either "direct"

or "indirect". Examples of sensors which measure particle motion "directly" include

geophones (particle velocity) and piezoelectric crystals (particle acceleration). Using

pairs of hydrophones to measure pressure gradients is an example of an "indirect"

measurement [68, 95].

One notable implementation of acoustic vector sensors is the DIFAR (directional

frequency analysis and recording) sonobuoy [93]. DIFAR sonobuoys simultaneously

measure the acoustic pressure and either the two horizontal axes or all three orthog-

onal axes of the acoustic particle velocity. The acoustic particle velocity in DIFAR

sensors is measured using geophones. DIFAR sensors have found widespread appli-

cation, from anti-submarine warfare acoustic detection and tracking (U.S. Navy) to

scientific sensing, including whale vocalization studies [8, 90]. Many of the tradi-

tional DIFAR signal processing techniques involve measuring acoustic intensity by

multiplying the hydrophone pressure and particle motion components.

D'Spain and colleagues have published a significant portion of literature highlight-

ing vector sensor data recorded at sea [28]. The Marine Physical Laboratory devel-

oped freely drifting vector sensors (Swallow floats) which measured and characterized

the rarely measured deep ocean's infrasonic (0.5-20 Hz) sound field [30, 29, 26, 31].

These infrasonic frequency measurements contain information about the background



Figure 1-1: A U.S. Navy sailor loads DIFAR sonobuoys onto a P-3 Orion aircraft.

[13].

ocean noise field, earthquakes and even signals generated by both finback and blue

whales. This scientific study also analyzes the conservation of acoustic energy using

acoustic vector sensor measurements, including potential and kinetic energy density

spectra. Results from additional Swallow float sea trials in the Mediterranean Sea

are found in [23]. D'Spain et. al. deployed one of the first acoustic vector sensor

arrays during an engineering sea test in 1991 using an array of sixteen triaxial DI-

FAR sensors in a vertical configuration for low frequencies (10-270 Hz band). This

sea trial and subsequent analysis demonstrated some of the practical advantages of

an array of acoustic vector sensors, including the ability to resolve both in azimuth

and elevation for a vertical line array [24, 77]. An analysis of how reactive and active

intensity components propagate in an ocean waveguide, including results from sea

trials, is found in [27, 25].

Other researchers have published at-sea results with acoustic vector sensor data.

In-water tests with two classes of sensors, including theoretical analysis and vector

sensor data, is presented by Silvia and Richards in [85]. Results from a deep ocean



vector sensor array are presented in [67]. Ocean noise measurements with acoustic

vector sensors, including spectrums, channel correlations, and analysis is included

in [2]. Test details using acoustic vector sensors to locate radiating sources on a

submarine hull are presented in [11, 10, 12]. Additional results with acoustic vector

sensor data are presented in [47, 60, 58, 86, 72].

Poulsen and Baggeroer have analyzed the performance of vector sensor arrays

in the presence of mismatch, both in array element position/orientation and filter

amplitude/phase. Effects of this mismatch on array beam pattern and array gain

in several ocean noise models are analyzed using a statistical analysis and Gaussian

perturbational model [78, 79, 80]. This work is also presented in Chapter 4 of this

thesis. Rapids analyzes the effect of phase mismatch between pressure and particle

velocity measurements using both additive and multiplicative (intensity) processing

[82]. Kitchens analyzed the effect of element position perturbations on a vector sensor

array [50].

A theoretical analysis of direction of arrival (DOA) parameter estimation with

vector sensors was performed by Nehorai and Paldi. They derived theoretical ex-

pressions for the Cramer-Rao bound on estimation errors of DOA parameters for a

vector sensor array in the presence of multiple directional sources. Also included

in their analysis are derivations of a mean-square angular error (MSAE) bound for

DOA estimation with a single vector sensor along with simple estimation algorithms

[74, 75, 76].

Hawkes and Nehorai expanded this analysis by quantifying some of the advantages

of vector sensors over hydrophones, including performance with Capon direction es-

timation and conditions (i.e., array shape, array size and SNR) under which the

qualities of vector sensors are most advantageous [41]. Furthermore, a vector sensor

array element location design procedure using geometrical constraints and Cramer-

Rao bounds on the azimuth and elevation DOA of a plane wave is introduced in

[42]. Kitchen also analyzed vector sensor performance bounds in [50]. The effect on

processing and performance of vector sensors near a reflecting boundary, such as the

hull of a ship or seabed, is analyzed in [39, 40, 44, 43]. Statistical auto- and cross-



correlations of vector sensor data channels in both isotropic and simple anisotropic

ambient noise fields are derived in [45], including a performance analysis of a line

array of vector sensors in these noise fields. Hawkes and Nehorai also introduced

wideband 3-D source localization algorithms using acoustic intensity processing with

a distributed set of acoustic vector sensors in [46].

As mentioned previously, vector sensors have directivity and array gain advantages

over omnidirectional hydrophones. Cray and Nuttall compare directivity performance

(array gain in 3-D isotropic noise) for the following four sensor combinations: uniaxial,

biaxial and triaxial particle motion sensors along with vector sensors (measurement

of acoustic pressure and full particle motion vector) [22]. Further directivity analysis

and comparisons between beamforming and intensity processing are presented in [17].

Baggeroer and Cox analyze the array gain of vector sensor arrays using non-isotropic

noise models [6]. Cox and Lai explore the endfire supergain of a linear array of vector

sensors, including both adaptive and deterministic signal processing approaches to

take advantage of this additional gain in practice [18]. Lai analyzed vector sensor

array performance in different noise environments[53]. D'Spain et. al. present a

study of how the additional array gain of vector sensors can be exploited in the

detection of low SNR signals while taking into account the levels of non-acoustic

noise in the particle motion sensors. All data channels should be included in optimal

detection algorithms as long as the levels of non-acoustic self noise is properly taken

into account [32]. This work also compares the beamforming output of a single vector

sensor with a single-tone source using conventional, minimum variance distortionless

response (MVDR) and white noise gain constrained MVDR beamformers.

Dyadic sensors are a generalization of acoustic vector sensors. They not only

measure the full acoustic particle motion velocity (three orthogonal components)

but also several spatial gradients of the velocity vector. A dyadic sensor can be

theoretically described by a second-order gradient of the acoustic pressure using the

Taylor series expansion [64]. The theoretical directivity of a single dyadic sensor in

isotropic noise is 9.5 dB compared to the 6 dB isotropic gain of a single vector sensor

[20, 21]. It is still undetermined how susceptible dyadic sensors will be to non-acoustic



self-noise.

Additive beamforming and intensity processing are the two most common signal

processing methods used for DOA estimation with vector sensors. Additional nonlin-

ear processing techniques called hippioids (products of cardioids and various powers

of hippopedes) are presented in [87]. Theory and results of processing both first-

and second- order cardioid are presented in [66, 65]. Additional simulation results

with adaptive MVDR beamforming for an acoustic vector sensor line array are pre-

sented in [9]. Lai developed and explored several different practical vector sensor (and

higher order sensor) processing algorithms [53]. [59, 34, 33, 89] illustrate examples of

acoustic vector sensors in air instead of water.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2, Vector Sensor Array Processing Basics, is a brief introduction to basic

vector sensor processing theory, including important definitions and notation used in

later chapters.

Chapter 3, Vector Sensor Array Response in Ocean Noise, presents a method for

generating theoretical vector sensor array covariance matrix expressions for arbitrary

sensor position and orientation configurations given an ocean noise or signal pres-

sure covariance function. The ocean models considered include 3-D isotropic noise,

directional noise, and normal-mode surface generated noise (often referred to as the

Kuperman-Ingenito ocean noise model). Also included are theoretical array gain cal-

culations and comparisons using example hydrophone and vector sensor arrays in

different noise fields.

Chapter 4, Effect of System Mismatch and Low Sample Support, explores vector

sensor array sensitivity and performance in the presence of system imperfections

and mismatch between the assumed and actual array configurations. This analysis

includes theoretical expressions for the mean and variance of the vector sensor array

spatial response using a Gaussian perturbation model. Also presented is the effect



of mismatch on other performance parameters, including array gain. In addition,

we discuss the "snapshot" issue in the context of vector sensor arrays. Results from

random matrix theory are used to analyze the effect of low sample support on the

sample covariance matrix.

Chapter 5, Robust Vector Sensor Array Processing, presents new adaptive algo-

rithms which are robust to system mismatch and low sample support constraints yet

customized to the unique characteristics of vector sensors.

Chapter 6, Practical Advantages of a Towed Vector Sensor Array, summarizes

the results of sea trials towing an array of vector sensors. Many desirable features

of vector sensors have been presented in the scientific literature, some of which have

been shown mainly in theory. We highlight some of the practical advantages of a

towed vector sensor array.

Chapter 7, Conclusion, presents a summary of the thesis' contributions to science

along with suggestions for future research.

Appendix A, Ocean Noise Calculations, contains derivations for the ocean noise

covariance expressions presented in Chapter 3.



Chapter 2

Vector Sensor Array Processing

Basics

This chapter introduces some of the basic theory important for processing vector

sensor arrays. Also included are definitions and notation used in later chapters.

2.1 Euler's Conservation of Momentum: Relation-

ship between Pressure and Particle Motion

The relationship between the acoustic pressure and particle velocity is described by

Euler's conservation of momentum equation,

8v 1
+v + -v = -Vp, (2.1)

at p

where p is the density of the medium, v is the acoustic particle velocity, and p is

the acoustic pressure. Euler's linearized conservation of momentum equation is then

given by
8v 1S--Vp. 

(2.2)at p

In the frequency domain, the time derivative becomes jwv = - 1Vp, where j = -

and w is the angular frequency. Accordingly, the expression for the acoustic particle



velocity as a function of spatial derivatives of the acoustic pressure in the x, y and z

directions is

1 1
v 1 a (2.3)

a

Many vector sensors directly measure the acoustic particle acceleration a instead

of particle velocity. Since a = T, Euler's linearized conservation of momentum

equation in (2.2) can be written as

1 1
a = Vp I  p (2.4)

p p ap

2.2 Geometrical Definitions

The position and orientation of a rigid body can be described by six parameters:

three for position and three for orientation [38]. This section describes some of the

geometrical definitions used in subsequent analysis.

2.2.1 Coordinate System

Several different three-dimensional coordinate systems exist. The most common in-

clude the rectangular and spherical coordinate systems. Both will be used in the

following analysis. In the rectangular (or Cartesian) and spherical coordinate sys-

tems, a position in three-dimensional space is parameterized by (x, y, z) and (r, 0, 0),

respectively. Note that a position in rectangular coordinates can be described as a

function of its position in spherical coordinates as

x = r sin 0 cos , (2.5a)

y = rsin 0sine (2.5b)



and

z = r cos 0. (2.5c)

Using this relationship, we define the unit vector u such that r = lul = 1. This unit

vector will be used to describe the response of a vector sensor. As a function of the

azimuth and elevation angles 0 and ¢, u can be written as

Ssin 0 cos 1
u = sin 0 ssin . (2.6)

cos 0

Figure 2-1 illustrates the angle conventions and unit vector u in spherical coordinates.

This convention for the azimuth and elevation angles will be used in all chapters in

this thesis except for Chapter 6 in which we use an alternate convention.

8 u

Figure 2-1: The unit vector u in the spherical coordinate system.

2.2.2 Sensor Orientation

For an omnidirectional scalar sensor such as the hydrophone, sensor orientation

doesn't affect performance. Due to the added measurement of the acoustic parti-

cle motion, however, vector sensor measurements must be placed in a global reference

frame, requiring knowledge of each sensor's orientation.

Vector sensor rotations can be modeled using Euler angles. Euler's rotation theo-

rem states that an arbitrary rotation in three dimensions can be uniquely described

by three parameters. Several different conventions are employed to describe such a



rotation. The xyz convention utilizes three ordered angular rotations about the x, y

and z axes to parameterize the rotation of a rigid body in three dimensions [38].

In this convention, the order of rotation is modeled as follows. The first rotation

is about the z axis with "yaw" or "heading" angle tze, and rotation matrix

- sin Cz,

0

sin Oz,

COS0 ,,
0

(2.7)

The subscript f refers to the eth vector sensor of an N element array, indexed from

zero (i.e., f = 0,..., N - 1). The second rotation is described by the "pitch" angle

Y,, about the y axis with rotation matrix

Cos V)Ye

0

sin 4Y,

- sin ,,

0

cos V,

(2.8)

Lastly, the third rotation is about

matrix

the x axis with the "roll" angle x,e and rotation

0

cosin ),

- sin < P

0

sin x,

cos Oe

(2.9)

The cumulative rotation is given by the product of these individual rotation matrices,

Re = RxeRyeRze

cos , cos Oz,

= sin x,, sin /)y, cos Pze - cos !xe sin Vzp

cos z , sin py, cos -z, + sin ~b, sin VPz~

cos Vy, sin iz,

sin /x, sin Cye sin ze, + cos V,, cos z,,

cos bx, sin CY, sin Oz - sin x, cos z,

(2.10)

- sin y, 1
sin , cos ,Ye

cos Vx, cos by,

2.3 Array Manifold Vector

Each vector sensor consists of one scalar pressure sensor and three orthogonal particle

motion sensors. Therefore, an N element vector sensor array is made up of 4N sensing

Ry e, =



elements (N scalar pressure sensors and 3N particle motion sensors).

If all vector sensors in an array maintain an identical orientation, the vector sensor

array manifold vector b (also referred to as the steering or direction vector) can be

represented by a direct matrix product

b = bp, ( h, (2.11)

where bp is the array manifold vector for a scalar pressure sensor array with an

equivalent spatial configuration and plane wave input, and h is the manifold vector

for a single vector sensor. These can be further expressed as

e-jkTro

e-jkTrl

b = - (2.12)

e-kTrN-1

and

h = , (2.13)

where r,= [ rx, y, rz, is the Cartesian position of the th array element and u

is the unit vector described in (2.6) pointed in the desired "look direction," param-

eterized by 0 and 0. Note that (2.13) is valid as long as the three particle motion

sensors are aligned with the x, y and z axes; otherwise u should be accordingly ro-

tated. The simple expression for h follows from Euler's conservation of momentum

equation described in Section 2.1. The wavenumber vector k is defined as

w 27r
k = -- u -- u, (2.14)

c A

where A is the wavelength of interest and c is the acoustic wave propagation speed.

In general, however, the vector sensors in an array will have differing orientations.

This can be accounted for in the manifold vector by using the rotation matrices found



in (2.7)-(2.10). Hence, a more general array manifold vector is given by

e-jkTroho

e-3kTrl h,
b = (2.15)

e-3kTrN - 
hN_1

where the resulting general manifold vector for the Lth vector sensor is

hi = (2.16)
Ru

and Re is defined in (2.10). Note that (2.15) cannot be represented by a direct matrix

product as in (2.11) since the manifold vector h, for each vector sensor varies with f

due to distinct sensor orientations. Note that (2.11) is a special case of (2.15) since

R, = I when all sensors are aligned with the x, y and z axes. (2.11) can also be used

as the array manifold vector even when the sensors are not initially aligned with the

x, y and z axes, as long as the particle motion measurement vectors are rotated into

a common coordinate system before processing.

2.4 Processing in the Same "Units"

The specific acoustic impedance Z is defined as the ratio of the acoustic pressure to

the particle speed (magnitude of the particle velocity vector) [35],

Z= p  (2.17)

Since p = Z IvI the pressure and particle speed can be processed in the same "units"

by scaling v by Z.

Clearly, Z will vary depending on the pressure field. For a three-dimensional plane



wave, the acoustic impedance becomes

Z = pc. (2.18)

For a spherical wave, however, Z = pc (R) where the wave number k = k =

and R is the radius of the sphere [35]. Unless otherwise stated, we will use the acoustic

impedance for plane wave propagation (as is often done in practice).

Note that in addition to scaling v by Z, one must also take into account the

phase of each of the particle velocity components when beamforming with a vector

sensor array. From (3.27a) in Chapter 3, we see that for plane wave beamforming, the

particle velocity components should first be scaled by -pc before linearly combining

the pressure and components of the particle velocity vector (alternatively, the pressure

measurements could be scaled by - ).

Many vector sensors directly measure the particle acceleration a instead of the

particle velocity. Since a = -- in the time domain, a = jwv in the frequency domain.

Therefore, the particle acceleration could be converted to particle velocity by scaling

a by 1. Combining this conversion factor with the scaling for v discussed above,

we find that in a plane wave pressure field, the particle acceleration measurements

should first be scaled by - q before linearly combining the pressure and components

of the acceleration vector. This scaling is further confirmed in (3.27b).

Table 2.1 provides a summary of the particle motion scaling factors necessary for

converting the particle velocity and acceleration vectors into the same units as the

pressure measurement (assuming a plane wave pressure field). The vector sensor array

manifold vector notation presented in Section 2.3 assumes that the particle motion

measurements have been properly scaled by the parameters in Table 2.1.

Table 2.1: Summary of particle motion scaling factors

Particle Motion Measurement Scaling Factor

Particle Velocity -pc
Particle Acceleration pcjW



2.5 Beam Pattern

Each vector sensor consists of one scalar pressure sensor and three orthogonal particle

velocity (or acceleration) sensors. Therefore, an N element vector sensor array is

made up of 4N sensing elements (N scalar pressure sensors and 3N particle velocity

sensors). The array weights can be represented by the 4N x 1 vector

W o

We

WN-1

(2.19)

where the 4 x 1 vector we contains the complex weights for the £th vector sensor,

W4e

W4e+1

WWe+2

W4e+2

94 
e-34e

4e+1 e-34+1

94e+2 e-3 4+2

g4e+3 -3134+3

Here, gm and m are the weight gain and phase, respectively, for m = 4,..., 4 + 3.

Let the first and the last three elements of we correspond to the pressure sensor and

three particle motion sensors, respectively.

The beam pattern or spatial response for a vector sensor array is computed in the

same manner as for an array of omnidirectional elements by taking the inner product

of the chosen weight vector with the array manifold vector,

B(O, ¢) = wHb. (2.21)

The direction vector b is a function of both 0 and 0. The weight vector w is typically

chosen to have unity response in a target direction defined by OT and OT, along with

a desired sidelobe response. The spatial response can also be explicitly written as a

(2.20)



summation over the individual vector sensor responses using (2.15) and (2.19) as

N-1

B(O, ) = e-jkr wHhj. (2.22)
e=0

This more explicit notation for B(O, 0) will be useful for our analysis of the effect of

system mismatch on the spatial response pattern of a vector sensor array in Section

4.1.

2.5.1 Special Case: Factorable Conventional Beam Pattern

Conventional beamforming weights for a vector sensor array are chosen to be the

array manifold vector described in Section 2.3 steered to a desired target direction

(symbolized by the subscript T) and scaled by -1 to maintain unity gain in the

"look" direction, i.e., w = 2wbT. Similarly, the conventional beamforming weights

for a hydrophone array are given by w, = -bp,T.

The resulting conventional vector sensor array spatial response is the product of

the conventional beam patterns for a single vector sensor and a hydrophone array

with the equivalent spatial sensor configuration, as shown below:

B(O, ) = 1bHb
2N

N-1

N Zekre 1 +uHRHR u e- jk Trr
2N e=o R,u

N-1
S1 3kT rt + UHRHRu] e - 3 k T r

e=o
N - I

()(' ) ( + U

-- b H  2h H h
-bpTbp) (hh)

= Bp (0, 0). (2.23)

B,(0, ) and B,(0, ) are respectively the conventional beam patterns for a hy-



drophone array and a single vector sensor. Note that the vector sensor beam pattern

will also be factorable into hydrophone and vector sensor components even when spa-

tial shading is used, as long as the spatial weighting is constant within each vector

sensor. The above result is analogous to the response product theorem which states

the that the cumulative spatial response of an array can be described as the product

of the response due to the spatial separation of the sensors and that of the individual

sensors (see [91]).

The conventional spatial response function for a single vector sensor is often re-

ferred to as a cardioid pattern due to its heart-like shape. In the spherical coordinate

system presented in Section 2.2.1, B,(0, 0) is shown to be

B,(0, ) = 1hHh (2.24)

1 (2 + cos (0 - OT) [1 + cos ( - T)] + cos ( + T) [1 - cos ( - T)2

To illustrate the factorability of the conventional vector sensor beam pattern, we

consider a linear, equally spaced vector sensor array. We assume that thirteen vector

sensors are spaced by A/2 along the x axis with the array steered to broadside in

the horizontal plane, 0 = 0 = 90. This array configuration was chosen to match

with the spatial configuration of the inner thirteen elements in the nested nineteen

element towed vector sensor array used for the sea data analysis in Chapter 6. Figure

2-2 illustrates Bp,(, q), B,(O, 4) and the product spatial response function B(O, 0).

Note that the conical ambiguity lobe for the hydrophone linear array is eliminated

at broadside for the conventional vector sensor array due to the null in the cardioid

pattern. Off-broadside, however, the null of the cardioid will not coincide directly

with the peak of the grating lobe, though significant attenuation is still attainted for

a fairly wide swath of ambiguity bearings (with performance degrading near endfire).

If additional grating lobe attenuation were needed off broadside, one could steer the

cardioid null to coincide with the ambiguous beam using non-adaptive, deterministic

techniques. In practical scenarios, however, it may be more desirable to use adaptive

techniques such as those discussed in Chapter 5 and demonstrated in Chapter 6.
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Figure 2-2: The conventional vector sensor spatial response is factorable into the prod-
uct of the beam pattern for a hydrophone array with equivalent spatial configuration
and the beam pattern for a single vector sensor, i.e., B(0, q) = Bp,(, q)Bv,(, 0). Note
that these beam patterns are a function of both 0 and 0, though the plots presented
here are a slice through the x - y axis horizontal plane with 0 = 900.

2.6 Array Gain

Array gain is defined as the ratio of the output to input signal-to-noise ratios, or

equivalently the ratio of the signal and noise gains, i.e.,

/ a2 
0 / 2 \

Array Gain SNRout ( iou)t \ in Signal Gain

SNRin (out Noise Gain'
\ in 

~
7in

where a2n, u2, (2i and 2out are the signal and noise powers at the input and output

to the beamformer, respectively. Let the array covariance matrix R be decomposed

into signal and noise components, R = R, + R,, where R, and R, are the signal and

noise covariance matrices, respectively. Given a set of beamforming filter weights w,

72 and 2 can therefore be written asSout arout

02 = WHR W (2.26a)

and
a2  = WHR w. (2.26b)
r 

t
out

The array gain must be referenced to the "input" signal and noise powers as seen



by a "single" sensor. In a homogeneous medium with a plane wave directional signal

in isotropic noise, the expected input signal and noise powers will be identical at each

of the array element locations. In a complex propagation environment, however, these

quantities may vary from sensor to sensor, leading to different definition conventions

for the input signal-to-noise ratio. One such convention could be the signal-to-noise

ratio at a specific sensor or reference location. In this thesis, however, we define the

input signal-to-noise ratio to be an average across the array, i.e.,

N-1
in - N f O (rk) (2.27a)

k=O

and
N-1

02 E 2 (rk) (2.27b)
k=O

where as (rk) and 2o (r,) are the average signal and noise powers at the kth sensor

position rk.

If the array filter weights are chosen such that (f = wHRsw = 02 (distortion-

less constraint), the array gain becomes the inverse of the noise gain,

2
Array Gain = I - (Noise Gain) . (2.28)

77out

Note that the expression for array gain in (2.28) is not valid when using imperfect

information about the system configuration. This is due to the mismatch between

the assumed replica vector and covariance matrices, resulting in corruption of the

distortionless constraint (i.e., aSot osn). The effect of system mismatch on array

gain is analyzed in Section 4.2.



2.6.1 Optimal Array Gain

The maximum array gain (or minimum noise gain) is attained when using the optimal

MVDR or Capon beamforming weights given by

R- bT
w lt =bRb (2.29)

W = bHR 1bT,

where bT is the array manifold or direction vector in the target "look direction".

