
Virtual Stationary Timed Automata for Mobile Net

by

Tina Ann Nolte

Submitted to the Denartment of Electrical Engineering and Cor
Science

60OZ 9 0 iVH

A9Ok1ONH3i JO
!1ISNI S13SnHOVSSVFl
putC;

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

A uthor
Department of Electrical Engineering and Computer Science

October 24, 2008

Certified by
I' Nancy Lynch

NEC Professor of Software Science and Engineering
Thesis Supervisor

Accepted by...
/ Terry P. Orlando

Chair, Department Committee on Graduate Students

'& I A II astm-&%

Virtual Stationary Timed Automata for Mobile Networks

by

Tina Ann Nolte

Submitted to the Department of Electrical Engineering and Computer Science
on October 24, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, we formally define a programming abstraction for mobile networks called the
Virtual Stationary Automata programming layer, consisting of real mobile clients, virtual
timed I/O automata called virtual stationary automata (VSAs), and a communication ser-
vice connecting VSAs and client nodes. The VSAs are located at prespecified regions that
tile the plane, defining a static virtual infrastructure. We present a theory of self-stabilizing
emulation and use this theory to prove correct a self-stabilizing algorithm to emulate a
timed VSA using the real mobile nodes that are currently residing in the VSA's region. We
also specify two important services for mobile networks: motion coordination and end-
to-end routing. We split the implementation of the end-to-end routing service into three
smaller pieces, consisting of geographic routing and location management services with an
end-to-end routing service built on top of them. We provide stabilizing implementations of
each of these services using the VSA abstraction, and provide formal correctness analyses
for each implementation.

Thesis Supervisor: Nancy Lynch
Title: NEC Professor of Software Science and Engineering

Acknowledgments

The years I spent at MIT were filled with interactions with people that I will never forget.

Their support is what made this thesis possible.

First, I would like to thank my thesis advisor, Nancy Lynch. Of course, her technical

guidance was necessary and invaluable, but, just as important, whenever I felt as though the

light at the end of the tunnel was a little faint, a conversation with her would put me back

on my feet. She was always able to help me remember that problems that I was thinking

about were both interesting and of interest. I would never have been able to write this thesis

without that.

I would also like to thank the other members of my thesis committee, Shlomi Dolev

and Madhu Sudan, for their time and feedback.

Next, I would like to acknowledge the people that I had the honor of collaborating with

on work that led up to this thesis. A visit by Shlomi Dolev and one of his students, Limor

Lahiani, was the spark for this work. Shlomi is a bottomless well of interesting ideas and

questions, and this initial visit created too many ideas to put into one paper. The first two

VSA papers [29, 37] came from this visit.

Seth Gilbert was an indispensable sounding board, on the first VSA paper [29] and

others [45], [12]. If I had difficulty figuring out how to explain something in my head, I

would often talk to Seth. Somehow he could peer in and see what I was trying to say. We

also had the opportunity to work together on some of the motion coordination work that

appears in this thesis [45]. This motion coordination work was joint work with Sayan Mitra

and was based on an earlier paper that Sayan and I worked on [66]. Working with Sayan

on that earlier paper was the most fast-paced paper-writing experience I have ever had; it

was a ton of fun, and the meal at his house when it was done was two tons of fun.

I also enjoyed working with Seth Gilbert and Calvin Newport (a well-read conversation-

alist who often came to my aid when nontechnical diversions were required) on a project

with Matt Brown and Mike Spindel on implementing some of the virtual infrastructure

ideas [12].

I had the pleasure of working with people outside the scope of my thesis as well. These

collaborators and friends include Mandana Vaziri, Ling Cheung, Rui Fan, Murat Demirbas,

and Elad Schiller. I would also like to thank my master's thesis supervisor, Daniel Jackson,

for helping me complete my first big technical work.

I need to thank my family and friends for their support. Without my family I would

not be here, on planet Earth, let alone finishing an undertaking such as this. Without my

friends, I would not have (most of) my sanity intact today. And without Stangelaliana and

the All/ Logan/ Nick/ Junior team in particular, I would probably have starved to death in

my last months in Boston.

Finally, I have to particularly thank my husband, Jason, who always disagreed with me

whenever I said that I was never going to finish, even if it was only because he wanted me

to start working so that he could quit his day job and join the PGA tour (just you try it,

buddy). Since Jason often complains that he has no records for the times when I admit that

he was right and I was wrong, here it is:

"Jason, you were right, and I was wrong".

Contents

1 Introduction 15

1.1 Mobile ad hoc networks 16

1.1.1 Point-to-point based algorithms 16

1.1.2 Location aware algorithms 17

1.2 Virtual programming layers 18

1.2.1 Virtual objects 18

1.2.2 Virtual Mobile Nodes 19

1.2.3 Our approach - Timed Virtual Stationary Automata 19

1.3 Theory of stabilization and emulation for timed systems 20

1.4 A stabilizing VSA layer emulation algorithm 22

1.5 Thesis overview 24

1.6 Research acknowledgments. 28

I Theory of stabilization and VSA layer emulation

2 Mathematical preliminaries

2.1 Basic mathematical preliminaries

2.2 Timed I/O Automata

3 Self-stabilization

4 Emulations

4.1 Em ulation .

30

33

. 33

34

41

51

S51

4.2 Emulation stabilization 53

5 Failure transform 57

6 Layers: Physical layer model 61

6.1 N etwork tiling . 61

6.2 Mobile physical nodes 63

6.3 RW: Real World 64

6.4 Pbcast: Local broadcast service 69

6.4.1 Properties of Pbcast 70

6.4.2 Reachable states of Pbcast 72

6.4.3 Reachable states of RWIIPbcast 74

6.5 P-algorithms and PLayers 78

7 Layers: Virtual Stationary Automata layer model 79

7.1 Network tiling and RW 80

7.2 Virtual time and failer service VW 80

7.3 M obile client nodes 81

7.4 Virtual Stationary Automata (VSAs) 82

7.5 VBDelay delay buffers 83

7.5.1 Client VBDelay 83

7.5.2 VSA VBDelay 85

7.6 Vbcast: Virtual local broadcast service 85

7.7 V-algorithms and VLayers 90

8 VSA layer emulations 93

II VSA layer emulation algorithm 96

9 Totally ordered broadcast service 99

9.1 TOBspec: Specification of totally ordered broadcast 99

9.1.1 TObcast 101

8

9.1.2 TOBDelay 105

9.1.3 TOBFilter 105

9.1.4 TOBspec 107

9.2 TOBimpl: Implementation 117

9.3 Correctness of the implementation . 121

9.3.1 Legal sets 122

9.3.2 Simulation relation 133

9.3.3 Self-stabilization 142

10 Leader election service 147

10.1 LeadSpec: Specification of the leader election service 147

10.1.1 LeadMain 149

10.1.2 LeadCl 151

10.1.3 LeadSpec 153

10.2 Leadlmpl: Implementation 160

10.3 Correctness of the implementation 162

10.3.1 Legal sets 163

10.3.2 Simulation relation 165

10.3.3 Self-stabilization 172

11 Implementation of the VSA layer 175

11.1 Client implementation 175

11.2 VSA implementation 175

11.3 Correctness of the implementation 182

11.3.1 Legal sets 186

11.3.2 Simulation relation 200

11.3.3 Self-stabilization 216

11.3.4 Stabilizing emulations 221

11.3.5 Message complexity 228

11.4 Extending the implementation to allow more failures 228

9

III VSA layer applications

12 GeoCast

12.1 Specification

12.2 Properties of executions of the geocast service .

12.3 Legal sets .

12.3.1 Legal set L'eo..............

12.3.2 Legal setLeo..............

12.4 Self-stabilization

13 Location Management

13.1 Location service specification .

13.1.1 Client algorithm

13.1.2 VSA algorithm

13.2 Properties of executions o:

13.3 Legal sets

13.3.1 Legal set Li . .

13.3.2 Legal set L' s ..

13.3.3 Legal set L.is.

13.3.4 Legal set Lhls

13.3.5 Legal set Ls ..

13.4 Self-stabilization

13.5 Extensions.........

14 End-to-end Routing

14.1 Client end-to-end routing

14.1.1 Client algorithm

14.1.2 VSA algorithm

251

.253

.255

the location service

256

257

259

260

261

262

263

264

266

271

specification

14.2 Properties of executions of the end-to-end routing service 277

14.3 Legal sets

14.3.1 Legal set L' 2e..........

10

..... 280

. 281

230

233

.234

.237

.239

.239

.241

.246

273

.273

.274

........276

14.3.2 Legal set L 2e . .

14.3.3 Legal set L2 e

14.3.4 Legal set L 2e . .

14.4 Self-stabilization

14.5 Extensions

15 Motion Coordination

15.1 Background

15.2 Motion Coordination using Virtual Nodes

15.2.1 Problem Statement

15.2.2 Overview of Solution using the VSA Layer

15.2.3 RW': modifiedRW

15.2.4 CN: Client Node Algorithm

15.2.5 VN: Virtual Stationary Node Algorithm . .

15.2.6 MC: Complete System

15.3 Correctness of the Algorithm

15.3.1 Approximately Proportional Distribution .

15.3.2 Uniform Spacing

15.4 Self-stabilization of the Algorithm

293

. 293

15.4.1 Legal Sets.

15.4.2 Relationship between Luc and reachable states .

15.4.3 Stabilization to L c

15.5 Conclusion

16 Conclusions

16.1 Contributions .

16.2 Evaluation .

16.3 Open questions and avenues for research

.296

. 297

. 297

.298

.299

. 300

.303

. 304

. 305

. 315

.317

.318

. 320

.326

.329

331

.331

.333

. 335

. 282

.283

. 284

.285

.290

....................

12

List of Figures

3-1 Execution cB for Lemma 3.6. 43

6-1 Pp...................................... .. 63

6-2 RW [vmax, Esample] 65

6-3 RW derived variables 65

6-4 Pbcast[dh, ral] 69

7-1 Virtual Stationary Automata layer. VSAs and clients communicate locally

using Vbcast. VSA and client outputs may be delayed in VBDelay buffers.

VW provides timing and failure information to VSAs, and RW provides

timing and mobile node location information. 79

7-2 VW[Esampi], Virtual time and failer service. 80

7-3 Vu 82

7-4 VBDelayp, Message delay service for clients. 83

7-5 VBDelay[e],, Message delay service for VSAs. 85

7-6 Vbcast[d]..................................... 86

9-1 Totally ordered broadcast service. Client outputs may be delayed in TOB-

Delay buffers, and messages are filtered out based on region and time alive

information in TOBFilter buffers. RW provides timing and mobile node

location information. 100

9-2 TObcast[d], Message ordering service. 101

9-3 TOBDelayp, Message delay service. 105

9-4 TOBFilter[d]p, Message filtering service. 106

9-5 TOBimplerp, providing ordered broadcast.

10-1 Leader election service. A LeadCl for a client performs a prefer'(f) to

indicate that its client should be considered by LeadMain as the leader of

its client's region. LeadMain determines the winners of the leader com-

petition for each region and communicates the results to each LeadCl. A

winning process's LeadCl might then produce a leader output to its client,

indicating the client is a leader. .

10-2 LeadM ain, electing a leader

10-3 LeadClp, client portion for electing a leader.

10-4 Leaderp, electing a leader. ..

11-1 VSA layer implementation. Each process runs a collection of algorithms:

LeadCl, TOBDelay, and TOBFilter, defined previously, together with

CE[alg] and VSAE[alg], the client and VSA emulator algorithms

11-2 VSAE[alg],, emulator at p of alg E VAlgs.....

11-3 Relationship between virtual and real time. A virtual

runs faster until it catches up

11-4 Functions for use in correctness proofs

12-1 VSA geocast automaton at region u, VGeO.

13-1

13-2

Client CHL [ttlhb]p periodically sends region updates

VSA VHL [ttlhb, h : P - U]u automaton

14-1 Client CE2E automaton..

14-2 VSA VE2E [ttlhb, h] automaton

15-1 RW'[max, Csample].

15-2 Client node CN(6), automaton

.179

clock behind real time

.............180

.184

S. .234

S. .253

. ..254

to its local VSA.

275

276

.299

.300

15-3 VN(6, k, PI, P2)u TIOA, with parameters: safety k, and damping P1, p2.

15-4 VN(k, pI, p2)u TIOA functions.

117

.148

S149

. 151

.160

. 176

S. 301

S. 302

Chapter 1

Introduction

In this thesis, we focus on mobile ad-hoc networks, where mobile processors attempt to

coordinate despite minimal infrastructure support. The task of designing algorithms for

constantly changing networks is difficult. Highly dynamic networks, however, are becom-

ing increasingly prevalent, especially in the context of pervasive and ubiquitous computing,

and it is therefore important to develop and use techniques that simplify this task.

In addition, nodes in these networks are often unreliable, and may suffer from crashes or

corruption faults, which cause arbitrary changes to their program states. Self-stabilization

[26, 27] is the ability to recover from an arbitrarily corrupt state. This property is impor-

tant in long-lived, chaotic systems where certain events can result in unpredictable faults.

For example, transient interference may disrupt wireless communication, violating our as-

sumptions about the broadcast medium.

In this thesis, I develop new techniques to cope with this dynamic, heterogeneous, and

chaotic environment. We mask the unpredictable behavior of mobile networks by defining

and emulating a stablizing virtual fixed infrastructure, called the Virtual Stationary Au-

tomata layer, consisting of timing-aware and location-aware machines at fixed locations,

that mobile nodes can interact with. The static virtual infrastructure allows application

developers to use simpler algorithms - including many previously developed for fixed

networks. In order to facilitate the reasoning about this layer, in this thesis I also define a

formal model for stabilization and stabilizing emulation in timed systems.

1.1 Mobile ad hoc networks

Mobile ad hoc networks are made up of mobile nodes (devices) that can be deployed in

an ad hoc way over some deployment space. These networks can be made up of machines

ranging from small sensors such as Berkeley motes [86], to cars, cell phones, and laptop

computers. The nodes making up these networks are equipped with wireless communica-

tion, rather than access to a fixed "landline". They can provide communication or coordina-

tion services in situations where it is too costly or impractical to build a fixed infrastructure.

Commonly cited examples of places where mobile ad hoc networks are especially useful

are ones from search and rescue operations or battlefield coordination.

Direct communication in these networks is between devices that are close enough to

each other to receive broadcasts. Since the devices are mobile and long distance commu-

nication requires multiple transmission hops, it can be difficult to ensure reliable commu-

nication between devices that are not within broadcast range. We assume for this thesis

that mobile nodes enjoy reliable communication with other mobile nodes that are within a

certain broadcast radius.

The machines making up these networks are also commonly fault-prone, since they

are often small battery-powered devices, making them susceptible to crashes or sudden

displacement. Also, their power constraints feed into constraints on broadcast power, im-

plying the possibility of unexpected interruption or interference in communication. In this

thesis, the mobile nodes are susceptible to crash failures and restarts, as well as corruption

failures.

Increasingly, it is common for mobile devices to be equipped with access to a reason-

ably reliable time and location service that can provide devices with synchronized time

updates and real-time location information. We assume in this thesis that mobile nodes

have access to such an oracle.

1.1.1 Point-to-point based algorithms

Many of the initial algorithms for mobile ad hoc networks concentrated on achieving re-

liable point-to-point routing [56,78, 79], one of the most important services in traditional

wired networks. This can be used to handle the dynamic nature of the networks by re-

moving the concepts of geography and location from the consideration; a wireless network

could be forced to appear as some wired network, oblivious of the location of its nodes.

Unfortunately, while such an approach might be sufficient if point-to-point communica-

tion is the only service that is desired, there are many circumstances where communication

and coordination tied to actual geographic location is preferable in a mobile network. For

example, in a traffic coordination scenario, safety would be best served by having cars near

the same intersection coordinate with one another to avoid collision, rather than coordinate

with the particular vehicles it has in their "car-phonebooks".

1.1.2 Location aware algorithms

In contrast to the point-to-point approach, there are a number of prior papers that take

advantage of geography to facilitate the coordination of mobile nodes. For example, the

GeoCast algorithms [14, 73], GOAFR [59], and algorithms for "routing on a curve" [72]

route messages based on the location of the source and destination, using geography to

delivery messages efficiently. Other papers [51,62,82] use geographic locations as a repos-

itory for data. These algorithms associate each piece of data with a region of the network

and store the data at certain nodes in the region. This data can then be used for routing

or other applications. All of these papers take a relatively ad-hoc or application-specific

approach to using geography and location. We suggest a more systematic approach; we

believe that the algorithms presented in these papers would benefit from using a fixed,

predictable timing-enabled infrastructure to simplify coordination.

In industry there have been a number of attempts to provide specialized applications for

ad-hoc networks by organizing some sort of virtual infrastructure over the mobile nodes.

PacketHop and Motorola envision mobile devices cooperating to form mesh networks to

provide communication services in areas with wireless-broadcast equipped devices but not

a lot of fixed infrastructure [64]. These virtual infrastructures could allow on-the-fly net-

work formation that can be used at disaster sites, or other areas where fixed infrastructure

does not exist or has been destroyed. BMW and several other car manufacturers are de-

veloping systems that allow cars to communicate with one another about local road or car

conditions, aiding in accident avoidance [87].

Another approach is that of Persistent Nodes [9]. Persistent nodes are virtual objects

that move in a static sensor network, taking advantage of changing network conditions to

try to ensure availability of data. While mobile, a persistent node only provides a non-

atomic read/write object.

However, each of the above examples tackles very specific kinds of applications, like

routing or distribution of sensor data. We believe a more general-purpose virtual infrastruc-

ture, that organizes mobile nodes into general programmable entities, can make a richer set

of applications easier to provide. For example, with the advent of autonomous combat

drones [85], the complexity of algorithms coordinating the drones can make it difficult

to provide assurance to an understandably concerned public that these firepower-equipped

autonomous units are coordinating properly. With a formal model of a flexible and easy-

to-understand virtual infrastructure available, it would be easier to both provide and prove

correct algorithms for performing sophisticated coordination tasks.

1.2 Virtual programming layers

In this thesis I describe a different approach to taming mobile ad hoc networks- virtual

programming layers. Virtual programming layers do not provide a specific service; instead,

they are a programming abstraction that allows application developers to design simpler

algorithms for mobile networks. Several virtual programming layers have previously been

proposed for mobile ad-hoc networks.

1.2.1 Virtual objects

The GeoQuorums algorithm [32] was the first to use virtual nodes; this algorithm defined a

Focal Point Abstraction where mobile nodes in fixed, designated geographic regions of the

network, called focal points, would cooperate to emulate atomic read/write shared memory.

Atomicity is a strong property for a shared memory object that can be accessed concurrently

by multiple processes; it requires that the invocations and responses of the object look as if

the object was only being accessed one at a time, and in an order consistent with the order

of actual invocations and responses [65]. The focal points in the Focal Point abstraction

were allowed to fail, but could not subsequently recover. This abstraction utilized a local

broadcast service and a GeoCast communication service to facilitate communication be-

tween mobile clients and focal points. Quorums (sets) of focal points were then used in the

paper to provide a fault-tolerant atomic memory service.

1.2.2 Virtual Mobile Nodes

More general virtual mobile automata were suggested in [31]. In this Virtual Mobile Node

(VMN) abstraction, the virtual nodes are discrete I/O automata [65] that move on a prede-

fined path through the network. The implementation of a VMN using the network's mobile

nodes offered fault-tolerance through finite state replication among the mobile nodes em-

ulating the VMN. A VMN is capable of recovery after failure, and utilizes just a local

broadcast communication service to communicate with mobile clients, rather than both the

local broadcast and GeoCast services used in the GeoQuorums work.

1.2.3 Our approach - Timed Virtual Stationary Automata

In Part I of this thesis, I present a new theoretical programming abstraction for mobile

networks that consists of a static infrastructure of fixed, timed virtual machines with an ex-

plicit notion of real time, called Virtual Stationary Automata (VSAs), distributed at known

locations over the plane, and emulated by the real mobile nodes in the system. Each VSA

represents a predetermined geographic area and has broadcast capabilities similar to those

of the mobile nodes, though perhaps suffering from an additional additive broadcast delay,

allowing nearby VSAs and mobile nodes to communicate with one another. This program-

ming layer provides mobile nodes with a virtual infrastructure with which to coordinate

their actions. Many practical algorithms depend significantly on timing, and it is reason-

able to assume that many mobile nodes have access to reasonably synchronized clocks.

In the VSA programming layer, the virtual automata also have access to virtual clocks,

guaranteed to not drift too far from real time.

VSAs are machines whose computational model is more powerful than those in [31],

in that ours include timing capabilities, which are important for many applications. How-

ever, our automata are stationary, and are arranged in a connected pattern that is similar to

a traditional wired network. This allows application developers to reuse a number of pre-

viously designed algorithms for stationary networks. Note that the virtual nodes described

in [31,32] could all be implemented using the infrastructure we describe here.

We present several applications in part III of this thesis whose implementations are

significantly simplified by the VSA infrastructure. We consider both low-level services,

such as routing and location management, as well as more sophisticated applications, such

as motion coordination. The key idea in all cases is to locate data and computation at

timed virtual automata throughout the network, thus relying on the fixed, predictable in-

frastructure to simplify coordination in ad-hoc networks. It is interesting to note that this

infrastructure can be used to implement services such as routing that are oftentimes thought

of as the lowest-level services in a network.

1.3 Theory of stabilization and emulation for timed sys-

tems

One contribution of this thesis is the formal modeling and analysis of the VSA program-

ming layer, its implementation, and the implementations of various applications using the

layer. In this thesis, we model systems using the timed I/O automata (TIOA) formal-

ism [58]. These formal specification models provide unambiguous and simple descriptions

of system behaviour and allow us to formally reason about system behaviour. Formal spec-

ifications also make clear those hidden system assumptions that can derail deployment of a

distributed system.

As part of the project to formally model and analyze algorithms to provide the VSA

programming layer, this thesis presents a formal semantics for emulation of a system. This

provides proof obligations required to conclude that one system successfully emulates an-

other system. An emulation is a kind of implementation relationship between two sets of

timed machines. Intuitively, one set of machines B emulates another set of machines C

if each machine (program) C in C is mapped to a machine (emulation of the program) in

B that has externally observable traces that look like some constrained set of externally

observable traces of C.

Another significant contribution of this thesis is a theory of stabilization in TIOA sys-

tems, which we had to develop to explain the stabilization properties of our algorithm for

emulating the VSA layer. Self-stabilization [26, 27] is the ability to recover from an arbi-

trarily corrupt state. This property is important in long-lived, chaotic systems where cer-

tain events can result in unpredictable faults. For example, transient interference may dis-

rupt the wireless communication, violating our assumptions about the broadcast medium.

This might result in inconsistency and corruption in the emulation of the VSA. Our self-

stabilizing implementation of the VSA layer, however, can recover after corruptions to

correctly emulate a VSA.