Using (2.26b), the optimal or minimum expected array output due to noise is then

T7out,opt opt wopt

( bHR
1  R-1bT

b,H 1bT 
bHR-lbr

bHRT lb7

(bHR-lbT)
2

= (bHR~-l1bT)-  (2.30)

Since the MVDR weights in (2.29) feature a distortionless constraint, the maximum

array gain is found by substituting (2.30) into (2.28),

max (Array Gain) = (min (Noise Gain)) - 1 = inbHRlb. (2.31)

Note that the array gain will be degraded in the presence of mismatch, when using

sub-optimal weights or when the complete covariance statistics are unknown. In

practice, the covariance matrix R must be estimated using a finite amount of data,

resulting in array gain degradation.

2.7 Chapter Summary

This chapter presents a basic introduction to the theory of vector sensor processing,

including notation and definitions useful in subsequent analysis. Euler's conservation

of momentum equation describes the theoretical relationship between the pressure



and particle motion measurements. Also included are geometrical definitions for

describing the position and orientation of each vector sensor. The array manifold

vector for a vector sensor array is generated using the spatial separation of the sensors

and the single vector sensor response described by Euler's equation. It is important

to process the pressure and particle motion in the same units; this is accomplished by

scaling by the acoustic impedance. Furthermore, methods and notation for computing

vector sensor array gain and spatial response are described.



Chapter 3

Vector Sensor Array Response in

Ocean Noise

3.1 Vector Sensor Array Covariance

It can be very important to be able to derive an expression for the array covariance

matrix R, both for data simulation and the analysis of potential adaptive processing

algorithms, most of which rely on an estimate of R. Most vector sensors directly mea-

sure either the particle motion velocity or acceleration. We will address the covariance

structure of both types of sensors. A few literature references which investigate noise

correlations for vector sensors include [45, 22, 17, 32, 53].

3.1.1 Vector Sensors Measuring Particle Velocity

We define a 4 x 1 vector containing the pressure and particle velocity at location

rk = Xk k zk as

p (rk) Pk

Zk p(rk) Vx (rk) vxk (3.1)
v (rk) vy (rk) Vyk

v~ (rk) Vzk

39



where vx,, VUk and Vzk are the x, y and z components of the particle velocity at

location rk.

Using the equation for

pected covariance between

is shown to be

= E

1

1

1

Euler's conservation of momentum found in (2.3), the ex-

zk and z, as a function of the pressure correlation function

PkP; PkV*e PkV PkV

VXkP V VXkV., VkVye VxkVz

Vykp * * v *
t VYkVxe VYk Y Yk Uze

VZkP Vzk Vxe Vzk Vy Ve Vzk Vz,

PkPf Pk ( a-P
~( 1 0k)p, ( 1k ( 1 )*

p-p k ( j ( o-- p ) Pk ( j7p e
(JP k p ))p, ( Jp O ) ( l ipo (eP)*

3JP Yk p k  3p -kp k  30p JWeJ z
0 1 0 2• 1 02 1 0
3p O zk kPe jw p 3 -xk:

p
Y

k  
wp -eI

p e K

P0 1 02 0 1 a )
P ( jWP e P 3Wp 6e p

S1 0 P 1 0 * ( 1 2( 10)

jpokWp Oxe k jcp -ye jP xkP 3WP -ze p

Pk 1 a * a P a
_L _ L Pk L Lp d * __L Lk) ( 3wp dLPE)_jPcok ~P a3coJP 19cojP z1 oa Ia 1

jp _e wp p ye J LOP CPZE

a 1 a2 1 a2 1 (9

P Czlx j p'2 x -e a p O aze Kp ze
a 1 0

2  1 02  1 a
2

P Oyk W2p2 Oyk LL)2p2 Y ck OWY W2p
2 0 y k Oz

f

0 1 a2  1 92  1 a2

p 0zk 
x

2p2 Oxea k Wp20Oyeazk 02 2 2 ZkOZe

(3.2)

Therefore, the auto- and cross-correlation of the pressure and particle velocity can be

represented by scaled spatial derivatives of the spatial pressure covariance function

Kp, (rk, re) = E {p (r) p* (re)} = E {PkP,}. This approach was introduced by Bag-

geroer and Cox in [17]. General expressions for spatial pressure covariance functions

using spherical harmonic decomposition are presented in [5, 16].

The expression for zk found in (3.1) describes the four acoustic channels of a vector

sensor at location rk with the particle velocity sensors aligned with the x, y and z

axes. If, however, the vector sensors in the array have been independently rotated,



then the 4 x 1 vector for the pressure and particle velocity of the kth vector sensor

becomes

[p (rk) 1
Xk =

Rkv (rk) iL 0

where the orientation of the kth sensor is described

found in (2.10). Furthermore,

E {xk~xH} E
O Rk]

1 0  H
0 R,

EZ {zZHJR,
Rk ] E(zk4'

0
0 zk, (3.3)
Rk j

by the Euler rotation matrix Rk

1 0
0 Rj

H}
R,

0

Rk
(3.4)

The 4N x 1 vector of the pressures and particle velocities of N spatially separated

and independently rotated vector sensors (N element vector sensor array) is

X1

X 2

XN

(3.5)

Given an expression for

can calculate an expression

array,

the spatial pressure covariance

for the covariance matrix of an

function Kp (rk, r,), one

N element vector sensor

E{X1
X H } E {xX H }

R" E XXH} E{xXH} E {x 2 xH}R=E(XXH)2

E {xXH) E {xXH)

If Kpp (rk, r,) is spatially differentiable, one can derive

S E {Xl X H

... E {x2 x}

.. eE{xNx }

theoretical expressions

(3.6)

for the



array covariance matrix R. Otherwise, numerical methods can be used to approxi-

mate the spatial derivatives.

3.1.2 Vector Sensors Measuring Particle Acceleration

We now consider an array of acoustic vector sensors which directly measure particle

acceleration. Similar to the notion used in Section 3.1.1, we define a 4 x 1 vector

containing the pressure and particle acceleration at location rk as

p (rk)
qk

a(r,)

p (rk)

ax (rk)

a, (rk)

az (rk)

axk

ayk

azk

(3.7)

Using (2.4), the expected correlation between qk and q, as a function of Kpp (rk, re)

is shown to be

E {qkq H} =E

PkP

akP

azkp

1 0
p Oxk

1 0
P djYk

1 0

P Ozk

R Pkax,

a a*
Sayk axf

Sazk a*

1 a
p axe

1 02
p2 OXkOXe
1 02

p2 axpyek

1 02
p2 xeOzk

Pka*

a a*aXk Y

ayk ay

azkay

1 0
P aye

1 02

P2 XkOyaY
1 02

p2 
0

Yk aye

1 02
P2 OYeOzk

Pkazeax e ae

a a*Xk at

a a*Yk Zj

azk a

1 0
-2 aze

1 02

P2 OxkOz
1 02

p2 Ozk /

(3.8)

Kpp (rk, r) .

Since a = jwv, E {qkq H can also be written as a function of E {zk H}:

E {qkq} =

-j0:
2

2

02 
2

-iw

O
2

3
2

)
2

0.
2

L
2

E {zk(H}. (3.9)



As before, the expression for qk describes the four acoustic channels of a vector

sensor with the particle velocity sensors aligned with the x, y and z axes. If, however,

the vector sensors in the array have been independently rotated, then the 4 x 1 vector

for the pressure and particle acceleration of the kth vector sensor becomes

Xk p (rk) 1 0 (310)x, = = q, (3.10)

resulting in the covariance structure

E {xk xH} [ ] E { q qH' (3.11)
0 R, O R,

Note that xk is defined slightly differently in this section than in Section 3.1.1. The

4N x 1 vector of the pressures and particle accelerations of N spatially separated and

independently rotated vector sensors is defined as in (3.5) with the covariance matrix

of an N element vector sensor array as described in (3.6).

3.1.3 Covariance after Scaling by Acoustic Impedance

As discussed in Section 2.4, the particle motion measurement must first be properly

scaled before beamforming. In order to incorporate this scaling factor into vector sen-

sor array covariance matrix calculations, we define the following 4 x 1 pressure/particle

motion vector

S p (r) p (r) (3.12)
-pc v (rk) - a (rk)

The scaling factors used in (3.12), necessary for converting the particle velocity or

acceleration vectors into the same units as the pressure measurement, come from

Table 2.1. As described in Section 2.4, the specific acoustic impedance Z will vary

depending on the pressure field. Here, we use the acoustic impedance for a plane

wave pressure field with Z = pc.

The expected correlation between mk and m, can be expressed as a function of



E {zkz H } in (3.2), E {qkq H } in (3.8) and Kp (rk, re):

1 -pc

-pc p2c2

-pc p2 C2

-pc p2C2

-pc

p2C2

p2C2

p2C2
P 2C2

-pc

p2C2

2C2

p2C2
P 2C2

1 pc pc pc
3J) jw jw

pc p2 2 2 2 p2 c
2

3w ,,
2  

2 w2

pc p22 2 2 2 c2
PC2 2 2

2  
2 
2

jw W2 2 W2
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~w Pc P

E { zkz} ,

SE {qkq H }
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3 w axe 3w aYe
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c a c2  a2  c
2  a2

JW aYk W2 aX ayk W
2 0 y k y

c a C2 a2  c2  a2
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jw aze
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w2 aXkaZf
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W2 akaZe
C2  a2

2 azkze

Kpp (rk, re) , (3.13c)

where 0 is the element-wise product operator (often called the Hadamard or Schur

product).

As before, the orientation of the kth vector sensor is described by the rotation

matrix Rk, resulting in the 4 x 1 pressure/particle motion vector

Xk [ 1 0
mk

0 Rk
(3.14)

and in the covariance structure

E {xxH'} = 1
0

E{mke} 0[ Rk

0

R,

Note that xk in (3.14) is defined slightly differently than in Sections 3.1.1 and 3.1.2.

E {mmH} =

E {mm H } =

(3.13a)

and

(3.13b)

(3.15)



The 4N x 1 vector of the pressures and particle motions of N spatially separated and

independently rotated vector sensors is defined as in (3.5) with the covariance matrix

of an N element vector sensor array as described in (3.6).

3.2 Ocean Noise and Signal Models

As shown in Section 3.1, the necessary pressure and particle velocity cross- and auto-

correlation calculations can be made by taking spatial derivatives of the spatial pres-

sure covariance function Kpp (rk, r,). Specifically, these spatial derivatives become the

integral aspect of calculating E { zk H }, which will then be pre- and post-multiplied by

rotation matrices as in (3.4) to accommodate arbitrary sensor orientations, resulting

in the final calculation of R as in (3.6).

In this section, we present different ocean noise and signal models. Also included

are the necessary spatial derivatives and/or covariance expressions for the pressure

and particle velocity (i.e., E {zkH }) needed for direct theoretical vector sensor array

covariance matrix calculation.

3.2.1 3-D Isotropic Noise

3-D isotropic noise is a common model for ambient noise in the ocean. In this section,

we derive expressions for the vector sensor array response in isotropic noise.

Pressure Correlation Function

The 3-D isotropic noise model is defined as the superposition of plane waves propagat-

ing from all directions with constant statistical power level. The associated pressure

correlation function can be shown to be (see [5])

Kp (rk, r,) = So (w) sine (kR) , (3.16)

where sinc(x) - sin(x)/x = jo(x) and So (w) represents the isotropic noise intensity

as a function of frequency. Note that jn(x) for n = 0, 1, ... are spherical Bessel



functions of the first kind [4] (see Appendix A.1.2). Furthermore, k = kl = w/c is

the wavenumber and R is defined as the distance between positions rk and r,, i.e.,

R = rk - rj

= Ax 2 + A 2 + A 2,

AX = Xk - X,

Ay = Yk - Ye

(3.17)

(3.18a)

(3.18b)

Az = z k - z . (3.18c)

Vector Sensor Covariance in 3-D Isotropic Noise

The pressure/particle velocity covariance expressions for zk are shown in Appendix

A.3 to be
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(3.19)

where

and

E {zzz}

k 7



Similar expressions for the correlation of pressure and particle motion in 3-D isotropic

noise are presented in [45, 32]. The pressure/particle acceleration covariance expres-

sions for q, directly follow the results presented in (A.38) and are presented in Ap-

pendix A.3.2. It is also insightful to examine the pressure/scaled particle motion

covariance expressions for mk,

1000

00 01 0 0 0

jo(kR) j ji(kR)

E(mkm S (w) jj. (kR) (ji(kR) - -_ j 2 (kR)

j j (kR) X- AYj2(kR)

j ji(kR) AX- j2J(kR) k

j ji (kR) j-. j (kR)3 R2 3 2 ----3 R 2

A 2y(kR) Rj23(kR)

11(kR) - j 2 (kR)) A Azj2(kR)

'j2(kR) j(kR) - 2 j2(kR)

(3.20)

Note that when the pressure and particle motion terms are presented in (3.20) us-

ing the same "units" after scaling by the acoustic impedance, the noise intensity or

variance of each of the particle motion components is one-third the noise intensity of

the pressure component. This feature enables the 6 dB array gain for a single vector

sensor in 3-D isotropic noise.

Examples of Array Gain in 3-D Isotropic Noise

Comparisons between vector sensor and hydrophone arrays need to maintain cogni-

sance of system priorities. Several different parameters and characteristics can be

considered when contrasting different arrays. Important issues to consider include

performance characteristics (i.e., spatial response and array gain), robustness to sys-

tem mismatch and low-sample support, practical implementation issues, relative noise



levels and system monetary or computational costs.

Some of these system considerations may be more or less important under dif-

ferent design and implementation scenarios. For example, if monetary cost is the

most pressing design constraint, one could compare the performance of different hy-

drophone and vector sensor arrays of similar total cost. In some cases, the total length

of the array can be important (some platforms cannot tow an array with excessive

length or drag), suggesting comparisons between potential arrays with similar acous-

tic apertures. In some cases, one may want to be careful to compare hydrophone and

vector sensor arrays using a similar numbers of sensors. However, since a single vector

sensor has four acoustic channels, comparisons can be made between an N element

vector sensor array and either an N or a 4N element hydrophone array (depending

on design priorities). If one were interested in a towed array application and two

of the desired characteristics were reduction of clutter and elimination of left/right

conical ambiguity, then a reasonable approach would be to compare the performance

and practical issues inherent to linear vector sensor and twin-line hydrophone arrays.

Twin-line arrays have been proposed as an alternate solution to the left/right ambigu-

ity of a linear array of omnidirectional elements. An exhaustive comparison between

hydrophone and vector sensor arrays is not presented in this thesis, but attempts are

made to present some of the relevant differences, including a few representative types

and corresponding features of hydrophone and vector sensor arrays.

Figure 3-1 displays the maximum array gain in 30 dB isotropic noise relative

to 0 dB background noise as a function of both azimuth and elevation angles for

different hydrophone (a)-(c) and vector sensor (d)-(f) arrays with different spatial

configurations. Given the noise covariance matrix R,, one can calculate the maximum

array gain using (2.31). All linear arrays featured in (a), (c), (e) and (f) are aligned

along the x-axis with different numbers of sensors and inter-element spacing d. The

twin-line array in (b) is positioned in the horizontal x-y plane with an inter-element

spacing of d = A/2 along each line. The two line arrays are separated by A/4 for

optimal left/right resolution. More specifically, each of the lines are parallel to the

x-axis and offset from the axis by ±A/8 in the y direction.



50 50

100 100

150 150

0 100 200 300 0 100 200 300

(b) (e)
0 0

50 50

100 100

150 150

0 100 200 300 0 100 200 300

(c) (f)
0 0

50 50

100 100

150 150

0 100 200 300 0 100 200 300

2 4 6 8 10 12 14 16 18 20 22

Figure 3-1: Maximum array gain in 3-D isotropic noise for the following arrays: (a)
linear hydrophone (N = 13, d = A/2), (b) twin-line (N = 52, d = A/2, A/4 spacing
between lines), (c) linear hydrophone (N = 52 with 12A aperture, i.e., d = 12A/51),
(d) single vector sensor, (e) linear vector sensor (N = 13, d = A/2), (f) linear vector
sensor (N = 13, d = A).
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As expected, the optimal array gain for a single vector sensor in 3-D isotropic

noise is shown in (d) to be 6 dB. Note that the optimal array gain for the thirteen

element linear hydrophone array in (a) is 10 log(13) = 11.14 dB for all steering angles

since the noise is uncorrelated across hydrophones when d = A/2. Similarly, the

maximum array gain for a 52 element linear hydrophone array with d = A/2 would

be 10 log(52) = 17.16 dB. For many other spacings including the d = 0.235A spacing

in (c), however, there will be correlations, resulting in "endfire supergain" as it is

commonly referred to in the literature (see [14]). The d = 0.235A spacing for the linear

hydrophone array in (c) results in a total acoustic aperture length of 12A, the same

as the thirteen element vector sensor line array in (f) with d = A/2. Furthermore,

the arrays featured in (b), (c), (e) and (f) each have 52 acoustic channels and would

therefore have similar constraints in a snapshot limited environment. The array gain

in each of these cases is on the order of 10 log(52) = 17.16 dB but with some variation

over steering angle. The linear vector sensor array with d = A/2 in (e) and the 52

element hydrophone array with d = 0.235A spacing in (c) both attain their spatial

maximum array gain at endfire. Note that while the noise is uncorrelated for a linear

hydrophone array with d = A/2, the same is not true for a vector sensor array (see

[18, 68]). The twin-line array and the linear vector sensor array with d = A have higher

gain at broadside, where the latter observation agrees with analysis by D'Spain et.

al. in [32].

Figure 3-1 suggests that N element vector sensor arrays and 4N element hy-

drophone arrays perform similarly in 3-D isotropic noise. Vector sensors have distinct

advantages over hydrophone arrays, however, in more directional noise fields as is

illustrated in Section 3.2.2.

3.2.2 Directional Noise and Signal Model

Directional signal and noise are often modeled using plane wave propagation. In this

section, we derive expressions for the vector sensor array response in a directional

acoustic field.



Pressure Correlation Function

The following derivation of the directional spatial pressure covariance function (plane

wave propagation) closely follows that by Baggeroer in [5].

The pressure of a plane wave propagating in a direction defined by the vector e

with propagation speed c can be modeled as

e'rC

where po(t) is a random process measured at a reference position r = 0. The signal

po(t) could be either a desired signal or "noise". Assuming po(t) is a stationary random

process, we can represent the space-time pressure correlation function of p (t, r) as

R, (tl, t 2 ,rk, r,) = E {p (tl, rk) p* (t 2 , re)}

= E {o (t 1 - e rk eTre

= R, (t - t eT(rk- re))

= Ro At - eAr (3.22)

where Rp has been rewritten as a function of time and spatial differences, At = tl - t2

and Ar = rk - r, and Rp,, the time correlation function of po(t); in summary,

R (At, Ar)= R (At - eAr) (3.23)

By taking the Fourier transform of R, (At, Ar) with respect to At and using the

result in (3.23), we obtain the desired frequency spatial correlation function,/0
Kpp (rk, re)= j Rp (At, Ar) e- AdAt

= Rp At - eTAr) e AtdA t

SSo (0 ) . (3.24)



Here, Sp, (w) is the Fourier transform of Rp, (At), the temporal correlation function

of the pressure at reference location r = 0. In other words, Spo (w) is the power

spectral density of po(t), z.e.,

Sp. () = Rp. (At) e-"wt dAt. (3.25)

Therefore, (3.24) shows that the pressure correlation due to a plane wave results in

a simple phase shift. Note that we have suppressed the dependence on w in Kpp (rk, r,).

Instead of using the vector e, the direction of propagation, it is also common to express

the phase shift as a function of u = -e, a unit vector pointing in the direction of

arrival (DOA) of the plane wave, as in (2.6). It is also common to use the wavenumber

vector k defined in (2.14), leading to the following pressure covariance function for a

plane wave in a homogeneous medium:

Kpp (rk, r,) = Sp, () e -jkAr. (3.26)

Vector Sensor Covariance in Directional Noise Field

After taking the spatial derivatives in the x, y and z directions, the resulting pres-

sure/particle motion covariance has a simple rank-one structure. The expressions for

the covariance of z, (pressure/particle velocity), qk (pressure/particle acceleration)

and mk (pressure/scaled particle motion) are respectively

E {zkz H } = [ u 1 PuT SI (w)e-jkTAr (3.27a)
pc

E {qkq'} = 1 T So ()e -jk~ A r  (3.27b)
jw U pc

and

E{mkmH} [ 1 uT ] S () e-jkT Ar. (3.27c)
u



Note that in spherical coordinates, the unit vector pointing in the direction of the

incoming plane wave is

sin 0 cos 1
u = sin 0 sin . (3.28)

cos 0

Details of the derivation of (3.27a)-(3.27c) are included in Appendix A.2.

Examples of Array Gain in Directional Noise

Figure 3-2 illustrates the maximum array gain in an example directional plane-wave

noise field as a function of both azimuth and elevation angles for different hydrophone

(a)-(c) and vector sensor (d)-(f) arrays with different spatial configurations. The

array configurations are the same as those examples described in Section 3.2.1 and

Figure 3-1. The directional noise field in this example is composed of three plane-wave

directional interferers at 0 = 900 and 0 = 50', 2100, 2650 with powers of 0, 20 and

10 dB, respectively (relative to 0 dB background white noise). The three interferers

were chosen to arrive on the horizontal plane with constant elevation angle 0 = 900 so

that slices along this contour of constant elevation would include all three directional

interferers. These slices along 0 = 90' will be used in subsequent analysis.

In Figure 3-2, we observe that the vector sensor arrays far outperform the hy-

drophone arrays for this directional noise field. The single vector sensor in (d) has a

higher optimal array gain for most steering angles than the thirteen element linear

hydrophone array in (a). The single vector sensor even has comparable array gain

with the 52 element hydrophone arrays in (b) and (c) for most steering angles. It is

also of interest to note that since the single vector sensor doesn't have enough degrees

of freedom to simultaneously steer a null at each of the three interferers, the MVDR

weights must place greater emphasis on nulling the loudest interferer at 0 = 2100.

The thirteen element vector sensor arrays with d = A/2 and A in (e) and (f), respec-

tively, have significantly higher array gain in directional noise for almost all steering

angles than the 52 element twin-line and linear hydrophone arrays in (b) and (c),

respectively.
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Figure 3-2: Maximum array gain in directional noise for the following arrays: (a)
linear hydrophone (N = 13, d = A/2), (b) twin-line (N = 52, d = A/2, A/4 spacing
between lines), (c) linear hydrophone (N = 52 with 12A aperture, i.e., d = 12A/51),
(d) single vector sensor, (e) linear vector sensor (N = 13, d = A/2), (f) linear vector
sensor (N = 13, d = A). There are three plane-wave interferers at 0 = 900 and
0 = 500, 2100, 2650 with powers of 0, 20 and 10 dB, respectively (relative to 0 dB
background white noise). 54
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Slight degradation in the array gain occurs for the linear vector sensor array with

d = A in (f) for those steering angles which coincide with the locations of the conical

aliasing lobes corresponding to a linear hydrophone array with an identical spatial

configuration. It should be noted, however, that even at these steering angles in

(f), the array gain is significantly better than for ANY steering angles in (b) and (c),

demonstrating the ability of a vector sensor array to "undersample" the acoustic wave

without spatial aliasing. This is demonstrated using towed vector sensor array data

collected at sea in Chapter 6. In (f), we see that the vector sensor array performs

extremely well for element spacings which would be twice the spatial Nyquist sampling

rate for a hydrophone array. This performance can of course be degraded in the

presence of significant system mismatch. The effect of mismatch on array gain and

spatial response will be analyzed in Chapter 4.

3.2.3 Kuperman-Ingenito Ocean Noise Model

Pressure Correlation Function

The Kuperman-Ingenito ocean noise model is a surface noise model developed using

normal-mode theory [52, 48] with the pressure correlation function

Kpp (rk, r) =E {p (rk) p* (re)}

7Tq 2 2 a ~1 [ qm (z,)]2 'PM (Zk ) m (ze) Jo( Km R ), (3.29)2p 2k2  am~m

where Jo(.) is a Bessel function of integer order (see Appendix A.1.1), q2 is the

surface source strength, z, is a depth near the sea surface (z, is small and nonzero,

but arbitrary), p is the density of water and k = w/c(z,) is the wavenumber at the

sea surface. Note that the propagation wavenumber of the mth mode is given by

krm = 1 m + iam with rcm, a > 0. Im(z) is the mth mode function. The radial

distance from rk to r, is given by

R = Ax 2 + Ay 2. (3.30)



Note the difference between (3.17) and (3.30); the R used in Section 3.2.1 is the

distance between rk and r,, whereas the expression for R in this section is the radial

distance in the x - y plane. As Before,

Ax = Xk - X (3.31a)

and

Ay = Yk - Ye. (3.31b)

Important Notes on Kuperman-Ingenito Noise Intensity

Note that the noise intensity term is normalized to yield a certain pressure level Q in

an infinitely deep ocean [48, 83], such that

q2( )= 16 216Xz,
(3.32)

As stated previously, z, is small and nonzero, but arbitrary; this is partly because

m,,(0) = 0 for all m. Note that the Kuperman-Ingenito pressure covariance function

can then be rewritten as

1 [m(z,)]2 m (Zk) m (Z )JO KmR)
iq2 1

S Q2 1R

2 ~ Sn,(,2 m (km Inlz 0 J(m
Zp"" K1otZ am m Mm

Q2 1

32p 2k2  aem M
OM l~

zs - 0 [
'Im(Zk) m(Ze) J 0 (KmR).

(3.33)

The expression in the brackets of the last line of (3.33) is the forward difference

Kpp (rk, r) =

-



approximation to the derivative evaluated at z = 0, such that

K~p (rk, re) Q [0Im(Z)IZ = 2 m (Zk) m (Ze) Jo (Km R)

2a 1

32p2 k 2 E amKm (0) 2 m Im(Zk) m(ze)Jo(KmR).
m

(3.34)

The expressions in (3.33) and (3.34) are useful when implementing and interpreting

the Kuperman-Ingenito surface noise model, however the expression in (3.29) is used

in the following analysis.

Vector Sensor Covariance in Kuperman-Ingenito Ocean Noise Model

The pressure/particle velocity spatial covariance terms

Ocean Noise Model are summarized as follows:

E {zk H} = E

PkP'

VykPe

VzkPe

VXk V*

Vyk Ux

VZ k Vxf

PkV *

Vxk Vy;

V k y*
Yk YP

VZk VY t

in the Kuperman-Ingenito

PkVe

Vxk Vz

Vzk ze

(3.35)

where

E {pkpf} = { rq
2 

12 [qm(Zs)]
2 

q'm(Zk)z m(Z) R 0

m

q2 S 1[(amKm )2 (mZk) mze)Jo(mR) R = 0,

E {pk P, = E f VXkP}

0 R=0
- ' q2 [c(zs)] 2Ax - ['m(z8 )]2 'm(Z)m(e) J1(mR) R 0,

2p
3 m3 R

m

(3.36a)

(3.36b)
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E fVXkVy*}= E~
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and

E {(vz, z} =

rq 2[C(Z)] 2  1
2p

4
w
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E nm
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7q
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[C(Zs)]2 ()] 2
m()) m

R )

Note that the derivation of (3.35)-(3.36m) is presented in Appendix A.4.

Since the mode functions are often solved for and represented numerically, we

must approximate the depth derivatives found in (3.36d), (3.36g) and (3.36i)-(3.36m).

R=0
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Three methods of approximating the depth derivatives include the following:

8 W (zk + (k 2
Central Difference : (zk) 2 2 (3.37a)

')z, Az
, ( (zk 7+ aZ - (k)

Forward Difference : T(z) (3.37b)
dz, Az

and
D ( - (z -z ).Az)

Backward Difference : (z) (337c)) (
aZ, Az

The covariance expressions for qk (pressure/particle acceleration) and mk (pres-

sure/scaled particle motion) in the Kuperman-Ingenito surface noise model can be

directly written as a function of (3.35)-(3.36m) using (3.9) and (3.13a).

Due to a lack of time, simulations and corresponding comparisons between differ-

ent array types and configurations using the Kuperman-Ingenito ocean noise model

are not included here. The expressions presented in this section, however, will be

useful for completing an array design tradeoff analysis in the future. It is clear that

N element vector sensor arrays (with 4N data channels) will outperform 4N sensor

hydrophone arrays in this directional noise field (as was the case for plane wave direc-

tional noise in Section 3-2). In Chapter 6, we observe significantly increased levels of

array gain in surface generated noise fields when using full vector sensor rather than

hydrophone-only processing.

3.3 Chapter Summary

A method is presented for computing theoretical expressions for vector sensor array

covariance matrices in different ocean noise models by taking spatial gradients of

the pressure correlation function. Expressions are derived in three different noise

models: 3-D isotropic noise, plane wave directional noise and a realistic normal-mode

surface generated noise model (often referred to as the Kuperman-Ingenito ocean noise

model). Using theoretical covariance expressions for isotropic and plane wave noise

models, optimal array gain calculations are made for representative hydrophone and



vector sensor arrays. The more directional the noise field, the greater the advantage

of using vector sensors over hydrophones (in terms of optimal array gain).
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Chapter 4

Effect of System Mismatch and

Low Sample Support

The practical implementation of any sensing platform is susceptible to imperfections.

This "mismatch" or difference between the assumed and actual sensor configuration

can significantly impact system performance. Mismatch can have several contributing

factors: imperfections in the manufacturing of system components, and incomplete

or erroneous knowledge of the physical environment or system configuration. In

addition, sensing environments are often highly dynamic; as a result, environmental

or system parameters must often be estimated, resulting in mismatch. Characterizing

the causes and effects of mismatch in a given implementation can often be quite

difficult. Nonetheless, the design and processing of a sensing platform should be

robust to these imperfections.

4.1 Effect of Mismatch on Spatial Response

All arrays are susceptible to perturbations in array element locations, however vector

sensor arrays are also sensitive to changes in sensor orientation. This is due to the

fact that the particle motion measurement of a vector sensor must be placed in a

global reference frame. Gilbert and Morgan developed a statistical analysis of the

effect of system mismatch on spatial response (beam pattern) for an array of scalar,



omnidirectional elements [37, 91]. In this section, we include a vector sensor extension

to their analysis by including sensor orientation perturbations. Theoretical expres-

sions for the mean, bias and variance of the vector sensor array spatial response are

derived using a Gaussian perturbation model, with excellent comparisons between

theory and simulation. Such analysis leads to insight into theoretical limits of both

conventional and adaptive processing in the presence of system imperfections. One

noteworthy result is the variance is now a function of steering angle. Additionally, the

vector aspect of the array "dampens" the effect of array mismatch, enabling deeper

true nulls.

4.1.1 Mismatch and Perturbation Model

The analysis by Gilbert and Morgan modeled perturbations in the gain and phase

of filter weights, along with unknown differences between the true and measured

position of sensor elements. We add rotational mismatch to this model. A Gaussian

distribution is then used to characterize all perturbations. In the following model and

analysis we use the notational superscript n to refer to the nominal system parameters.

Filter Perturbations

The true filter weights can vary from the assumed or nominal weights by both a gain

and phase perturbation. This can be due to variation in gain and phase in the array

data channels and/or calibration errors. The actual weights can be modeled as

wm= g (1 + Agm) e- ( 0 n + m), m = 0, 1,...,4N - 1 (4.1)

where Agm and A3, are the gain and phase perturbations of the mrrth filter weight,

respectively. Similarly, gn and 0/3 are the gain and phase of the nominal weights

w , = ge - 31 for m = 0, 1,..., 4N - 1. By incorporating these filter perturbations



into the notation in Section 2.5, the actual array weight vector can expressed as

Wo

w w , (4.2)

WN-1

where the actual complex weights for the £th vector sensor element are represented

by

W 4 fe

we = = 4 Wn Awe. (4.3)
W4e+2

W4e+3

Note that 0 is the element-wise product operator, and Aw, is a vector containing all

of the perturbation information for the £th vector sensor weights, i.e.,

(1 +- Ag 4e) e - j A 4

(I + IA4e+l) C- j A 4f+ I

Awe - (1 + Ag41+l) eA 3 04f+1Awe = (4.4)
(1 + Ag 4 R+2) e

- jA04(
+ 2

(1 + Ag4e+3) e-j 4e+3

Array Location Perturbations

In virtually all practical scenarios, there will be errors in the measurement or estima-

tion of array element locations. The actual location of the /ih sensor is

re = r + Are= r-  + Ar (4.5)

r n + Arz

where rn,, re and rn are the nominal x, y and z locations with corresponding posi-

tional perturbations Arx, Ary and Arz .



Array Element Orientation Perturbations

As described in Section 2.2.2, vector sensor orientation perturbations can be modeled

using Euler angles. Without loss of generality, we assume in our mismatch analysis

that all vector sensors in the array maintain an identical nominal orientation with

the three particle motion sensors aligned with the x, y and z axes. Using the notation

defined in Section 2.3, the nominal vector sensor manifold vector is

1

h" [1] sin 0 cos (4.6)h n = -(4.6)
u sin 0 sin ¢

cos 0

which is independent of £. The true orientation of each sensor will of course vary due

to pitch, roll and heading rotational perturbations. These can be described by the

Euler rotation equations (2.7)-(2.10), resulting in the "true" manifold vector for the

it h sensor:

h = . (4.7)
Ru

In the following mismatch analysis, we will use <z, y, and x,, as the heading, pitch

and roll perturbations, respectively.

Statistical Perturbational Model

We model the perturbations described above as statistically independent, zero-mean

Gaussian random variables. In this model, filter weight gain and phase mismatch

levels are described by the standard deviations parameters o- & ao, respectively.

Intensity of positional perturbations in each of the x, y and z directions are parame-

terized with standard deviation a,. Similarly, orientational perturbations about each

of the x, y and z axes are each parameterized with standard deviation oap. More



explicitly, the perturbations are distributed as

(4.8a)

(4.8b)

(4.8c)

Agm N (0, ) ,

a[m , N (0, 07) ,

Ar,, Ar,,, Arz, N (0, K2)

y, , Oze N (0, a2) (4.8d)

for all m = 0, 1,...,4N - 1 and f = 0, 1,...,N - 1. N (p, a 2) is the normal or

Gaussian distribution with mean p and variance a2. All perturbations are assumed

to be statistically independent.

4.1.2 Statistical Beam Pattern Analysis with Mismatch

In the presence of system mismatch, the true spatial response of an array is impossible

to evaluate. Given the Gaussian statistical model assumptions described in Section

4.1.1, however, we can compute the statistical properties of the beam pattern of a per-

turbed vector sensor array. B(O, 0) is a random function of the normally distributed

perturbations in filter gain/phase and sensor position/orientation. Specifically, we

present theoretical expressions for E{B(0, ) )}, Var{B(0, ) )} and Bias{B(0, ) )} where

E{.}, Var{.} and Bias{.} respectively denote statistical expectation, variance, and

bias.

Beam Pattern Mean

Using expressions for the beam pattern found in (2.21) and (2.22) while incorporating

the "true" filter weights and sensor positions/orientations from (4.3), (4.5) and (4.7),

and



the mean of the beam pattern is shown to be

E {B(O, =)}= E {wHb}

N-1

= E {e-klr} {we}H E{h}.N=- (4.9)

Note that the last equality follows from the assumption that the gain, phase, posi-

tional and orientational perturbations are statistically independent across all sensors.

It is straightforward to evaluate the expectations in (4.9):

Se--k re - (2) 
2 e-j, rt - ,kr e- /2 e-k

T
r

2 A€ ikr} =( a' e A _

E {w,} -= e-/2w,,

where c =2r is the standard deviation of Arx,, Ary and Arz,
This notation will simplify some of the expressions below. Also let

This notation will simplify some of the expressions below. Also let

(4.10a)

(4.10b)

scaled by 27r/A.

g = E{h,}E [
R,u

1

e -u
e *u

1
O-2

e c sin 0 cos 
2

e-" sin 0 sin ¢
cos 

2

e 'P cos 0

where we have used the fact that E {R,} = e-"I.

Substituting (4.10a), (4.10b) and (4.11) into (4.9), we obtain the desired result,

N-1

E {B(O, 4)} = e- "" e-k r w n H g. (4.12)
f=0

and

(4.11)



Beam Pattern Bias

Note from (4.12) that E {B(O, 0)} Bn"(, 0). Here, we define the beam pattern bias

to be the difference between the beam pattern expected value and desired or nominal

beam pattern. Combining expressions for E {B(0, 0)} and B"(O, 0), we obtain

Bias {B(O, 4)} = E {B(O, 4)} - Bn"(, 0)

-jkTr
n n g JkTrf WnHhn

£

After combining the two summations in (4.13), we obtain the following expression for

the bias of the spatial response:

(4.14)
N-1

Bias {B(O, )} = e-3kTrwnH (e - (  + )g - h"n)
f=0

Beam Pattern Variance

The variance of the beam pattern is defined to be

Var{B (0, )}- E {B (0, ) - E {B(, )}12}

= E { B(O, 0)12 } - E {B(0, )}2 .

The first term in the last line of (4.15), the expected value of the magnitude square

of the beam pattern, becomes

E { B(, 0)12 } = E {B(0, ) B (0, 0)*}
N-1 N-1

=- E . e-3kTrWHht e3kTr, hHWn
=0 m=

f=0 M=0

(4.15)

N-1 N-1

f=0 m=0

jk T (r~-rn E {Hhhwm},

where the last equality follows from statistical independence. The two expectations

(4.13)

(4.16)

N-1

i=o

N-1

f=0



in (4.16) can be shown to be

E e-- k T (re -rm) T ifm= =
e e - )k (rn-rn) if m f

and

E { wHhhHWm}e M
WnHAwn

01
eO wnH H n

e ggWm

where g is defined in (4.11). The matrix A is a complex expression defined to be the

element-wise product of the covariance matrices of the vectors Awe, defined in (4.4),

and h,, the manifold vector for the fth vector sensor given in (4.7). In other words,

A = E {AwAw H } 0 E {h,h H } (4.18)

where

E { Aw,AwH

(1 + g)
e

e

e
012a

2

e "(1 + -2)

2

/3
e-

e 3a

e

e /

(1+ 2)

e

012
e- 

e-a2

e-2

(1 + 92)

(4.19)

and

e "sin 0 cos 0

e ~ sin 0 sin p
Scose V, cos 0

e -4 sin 0 cos 0

32

e- o sin 2 0 sin 0 cos 0

e- 0 cos 0 sin 8 cos 0

e 0 sin 8 sin 

e-3, sin2 0 sin 0 cos 0

e-3a. sin q sin 0 cos 0

2
e- Cos 8

e - 36  COS 0 sin 0 cos 0

Ce-3 sin 0 sin 0 cos 8

(4.20)
(4.20)

(4.17a)

if m = f

if m 7f
(4.17b)

Eheh h,}



The diagonal elements of E {h,h } are given by

S2 sin 2 0 Cos2 + 2Osn 02(1I- e-2) os2 (1
- PCosO1

(4.21a)

e-4) sin2 0 sin2 },

(4.21b)

( -1 e-42) (3 e-2q)

+ + e-20 ,

sin2 0 cos2 2 (1 - e-4) cos2

- e-2) sin 2 0 sin2 b

1
4 = 8 + 1)

3 + e-4) sin 2 Cos2 2 (I + e-2, s2 2

- e-2) sin 2 0 Sin 2

(4.21d)

Note that both E { Aw,Aw H } and E {h,h H } are symmetric positive definite matri-

ces. By substituting (4.17a) and (4.17b) into (4.16), we obtain the following expression

for the expected value of the magnitude squared beam pattern

E {B(O, 0)12} =
N-1 N-1

-(0,2+U ) e-kT (r'-r)wnH ggH n

f=O m=0
f: 4 M: - -

N-1N-1
+a ) e-3k

T
(r'

£=O m=0

-r)wnH H nw
gg + nH (A- e(" )ggH n(A- 0 W,

The magnitude squared of the mean beam pattern is shown using (4.12) to be

E {B(O, 0)} 2 = E {B(, )} E {B(0, O)}*
N-1 N-1

- e-(+a) E E e -
kT(r 

y - r
)wnHggHw

£=o m=O

(4.23)

which is also the first term in the second line of (4.22).

By substituting (4.22) and (4.23) into (4.15), we obtain the variance for the vector

1 = 1,

2 = ( + e

1
8

and

(4.21c)

w nHAw )
e 

I
(4.22)

e - 4 o ) (3

= e-(2



sensor array beam pattern,

N-1

Var {B (0, O)} 3= w (A -NF3e±7a2)ggH wn. (4.24)
f=

Note that the expression in (4.24) for Var {B (0, )} is the second term for the ex-

pression of E { IB(0, 0) 2} in the last line of (4.22).

Equation Summary and Comparison with Hydrophone Results

Table 4.1 presents the mean, bias and variance of the array beam pattern under the

Gaussian perturbation mismatch model presented in Section 4.1.1. The results in

the hydrophone column are those derived by Gilbert and Morgan [37, 91], while the

vector sensor column includes the new results.

Table 4.1: Statistical effect of mismatch on hydrophone and vector sensor arrays

Hydrophone Vector Sensor (NEW)
N-1

S{B(9, 2)} e ")B-( 2 ( ) e e-k r nHg

f=0
N-1

Bias {B(0, ()} (e ( 1) B"(O, ) e -kTr WnH (e(g ) g h
e=0
N-i

Var {1 (0, O>} (i -i - e (o W) Wn wn 5WnH (A - e-(U '3 gg) we
i=o

Note that the new results derived for a vector sensor array are a generalization

of those for a hydrophone (or other omnidirectional sensor) array; the hydrophone

results are a special case of the vector results. This can be shown by eliminating the

vector (acoustic particle motion) aspect of the vector sensor results, which lends to

the following mappings,

w" w, (4.25a)

g 1, (4.25b)

h" - 1 (4.25c)



and

A -- 1 + r2 (4.25d)

By incorporating the mappings from (4.25a)-(4.25d) into the vector sensor array

equations in the third column of Table 4.1, the equations collapse straightforwardly

to the hydrophone equations in the second column.

Perhaps the statistic of most practical interest is the average power response, given

by E {IB(O, )12 } = IE {B(O, 0)}12 + Var {B (, ) )} (and more explicitly in 4.22).

When sensor orientations are measured within a reasonable tolerance for a vector

sensor array, E {B(0, h)} can be approximated as proportional to the nominal beam

pattern B(0, 0) and is therefore small in the desired null directions. Note that

for a hydrophone array, E {B(0, 4 )} is directly proportional to Bn(O,O) (without

any assumption about sensor orientation measurement accuracy). Var {B (0, ) },

however, is not proportional to IBn(0, 0)12 and is generally the dominant term in

E{|B(O, q)12} when IE {B(0, 0)} 2 is small. For a hydrophone array, Var {B (0, ) }

is constant with steering angle. For a vector sensor array, however, Var {B (0, 1)} is

a function of the steering angle, decreasing in the sidelobes and enabling deeper true

nulls. Therefore, when sensor orientation is measured within a reasonable tolerance,

the beampattern variance dominates the average sidelobe power response and average

null depth. This result will be further illustrated in Section 4.1.3.

4.1.3 Simulation Verification and Analysis

In order to illustrate and analyze the effect of mismatch on a vector sensor array,

we consider the example of a thirteen element vector sensor array with the same

nominal configuration as the example presented in Section 2.5.1 and Figure 2-2. We

assume that thirteen vector sensors are nominally spaced by A/2 along the z axis with

the array steered to broadside in the horizontal plane, 0 = 0 = 900. As mentioned

previously, this array configuration was chosen to match with the spatial configuration

of the inner thirteen elements in the nested nineteen element towed vector sensor

array used for the sea data analysis in Chapter 6. We will compare the vector sensor



array results with those for a thirteen element array of omnidirectional elements

(i.e., hydrophone-only array) with identical statistical perturbation levels and nominal

spatial configuration. For this example, conventional beamforming weights are used,

nominally given by wn = b1 and w n = _bT for the vector sensor and hydrophone

arrays, respectively. Note that b" and bT are the nominal array manifold vectors

steered to the target direction for vector sensor and hydrophone arrays, respectively.

As discussed in Section 2.5.1, the beam pattern for a conventional vector sensor

beamformer is factorable into a spatial response function for a hydrophone array

with an equivalent spatial configuration and the spatial response for a single vector

sensor.

For this example we choose standard deviation parameters for the Gaussian per-

turbation model on the order of what would be required for adaptive beamforming:

a- = 100, (4.26a)

ag = 0.1, (4.26b)

r = A/10 (4.26c)

and

al = 100. (4.26d)

Figures 4-1 through 4-4 include comparisons of the theoretical results summarized in

Table 4.1 with estimated results using Monte-Carlo simulations (10000 sample spatial

response function realizations). Note that the beam pattern, mean and variance are

a function of both 0 and q5, though most of the plots presented here display a slice

through the x - y axis horizontal plane with 0 = 90'.

Figure 4-1 presents the example average spatial response for both a vector sensor

array and an array of omnidirectional elements. Note that the expected spatial re-

sponse for a hydrophone array is attenuated as a function of the amount of positional

and filter phase perturbations, by a bias factor of e- ("0). This same mismatch

effect is present for a vector sensor array, but there is also an additional attenuation or
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Figure 4-1: Comparison of the nominal, theoretical average and estimated average
spatial response functions for vector sensor and hydrophone arrays. The theoretical
and estimated averages are virtually indistinguishable.

bias term only affecting the vector aspect of the array as a function of the magnitude

of the rotational mismatch, by a factor of e"i; see the equation for g in (4.11).

The most notable difference between the hydrophone and vector sensor results is

the variance of the beam patterns. For a hydrophone array, given a nominal set of

filter weights, the variance of the spatial response is independent of steering angle.

This was one of the main results from the Gilbert-Morgan analysis and has very

important implications. If on a linear scale the variance of the beam pattern is the

same in both the main lobe and in the side lobes, it will have a very different effect on

a logarithmic scale. For a vector sensor array, however, the variance is now a function

of steering angle with lower variance in the sidelobes than at the main response axis.

The vector aspect of the array dampens the effect of array mismatch, enabling deeper

true nulls. This is illustrated in Figure 4-2 for the simulation example. Note that
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Figure 4-2: Comparison of the theoretical and estimated standard deviation func-
tions for the example vector sensor and hydrophone arrays. Monte-Carlo simulations
demonstrate that the theoretical results are indeed correct.

the standard deviation for the vector sensor array declines for steering angles away

from the target direction while that for the hydrophone array maintains a constant

high variance for all steering angles. Figure 4-3 displays the 10000 sample spatial

response functions overlayed with E {B(0, ¢)} and E {B(O, a)} ± {B(9, ¢)}, where

a {B(9, )} = VVar {B (0, 0)} is the standard deviation of B(0, 0).

E { B(O, 0)12} further highlights the importance of the reduced beam pattern

variance in the sidelobe response of a vector sensor array. Figure 4-4 shows that on

average, the example thirteen element linear vector sensor array is capable of much

deeper true nulls than is an array of omnidirectional elements with the same spatial

configuration and mismatch levels. The lowest average sidelobe response for this

example is approximately -15.6 dB and -28.2 dB for the hydrophone and vector

sensor arrays, respectively. Note that the main lobe response is slightly attenuated

~a~
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Figure 4-3: 10000 Monte-Carlo sample spatial response functions for both the example
hydrophone and vector sensor arrays. Overlayed are E {B(0, )} and E {B(9, 0)} +
cr {B(O, 0) }. Note the elimination of the spatial ambiguity lobe and the reduction in
variance in the sidelobes of the vector sensor array spatial response.

in both cases due to the mismatch bias terms (as was also illustrated in Figure 4-1),

resulting in the main lobe responses of -1.7 and -1.8 dB for the hydrophone and

vector sensor arrays, respectively. Of more significant importance is the difference

between the sidelobe and main lobe response and which has an average maximum

difference of -13.9 and -26.4 dB, respectively.