Prior work in self-stabilization for TIOA systems was informal. Our formal theory of

stabilization in TIOA systems is based on hybrid sequences, sequences consisting of trajec-

tories (modeling the evolution of a collection of variables over a time interval) interleaved

with discrete actions. One set of hybrid sequences B is said to stabilize in time t to another

set of hybrid sequences C if each suffix of / starting t time after the beginning of / happens

to be in the set C. In this thesis, we demonstrate that these definitions work by concocting

a "formula" that we use throughout the thesis for reasoning about the stabilization of an

implementation of one system by another (described in the beginning of Section 9.3).

Our definition of stabilization using hybrid sequences is general enough to not only

allow us to talk about executions (or traces) of one timed system stabilizing to executions

(or traces) of another timed system, but also to talk about fragments of executions or traces

starting in a certain set of states stabilizing to some set of fragments starting in another

set of states. This generality is very useful in stabilization proofs for two reasons: (1) it

makes it easy for us to break stabilization of an algorithm down into multiple phases, where

one phase takes fragments starting in one set of states to fragments starting in a second set,

another phase takes fragments starting in the second set to those in a third, etc.; (2) it makes

it easy to talk about stabilization of algorithms with access to reliable external oracles; and

(3) it provides a way to talk about stabilization of algorithms for which there is no obvious

"reset" state. By the last I mean that our definition of stabilization allows us to talk about

stabilization of long-lived services with an invocation / response or send / receive behavior.

In execution fragments of implementations of these services, it is possible for there to never

be a point where there is no outstanding invocation or send. However, the implementation

might be guaranteed to reach a point where it behaves just like some suffix of an execution

of the service. Our definition of stabilization allows us to discuss these kinds of algorithms.

This thesis also presents a formal semantics for stabilizing emulation of timed systems.

Since one part of this thesis is providing an emulation algorithm that implements a VSA

layer but is also stabilizing, it is necessary to consider what such an emulation algorithm

can guarantee. Hence, this thesis also presents a formal semantics for stabilizing emulation

of timed systems. Say one set of machines B emulates another set of machines C. We

want to define the idea that for any program C in C, the emulation of the program can

be started in an arbitrary state but eventually produce externally observable behaviors that

are related to those of C. What kind of behaviors of C should be the emulation produce?

Intuitively, after a period where the emulation produces nonsense, it should manage to

produce traces that look like traces of the program C, though not necessarily starting from

an initial or reachable state of that program. Notice that this means that if corruption

failures or arbitrary initial states are a possibility at emulators, then not only should the

emulation algorithm be a stabilizing emulation, but the programs being emulated should be

stabilizing.

These contributions are useful outside the scope of virtual nodes, potentially aiding in

the specification of emulations of other systems or simplifying the reasoning about stabi-

lizing timed systems in general.

1.4 A stabilizing VSA layer emulation algorithm

In part II of this thesis, I present an algorithm for implementing a VSA layer using a mobile

ad hoc network consisting of mobile nodes that may suffer from crash failures and restarts.

In order to provide this implementation, I first implement two other services over the mo-

bile nodes: totally ordered broadcast and leader election. Each mobile node is assumed

to have access to a GPS service informing it of the region it is currently in. The totally

ordered broadcast service ensures that processes in the same region receive the same mes-

sages in the same order. Under the assumption of reliable broadcast communication, this

service is easily implemented using a technique similar to the one used in [61] to imple-

ment replicated state machines. The leader election service uses a round-based algorithm

to periodically elect a new leader in each geographic area.

Given these two services, our clock-equipped VSA layer can then be emulated by the

real mobile nodes in the network. A VSA for a particular geographic region is emulated by

a subset of the mobile nodes currently populating its region: the VSA state is maintained

in the memory of the real nodes emulating it, and the real nodes perform VSA actions on

behalf of the VSA. If no mobile nodes are in the region, the VSA fails; if mobile nodes later

arrive, the VSA restarts. The emulation is shared by the nodes while one node designated

as leader is responsible for performing the outputs of the VSA and keeping the other nodes

consistent in their VSA state.

An important property of our implementation is that it is self-stabilizing. Traditionally,

studies of self-stabilizing systems are concerned with those systems that can be started from

arbitrary configurations and eventually regain consistency without external help. However,

mobile clients often have access to some reliable external information from a service such

as GPS. Our algorithms use an external GPS service as a reliable oracle, providing periodic

real time clock and location information to base stabilization upon. For example, our algo-

rithms often use timestamps and location information to tag events. In an arbitrary state,

recorded events may have corrupted timestamps. Corrupted timestamps indicating future

times can be identified and reset to predefined values; new events receive newer timestamps

than any in the arbitrary initial state. This could eventually allow nodes in the system to

totally order events. We use the eventual total order to provide consistency of information

and distinguish between incarnations of activity (such as retransmissions of messages).

1.5 Thesis overview

Here we provide an overview of the thesis. The thesis is divided into three main parts. The

first part of the thesis focuses on introducing the theory of timed stabilization, stabilizing

emulation, and VSA layers. The second part of the thesis focuses on a stabilizing emula-

tion algorithm for the VSA layer. The third part of the thesis provides some examples of

applications for the VSA layer.

Part I

The first part of the thesis provides the theoretical foundation for the rest of the thesis.

It describes definitions and results for stabilization in timed systems, failures, stabilizing

emulations, and the VSA layer.

I first provide some mathematical tools for talking about stabilization, system failure,

and emulation in timed I/O automata systems. I also describe a system model for GPS-

equipped mobile ad-hoc networks, and then describe a formal TIOA model of the VSA

programming layer.

Chapter 2

I begin by reviewing the Timed I/O Automata model of [58] for discussing timed systems.

Chapter 3

I then provide some mathematical definitions and tools for talking about stabilization in

timed systems. The definition of stabilization for timed systems is based on hybrid se-

quences; we define stabilization as being from one set of hybrid sequences to another. In

this chapter I also show some useful results about stabilization, including results about

transitivity and legal sets. Legal sets are sets of states that are closed under execution

fragments; they are used often in this thesis to describe states with desirable properties.

Chapter 4

In this chapter, I define the concept of an emulation and a stabilizing emulation. Emulations

define a kind of implementation relationship between two sets of machines. The definition

of emulation is followed with a definition of a stabilizing emulation. An algorithm is a

stabilizing emulation if an emulation of a program can be started in an arbitrary state but

eventually behave as though it is the emulated program, though from a potentially arbitrary

state.

Chapter 5

This chapter discusses a model for node failure and restart. It describes a general crash

stop and restart transformation for TIOA programs. Such a transformation is useful in that

it removes ambiguity about the semantics of failures and restarts.

Chapter 6

Here I introduce a model of a mobile ad hoc network physical layer. This layer consists of

mobile physical nodes, a GPS oracle, and a broadcast communication service. Communi-

cation is local in this model.

Chapter 7

In this chapter, I consider the Virtual Stationary Automata layer model. The VSA layer

consists of mobile client nodes (analogous to mobile physical nodes), a GPS oracle, a

virtual broadcast communication service, a virtual time service (a GPS time service for

the Virtual Stationary Automata), and Virtual Stationary Automata. A VSA is a TIOA

with a real-time clock, restricted external interface, allowing it to only send and receive

messages using the virtual broadcast service; its broadcasts can be delayed for up to a

constant amount of time.

Chapter 8

Here the results and definitions of Chapter 4 are specialized for the case of an emulation of

the VSA layer by the physical layer.

Part II

We provide an implementation of that layer using the underlying mobile ad-hoc system, and

prove that the implementation provides a stabilizing emulation of the VSA programming

layer. This implementation is in three parts: totally ordered broadcast, leader election, and

a main emulation component.

Chapter 9

It is useful to have access to a totally ordered broadcast service that allows nodes in the

same region to receive the same sets of messages in the same order. The totally ordered

broadcast service is intended to allow a non-failed node p that knows it is in some region

u to broadcast a message m, via tocast(m)p, and to have the message be received exactly

d, d > dph,, time later via torcv(r)q, by nodes that are in region u or a neighboring region

for at least d time.

Chapter 10

It is also useful to have access to a leader election service that allows nodes in the same

region to periodically compete to be named sole leader of the region for some time. Our

leader election service is a round-based service that collects information from potential

leaders at the beginning of each round, determines up to one leader per region, and performs

leader outputs for those leaders that remain alive and in their region for long enough.

Chapter 11

We describe a fault-tolerant implementation of a VSA by mobile nodes in its region of

the network. At a high level, the individual mobile nodes in a region share emulation of

the virtual machine through a deterministic state replication algorithm while also being

coordinated by a leader. Each mobile node runs its portion of the totally ordered broadcast

service, leader election service, and a Virtual Node Emulation (VSAE) algorithm, for each

virtual node.

In this chapter we also prove that the implementation is a stabilizing emulation of the

VSA layer.

Part III

We conclude with a description of two applications that we implement using the VSA

layer. In the thesis, each implementation, whether of the VSA programming layer or of

applications built on the layer, is proved correct using the TIOA formal framework.

The first VSA application, end-to-end routing, is implemented in three pieces: a region-

to-region geocast service, a location management service, and an end-to-end routing ser-

vice built on the geocast and location management services. The second application is a

motion coordination service.

Chapter 12

We describe a stabilizing region-to-region communication service in this chapter. The al-

gorithm is based on a shortest path procedure. When a region receives a geocast message

it has not previously seen from region u to region v for which it is on a shortest path from

u to v, it forwards the message closer to region v. The program described in this chapter is

a part of a VSA layer program to provide end-to-end routing.

Chapter 13

This chapter describes how to provide the location management piece of the end-to-end

routing service on the VSA layer. The solution is based on the concept of home location

servers, where each mobile client identifier hashes to a home location, a region of the

network that is periodically updated with the location of the client and that is responsible

for answering queries about the client's location. The periodic location updates and the

forwarding of queries and responses are done using the geocast service of Chapter 12.

Chapter 14

We describe a simple self-stabilizing algorithm over the VSA layer to provide a mobile

client end-to-end routing service. A client sends a message to another client by forward-

ing the message to its local VSA, which then uses the home location service to discover

the destination client's region and forwards the message to that region using the geocast

service.

Chapter 15

In this chapter, we study how the VSA layer can help us solve the problem of coordinat-

ing the behavior of a set of autonomous mobile robots (physical nodes) in the presence of

changes in the underlying communication network as well as changes in the set of partic-

ipating robots. Each VSA must decide based on its own local information which robots

to keep in its own region, and which to assign to neighboring regions; for each robot that

remains, the VSA determines where on the curve the robot should reside. Unlike in the

prior three applications (Geocast, location management, and end-to-end communication),

the client motion in the motion coordination protocol is controllable by the client, allowing

the client to change its motion trajectory based on instructions from a VSA.

1.6 Research acknowledgments

Much of the research presented in this thesis has been done in collaboration with others,

particularly: Shlomi Dolev, Seth Gilbert, Limor Lahiani, Nancy Lynch, and Sayan Mitra.

The content in this thesis has been partially drawn from the following papers:

* Self-stabilization and Virtual Node Layer Emulations [75]. This paper is a prelimi-

nary version of some of the results in Chapters 3, 4, and 8. In it I introduced a set of

formal definitions for stabilization in timed systems, as well as a formal definition of

stabilizing emulation for the VSA layer. However, the definitions in this thesis are

different; the thesis generalizes some of the stabilization and emulation results, and

introduces a new formal model for process failures and restarts.

* Timed Virtual Stationary Automata for Mobile Networks [29, 30]. These papers pre-

sented preliminary models of the physical layer described in Chapter 6 and the VSA

layer described in Chapter 7, though the failure modeling in these papers difffers

from the modeling in this thesis.

The initial impetus for these papers came from work with Shlomi Dolev and Limor

Lahiani about their ideas on how mobile nodes in predefined geographic regions

could share responsibility for implementing a message routing service. These papers

were joint work in which we generalized these ideas into an implementation of an

early version of a VSA layer, where mobile nodes in predefined geographic regions

could share responsibility for general emulation of algorithms.

* Self-Stabilizing Mobile Node Location Management and Message Routing [37]. This

paper contains early versions of algorithms for implementing geographic broadcast,

location management, and message routing services using the VSA layer. It is based

on some of the ideas from the same work with Shlomi Dolev and Limor Lahiani

mentioned above, and was the first paper demonstrating applications of the VSA

layer.

In Chapters 12-14 of this thesis I use a different set of VSA layer algorithms to

implement versions of these services. However, the breakdown in [37] of the message

routing problem into three pieces is preserved in this thesis.

* Self-Stabilizing Mobile Robot Formations with Virtual Nodes [45]. This paper is a

preliminary version of Chapter 15 in this thesis. It is itself based on work in [66],

where a simplified virtual node layer was used to coordinate the motion of mobile

nodes. The technical definition of the problem of motion coordination (a variant of

which appears in this thesis in Section 15.2) and the rules used by the virtual nodes

for allocating / directing mobile nodes (Figure 15-4 of this thesis) are primarily the

work of Sayan Mitra, as is the proof that these rules lead to motion coordination

(reproduced in this thesis in Section 15.3). My contribution in this work is in the

VSA layer modeling of the algorithm, as well as the design and proof of stabilization

of a self-stabilizing version of the algorithm.

Part I

Theory of stabilization and VSA layer

emulation

In Part I of this thesis, I introduce the theory that the rest of this thesis is built on. I open

with a brief review in Chapter 2 of the Timed I/O Automata model of [58] for discussing

timed systems.

In Chapter 3, I then provide some mathematical definitions and tools for talking about

stabilization in timed systems. The definition of stabilization for timed systems is based

on hybrid sequences; we define stabilization as being from one set of hybrid sequences to

another. In this chapter I also show some useful results about stabilization, including results

about transitivity and legal sets. Legal sets are sets of states that are closed under execution

fragments; they are used often in this thesis to describe states with desirable properties.

Next, in Chapter 4, I define the concepts of an emulation and a stabilizing emulation.

An emulation defines a kind of implementation relationship between two sets of machines.

The definition of emulation is followed with a definition of a stabilizing emulation. An al-

gorithm is a stabilizing emulation if an emulation of a program can be started in an arbitrary

state but eventually behave as though it is the emulated program, though from a potentially

arbitrary state.

Chapter 5 is where I discuss a model for node failure and restart. It describes a general

crash stop and restart transformation for TIOA programs. Such a transformation is useful

in that it removes ambiguity about the semantics of failures and restarts.

In Chapter 6, I introduce a model of a mobile ad hoc network physical layer. This layer

consists of mobile physical nodes, a GPS oracle, and a broadcast communication service.

Communication is local in this model.

Chapter 7 is where I describe the Virtual Stationary Automata layer model. The VSA

layer consists of mobile client nodes (analogous to mobile physical nodes), a GPS oracle,

a virtual broadcast communication service, a virtual time service (a GPS time service for

the Virtual Stationary Automata), and Virtual Stationary Automata. A VSA is a TIOA

with a real-time clock, restricted external interface, allowing it to only send and receive

messages using the virtual broadcast service; its broadcasts can be delayed for up to a

constant amount of time.

Finally, Chapter 8 is where the emulation results and definitions of Chapter 4 are spe-

cialized for the case of an emulation of the VSA layer by the physical layer.

32

Chapter 2

Mathematical preliminaries

Here we introduce some terminology and notation for expressing mathematical properties

in this thesis.

2.1 Basic mathematical preliminaries

If f is a function, we refer to the domain and range of f as domain(f) and range(f)

respectively. If S is a set, we can restrict f to S, written f [S, defined to be the function

with domain equal to S n domain(f) where for each c in its domain, it maps to f(c). If f

is a function mapping to a set of functions and S is a set, then f I S is the function with

domain equal to domain(f) and such that for each c in its domain, it maps to f(c) [S.

If S is a set, then a sequence a over S is a function with a domain either equal to the set

of all positive integers or the set { 1, ... , k} for some positive integer k, and with a range

equal to S. We use Jo to be the cardinality of domain(u). The set of finite sequences

over S are denoted by S*. The empty sequence is denoted by A. The concatenation of

two sequences a and o' is written cro'. We say that a is a prefix of o', written a < a', if

either a = o' or a is finite and u' = up for some sequence p. If a is a nonempty sequence,

then head(a) refers to the first element of o and tail(a) refers to a with its first element

removed. insert(u, s, i), for s E S and 0 < i < I is a new sequence equal to u, except

with element s inserted after the element at position i.

2.2 Timed I/O Automata

Here we describe Timed I/O Automata (TIOA) terminology used in this thesis. TIOAs

are nondeterministic state machines whose state can change in two ways: instantaneously

through a discrete transition, or according to a trajectory describing the evolution, possibly

continuous, of variables over time. The TIOA framework can be used to carefully specify

and analyse timed systems. (Additional details can be found in [58].) Each algorithm and

specification in this thesis is expressed using this framework.

The type of a variable describes the values that a variable can take on, while the dynamic

type of a variable describes how a variable's values can change over time.

Definition 2.1 For each variable v we have the following:

* type(v), the static type of v, is a nonempty set of values.

* dtype(v), the dynamic type of v, is a set offunctionsfrom left-closed intervals of time

starting at 0 to type(v) satisfying the following:

- For each f E dtype(v) and t E R, f shifted forward by t time is also in

dtype(v).

- For each f E dtype(v) and each left-closed subinterval J of domain(f), f [J E

dtype(v).

- Consider any sequence of functions fo, fil, , each in dtype(v) such

that for each fi except the last, the domain of fi is right-closed and

max(domain(f2)) = min(domain(fi+)). Then the function f, defined so

that f(t) = fi(t) where i is the minimum index such that t E domain(fi), is in

dtype(v).

Variable v is constant over a left-closed interval of time if its mapping to a value is constant

over that interval. Variable v is a discrete variable iffor every left-closed interval of time,

v is constant over the interval.

Definition 2.2 A valuation for a set V of variables is a function mapping each variable

v E V to a value in type(v). The set of such valuations is val(V).

A trajectory models the evolution of a collection of variables over a time interval.

Definition 2.3 A trajectory, T, for V is a function mapping a left-closed interval of time

starting at 0 to the set of valuations for V, such that for v C V, T restricted to v is in the

dynamic type of v.

* 7 is closed if domain(r) is both left and right-closed.

ST.f state is thefirst valuation of T, and, for - closed, T.1state is the last.

* The limit time of T, T.ltime, is the supremum of domain(T).

* The concatenation, TT', of trajectories 7 and 7', T closed, is the trajectory resulting

from the pasting of T', shifted by T.ltime, to the end of T. The valuation at r.ltime is

the one in TT', overwriting the value of '.f time.

* A trajectory for V with a domain equal to the point 0 is called a point trajectory for

V. If v is a valuation for V, then p(v) is the point trajectory for V mapping to v.

A timed I/O automaton is a state machine with some set of variables describing its state.

It also has a set of discrete actions, some internal, some external inputs and some external

outputs. Its state can change either through discrete transitions, which result in atomic state

changes, or through trajectories, which describe the evolution of the state variables over the

time when discrete transitions do not occur.

Definition 2.4 A Timed 1/0 Automaton (TIOA), A = (X, Q, 8, I, O, H, D, T), consists

of..

* Set X of internal variables.

* Set Q C val(X) of states.

* Set 0 C Q of start states, nonempty.

* Sets I of input actions, 0 of output actions, and H of internal actions, each disjoint.

A = I U 0 U H is all actions. E = I U 0 is all external actions.

* Set D C Q x A x Q of discrete transitions.

We say action a is enabled in state x if (x, a, x') E D, for some x' E X. We require

A be input-enabled (every input action is enabled at every state).

* Set i C trajectories of Q. We require:

- For every state x, the point trajectory for x must be in T,

- For every 7 E T, every prefix and suffix of T is in I,

- For every sequence of trajectories in I, where for every 'ri but the last, Ti is

closed and Ti.lstate = Ti+l.f state, the concatenation of the trajectory se-

quence is also in 7, and

- Time-passage enabling: for every state x, there exists a E T where

-r.f state = x, and either 7T.time = oc or 7 is closed and some l E H U 0 is

enabled in T.Istate.

Definition 2.5 Two TIOAs A and B are compatible if they share no internal variables, and

their internal actions are not actions of the other.

Composition, described in the following definition, is useful for describing the be-

haviour of complex systems. It allows us to describe the system as a collection of separate

components that can then be run together after composition.

Definition 2.6 Two compatible TIOAs A and B can be composed into a new TIOA A 1B,

which has A and B as components where an action performed in one component that is

an external action of the other component is also performed in the other component. Each

external action of the composition is an output if it is an output of one of the component

automata, and an input otherwise. Each internal action of the individual automata remains

an internal action.

The following definition allows us to perform output action hiding on TIOAs, reclassi-

fying a designated set of output actions as internal actions. This is especially useful when

we later consider implementation relationships, where we require that the sets of external

actions for machines be the same.

Definition 2.7 Let A be a TIOA and 0 be a subset of OA. Then ActHide(O, A) is a TIOA

equal to A except that OActHide(O,A) = OA - 0 and HActHide(O,A) = HA U O.

Hybrid sequences are described in the next definition. These sequences are often used

to describe an execution or a trace (observable behaviour) of a TIOA.

Definition 2.8 Given a set A of actions and a set V of variables, an (A, V)-sequence is an

alternating sequence a = 0a1 Tla272 ... where: (a) Each ai is an action in A, (b) Each %

is a trajectory for V, (c) If a is finite, it ends with a trajectory, and (d) Each %T but the last

is closed.

* a is closed if it is a finite sequence and its final trajectory is closed.

* The limit time of a, a.ltime, is the sum of limit times of a's trajectories.

* The concatenation, aa', of two (A, V)-sequences a and a', a closed, is a followed

by a', where the last trajectory of a is concatenated to the first trajectory of a'.

* For sets of actions A and A', and sets of variables V and V', the (A', V')-restriction

of an (A, V)-sequence a, written a [(A', V'), is the sequence that results from pro-

jecting the trajectories of a on variables in V', removing actions not in A', and

concatenating all adjacent trajectories.

In the following definition, an execution fragment of a TIOA is defined to be a hy-

brid sequence where each trajectory is a trajectory of the TIOA and for each action in the

sequence, the last state of the trajectory preceding it satisfies the precondition of the ac-

tion, and the first state of the trajectory following it is the state that should result from that

discrete transition.

Definition 2.9 An execution fragment of a TIOA A is an (A, V)-sequence a =

Toa 1 Tla 2T2 - -, where each i is a trajectory in T, and if T is not the last trajectory of

a, then (7i.lstate, ai+ 1 , Ti+l.f state) E D. We refer to the set of execution fragments of A

starting from a state in some S C Q as fragsS.

37

The following definition of an execution just says that an execution is any execution

fragment where the very first state of the first trajectory of the fragment is an initial state of

the TIOA.

Definition 2.10 An execution fragment of A, a, is an execution of A if a. f state is in 0.

We refer to the set of executions of A as execsA.

Definition 2.11 A state of A is reachable if it is the last state of some closed execution of

A. We refer to the set of reachable states of A as reachableA.

Definition 2.12 An invariant for A is a property that is true for all reachable states of A.