Figure 4-5 further highlights the benefits of the reduced variance of the vec-

tor sensor array beam pattern sidelobe response by illustrating the contrast be-

tween E{B(0, )} (which does not take into account the beam pattern variance)

and E { B(O, 0) 2}. As mentioned previously, the difference between E {B(0, 0)} and

the desired, or nominal beam pattern Bn(O, 9) is characterized by the bias terms

e ("+ " ) (applicable to both hydrophone and vector sensor arrays) and e~ (parti-

cle motion sensors only). Note that if the vector sensor orientations are known within
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Figure 4-4: Comparison of the theoretical and estimated magnitude-squared beam
patterns for the example vector sensor and hydrophone arrays. The lower variance of
the vector sensor spatial response results in deeper true nulls in the sidelobe response.

a reasonable tolerance level (i.e., a small), then E {B(0, 0)} will have a very similar

response to the desired, or nominal beampattern B(0, 0). Figure 4-5 (a) is a compar-

ison between the null depths suggested by E {B(0, 0)} (which under the conditions

mentioned above is nearly the same as the desired or design null depth) and the aver-

age "true" response given two levels of standard deviation: a { B(0, ) } = 0.166 (the

standard deviation for the hydrophone array example) and a { B(O, b)} - 0.039 (the

minimum standard deviation level shown in Figure 4-2 for the vector sensor array

example). Note that for these levels of beam pattern variance, if one designs a null

depth of approximately -60 dB, the average true response would be approximately

-28.2 dB and -15.6 dB for the vector sensor and hydrophone arrays, respectively.

Similarly, Figure 4-5 (b) shows the difference (in dB) between the null depths sug-

gested by E { B(0, )} and the average "true" null depth. Furthermore, this difference
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- {B(0, )} = 0.166 (st. dev. for hydrophone array example)
.c 0 - o {B(0, )} 0.039 (min. st. dev. for vector sensor array example)

-5

" -10-

-- -20

-25

-30
0 -10 -20 -30 -40 -50 -60 -70 -80

E {B(O, q)} Null Depth (dB)

(b)

70

60-

72 50

40 -

30-

+20-

10-

0
0 -10 -20 -30 -40 -50 -60 -70 -80

E {B(0, q)} Null Depth (dB)

Figure 4-5: (a) Comparison between null depths suggested by E {B(0, )} (which
is nearly equivalent to the desired or design null depth) and the average "true" re-
sponse; (b) Difference (in dB) between the null depths suggested by E {B(0, q)} and
the average "true" null depth. Plots are included for two different levels of standard
deviation: the standard deviation for the hydrophone array example (which is con-
stant with steering angle) and the minimum standard deviation level for the vector
sensor array example.



can be written as

lOlog (E {B(O, 2) 2 10 log (|E{B(0, )}|2) = lOlog (E{B(O,)12 + Var B(O2

= 10log (1+ IB(f0, )}) (4.27)

Note that the difference increases with deeper desired nulls.

As mentioned previously, the spatial response mean and variance are a func-

tion of both 0 and q for a vector sensor array. Figure 4-6 displays a {B(0, 0)} and

E {(B(O, 0)12} as a function of both 0 and 0 for op = 100, a, = 0.1, T, = A/10 and

9a = 10'. Also included is the nominal response IB"(0, 0)12 for both arrays. Figures

4-2 and 4-4 display slices of these quantities along a contour of constant elevation

(0 = 900).

Positional and rotational perturbations have very different effects on the statistical

characterization of a vector sensor array spatial response. Figures 4-7 and 4-8 present

E {B(0, )}, {B(0,0)} and E{|B(0, b) 2} with varying levels of rotational and

positional perturbations, respectively. As the orientational uncertainty increases, the

average spatial response of a vector sensor array approaches the scaled response of

a hydrophone array with an equivalent spatial configuration. Similarly, a {B(0, 0)}

becomes flatter as oa increases resulting in an E { B(0, 0)l 2 } which is very similar

to that for a hydrophone array. Notice that there is a 6 dB difference between

E { B(0, 0)12} for a hydrophone array shown in Figure 4-4 and that for a vector sensor

array displayed in Figure 4-7 (c) for large cry. This is due to the fact that the nominal

conventional vector sensor weights corresponding to the hydrophone components (i.e.,

wn for £ = 1... N) are the same as those for the hydrophone-only array, but scaled by

1/2. As cr- increases, the effect of the particle motion measurement is reduced, thus

gradually eliminating the advantages of the vector sensor over the hydrophone. As a

result, the vector sensor orientation must be measured within a reasonable tolerance.

Figure 4-8 suggests that as the element position uncertainty grows (while main-

taining a relatively low orientational mismatch level), the vector sensor array response

tends to that for a single vector sensor. Note that as a, increases, E {B(0, 0)} ap-
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Figure 4-6: From top to bottom: or {B(0, )}, E { IB(, )12} and B"(n0, ) 12 presented
as a function of both 0 and 9 for the example thirteen element linear hydrophone array,
(a)-(c), and vector sensor array, (d)-(f), respectively. (a) and (d) are plotted in the
same linear scale and (b), (c), (e) and (f) in the same logarithmic scale (dB).
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Figure 4-8: E {B(O, ¢)}, a {B(0, ¢)} and E {IB(O, 0)12} for the example thirteen
element linear vector sensor array with ao = 100, ag = 0.1, ao = 100 and varying
levels of positional mismatch, ar. As oa increases, the average array response tends
to that for an array of omnidirectional sensors with an equivalent nominal spatial
configuration.
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proaches 0 for all steering angles. This is because E {B(O, 6)} becomes dominated

by the e-(' 7 ' ) factor. Furthermore, Var {B(0, )} maintains a "cardioid-like"

shape as er increases. Since E{ B(0, 0)12} = |E{B(, 0)} 2 + Var{B (0, )} and

E {B(0, 5)} 0 for large er, E { B(0, 0)12} also maintains a "cardioid-like" shape.

These results agree with the intuition that if one processes an array of unknown

spatial configuration (very high positional mismatch), but does have perfect knowl-

edge of the sensor orientations (no rotational mismatch), on average the system re-

sponse will be that of a single vector sensor. In contrast, if one processes an array

of vector sensors little to no knowledge of sensor orientation (very high rotational

mismatch), but with perfect knowledge of sensor location (no positional mismatch),

on average the system response will behave as an array of omnidirectional elements.

4.2 Effect of Mismatch on Array Gain and other

System Performance Characteristics

Section 4.1 includes a statistical analysis of the effect of system mismatch on vector

sensor array spatial response. Using the same mismatch model used in that analysis

(described in Section 4.1.1), one can evaluate the effect of mismatch on array gain

and other system performance characteristics using the ocean noise models presented

in Chapter 3.

In this section, theoretical expressions for array covariance matrices in both isotropic

and directional noise fields are used in conjunction with optimal minimum variance

distortionless response (MVDR) beamforming weights to analyze array gain in the

presence of system mismatch [79, 80]. The effect of different contributors to mismatch

(such as element position and orientation) are analyzed separately and performance

characterized at varying statistical levels of perturbation. Vector sensors boast im-

proved array gain (up to 6 dB in 3-D isotropic noise for a single vector sensor), however

system mismatch can degrade this gain. In the spatial response analysis of Section

4.1, theoretical expressions were derived for the mean, bias and standard deviation
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Figure 4-9: Counter-clockwise from upper right: expected values of signal gain, noise
gain, array gain, and array gain standard deviation under different statistical levels
of positional perturbations in 3D isotropic noise using MVDR weights for a thirteen
element linear vector sensor array with A/2 spacing.

in the Gaussian perturbational model. Here, however, Monte Carlo simulations are

used to illustrate array gain performance and variability in the presence of system

imperfections since theoretical expressions for array gain are intractable for arbitrary

noise fields.

As expected, in the presence of system mismatch the array gain will be degraded.

Also note that under system mismatch, the MVDR weights will no longer produce

the optimal or maximum array gain due to the mismatch between the replica vector
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Figure 4-10: Counter-clockwise from upper right: expected values of signal gain, noise
gain, array gain, and array gain standard deviation under different statistical levels
of rotational perturbations in 3D isotropic noise using MVDR weights for a thirteen
element linear vector sensor array with A/2 spacing.

and covariance matrices. The MVDR weights are given by

R_'bT
w T = R bT

bHR- 16
(4.28)

where R, is the true noise covariance matrix and the replica vector bT is generated

using the assumed (but incorrect) array configuration. Due to these imperfections,

the distortionless constraint doesn't hold, making the simplification used in Section

2.6.1 invalid, i.e.,

02 = VHRsry = 2
Sout S in

(4.29)

Note that other algorithms other than MVDR are more immune to mismatch, i.e.,
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Figure 4-11: Counter-clockwise from upper right: expected values of signal gain, noise
gain, array gain, and array gain standard deviation under different statistical levels
of positional perturbations in directional plane-wave noise using MVDR weights for a
thirteen element linear vector sensor array with A/2 spacing.

white noise gain constrained MVDR (see Chapter 5) [19].

Figures 4-9 through 4-12 present examples of signal, noise and array gain vari-

ability as a function of mismatch intensity using the positional and rotational per-

turbation model from Section 4.1.1 in both isotropic and directional plane-wave noise

fields. Positional and rotational perturbations are considered separately in order to

quantify the relative effects of these different contributors to mismatch. The nominal

array configuration is the same as that used in Sections 2.5.1 and 4.1.3 with thirteen

vector sensors spaced by A/2 along the x axis. Furthermore, the example noise fields

used in these figures are the same as those used in Figures 3-1 and 3-2 of Chapter

3. Specifically, Figures 4-9 and 4-10 highlight 30 dB isotropic noise relative to 0 dB
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E {Noise Gain} (dB)
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Figure 4-12: Counter-clockwise from upper right: expected values of signal gain, noise
gain, array gain, and array gain standard deviation under different statistical levels
of rotational perturbations in directional plane-wave noise using MVDR weights for a
thirteen element linear vector sensor array with A/2 spacing.

background white noise. Therefore, the array gain in Figures 4-9 and 4-10 in the

absence of mismatch (a, = 0 and ua = 0) are respectively slices along the horizontal

contour of constant elevation (0 = 90') for the optimal array gain plots found in

Figure 3-1(e). The same relationship exists between Figures 4-11, 4-12 and 3-2(e),

with three plane-wave directional interferers at 0 = 90' and q = 50', 210', 265' with

powers of 0, 20 and 10 dB, respectively (relative to 0 dB background white noise).

Figures 4-9 through 4-12 each illustrate the ensemble average/standard deviation

of 5000 Monte Carlo trials each with a different sensor configuration sampled from

the Gaussian perturbation model. Presented are signal gain, noise gain, array gain

and array gain standard deviation in dB (counter-clockwise from upper right). As

ill



expected, the array gain performance degrades with increasing levels of mismatch,

independent of the noise field. Ideally, one would like to have no signal loss (0 dB

signal gain) in order to maintain the unity constraint of the MVDR beamformer.

As is apparent in each of the examples, this signal loss can become quite significant

for high levels of mismatch. Note, however, that this can be mediated by using

more robust processing algorithms. MVDR weights are no longer "optimal" in the

presence of mismatch. Other adaptive beamforming approaches, such as white noise

gain constrained MVDR are less sensitive to system imperfections (see Chapter 5).

Our Monte Carlo simulations confirm the well know result that the array gain

is highly sensitive to mismatch in steering directions near the plane-wave interferer

directions of arrival. This is because the MVDR algorithm is attempting to simul-

taneously maintain unity gain in the look direction while also trying to steer a null

in the direction of the interferer. With system imperfections, this can often result in

undesired nulling at the desired steering angle.

These simulations also suggest that vector sensor array gain performance is less

sensitive to rotational than to positional perturbations in the regions of interest.

The average array gain is less degraded and associated variance less pronounced for

rotational perturbations than for positional perturbations. This is most apparent

in the directional noise field example. One explanation for this observation is that

rotational mismatch will only affect the relative magnitude of the particle motion

measurements, but will leave the phase intact. Positional mismatch, however, can

strongly affect both the magnitude and phase.

4.3 Effect of Snapshot Constraints

Many adaptive signal processing techniques can be classified as covariance based since

they explicitly or implicitly rely on the formation of the (sample) covariance matrix.

Consequently, the quality of the sample covariance matrix impacts the performance

of the underlying algorithm. This is particularly true in non-stationary environments,

where the number of samples (or "snapshots") available to estimate the sample co-



variance matrix is limited, and whenever arrays with a large number of sensors are

deployed. The most common method for estimating the covariance matrix R is given

by
L

R = XkXk, (4.30)
k=1

where Xk for k = 1,..., L are the data snapshot vectors and ^ denotes an estimate.

The material presented in this section includes significant contributions from and

collaborations with Raj Rao Nadakuditi [71, 70, 81].

Most arrays consist of "homogeneous" data channels, i.e., signals sampled from

a propagating wave using very similar (if not identical) spatially separated sensors.

Each vector sensor, however, features four separate collocated acoustic sensors: one

scalar hydrophone and three spatially orthogonal particle motion sensors (e.g., ac-

celerometers, geophones). Thus a snapshot collected at N sensors is a 4N x 1 vector.

Hence, informally speaking, for a given number of snapshots, the quality of the sample

covariance matrix formed using vector sensor array measurements is worse than the

quality of the sample covariance matrix formed using hydrophone-only array mea-

surements (assuming an N element hydrophone array). The extent to which this

degrades performance, if at all, depends on the specific task and algorithm.

To illustrate this point, we consider the task of detecting the number of sig-

nals from multiple n-dimensional, normally (Gaussian) distributed, (hypothetically)

signal-bearing snapshots buried in noise so that the covariance of the signal-plus noise

snapshot is given by R = I + E where I is a low rank signal matrix and E is the

noise covariance matrix. For this analysis, we consider the scenario where we can also

independently estimate the noise-only sample covariance matrix using n-dimensional

normally distributed, noise-only snapshots of arbitrary covariance E. We consider the

scenario where the signal-plus-noise and noise-only covariance matrices are separately

estimated from LR and L, snapshots, respectively, as

R = L X X (4.31)
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and

E = L- yy, (4.32)

assuming that noise-only data is available. Note that x, is the ith signal-plus-noise

snapshot and y, is the jth noise-only snapshot. Assuming that L. > n so that E is

invertible, we then form the matrix

R = E-lfR, (4.33)

perform its eigendecomposition and infer the number of signals from the eigenvalues

alone.

Using this framework, the impact of snapshot limitations can now be explored in

this signal detection scenario using the results of [71]. Define c, and c, to be the

ratios of the number of array data channels to the number of signal-plus-noise and

noise-only snapshots, respectively, .e.,

CR = (4.34a)
LR

and

cE = (4.34b)
L,

We define the effective number of signals that can be reliably detected from LR signal-

plus-noise snapshots and L noise-only snapshots as keff. It can be shown that

keff(R, E) = # Eigs. of E -R > r (CR, cI), (4.35)

where
1 + K - c + (1 + K - Kc) 2 - 4

T(CR, c) = ) 2  - 1 , (4.36a)

(c2 + c a - a - 1)c - 2-2ca - C
K = (4.36b)

((cs - 1)cR - cl)(cE - 1)2

and

CRa = c + cE - cECR. (4.36c)
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Figure 4-13: Plot of the minimum (generalized) eigen-SINR required (given by
(4.36a)) in order to asymptotically discriminate between the "signal" and "noise"

eigenvalues of the matrix Rg in (4.33) as a function of the ratio of cR, the ratio of
the number of data channels to the number of signal-plus-noise snapshots. Included
are curves for different factors by which the number of noise-only snapshots is greater
than the number of array data channels. [71]

What (4.35) states is that whenever sample (generalized) eigenvalue only based

techniques are used for signal-in-noise detection, if the eigen-SINR (eigen-signal-to-

interference-plus-noise ratio) is too low then reliable detection is not possible. In oth-

ers words, when too few signal-plus-noise and/or noise-only snapshots are available

relative to the size of the array, so that the signal-plus-noise and noise-only sam-

ple covariance matrices are themselves "noisy", then simple techniques that perform

inference on the sample eigenvalues alone will not be able to discriminate between

the "signal" and the "noise". In such settings, we have to rely on more complicated

techniques that exploit information embedded in the eigenvectors of the sample co-



variance matrices. This in turn means that algorithms that utilize apriori information

derived from the physics of the operating environment will be better able to tease out

low-level signals that reside around the threshold given by (4.36a) from noise. Figure

4-13 plots the eigen-SINR threshold in (4.36a). Note that when N vector sensors are

employed, the dimensionality of the snapshot vector is given by n = 4N. Therefore,

for a fixed number of noise-only or signal-plus-noise snapshots, signals which would

result in an eigen-SINR right above the threshold for an N element hydrophone-only

array would be undetectable for an N element vector sensor array with 4N data

channels when using sample eigenvalue-only based detection techniques. This is one

example illustrating the fact that adaptive vector sensor beamforming can become

difficult in a snapshot limited environment, especially with many sensors.

4.4 Chapter Summary

System imperfections, including system mismatch and low sample support, can sig-

nificantly impact performance. This chapter explores vector sensor array sensitivity,

beam pattern variability and performance in the presence of system imperfections and

mismatch between the assumed and actual array configurations. All arrays are sus-

ceptible to perturbations in array element locations, however vector sensor arrays are

also sensitive to changes in sensor orientation since the particle motion measurement

must be placed in a global reference frame.

In 1955, Gilbert and Morgan developed a statistical analysis with system mismatch

for an array with scalar, omnidirectional elements. We generalize their analysis by

including sensor orientation perturbations. Theoretical expressions for the mean and

variance of the vector sensor array spatial response are derived using a Gaussian

perturbation model, with excellent comparisons between theory and simulation. Such

analysis leads to insight into theoretical limits of both conventional and adaptive

processing in the presence of system imperfections. As long as sensor orientations are

measured within a reasonable tolerance, the average null depth will be dominated by

the variance. One noteworthy result is that the variance of the spatial response due



to rotational, positional and filter gain/phase perturbations is a function of steering

angle, unlike arrays of omnidirectional hydrophones. We show that the vector aspect

of the array "dampens" the effect of array mismatch, enabling deeper true nulls.

Using Monte Carlo simulations, we also present examples of signal, noise and array

gain variability as a function of mismatch intensity in both isotropic and directional

noise fields. Our analysis suggests that vector sensor array gain performance is less

sensitive to rotational than to positional perturbations in the regions of interest.

Furthermore, each vector sensor features four separate collocated acoustic sensors:

one scalar hydrophone and three spatially orthogonal particle motion sensors. Thus

a snapshot collected at N sensors is a 4N x 1 vector. Therefore, for a given number

of snapshots, the quality of the sample covariance matrix formed using vector sensor

array measurements is worse than the quality of the sample covariance formed using

hydrophone-only array measurements (assuming an N element hydrophone array).

As a result, adaptive vector sensor beamforming can become difficult in a snapshot

limited environment, especially with many sensors. Chapter 5 presents some new

processing techniques customized to the unique characteristics of vector sensors to

aide with robustness to the mismatch and finite sample support issues discussed in

this chapter.



Chapter 5

Robust Vector Sensor Array

Processing

Significant work has been done to develop array signal processing methods which

are robust to mismatch and low sample support. An exhaustive literature review of

this material is not presented here (for a sampling of material, see [56, 15, 19, 57]).

Much of this work is applicable to robust vector sensor signal processing (e.g.,, see

[53]); some, however, is more relevant to either arrays of omnidirectional elements or

directional elements with fixed radiation/reception patterns than to vector sensors.

Diagonal loading is the most common method used in practice to stabilize the

covariance matrix estimate. Traditionally, this entails adding a scaled identity to the

estimated covariance matrix. Several approaches have been proposed for choosing

diagonal loading levels. We first address one such algorithm, the white noise gain

constrained adaptive beamformer [19]. We then introduce a new non-uniform diagonal

loading approach specifically tailored to characteristics inherent to acoustic vector

sensor arrays.

5.1 Single White Noise Gain Constraint

The white noise gain constrained MVDR beamformer is one of the earliest and most

commonly used robust adaptive beamformers [19]. As discussed in Section 2.6, noise



gain is the ratio of the noise power at the output of the beamformer to that at the

input. White noise gain (WNG) is defined as noise gain in the presence of white noise,

characterized by the covariance matrix R, = 0- I, where -2 is the noise intensity

at each sensor. WNG is useful primarily due to its relatively simple form and inverse

relationship to array sensitivity to mismatch (see [91]):

S2 wH Rw wH 2 I1 H
WNG = out = WH. (5.1)

0-2 2 -2

2 _H__ -1 bHbT whwre

Using (2.31), the maximum array gain in white noise is oin b TH R 1b - bHbT, where

bT is the steering vector in the target or look direction. Therefore, in the presence

of white noise, array gain < bHbT or equivalently, WNG > b1. For an N element

hydrophone array, bHbT = N. For a vector sensor array, however, bHbT = 2N.

Furthermore, the maximum array gain (or minimum noise gain) in white noise is

attained when w = kbT for a hydrophone array or w = bT for a vector sensor

array (conventional beamformer weights). Note that R, = 12nI for a vector sensor

array implies equal noise intensity among all acoustic channels after the particle

motion channels have been scaled by the acoustic impedance (see Section 2.4).

The white noise gain constrained adaptive beamforming algorithm minimizes the

output power subject to a distortionless equality constraint and a white noise gain

inequality constraint, i.e.,

WHbT = 1
min wHRw s.t. (5.2)

w wHW < F

where F is the maximum allowable white noise gain. This inequality constraint is

often parameterized relative to the minimum white noise gain. Let r, represent the

maximum acceptable increase in white noise gain over the minimum of -- attained

with vector sensor array conventional beamforming weights (k for a hydrophone

array). Accordingly, F = ' for a vector sensor array (F = - for a hydrophone

array). In the literature, either F or K is referred to as the white noise gain constraint

(WNGC), depending on the author. r is often a more convenient parameter since it



doesn't depend on the number of array elements, N.

The solution to (5.2) leads to the following weight vector,

(R + 6I) -1 bTw = (5.3)
bH (R + 1)- 1 bT

For each look direction of interest, the diagonal loading factor 6 is chosen as follows:

* Compute the MVDR weight vector (6 = 0). If the white noise gain inequality

constraint is satisfied, use the MVDR weight vector (no diagonal loading).

* Otherwise choose the minimum loading factor 6 such that the constraint wHw <

' is satisfied (assuming a vector sensor array). This is often done using an

iterative search algorithm.

The WNGC parameter K manages the tradeoff between conventional beamform-

ing/high mismatch tolerance (n = 1, 6 = oc) and maximum adaptivity/low mismatch

tolerance (n = 00, 6 = 0) as illustrated in Figure 5-1. Note that n is often specified in

dB. As described in Section 4.3, the true array covariance matrix R is rarely if ever

known, requiring an estimated covariance R

Beamforming =1 (dB) = A d apt iv i ty

High Mismatch Diagonal Loading Low Mismatch

Tolerance 6 = 00 6 = 0 Tolerance

Figure 5-1: Tradeoff between conventional beamforming/high mismatch tolerance
and maximum adaptivity/low mismatch tolerance.

5.2 Multiple White Noise Gain Constraints

Most arrays consist of "homogeneous" data channels, i.e., signals sampled from a

propagating wave using very similar (if not identical) spatially separated sensors. As

mentioned previously, each vector sensor consists of an omnidirectional hydrophone



and up to three spatially orthogonal particle motion sensors (e.g., accelerometers, geo-

phones). Both of these sensor types have very different response and noise character-

istics. At low frequencies, particle motion sensors are more sensitive to non-acoustic,

motion-induced flow noise than hydrophones. Moreover, in a towed line array config-

uration, sensors orthogonal to the direction of motion are exposed to a much higher

intensity of flow noise than those coincident to the array axis. Similarly, different

dipole sensors may be exposed to varying degrees of rotational mismatch. Sensors

may also rest on the seafloor, creating asymmetries. Furthermore, all data channels

must be properly calibrated in order to be processed in similar "units", requiring

scaling of the particle velocity measurements by the acoustic impedance. This scaling

is a function of environmental parameters such as the speed of sound and density of

the medium. Estimation of these parameters can also be susceptible to mismatch.

Because of the differences among data channels for a vector sensor array, we pro-

pose adaptive algorithms customized to the unique characteristics of vector sensors.

As discussed above, diagonal loading is typically performed by adding a scaled version

of the identity matrix to the sample covariance matrix. We propose the use of a vari-

able diagonal loading matrix with greater loading for those sensors which are most

sensitive to mismatch and self-noise. Utilizing multiple white noise gain constraints

is one processing approach leading to variable diagonal loading levels.

5.2.1 General Problem Formulation

For a vector sensor array, a fairly general problem formulation includes a separate

white noise gain constraint for the hydrophones and each of the three orthogonal par-

ticle motion measurement axes (four total white noise gain constraints). For practical

purposes, the 4N x 1 weight vector w can be subdivided into four N x 1 sub-vectors,

wp

w = 1  (5.4)
WV 2

WV3
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where wp corresponds to the pressure (hydrophone) measurements and wl, wV2 &

w,,3 correspond to the three axes of particle motion measurements. Identical to the

MVDR problem formulation, we desire to minimize the output power wHRw subject

to the unity gain constraint wHbT = 1 (bT is the target array manifold vector). In

addition, however, we impose the following four white noise gain constraints: w <

FP, W H W, 1  W H W2 < F 2 and w H 3  Fv3. The white noise gain constraint

parameters Fp, Fv, FV2 and Fv3 correspond to the pressure and three axes of particle

motion, respectively. The problem statement is summarized as

wHbT = 1
min wHRw s.t. (5.5)

W wHW <r w Hw < F WHW < F & WH F
P P' V1 P 1 V2 W2 - 2 V3 V3 -V3

The white noise gain constraints shown in (5.5) are inequality constraints with F,,

F, , FV2 and Fv3 representing the maximum allowable white noise gain. The Kuhn-

Tucker theorem outlines conditions necessary for an optimal solution to a problem

with both equality and inequality constraints. These conditions are outlined below:

Theorem (Kuhn-Tucker Conditions) [69, 51, 49]: Consider a minimization problem

of the function f(x), where x is a vector, subject to m equality constraints, hi, ... , hm,

and p inequality constraints, gl, . . , gp, i. e.,

hi(x) = 0,..., hm(x) = 0minf(x) s.t. (5.6)
x gi(x) < 0,..., g,(x) _ 0

Let x* be a local minimum to (5.6), and suppose that all constraints are regular at

x*, i.e., the gradient vectors Vxh,(x*) and the gradient vectors Vxg3(x*) are linearly

independent for i = 1,..., m and for all j such that the inequality constraint g. is active.

Then there is a set of Lagrange multipliers A1, . . . , Am and p1, .. ., ,pp associated with the

equality and inequality constraints, respectively, such that the following Kuhn-Tucker

Conditions are satisfied:

i. 1p3 > 0 for all j = 1,...,p (5.7a)

ii. pjgj(x)= 0 for all j = 1,...,p (5.7b)
m p

ii. VxL(x) = 0 where L(x) = f(x) + E Aihi(x) + Epg 3,(x) (5.7c)
1=1 3=1



A potential solution to a problem with equality and inequality constraints must

satisfy the Kuhn-Tucker conditions along with the all of the functional constraints of

the problem (i.e., hi,..., h,, and g,..., gp above). Note that a feasible point is one

which satisfies all of the functional constraints of the problem, while the feasible re-

gion is the set of all such points. Solving problems with inequality constraints can be

more difficult than those with only equality constraints due to the fact that inequality

constraints may or may not be "active" at the solution point; only active constraints

directly affect the solution. An inequality constraint g,(x) < 0 is considered active at

a feasible point x if g,(x) = 0, i.e., x is on the boundary of the feasible region. Con-

versely, the constraint g, (x) < 0 is considered inactive if g, (x) < 0. It is interesting

to note that if one could determine the subset of the inequality constraints which are

active near a feasible point x, the problem could be reformulated using only equality

constraints (and discarding the inactive ones) [69].

The constraints of the optimization problem described in (5.5) can be simply

recast into the form described in the Kuhn-Tucker theorem as

minwHRw s.t. hi(w) = 0 (5.8a)
w gl(w) _ 0, g 2 (w) < 0, g 3 (w) < 0 & g 4 (w) < 0

where

hi(w) = wHbT - 1, (5.8b)

gl(w) = WHW, - rp, (5.8c)

g2 (w) = WHw V, - F, (5.8d)

g93(w) = - (5.8e)

and

g4 (w) = W, - V3. (5.8f)

The general form of the solution to this optimization problem can be solved for by
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first considering the third Kuhn-Tucker condition (5.7c), which leads to the same

structure which would be used for a Lagrange minimization problem with equality-

only constraints (i.e., wHw = F WHW = F, etc.). The function to minimize

becomes

L(w) =wHRW + 1 (wHbT - 1) + A (bw - 1, 1 T PW p)

+ P2 (WvHW v1- 3 ) H + V3 (w 2 - 2) + 4 ( 3 - 3 ) , (5.9)

where A1, pl, /2, / 3 & /A4 are the Lagrange multiplier parameters. The function L

in (5.7c) and (5.9) is sometimes called the Lagrangian. Note that since the unity

constraint function in (5.8b) is complex, we use a complex A1 and include both the

term A1 (wHbT - 1) and its conjugate, A* (bHw - 1), in (5.9) (see [69, 91]). This

effectively allows us to consider the real and imaginary portions of hi (w) = wHbT - 1

separately. Since the inequality constraints are purely real, they do not require this

additional consideration. After combining terms, L(w) becomes

L(w) = (wHbT - 1)+ A (b _ 1)+wH R

- (Pi 1 F + P 2 F 1 + P 3 Pv 2 + 4F v3 )

By taking the gradient of (5.10) with respect to w and

obtain the third Kuhn-Tucker condition from (5.7c):

VL(w 0 0

VwL(w) = Arb H + w H R+ 0 P2 0

Ill 0 0 0

0 P2I 0 0

0 0 Y/3I 0

0 0 0 /141

W

(5.10)

setting it equal to zero, we

0

0 = 0. (5.11)

0 0 Y/3I 0

0 0 0 /p4I
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Solving (5.11) for w, we obtain

-1

/I1I 0 0 0

0 [12I 0 0

0 0 p3I 0

0 0 0 p4

Using the unity constraint WHbT = 1, we can now solve for A1:

A =- b

[tlI 0 0 0

0 p2I 0 0

0 0 31I 0

0 0 0 p41

-1 b1
bT

Combining (5.12) and (5.13), the solution takes the familiar form

Rb-lbT
W =b-bT '

T~i-l~

where the diagonally loaded covariance matrix R is rewritten as

t = R +

6,I 0 0 0

0 6,, I 0 0

0 0 6V2 I 0

0 0 0 6, 3 I

(5.14b)

Note that the white noise gain constraint Lagrange multiplier parameters / 1, /12, /L3

and p4 respectively become diagonal loading levels 6p, 6,, 6,v and 6S3. This notation is

introduced in order to emphasize which sensor type each Lagrange multiplier/diagonal

loading level corresponds to.

Similar to the single white noise gain constraint algorithm, there is not a closed

form analytic solution for the diagonal loading levels in (5.14b). The proper solution

procedure would be to first compute the MVDR weight vector (6, = 6, = V2 =
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(5.14a)



6V3 = 0). If all of the white noise gain constraints are satisfied, use the MVDR weight

vector with no diagonal loading; in this case, none of the white noise gain constraints

are active and no further calculation is necessary.

Otherwise, the loading factors Jp, 6, 6,2 and 6, should be chosen such that the

constraints wH < Fp, wH wH  < 2 rv and wH 3 v3 are satisfied,

while simultaneously minimizing wHRw. This can be done using a multi-dimensional

iterative search algorithm, the framework and feasibility of which is defined by the

Kuhn-Tucker conditions. The first Kuhn-Tucker condition in (5.7a) dictates that the

diagonal loading levels be non-negative. The second condition in (5.7b), sometimes

referred to as the complementary condition, states that either the Lagrange multi-

plier (diagonal loading parameter) or the corresponding constraint function gj(w) in

(5.8c)-(5.8f) must be zero. In other words, when one of the white noise gain con-

straints is inactive, i.e., the corresponding constraint function g,(w) < 0 (the white

noise gain constraint is not met with equality), the associated diagonal loading level

will be zero. Therefore, diagonal loading will be used for a specific sensor type only

if it is needed to satisfy the corresponding white noise gain constraint with equality.

Consequently, if all constraints are not satisfied without diagonal loading, the

second Kuhn-Tucker condition suggests a sensible initial condition for the multi-

dimensional search process: if a subset of the white noise gain constraints were

satisfied with the unloaded MVDR weights, then initially set the diagonal loading

parameters associated with these constraints to zero and begin by searching over the

remaining parameters. Note, however, that the diagonal loading levels are mutually

coupled to satisfy the overall set of system white noise gain constraints through the

cross covariance sub-matrices, i.e., Rp,, (the cross covariance between the pressure

and axis 1 of the particle motion). R can be written explicitly these terms as

R, Rpv, Rp,, RpV3  PI 0 0 0

S Rv 1p 1R{l R 1V 2 R 1VlV 0 JvI 0 0
R + (5.15)

Rv 2P R,2VI R 2  R 2 V 3  0 0 6 2 I 0

R 3P Rv 3 l R3V2  Rv 3  0 0 0 o V3
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Therefore, it can be difficult to predict the effect the change in one diagonal loading

parameter will have on the rest of the constraints for an arbitrary covariance matrix

R. An exhaustive search would include setting every possible combination of diagonal

loading parameters to zero while searching over the remaining parameters' feasible

space, though smarter and more efficient search algorithms exist. One should always

remain cognisant of computational efficiency and the implications of the Kuhn-Tucker

conditions.

As described previously in Section 5.1, a convenient method for parameterizing

the white noise gain constraints is to select the maximum acceptable increase in

white noise gain over the minimum attained with conventional beamforming weights

(instead of directly selecting F, F, F, 2 and Fv3). In the single white noise gain

constraint scenario, the minimum white noise gain is constant with steering angle.

In general, however, this will not be the case, suggesting the following parameter-

izations of the white noise gain constraints: wH W < I-, w H < va 1 a(0,
WHW 2 < K 2A 2 (0, q) and wv 3 wv 3  < t3A3(, 9). AI(0, 9), A2 (0, 0) and A 3(0, 9) are

the minimum white noise gain functions associated with each particle motion mea-

surement axis; these minimums are attained when using the appropriate portions

of the conventional vector sensor array beamforming weights. Note that A, (0, 9),
A 2(0, 0) and A3(0, 0) are deterministic and can be pre-computed given a spatial array

configuration.

The user-definable parameters tp, ,V1 , Kv2 and v,3 describe the maximum accept-

able increase in white noise gain over the theoretical minimum. These parameters

provide the user with the ability to tune the tradeoff between robustness and adaptiv-

ity, while allowing the flexibility for larger white noise gain for those subset of sensors

with more reliable measurements. Note that the user will only be required to choose

the K parameters, which are fixed as a function of steering angle, without having to

worry about the array size or the variation of the minimum white noise gain with

steering angle.

The general problem formulation described above requires a four-dimensional it-

erative parameter search accompanied by a high computational burden. Many real-
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istic scenarios, however, suggest a lower dimensional parameter space, requiring less

(though arguably still high) computational resources. We discuss two such cases in

Sections 5.2.2 and 5.2.3.

5.2.2 Dual White Noise Gain Constraints

In many scenarios, such as a stationary vector sensor array in isotropic noise, there

may not be significant differences among the three particle motion measurement axes;

appreciable differences may still exist, however, between the hydrophone and particle

motion channels. In this case it would be appropriate to use separate constraints for

the pressure and particle motion vector measurements, i.e.,

WHbT = 1
minwHRw s.t. w w< (5.16)

w W H < P & WH < v
- 4N - 4N

As before, wH =[wH wH] is the full weight vector written as a function of the weight

vectors corresponding to the pressure and particle motion vector measurements.

Using an analogous derivation to that in Section 5.2, the resulting dual white noise

gain constraint weight vector is

R -bT
w = b (5.17a)

bHR- 1bT

where

S= R R, 6,I I (5.17b)+ (517b)
Rvp R, 0 6VI

The diagonal loading parameters Jp and 6, are again chosen by first computing

the MVDR weight vector (6S = 6, = 0). If the white noise gain constraints are

satisfied, use the MVDR weight vector (no diagonal loading). Otherwise choose the

loading factors 6, and 6 such that the constraints wHw, 'P and w Hw < v

are satisfied while minimizing w"Rw. This can be done using a two-dimensional

iterative search algorithm. The search should remain cognisant of the implications of

the Kuhn-Tucker conditions as discussed in Section 5.2, however the search should
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be less complex due to the smaller parameter search space. Similarly, there are fewer

combinations of active/inactive constraints: either both, neither or only one white

noise gain constraint will be active at the optimal solution.

Again, the white noise gain constraint parameters ,p and ,, represent the maxi-

mum acceptable increase in white noise gain over the minimum of -1 attained sep-

arately with the vector sensor array conventional beamforming pressure and particle

velocity sub-weight vectors. Note that in this special case, the white noise gain

constraints a- and v are constant with steering angle; when the particle motion

measurements are considered jointly, the theoretical minimum white noise gain is 1

Therefore, pre-computation of variable minimum white noise gain functions is not

required.

5.2.3 Towed Line Array White Noise Gain Constraints

In towed line array configuration, those particle motion sensors orthogonal to the

direction of motion are exposed to higher intensities of flow noise than those coincident

to the array axis. This suggests using three constraints, one each for the pressure,

inline particle motion and orthogonal particle motion components, i.e.,

WHbT =1
min wHRW s.t.

w~ w H w < a, A(0, ) & wHWor < oro(O, < ,).,
W Wp 4N WV l  tg (0

(5.18)

Here, w a and w,,o, are the weights corresponding to the inline and orthogonal particle

motion sensors, respectively. A,1(0, b) and Aor(O, 0) are the minimum inline and

orthogonal white noise gain functions, attained when using the appropriate portions

of the conventional vector sensor array beamforming weights. Similar to the general

case, both Az (O, 0) and Ao0(0, 0) are a function of the steering angles 0 and 0.

Using an analogous derivation to that found in Section 5.2, the resulting solution

becomes
R 1bT

w = 1 b (5.19a)
bH-106bT'
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where
R Rp,1 RpVo 6 pI 0

R = R,,? R,1  Rvlvo + 6,+, I (5.19b)

Rvor ROovj Rvo, O 6voI

The diagonal loading parameters 6P, 6,5 and b,or are chosen using the same method

as described above, except there are now three white noise gain constraints and a

three dimensional search algorithm must be used.

Note again that the white noise gain constraint associated with the pressure com-

ponent is constant with steering angle, while the two white noise gain constraints

associated with the inline and orthogonal particle motion components will vary with

steering angle due to A,,(0, 0) and Aor(0, 0) which can be pre-computed given an array

spatial configuration. The parameters n, and ,or , however, are constant and repre-

sent the maximum acceptable increase in white noise gain over A, 1(0, 0) and Aor(0, 0).

The loading levels are mutually coupled through the cross-covariance matrices to sat-

isfy the overall system white noise gain constraint. Note that the identity matrices

and sub-components of the covariance matrices in (5.15), (5.17b) and (5.19a) vary in

size and are of the appropriate dimensions depending on the number of associated

sensors.

By customizing the adaptive vector sensor processing to the characteristics of the

sensors, processing will be more robust to the mismatch and low sample support

issues specific to vector sensor arrays.

5.3 Chapter Summary

Hydrophones and particle motion sensors have very different response and noise char-

acteristics. For instance, particle motion sensors are more sensitive to non-acoustic,

motion-induced noise than hydrophones. In towed line array configuration, those

sensors orthogonal to the direction of motion are exposed to higher intensities of flow

noise at low frequencies than those coincident to the array axis. Similarly, different

dipole sensors may be exposed to varying degrees of rotational mismatch. Sensors
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may also rest on the seafloor, creating asymmetries. We examine a multiple white

noise gain constrained adaptive processing method customized to the unique charac-

teristics of vector sensors. This algorithm is a generalization to the single white noise

gain constrained algorithm developed by Cox et. al. [19]. While we have applied

this generalization to the different sensor types in a vector sensor array, the same

approach could be used for any other array consisting of multiple classes of sensors,

e.g., a hydrophone array with a combination of high- and low-fidelity sensors.

While the derivation of the multiple white noise gain constrained algorithm was

derived assuming an array noise covariance structure R, this quantity is rarely if ever

know in practice. Therefore, one must first estimate the array covariance structure

to obtain ft. The most common method for estimating the covariance matrix is the

sample covariance matrix as discussed in Section 4.3.

While the focus of this chapter has been on generalizing the white noise gain

constrained adaptive beamformer to different sensor types, analogous generalizations

could be developed for other existing algorithms such as robust Capon beamforming

(RCB) [57] and dominant mode rejection (DMR) [3] algorithms.

In Chapter 6, we present practical advantages of a towed vector sensor array,

processed using the single white noise gain constraint MVDR algorithm. This real

data analysis was a primary motivator to the development of the multiple white noise

gain constraint algorithm presented in this chapter. Due to a lack of time, however,

the new algorithm discussed in this chapter has yet to be verified using simulated or

at-sea vector sensor data. As such, an extensive analysis of its performance is not

included herein. This will be completed in the near future.
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Chapter 6

Practical Advantages of a Towed

Vector Sensor Array

Acoustic vector sensors have been in use for several decades. Up until recently, how-

ever, arrays have generally been constructed using physically large sensors (such as

the DIFAR sensor), thus restricting their deployment to either the seabed, suspended

vertically via buoy or research vessel, or in some cases freely drifting in the water

column. With recent developments in piezoelectric crystals, however, much smaller

acoustic vector sensors have been developed. Piezoelectric sensors rely on the "piezo-

electric effect", in which a sensor responds to external forces (pressure, acceleration,

strain) by transforming some of the resulting energy into electrical signals [36, 1].

With their reduced size and integrated ability to measure sensor orientation, this new

generation of sensors has motivated an increased interest in towed arrays of vector

sensors.

One such array was built and towed during recent sea trials in Monterey Bay, CA

(2006) and Dabob Bay, WA (2007). This array is among some of the first prototype

vector sensor towed arrays ever built. The nineteen element array was built in a

"nested" configuration with the inner and outer elements spaced by 0.75 m and 1.5

m, respectively (see Figure 6-1). The results presented in this chapter were acquired

using this array.

Extensive MATLAB code was written in order to analyze vector sensor data col-
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Sensor Number
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Figure 6-1: Array element configuration for the nineteen element vector sensor towed

array. Elements 4-16 form a thirteen element equally spaced linear array with 0.75

m spacing. Sensors 1-4, 6, 8, 10, 12, 14, 16-19 form a thirteen element array with 1.5

m spacing

lected at sea. The code implements both conventional and adaptive (single white

noise gain constrained MVDR) processing with several configurable parameters: in-

tegration time, discrete Fourier transform (DFT) length, frequency bin selection, win-

dowing in time and/or frequency, temporal window overlap percentage, white noise

gain constraint levels, among others. The code is written in a "real-time" structure

to facilitate straightforward transfer to a real-time platform. The code will generate

calibrated bearing time record (BTR) plots (in absolute, relative and even 3-D coor-

dinates), frequency-azimuth (FRAZ) plots, spectral analysis, time-dependent Fourier

transforms, etc. The code provides for hydrophone-only or vector sensor processing.

In order to process the towed vector sensor data in a common reference frame, one

must properly measure and dynamically compensate for sensor motion. In addition

to a hydrophone and three orthogonal acoustic accelerometers, each vector sensor in

the array is equipped non-acoustic sensors to measure orientation. Using these mea-

surements, the MATLAB code compensates for motion at the sensor level; it does

not, however, include array shape estimation. We instead assume a perfectly linear

and horizontal array. While the straight line assumption may be quite accurate dur-

ing a straight tow, it is less accurate during a turn, resulting in increased mismatch.

Furthermore, the horizontal assumption is also invalid partly due to the array's slight

positive buoyancy. Some of the effects of mismatch between the assumed and ac-

tual sensor positions, especially during a turn, can be observed in some of the data

presented in this chapter.

In all of the preceding chapters, azimuth and elevation angles were represented
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using the spherical coordinate system, as defined in Section 2.2.1. In this chapter,

however, we use an alternate convention for these angles as illustrated in Figure 6-2.

The coordinate x, y and z axes are positioned in two different ways in this chapter

depending on the context: "true" coordinates (x axis pointing to magnetic north, y

axis to magnetic west and z axis up) or coordinates relative to the array's heading

(x axis pointing in the direction of the array's current heading, y axis to broadside

on the port side and z axis up). The azimuth angle ¢ increases clockwise looking

down on the x - y axis horizontal plane with the positive x direction corresponding

to ¢ = 00. Furthermore, the elevation angle is referenced from the horizontal plane

where 0 0' and increases upwards (i.e., 0 = 90' points in the positive z direction).

z

U

Figure 6-2: The unit vector u in the alternate coordinate system.

Prior to 2005, very few towed vector sensor arrays had been built and tested. How-

ever, a significant theoretical literature on processing vector sensors existed detailing

processing approaches and potential advantages of vector sensor arrays. In addition,

some stationary vector sensor arrays had been built and tested, demonstrating im-

proved gain and ambiguity lobe attenuation. As such, many of the advantages of

vector sensor arrays had only previously been shown in theory and/or with station-

ary arrays. In the following four sections, we present results from four data sets

acquired during sea trials in Monterey Bay, CA (2006) and Dabob Bay, WA (2007)

towing a relatively short vector sensor array (see Figure 6-1). Results highlight sev-

eral of the distinct practical advantages of vector sensor arrays: resolution of spatial

ambiguity (e.g., port/starboard ambiguity), the ability to "undersample" an acoustic

wave without spatial aliasing, quiet target recovery via clutter reduction, immunity
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to mismatch, improved array gain and enhanced detection performance.

All of the adaptive processing in this chapter was implemented using the single

white noise gain constraint algorithm detailed in Section 5.1. The new multiple white

noise gain constraint algorithm presented in Section 5.2 was derived after the data

in this section was processed. Due to a lack of time this promising algorithm has

not yet been used to analyze this data, though such results and analysis will be

forthcoming. While different single white noise gain constraint levels were used to

process the sea test data, all of the adaptive results presented herein were generated

using a 6 dB white noise gain constraint. The conventional processing in this chapter

was implemented with Hanning spatial shading. All of the power levels in this chapter

are presented in dB relative to 1 p[Pa 2/Hz. The tow speed was approximately 2 m/s

in each data set.

6.1 Data Set #1

The data set presented in this section was recorded on October 6, 2007 in Dabob

Bay, WA from 22:50:14 - 23:52:30 UTC (slightly over an hour of data). The logged

tow platform position is presented in Figure 6-3 (a) along with the approximate

positions/paths of two nearby research vessels, the R/V Wecoma and R/V Defender

(clearly, the array followed essentially the same path as the tow platform). Figure 6-3

(b) illustrates the tow platform heading measured by a single compass; also displayed

is the average array heading derived by averaging the outputs from 18 of 19 compasses

collocated with each vector sensor (the compass data from one sensor was unusable).

Note that an unexplained bias exists between the tow platform and array headings.

As expected, we also observe a clear heading lag between the time the tow platform

turns to the time the array responds to the platform's motion.

The vector sensor array is also equipped with a depth sensor. The array depth

was approximately 32 m for the extent of this run (with minor fluctuations).

Figures 6-4 and 6-5 present bearing-time records (BTRs) for two different 200

Hz wide frequency bands: 800-1000 Hz and 300-500 Hz, respectively. Included are
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Figure 6-3: (a) Logged tow platform (blue) path, and approximate R/V Wecoma
and R/V Defender positions for the data presented in Section 6.1. (b) Corresponding
logged tow platform and average array headings with respect to time.

BTRs in both relative, (a) & (b), and true azimuth, (c) & (d), along with labels for

some of the different acoustic sources in the water. Note that relative bearings from

-180' < q < 00 correspond to port and 0' < q < 180' correspond to starboard.

Each scan line of the BTRs in this chapter is a spatial power spectrum over all

azimuth angles in the horizontal plane (elevation angle 0 = 0O) with 1.024 seconds

of integration. The average array heading is overlayed in white on the true bearing

BTRs. Note that as expected, the array heading measurements closely follow the

noise emitted from the tow platform; this noise enters through the conical beams

near endfire. As such, it's apparent direction of arrival in the horizontal plane varies
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between ±200 of endfire during a straight tow. This apparent bearing to the tow

platform increases to approximately ±300 during a turn as the tow platform maneuver

precedes that of the array.