A trace, defined below, is the external observable behaviour of a TIOA. The only infor-

mation it imparts is the length of an execution, whether or not the execution is right-closed,

and the timing and order of the external actions of the TIOA in that execution.

Definition 2.13 A trace (external behaviour) of an execution fragment a of A, trace(a),

is a restricted to external actions of A and trajectories over the empty set of variables.

tracesA is the set of traces of executions of A. We refer to the set of traces of execution

fragments of A starting from a state in some S C Q as trace fragsS.

The next lemma (Lemma 5.2 in [58]) says that execution fragments of composed TIOAs

project to fragments of the components:

Lemma 2.14 Let A = A1 IA2 and let a be an execution fragment of A.

Then a [(A 1 , X 1) is an execution fragment of A1, and a [(A 2 , X 2) is an execution fragment

of A 2. Also, a is an execution iff both a [(A,, X1) and a[(A 2 , X 2) are executions.

The next theorem (Theorem 7.3 in [58]) says that traces of composed TIOAs are ex-

actly those empty-variable hybrid sequences whose restrictions to the external actions of

component TIOAs are traces of the components:

Theorem 2.15 Let A = A 1 IA2.

Then traces A {3 30 is an (E, 0)-sequence and P3[(Ei, 0) E tracesA, i E {1, 2}}.

The following two results on execution pasting are from [44]. Say that we are given two

compatible TIOAs A, and A 2, and executions a1 and a 2 of A 1 and A 2 respectively. The

first result says that if there is a hybrid sequence 3 with the same type as a trace of A, IA2

and such that 0 is consistent with the traces of executions a1 and a 2 in that 0 restricted to

external actions of A, is equal to the trace of a1 (and similarly for A2), then we can paste

together the executions a1 and a2 to get an execution of A I A 2 whose trace is equal to 3.

The second result is just a generalization for a finite number of machines.

Lemma 2.16 Let A = A, A2, and let o1 and a2 be executions of A, and A2 re-

spectively. Let / be an (EA, 0) sequence such that O3F(EA,,) = trace(al) and

3 [(EA2, 0) = trace(a2). Then there exists an execution ac of A such that a1 = a[(A1, X 1),

a2 = a[(A2,X 2), and trace(a) = /.

Corollary 2.17 Let A = A 1 A 2 ... Ak for some finite k, and let ai be an execution

of Ai for every i. Let/3 be an (EA, 0) sequence such that /3[(EA , 0) = trace(ai) for

each i E {1,... , k}. Then there exists an execution a of A such that trace(a) = 3 and

ai = a [(Ai, Xi), for each i E {1,...,k}.

The following definitions describe the concept of one TIOA implementing another. The

intuition is that A implements B3 if for each execution of A, its externally visible behaviour

happens to be the same as the externally visible behaviour of B.

Definition 2.18 Two TIOAs A and B are comparable if they have the same external inter-

face.

Definition 2.19 If A and B are comparable, then we say that A implements B, written

A < B3, if tracesa c tracess.

The next definition describes properties of a special kind of relation that is useful for

showing that one TIOA implements another.

Definition 2.20 Let A and B be comparable TIOAs. A forward simulation from A to 3

is a relation R C QA x QB satisfying the following for all states xa and xm of A and B

respectively:

1. If Xa E Oa then there exists a state xt E OB such that xARxa.

2. If XARxB and a is an execution fragment of A consisting of one action surrounded by

two point trajectories, with a.f state = xA, then B has a closed execution fragment

3 with p. fstate = xz, trace(3) = trace(a), and a.lstateR.state.

3. If XARxB and a is an execution fragment of A consisting of a single closed trajectory,

with a.f state = xA, then B has a closed execution fragment 3 with 3. f state =

XB, trace(3) = trace(a), and ca.lstateRO.lstate.

A useful theorem, shown in [58], is that if there is a forward simulation from machine

A to B then the trace of an execution fragment of A starting in some state related via the

simulation relation to a state in B is a trace of an execution fragment of B starting in the

related state:

Theorem 2.21 Let A and B be comparable TIOAs and let R be a forward simulation

relation from A to B. Let xA and xa be states of A and B, respectively, such that xARx1.

Then trace fragsA(xA) C trace frags(x).

One immediate corollary is the following, which extends the above result to sets of

states the execution fragments may start in:

Corollary 2.22 Let A and B be comparable TIOAs, R be a simulation relation from A to

B, LA be a subset of states of A, and LB be a subset of states of B. Suppose that for each

x E LA there exists some y E L3 such that xRy. Then trace frags LA C trace fragsL .

Another useful corollary of Theorem 2.21, shown in [58], is the following, which says

that if a forward simulation relation from one machine to a comparable machine exists,

then the first machine implements the second:

Corollary 2.23 Let A and B be comparable TIOAs and let R be a forward simulation

relation from A to B. Then A < B.

Chapter 3

Self-stabilization

We define stabilization in terms of sets of (A, V)-sequences. This is general enough to talk

about stabilization of traces and execution fragments of TIOAs, and about stabilization of

transformed versions of these (A, V)-sequences.

First we define the concept of a t-suffix of a hybrid sequence a. This is just a suffix of

a such that its corresponding prefix has a limit time of t.

Definition 3.1 Let a and a' be (A, V)-sequences, and t be a non-negative real. ' is a

t-suffix of a ifa closed (A, V)-sequence a" exists where a".1time = t and a = a"a'.

By the definition of concatenation for hybrid sequences and trajectories, if sequences a"

and a' are concatenated to produce sequence a, the first state of a' is overwritten by the

last state of a" in the concatenation. This means that any sequence that begins with some

arbitrary value of the variables of a but otherwise equals a' could also be concatenated

to a" to get a. In the following definition, we define a state-matched t-suffix to be a t-

suffix with the additional constraint that its first state happens to match the last state of its

associated prefix.

Definition 3.2 Let a = a"a' be an (A, V)-sequence and t be a non-negative real.

a' is a state-matched t-suffix of a if it is a t-suffix of a, and a'.f state = a".state.

As long as an (A, V)-sequence either has a limit time greater than some t or is closed with

a limit time equal to t, we know that a state-matched t-suffix of the sequence exists.

Lemma 3.3 Let a be an (A, V)-sequence and t be a non-negative real where either t <

a.ltime, or t = a.ltime and a is closed. A state-matched t-suffix of a exists.

Proof: In the case where t = a.ltime, the point trajectory p(a.lstate) is a state-matched

t-suffix of a; a = ap(a.lstate).

If t < a.ltime, then consider any closed prefix a' of a such that a'.Itime = t. By

Lemma 3.5 in [58], there exists some a" such that a = a'a". Consider any such a" with

a".f state changed to a'.1state. This modified a" is a state-matched t-suffix of a. 0

Definition 3.4 Let B be a set of (AB, V)-sequences and C be a set of (A c , V) -sequences,

where AB and Ac are sets of actions and V is a set of variables. Let t be in R>o.

B stabilizes in time t to C if each state-matched t-suffix a of each sequence in B is a

sequence in C.

Since executions and traces of TIOAs are (A, V)-sequences, the above definition can be

used to talk about executions or traces of one TIOA stabilizing to executions or traces of

some other TIOA. The following lemma is a general result that can be used to show, for

example, that if executions of one TIOA stabilize to those of another then its traces also

stabilize to traces of the other.

Lemma 3.5 Let B be a set of (AB, V)-sequences and C be a set of (A c , V)-sequences,

where AB and A C are sets of actions and V is a set of variables. Let A be a set of actions

and V' a set of variables. If B stabilizes to C in time t, then {aB [(A, V') I aB E B}

stabilizes to {ac [(A, V') I ac E C} in time t.

Proof: Say B stabilizes to C in time t. Consider any sequence a {aB [(A, V') I aB E

B}, and state-matched t-suffix a' of a. We must show that a' E {ac [(A, V') I ac E C}.

By definition of a state-matched t-suffix, there must exist some a" such that a = a"a'

and a'.fstate = a".lstate. By definition of a, there must exist some aB E B such that

aB [(A, V') = a and some prefix a" of aB such that a'[(A, V) = r" and a'.ltime =

a".ltime = t. Since a is a prefix of a, there is some a' such that aB = ia. Consider

any such a's and replace its first state with o' .lstate. This a's is a state-matched t-suffix

of aB.

Lemma 3.9 of [58] tells us that a"oa' r(A, V) = [(A, V) o' [(A, V). This means

that a"a' = a"o' [(A, V). Since a'.f state is equal to c'.lstate, (a' [(A, V)).fstate =

(a"B [(A, V)).lstate, meaning (' [(A, V) = a'.

Since B stabilizes to C in time t and a' is a state-matched t-suffix of a sequence
in B, a' is in C. This implies that '4[(A, V') E {ac [(A, V') a E C}, and hence

' {c[(A, V') ac E C}. E C, and hence

Lemma 3.6 (Transitivity) Let B be a set of (AB , V)-sequences, C be a set of (Ac , V)-

sequences, and D be a set of (AD, V)-sequences, where A B , Ac , and AD are sets of ac-

tions, and V is a set of variables. If B stabilizes to C in time tl, and C stabilizes to D in

time t2, then B stabilizes to D in time t l + t2.

Proof: Assume B stabilizes to C in time tl, and C stabilizes to D in time t2. Consider

any sequence aB in B such that aB.ltime > tI + t 2 and any state-matched tl + t2-suffix

aB of aB. By our definition of stabilization (Definition 3.4), we must show that a~ E D.

1 2 3aB aB aB
aB: B B B

"- tl--+- t2

Figure 3-1: Execution aB for Lemma 3.6.

By our definition of a state-matched tl + t2-suffix, there must exist some z' such that

aB = aOBa , OI . state = aB .1state and a'.ltime = tl + t2.

Since a' .ltime > tl, by Lemma 3.3 there must exist some state-matched ti-suffix a2

of a'. This means that there must exist some al such that ' = a a.time = t

and a2.f state = a .lstate. This also implies that aB = a a2 a, as in Figure 3-1.

Since a'.ltime = tl and Ca2a.f statte= Z j state = al.1state, aB2 is a state-

matched t1-suffix of aB. Since B stabilizes to C in time tl and a2BO is a state-matched

tl-suffix of aB, aaBO is in C.
Also, since a3.fstate = (4.lstate = 2.l state3, a is a state-matched t2-suffix of

a. Since C stabilizes to D in time t2 and a 3 is a state-matched t2-suffix of a sequence

in C, a3 is in D.

We conclude that B stabilizes to D in time tl + t2.

We can generalize the transitivity lemma to a sequence of sets of hybrid sequences.

The proof follows by induction on n, where the inductive step simply applies the above

transitivity lemma:

Lemma 3.7 Let Ao, A 1,... , A,, be a sequence of sets of actions, and let V be a set of

variables. Let Bo, B 1, ... , B, be a sequence where for each i such that 0 < i < n, Bi is

a set of (Ai, V)-sequences. Let ti, t2 , ... tn be a sequence of non-negative reals where for

each i such that 1 < i < n, Bi- 1 stabilizes in time ti to Bi.

Then Bo stabilizes in time t to Bn, for t = Ei,<i<nti.

The following definitions capture the idea of a TIOA being self-stabilizing when com-

posed with another TIOA, allowing us to write algorithms that can be started in an arbitrary

state but take advantage of separate oracles or even other self-stabilizing TIOAs, in order

to eventually reach some legal state of the composed automaton. The idea of a TIOA sta-

bilizing relative to another TIOA can be thought of as similar to that of fair composition,

described in [27], showing that under certain conditions, if you have a self-stabilizing im-

plementation A of a service that's used by a self-stabilizing implementation B of a higher

level service, then B using A is still stabilizing.

We begin by defining a function that takes a TIOA and a state set L and returns the

same TIOA with its start state set changed to L.

Definition 3.8 Let A be any TIOA and L be any nonempty subset of QA.

Then Start(A, L) is defined to be A except with eStart(A,L) = L.

We then define some shorthand that we will use often in this thesis.

Definition 3.9 We use notation U(A) for Start(A, QA) (or A started in an arbitrary

state), and R(A) for Start(A, reachableA) (or A started in a reachable state).

Lemma 3.10 Let 0 and A be compatible TIOAs, L C QA, and L' C Qo. Then:

1. Start(A, L) Start(O, L') = Start(A O, L x L').

This says that one can change two automata's start states and then compose them,

or compose two automata and then change the resulting automaton's start state, and

still get the same result.

2. fragsl = exeCSStart(A,L).

This says that any execution fragment of A starting in L is an execution of A after

its start states are updated to be the set L, and vice versa.

3. For any M C Qa, fragL(M) frags.
Start(A,M) A*

This says that it does not make a difference if an automaton's start states are changed

from its original start states when you consider execution fragments that are allowed

to start in any state in L.

Proof: 1. The only thing that might differ between the two is the start states, but it is

easy to check that the start states of both are L x L'.

2. By definition of an execution and definition of Start(A, L), an execution of

Start(A, L) is an execution fragment of A starting with a state in L, and vice versa.

3. Since A and Start(A, L) are the same except for start states, then an execution

fragment of either machine starting with a state in L is an execution fragment of the

other machine starting in a state in L.

The following corollary simply states that it does not make a difference if two au-

tomata's start states are changed from their original start states when you consider execu-

tion fragments of their composition that are allowed to start in any state in some set L".

Corollary 3.11 Let 0 and A be compatible TIOAs, L C QA, L' C Qo, and L" C QAo.

Then fragsart(A,L)| lStart(O,L') = frags'A O.

Proof: By Lemma 3.10, part 1, fragsStart(A,L)Start(O,L') = fragsStart(A||O,LxL'). By part

3, letting M = L x L', this equals frags fL .

In the following definition, we describe a legal set for a TIOA as a subset of its states

that is closed under steps and closed trajectories of the TIOA.

Definition 3.12 Let A be a TIOA, and L C QA. L is a legal setfor A if:

1. For every (x, a,x') E DA, if x E L then x' E L.

2. For every closed 7 E TA, if -r.f state E L then T.lstate E L.

This definition implies the following trivial lemma saying that a legal set for a TIOA is

a subset of its states that is closed under execution fragments.

Lemma 3.13 Let A be a TIOA, and L C QA. L is a legal set for A iff for every closed

execution fragment a of A such that a. f state E L, a.lstate is also in L.

The following result is trivial and follows almost immediately from the definition of a

legal set.

Lemma 3.14 Let A be a TIOA, L be a legal set for A, and t E IR .

Then for any a in fragsL and any state-matched t-suffix 0 of a, / is in frags.

This immediately implies the following result about trace fragments:

Lemma 3.15 Let A be a TIOA and L be a legal set for A.

Then for any a in trace f ragsL and any suffix 3 of a, /3 is in trace f ragsL

Another simple observation is that the set of all states of a TIOA is a legal set for the

TIOA:

Lemma 3.16 Let A be a TIOA. Then QA is a legal set for A.

A marginally more ambitious result is that the set of reachable states of a TIOA is a

legal set for the TIOA:

Lemma 3.17 Let A be a TIOA. Then reachableA is a legal set for A.

Proof: Consider any execution fragment a such that a. fstate is a reachable state of A.

We must show that a.lstate is a reachable state of A.

By definition of reachability, if a. fstate is a reachable state of A then there exists some

closed execution a' of A such that a'.Istate = a.fstate. Since the extension of a' with a

is an execution of A, we have that a.lstate is a reachable state of A. 0

The definition of composition makes the following lemma trivial. The lemma says that

given two TIOAs and two legal sets, one for each TIOA, the cartesian product of the two

legal sets is itself a legal set of the composition of the TIOAs.

Lemma 3.18 Let 0 and A be compatible TIOAs, and let Lo be a legal set for 0 and LA

be a legal set for A. Then Lo x LA is a legal set for O11A.

The following lemma is the simple observation that the legal set for some TIOA is also

a legal set for the TIOA with some set of its output actions hidden, and vice versa.

Lemma 3.19 Let A be a TIOA, L C QA, and 0 be a subset of OA. Then L is a legal set

for ActHide(O, A) iff L is a legal set for A.

The following result is a core result for substitutivity. It says that if one machine's

traces stabilize to the traces of a second machine, then the traces of a third machine started

in some legal set and composed with the first stabilizes to the traces of the third machine

started in the same legal set and composed with the second. (Having the third machine

start in a legal set translates into an execution suffix closure property, where each suffix of

an execution of the machine composed with the first or second machine above is still an

execution of the machine.)

Theorem 3.20 Let A, B, and C be TIOAs and L be a legal set for C such that:

* A is comparable with B, and C is compatible with A and compatible with B.

* tracesA stabilizes in time t to tracesB.

Then traceSStart(C,L) IA stabilizes in time t to traces start(C,L) I B.

Proof: We must show that for any a'a in tracesstart(c,L)IA where a is the state-matched

t-suffix of a'a, a is in tracesstart(c,L)1B.

By Theorem 2.15, this is the same as showing that a is a hybrid sequence with an

empty variable set (which is obvious since it is a trace) such that: (1) a F(Estart(c,L), 0) is

in tracesstart(c,L), and (2) a[(Es, 0) is in tracess.

For the first condition, since Ca (EStart(C,L), 0) is a suffix of a' [(EStart(C,L), 0), itself a

trace of Start(C, L), Lemma 3.15 implies that a (Estart(C,L), 0) is in tracesstart(C,L).

For the second condition, since a [(EA, 0) is a state-matched t-suffix of a'a [(EA, 0),

which is in tracesA, the definition of stabilization tells us that C [(EA, 0) is in tracesB.

Since EA = E6 by assumption, we have shown the second condition.

We conclude that tracesstart(c,L)IA stabilizes in time t to tracesstart(C,L)|IB*

The following result shows that saying that some subset S of execution fragments of a

TIOA stabilizes in time t to a set of fragments starting in some set of legal states L is the

same as saying that any state x that occurs at time t in a fragment in S is in L.

Lemma 3.21 Let A be a TIOA, L be a legal set for A, S c fragsA, and t E R - .o

Then S stabilizes in time t to f rags iff for each a E S and each closed prefix a' of a such

that a'.ltime = t, a'.lstate E L.

Proof: ('-) Say that S stabilizes in time t to frags. We must show that for each a E S

and each closed prefix a' of a such that a'.ltime = t, a'.1state E L. For any such prefix a'

there is some a" such that a = oz'a". Choose such an a" such that ac".fstate = a'.1state.

By definition of a state-matched t-suffix, a" is a state-matched t-suffix of a. By definition

of stabilization, a" is in frags . This implies that a".fstate E L. Since a'.lstate =

". f state, a'.1state E L.

(4) : Say that for each c E S and each closed prefix a' of a such that a'.ltirne = t,

a'.lstate E L. We must show that S stabilizes in time t to fragsL. This means that

we must show that for any a E S and state-matched t-suffix a" of a, a" is in frags4 .

By definition of state-matched t-suffix, there must exist some prefix a' of ac such that

a'.ltire = t, o'a" = a, and a".fstate = a'.1state. By assumption, a'.1state E L,

meaning a".fstate E L, and hence that a" E fragsL. m

The following lemma says that if you consider an execution of the composition of a

machine started in an arbitrary state together with a machine started in a reachable state, a

suffix of that execution is still an execution of the composition with one component started

in an arbitrary state together with a machine started in a reachable state.

Lemma 3.22 Let 0 and A be compatible TIOAs and t be a nonnegative real.

If a E execsu(A) R(O) and 0 is a state-matched t-suffix of a, then 3 c execsU(A)IIR(O).

Proof: This follows immediately from Lemmas 3.14, 3.16, 3.17, and 3.18. 0

This immediately implies the following corollary about traces:

Corollary 3.23 Let 0 and A be compatible TIOAs.

If a E tracesu(A) IR(o) and 3 is a suffix of a, then 0 E tracesu(A) lR(O)

The next definition describes self-stabilization. A is some TIOA that can be started in

an arbitrary initial state, while O is an oracle TIOA that is composed with A. The legal

set L can be thought of as some set of good target states for the composition. A is said to

self-stabilize in time t to L relative to 0 if within t time, any execution of AO10 with A

started in an arbitrary state reaches a legal state.

Definition 3.24 Let 0 and A be compatible TIOAs, and L be a legal set for A| 0.

A self-stabilizes in time t to L relative to 0 ifexecsu(A) 1lo stabilizes in time t to fragsllo.

Notice in the definition above that when 0 = R(O') for some TIOA O', we are effec-

tively describing the capability of a self-stabilizing TIOA A to recover from a corruption

fault, where A's state can be changed arbitrarily at some point in an execution. Consider an

execution of A| O in which a corruption fault occurs at A, changing the state of A to some

arbitrary state. Call the resulting state of All O state s. That state s is in QA x reachableo'.

Any execution fragment starting from s is in execsu(A)1o. By our definition, execsu(A)1lo

stabilizes to frags ll0, meaning that after a corruption fault, the system stabilizes to a legal

state.

50

Chapter 4

Emulations

In this chapter, we introduce a formal theory of emulations. We start by giving the definition

of an emulation. Then we describe emulation stabilization, and show a simple result stating

that a stabilizing emulation of a self-stabilizing program has traces that eventually look like

those of the self-stabilizing program started from a legal state of that program.

4.1 Emulation

Here we define the concept of emulation, a kind of implementation relationship between

two sets of TIOAs, B and C. Say we have some function emu that maps machines in C

to machines in B. We would like to say, intuitively, that the set of machines B emulates

the set of machines C if for each C E C, the machine emu(C) in B has externally visible

behaviors that can be restricted so as to be in some constrained set of the externally visible

behaviors of C.

Our definition of an emulation exposes a little more information in that we allow the

designation of two automata B' and C' that will be composed with each of the machines in

1 and C respectively. B' and C' are system components that always run the same program,

and hence don't change based on which element of C is being emulated. Pulling out these

special automata will prove to be very useful when we discuss stabilization of emulations

(see Section 4.2). 13 then emulates C in the context of B' and C' if for any C in C, each

trace of emu(C)IB' is a trace in a constrained set of traces of CIIC', subject to some action

hiding.

The constraints on traces of C IC' are expressed in the definition using the S function,

which maps each C to some subset of the execution fragments of CI C'. (We map to exe-

cution fragments of C IC', rather than executions of C IC', in order to allow us to use the

same S later when we consider stabilizating emulations.) We can use S to describe prop-

erties of or relationships between the states of C and C'. For example, S might describe a

consistency condition between states of C and C', requiring that certain state components

in C and C' have the same value. These kinds of conditions can be difficult or tedious to

describe otherwise.

Definition 4.1 Let B and C be sets of TIOAs, emu be a function of type C -+ B, B' and C'

be TIOAs, and E3 and Ec be sets of actions such that:

* For each B E B, B is compatible with B' and EL3 C OBIIB'.

* For each C E C, C is compatible with C' and Ec C_ Ocnc'.

Let S be a function that maps each C in C to a suffix-closed subset of fragSActHide(Ec,C||C').

We say that (B, B', Et3) emulates (C, C', Ec) constrained to S with emui if for each C

in C, tracesActHide(E,emu(C) JB') C {trace(a) I a E S(C) n exeCSActHide(Ec,CIIC)}.