Two separate research vessels, the R/V Wecoma and R/V Defender, were equipped

with acoustic sources transmitting different waveforms. The waveform towed behind

the R/V Defender consists of broadband pseudo-random noise (bandpass filtered

Gaussian noise) with bands from 300-500 Hz and 600-1000 Hz along with several

"tone clusters". Each of these clusters consists of five tones spaced by 5 Hz, with

varying amplitude levels: specifically, the lowest tone in a cluster has the highest

power and each subsequent tone within a cluster decreases in power by 5 dB. The

tone clusters apparent in the data in this section include 525-545 Hz, 625-645 Hz, 750-

770 Hz, 1050-1070 Hz, 1250-1270 Hz and 1500-1520 Hz. For example, the 525-545 Hz

cluster is made up of tones at 525, 530, 535, 540 and 545 Hz with the relative power

decreasing within the cluster by 5 dB with increasing frequency. The R/V Defender

transmitted this waveform during the entire data collection window, but the power

incident on the array varied with time, mostly due to range variation between the

R/V Defender and the array.

A second acoustic source was lowered from the R/V Wecoma consisting of broad-

band 750-1050 Hz pseudo-random noise (bandpass filtered Gaussian noise). As shown

in Figure 6-3, the R/V Wecoma was relatively stationary during the entire data col-

lection window. This source was off at the beginning of the data set, then turned on

at t = 1076 seconds as is apparent in the BTRs found in Figure 6-4. The transmission

power of the Wecoma source was later turned down significantly at approximately

t = 2700 seconds. Since the BTRs in Figure 6-4 include the 800-1000 Hz band, both

of the acoustic sources from the R/V Defender and R/V Wecoma can be seen. The

BTRs in Figure 6-5, however, include the 300-500 Hz band and therefore only "see"

the source towed behind the R/V Defender since it maintains significant energy in

this band. The engine noise from the R/V Wecoma, however, can still be seen.

Since the array aperture decreases in units of wavelength for the lower band (300-

500 Hz) in Figure 6-5, the beamwidth increases and the acoustic sources and targets
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Figure 6-4: Bearing-time records (BTRs) generated using 6 dB white noise gain
constrained MVDR processing, 800-1000 Hz: (a) Hydrophone-only, relative bearing;
(b) Full vector sensor, relative bearing; (c) Hydrophone-only, true bearing (d) Full
vector sensor, true bearing.
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Figure 6-5: BTRs generated using 6 dB white noise gain constrained MVDR process-
ing, 300-500 Hz: (a) Hydrophone-only, relative bearing; (b) Full vector sensor, relative
bearing; (c) Hydrophone-only, true bearing (d) Full vector sensor, true bearing.
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Figure 6-6: BTRs generated using conventional beamforming with Hanning spatial
shading: (a) Hydrophone-only processing, 800-1000 Hz; (b) Full vector sensor pro-
cessing, 800-1000 Hz; (c) Hydrophone-only processing, 300-500 Hz; (d) Full vector
sensor processing, 300-500 Hz.
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appear more spatially diffuse than in Figure 6-4. Note the remarkable ability of the

vector sensor array to null the port/starboard ambiguity lobes. This eliminates the

need for additional maneuvers to determine whether a target is on port or starboard

and greatly reduces the clutter in the BTRs due to "ghost" targets from the ambiguous

beam. The capability of the vector sensor array to resolve port/starboard is especially

apparent when using adaptive processing. Figure 6-6 illustrates BTRs for the same

run using conventional processing with Hanning spatial shading both for hydrophone-

only processing, (a) & (c), and full vector sensor processing, (b) & (d), for the 800-

1000 Hz band, (a) & (b), and the 300-500 Hz band, (b) & (d). Conventional vector

sensor processing does attenuate the ambiguous lobe, especially near broadside, but

not nearly to the same degree as the adaptive processor. This is partially due to the

fact that conventional vector sensor processing results in a cardioid response at the

sensor level (see Figure 2-2). The null induced by a cardioid is always 180' away from

the mainlobe which will only result in ideal ambiguous lobe attenuation at broadside

(assuming the directional source is in the horizontal plane). As such, port/starboard

resolution performance decreases away from broadside as evidenced in Figure 6-6 (b)

and (d). Even adaptive processing has difficulty with port/starboard resolution near

endfire due the width of the main lobes in this region and the difficulty of adaptively

placing a null so close to the main lobe; despite these difficulties, the performance is

much better than conventional processing.

Figures 6-7, 6-9, 6-10 and 6-12 include frequency-azimuth (FRAZ) plots using

(a) hydrophone-only and (b) full vector sensor processing at four different times:

t = 111.6, 972.8, 1966.1 and 2334.7 seconds, respectively. Also included are "3D

BTR" snapshots with steering in both relative azimuth and elevation along with a

corresponding "2D BTR" zoomed in to the time period of interest; both of these were

generated using the 900-1000 Hz band. Each of the four time snapshots highlight four

different scenarios in the hour long data set: in Figure 6-7, the R/V Wecoma and

R/V Defender source lie within the same hydrophone conical beam, but are resolved

by vector sensor processing; in Figure 6-9, both are at the same true bearing making

spatial resolution impossible; in Figure 6-10, both the R/V Wecoma source and the
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Figure 6-7: Frequency-azimuth (FRAZ) plots using (a) hydrophone-only and (b) full
vector sensor processing; also included in (c) is a "3D BTR" snapshot with steering in
both relative azimuth and elevation coupled with the "2D BTR" in (d), both in the
900-1000 Hz band. (a)-(c) constitute 1.024 s integration at time t = 111.6 s (marked
in (d) by a white line). All processing is implemented using the 6 dB white noise
gain constrained MVDR algorithm. Here, the R/V Wecoma is at 1340 and the source
towed by the R/V Defender is at -134' (the same conical beam for hydrophone-only
processing). Vector sensor processing is capable of resolving this ambiguity. The R/V
Wecoma source is off at this time.
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Figure 6-8: Steered spectrums derived from individual bearing scans along the FRAZ
plots in Figure 6-7 (a) and (b): the R/V Defender & source at -134' and R/V
Wecoma at 1340. The spectrums for these two targets generated with the full vec-
tor sensor array have been spatially resolved, while the spectrum generated with
hydrophone-only processing has not since both targets lie within the same conical
beam. Note that the R/V Wecoma source is off at this time.

source towed by the R/V Defender are on the starboard side, but at different spatial

bearings; and in Figure 6-12, the R/V Defender source is on port and the R/V

Wecoma source is on starboard but not in the same conical beam. The R/V Wecoma

750-1050 Hz source is turned off in Figures 6-7 and 6-9 then turned on in Figures

6-10 and 6-12.

Figure 6-8 presents the spectrums of the R/V Wecoma at 134' and R/V Defender

along with its source at -134'. The spectrums correspond to t = 111.6 seconds and

were generated from individual bearing scans along the FRAZ plots in Figure 6-7 (a)

and (b). With hydrophone-only processing, both targets lie within the same coni-
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Figure 6-9: FRAZ plots using (a) hydrophone-only and (b) full vector sensor pro-
cessing; also included in (c) is a "3D BTR" snapshot with steering in both relative
azimuth and elevation coupled with the "2D BTR" in (d), both in the 900-1000 Hz
band. (a)-(c) constitute 1.024 s integration at time t = 972.8 s (marked in (d) by a
white line). All processing is implemented using the 6 dB white noise gain constrained
MVDR algorithm. Here, both the R/V Wecoma and the source towed by the R/V
Defender are at the same relative bearing making spatial resolution impossible. The
R/V Wecoma source is off at this time.
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cal beam making them spatially indistinguishable; their spectral content is muddled

together. With full vector sensor processing, however, the two targets are spatially

resolved. Each spectrum entails 1.024 seconds of integration. The 300-500 Hz and

600-1000 Hz pseudo-random noise blocks are apparent along with several of the "tone

clusters" discussed above.

Similarly, Figure 6-11 displays the spectrums of the R/V Defender and source

at 40' and the R/V Wecoma and its 750-1050 Hz source at 1000. The spectrums

correspond to t = 1966.1 seconds and were generated from individual bearing scans

along the FRAZ plots in Figure 6-10 (a) and (b).

The FRAZ plots highlight another very important practical advantage of vector

sensor arrays. As discussed previously, omnidirectional elements in a linear equally

spaced array must be spaced less than half a wavelength apart in order to avoid

spatial aliasing. Results confirm, however, that vector sensor processing without

spatial aliasing is practically realizable for frequencies well above the limits imposed

by the spatial Nyquist sampling rate. This had only previously been shown in theory.

For the nineteen element towed array used in these sea trials, the spatial sampling

rate for the inner thirteen sensors is 0.75 m, translating to unaliased hydrophone-only

processing up to approximately 1000 Hz (assuming an acoustic propagation speed of

1500 m/s). Note, however, that all of the processed data presented in this chapter

was generated using all nineteen sensors (which includes the 1.5 m sensor spacing at

the edges of the array). Therefore, when using all nineteen hydrophones, the effective

frequency limit on unaliased processing is less than 1000 Hz. This is readily observed

in the FRAZ analysis.

Depending on the angle of arrival and frequency, a signal with frequency content

above that allowed by the spatial Nyquist sampling rate with hydrophone-only pro-

cessing may not only manifest left/right ambiguity, but also be aliased to other spatial

directions. For instance, in Figure 6-12 (b) the relative bearing to the target is shown

to be approximately -45o . In 6-12 (a) with hydrophone-only processing, however, the

tone cluster at 1500-1520 Hz "appears" to arrive along four different relative bearings:

-450, the correct direction; 450, the ambiguous lobe direction on the starboard side
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Figure 6-10: FRAZ plots using (a) hydrophone-only and (b) full vector sensor pro-
cessing; also included in (c) is a "3D BTR" snapshot with steering in both relative

azimuth and elevation coupled with the "2D BTR" in (d), both in the 900-1000 Hz
band. (a)-(c) constitute 1.024 s integration at time t = 1966.1 s (marked in (d) by a
white line). All processing is implemented using the 6 dB white noise gain constrained
MVDR algorithm. Here, both the R/V Wecoma source and the source towed by the

R/V Defender are on the starboard side, but at different bearings. The R/V Wecoma
750-1050 Hz source is on at this time.
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Figure 6-11: Steered spectrums derived from individual bearing scans along the FRAZ

plots in Figure 6-10 (a) and (b): the R/V Defender & source at 400 and R/V Wecoma

& source at 100'. Along the 40' bearing, the 1250-1270 Hz and 1500-1520 Hz tone

clusters from the R/V Defender source are much more prominent in the full vector

sensor processed data due to the significant additional array gain provided by the

vector sensors.

due to conical ambiguity; and ±129', as a result of spatial aliasing. Even with all of

the mismatch present in this processing scenario because of the straight/horizontal

array assumption, the full vector sensor array is capable of processing without any

spatial aliasing well above the frequencies supported by the spatial Nyquist sampling

rate.

A "3D BTR" was also generated for this entire data set in the 900-1000 Hz band,

steering both in relative azimuth and elevation in 1.024 second snapshots. These

snapshots were compiled in an animation to show the targets moving in both azimuth
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Figure 6-12: FRAZ plots using (a) hydrophone-only and (b) full vector sensor pro-
cessing; also included in (c) is a "3D BTR" snapshot with steering in both relative
azimuth and elevation coupled with the "2D BTR" in (d), both in the 900-1000 Hz
band. (a)-(c) constitute 1.024 s integration at time t = 2334.7 s (marked in (d) by a
white line). All processing is implemented using the 6 dB white noise gain constrained
MVDR algorithm. Here, the R/V Defender source is on port and the R/V Wecoma
source is on starboard. The R/V Wecoma 750-1050 Hz source is on at this time.
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and elevation. Four snapshots of this "3D BTR" are presented in part (c) of Figures

6-7, 6-9, 6-10 and 6-12. As expected, the resolution in the elevation direction is

quite course because the towed array doesn't have significant vertical aperture. One

can also observe the attenuation of the conical beam with changing azimuth and

elevation. For hydrophone-only processing, these conical beams wouldn't attenuate

between port and starboard. Also apparent at several times throughout the data

set are multipath arrivals from both positive and negative elevation angles due to

surface and/or bottom interaction. One such instance is apparent in Figure 6-12 (c);

the surface bounce of the acoustic source towed behind the R/V Defender is seen to

arrive at an elevation angle of approximately 600. Because the resolution is course

in the vertical direction, power is still apparent in the horizontal plane making the

multipath arrivals appear closer to broadside and the source more spatially diffuse

(see Figure 6-12 (b) and (d)). Additionally, a surface bounce is seen in Figure 6-9 (c)

associated with either the R/V Wecoma and/or the R/V Defender source. One could

determine the origin of this multipath by analyzing the full spectrum of this surface

bounce and comparing it to the known spectral content of the two targets.

Also notable in several of the "3D BTR" frames from this and other data sets is

the greater noise intensity coming from the surface than the seafloor (e.g., see Figure

6-9 (c)). This characteristic of the ocean noise field is masked once the loud R/V

Wecoma source is turned on and its energy spills through the array's sidelobes.

As discussed in Chapter 3, when using optimal processing in a three-dimensional

isotropic noise field, one would expect approximately an additional 6 dB improvement

in array gain using an N element vector sensor array (4N acoustic data channels)

over that obtained with an N element hydrophone array. This advantage would

improve with more directional noise fields. Throughout the data presented herein,

the difference (in dB) between the power levels of directional sources and the diffuse

background noise is generally 10-20 greater for full vector sensor adaptive processing

than for hydrophone-only adaptive processing. This advantage, of course, is much

greater in regions where either conical ambiguity and/or spatial aliasing of directional

sources due to hydrophone-only processing is present. This additional gain provided
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by the vector sensors translates into enhanced detection performance and clutter

reduction.

This advantage is not as pronounced when using conventional processing. In

Figure 6-6, the difference in the diffuse background noise for vector sensor and

hydrophone-only processing is between 3 and 5 dB. In 3D isotropic noise with con-

ventional processing, one would expect 3 dB of additional array gain.

6.2 Data Set #2

Leg #4

On
Leg #3 Surface

On
Surface N

* W E

Leg #2 R/V New Horizon S

On

Leg #1 Surface

Acoustic Source
750-1050 Hz

o

Figure 6-13: Approximate path of the array for the August 17, 2006 data set. Also
included are the approximate positions of the R/V New Horizon and 750-1050 Hz
acoustic source.

The data set presented in this section was recorded on August 17, 2006 in Monterey

Bay, CA and includes 2995 seconds (about 50 minutes) of data. A sketch of the

approximate path of the array is detailed in Figure 6-13 along with the approximate

positions of a nearby research vessel, the R/V New Horizon, and a 750-1050 Hz

acoustic source. Unlike the other three data sets in this chapter, the array was on

the surface three different times during this data set. The data acquired while on the

surface is very noisy and not particularly useful. Figure 6-14 displays array depth
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Figure 6-14: Array depth plotted alongside a BTR generated using 6 dB white noise
gain constrained MVDR vector sensor processing in the 750-1050 Hz band. High-
lighted are the four legs and three surfacing events referred to in Figure 6-13.

along with its correlation to a bearing-time record (BTR). The four different legs

referred to in Figure 6-13 are labeled, along with the three surfacing periods. One

can also observe the periods when the array was submerging and surfacing. During

each of the four legs, the array was at approximately 59 meters depth.

Figures 6-15 and 6-16 present BTRs for two 300 Hz wide frequency bands: 750-

1050 Hz and 300-600 Hz, respectively. As before, included are BTRs in both relative,

(a) & (b), and true azimuth, (c) & (d), along with labels for some of the different

acoustic sources in the water. The average array heading is again overlayed in white

on the true bearing BTRs.

As illustrated in Figure 6-13, the relative orientations from the array to the R/V

New Horizon and acoustic source are as follows: during leg #1 , the acoustic source

is to port and the research vessel to starboard; during leg #2, the acoustic source

is at the aft endfire while the research vessel remains to starboard; during legs #3
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Figure 6-15: BTRs generated using 6 dB white noise gain constrained MVDR pro-
cessing, 750-1050 Hz: (a) Hydrophone-only, relative bearing; (b) Full vector sensor,
relative bearing; (c) Hydrophone-only, true bearing (d) Full vector sensor, true bear-
ing.
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Figure 6-16: BTRs generated using 6 dB white noise gain constrained MVDR pro-
cessing, 300-600 Hz: (a) Hydrophone-only, relative bearing; (b) Full vector sensor,
relative bearing; (c) Hydrophone-only, true bearing (d) Full vector sensor, true bear-
ing.
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& 4, both are to starboard. These relative orientations can also be observed in the

BTRs in Figures 6-15 (b) and 6-16 (b). The acoustic source waveform was the same

as that deployed by the R/V Wecoma in the previous data set, containing 750-1050

Hz pseudo-random noise (bandpass filtered Gaussian noise).

Many of the same features and practical advantages of a towed vector sensor array

highlighted in the previous data set can be observed in this data set, including the

remarkable capability to resolve conical ambiguity, the ability to process well above

the frequency corresponding to the spatial Nyquist sampling rate, resolution in both

azimuth and elevation via a "3D BTR", additional array gain, among others.

This data set is also particularly useful in demonstrating the utility of clutter

reduction. During legs 3 and 4, a distant and relatively quiet target to port of the

array is heavily masked by the ambiguous versions of the R/V New Horizon and

acoustic source which are both to starboard of the array (see Figures 6-15 (a) and

6-16 (a)). With full vector sensor adaptive processing, however, this quiet target is

fully revealed.

Figure 6-17 presents BTRs for the same run using conventional processing with

Hanning spatial shading both for hydrophone-only processing, (a) & (c), and full

vector sensor processing, (b) & (d), for the 750-1050 Hz band, (a) & (b), and the

300-600 Hz band, (b) & (d). Again, the conventional vector sensor processing does

attenuate the ambiguous lobe, especially near broadside, but not nearly to the same

degree as does the adaptive processor. As expected, the beamwidths are much wider

for conventional than for adaptive processing and the array gain/nulling capability is

greatly diminished.

Figures 6-18 and 6-20 include frequency-azimuth (FRAZ) plots using (a) hydrophone-

only and (b) full vector sensor processing at two different times: t = 665.6 and 2048

seconds, respectively. Also included are "3D BTR" snapshots with steering in both

relative azimuth and elevation along with a corresponding "2D BTR" zoomed in to

the time period of interest; both of these were generated using the 900-1000 Hz band.

Each snapshot entails 1.024 seconds of integration. Figure 6-18 is a snapshot during

leg #1 with the acoustic source to port and the R/V New Horizon to starboard. Fig-
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Figure 6-17: BTRs generated using conventional beamforming with Hanning spatial

shading: (a) Hydrophone-only processing, 750-1050 Hz; (b) Full vector sensor pro-

cessing, 750-1050 Hz; (c) Hydrophone-only processing, 300-600 Hz; (d) Full vector

sensor processing, 300-600 Hz.
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Figure 6-18: FRAZ plots using (a) hydrophone-only and (b) full vector sensor pro-
cessing; also included in (c) is a "3D BTR" snapshot with steering in both relative
azimuth and elevation coupled with the "2D BTR" in (d), both in the 900-1000 Hz
band. (a)-(c) constitute 1.024 s integration at time t = 665.6 s (marked in (d) by
a white line). All processing is implemented using the 6 dB white noise gain con-
strained MVDR algorithm. Here, the 750-1050 Hz acoustic source is to port and the
R/V New Horizon to starboard.
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Figure 6-19: Steered spectrums derived from individual bearing scans along the FRAZ
plots in Figure 6-18 (a) and (b): the 750-1050 Hz acoustic source at -73o and R/V
New Horizon at 133'.

ure 6-20 is a snapshot during leg #3 with the acoustic source to starboard near aft

endfire and the R/V New Horizon to starboard. As before, these FRAZ plots demon-

strate the vector sensor capability to process well above the frequency corresponding

to the Nyquist spatial sampling rate without spatial aliasing.

The background noise is again 10-20 dB lower for the full vector sensor processing,

demonstrating the significant gain advantages of the vector sensors in this noise field.

Figure 6-19 displays the spectrums of the 750-1050 Hz acoustic source at -73'

and the R/V New Horizon at 133'. The spectrums correspond to t - 665.6 seconds

and were generated from individual bearing scans along the FRAZ plots in Figure

6-18 (a) and (b).

The "3D BTRs" in Figures 6-18 (c) and 6-20 (c) illustrate the greater noise inten-
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Figure 6-20: FRAZ plots using (a) hydrophone-only and (b) full vector sensor pro-
cessing; also included in (c) is a "3D BTR" snapshot with steering in both relative
azimuth and elevation coupled with the "2D BTR" in (d), both in the 900-1000 Hz
band. (a)-(c) constitute 1.024 s integration at time t = 2048 s (marked in (d) by
a white line). All processing is implemented using the 6 dB white noise gain con-
strained MVDR algorithm. Here, the 750-1050 Hz acoustic source is to starboard
near aft endfire and the R/V New Horizon is to starboard closer to broadside.

135

.... .. .. .. .. .. .. ... .. .. ... .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



sity coming from the surface as is typical in the ocean environment. At time t = 665.6

seconds (Figure 6-18 (c)), the acoustic source appears to arrive from a slightly pos-

itive elevation angle (i.e., 0 0 750 and 9 100). At time t = 2048 seconds (Figure

6-20 (c)), we can see the difficulty posed in resolving left/right ambiguity when the

target nears endfire. In this case, the R/V New Horizon is at a relative bearing of

approximately 1600; the "ghost" target at -160' is still attenuated, but not nearly

to the degree it would be had target been further from endfire.

6.3 Data Set #3

400 N
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Figure 6-21: Logged tow platform path for the data presented in Section 6.3.

The data set presented in this section was recorded on October 10, 2007 in Dabob

Bay, WA from 22:52:20 - 23:13:49 UTC (over 20 minutes of data). The logged tow

platform position is presented in Figure 6-3 (clearly, the array followed essentially the

same path as the tow platform). In this case, the array traced out a hexagon pattern.

The array depth was approximately 27-28 m for the extent of this run (with minor

fluctuations).

Figure 6-22 presents BTRs for this data set in the 800-1000 Hz band. As before,

included are BTRs in both relative, (a) & (b), and true azimuth, (c) & (d), along
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Figure 6-22: BTRs generated using 6 dB white noise gain constrained MVDR pro-
cessing, 800-1000 Hz: (a) Hydrophone-only, relative bearing; (b) Full vector sensor,
relative bearing; (c) Hydrophone-only, true bearing (d) Full vector sensor, true bear-
ing.
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with labels for some of the different acoustic sources in the water. The average array

heading is again overlayed in white on the true bearing BTRs.

Several targets can be seen in these BTRs, a few of which have been labeled in

Figure 6-22. The R/V Wecoma (this time not transmitting an acoustic source) can

be seen throughout the run at a true bearing of approximately -60' (north-west of

the array). Two other ships are at true bearings of approximately 0O (north of the

array) and -175' (south of the array). Another mobile acoustic source can be seen

at approximately 150' (south-east of the array) for the first 1000 seconds of the run

and then traverses to -10' (north of the array) for the final few minutes of the run.

This acoustic source consists of intermittent frequency modulated (FM) chirps that

span the processing bandwidth along with three quiet tones. Every 60 seconds, this

source contains 12 seconds of loud FM chirps followed by 48 seconds of quiet tones

at 800, 900 and 1000 Hz; these are labeled in Figure 6-22 (b).

Figure 6-23 contains BTRs for the same run using conventional processing with

Hanning spatial shading both for hydrophone-only processing in (a) and full vector

sensor processing in (b) for the 800-1000 Hz band.

Most of the analysis discussed in the other data sets also apply to this data set.

One feature which is very prominent throughout this data set is multipath noise

originating from the tow platform which appears to arrive at relative bearings near

+630 in the horizontal plane. This is not because it is actually arriving from this

azimuth (in reality it is arriving at a relative azimuth near 0°), but because it is

arriving in the conical beam with a steep elevation angle corresponding to that bearing

in the horizontal plane. This multipath is prominent in both of the conventional

BTRs in Figure 6-23 (hydrophone-only and full vector sensor) and the hydrophone-

only adaptive processing BTRs in Figure 6-22 (a) & (c). The multipath is greatly

attenuated, however, in the vector sensor adaptive processing BTRs in Figure 6-22

(b) & (d) since nulls are adaptively steered in the direction of the multipath arrivals.