In the special case where S maps each C to the entire set of execution fragments of

CIIC' after action hiding, we actually are not constraining the set of traces of Cl C' that

traces of the emulation are supposed to correspond to. In this case, we drop the "constrained

to S" phrase:

Definition 4.2 Let (B, B', ELB) emulate (C, C', Ec) constrained to S with emu, where S is

the function that maps each C in C to the set fragSActHide(Ec,C|C').

Then we say that (B3, B', E13) emulates (C, C', Ec) with emu.

We then conclude that for this special case of S, our emulation definition unrolls to give

an implementation result:

Lemma 4.3 Let (B, B', EB) emulate (C, C', Ec) with emu.

Then for every C in C, ActHide(E3, emu(C)lB') < ActHide(Ec, CI C').

4.2 Emulation stabilization

Now we define emulation stabilization, a concept closely related to self-stabilization. Let's

say that (B, B', E3) emulates (C, C', Ec) constrained to S with emu. We want to define

the idea that for any C in C, the machine emu(C) started in an arbitrary state and com-

posed with R(B') (B' started in a reachable state) has traces that are eventually related to

constrained traces of C and C'.

What sorts of constrained traces of C and C' should they be related to? Think of C'

as the oracle piece; we want to ensure that C' is always in a reachable state. Intuitively,

after stabilization an emulation should manage to produce traces that are related to traces

of constrained execution fragments of the composition of C and R(C'). However, a state

of C corresponding to the state at the beginning of such a fragment might be arbitrary; an

emulation could stabilize to a point after which it looks like it is running the same program

as C but not necessarily starting from an initial or reachable state. Hence, we require

that the emulation's traces should stabilize to constrained traces of U(C) (C started in an

arbitrary state) composed with R(C'), subject to some action hiding.

Definition 4.4 Let (B, B', E3) emulate (C, C', Ec) constrained to S with emu, and let t be

in RO. We say that (B, B', Ea) emulation stabilizes in time t to (C, C', Ec) constrained

to S with emu if traceSActHide(E3 ,U(emu(C))) R(B')) stabilizes in time t to {trace(ca) I ac

S(C) n exeCSActHide(Ec,U(C) iR(C')) I.

As before with our definition of emulation, we introduce a term for the special case

where S maps each C to the entire set of execution fragments of C I C' after action hiding:

Definition 4.5 Let (B, B', E3) emulation stabilize in time t to (C, C', Ec) constrained to S

with emu, where S is the function that maps each C in C to the set fragSActHide(Ec,C|IC').

Then we say that (B, B', EB) emulation stabilizes in time t to (C, C', Ec) with emu.

Lemma 4.6 Let (B, B', Ea) emulation stabilize in time t to (C, C', Ec) with emu.

Then for every C in C, traceSActHide(E ,U(emu(C))R(B,)) stabilizes in time t to

traceSActHide(Ec,U(C) IR(C'))

Finally, if (B, B', E3) emulation stabilizes to (C, C', Ec) constrained to S with emu,

and some C in C self-stabilizes to some legal set L relative to R(C'), we can easily conclude

that the traces of emu(C) started in an arbitrary state and composed with R(B') stabilize to

the constrained traces of CIIC' started in L, subject to some action hiding. In other words,

a stabilizing emulation of a self-stabilizing program has traces that eventually look like

constrained traces of the self-stabilizing program started in a legal state.

Theorem 4.7 1. Let (B, B', EB) emulation stabilize in time tl to (C, C', Ec) con-

strained to S with emu.

2. Let C be an element of C, L be a legal set for CI C', and t2 E R"o be chosen so that

C self-stabilizes to L relative to R(C') in time t2.

Then traceSActHide(EB,U(emu(C))IIR(B')) stabilizes in time ti + t2 to {trace(a) a E

S(C) n exeCSActHide(Ec,Start(CIIC',L)) }.

Proof: By definition of emulation stabilization, traceSActHide(E ,U(emu(C)) HR(B')) stabilizes

in time tl to {trace(a) I a E S(C) n execSActHide(Ec,U(C)|IR(C'))}.

Since C self-stabilizes to L relative to R(C') in time t2 , the definition of self-

stabilization says this means that execsu(c)lR(c,) stabilizes in time t2 to execsstart(CC',,L).

Since S(C) is suffix-closed, this and Lemma 3.5 imply that {trace(a) a E

S(C) n execSActHide(Ec,U(C)I R(C'))} stabilizes in time t 2 to {trace(a) a E S(C) n

exeCSActHide(Ec ,Start(CIIC',L)) I

Since traceSActHide(E,U(emnu(C))LIR(B')) stabilizes in time ti to {trace(a) I a E S(C) n

exeCSActHide(Ec,U(C)I|R(C'))}, which in turn stabilizes in time t2 to {trace(a) I a E S(C) n

exeCSActHide(Ec,Start(CIIC',L)) }, Lemma 3.6 implies that traceSActHide(E,U(emu(C))| R(B')) sta-

bilizes in time tl + t 2 to {trace(a) a E S(C) n exeCSActHide(Ec,Start(CC',L))} I

This immediately implies the following result for the special case S that maps each C

to the entire set of execution fragments of C IIC' after action hiding:

Corollary 4.8 1. Let (B, B', EB) emulation stabilize in time t, to (C, C', Ec) with emu.

2. Let C be an element of C, L be a legal set for C IC', and t2 E RO be chosen so that

C self-stabilizes to L relative to R(C') in time t2.

Then traceSActHide(E3 ,U(emu(C)) IR(B')) stabilizes in time tl + t 2 to

tTaceSActHide(Ec,Start(Cl C' ,L)).

56

Chapter 5

Failure transform

This chapter describes a general transformation of a TIOA into a new TIOA that can be

crashed and restarted. This is done with the addition of fail and restart actions and a failed

variable indicating if the automaton is in a failed state. In this definition, a failed machine

is one where no locally-controlled action is enabled, inputs do not change its state, and the

values of the variables do not change while time passes. A failed machine can be restarted

with a restart action, making the machine non-failed and initializing the variables of the

original machine to a start state of that machine.

After we present the definitions, we present several results with respect to the Fail

transform.

The first definition describes a TIOA that we can Fail transform.

Definition 5.1 Let A = (X, Q,), I, O, H, D, T) be a TIOA such that {fail, restart} n (I U

O U H) = 0 and failed 0 X. Then A is Fail-transformable.

Now we present the definition of the Fail transformation of a Fail-transformable TIOA.

Definition 5.2 Let A = (X, Q,), I, O, H, D, T) be a Fail-transformable TIOA.

Then Fail(A)1 is defined to be the structure:

* X' = X U (failed : Bool, a discrete variable}.

'In a system with multiple components with Fail transforms we employ the appropriate renaming to keep

the failed variable and fail and restart actions unique between the transforms. For example, given TIOAs A

and B, we refer to the failed variable in Fail(A) asfailedA, and the failed variable in Fail(B) asfailedL,

etc.

* Q' = x e val(X') x[X E Q}.

* 0' = { Q'I failed VxFX E 0}.

* H' = H, O' = 0, I' = I U {fail, restart}.

* D' equals the set of (x, a, x') E X' x A x X' such that one of the following holds:

- x = x' A x(failed) Aa E I.

- (x [X, a, x'[X) E D A -x(f ailed) A -x'(f ailed).

- x'(failed) A a = fail.

- x'[X E E A x(f ailed) A -x'(f ailed) A a = restart.

- x = x' A -x(f ailed) A a = restart.

* T' equals the set of trajectories T E trajs(Q') such that one of the following holds:

- -rT(O)(failed) AT X E T.

- 7(O)(f ailed) A T is any constant trajectory.

In this definition, a TIOA A is transformed into Fail(A). The new automaton has one

additional state variable, failed, indicating whether or not the machine is failed, and two

additional input actions, fail and restart. The variable failed is a discrete variable (defined

in Section 2.2), meaning it does not change over the course of a trajectory. The states of the

new automaton are states of the old automaton, together with a valuation of the Boolean

flag failed. The start states of the new machine are defined to be ones where failed is

arbitrary, but if failed is false then the rest of the variables are set to values consistent with

a start state of A.

The definition of D' describes the new set of valid transitions (x, a, x'). First, the set

includes the transitions (x, a, x) where the failed flag is set in x and a is an input action of

A. This basically addresses input-enabling in Fail(A) by saying that if a machine is failed,

then an input action that occurs results in no change to the state. Second, the set includes

"normal" transitions of A when the machine is not failed- if the machine is not failed in

state x and a is in the set of actions of A, then the resulting state x' is still nonfailed, and

(x [X, a, x' [X) is a valid transition of D. Third, we describe the failing of a machine- if

a =fail, then x'(failed) is true and the rest of the state can be changed arbitrarily. Fourth,

we describe the restarting of a failed machine- if x(f ailed) is true and a =restart, then

x'(f ailed) is false and the rest of the variables are initialized to an initial state of A. Fifth,

we describe the no-op that results if we restart a non-failed machine- if a = restart and

-x(f ailed), then state x equals x'.

The set of trajectories of T' can be divided into two sets of trajectories based on the

value of the failed variable. In both sets, the value of the failed variable is constant. If

failed is false over the course of the trajectory 7, then 7 is such that 7 1 X is a trajectory of

the machine A. In other words, while the machine is not failed its trajectories basically look

like those of the original machine. If failed is true over the trajectory 7, then all variables

are constant in 7. This means that if the machine is failed, then its state variables are frozen.

This does not constrain time from passing- any constant trajectory is allowed.

Results about the Fail transform

Here we present several results about the failure transformation that will prove useful later

in the thesis. The first two results show a relationship between the failure transformation

applied to a composition of two TIOAs and the failure transformation of the individual

component TIOAs. Then we describe a relationship between the Fail and U operators

(useful when considering self-stabilizing algorithms).

The following theorem is an execution projection result that says that performing a

Fail-transform on the composition A, I IA2 of two automata results in a machine whose

executions constrained to actions and variables of Fail(A1) or Fail(A2) are executions of

Fail(A1) or Fail(A2) respectively. It follows immediately from the definition of Fail and

Lemma 2.14.

Theorem 5.3 Let A 1 and A 2 be compatible TIOAs that are each Fail-transformable,

and let ac be an execution fragment of Fail (Al I A 2). Then c [(A1 U {fail, restart}, X1 U

{failed}) is an execution fragment of Fail(A,), and a [(A2U{fail, restart}, X 2U{ failed})

is an execution fragment of Fail(A2). Also, a is an execution of Fail (A IA2) iff a re-

stricted in the manner above is an execution of Fail (Ai) for each i { 1, 2}.

The following theorem is an execution pasting result similar to Lemma 2.16. Say that

we are given two compatible Fail-transformable TIOAs A1 and A 2, and executions al

and a 2 of Fail(A1) and Fail(A2) respectively, where each execution starts with the same

value for failed. The result says that if there is a hybrid sequence 0 with the same type

as a trace of Fail(A1 |A2) and such that 0 is consistent with the traces of executions al

and a 2 in that /3 restricted to external actions of Fail(A1) is equal to the trace of al (and

similarly for A2), then we can paste together the executions al and a 2 to get an execution

of Fail(A II A2) whose trace is equal to /.

It follows immediately from the definition of Fail and Lemma 2.16.

Theorem 5.4 Let A = A , IA2, and let al and a2 be executions of Fail (A,) and Fail(A2)

respectively such that al.f state(f ailed) = c 2.f state(failed). Let /3 be an (EFail(A), 0)

sequence such that 3 [(EFail(Ai),) = trace(al) and p3[(EFail(A2), 0) = trace(a2).

Then there exists an execution a of Fail(A) such that al = a [(AFail(AI), XFail(Ai)),

a 2 = a [(AFail(A2), XFail(A2)), and trace(a) = 0. (Notice that this implies that the failed

flag in the first state of al is equal to the failed flag in the first state of a, and similarly for

the first state of a 2.)

The last result is the following, stating that we can interchange the Fail and U operators

on an automaton and get the same result:

Theorem 5.5 Let A be a TIOA such that fail and restart is not an action of A and failed

is not a variable. Then Fail(U(A)) = U(Fail(A)).

Proof. This follows immediately from the definitions of Fail and U. In both cases, the

resulting automaton is A started in an arbitrary state, only with new fail and restart actions

and with a new failed variable started with an arbitrary value. 0

Chapter 6

Layers: Physical layer model

Here we describe the formal theoretical system model for a mobile network that we will be

working with in this thesis.

The physical layer consists of a bounded, tiled region of the plane, where mobile phys-

ical (real) nodes are deployed. These nodes are TIOAs susceptible to crash failures and

restarts, and with access to local clocks. They also have access to a local broadcast ser-

vice Pbcast, which models broadcasts and receives of messages, and reliable real world

automaton, RW, which models movement of the physical nodes and real-time. We will use

this layer to emulate the VSA layer (we define emulation in Chapter 4).

6.1 Network tiling

The network tiling describes the geography of the network:

* R is the deployment space of the network. It is a fixed, closed, bounded connected

portion of the two-dimensional plane.

* dist : R2 ~ RO is the Euclidean distance between two points in R.

* U is the finite totally ordered set of region identifiers.

A region is a set of connected points in R, with a unique identifier from U. R is divided

into closed regions. The only overlap of points permitted at distinct regions is at the shared

boundaries.

* points : U + 2R is a function mapping from region ids to points in R. points(u) is

defined to be the set of points in the region corresponding to identifier u.

* region : R -4 U is a function from points in R to region ids. For a point 1 E R,

region(l) is defined to be min({u E U 11 E points(u)}), that is, the minimum id of

any region containing 1.

* nbrs : 2UXU is a neighbor relation on ids from U. nbrs holds for any two distinct

region ids u and v whose regions share any points. More formally, (u, v) E nbrs 4+

(u h v A points(u) n points(v) h 0). Recall that if two distinct regions share any

points, these must be boundary points of both regions. This definition implies that

diagonally adjacent neighbors in a grid are neighbors, for example.

* nbrs+(u): U - 2U refers to the set {u} U nbrs(u).

* regDist : U2 -+ N is the region distance between two regions. For regions u and

v, regDist(u, v) is defined to be the hop count of the shortest path between u and

v in the neighbor graph induced by the nbr relation. For example, if u = v then

regDist(u, v) = 0, and if (u, v) E nbrs then regDist(u, v) = 1.

* D, a natural number, is the network diameter in terms of region distances. It is

defined as maxu,Geu regDist(u, v).

* r, a non-negative real, is an upper bound on the Euclidean distance between two

points in the same or neighboring regions. More formally, we require that for every

u, v such that v E nbrs+(u) and for every 11 E points(u) and 12 E points(v),

dist(ll,12) < r.

Example: Grid tiling: Tilings are not required to be regular, though this is often useful. One

example of a regular tiling is a base b, b E R>o, grid where R is divided into square b x b

regions. Squares that share edges or are diagonal from one another, sharing a single border

point, are neighbors. This means that each non-border square in R has eight neighbors. In

such a base b grid, r could be any value greater than or equal to 2 v/2 b.

1 Signature: Trajectories: 12
Input GPSupdate(l, t)p, 1 E R, t E IRO if clock # Ithen

3 Input brcv(m)p, m C Msg d(clock) = 1 14
Output bcast(m)p, m E Msg else constant clock

5 Arbitrary additional non-fail, non-restart actions. Additional variables develop as specified. 16

7 State:

analog clock: R>ILU {I}, initially I
9 Finite set of additional non-failed variables, each initially

set to a unique initial value.

Figure 6-1: Pp.

Example: Hexagonal tiling: Another example of a regular tiling is a hexagonal, or honey-

comb, tiling with edges of length b, b E R>o. In this case, each interior hexagonal region

has six neighbors, one for each edge. r could be any value greater than or equal to v/3 b.

6.2 Mobile physical nodes

Here we describe our model of the mobile physical nodes. This model describes the soft-

ware aspects of the physical nodes, but does not address the actual mobility of the nodes;

mobility is modelled by the "Real World" automaton RW, described in Section 6.3.

* P is the set of mobile node ids.

* For each p E P, we assume a mobile physical node Pp from a set of TIOAs,

PProgramp. Each physical node Pp is modeled as a timed I/O automaton.

* Msg is the set of messages that a process may broadcast.

We provide an outline of the allowable structure of P, in Figure 6-1. Each mobile

physical node Pp has a local clock variable clock. We assume that each node's clock

progresses at the rate of real-time, and is initially I.

We assume that a physical node P, has at least the following external interface, which

includes the ability to broadcast and receive messages and to receive RW updates.

* Output bcast(m)p, m E Msg:

A node p may broadcast a message using Pbcast through bcast(m)p.

* Input brcv(m)p, m c Msg:

A node p receives a message m from Pbcast through brcv(m),.

* Input GPSupdate(l, t)p, 1 E R, t E R>'O:

Such an update from RW indicates Pp is currently at location I and the current time

is t. If the node adopts the value t as its local clock value clock, then since the local

clock's value progresses at the rate of real-time, the value of clock will generally be

equal to that of real time. However, clock might not be equal to real-time if the node

has just recovered from a failure or started in an arbitrary state. In these cases, the

periodic GPSupdate can correct the clock value.

We allow additional arbitrary non-fail and non-restart actions and local non-failed

state. Our restrictions on fail and restart actions and failed variables makes P, Fail-

transformable, which allows us to use the Fail transformation described in Chapter 5 to

get Fail(P).

6.3 RW: Real World

RW models system time and mobile node locations. It is an external source of reliable

time and location knowledge for physical nodes. The RW TIOA in Figure 6-2 maintains

location/ time information and updates physical nodes with that information. Its outputs

are also inputs to the Pbcast service, allowing the broadcast service to guarantee delivery

of messages sent between nodes that are located geographically close to each other.

RW is parameterized by the following constants:

* Vmax : RO, a maximum velocity magnitude for mobile node motion.

* sample : >R- , a maximum amount of time between updates for each node.

RW maintains a variable, now, that is considered the true system time, and two map-

pings from the set of physical node ids P, loc and updates:

* now is a non-negative real representing the current true system time.

Signature: Trajectories:
2 Output GPSupdate(l, t)p, IE R, p E P, t E R _o evolve 10o

d(now) = 1
4 State: Id(loc(p)) I < v..., for each p C P 12

analog now: IR>o, initially 0 stop when

6 updates(p): 2 RxR>o
,

for each p E P, initially 0 3p E P: V(1, t) E updates(p): now > t+ esample 14

loc(p): R, for each p E P, initially arbitrary Transitions: 16

Output GPSupdate(l, t)p
Precondition: 18

1 = loc(p) At = now A V(u, t') E updates(p): t A t'
Effect: 20

updates(p) - updates(p) U {(/, t)}

Figure 6-2: RW[Vax, Csample].

prevUpd (p: P, t: IR>o): R>oU {I} reg+ (p: P, t: RI>): UU {1} 12
2 if 3(1, t') E updates(p): t' < t then if 3l E R: (1, t) E updates(p) then

return max({t'E R-oI(I1,t')E updates(p):t'< t}) return min({vE U3EE points(v):(l,t)E updates(p)}) 14
4 else return I else return reg- (p, t)

16

6 reg-(p:P, t: >0): UU {} reg(p: P): UU {I}
if 3(1, t') E updates(p): t' < t then return reg+ (p, now) 18

8 return min({v E UI
31 E points(v): (1, prevUpd(p, t)) E updates(p)})

to else return I

Figure 6-3: RW derived variables.

* loc : P - R maps each physical node id to a point in the plane indicating the

node's current location. Initially this is arbitrary. We assume that the magnitude of

the change in loc for each p E P is bounded by speed vax.

* updates : P -+ 2 xRx>, maps the set of physical node ids, P, to a set of pairs (1, t),

indicating that a GPSupdate(/, t)p occurred. Initially, this set is empty.

When RW outputs a GPSupdate(loc(p), now)p at a mobile node Pp, informing the

node of the node's location loc(p) and the current time, the pair (loc(p), now) is stored in

updates(p) as a record of the update. A GPSupdate is required to occur at a mobile node

P, at time 0 (guaranteed by the stopping condition on line 14 and the fact that updates(p)

starts out empty for each p in P) and at least every Esa,,ple time thereafter (guaranteed by

the stopping condition expressed on line 14). A GPSupdate is allowed to occur only

once at any particular time t and particular process Pp (guaranteed by the precondition that

V(1, t') E updates(p) : t' f t on line 19). This precondition is useful later in preventing

certain race conditions from occurring when a node restarts after a failure.

We also define several derived function variables that will be useful throughout this

thesis (see Figure 6-3):

* prevUpd : (P x R) -- IR U {1} maps a physical node id p and time t to the

time t' of the last GPSupdatep that occurred before time t. This is calculated to be

max({t' I 3(1, t') E updates(p) : t' < t}). If no such time exists, it returns I.

* reg- : (P x R) -- U U {1} maps a physical node id p and time t to the region

indicated by the last GPSupdatep before time t. It is defined as the v E U such that

there is a location I in region(v) such that (1, prevUpd(p, t)) E updates(p). If no

such region exists, it returns I.

This function is useful for referring to the region that a process is in, as indicated

by the history of GPSupdates stored in RW.updates, at the beginning of some

time. A process P, can be considered to be in two different regions at the same

time t in an execution. For example, a process's region in some execution at time t

might be a region v. Then a GPSupdate(l, t)p could occur, changing the region to

u = region(l). This means that the variable RW.reg(p) at time t is set to v at the

beginning of time t, and set to u at the end of time t. The function reg- returns the

first region, v.

* reg+ : (P x R) -- U U {1} maps a physical node id p and time t to the region

indicated by the GPSupdatep that occurs at time t if it exists, and to the result of

reg-(p, t) if it does not.

Similarly to reg-, this function is useful for referring to the region that a process is

in at some time t, though in this case it refers to the region at the end of that time.

For example, in the scenario described in reg -, reg+(p, t) would return u.

* reg : P -+ U U {I} maps a physical node id p to the region of the node as indicated

by the last GPSupdatep. This is the last reported region of the node, and is defined

to be reg+(p, now).

Reachable states of RW

Here we characterize the reachable states of RW by providing a list of properties exactly

describing those states. We show that (1) the list of properties is an invariant for RW and

(2) any state satisfying the list of properties is indeed a reachable state of RW.

First we describe the reachable states of RW.

Definition 6.1 Define InvRw to be the set of states x of RW such that the following prop-

erties hold:

1. Vt E (0, now], Vp E P, 3(1, t') E updates(p) : It - t'I < esample.

This means that for any time t after 0 and up to the clock time in x, for each p E P

there is some (1, t') pair in updates(p) where t' is within Esample time oft.

2. Vp E P, V(1, t) E updates(p) : t E [0, now].

This means that there are no update records that indicate an update occurred before

time 0 or after the current time.

3. Vp E P, V(l, t), (1', t') E updates(p) : [t = t' : 1 = 1'].

This means that there is at most one update record for a particular time and process.

4. There exists a function locAt : (P x IR0o) - R such that for all p E P:

(a) V(1, t) E updates(p) : locAt(p, t) = 1.

(b) locAt(p, now) = loc(p).

(c) Vt, t2 : 0 < tl < t 2 < now : locAt(p,tl)-locAt(p,t 2)] < V

This means that there is a function that can describe for each p E P a location

at any time between 0 and the current time that is consistent with the update

histories stored in updates(p), the current location, and the maximum speed

restriction of Vmx.

We now show that the set of properties describing InvRw is an invariant for RW. We do

this by showing that every reachable state of RW is in InvRw.

Lemma 6.2 reachableRw C InvRw.

Proof: Consider a state in reachableRw. We must show that it satisfies the properties of

a state in InvRw. This is the same as showing that the last state of any closed execution of

RW is in InvRw. We proceed by induction on closed executions of RW.

First, we check that the initial state of RW satisfies the list of properties above. Since

updates(p) are empty for each p e P, the properties are trivially satisfied.

Next we check that if the properties hold in some state x and an action is performed

that leads to state x', then the properties hold in state x'. We break this down by action:

* GPSupdate(l, t)p: It is easy to see that Properties 1 and 2 still hold. Property 3 can

only be violated in there exists some pair (1', t) E updates(p) where 1 # 1'. However,

by Property 4 in state x, I = locAt(p, now). Since loc(p) does not change in 0 time,

then loc(p) = locAt(p, now), meaning that 1 = 1'. For Property 4, the locAt function

that exists for state x would still satisfy our requirements in state x'.

Finally we check that for any closed trajectory 7 starting with a state x where the prop-

erties hold and ending in a state x', the properties hold in state x'. The only interesting

properties to check are 1 and 4. Property 1 will still hold due to the stopping condition

expressed in line 14. For Property 4, simply adopt the function locAt that must exist at the

beginning of the trajectory and extend the mapping for t > x(now) for each p E P to be

loc(p) at time t in 7. The resulting function will satisfy 4(a) and 4(b). 4(c) will hold due to

the trajectory restriction described on line 12. 0

Now we show the opposite direction, namely that any state in InvRw is a reachable

state of RW. We do this by showing how, given a state x in InVRw, we can construct an

execution of RW that ends in x.

Lemma 6.3 InvRw C reachableRw.

Proof: Consider a state x in InvRw. We must show that x is a reachable state of RW.

We do this by constructing an execution a of RW such that a.lstate = x. This execution

describes the motion of the physical nodes and contains only GPSupdate events.

By property 4 in the description of InvRw, there exists some function locAt to describe

the location of each process from time 0 to x(now). We use this to describe an execution

Signature:
2 Input GPSupdate(l, t)p, I E R, p E P, t E IRo0

Input bcast(m)q, m E Msg, q E P
4 Output brcv(m)p, m E Msg, p c P

Internal drop(m, t, q, p), m E Msg, t E R> , p, q E P
6

State:
8 analog now: R>o, initially 0

updates(p): 2 RxR - , for each p E P, initially 0
10 pbcastq(p): 2

M s
gXR

> X2P, for each p E P, initially 0

12 Trajectories:
evolve

14 d(now) = 1
stop when

16 3pE P:3(m,t,P')E pbcastq(p):[t= now-dphysA P'# 0)]

18 Transitions:
Input GPSupdate(l, tr)

20 Effect:
updates (p) - updates (p) U {(1, t)}

Input bcast(m)p
Effect:

if V(m', t, P') E pbcastq(p): [m' # m Vt # now] then
pbcastq(p) <- pbcastq(p) U {(m, now, P)}

Output brcv(m),
Local:

p: P, t: R -o, P': 2P

Precondition:
(m, t, P') E pbcastq(p) A q E P' At # now

Effect:
pbcastq(p) - pbcastq(p) -{(m, t, P')} U {(m, t, P'-{q})}

Internal drop(m, t, q, p)
Local:
1, 1': R, t' < t, t": R o, P': 2P

Precondition:
(1, t') E updates(p)AV (1*, t*)E updates(p):[t* tl'V t* > t]
(l', t")E updates(q)A V (1*, t*) c updates(q): t* < t"
(m, t, P') pbcastq(p) A qE P' A t# now A dist(l, I')> rreal

Effect:
pbcastq(p) - pbcastq(p)-{ (m, t, P')}U {(m, t, P'-{q})}

Figure 6-4: Pbcast[dphys, rreat].

a, where the evolution of the variable loc in a from time 0 to now is defined as follows:

for each p E P and time t, loc(p) at time t in a is equal to locAt(p, t). In addition, for

each p E P and (1, t) E updates(p), we add a GPSupdate(l, t)p action at time t in a. If

more than one GPSupdate occurs at any time t, order the GPSupdates by the process for

which the update is occurring (recall that by property 3 there is at most one GPSupdate

per process at a particular time). It is easy to see that a is an execution of RW: by Property

4 and our construction of the evolution of loc, the change in location of processes satisfies

the requirements for an execution of RW. By Properties 2, 3, and 4, each GPSupdate is

enabled. By Property 1, GPSupdates occur often enough to satisfy the stopping conditions

of RW in line 14. It is also easy to see that a.lstate is equal to x. •

The preceding two lemmas directly imply the following characterization theorem:

Theorem 6.4 InvRw = reachableRw.

6.4 Pbcast: Local broadcast service

Each node has access to the local broadcast communication service Pbcast, modelled in

Figure 6-4. The service is parameterized with the following:

i

* real, a non-negative real representing the minimum broadcast radius of the nodes.

We require that re,,al > r + EsampleVmax.

* dphys, a non-negative real representing the message delay upper bound.

The service described in Figure 6-4 allows each client Pp to broadcast a message to all

nearby clients through bcast(m)p and receive messages broadcast by other clients through

brcv(m),.

The main variable of this service is pbcastq(p) for each p E P, storing information

about broadcasts performed by Pp. When a bcast(m)p input occurs at some time t, if no

bcast(m)p already occurred at time t, Pbcast adds a (m, t, P) tuple to pbcastq(p). The set

of process ids in the third component of the tuple represents the set of processes that might

still potentially receive the message. Some positive amount of time after the broadcast

(guaranteed by the precondition that t Z now on line 32 and 42), a process P, in the set

can either receive the message (lines 28-34), or if Pq's last reported location 1' (as described

on line 41) is farther than real from the last reported location 1 of the sender at time t (as

described on line 40), the transmission may fail to Pq (lines 36-44). In either case, the id q

is removed from the set of ids of processes that might still receive the message. We require

that once a message is broadcast, for every node the message is received or the transmission

fails by at most dph, time later (guaranteed by the stopping condition expressed on line

16). Our requirement that a non-0 amount of time pass between broadcast and the possible

receiving or dropping of the message is utilized later to prevent race conditions that can

result when a process changes regions or failure modes.

6.4.1 Properties of Pbcast

The service guarantees that in each execution a of Pbcast, there exists a function mapping

each brcv(m)q event to the bcast(m)p event that caused it such that the following hold:

* Integrity: If a brcv(m)q event 7 is mapped to a bcast(m), event ir', then 7r' occurs

before r.

* Non-duplicative delivery: If a brcv(m)q event - is mapped to a bcast(m)p event 7r'

which occurs at a time t, then there do not exist any other brcv(m)q events that map

to a bcast(m)p event at time t. (Notice that this is slightly stronger than the normal

non-duplicative delivery property. Here, if some process sends the same message

more than once at some time t, this property implies that at most one copy of the

message is received by any process. This is enforced through the check on line 25

for whether the sender has already sent a copy of the message at this time.)

* Bounded-time delivery: If a brcv(m)q event 7 is mapped to a bcast(m)p event 7r'

where 7' occurs at time t, then event 7r occurs in the interval (t, t + dphys].

* Reliable local delivery: This guarantees that a transmission will be received by

nearby nodes: If a bcast(m)p event 7r' occurs at time t where the last recorded loca-

tion of p by the end of time t is I and a.ltime > t + dphys, and for each last recorded

location 1' of q in the entire interval [t, t + dphys], dist(l, 1') < rreal, then there exists

a brcv(m)q event 7r such that 7r is mapped to some bcast(m)p event (not necessarily

7r') at time t. (This property is enforced through the preconditions for the drop action

in lines 38-42. A process fails to receive a message transmitted at time t only if at

some point during the transmission interval it is too far, as reported by GPSupdates,

from the last reported location of the transmitter at time t.)

Notice that we are not concerned with the failure status of physical nodes in our model

of Pbcast. Messages are delivered entirely based on the locations of the nodes. If a Fail-

transformed physical node is failed when a brcv event occurs for it, then by our definition

of the Fail transform, the brcv event is a no-op.

Clearly, this is a theoretical abstract model of broadcast communication available to

mobile nodes. In real mobile network deployments, reliable local delivery can be difficult

to achieve. While the abstract model assumed here does accommodate the possibility of

bounded-time retransmission to tackle wireless broadcast issues such as message collisions,

it does not handle the reality of having only high probability bounded-time retransmission.

There is ongoing work towards providing reliable communication in wireless networks

with collision failures [16, 17], but coping with such settings is beyond the scope of this

thesis.

6.4.2 Reachable states of Pbcast

Here we characterize the reachable states of Pbcast by providing a list of properties exactly

describing those states. We show that (1) the list of properties is an invariant for Pbcast

and (2) any state satisfying the list of properties is indeed a reachable state of Pbcast.

First we describe the reachable states of Pbcast.

Definition 6.5 Define InVPbcast to be the set of states x of Pbcast such that the following

properties hold:

1. Vp E P, V(m, t, P') E pbcastq(p) : t E [0, now].

This means that the timestamp attached to a message broadcast record is not for a

time before 0 or after the current time.

2. Vp E P, V(m, t, P') E pbcastq(p) : [t < now - dpsh,, = P' = 01].

This means that for any record of a message broadcast from more than dphys time

ago, the set of processes yet to either receive the message or drop it is empty.

3. Vp E P, V(m, t, P') E pbcastq(p) : [t = now =: P = P'].

This means that for any record of a message broadcast that occurred at the current

time, no process has yet received or dropped the message.

4. Vp E P, V(m, t, P'), (mn', t', P") E pbcastq(p) : [(m, t) = (m', t') > P' = P"].

This means that for any two distinct records of message broadcasts from the same

time t in pbcastq(p) for some p E P, the messages must be different.

We now show that the set of properties describing InVPbcast is an invariant for Pbcast.

We do this by showing that every reachable state of Pbcast is in InvPbcast.

Lemma 6.6 reachablePbcast C IrnVPbcast.

Proof: Consider a state in reachablePbcast. We must show that it satisfies the properties of

a state in InvPbcast. This is the same as showing that the last state of any closed execution

of Pbcast is in InvPbcast. We proceed by induction on closed executions of Pbcast.

First, we check that the initial state of Pbcast satisfies the list of properties above. Since

pbcastq(p) is empty for each p E P, the properties are trivially satisfied.

Next we check that if the properties hold in some state x and an action is performed

that leads to state x', then the properties hold in state x'. We break this down by action:

* GPSupdate(l, t)p: It is easy to see that the properties still hold.

* bcast(m)p: It is easy to see that all properties except 1 are not affected. Properties

1 and 3 are satisfied by the structure of the tuple added to pbcastq(p) in line 26.

Property 4 will still hold because of the test on line 25.

* brcv(m)q: The only possibly nontrivial property verification to be done is for Prop-

erty 3. However, the precondition for a brcv on line 32 states that t f now. Hence,

Property 3 will continue to hold.

* drop(m, t, q, p): The only possibly nontrivial property verification for this action is

for Property 3. By the precondition on line 42, we know that t f now. Hence, the

property still holds.

Finally we check that for any closed trajectory T starting with a state x where the prop-

erties hold and ending in a state x', the properties hold in state x'. The only interesting

property to check is 2. Property 2 will still hold due to the stopping condition expressed in

line 16. 0

Now we show the opposite direction, namely that any state in InvPbcast is a reachable

state of Pbcast. We do this by showing how, given a state x in InVpbcast, we can construct

an execution of Pbcast that ends in x.

Lemma 6.7 InVPbcast C reachablePbcast

Proof: Consider a state x in InvPbcast. We must show that x is a reachable state of Pbcast.

We do this by constructing an execution a of Pbcast such that a.lstate = z.

The construction is done in two phases. First, we construct an execution ca which

describes the GPSupdates that occurred. Then we construct a by adding a bcast event

to a for each message tuple in pbcastq(p), p E P, together with brcv events for processes

whose ids do not appear in the tuple's set of process ids. We describe this construction in

more detail below.

For execution c, for each p E P and (1, t) E updates(p), we add a GPSupdate(l, t),

action at time t in al. If more than one GPSupdate occurs at any time t, we order the

updates by the process for which the update occurs. It is easy to see that a1 is an execution

of Pbcast: since GPSupdate is an input it is always enabled. It is also easy to see that

al.lstate restricted to the value of the now and updates variables is equal to the value of

x restricted in a similar manner. a1 .l1state, however, has an empty pbcastq(p) for each

pE P.

We then create a by adding bcast and brcv events to al in the following way: For

each p E P and (nm, t, P') E pbcastq(p), add a bcast(m)p event at time t, and for every

q not in P', add a brcv(m)q after the bcast action at time min(t + dphy , x(now)). Since

bcast is an input action, it is always enabled. Since the time t is not x(now) in any of the

records and properties 3 and 4 hold, any of the brcv events is enabled. We also need to

check that the stopping conditions in line 16 are not violated; a violation can only occur in

our construction if some bcast event is added to a more than dphy8 time before x(now) and

there is some process for which a corresponding brcv event does not occur. By property 2,

any tuple from more than dphys time before x(now) has an empty set P', meaning that our

construction added an associated brcv for each process, and the stopping condition was not

violated. Hence, a is an execution of Pbcast.

The only thing remaining to be checked is that the value of a.lstate(pbcastq) is equal

to that of x. This is easy to see by the construction of a and property 1. m

The preceding two lemmas directly imply the following characterization theorem:

Theorem 6.8 InvPbcast = reachablePbcast*

6.4.3 Reachable states of RWIIPbcast

Here we characterize the reachable states of RW|IPbcast by providing a list of properties

exactly describing those states. We show that (1) the list of properties is an invariant for

RWIIPbcast and (2) any state satisfying the list of properties is indeed a reachable state of

RWIIPbcast. We then show a useful result about the relationship between broadcast and

receive events and the regions of nodes.

First we describe the reachable states of RWIIPbcast.

Definition 6.9 Define InVRWIIPbcast to be the set of states x of RW |Pbcast such that the

following properties hold:

1. x[XRw E InvRw.

This means that the RW-related elements of state satisfy the properties of InvRw.

2. X [XPbcast E InVPbcast.

This means that the Pbcast-related elements of state satisfy the properties of

InlVPbcast-

3. Pbcast.now = RW.now A Pbcast.updates = RW.updates.

This means that the clock values and update records are the same between Pbcast

and RW.

We now show that the set of properties describing InvRWIIPbcast is an invariant for

RWIIPbcast. We do this by showing that every reachable state of RWIIPbcast is in

InVRWIIPbcast.

Lemma 6.10 reachableRwF|Pbcast C InvRWIIPbcast-

Proof: Consider a state in reachableRwllpbcast. We must show that it satisfies the proper-

ties of a state in InvRWlPbcast. This is the same as showing that the last state of any closed

execution of RWIIPbcast is in InVRWIIPbcast. By Lemma 6.2, property 1 of InvRWIIPbcast

holds throughout such an execution. By Lemma 6.6, property 2 of InvRWIIPbcast holds

throughout such an execution. That leaves only property 3 to show. We proceed by induc-

tion on closed executions of RWI Pbcast.

First, we check that the initial state of RWI Pbcast satisfies property 3. Since pbcastq(p)

and updates(p) are empty for each p E P and both start with now = 0, property 3 is

trivially satisfied.

Next we check that if property 3 holds in some state x and an action is performed that

leads to state x', then property 3 holds in state x'. We break this down by action:

* GPSupdate(l, t)p: The pair (1, t) is added to updates(p) in both RW and Pbcast,

so since property 3 holds in state x, it still holds in x'.

* bcast(m), brcv(m),, drop(m, t, q, p):

These do not impact updates(p) or now, so property 3 still trivially holds.

Finally we check that for any closed trajectory 7 starting with a state x where property

3 holds and ending in a state x', property 3 holds in state x'. The updates variable does not

change over a trajectory and the now variables develop at the same rate. Hence, property 3

holds in state x'. U

Now we show the opposite direction, namely that any state in InvRwIlPbcast is a reach-

able state of RWIIPbcast. We do this by showing how, given a state x in InVRWIIPbcast, we

can construct an execution of RWIIPbcast that ends in x.

Lemma 6.11 InvRwl Pbcast C reachableRw iPbcast-

Proof: Consider a state x in InvRwllPbcast. We must show that x is a reachable state of

RW IPbcast. We do this by taking an execution aORW of RW and an execution Pbcast Of

Pbcast and pasting them together to get an execution ca of RW IPbcast where a.lstate = x.

Let aRW be the execution of RW with a Rw.lstate = x [XRw constructed in Lemma

6.3, which exists because x satisfies property 1. Let GPbcast be the execution of Pbcast

with pbcast.l state = x FXPbcast constructed in Lemma 6.7, which exists because x satisfies

property 2. Let / be trace(apbcast). Obviously, 3 [(EPbcast, 0) = trace(cPbcast). Because

of property 3 and the construction of the two executions, it is obvious that trace(aRw) =

trace(3) [(ERw, 0). Hence, by Lemma 2.16, there exists an execution a of RWIIPbcast

such that aRRW = a (ARW, XRw) and CPbcast = e [(APbcast, XPbcast). By construction,

a.lstate must equal x. 0

The preceding two lemmas directly imply the following characterization theorem:

Theorem 6.12 InvRWIIPbcast = reachableRw||Pbcast.

We now present a result that will be used later in the thesis. Using Theorem 6.12, our

upper bounds on region sizes allow us to conclude that after a broadcast at time t from a

process p whose GPSupdates indicate it starts in a region u (equal to reg-(p, t)) and ends

in a region v (equal to reg+(p, t)) at time t, a brcv for the message will be output by Pbcast

for each process whose GPSupdates indicate it is in u, v, or neighboring regions (equal to

nbrs+ (u) and nbrs+ (v)) for the entire duration of the message broadcast interval:

Lemma 6.13 Let a be an execution of RWIIPbcast and let map be a function mapping

from each brcv(m)q event to a bcast(m)p event such that the Integrity, Non-duplicative

delivery, Bounded-time delivery, and Reliable local delivery properties hold.

Suppose a bcast(m), event 7' occurs at time t and oa.ltime > t + dphys. Consider any

q such that for all t* in the interval [t, t + dphys], reg+(q, t*) E nbrs+(reg-(p, t)) U

nbrs+ (reg+(p, t)). Then there exists a brcv(m)q event 7r such that 7 is mapped to 7r'.

Proof: If a GPSupdatep event occurs at time t, then let I be the associated location, else

let I be the associated location of the last GPSupdatep event before time t. Let q be

an id such that for all t* in the interval [t, t + dphys], reg+(q, t*) E nbrs+(reg-(p, t)) U

nbrs+(reg+(p, t)). We must show that there exists a brcv(m)q event 7 such that 7 is

mapped to 7r'. By the Reliable local delivery property of Pbcast (Section 6.4), this result

would be implied if we could just show that for each time t* and location 1' such that l' is

the most recent location record of q in Pbcast.updates(q) at time t*, dist(l, 1') < rreal.

We consider cases for the region of 1'. If its region is in nbrs+(reg-(p, t)), then by our

upper bound on region size, the distance between 1' and any point in nbrs+ (reg-(p, t)) is

at most r. If point 1 is in reg-(p, t), then this implies that dist(l, 1') < r. If point I is not

in reg-(p, t), then a GPSupdatep occurred at time t. By property 1 of InvRw, the last

update before time t occurred for some point 1" in reg-(p, t) no more than Esample before t,

and by property 4 of InvRw, the maximum distance that could have been travelled in that

time is EsampleVmax, meaning point 1 is no more than EsampleVmax from the point l". Hence,

dist(l, 1') < dist(l, 1") + dist(l", 1') r + EsampleVmax < Treat.

If the region of 1' is in nbrs+(reg+(p, t)), then by our upper bound on region size, the

distance between 1' and any point in nbrs+(reg+(p, t)) is at most r. Since point 1 is located

in reg+(p, t), dist(l, 1') < r < rreal.

6.5 P-algorithms and PLayers

Here we define a physical layer algorithm and the complete physical layer.

First, we define a physical layer algorithm. A physical layer algorithm is just an assign-

ment of a TIOA program to each physical node.

Definition 6.14 A P-algorithm, palg : P -- PProgramp, is a mapping from each mobile

node id p E P to some TIOA P, E PProgramp. The set of all P-algorithms is referred to

as PAlgs.

Since we are interested in considering failure-prone physical nodes, given a physical

layer algorithm, the physical layer is then the composition of RW and Pbcast with Fail-

transformed programs for all the physical nodes, as indicated by the physical layer algo-

rithm.

Definition 6.15 Let palg be an element of PAlgs.

* PLNodes[palg], the Fail-transformed physical nodes parameterized by palg, is the

composition of Fail(palg (p)) for all p E P.

* PLayer[palg], the physical layer parameterized by palg, is the composition of

PLNodes [palg] with RW I Pbcast.

Chapter 7

Layers: Virtual Stationary Automata

layer model

Figure 7-1: Virtual Stationary Automata layer. VSAs and clients communicate locally
using Vbcast. VSA and client outputs may be delayed in VBDelay buffers. VW provides
timing and failure information to VSAs, and RW provides timing and mobile node location
information.

Here we describe our formal theoretical model for the virtual node abstraction layer.

The Virtual Stationary Automata abstraction layer [29] includes the network tiling and

RW of the physical layer, client nodes that correspond to physical nodes, virtual stationary

automata (VSAs) at predefined regions of the network, a VW time and failer service for

Signature:
2 Output time(t)u, t E >o, u E U

Output failu, u E U
4 Output restartu, u E U

6 State:

analog now: R >O, initially 0
8 last(u): R> 0 U { }, for each u E U, initially I

to Trajectories:
evolve

12 d(now) = 1
stop when

14 Eu E U: last(u) E {1, noW -Esample}

Transitions:
Output time(t),
Precondition:

t = now
Effect:

last(u) - t

Output fail,
Precondition:

None
Effect:

None

Output restart,
Precondition:

None
Effect:

None

Figure 7-2: VW[Esample], Virtual time and failer service.

VSAs, and a local broadcast service between client nodes and VSAs, called Vbcast, similar

to the Pbcast of the physical layer (see Figure 7-1). In addition, the abstraction layer

contains VBDelay buffers that delay the broadcasts of clients and VSAs.

In the rest of this chapter, we describe all of the above components in more detail. The

entire VSA layer is then defined to be just the composition of RW, VW, and Vbcast to-

gether with the Fail-transform for each client and VSA of the composition of that process's

machine with its corresponding VBDelay buffer.