If we were to steer in elevation in addition to azimuth with a "3D BTR," we could

also clearly see this tow platform multipath in the vector sensor adaptive processing.

Hence, linear vector sensor arrays are capable of preventing significant energy
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Figure 6-23: BTRs generated using conventional beamforming with Hanning spa-
tial shading, 800-1000 Hz: (a) Hydrophone-only processing; (b) Full vector sensor
processing.

from steep arrival angles from spilling into the horizontal bearing plane when using

adaptive processing. This will have the positive effect of decluttering the BTRs when

steering in the horizontal plane. One should also be cognisant that steep arrival angles

may be "missed" if one steers exclusively in the horizontal plane.

Figure 6-24 contains FRAZ plots using (a) hydrophone-only and (b) full vector

sensor processing at t = 97.3 seconds using 1.024 seconds of integration. This is an-

other great example of some of the advantages of vector sensor processing. As before,

these FRAZ plots demonstrate the vector sensor array's capability to process well

above the frequency corresponding to the Nyquist spatial sampling rate without spa-

tial aliasing. Furthermore, the vector sensor FRAZ in Figure 6-24 (b) is significantly

uncluttered when compared to its hydrophone-only counterpart in (a). For example,

the three 800, 900 and 1000 Hz tones at a relative bearing of -73' are plainly seen in
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Figure 6-24: FRAZ plots using (a) hydrophone-only and (b) full vector sensor pro-
cessing with 1.024 s integration at time t = 97.3 s. All processing is implemented
using the 6 dB white noise gain constrained MVDR algorithm. Here, the 800, 900
and 1000 Hz tones are to port at a relative bearing of -67' and the R/V Wecoma is
to starboard at a relative bearing of 910.

(b), but are very difficult to distinguish from the clutter in (a) which is dominated in

the proximity of these tones by the tow platform multipath and R/V Wecoma ambi-

guity. This is further highlighted in Figure 6-25 which compares the hydrophone-only

and vector sensor bearing scans along the -73o source bearing. Note that the tow

platform multipath has spectral peaks near the source tones which further complicate

detection of these tones with hydrophone-only processing.
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Figure 6-25: Steered spectrums derived from the relative bearing scan at -73o along
the FRAZ plots in Figure 6-24 (a) and (b). This bearing includes the quiet 800,
900 and 1000 Hz tones, along with other spectral features including tow platform
multipath. Here, the tone detection is significantly enhanced using full vector sensor
processing due to increased gain and multipath/clutter attenuation. Note that the tow
platform multipath has spectral peaks near the source tones which further complicate
detection of the source tones with hydrophone-only processing.
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6.4 Data Set #4
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Figure 6-26: Logged tow platform path for the data presented in Section 6.4.

The data set presented in this section was recorded on October 10, 2007 in Dabob

Bay, WA from 21:59:29 - 22:09:49 UTC (about 10 minutes of data). The logged tow

platform position is presented in Figure 6-26 . In this case, the array began the run

pointing south, then turned facing north for most of the run and then ending with

a turn toward the east. The array depth was approximately 27-28 m for the extent

of this run (with minor fluctuations). This data set was collected less than an hour

before that found in Section 6.3.

The R/V Wecoma is again present in this data set at a true bearing of about -50'

(north-west of the array). The same acoustic source found in data set #3 (Section

6.3) with FM sweeps and quiet 800, 900 and 1000 Hz tones is south of the array at

t = 0 seconds and then gradually moves to the north-east of the array by the end of

the run at a true bearing of approximately 250.

Figure 6-27 presents BTRs for this data set. Instead of integrating through a

continuous frequency band (such as the 800-1000 Hz band), we processed only those

bins coincident to and adjacent to the 800, 900 and 1000 Hz tones in order to see

the source tones more clearly in the BTRs. As before, presented are BTRs in both

relative, (a) & (b), and true azimuth, (c) & (d), along with labels for some of the
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Figure 6-27: BTRs generated using 6 dB white noise gain constrained MVDR process-
ing (using only those frequency bins coincident to and adjacent to the 800, 900 and
1000 Hz tones): (a) Hydrophone-only, relative bearing; (b) Full vector sensor, relative
bearing; (c) Hydrophone-only, true bearing (d) Full vector sensor, true bearing.
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Figure 6-28: BTRs generated using conventional beamforming with Hanning spatial
shading (processing only those frequency bins coincident to and adjacent to the 800,
900 and 1000 Hz tones): (a) Hydrophone-only processing; (b) Full vector sensor
processing.

different acoustic sources in the water. The average array heading is again overlayed

in white on the true bearing BTRs.

Figure 6-28 contains BTRs for the same run using conventional processing with

Hanning spatial shading both for hydrophone-only processing in (a) and full vector

sensor processing in (b), using only those frequency bins coincident to and adjacent

to the 800, 900 and 1000 Hz tones.

As was the case in Section 6.3, tow platform multipath arrivals are clearly evident

in the conventional and adaptive hydrophone-only BTRs, but highly attenuated in

the adaptive full vector sensor processing in Figure 6-27 (b) and (d).

Furthermore, the reduction of clutter via port/starboard ambiguity resolution was

very useful for this data set. The R/V Wecoma engine noise to port and the acoustic
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source to starboard were cluttered together for about five minutes with hydrophone-

only processing. Vector sensor processing and the clutter reduction that accompanies

it not only aids with source tracking, but also with source spectral analysis (as was

demonstrated in Figure 6-8).

6.5 Chapter Summary

Prior to 2005, very few towed vector sensor arrays had been built and tested, though

a fairly extensive theoretical literature on the processing and performance of vector

sensors had been compiled during previous decades. A few stationary vector sensor

arrays had also been built and tested, demonstrating improved gain and ambiguity

lobe attenuation. As a result, many of the advantages of vector sensor arrays had

only previously been shown in theory and/or with stationary arrays.

We collected and processed data from sea trials in Monterey Bay, CA (2006) and

Dabob Bay, WA (2007) towing a relatively short vector sensor array. Significant

code was written in order to analyze the data using either hydrophone-only or full

vector sensor processing, both conventional and adaptive. Results from four separate

data sets are presented in this chapter highlighting several of the distinct practical

advantages of vector sensor arrays. These are summarized below:

Resolution of spatial ambiguity: Results demonstrate the remarkable ability

of the towed vector sensor array to null the conical ambiguity lobes. This

eliminates the need for additional maneuvers to determine whether a target is

on port or starboard and greatly reduces the clutter in the BTRs due to "ghost"

targets from the ambiguous beam. This capability of the vector sensor array to

resolve port/starboard is especially apparent when using adaptive processing.

Achieving resolution in both azimuth and elevation (albeit course) via a "3D

BTR" was also demonstrated. In many cases, linear vector sensor arrays are

capable of preventing significant energy from steep arrival angles and multipath

from spilling into the horizontal bearing plane.
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* Ability to "undersample" an acoustic wave without spatial aliasing: A signal

with frequency content above that allowed by the spatial Nyquist sampling rate

with hydrophone-only processing may not only manifest left/right ambiguity,

but also be aliased to other spatial directions. Results confirm that vector sensor

processing without spatial aliasing is practically realizable for frequencies well

above the limits imposed by the spatial Nyquist sampling rate on hydrophone-

only processing. As a result, vector sensors can be spaced further apart without

aliasing, enabling a longer aperture with a given number of sensors.

* Quiet target recovery via clutter reduction: Vector sensor arrays have an ex-

ceptional ability for reducing clutter. This is shown to aide in the recovery of

quiet targets previously masked by conical ambiguity lobes and spatial alias-

ing present in hydrophone-only processing, thus simplifying target tracking and

enhancing performance metrics.

* Improved array gain and detection performance: Throughout the data presented

in this chapter, the difference (in dB) between the power levels of directional

sources and the diffuse background noise is generally 10-20 greater for full vector

sensor adaptive processing than for hydrophone-only adaptive processing. This

advantage, of course, is much greater in regions where either left/right ambiguity

and/or spatial aliasing of directional sources due to hydrophone-only processing

is present. This additional gain provided by the vector sensors translates into

enhanced detection performance and clutter reduction. Even if the number of

hydrophones were quadrupled, matching the total number of acoustic channels

for the vector sensor array, the capacity for N vector sensors to null directional

interference is much greater than that of 4N hydrophones. Note that this

advantage is not as pronounced when using conventional processing.

* Performance in a high mismatch environment: Shape estimation was not used

in the processing presented in this chapter. We instead assume a perfectly

linear and horizontal array. We did, however, dynamically compensate for ar-

ray element orientation at the sensor level by using the integrated non-acoustic
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orientation sensor measurements. Some of the effects of mismatch between

the assumed and actual sensor positions can be observed in some of the data

presented in this chapter. The effects of the mismatch are especially appar-

ent during turns when the shape of the array least matches the straight line

assumption. The theoretical results of Chapter 4 suggest that vector sensor ar-

rays are inherently more robust to mismatch than are hydrophone-only arrays.

Even with all of the mismatch present in this processing scenario because of the

straight and horizontal array assumptions, the full vector sensor array is capable

of higher performance than many had anticipated, including steering deep nulls,

processing without any spatial aliasing well above the frequencies supported by

the spatial Nyquist sampling rate, reducing clutter and maintaining high levels

of array gain.
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Chapter 7

Conclusion

In this chapter, we summarize thesis contributions and discuss areas for future work

and analysis.

7.1 Thesis Contributions

Key contributions of this thesis include the following:

Mismatch analysis

Theoretical expressions for the mean, bias and variance of the vector sensor array

spatial response were derived using a Gaussian perturbation model (generalization of

the Gilbert-Morgan analysis for arrays of omnidirectional elements). Such analysis

leads to insight into theoretical limits of both conventional and adaptive processing in

the presence of system imperfections. One noteworthy result is that the vector aspect

of the array "dampens" the effect of array mismatch, enabling deeper true nulls.

This is accomplished because the variance of the vector sensor array spatial response

(due to rotational, positional and filter gain/phase perturbations) decreases in the

sidelobes, unlike arrays of omnidirectional hydrophones. When sensor orientation

is measured within a reasonable tolerance, the beampattern variance dominates the

average sidelobe power response.

149



Effect of low sample support

Each vector sensor features up to four separate collocated acoustic sensors: one scalar

hydrophone and three spatially orthogonal particle motion sensors. Thus a snapshot

collected at N sensors is a 4N x 1 data vector. As a result, given a set number of

snapshots, the quality of the sample covariance matrix formed using vector sensor

array measurements is worse than the quality of the sample covariance formed using

hydrophone-only array measurements (assuming an N element hydrophone array).

By incorporating results from random matrix theory and collaborations with Raj

Rao Nadakuditi [71, 81], we analytically characterize the eigen-SINR threshold, which

depends on the signal and noise covariance and the number of noise-only and signal-

plus-noise snapshots, below which (asymptotically speaking) reliable detection using

sample eigenvalue based techniques is not possible. Thus for a given number of

snapshots, since the dimensionality of the snapshot of a N element vector sensor

array is larger than that of an N element hydrophone-only array, the eigen-SINR

detection threshold will increase for a vector sensor array.

Performance in ocean noise

A method is presented for computing theoretical expressions for vector sensor ar-

ray covariance matrices in different ocean noise models (e.g., 3-D isotropic noise,

plane wave directional noise and realistic surface generated noise). Part of this model

includes taking spatial gradients of the pressure correlation function which was pre-

sented by Baggeroer and Cox in [17]. We introduce a framework for calculating theo-

retical covariance expressions for arbitrary array configuration, sensor orientation and

sensor type (i.e., geophones and accelerometers). Using theoretical covariance expres-

sions for isotropic and plane wave noise models, optimal array gain calculations are

made for representative hydrophone and vector sensor arrays. The more directional

the noise field, the greater the advantage of using vector sensors over hydrophones (in

terms of optimal array gain). Using Monte Carlo simulations, we also present exam-

ples of signal, noise and array gain variability as a function of mismatch intensity in
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both isotropic and directional noise fields. Our analysis suggests that vector sensor

array gain performance is less sensitive to rotational than to positional perturbations

in the regions of interest.

New robust vector sensor processing algorithm

A multiple white noise gain constrained adaptive algorithm is proposed which is

specifically tailored to characteristics of vector sensor arrays and is robust to mismatch

and finite sample support issues. This algorithm is a generalization to the single

white noise gain constrained algorithm developed by Cox et. al. in [19]. This new

algorithm is derived in a general framework (four separate white noise constraints for

the hydrophone and three orthogonal axes of particle motion measurements). It is

then customized to two specific cases of practical interest. The first is an approach

appropriate for a stationary vector sensor array: dual white noise constraints (one

constraint for the hydrophones and one for the particle motion vector measurements).

In a towed line array configuration, however, those sensors orthogonal to the direction

of motion are exposed to higher intensities of flow noise at low frequencies than those

coincident to the array axis, suggesting three white noise gain constraints (one each

for the pressure, inline particle motion and orthogonal particle motion components).

Practical advantages of a towed vector sensor array

During the past couple decades, stationary vector sensor arrays have been built and

tested, demonstrating improved gain and ambiguity lobe attenuation. Up until re-

cently, however, very few towed vector sensor arrays had been built and tested. As

such, many of the advantages of vector sensor arrays had only previously been shown

in theory and/or with stationary arrays. We present results from sea trials in Mon-

terey Bay, CA (2006) and Dabob Bay, WA (2007) towing a relatively short vector

sensor array. Extensive MATLAB code was written in order to analyze this vector

sensor data collected at sea. The code implements both conventional and adaptive

(single white noise gain constrained MVDR) processing with several configurable

parameters and will generate calibrated bearing time record (BTR) plots (in abso-
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lute, relative and even 3-D coordinates), frequency-azimuth (FRAZ) plots, spectral

analysis, time-dependent Fourier transforms, etc. Results highlight several of the

distinct practical advantages of vector sensor arrays: resolution of spatial ambiguity

(e.g., port/starboard and conical ambiguity), the ability to "undersample" an acoustic

wave without spatial aliasing, quiet target recovery via clutter reduction, immunity

to mismatch, improved array gain and enhanced detection performance.

7.2 Future Work

Below is a list of potential research extensions to the work presented in this thesis:

Performance analysis of the new robust adaptive processing algorithm

In Chapter 6, results are presented highlighting towed vector sensor array data col-

lected at sea then processed using the single white noise gain constraint MVDR

algorithm. This real data analysis was a primary motivator to the development of

algorithms customized to the unique characteristics of vector sensors, including the

multiple white noise gain constraint algorithm presented in Chapter 5. Due to a lack

of time, however, this new algorithm has yet to be verified using simulated or at-sea

vector sensor data. This will be completed in the near future, including representative

examples for choosing white noise gain constraints/diagonal loading parameters and

comparisons with other robust adaptive processing techniques.

Develop additional processing approaches catered to vector sensor arrays

New processing approaches can be developed which take into account the unique

characteristics of vector sensors. Such approaches could include using physical con-

straints describing the relationship between acoustic pressure and particle motion

measurements. While the focus of Chapter 5 was on generalizing the white noise gain

constrained adaptive beamformer to different sensor types, similar generalizations

could be developed for other existing algorithms such as robust Capon beamforming

(RCB) [57] and dominant mode rejection (DMR) [3] algorithms.
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Array shape estimation

Due to uncalibrated non-acoustic sensors integrated with the towed vector sensor ar-

ray used in Chapter 6, we assumed a perfectly linear/horizontal array when processing

the data. It would be helpful to explore and quantify the additional gains which could

be realized by implementing a dynamic array shape estimator. This would help to

further identify the effects of mismatch in a towed array configuration.

Mismatch analysis

The mismatch model used in Chapter 4 assumes equal levels of positional mismatch

both in the x, y and z directions and across all sensors; it also assumes equal levels

of mismatch in each of the three rotation angles (yaw, pitch and roll). In certain

applications, it may be helpful to relax this assumption by introducing different levels

of mismatch in separate dimensions or even across sensors.

In Section 4.2, we analyze the effect of mismatch on signal, noise and array gain

using MVDR beamforming weights which are no longer "optimal" in the presence of

mismatch. In future work, more robust adaptive beamforming approaches, such as

those presented in Chapter 5, will be used to analyze the effect of mismatch on array

gain in the presence of mismatch, including examples with low sample support.

Analysis of vector sensor array performance using realistic surface gener-

ated noise and other models

Due to a lack of time, simulations and corresponding comparisons between different

array types and configurations using the Kuperman-Ingenito ocean noise model were

not included in this thesis. Future work will analyze performance in this noise field,

including examples with system mismatch and low sample support. Other models

will also be explored including azimuthally symmetric isotropic noise which can be

described by a spherical harmonics expansion (see [5]).
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Appendix A

Ocean Noise Calculations

In this appendix, we present derivations for results presented in Chapter 3.

A.1 Bessel Functions

Bessel functions appear in the covariance functions for different ocean noise models

presented in this thesis. In this section, we present some of the results and identities

useful in some of the subsequent derivations. The information in this section comes

from Abramowitz and Stegan [4] and is not meant to be a thorough introduction or

analysis of Bessel functions. We present identities for Bessel functions of both integer

and fractional order.

A.1.1 Bessel Functions of Integer Order

Bessel functions of integer order are solutions to the differential equation

d 2w  dw
2 d 2 +ZW d (

22 2) = 0 .  (A.1)
dz 2  dz

Solutions to (A.1) include Bessel functions of the first, second and third kinds. Only

equations and identities for Bessel functions of the first kind, represented by J,(z),

are presented here.
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The Taylor series expansion of J,(z) is given by

J,(z) = z 4 (A.2)
2 =Ok!F(v + k + 1)'

Note that F(n) = (n- 1)! for integer n. A few specific cases of (A.2) used in subsequent

analysis include

Jo (z) = 2

k=o (k!) 2

12 1 1
= 1-- 2 + 4 6 + . . .  (A.3a)

4 64 2304

l(kZ)=( Z k!(k + 1)!

1 1 1 1
S z - z + 5  z 7 + ... (A.3b)

2 32 384 18432

and

J2(Z) 2 4( k= k!(k + 2)
k=O

1 1 1 6 1
1 z 2 1z4 6 8 + . (A.3c)-- z- +-- +O--z +... (A.3c)
8 96 3072 184320

A.1.2 Bessel Functions of Fractional Order

Bessel functions of fractional order are solutions to the differential equation

d2,w dw
z2 + 2z  + (z2 - n(n + 1)) w = 0 (A.4)

dz2 dz

with n = 0, ±1, +2,... Solutions to (A.4) include spherical Bessel functions of the

first, second and third kinds. Only equations and identities for spherical Bessel func-

tions of the first kind, represented by j,(z), are presented here. The spherical Bessel

functions of the first kind can be written as a function of Bessel functions of integer
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order,

j(z) = a J.+ - (z).

Furthermore, the spherical Bessel functions for n = 0, 1, 2 can be written as

sin z
jo(z) = = sinc z,

sin z cos z
jl(Z)= 2z z

and

( 3j2 (Z)= z3
1\ 3

sin z- - cos z.
z z

(A.5)

(A.6a)

(A.6b)

(A.6c)

The Taylor series expansion of jn (z) is given by

S1-
12
1(2n 3)

1!(2n + 3)

(lz2)2
+ (2

2!(2n + 3)(2n + 5)
(A.7)

A few specific cases of (A.7) used in subsequent analysis include

jo(z) = 1-
Iz2(3)

1!(3)

( z2)2

2!(3)(5)

6 120
(A.8a)

z {
(Z) -31-3

1
- -Z -

3

z
2

j2 ) - 1.3.5

12 _

15

1 3

30

1 2

1!(5)
2!(5)(7)

2!(5)(7)

1 5

840

1

1

210

1z2 ( z2)2

!(7) 2!(7)(9)
1!(7) 2!(7)(9)

16
75 6

7560
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(A.8c)
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A.2 Directional Noise Fields

As indicated in (3.2), we must differentiate Kpp (rk, re) in order to obtain the co-

variance matrix of a vector sensor array in a directional plane wave environment.

Since we will be taking spatial gradients in the x, y and z directions, we can write

K p (rk, r,) from (3.26) explicitly as a function of the components of the wavenumber

vector k = k k kz ] and position vector rk = k k Zk r as

Kpp (rk, re) = Sy (w) e - jkTAr

= Sy (W) e- 3(k (x k-

The relevant derivatives of (A.9) include

KP K
K, = OzK

a aKp a Kpp
aye PP aYk K
a a

dK, PP d Kpp

a92 K pp = x2 Kpp82 02

azd Kpp = 0e2yz Kpp

2
2 

K
2

OYk8 Y
cg OE K(

-xe)+ky(yk-ye)+kz(zk -z))

= jkxSo (w) e-3kT r,

= jkyS (W) e -jk A r,

= kzySyo (W) e-3kT
A r

= kmkio ( 3) e- k Ar

= kxkzSy0 (w) e- 3k  r ,

= kkzS, (w) e-kT Ar,

= kxSyo (W) e -jkAr

k 2S. (w) e-jkTAr

and

K, = k S ()) e-k T r

azk 8ze P
(A.10i)

We then insert the derivatives found in (A.10a)-(A.10i) into (3.2) to obtain the co-
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variance structure for the pressure/particle velocity vector,

E { zk} = --- (-jkx)
-g- (-jky)

1 (-jkz)

21 (kxk)
-k

1 (k2) 1 (kykz)
So (w) e -3 kT

A r

1 kT i Syo (w) e- kTAr. (A.11)
1 ]

1k
wP

Since the wavenumber vector can be expressed as k = - u, (A.11) becomes
C '

(A.12)

Similarly, the covariance structure of the pressure/acoustic particle acceleration

vector is given by

1 - (j kx) - (jk) - (jkz)

-l (-jkx) 2(k) -(kxk ) p(kxkz)

- (-jk) -(kxkz) 1(k2) 1(kkz)

Syo (w) e
- jkT Ar

-k ] SY (w) e- kTAr
P

(A.13)

Since k = -"1u (A.13) becomes
c

(A.14)

By inserting (A.12) into (3.13a) or (A.14) into (3.13b), we obtain the covariance
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structure of the pressure/scaled acoustic particle motion vector mk,

E{mkm} = u 1 uT S, (0) e-  r .  (A.15)

A.3 3-D Isotropic Noise Fields

From (3.16), the pressure correlation function in 3-D isotropic noise is

Kpp (rk, r,) = So (w) sinc (kR)

= So (w) jo(kR) (A.16)

where

R = rk - r

= A 2 + Ay 2 + A 2  (A.17)

and

Ax X -x, R sin o cos 1
Ay = yk - Y Rsin 0 sin . (A.18)

Az z - z] R cos 0

We first present the relevant derivatives of (A. 16), followed by the pressure/particle

velocity covariance functions. Taking a spatial gradient in the x direction reveals

a Kpp Kpp = So (W) AxR2 (sinc (kR) - cos (kR))

kAx 1
= So (W) (sinc (kR) - cos (kR))

R kR

= So (w) k ji(kR), (A.19)R

where the final equality is a result of the Bessel function identity found in (A.6b).

160



8
p 

Kpp

z Kp
'9z

8 Ay= Kp= So (w) k R jl(kR)

a Az
= K,, =So (w) k Rj(kR).DZk

3
sin (kR) -

(kR)2

(A.20a)

(A.20b)

The spatial partial derivatives in both the x and y directions are shown to be

8 AxAy= EK,pa =So () R4 ((k2R 2 - 3) sin c ( k R ) + 3 cos (k R ) )

Ox,8yk R

3

(kR)3

k2AxAy ((

k2AxAy
-So. ) R2 kR)1

kcR

= -So (w) R2
2(kkR),

cos (kR))

(A.21)

where the last equality follows from the Bessel identity presented in (A.6c). Similarly,

a k 2 AxAz
ax KP, = -So (W) k- 2 j 2 (kR)

SK k2AyAz
Yk,, = - So (0) R 2 j 2 (kR).

The spatial partial derivatives in both xk and x, are then shown to be

- So() R 4 ((k 2 R 2 - 3) sine (kR) + 3 cos (kR)) +

SSo (w) ji (kR)

R 2 (sine (kR)

k 2 Ax 2 2
R2 2(kR)I

- cos (kR))]

(A.23)

where we have used both (A.6b) and (A.6c). Similarly,

k2Ay 2j2 (kR)
R2 2(kR)R2

(A.24a)

a Kp = So (W) kji (kR)
R

R 2 1.2(kR) J
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and

0K
al Oy,

3 3(- )2 sinc (kR) + 2 Cos (kR)
(k R) (k R)

and

(A.22a)

a
xk ax KP

(A.22b)

and

(A.24b)

y jk
a KPP = S (w) j (kR) -

ayky 9Y R



We then insert the derivatives found in (A.19)-(A.24b) into (3.2) to obtain

E (z,z) = So (w)

jo(kR)

- (-k-jl(kR))

1 - k (kR))

--1 (-k ji(kR))

. (k-j (kR))
-2

1
2 (-j(kR) - k2j 2 (kR)

1 k2AxA 
2(kR)R2 2(CR))

S k2AxAz•kR

L,-- p y k --R-T-

1 (k 2 AY31(kR))

-p2 -2 AYj2 (kR))

1 -L 2 (kR) - - j 2 (kR)

I - 2AyAz2(kR)Lj 2 P R

S(k z (kR))

2p2 ( k2AxAzj (kR)1 P 2AXAZ R2 32( ( ))
Wp2 ( k2 - j2 (kR))

w-p2 J(kR) - k2Az21(kR))

By using the fact that k = w/c, we obtain

E {Zk4) = So (w)

jo (kR)

-jp (- i (kR))

-I- -A j(kR)

- (- ~ j (kR))
3wp c R LI I

3 ( x jl(kR))

W2 2 C2 -ii(kR) - 22(kR)
1 w

2  Ax2.

1 w 2 AxA ( j 2 (kR))

, -T -R -j k )

1 W
2  

A •A
2 Cy j2((kR))

... W 2 ( y(kR) - j2 (k

-2p2 C2 - R J2(kR)

(- j(kR))
1 w

2

R) ) W22 2 ( A ,J2 (kR)

1k - w2zj2(kR)

After rearranging terms, we obtain the result presented in (3.19),

E {zk) = So (w))

jo(kR)
1 Ax--L wjl (kR)

- -j1(kR)
1 I(AzkR)

1 Ax

- R2 2(kR)

P
2C

2 A2 (kR)

1 J Yji(kR)

" 2 C
2  R '2(kR)

... pc1 (kR) - A2 j2 (kR)

AYA- Z j2 (kR)

(A.27)

-1 Azj (kR)

c
2 

A j2(
l kR)

1 AY
pc

2 
R22R)

p 22 (Aji(kR) - Az2 2(kR))
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A.3.1 Auto-correlation (rk = r,)

(A.27) is valid for all rk and re, however it simplifies significantly when r = r (i.e.,

R = 0). Furthermore, evaluating many of the expressions in (A.27) at R = 0 is not

straightforward due to indeterminant expressions. This can be alleviated by using

Taylor series expansions for the spherical Bessel functions in (A.27) and equivalently

in (A.19)-(A.24b).

By inserting the Taylor series expansion of ji(z) from (A.8b) and the identity

Ax = R sin 0 cos into (A.19), we obtain

p = K-- pp = So (W) k- j(kR) (A.28)
ax, 1x, R

= S (w)k Rsin cos3 (kR) - (kR)3 + (kR)5

R 3 30 840

= So (w) k sin 0 cos (kR) - (kR)3 + (kR) ..
(3 30 840

We take the limit of (A.28) as R -- 0 to obtain the desired result,

Similarly,

lim K, =lim a K =0.
R--O e PP R-O X k P

a a
lim KpP= lim Kpp = O
Ro (y, R-,o yk

lim K = lim- Kp = 0.
R--O aze PP --O zk

and

(A.29)

(A.30a)

(A.30b)

By inserting the Taylor series expansion of j2(z) from (A.8c) and the identities

Ax = R sin 0 cos 0 and Ay = R sin 0 sin into (A.21), we obtain

a KPP
a k2AxAy
S Kp = -So (w) 2  j 2(kR) (A.31)

axe ay R2

k-S 2 R2 sin 2 0 co sin 1(kR) 2 - (kR)4 + (kR)6
S() R2 15 2 10  7 560

-So (w) k 2 Sin 2 0 COs sin (kR)2 - (kR)4 + (kR)-
15 210 7560
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We take the limit of (A.31) as R --- 0 to obtain the desired result,

lim K P
R-o O axy'

= lim Kp = 0.
R-O Oxe,'Y,

lir m- Kpp = lim - = 0
R--o OX8z, " R--o x ,OZ

lim KpP
R-0o Oyk z,

lim aKp = 0.
R-o OyeaoZ

Given (A.29)-(A.30b) and (A.32)-(A.33b), we conclude that when rk = r, all off-

diagonal elements of E {Zk H } are zero.

In order to find the diagonal elements of E {zkz}H, we insert the Taylor series

expansions of jl(z) and j 2(z) from (A.8b) and (A.8c) along with the identity Ax

R sin 0 cos into (A.23), to obtain

k
kjil(kR) -

R

k2Ax2 2

R2 2(kR) (A.34)

-..}S ( (kR) - 1(kR)3 + 8~ (kR)5 -
k2 ( (kI ) 2 

- (kR) 4 + 7 6 0(k ) 6
R2 15 -R (kR)(k

(k2 k4R 2  k 6R4
3 30 840

-k 2 (sin Ocos )2 ((kR) 2 - (kR)4 + 7 ~ (kR) 6
... ) }"

We take the limit of (A.34) as R -- 0 to obtain the desired result,

lim K, = So (w)
R-o aXkaXe 3

lim KpP = So ()
R---o aykayp 3

Similarly,

and

lim Kp =R-o OzkOza,
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Similarly,

and

(A.32)

(A.33a)

(A.33b)

aKx
ax, x

(A.35)

(A.36a)

(A.36b)

= So (){

= So (;)

k
2

So () 3



We insert the above results into (3.2) to obtain

E {zkz} = limR---k R 0

= S0 (W)

= So (w)

1 1 a
jwp axf

1 0
jwp Oy

1 0
jwp azt

1 1 1 2 2 1 2

jwp Oxk w2
p

2 
xk L)2p2 e W2p

2 
XkOZ

1 0 1 02 1 02 1 02

Jw"P ayk W
2

p
2 0

yk
x  

2p
2 0

Y
k O y

e W
2

p
2 

ykOze

1 0 1 02 1 02 1 02

jwp Ozk W
2 2 a z k

OX
i  

w
2

p
2 azkOye W

2
p

2 
zkOze

1 0 0 0

1 k
2  

0 00 2p2 3

0 0 1 k
2  

0
w

2
p

2 
3

0 0 0 1 k 2

2 0 0 p2 3

1 0
0 1 1

3 p2C20 O
0 0

0 0

0 0

0
1 1
3 p2C2

0 1 1
3 p2 c2

Kpp (rk, re)

(A.37)

which is the desired result presented in (3.19) for the special case of rk = r,.
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A.3.2 3-D Isotropic Noise Covariance Summary

Combining the results in (A.27) and (A.37), the pressure/particle velocity covariance

expressions for zk are summarized as

E {zkzH} =

So(w)

So(w)

0 0 0

1 0 0
3 p2C

2

0 1

3 p
2

C
2

jo(kR)

1 Ax R

3pc R ilk)
1 Az.

3pc R ilk

1 ALx-j1( R)
jpc R j(kR)

SC2 ( R1 jlR)- "'2 (kR)

- -j2(kR)

p 2 AxAj2 (kR)

j (k R)

1 AX2AY ~2p 
2

R2'

p
2
C

2 (-Lj i(kR) A-j2 (kR))

1 AyAz . (R)
p2C

2
R2 32('

1zj (kR)

-2 AXAz2(kR)

-_y2 A zj2(kR)P C2 R2

p (j(kR) - j2(kR)
(A.38)

The pressure/particle acceleration covariance expressions for qk directly follow the

results presented in (A.38) using (3.9),

So (w)

0 0 0

1 2

o 3P2C2 00 0 0
0 0 p2c2

E (qkq} =

jo(kR)

So () I(kR)

'j jl (kR)

Az ji(kR)
L pc R

Sxj (kR)

P 2 R
A 2

(kR)
R2 -2 (kR)

w
2 

AxAy

P J(R j2(kR

- . (kR)
w

2 AxA2 •(kR

p (kR) - kR)

-222 R RJ2(kR) )

- z- (kR)

22 AAz"(kR)

p c(1 jl (kR) - A z 
j2P 2---V- R 2
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The pressure/scaled particle motion covariance expressions for mk directly follow the

results presented in (A.38) using (3.13a),

So (w)

So (w)

j -- j (kR)

a- j 2 kR)

- Azj2(kR)

A.4 Kuperman-Ingenito Noise Model

From (3.29), the pressure correlation function in the Kuperman-Ingenito surface noise

ocean noise model is

Kp = E {p(rk) p* (r)} = 2p 2 k2 S - m
m

where
Ax Xk- x1 R cos 1
Ay yk - ye R sin J

A.4.1 Derivatives in the x and y Directions

We first present the relevant derivatives of (A.41), followed by the pressure/particle

velocity covariance functions. Taking a spatial gradients in the x and/or y directions
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jo(kR) j ji(kR)

j- j(kR) (-JL(kR) --- j2(k

j Am • AxAY
ji(kR) - R2 j2 (kR)

j -j (kR) - Azj2(kR)

j% ji(kR)

R2 j(kR)

S-~Al (kR) - j2 (kR)

- Azj2( kR)

E {m,m H} =

(A.40)

(A.41)

(A.42)



reveals

x Kp =

y Kpp
ayf > =

a Kp rq 2Ax E 1

OXk 2p2k2R m [m(Zs)]2 m(Zk)m(Z)J1(mR)

9 rq 2 Ay 1
y K p p = 2p 2 k 2 R E m Fsfm( J)]2 m(Zk) m (Z) Jl(mR),

(A.43a)

(A.43b)

a 2  a 2  7q2AxAy 1

xky£KPP -= OX-yk Pp - 2p2k2R3 m [(m(Z m(Zk) (Zl) [mRJo(KmR ) - 2JI(Km)],
m

(A.43c)

2XkX 2pR2 k2 13 [ m

(A.43d)

and

a 2 K 7q2  
1 m )]2p p -2k2R3 [m(Z)]2 'm(Zk)'m(Ze) [ n R +y 2 JO ( Km R ) + (AX2 - Y2) g(/mR)]"

dYk e 2p2 k2 R3  )

(A.43e)

Limit as R -+ 0

For the special case when R = 0, we take the limit of (A.43a)-(A.43e) as R -+ 0. Note

that R is the horizontal component of the distance between rk and r,. Therefore, if

R = 0, it does not necessarily imply that rk = r, since they may be separated in

depth. In order to avoid indeterminant expressions as R -- 0, we use Taylor series

approximations for Bessel functions of integer order. By substituting (A.3b) and

168



(A.42) into (A.43a), we obtain the following expression for gradients in the x direction:

a
a K =OX, K,=

aZk pp
Ox , =

7Fq 2 AX

2p 2k2R
m

1 [qm(Z)]2 'm!(Zk) 'm(z,)Jl(KmR)
am

(A.44)

Swq 2R cos [m(z,)]2
2p 2 k 2R /am

2 m

i7q2Cos -

2p 2 k2 m
m

1 m

am

1 [ (Z)]2 m(Zk)'m(ze) ( KrR)

lim K =
R-O, X P

lim -- Kpp = 0
R-*O Xk

and
a a

lim a-Kpp = lim a Kp = 0.
R-o Oy, R-O Yk

By substituting (A.3a), (A.3b) and (A.42) into (A.43c), we find

02
OeKp =OxeOYk

7rq 2R 2Cos 0 sin 0
2p 2 2 R3 

S7q
2 cos Sin 1

2p 2 k2R / am

q2cos 2  sin 1

2p 2 k 2  amm

2q2 AxAymm

r2pk2R SmZ ,)]2 
''m(ZA)m(Z ) [HmRJo( mR) - 2J(i mR)]2k 2 qm

{f'm(Z,)]
2 

'm(Zk)4'm(ZI) {'mR (I -

2 (m R)
2

- mR -( 3 R2

16

------- + ...
4 +

32

4

(imR)
3

16

(A.47)

a2

lim K = lim
R-o aXky, R-o

2 K
K = O.
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(KmR)3

32
XM(Zk)TM( 

(mR)

('MR) 3

32

Similarly,

Therefore,

Therefore,

-..

rq2sin ¢
2p 2 k 2 m

(m 3R)3

32
(A.45)

(A.46a)

(A.46b)

02

OakOy K, -

Therefore,

(A.48)

I' (Zk)q¢m (z ) ( 2
2m

( m

[,lpm(Z ) 2 m(Zk )klm(Z )

[pm(Z,)]2 'm (Zk) m(ZI ) ( R



Substituting (A.3a), (A.3b) and (A.42) into (A.43d), reveals

2 rq2

axr KPP 2p 2k2 R3 Eam [ )m(z,)]
2

'Pm(Zk)XPm(ZI) { mRAX
2
JO (KR) + (Ay

2 Ax 2) Ji( mR)

= -q [m(Z)] 2

S 7rq 2  1

2p2 k 2R 3

2p m ami

Im(Zk)qjm(Z) KMmR3 COS2 0 (I
(KmR)

2

4

+R 2 (sin2 -_ cos
2  (mR)2

2

(mR3 3 R 5

- 4 +

+R 2 (1 2 cos 2  ((imR)
2

1 [jm(Z,)]2
am

( iimR3

+ 2

[r m(Z)]2 m( ) ( ) 3

am 2

7q 2  1 {Km(\ T (\T 2m

2p2k2 m am [ ] 2

3 5

32

3 2
m +
32

cs2  3 R5

16

Cos2 ( 316 
5

16

OS21os2  +(A.49)

(A.49)

- sin 2 (o) 3K 1 2
( 1 +

(A.50)

82
lim Kpp
R-o dxk8 x £

a2

= lim Kp=
R-O aYk 8Ye,

(A.51)
7Tq 2 m [ m(z)]2

4p2k2 E Oam
m

A.4.2 Derivatives in Depth

Note that since the mode functions Im(z) are calculated numerically, spatial gradi-

ents in depth (z direction) will also be computed numerically. Relevant derivatives

involving gradients in the z direction (and in some cases in the x or y directions)
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(mR) 3

32

2p2k2R3 m

_ 7rq
2

2p2k2R3 Sm

(KmR)
3

32

Similarly,

T2

Tyk ef Kpp

Therefore,

)}.

7rq 2

2p 2 k2 m S[m(z )]2am

{(Km
2

3 R 2
+32

32

m M (Zk)M(Z) COS2 o

COS 2 Km R3 K3mR 5 +m
qm Zkm(Z )

3 5 
32

XFI(Zk >qIln(Ze)

Xm k(zk) m( ,).



E I [qn(Zs)]2

amim

[Tm(zs)] 2 'm (Zk) a fme(z ) JO(KmR),

[Pm(Z,)]2 'Im(Zk)

m am
(izPm(Z) Ji(hmR),

7rq2 Ax 1

2p 2 k2R a m(

2  
1 [J(s 2 

m(Zk)
2p2k2R Z am

)) Ji( mR),am_ (

[2k m(Z)]
2 ( mkP (Zk) Pm(z 1)Ji(/-imR)

q2 Lm(Zs)]2

Since the mode functions are often solved for and represented numerically, we must ap-

proximate the depth derivatives. Three methods of approximating the depth deriva-

tives include the following:

Central Difference : a (z) k)
OZk

Forward Difference :
0Zk

F (z + z) - (zk
AZ

I (zk + Az) - X (zk)
Az

Backward Difference : (zk) k) - k A
Oz, Az

(A.53c)

Limit as R -\ 0

For the special case when R = 0, we take the limit of (A.43a)-(A.43e) as R --- 0.

Again note that R is the horizontal component of the distance between rk and r,.
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include

7rq
2

2p 2 k 2

7rq
2

2p 2 k 2

a
KP =

0Zk

zkKp. =

02

Ox zk
02

a- _ KPP
Ol~eOzk

7rq2 Ax

2p2 k 2 R

(A.52a)

(A.52b)

(A.52c)

(A.52d)

(A.52e)

(A.52f)

and

02
Ozk OzeKp S(Zk (A.52g)

and

Az
2 ) (A.53a)

(A.53b)

a mXI(z)) m(z)Jo(inR),

( m 1)J mR),

) ) ( I'T m (Z,) )0J (KmR).



Therefore, if R = 0, it does not necessarily imply that rk = re since they may be

separated in depth. Since Jo(0) = 1,

D - iq 2  1lim KP 7q2  [m(z,)]2 (z

liR a K 2p 2 2  mz)]2

p2m2KP2m j 2 
m(Zk)R-O aZe 2p 22 k m m

m

(A.54a)

(A.54b)

and

a2  ( 2 a
lim Kpp2= 2  m(] 2  mZ m() . (A.54c)
R-O azkze 2p2k am ak /az

m

Due to (A.46a)-(A.46b),

a2  a2
lim KPP = lim Kp, = 0 (A.55a)
1,o axkOz9 R-O 9XaZk

and
a2  a2

lim K = lim Kpp = 0.
R-o OYykaZ, R-O aY zk

(A.55b)

A.4.3 Kuperman-Ingenito Covariance Terms

By substituting the partial derivative results from Sections A.4.1 and A.4.2 into (3.2),

we obtain the following results:

E {ZkZH}= E

PkP

VZkPf
Vzpe

Pk x% Pk V Pk Ve

tv ye tvvYk ze

Vzyk V Vyk Vy Vyk V

Vzk VX% Vzk Vy*R zk V;

(A.56)

(A.57a)
zrq2 

1

E {pkp}= [2p2'2  m [ Zs)]2 qjm(Zk)'jQm(Ze)J($mR),

m
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I(m )) j (Zf),

Oz,



1 -rq2AX 1 , Z' F (k P Z)J KR
jwp 2p 2 k2 R mam[4mZ) 2

Jm(kJmZ)limR

.irq2 [C(Z)] 2 AX y1
= 2p3 w3R ma

I 7r 2 E 1 [qm(Zs)]2
PTM(Zk) I JM(Zj)J Jo(rimR)

Lop2p
2k2

m afl/'i(9l

.7rq2[(s]

= J 2p3 W3

1 I

.irq2 [c(Z,
= 2p 3.U

E £ PkVx,

1 [qji(Z )]2 'P M (Zk)XP'M (Z) Jl (Km R)
am

YE 5 I. 'JM(Zs)] 2 'F'm (Zk)'m(Z) Jl(Km R))
m am

m amrm

-'TP (z~i) o(m

(A.57c)

(A. 57d)

2rq2AX5 ['Iy,)] 2 'P1M(Z ) M(Z) J (mR

2p2 k2 R Eam x
m

3R - E I[Pm(s] XP M (Zk)XP M(ZI) Jl(Km R)
zm

(A.57e)

1 rq 2  1§ [,J'l(zs)]2 'I'M(Zk)'P'm(ZI) [KRA X2 Jo KR
:w2 p? 2p,2 k2 R3 S aem [ O

_ rq 2 [c(z 8 )]2

2p 4 w4 R3
S1
m

[p'm (Zs) ]
2 '1!m(Zk)'PM(ZI ) [KmrRAX2jo (KmnR) +1

+ (Ay 2 _ AX2 ) Ji (m R)]

(AY2 _AX2 ) Ji GrmR)],

(A.57f)

1 7rq2 AXAy 1 [4'm(Zs)]2 
'(Z)ImZ)[mROmR

:;2p 2p 2 k2R 3 mam

_ rq2 [c(zs)]2 AXAYy 1

2p4 wy4R 3 m am

2J1 (rKmR)]

-2Ji(KmR)],

(A. 57g)
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E {pkv*e

F {pkv*,}
1 7rq 2Ay

jwp 2p 2 k2 R
2

(A.57b)

.irq 2[C(zs)]2 A

2p 3 wp 
3 R

F{p~v} I--

Efvxkp~}

F I{Vxk Vx*,}=

F f VXk V~ I=

[qM(Z")]2 'PM(Zk)'PM(Zt)Jl(rmR),

[qjm(Z,)12 'PM(Zk)TM(ZI) [nmRJo(rmR)



irq2 Ax

2p 2k 2 R

7q2 [C(Z,)]2 AX
2p4w4R

E I [m(Z)] {m(Zk)
m

m [m(zs)]
2  

(Zk)
m a

7rq 2
A y

2p2 k2 R m

.rq 2 [C(Zs)] 2 Ay

2p 3w 3R m

=E {Pkv,, ,

I [gm(z,)]2 'm(zk)XPM(ZI)jl(KmR)
"am /

1 [m (Z,)]2 qIm(Zk)'m(Z )Jl (KmR)
am

1 7q2AxAy
w 2p 2 2p 2 k 2 R3 S

m

7q 2 [c(zs)] 2 AxZ y

S 2p4 x 3 V

=E {Vk ;},

1 [4m(Zs)] 2 
'm(Zk)qm( Ze) [KmRJo(mR)

Oam

1 7rq 2

w 2p2 2p 2 k 2 R3

1 [pm(Z)] 2 
Pm(Zk>)X(z) [rmRJo(mR) - 2Jl(KmR)]a~m

(A.57j)

1 [m(Z)] 2
I'm(Zk)2Pm(z ) [KmRAy 2 Jo( imR) + (Ax 2 _- y2 ) J (KmR)]

1 [,({)]2 Im(zk){m(z) [KmRAy 2Jo(/mR) + (Ax 2
0 z

1 ( irq
2 Ayw2p2 2p2k2R m

m

_ q 2 [c(z)]2  y
2p 4w4

R m

1

am

am

[p m (Z>)]2 'm(Zk)

[(m(Zs)] 2 'm(Zk)
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VX 1 W2 p2 S (z

a kJ i ( rm R ),

J1(Km 
R))

E {vykpf} = -
JLOP

(A.57h)

E {VY vf }=

(A.57i)

E {y vYk, V} =

q2 [c (z2)]2
2p4 w4 R 3 m

E { Vk, }z

(A.57k)

( m Xm

z 1m(e Jl( mR),

(z,)) J(hmR)

(A.571)

- 2JI(KmR)]

AY2) i1 mR)])



1 7rq 2  1Z)] 2

jE {vz2P }p 2 k2  [ m(z,)]2
jp 2pk am rm m

[

= rq 2 [c(zs)]2

2p 3 w3 E 1 [qm(z)j]
Em lm

2

am m

a VF Z,)kza

mZk

Tm(Z,) Jo(KmR)

Jm (z)J(KmR),

1 7rq 2 Ax 1

;2p2 2p 2 k 2R E a

rq [c(z5 )]2 AXE

2p4w4 R m

[Tm(Zs)]
2

rn
aZ

(Zk)) Pm(Z)J(1 mR)

[m(Z)]2 a
( Oz

1 7rq 2 Ay 1 2

W2p2 2p2k2R - [a m(s
w p m 

( 9 aZkm ) xm(z) Jl(( mR)

= rq 2 [C(zs)] 2 Ay
2p4 w4R

1 7iq2

2 2p2 k2 m
p m

1

amm

[pm(Z)]2 Zk)) 1(z,)Jl(, (R)

a m m 2( mk

_ rq2 [c(zs)]2 E

2p a (z)mKm Zmk
(a m(Ze)) JO(AmR).

(A.57p)
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E {vz,v ,}

(A.57m)

E { vz;k }

(A.57n)
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Special Case: R = 0

When R = 0, the covariance terms become
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where

(A.59a)
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The pressure/particle velocity spatial covariance terms in the Kuperman-Ingenito

Ocean Noise Model are summarized in Section 3.2.3. The covariance expressions

for q, (pressure/particle acceleration) and mk (pressure/scaled particle motion) in

the Kuperman-Ingenito surface noise model can be directly written as a function of

E {zzH using (3.9) and (3.13a).
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