7.1 Network tiling and RW

The network tiling, describing the geography of the network, is the same as in Section 6.1.

The reliable location and time oracle RW is the same as in Section 6.3.

7.2 Virtual time and failer service VW

The virtual time and failer service, VW serves both as a time oracle for VSAs and a fail

and restart service for VSAs. A TIOA description of VW is in Figure 7-2. Similar to RW

for clients, VW performs a time(t), output at time 0 and at least every Esample time for each

u E U. Also, VW nondeterministically issues fail, and restartu outputs for each u c U.

I

Reachable states of VW

Here we characterize the reachable states of VW by providing a list of properties exactly

describing those states.

Definition 7.1 Define Invvw to be the set of states x of VW such that the following prop-

erties hold:

1. Vu E U, now # 0 = last(u) # i.

This means that after time 0, there must be a non-I time stored for each u E U.

2. Vu e U, last(u) # I = last(u) E [now - (sample, now].

This means that for any u E U, any non-I last(u) stores a time at most Esample old

and no larger than now.

We do not show that Invvw describes the set of reachable states of VW since it is

trivial.

7.3 Mobile client nodes

Here we describe our model of the mobile client nodes; this model is very similar to the

model for P, in Section 6.2.

* For each p in the set of physical node ids P, we assume a mobile client node C, from

a set of TIOAs, CProgramp.

As for P,, C, has a local clock variable, clock that progresses at the rate of real-time,

and is initially I. As before, additional arbitrary local non-failed variables are allowed. Its

external interface is also assumed to at least include the GPSupdate inputs of Pp, as well

as vcast(m)p outputs and vrcv(m)p inputs, corresponding to bcast and brcv actions at P,.

Additional arbitrary non-fail and non-restart actions are again allowed.

I Signature:
Input time(t),, t e R:o

3 Input vrcv(m),, m E Msg
Output vcast(m),, m E Msg

5 Arbitrary additional non-fail, non-restart internal actions.

7 State:

analog clock: R->oU {1}, initially I
9 Finite set of additional non-failed variables, each initially

set to a unique initial value.

Trajectories: 12

if clock = I then
d(clock) = 1 14

else constant clock
Additional variables develop as specified. 16

Transitions: 18

Input time(t),
Effect: 20

if clock 5 r then
Optional state changes may occur. 22

clock +- t
24

Additional transitions as allowed by the signature.
Changes to clock are not permitted in non-time transitions26

Figure 7-3: V,.

7.4 Virtual Stationary Automata (VSAs)

Here we describe VSAs. A VSA is a clock-equipped abstract virtual machine V, associated

with a region u in the network.

* For each u in the set of region identifiers U, we assume an abstract virtual machine

V, from a set of TIOAs, VProgramu.

We provide an outline of the allowable structure of V, in Figure 7-3. Each abstract

virtual machine V, has a local clock variable clock. We assume that each node's clock

progresses at the rate of real-time, and is initially _ before being updated with a time

input.

We assume that an abstract virtual machine V has only the following external interface,

which consists of the ability to receive time updates and broadcast and receive messages.

* Input time(t),, t E R:

This input reports the current time t. We require that in the state that results from

this input, node u's clock equals t. Also, we require that no other state changes occur

unless clock was not equal to t when the action occurred.

* Output vcast(m), m E Msg:

A node u may broadcast a message through vcast(m) .

* Input vrcv(m),, m E Msg:

A node u receives a message m through vrcv(m)0 .

Signature:
2 Input GPSupdate(l, t)p, I E R, t E Ro

Input vcast(m)p, m E Msg
4 Output vcast'(m,J)p, m E Msg,fE Bool

6 State:

to_send+, to.send-: Msg*, initially A
8 updated: Bool, initially false

lo Trajectories:
stop when

12 tosend+ = A V tosend- A

Transitions:
Input GPSupdate(1, t),
Effect:

to-send- to.send+

tosend+ A
updated - true

Input vcast(m)p
Effect:

if updated then
to-send+ - append(to.send+ , m)

Output vcast' (m,J)p
Precondition:

m = head(tosend- tosend+) A (f J tosend- =
Effect:

if f then
to-send+ - tail (tosend+)

else tosend- - tail(to-send-)

Figure 7-4: VBDelayp, Message delay service for clients.

We allow additional arbitrary non-failed variables and non-fail and non-restart internal

actions. We also require that each action be deterministic, in that for each state s and each

action a of V, there exists at most one state s' such that (s, a, s') is a transition of V,.

7.5 VBDelay delay buffers

As mentioned previously, there are outbound delay buffers from clients and VSAs to the

broadcast service Vbcast. For each client or VSA node, its associated VBDelay buffer takes

as input the vcast(m) outputs of the node, tags each message m with a Boolean that is later

used by the Vbcast service to help determine what region the node was in when the message

was produced, and passes the tagged message on to the Vbcast service. In this section we

first describe the client delay buffer, and then the VSA delay buffer.

7.5.1 Client VBDelay

The delay buffer for a client, VBDelayp, p c P (see Figure 7-4), tags vcast messages

from the client with a Boolean indicating if the message was submitted before the latest

GPSupdate at the client, and submits the tagged message to the Vbcast service before

any time passes. (Hence, the delay buffer has a delay of time 0.) Its state consists of the

I

following variables:

* to_send+ E Msg*: This is a queue of messages to be passed on to Vbcast. It is

initially empty.

* to_send- E Msg*: This is also a queue of messages to be passed on to Vbcast. It

contains messages that were submitted before the latest GPSupdate at the client. It

is initially empty.

* updated : Bool: This is a Boolean indicating whether the node has experienced a

GPSupdate since starting. It is initially false.

Its interface consists of the following three kinds of actions:

* Input GPSupdate(l, t),, E R, t Ro , p E P: This input indicates that process p

is at location 1, and results in the process moving its tosend+ messages to tosend-

and then clearing tosend+. It also updates updated to true.

* Input vcast(m)p, m E Msg, p E P: This input is a broadcast of a message m,

resulting in the addition of m to tosend+.

* Output vcast'(m, f),, m E Msg, f E Bool,p E P: This output is the passing on

of a vcast message to Vbcast. The Boolean f indicates whether the message was

submitted to the process after its last GPSupdate.

When a vcast of a message occurs at a process that has received at least one GPSup-

date, the message is appended to a local queue tosend+ of messages the sender wants

to communicate to other processes (lines 21-24). If no GPSupdate has occurred, the

message is dropped. Whenever a GPSupdate occurs at the client, the queue to_send- is

overwritten with to_send+, to_send+ is erased, and updated is set to true (lines 15-19).

(Notice that, with our Section 6.3 restriction that a GPSupdate occurs at most once per

time per particular client, the queue to_send- will generally be empty at the time of a

GPSupdate.) Whenever to_send- - tosend+ is not empty (line 12), the first message

in to_send- - to_send+ is removed, tagged with a Boolean f equal to true if to_send- is

empty and false otherwise (line 28), and output via vcast', passing the tagged message on

to the Vbcast service (lines 26-32).

Signature: Transitions:
2 Input vcast(m),, m E Msg Input vcast(m), 16

Output vcast'(m, true)u, m C Msg Effect:
4 tosend <- append (to_send, (m, rtimer)) 18

State:
6 analog rtimer: R>- ° , initially 0 Output vcast'(m, true), 20

tosend: (Msg xR>O)*, initially A Precondition:

8 3t E R_>o: (m, t) = head(tosend) 22

Trajectories: Effect:
io evolve to-send '- tail(to.send) 24

d(rtimer) = 1
12 stop when

Blm, t) E tosend: rtimer -t ' [0, e)

Figure 7-5: VBDelay[e],, Message delay service for VSAs.

7.5.2 VSA VBDelay

For each VSA, the delay buffer is slightly simpler than that of a client in that the VSA

always knows its region (it does not receive GPSupdate inputs), and is slightly more

complicated in that it does not have to immediately forward outgoing messages. Instead,

VBDelay, is parameterized by the following constant:

* e : R'O, a maximum output delay time.

VBDelay for a VSA is almost the same as VBDelay for a client, except that the Boolean

attached to each message is always set to true, and when VBDelay" receives a vcast(m)"

input, it saves the message and the local time in the local to_send queue (lines 16-18) for

some nondeterministically-chosen time in [0, e] (enforced by the stopping condition on line

13), and then broadcasts the message through vcast'(m, true) (lines 20-24).

Any program written for the VSA layer must take into account e, as it would message

delay.

7.6 Vbcast: Virtual local broadcast service

Each client and virtual node has access to the virtual local broadcast communication service

Vbcast, modelled in Figure 7-6. The service is parameterized with the following:

*d : R>O, the message delay upper bound. We require that d > dphy8.

1 Signature:
Input GPSupdate(l, t)p, 1 E R, p E P, t C RI>o

3 Input vcast'(mJ)i, m E Msg, f Bool, i E PU U
Output vrcv(m) j , m E Msg,j E PU U

5 Internal drop(n,j), n E Nat. j E P U U

7 State:

analog now: R>- O, initially 0
9 reg(p), oldreg(p):UU {I}, for each p E P, initially I

vbcastq: (Msg x U x R>
x 2 P U)*, initially A

Trajectories:
13 evolve

d(now) = 1
I5 stop when

3(m, u, t, P') E vbcastq: [t = now -d A P' 0]
17

Transitions:
19 Input GPSupdate(l, t)p

Effect:
21 oldreg(p) i- reg(p)

reg(p) ~ region(1)

Input vcast' (m, J)i
Effect:

if i E U then
vbcastq - append(vbcastq. (m, i, now, P U U))

else if (fA reg(p) 7 I) then
vbcastq - append(vbcastq, (m, reg(p), now, P U b

else if (-fA oldreg (p) # 1) then
vbcastq +- append(vbcastq, (m, oldreg (p), now, P

Output vrcv(m)j
Local:

n E [1, ... , Ivbcastql], u: U, t: R>o
,
P': 2 PUU

Precondition:
vbcasrq[n]= (m, u, t, P') Aj C P' At 5 now

Effect:
vbcastq[n] (m, u, t, P' -{j})

Internal drop(n,j)
Local:

m: Msg, u: U, t: R>' ,
P': 2

P UU

Precondition:
vbcastq[n] = (m, u, t, P') Aj E P' A t 5 now

(j C PA reg(j) V nbrs (u)) V (E U Aj V nbrs+ (u))
Effect:

vbcastq[n] +- (m, u, t, P' -{j})

24

26

28

r))

30

J U))
32

34

Figure 7-6: Vbcast[d].

The service described in Figure 7-6 takes each vcast'(m, f)i input from client and

virtual node delay buffers and delivers the message m via vrcv(m) at each client or virtual

node that is in some region u or a neighboring region for the d time after broadcast of

the message. If the vcast' was from a VSA at region i, then the region u is equal to i.

Otherwise, if the vcast' was from a client, we use the Boolean tag f to determine the

region u; if f is true then region u is the region of i when the vcast' occurs, and if f is false

then region u is the region of i before the last GPSupdate at i occurred.

Vbcast's interface consists of the following three kinds of actions:

* Input GPSupdate(l, t)p, 1 E R, t E R>O, p E P: This input indicates that process p

is at location 1, and results in the update of records storing a client's last two regions.

* Input vcast'(m, f)i,m E Msg, f E Bool, i E P U U: This input is a broadcast

of a message m by some node i where i is either the id of a client or a VSA. The

Boolean f indicates for clients whether the client's last GPSupdate occurred before

the client vcast the message.

i

* Output vrcv(m)j, m E Msg, j E P U U: This output represents the delivery of a

message m at process j.

The state variables are:

* now : Ro>: This variable is a real-time clock. It is initially 0.

* reg(p) : U U {I} for p E P: This is the region of each client. It is initially _ for

each p E P, and is set whenever a GPSupdatep occurs.

* oldreg(p) : U U {1} for p E P: This is the region of each client before the client's

last GPSupdate. It is initially I for each p c P, and is updated to the old value of

reg(p) whenever a GPSupdate, occurs.

* vbcastq : (Msg x U x Ro x 2Puu)*: This is the record of all outstanding vcast'

events, structured as an initially empty queue of tuples. Each tuple consists of a

vcast' message and its attached region, the time at which the message was input,

and a set of ids of nodes (clients and VSAs) for which the message has not yet been

delivered or lost.

The main variable of this service is vbcastq, storing information about all previous

virtual broadcasts. When a vcast'(m, f)i input occurs at some time t, the action first cal-

culates a region u to associate with the message. Region u is equal to i if i is a region id

(lines 26-27). If i is a client id and f is true, then u is set to reg(p). If i is a client id and

f is false, then u is set to oldreg(p). If u is I the message is dropped, otherwise the tuple

(m, u, now, P U U) is then appended to vbcastq. The set of ids in the tuple represents the

set of processes that might still potentially receive the message. This set starts as all mobile

node and region ids. Some positive amount of time after the broadcast (guaranteed by the

precondition that t ' now on line 37 and 45), a process j in the set can either receive the

message (lines 33-39), or if j is a mobile node id with a region not equal to or neighboring

u or if j is a region id not equal to or neighboring u, the transmission may fail to j (lines

41-48). In either case, the id j is removed from the set of ids of processes that might still

receive the message. We require that once a message is broadcast, for every node the mes-

sage is received or the transmission fails by at most d time later (guaranteed by the stopping

condition expressed on line 16). Our requirement that a non-0 amount of time pass between

broadcast and the possible receiving or dropping of the message is utilized later to prevent

race conditions that can result when a process changes regions or failure modes.

Properties of Vbcast

The service guarantees that in each execution a of Vbcast, there exists a function mapping

each vrcv(m)j event to a vcast'(m, f) event such that the following hold:

* Integrity: If a vrcv event -r is mapped to a vcast' event 7', then 7' occurs before 7.

* Non-duplicative delivery: If a vrcv(m)j event - is mapped to a vcast' event ir', then

there do not exist any other vrcv(m)j events that map to 7'.

* Bounded-time delivery: If a vrcv event 7 is mapped to a vcast' event 7r' where 7'

occurs at time t, then event 7i occurs in the interval (t, t + d].

* Reliable local delivery: This guarantees that a transmission will be received by

nearby nodes: Say a vcast'(m, f)i event 7' occurs at time t and a.ltime > t + d.

Let u be i if i E U, otherwise be reg-(i, t) if f is false or reg(i) at the time of r'

if f is true. If a is not 1, then for each j E P U U such that either j E P and

reg+(j, t') E nbrs+(u) for all t' in the interval [t, t + d] or j E nbrs+(u), there exists

a vrcv(m)j event 7 such that 7 is mapped to 7'.

The Vbcast service is very similar to the Pbcast service described in Section 6.4. The

most obvious difference is that the Vbcast service is extended to a larger id set, consisting

of region ids as well as physical node ids. Comparing the guarantees for both services, we

also note that the Non-duplicative delivery property and the Reliable local delivery property

are both slightly different.

The Non-duplicative delivery property of Vbcast says that at most one vrcv event at a

particular process is mapped to a single vcast' event. The property in Pbcast says some-

thing more stringent, namely that if a brcv(m)q event is mapped to a bcast(m),p event at

time t, then there are no other brcv(m), events that map to any bcast(m)p event at time t

for the same m and p. With the more restrictive non-duplication property of Pbcast we can

easily build a Vbcast service with this more common definition of non-duplicative delivery.

The Reliable local delivery property of Vbcast differs in that it is expressed in terms of

regions, unlike in Pbcast where it is expressed in terms of locations. Here, we require that

messages that originate from some region u be received by all nodes that are in region u or

neighboring regions for the transmission period. For Pbcast, we require that messages that

originate from some location 1 be received by all nodes within some distance of 1 for the

transmission period.

Reachable states of Vbcast[d]

Here we characterize the reachable states of Vbcast[d] by providing a list of properties

exactly describing those states.

Definition 7.2 Define InvVbcast to be the set of states x of Vbcast such that the following

properties hold:

1. Vp E P, oldreg(p) Z I * reg(p) i.

This means that for each p E P, the value of reg(p) can only be I if oldreg(p) is I.

2. V(m, u, t, P') E vbcastq, t < now A (P' # 0 => t > now - d) A (t = now = P' =

PU U).

This means that for each message tuple in vbcastq, the timestamp of the message is

not after now, if there are still processes that have not either lost or delivered the

message then the message is no older than d, and if the message was sent at this time

then P' is fudl.

3. The tuples in vbcastq are in order of their timestamp.

We do not show that InvVbcast describes the set of reachable states of Vbcast since it is

trivial.

7.7 V-algorithms and VLayers

Here we provide definitions for a VSA layer algorithm and a complete VSA layer.

A VSA layer algorithm is just an assignment of a TIOA program to each client and

VSA.

Definition 7.3 A V-algorithm, alg : P U U - CProgram U VProgram, is a map-

ping such that for each p E P, alg(p) E CProgramp and for each u E U, alg(u) E

VProgram. The set of all V-algorithms is referred to as VAlgs.

Since we are interested in providing this layer using failure-prone physical nodes, we

then define a VLayer, a VSA layer with failure-prone clients and VSAs. Given a VSA layer

algorithm alg, a fail-transformed node (either a client or a VSA) of the VSA layer is the

Fail-transformed version of the composition of the TIOA for the node as indicated by alg

with the node's delay buffer. The VLayer is then the composition of RWIVWIIVbcast

with all the fail-transformed nodes of the VSA layer.

Definition 7.4 Let alg be an element of Valgs.

* VLNodes[alg], the fail-transformed nodes of the VSA layer parameterized by alg,

is the composition of Fail(VBDelayi al g(i)) for all i E PU U.

* VLayer[alg], the VSA layer parameterized by alg, is the composition of

VLNodes[alg] with RWlVWl Vbcast.

Reachable states of RWI I VW I Vbcast

Here we characterize the reachable states of RWII VW Vbcast by providing a list of proper-

ties exactly describing those states.

Definition 7.5 Define InvRwIIVW| Vbcast to be the set of states x of RWII VWI Vbcast such

that the following properties hold:

I. X [XVbcast E InVVbcastA x FXRW E InvRw A x[Xvw E Invvw.

This says that a state of the composition restricted to the individual components is in

the corresponding set of reachable states for that component.

2. RW.now = VW.now = Vbcast.now.

This says that the clock values of the components are the same.

3. Vp E P, RW.reg(p) = Vbcast.reg(p).

This says that the region for a process matches between Vbcast and RW.

4. Vp E P, if I RW.updates(p) I > 1 then let (up, tp) be the tuple with second highest tp

in RW.updates(p), else let up be I. Then Vbcast.oldreg(p) = up.

This says that the oldreg(p) for any p E P matches the region associated with the

next-to-last G PSupdate at process p.

We do not show that InvRWlIVWlIVbcast describes the set of reachable states of

RWi VWi Vbcast since it is trivial.

92

Chapter 8

VSA layer emulations

Here we describe what it means for a mapping from V-algorithms to P-algorithms to be an

emulation algorithm for the VSA layer, using the language and theory of Chapter 4. If such

a mapping is an emulation algorithm for the VSA layer, then an application programmer

could write programs for the VSA layer and then run those programs on the physical layer.

First we define the concepts of an emulation and a stabilizing emulation of a VSA layer.

Then we conclude that a stabilizing emulation of a self-stabilizing VSA layer program has

traces that eventually look like those of the VSA layer program starting in some legal

state. This separates the reasoning about stabilization properties of a VSA layer emulation

algorithm from those of the VSA layer program.

We define an emulation algorithm amap of the VSA layer to be a function mapping V-

algorithms to P-algorithms, where for any alg in VAigs, a trace of PLNodes[amap[alg]]

composed with RWIIPbcast is related to some trace of VLNodes[alg] composed with

RWIIVWIIVbcast. For a particular alg, amap[alg] could be defined so that each phys-

ical node's program is a composition of the client program in the VSA layer for that node,

and a VSA emulator portion where the physical node helps emulate its current region's

VSA.

First, for use throughout this thesis, we introduce two pieces of notation that describe

actions to be hidden in the physical layer and the virtual layer:

Definition 8.1 Define HpL to be {bcast(m)p, brcv(m)p I m E Msg, p E P}.

Definition 8.2 Define HVL to be {vcast(m)i, vrcv(m)i, vcast'(m, f)i, time(t),, fail,, restart, Im E

Msg, f E Bool,t E R>-O,i E P U U, u E U}.

Now we can define our concepts of VSA layer emulation.

Definition 8.3 . Let amap be a function of type VAigs - PAlgs, and let t be in R'O.

* Let PL be {PLNodes[amap[alg]] I alg e VAlgs}.

* Let VIC be {VLNodes[alg] I alg E VAlgs}.

* Let emu be the function of type VL -- PLC such that for each alg E VAigs,

emu(VLNodes[alg]) = PLNodes[amap[alg]].

* Let S be a function that maps each element V of PL to a suffix-closed subset of

fragSActHide(HvL ,V | RWII VW llVbcast)

Then we define the following two terms:

1. amap is an S-constrained VSA layer emulation algorithm if

(PL, RW Pbcast, HpL) emulates (VL, RW lVW Vbcast, HVL) constrained

to S with emu.

Recallfrom Definition 4.1 that this means that emu maps each element VL of VC to

an element PL of PCL such that each trace of PL I I RW I Pbcast with actions in HpL

hidden is a trace of an execution of VL[IRWIIVWIIVbcast with actions in HVL

hidden that also happens to be in S(VL).

2. amap is

rithm if

(VC, RWII

an S-constrained t-stabilizing VSA layer

(P£, RWl Pbcast, HPL) emulation stabilizes

VW IVbcast, HVL) constrained to S with emu.

We can now combine a stabilizing VSA layer emulation with a self-stabilizing VSA

layer algorithm and conclude that the appropriately restricted traces of the result stabilize

to appropriately restricted trace fragments of the VSA layer algorithm started from legal

states of that algorithm. This is a simple corollary of Theorem 4.7.

emulation

in time

algo-

t to

Corollary 8.4 1. Let amap be an S-constrained tl-stabilizing VSA layer emulation al-

gorithm.

2. Let alg E VAlgs, t2 E R0, and legal set L for VLayer[alg] be chosen so that

VLNodes[alg] self-stabilizes to L relative to R(RW IIVWIIVbcast) in time t2.

Then traceSActHide(HpL,U(PLNodes[amap[alg]]) IR(RW||Pbcast)) stabilizes in time tl + t 2 to

{trace(a) a E exeCSActHide(HvL,Start(VLayer[alg],L)) n S(VLNodes[alg]) }.

In other words, consider the composition of RW I I Pbcast started in a reachable state with

PLNodes[amap[alg]] (the physical nodes running an emulation of the virtual layer pro-

gram alg) started in an arbitrary state. Hide the actions in HPL. The set of traces of the

resulting machine stabilizes in time tl + t2 (the time for the VSA layer emulation to stabi-

lize, followed by the time for the virtual layer program to stabilize to legal set L) to the set

of traces of executions allowed by S of the virtual layer started in legal set L, after hiding

actions in HVL.

Part II

VSA layer emulation algorithm

Part II describes an implementation of the VSA layer using the underlying mobile ad-

hoc system, and proves that the implementation provides a stabilizing emulation of the

VSA programming layer. This implementation is in three parts: totally ordered broadcast,

leader election, and a main emulation component.

Chapter 9 is where I describe the totally ordered broadcast service. It is useful to have

access to a totally ordered broadcast service that allows nodes in the same region to receive

the same sets of messages in the same order. The totally ordered broadcast service is

intended to allow a non-failed node p that knows it is in some region u to broadcast a

message m, via tocast(m)p, and to have the message be received exactly d, d > dph,,

time later via torcv(m)q, by nodes that are in region u or a neighboring region for at least

d time.

In Chapter 10, I describe the leader election service that allows nodes in the same region

to periodically compete to be named sole leader of the region for some time. Our leader

election service is a round-based service that collects information from potential leaders at

the beginning of each round, determines up to one leader per region, and performs leader

outputs for those leaders that remain alive and in their region for long enough.

Finally, in Chapter 11, I describe a fault-tolerant implementation of each VSA by mo-

bile nodes in its region of the network, and prove that the implementation gives us a stabi-

lizing emulation of the VSA layer. At a high level, the individual mobile nodes in a region

share emulation of the virtual machine through a deterministic state replication algorithm

while also being coordinated by a leader. Each mobile node runs its portion of the totally

ordered broadcast service, leader election service, and a Virtual Node Emulation (VSAE)

algorithm, for each virtual node.

98

Chapter 9

Totally ordered broadcast service

In order to simplify later algorithms, it is useful to have access to a totally ordered broadcast

service that allows nodes in the same region to receive the same sets of messages in the

same order. The totally ordered broadcast service is intended to allow a non-failed node

p that knows it is in some region u to broadcast a message m, via tocast(m),, and to

have the message be received exactly d, d > dphy., time later via torcv(m)q, by nodes that

are in region u or a neighboring region for at least d time. In this chapter, we start by

introducing a specification for the service. We then show how to implement this service

using the physical layer. Finally, we show that our implementation is correct and that it is

self-stabilizing.

9.1 TOBspec: Specification of totally ordered broadcast

We describe the specification of totally ordered broadcast (see Figure 9-1) in three parts:

TObcast, TOBDelayp, and TOBFilterp, for each p E P. The specification of the totally

ordered broadcast service is then TOBspec, which is equal to TObcastl RW composed

with Fail(TOBDelayp ITOBFilterp) for all p E P, with certain actions hidden.

TObcast is the main message ordering and delivery service, taking inputs of message

and Boolean pairs, tagging the message with a region u calculated based on the Boolean

and the GPSupdate history of the sender of the message, and holding the region-tagged

messages for exactly d time before delivering (m, u) at each process that has been in region

Figure 9-1: Totally ordered broadcast service. Client outputs may be delayed in TOBDe-
lay buffers, and messages are filtered out based on region and time alive information in
TOBFilter buffers. RW provides timing and mobile node location information.

u or a neighboring region for the appropriate time. The order of these deliveries at each

process is consistent with a global ordering of all broadcast inputs to TObcast.

TOBDelayp is an outgoing delay buffer that sits between process p and TObcast, taking

inputs of messages to be sent via the totally ordered broadcast service from the process,

tagging each with a Boolean indicating if the message was submitted to the automaton

since the client's last GPSupdate, and submitting the tagged messages to TObcast. This

mechanism is similar to the one used in VBDelay (see Figure 7-4) for the virtual layer.

TOBFilterp also sits between TObcast and a user of the TObcast service, but in the

opposite direction. When TObcast delivers a message tagged with some region u to TO-

BFilterp, TOBFilterp determines whether or not process p received a GPSupdate after

starting and at least d time ago, and if so passes the message along to be received at the

user. This prevents p from receiving messages that it was not alive and in the region long

enough to receive.

Notice that the TOBDelay and TOBFilter machines are for individual processes. In this

thesis we are interested in considering Fail-transformed mobile nodes. In the presence of

process failures, it is apparent that allowable traces of the totally ordered broadcast service

will be dependent on the history of the fails and restarts of a mobile node. Separating

100

1 Signature:
Input GPSupdate(l, t)p, 1 E R, t E Io

3 Input tocast'(m,Jlp, m E Msg,f C Bool,p E P
Output torcv'(m, u)p, m E Msg, u E U, p E P

5 Internal drop(p),p E P

7 State:

analog now: R>'O, initially 0
xR>o9 updates(p): 2 U - , for each p E P, initially 0

procs: 2P , initially P
11 sent, oldsent: (Msg x U xP x IRO) * , initially A

13 Derived variables:
reg-(p: P): UU {I}

15 if 3(u, t) E updates(p): t < now then
return min({u E U 13t' < now: (u, t') E updates(p)

17 AV(u*, t*) E updates(p): (t* < t V t* = now)})
else return 1

19

reg(p: P): U U {I}
21 if 3u E U: (u, now) C updates(p) then

return min({u E U I (u, now) E updates(p)})
23 else return reg- (p)

25 regSpan(p: P, r: U, t: R>O): Bool
return B(u, t') E updates(p): [t' < t

27 A V(v, t") E updates(p): (t" > t' 4 r E nbrs+ (v))]

29 Trajectories:
evolve

31 d(now) = 1
stop when

33 3(m, u, p, t) = head(sent): t = now -d

Transitions:
Input GPSupdate(1, t)p
Effect:

updates(p) <- updates(p) U { (region(1), t)}

Input tocast' (m, J)
Effect:

choose i E {j E [0, Isent]I Vk E (j, Isentl]:
1(m', u', p', t') = sent(k): (p' # p A t' = now)}

if (f Areg(p) _1) then
sent *- insert(sent, (m, reg(p), p, now), i)

if (--f A reg - (p) = I) then
sent - insert(sent, (m, reg- (p), p, now), i)

Output torcv' (m, u)p
Precondition:

3q E P: (m, u, q, now -d) = head (sent) Ap E procs
regSpan(p, u, now -d)

Effect:
procs -- procs -{p}
if procs = 0 then

oldsent <- append(oldsent, head(sent))
sent 4- tail(sent)
procs - P

Internal drop(p)
Local:

m: Msg, u: U
Precondition:

3q E P: (m, u, q, now -d) = head(sent) Ap E procs
- regSpan(p, u, now -d)

Effect:
procs -- procs -{p}
if procs = 0 then

oldsent +- append (oldsent, head (sent))
sent -- tail (sent)
procs - P

Figure 9-2: TObcast[d], Message ordering service.

the TOBDelay and TOBFilter machines from TObcast allows us to Fail-transform portions

of TOBspec. This separation makes it easier to describe a main service component that

is Fail-oblivious, making it easier to use Fail-transform related theory from Chapter 5.

If a component not corresponding to a particular mobile node were to not be oblivious to

mobile node failures, it would introduce complications later when we use totally ordered

broadcast in conjunction with other services (in Chapter 11).

We describe the TOBDelay, TOBFilter, and TObcast pieces in more detail below.

9.1.1 TObcast

Here we provide a description of TObcast (Figure 9-2), the message ordering and region-

based delivery service. The interface of TObcast consists of three kinds of actions:

101

I

* Input GPSupdate(l, t)p, 1 E R, t E R --o, p E P: This input indicates that a process

p is currently located at position 1.

* Input tocast'(m, f)p,m E Msg, f E Bool,p E P: This input is a broadcast of

a message m from a process. The Boolean f indicates whether the message was

submitted to p's delay buffer after p's last GPSupdate, and is used by TObcast to

determine the appropriate source region for the message.

* Output torcv'(m, u)q, m E Msg, u E U, q E P: This output represents the delivery

of a message m at process q. The message m corresponds to an earlier tocast'

message. The region u is the region of sender of the message at the time the message

was tocast.

The state variables are:

* now : RO: This variable is the real-time. It is initially 0.

* updates(p) : 2UR>O, p E P: This variable is a history of the reported regions for

each process. For each GPSupdate(l, t), input, the pair (region(l), t) is stored in

updates(p).

* procs : 2P: This is a bookkeeping variable, used to keep track of which processes

have not had the first message in sent delivered or dropped. It is initially P.

* sent : (Msg x U x P x R>O)*: This is the queue of all outstanding tocast' events,

initially empty. For each tocast'(m, f), input, a tuple (mn, u, p, now) is stored in

sent, where u is calculated based on the value of f and updates(p).

* oldsent : (Msg x U x P x R-O)*: This is the queue of all processed tocast' events,

initially empty. Each entry in this queue was previously an entry in sent.

The code also uses three derived variables:

* reg : P - U U {L} maps a physical node id p to the region indicated by the

last GPSupdatep. If no such region exists, the function returns i. The function is

calculated in a similar manner to the reg function in Section 6.3.

102

* reg- : P - U U {I} maps a physical node id p to the region indicated by the last

GPSupdatep before the current time. If no such region exists, the function returns

I. The function is calculated in a similar manner to the reg- function in Section 6.3.

* regSpan : (P x U x R O) --+ Bool maps a physical node id p, region id u, and

time t to a Boolean indicating whether the process p was in region u or a neighboring

region from the end of time t up to the current time. This is calculated by examining

all the pairs in updates(p) and seeing if there exists some pair with a timestamp t' no

larger than t such that for each pair with a timestamp at least as large as t', the region

in that pair is either u or a neighbor of u.

Whenever a tocast'(m, f)p input occurs (line 40), the action calculates a region u to

associate with the message. If f is true, then u is set to reg(p), else u is set to reg-(p). If u

is _L, then the message is dropped, else TObcast inserts the tuple (m, u, p, now) into sent

(lines 44-47) at some position such that all tuples after it in sent were also sent at time now

and not sent by p (lines 42-43). This means that the tuples are ordered in sent with respect

to the real-time at which they arrived, and that tuples that originate from the same process

are ordered with respect to the order in which the process submitted them.

Whenever the head tuple (m, u, p, t) of the sent queue has a timestamp t equal to

now - d, meaning the tuple was added d time ago, a torcv'(m, u)q or drop(q) output is

performed (ensured by the stopping condition on line 33) for each q in P, and the tuple

is moved from sent to oldsent. The action is torcv'(m, u)q if q was in region u or a

neighboring region from the end of time t until the current time (expressed in line 52 as the

condition that regSpan(q, u, t)). The action is drop(q) otherwise (line 65). This prevents

q from receiving the message.

Properties of TObcast

In each execution a of TObcast, there exists a function mapping each torcv'(m, u)q event

to a tocast'(m, f), event such that the following hold:

* Region-based integrity: If a torcv'(m, u)q event -r is mapped to a tocast'(m, f)p

event ir' at some time t, then (f A u = reg(p)) V (-if A u = reg-(p)) when event 7r'

103

occurs and regSpan(q, u, t) is true when 7 occurs.

* Non-duplicative delivery: If a torcv' event -r is mapped to a tocast' event 7r', then

there do not exist any other torcv'(m)q events that map to 7'.

* Exact-time delivery: If a torcv' event 7r is mapped to a tocast' event Yr' where 7r'

occurs at time t, then event - occurs at time t + d.

* Reliable local delivery: This guarantees that a transmission will be received by

nearby nodes: Say a tocast'(m, f)p event r' occurs at time t and a.ltime > t + d.

Let a be reg(p) when -F' occurs if f is true or reg-(p) when 7' occurs otherwise. If

u is not 1, then for each q E P such that regSpan(q, u, t) in all states of a at time

t + d, there exists a torcv'q event - such that 7 is mapped to 7'.

* There exists a total order on tocast' events such that the following hold:

- Sender-order preservation: For any tocast' events 7i and 7', if 7' occurs be-

fore 7' then 7i < 7'.

- Consistent delivery order: For any tocast' events - and 7r where 7(r < 7', and

any torcv' events 7rl and 7i2 where 71 maps to 7' and ir2 maps to r', we have

that 71 occurs before 7r2.

- No gap delivery: Let -F' be a tocast'(m, f), event at time t, u be reg(p) when

71 occurs if f is true or reg -(p) when i' occurs otherwise, and 71r be a tocast'

event such that Tr < 7r. Let 7r2 be some torcv' event such that 72 maps to W'.

If u is not I and regSpan(q, u, t) when 72 occurs, then there exists a torcv'q
event 7rl such that irl maps to 7r1.

It is easy to define the mapping and total ordering referred to in the properties above.

The mapping from torcv' events to tocast' events is the one that matches each torcv' event

that occurs when some tuple (m, u, p, t) is at the head of sent to the tocast' event that

added that tuple to sent. The tocast' events are ordered by the order of their respective

tuples in oldsent sent.

104

Signature:
2 Input GPSupdate(l, t)p, 1 E R, t E IR>0

Input tocast(m)p, m E Msg
4 Output tocast'(m,If), m E Msg,fE Bool

6 State:

to.send+ , to.send-: Msg*, initially A
8 updated: Bool, initially false

o0 Trajectories:
stop when

12 tosend+ # A V tosend- i A

Transitions:
Input GPSupdate(l, t)p
Effect:

tosend- - tosend+

to.send+ -- A
updated -- true

Input tocast(m)p
Effect:

if updated then
tosendend+ append(tosend+, m)

Output tocast' (m, f) p
Precondition:

m = head(to_send- tosend+) A (f = tosend- =
Effect:

if f then
to.send+ - tail(to-send+)

else tosend- - tail(to-send-)

Figure 9-3: TOBDelayp, Message delay service.

9.1.2 TOBDelay

Figure 9-3 describes the TIOA for TOBDelayp, which tags tocast messages from process

p with Booleans indicating if the message was submitted since the last GPSupdate, and

then passes the pair to TObcast to handle. This TIOA is identical, except for the names of

the broadcast actions, to VBDelayp (see Figure 7-4) for the virtual layer.

9.1.3 TOBFilter

Figure 9-4 gives a TIOA, TOBFilter, that acts as an intermediary between TObcast and a

user of the service, filtering torcv messages based on the amount of time since the first

GPSupdate received by the process after the process was started; we only want a process

p to receive a message sent from a region u d time ago if we know that process p was alive

and knew it was in u or a neighboring region of u from d time ago until it receives the

message. This certainty is useful later (in Section 11.3) to simplify our reasoning that all

emulators of a virtual node receive exactly the same sequences of messages.

TOBFilter's state consists of the following variables:

* rtimer : [0, d] E R O U {1}: This variable is a timer. It is initially I, but it is set to

0 at the first GPSupdate the process receives, after which it progresses at the rate of

real-time until it hits d.

105

I

Signature:
Input GPSupdate(l, t)p, I c R, t c R>o
Input torcv'(m, u)p, m E Msg, u E U
Output torcv(m)p, m E Msg

State:
analog rtimer: [0, d] E R>oU {1}, initially I
to rcv: (Msg x U)*, initially A

Trajectories:
if rtimer {I1, d} then

d(rtimer) = 1
else constant rtimer
stop when

to_rcv : A

Transitions:
Input GPSupdate(l, t)p
Effect:

if rtimer = I then
rtimer -- 0

for each (m, u) E to-rcv: region() nbrs+
(u)

to_rcv ~ to_rcv -{(m, u)}

Input torcv'(m, u)p
Effect:

if rtimner = d then
to_rcv -- append(torcv, (m, u))

Output torcv(m),
Precondition:

Bu E U: (m, u) = head(to_rcv)
Effect:

torcv -- tail(to rcv)

Figure 9-4: TOBFilter[d]p, Message filtering service.

* to_rcv : (Msg x U)*: This is the queue of message and region pairs from TObcast

of messages to be torcved. It is initially empty.

Its interface consists of the following three kinds of actions:

* Input GPSupdate(l, t)p, l E R, t E R O, p E P: This input indicates that process p

is at location 1.

* Input torcv'(m, U)q, m E Msg, u E U, q E P: This input is the passing on of a

message from TObcast. The region u indicates the region of the sender at the time it

tocast the message.

* Output torcv(m),, m E Msg, q E P: This output represents the delivery of a mes-

sage m at process q. The message m is the message from some pair received through

torcv'.

When a GPSupdate(l, t) occurs at the process, if the process's rtimer is I (meaning

this is the first GPSupdate since it started), then rtimer is set to 0 (lines 20-21) so that the

process can keep track of how long it has been since it first started receiving updates. For

each pair (m, u) in its to_rcv queue such that u is not equal to or neighboring region(l),

the pair is removed from to_rcv (lines 22-23); this prevents the process from receiving a

message that originated from a region that the process has not been in or neigboring for the

past d time.

106

i

When a torcv'(m, u) input occurs, if the process's first GPSupdate after it was started

was at least d time ago (line 27), then the pair (m, u) is appended to the to_rcv queue (line

28). If to_rcv is not empty (line 15) then the head (m, u) of the queue is removed and the

message m is torcved (lines 30-34).

9.1.4 TOBspec

As mentioned earlier, the full specification, TOBspec, for the totally ordered broadcast

service is equal to the composition of the message ordering service and RW, TOb-

castllRW, composed with the fail transformed filter and delay service for each process,

Fail(TOBFilterpl TOBDelayp) for all p E P, with certain actions hidden. (Remember, the

Fail transform from Chapter 5 takes an automaton and adds a mechanism for modeling

crash failures and restarts of the automaton.) In particular, the hidden actions are the set

HTospec = {tocast'(m, f)p, torcv'(m, u)p I m E Msg, f E Bool, u E U, p E P}. This

means that TOBspec is equal to ActHide(HTospec, TObcastllRWl ItppFail(TOBFilterpl

TOBDelayp)).

Reachable states of TOBspec

Here we characterize the reachable states of TOBspec by providing a list of properties

exactly describing those states. We show that (1) the list of properties is an invariant for

TOBspec and (2) any state satisfying the list of properties is indeed a reachable state of

TOBspec.

Definition 9.1 Define InVTOBspec to be the set of states x such that the following properties

hold:

1. X[XRw E InVRW.

This says that the RW component state is a reachable state of RW.

2. Vp E P : TObcast.updates(p) = {(region(l),t) I (1,t) E RW.updates(p)} A

TObcast.now = RW.now.

This says that real-time and updates should correspond beween RW and TObcast.

107

3. procs : P = 3(m, u, p, t) = head(sent) : t = now - d.

This says that if the bookkeeping variable procs is not full, then there must be some

exactly d old message at the head of sent.

4. V(m, u, p, t) E oldsent : t < now - d, and tuples are in order of t.

This says that tuples in oldsent are at least d old and are ordered by their timestamps.

5. V(m, u, p, t) E sent : t E [now - d, now], and tuples are in order oft.

This says that tuples in sent are at most d old, not sent from a futture time, and are

ordered by their timestamps.

6. Vp E P, Vt E R>o, consider the subsequence (ml, ul,p, t), ' , (mn, un,p, t)

of oldsent sent (the concatenation of oldsent and sent). Then ul , , un E

RWreg- (p, t)*RW. reg (p, t)*.

This says that the regions attached to messages in oldsent sent are consistent with

the GPSupdatesfor the senders.

7. Vp E P - failed :

(a) -iupdatedp = rtimerp = I A to_sendp = tosend+ = to_rcvp = A.

This says that if updatedp does not hold, then the rest of the state of

TOBDelayp and TOBFilterp is set to initial values.

(b) updatedp # B(1, t) E RW.updates(p) : t + rtimerp = now V d = rtimerp <

now - t.

This says that updatedp implies there was a GPSupdate, either rtimerp ago

if rtimerp < d, else at least d time ago.

(c) to_send : A = [rtimer > 0 A 3(1, t) E RW.updates(p) : t = now A

V(m, u, p, now) E sent : a = RW.reg-(p, now)].

This says that a non-empty tosend; indicates that p was first updated before

now, and updated at now. Also, any messages in sent from p at the current

time are from the p's region before its last GPSupdate.

108

(d) Let procedp be append(oldsent, head(sent)) if p procs and oldsent oth-

erwise. Let (ml , ui p , now - d) , ... , (m, u, , pn , now - d) be the subse-

quence of procedp such that Vi E [1, n] : regSpan(p, ui, now - d). Then

]i E [0, n] : [to_rcvp = (mi, ui+), - - - , (mn, un) A (rtimerp < d => i = n)].

This says that if rtimerp < d, then to_rcvp is empty, else torcv is the (mes-

sage, region) restriction of a suffix of the sequence of tuples from d time ago,

tagged with regions u that pass regSpan(p, u, now - d), and processed by

TObcast for p.

We now show that the set of properties describing InvTOBspec is an invariant for TOB-

spec. We do this by showing that every reachable state of TOBspec is in InVTOBspec.

Lemma 9.2 reachableToBspec C InvroBspec.

Proof Consider a state in reachableToBpec. We must show that it satisfies the properties

of a state in InvroBspec. This is the same as showing that the last state of any closed

execution of TOBspec is in InVTOBspec. By Lemma 6.2, property 1 is true throughout

such an execution. This leaves properties 2-7 to check. We proceed by induction on closed

executions of TOBspec.

First, we check that the initial state of TOBspec satisfies the list of properties above.

This is easy to see.

Next we check that if the properties hold in some state x and an action is performed

that leads to state x', then the properties hold in state x'. We break this down by action:

* GPSupdate(l, t)p: The only relevant properties are 2, 6, and 7. Of these, the only

interesting case is for property 7(c).

For property 7(c), if p is non-failed and tosend is non-empty in state x', it must

be that to_send+ was non-empty in state x. By the fact that properties 1, 7(a), and

7(b) held in state x, we know that rtimer > 0 in state x, and hence in state x'. An

update for now is added to RW updates(p) as a result of this action, so we know that

3(1, t) E RW.updates(p) : t = now. Finally, by properties 1 and 6, we know that

in state x, all messages sent by p at the current time in oldsent sent must have been

tagged with a region equal to RW.reg-(p, now).

109

* torcv'(m, u)p: The relevant properties are 3-5 and 7. The only interesting one to

check is property 7(d). Consider the case where p is not failed (the only case we

have to consider). Since x satisfied property 7(d) in state x, by the precondition for

this action to occur, it must have been the case that p was in procs in state x. If

rtimerp < d, then the action results in no addition of a tuple to to_rcvp and we are

done. If not, then the action results in an addition of the tuple (m, u) to the end

of torcvp. Since x'(proced,) = append(x(procedp), head(x(sentp))), the result

follows.

* torcv(m)p, m E Msg: The only relevant property is 7, 7(d) in particular. It is trivial

to check.

* tocast(m)p: The only relevant property is 7, but it is trivial to check.

* tocast'(m, f)p: The only relevant properties are 5-7. The only interesting one to

check is property 6. Let u be RW.reg(p) if f is true, and RWreg-(p, now) other-

wise. If u is I, then nothing happens to sent, and property 6 still is true. Otherwise,

in state x', we know that a tuple (m, u, p, now) is added to sent after any other mes-

sages sent by p and not before any messages sent before time now. We must show

that if the region u is not RW.reg(p), then there is no tuple (m', R W.reg(p), p, now)

in x(sent). If u is not RW.reg(p), then it must be the case that f is false, meaning

that to_send was non-empty in state x. By property 7(c), this implies that all tuples

in sent from p at time now are labelled with a region equal to RWreg-(p, now),

and we are done.

* drop(p): The only relevant properties are 3-5 and 7. They are trivial to check.

Finally we check that for any closed trajectory r starting with a state x where the prop-

erties hold and ending in a state x', the properties hold in state x'. The only continuous

variables are now and rtimerp, and it is easy to check that all properties will hold in state

x' due to trajectory stopping conditions. 0

Now we show the opposite direction, namely that any state in InVTOBspec is a reachable

state of TOBspec. We do this by showing how, given a state x in InvTOBspec, we can

110

construct an execution of TOBspec that ends in x.

Lemma 9.3 InvTOBspec C reachableTroBspec.

Proof. Consider a state x in InVTOBspec. We must show that x is a reachable state of

TOBspec. We do this by constructing an execution a of TOBspec such that ca.lstate = x.

This construction is done in phases. Each phase is constructed by modifying the exe-

cution constructed in the prior phase to produce a new valid execution of TOBspec. After

the first four phases, the constructed execution leads to the fail status, region setting, and

rtimer for each process that is consistent with that of state x. The fifth phase adds tocast

and tocast' events for oldsent sent message tuples. It then adds torcv' and drop events

for each tuple in oldsent. The phase finally adds torcv' events for messages sent more than

d time ago. The sixth phase adds torcv' and drop events for processes not in x(proc). The

seventh phase adds torcv events for messages sent d time ago, but not in a process's to_rcv

queue. The final phase adds tocast events for outgoing queue messages in state x; these

are messages that were tocast but not yet successfully propagated via a tocast'.

1. Construction of a1: By Theorem 6.12 and the fact that x satisfies property 1 of

InvToBspec, it is possible to construct an execution aRw of RW ending in a state of

RW consistent with that of x. al is the execution of TOBspec such that a. fstate's

non-failed TOBspec state is the unique initial one, failedp is false for each p E P,

and a restricted to the actions and variables of RW is equal to aRw restricted in a

similar manner.

Validity of execution: It is easy to observe that a1 is an execution of TOBspec.

Relation to x: Let y be al.lstate. Let X 1 be XRW U

{TObcast.updates, TObcast.now}. It is obvious that since x satisfies proper-

ties 1 and 2 of InvTOBspec, x [X 1 = y [X 1. Also, for each p E P such that

-x(f ailedp), we have -y(f ailedp).

2. Construction of a2: To construct a 2, for each p E P if x(failedp) then we add a failp

event at time x(now) in a,, after any other events at time x(now).

111

Validity of execution: Since fail events are input actions, it is easy to observe that a 2

is an execution of TOBspec.

Relation to x: Let y be a 2.1state. Let X2 be X 1 U {failedp, p E P}. The

relationship from step I still is true. In addition, we now have that for all p E P,

x(failedp) = y (failedp), meaning that x[X 2 = y [X2.

3. Construction of a3: To construct a 3, for each p E P if -7x(failedp) and

ix(updated), then we add a failp immediately followed by a restartp at time

x(now) in a 2, after any other events.

Validity of execution: Since these are input actions, Ca3 is an execution of TOBspec.

Relation to x: Let y be a3.lstate. The relationship from step 2 still is true. Also, for

each p E P that is non-failed in x and has -uapdatedp, we have that y(rtimerp) = 1

since a restart, event resets the rtimerp variable to I. Together with the fact that

x satisfies property 7(a) of InvToBspec and that properties of step 2, and hence

of step 1, still hold for y, we have that for all p E P such that -ix(updatedp),

x(TOBDelayp) = y(TOBDelay) and x(TOBFilterp) = y(TOBFilterp).

4. Construction of a4: To construct a4 , for each non-failed p E P with now 4

rtimerp < d, we add a failp followed immediately by a restartp immediately be-

fore the GPSupdate, at time now - rtimerp in a 3.

Validity of execution: Since these are input actions, a 4 is an execution of TOBspec.

Relation to x: Let y be a 4.1state. The relationship from step 3 still is true. Also, it

is easy to see that the construction forces rtimerp to be equal to x(now) - rtimerp

for those non-failed p for which rtimerp is less than d and not equal to now. Hence,

by the fact that x satsifies property 7(b) of InVTOBspec, in addition to the relationship

in step 3, we have that for all non-failed p E P, x(updatedp) = y(updatedp) and

x(rtinerp) = y(rtirnerp).

5. Construction of a 5: To construct a5, there are three substeps.

112

(a) First, for each p E P, t < x(now), and u E U, consider the sub-

sequence (ml,u,p,t),... x(oldsent) x(sent). We construct an alter-

nating sequence s of events tocast(mi),, tocast'(ml, true)p, tocast(m 2)p,

tocast'(m2, true)p, - . We add events in s in order and immediately after

each other at time t in a 4 such that the following hold:

* The addition of a tuple to sent in the tocast' action inserts the tuple so that

the ordering is the same as in x(oldsent) x(sent).

* If u = x(RW.reg-(p, t)), then events in s are added before any

GPSupdate, or failp event at time t.

* If u x(RW.reg-(p, t)), then events in s are added immediately after any

GPSupdate, event at time t.

(b) Then, for each t < x(now) - d, consider the subsequence (ml, v l ,p1 , t),

(m 2 , v 2 , P2, t), * . (rn, v,, pn, t) of x(oldsent). We construct a sequence s' of

torcv' and drop events to add to a 5, consisting of exactly one torcv'(ml, vl)p

or drop(p) event for each p E P, followed by exactly one torcv'(m 2, v2)p or

drop(p) event for each p E P, etc. We add this sequence s' of events in order

and immediately after each other in a5 at time t + d, after all other events at that

time. We select torcv' or drop based on updates(p).

(c) Finally, for each torcv'(mi, vl)p event that occurs at some time t' < x(now), if

p is non-failed with rtimer = d in our constructed execution at the time of the

torcv' event, then insert a torcv(m)p event immediately after the torcv' event in

the execution.

Validity of execution: To check that ca5 is an execution, we consider each substep.

(a) Since tocast is an input and hence always enabled, we just need to check that

the tocast' events are enabled. What we need to check is that the associated

Booleans paired with the messages in the tocast' actions are "correct" and that

each tocast' occurs while the process is alive. To see that the Boolean value of

true is always appropriate, notice that the construction does not allow there to

113

be any carryover of messages when a GPSupdate occurs. Hence, all messages

that are passed along are from the to send+ queue, meaning the Boolean is

always true.

Next we note that for any t < now, if a failp occurs at time t, only one can

occur and it occurs before a GPSupdate, (by our construction in steps 1-4).

For t = now, a failp occurs at most once and occurs after a GPSupdatep.

We consider cases in this step of our construction. The first case places mes-

sages sent from the first region of the process at time t before any G PSupdatep

or failp event at time t. Since it is ordered before any fail,, the process is alive.

We conclude that the tocast' event is enabled.

The second case places messages sent from the ending region of the process at

time t after any GPSupdate for the region. The associated region on the mes-

sage would obviously be for the ending region. If t < now and a fail, occurs

at time t, it is immediately followed by a restart and then the GPSupdate,

implying the process would be alive for these actions. If t = now, then any

fail event is after the GPSupdate, and since s is squeezed in between the GP-

Supdate and the fail, then the process again must be alive. In either case, we

conclude that the tocast' event is enabled.

(b) Exactly one of a torcv'(m, v)p or drop(p) action is enabled for a message sent

at some time t < x(now) - d if the head of sent is d old and its message has not

yet been delivered or dropped to p. Since this is our precondition for adding one

of the actions in our construction, and because of the way in which we select

which of the actions to perform based on updates(p), we can can conclude that

these actions were enabled for each of their corresponding tuples in x(oldsent).

(c) It is obvious that the torcv actions are enabled.

It is easy to check that no trajectory stopping conditions are violated in a 5 since

messages in tosend and torcv queues are immediately processed, and messages

added to sent are removed exactly d time after their addition.

Relation to x: It is easy to see that this construction preserves the properties of

114

step 4. Let y be a5.lstate. It is clear, by the fact that x satisfies property 6 of

InVTOBspec and our condition in step (a) that tuples be added to sent in a way that

reflects the ordering of tuples in x(oldsent) x(sent), that y(oldsent) y(sent) is equal

to x(oldsent) x(sent). It is also clear by the fact that x satisfies properties 4 and 5

of InvTOBsp,, and by step (b) that x(oldsent) = y(oldsent) and x(sent) = y(sent).

By step (c) we can see that in both state x and state y, for all non-failed p E P,

to_rcvp can only contain pairs corresponding to x(oldsent) tuples with timestamps

equal to now - d.

6. Construction of a6: To construct a 6, let (m, u, q, t) be head(x(sent)). For each

p x(procs), we add a torcv'(m, u)p or drop(p) action based on the regStart test

at time x(now) in a 5, after all other events.

Validity of execution: To check that this is an execution, note that since x E

InVTOBspec, property 3 of InvTOBspec means that if x(procs) is not equal to P, then

it must be the case that t = now - d, meaning one of either torcv' or drop is enabled

for each p E P.

Relation to x: It is easy to see that the construction preserves the properties of step

5. Let y be a 6.state. It is clear that x(TObcast) = y(TObcast). Since x satisfies

property 7(d) of InvTOBspec, it should also be clear that for every non-failed p E P,

x(torcvp) is a suffix of y(torcvp).

7. Construction of a 7: For each non-failed p E P, let i be 0a6.lstate(to_rcvp) -

Ix(to_rcv)|. Let (m, ul),... (m, u,) be c 6.1lstate(to_rcvp), and let

(m, ui+l,), " ", (mn, un) be x(to_rcv,). We construct a sequence s of ac-

tions torcv(ml), --- , torcv(m)p. We then add this sequence s of actions in order

and immediately after each other in a 7 at time x(now), after all other events.

Validity of execution: Note that since x(to_rcvp) is a suffix of a 6.lstate(to_rcvp),

there must be some prefix of pairs in a6.1state(to_rcvp). Since removal of these pairs

via tocast is always enabled at a non-failed process, this is a valid execution.

Relation to x: Let y be a 7.lstate. It is easy to see the construction preserves the

115

properties of step 6. It is also that for every non-failed p E P, x(TOBFilterp) =

y(TOBFilterp).

8. Construction of a: For each non-failed p E P, we modify a 7 by adding tocast

events at time x(now):

* Let s- be a sequence of events tocast(ml),, tocast(m 2)p,..., where

ml, m2,, is x(tosendp-). The events in s- are added in order and im-

mediately after each other after any other tocastp events and before any

GPSupdatep event at time x(now).

* Let s+ be a sequence of events tocast(m+)p, tocast(m+),,..., where

m + , m+2, " is x(to_send+). The events in s+ are added in order and immedi-

ately after each other immediately after any other events at time x(now).

Validity of execution: Since the added events are inputs, a is an execution.

Relation to x: The properties of step 7 still hold. Let y be a.lstate. It is easy to see

that x(to_sendp) = y(tosend-) and x(to_send+) = y(to_send) if each tocast

occurs while the process is alive. We check that now.

By our construction, the only way for a fail, event to occur at time x(now) for a

non-failed process with non-I region is in step 4- it would be followed immediately

by a restartp and GPSupdatep.

We consider the two cases of s- and s+ in this step of our construction. The first

case places s- before any GPSupdate, event at time x(now). By our observation

in the paragraph above and the fact that x satisfies property 7(b) and 7(c), the process

would have to be alive.

The second case places s+ after any GPSupdate, for the process. Again, by our

observation about step 4, the process would be alive.

We can conclude that x = a.lstate. U

The preceding two lemmas directly imply the following characterization theorem:

Theorem 9.4 InVTOBspec = reachableTroBspec.

116

1 Signature: (Mtup = Msg xP x R>o xBool x Nx U)
Input GPSupdate(l, t),, 1 E R, t E IR >

3 Input tocast(m)p, m E Msg
Input brcv(mtup)p, mtup E Mtup

5 Output torcv(m)p, m E Msg
Output bcast(mtup)p, mtup E Mtup

7

State:
9 analog clock: R- oU {I}, initially I

updates: 2 UxR
0
o, initially 0

11 btime: R>0 , initially 0
bseq: N, initially 0

13 outgoing + , outgoing-: Msg*, initially A
incoming: 2 Mtu

p ,
initially 0

15

Derived variables:
17 reg-: UU {1}

if 3(u, t) E updates: t < clock then
19 return min({u E U 13t' < clock: (u, t') E updates

A V(u*, t*) C updates: (t* < t V t* = clock)})
21 else return I

23 reg: UU {(I)
if Bu E U: (u, clock) E updates then

25 return min({u E U J(u, clock) C updates})
else return reg-

27

regSpan(r: U, t: R>O): Bool
29 return 3(u, t') E updates: [t' < t A

V(v, t") C updates: (t" > t' = r E nbrs+ (v))]
31

Trajectories:
33 d(clock) = 1

stop when
35 Any precondition is satisfied.

37 Transitions:
Input tocast(m)p

39 Effect:

outgoing + , append(outgoing , m)

Input GPSupdate(l, t)p 42
Effect:

if (clock# tV updates = OV 3(u, t') updates:[t' > t]V btime> t 44
V B(m, s, t',f, b, r) E incoming: t' [t -d, t)) then

clock, btime 4- t 46
bseq +- 0
updates, incoming - 0 48

outgoing+ - A
updates +- updates U {(region(l), t)} 50
outgoing- outgoing+

outgoing+ - A 52
for each (m, s, t',f, b, r) E incoming: - regSpan(r, t')

incoming +- incoming -{(m, s, t',f, b, r)} 54

Input brcv((m, s, t,f, b, r))p 56
Effect:

if (t E [clock -dphys, clock) A regSpan(r, t)) then 58

incoming +- incoming U {(m, s, t, f, b, r)}
60

Output bcast((m, p, t,f, b, r))p
Precondition: 62

m = head(outgoing- outgoing+) A 4[V3uE U:{(u, t)}= updates
r _ IA (outgoing-= A r= reg)A (outgoing-# A =r= reg- 4
t= clock IA [(btime = t A b = 1) V (btime = t Ab = bseq+l)]

Effect: 66
if outgoing- : A then

outgoing - tail(outgoing-) 68
else outgoing+ 4 tail(outgoing+)
btime ~ clock 70
bseq - b

72

Output torcv (m) p
Local: 74

s: P, t: R> 0 ,f:. Bool, b: N, r: U
Precondition: 76

updates = OA (m, s, t,f, b, r) C incoming At < clock -d
V(m', s', t',f, b', r') E incoming: (t, s,f, b) < (t', s',f, b') 78

Effect:
incoming +- incoming -{(m, s, t, f, b, r)} so

Figure 9-5: TOBimplerp, providing ordered broadcast.

9.2 TOBimpl: Implementation

Here we present a self-stabilizing implemention of TOBspec using the physical layer. For

each physical node id p E P, the corresponding physical node has a TIOA called TOBim-

plerp, which we describe in this section. The implementation of the entire totally ordered

broadcast service, TOBimpl, is then the composition of Fail(TOBimplerp) for all the p E P

and PbcastJ RW, with the bcast and brcv actions of Pbcast hidden. Recall that the Fail-

transform of an automaton takes an automaton and adds a mechanism for allowing crash

failures and restarts.

117

i

Our technique is loosely based on one originally suggested by Lamport [61]. In that

work, Lamport presented an ordering technique to ensure total ordering of messages. We

extend that technique here to accommodate both multiple transmissions of the same mes-

sage by the same process at the same time (allowing us to use this service to help emulate

the virtual layer broadcast service where such multiple transmissions are allowed) and pro-

cess failures. Each tocast message is tagged by the sender with the time of transmission,

the id and region of the sender, and a Boolean and sequence number, and then sent using

Pbcast. Received messages from nearby regions are stored until exactly d time has passed

since the message was sent. They are then torcved in lexicographic order of sender id,

Boolean flag, and sequence number, in that order. In the lexicographic order, a false value

is ordered before a true value, according to the convention that false is equal to 0 and true

is equal to 1.

The sequence number allows us to order messages sent by a process at the same time.

The Boolean value is an indication of whether or not the sender has received its first GP-

Supdate since starting at the time of the broadcast. This is important to ensure that, when

we allow failures and restarts of the physical nodes, if a process broadcasts a message, fails,

restarts, and broadcasts a new message, all at some time t, the message sent after the fail

and restart is ordered after the one sent before the fail and restart: Any message sent before

the failure would be tagged with a false Boolean flag. After a restart, a process's tocast is

only sent out if a GPSupdate occurs before the tocast. Hence, any message sent after a

process restarts would have a true Boolean flag, ordering it after the pre-failure messages.

Now we describe TOBimpler in more detail.

The state variables of TOBimplerp are as follows:

* clock : R>o U {1}: This is the local clock time. It is initially I, but after the first

GPSupdate, after initialization, it should be equal to the current real system time.

* updates : 2UxR>o: This is the set of region and time pairs that correspond with the

GPSupdates received at the process. It is initially 0.

* btime : IRo: This is a time at least as large as the broadcast timestamp of the last

message sent by the process but no larger than the current time. It is initially 0.

118

* bseq : N: This is a message sequence number, initially 0. It is used to help order

messages sent at the same time by the process.

* outgoing+ : Msg*: This is a queue of tocast messages yet to be broadcast via

Pbcast, initially empty.

* outgoing- : Msg*: This is also a queue of tocast messages yet to be broadcast via

Pbcast, initially empty. It contains messages that were submitted before the latest

GPSupdate at the process.

* incoming E 2MsgPxPxR>OxBoolxNx": This is an initially empty set of messages, each

tagged by sender, broadcast time, a Boolean, a sequence number, and a broadcast

region. It is the set of messages received by the process through Pbcast, but not yet

processed in a torcv event.

We also define two derived variables, both calculated in manner similar to that of their

counterparts in Section 9.1.1:

* reg : U U {1} maps to the region indicated by the last GPSupdatep. If no such

region exists, the function returns _1.

* reg- : U U {1} maps to the region indicated by the last GPSupdatep before the

current time. If no such region exists, the function returns I.

* regSpan : (U x R >o) -+ Bool: This function takes a region r and a time t, and

returns a Boolean indicating whether or not the process has entries in updates con-

sistent with the process having been in or neighboring region r from some time before

or equal to time t and through the present time.

When a node receives a GPSupdate (line 42) when its updates is 0, indicating that

the GPSupdate is the first since it started, or when there is some local inconsistency in

state (lines 44-45), then it initializes its non-clock and non-btime variables (lines 47-49),

and sets clock and btime to the time indicated by GPSupdate (line 46). Otherwise, and

after the above initialization, the current region and time is added to updates (line 50),

outgoing- is replaced with outgoing+ (line 51), outgoing+ is cleared (line 52), and each

119

entry in incoming that is tagged with a region and time that does not pass the regSpan test

is removed from incoming (lines 53-54).

When a node receives a tocast(m)p input (line 38), it appends m to its local outgoing+

sequence (line 40). Whenever outgoing-outgoing+ is nonempty for a process with a non-

I clock and non-I r = reg if outgoing- is empty or r = reg- otherwise, a bcastp action

occurs (lines 35 and 63-65). In this action, the m at the head of outgoing-outgoing+ is

expanded into a larger message tuple (m, p, clock, f, b, r), which includes the process id,

current time, values f and b to help order its messages sent at a particular time, and the

region r of the message. The tuple is broadcast using Pbcast. f is true exactly when the

process's updates = { (r, clock) } (line 63), indicating whether the process had received its

first GPSupdate since initialization at this time. b is a message sequence number, either

equal to bseq+ 1 if btime = clock (incrementing the sequence number if btime was already

updated to the current time, either through a message having been sent at the current time

or a GPSupdate having updated the process's state), or 1 (resetting the sequence number)

if this is the first message sent at this time since btime was last updated (line 65). As a

result of the action, if outgoing- is nonempty, the head of outgoing- is removed, else the

head of outgoing+ is removed (lines 67-69). Then the btime and bseq numbers are updated

to match the timestamp and number b of the message tuple that was sent (lines 70-71).

When a node receives such a message tuple (line 56) from its own or a neighboring

region r such that the message was sent at a time t that is not too soon or too late by the

broadcast service requirements and such that regSpan(r, t) is true (line 58), it adds the

the message tuple to incoming (line 59). Message tuples in incoming with timestamps

that are exactly d old are removed from incoming and torcved in order of sender id and

sequence number (lines 35 and 73-80).

As mentioned in the beginning of the section, the complete implementation of the to-

tally ordered broadcast service is the composition of Pbcast I RW and Fail(TOBimplerp)

for all p E P. Hence, in addition to the variables and actions described above, for each

p E P, there is a failedp Boolean flag indicating whether or not the process is failed, as

well as a failp and restartp input action for each p E P. Since brcv and bcast actions do

not exist in the TOBspec, we also hide those actions in the implementation.

120

9.3 Correctness of the implementation

In this section we describe aspects of the correctness of our implementation of the totally

ordered broadcast service. Define TOBimpler to be the composition of Fail(TOBimplerp)

for all p E P, and let HTOimpl be {bcast(m),, brcv(m), m E (Msg x P x

R -° x Bool x N x U),p E P}. The implementation of the service is then TOBimpl

= ActHide(HTOimpl, Pbcast| RWI TOBimpler), the composition of PbcastI RW and

TOBimpler with the bcast and brcv actions for implementation messages hidden.

To show correctness, we first describe a legal set LTOBimpl of TOBimpl

(Section 9.3.1). Then, we show that Start(TOBimpl, LTOBimpl) implements

Start(TOBspec, InVTOBspec). We do this in the following way: using the legal set defini-

tion (Definition 3.12) and a simulation relation (Definition 2.20), we show in Section 9.3.2

that our implementation, TOBimpl, implements TOBspec, meaning that traces of the im-

plementation are contained in traces of the specification. The simulation relation is defined

only for states of TOBimpl in the legal set LTOBimpl; we then show a separate result that

each of these states is related to some reachable state of TOBspec (Lemma 9.18).

Next, we argue in Section 9.3.3 that TOBimpler is self-stabilizing to LTOBimpl relative

to R(RW Pbcast), which allows us to finally conclude in Theorem 9.25 that our imple-

mentation eventually reaches a state that is related to a reachable state of TOBspec.

We use this approach in future chapters to describe correctness and stabilization of an

implementation of a system. To summarize the strategy:

1. Define a legal set L, for the implementation I, and show that the set is a legal set.

2. Define a legal set Ls for the specification S, and show that the set is a legal set.

3. Show that Start(I, LI) < Start(S, Ls), meaning that traces of the implementation

started in legal set L, are traces of the specification started in legal set Ls. This can

be shown in the following way:

(a) Define a simulation relation between states of the implementation in L, and

states of the specification. Show the relation is a simulation relation.

121

(b) Show that for each state in LI, there exists a state in Ls of states of the specifi-

cation such that the simulation relation holds between the states. (In the case of

totally ordered broadcast, we define the invariant set of the specification as the

reachable states, which happens to be a set of invariant states. In general, this

is not necessary. It is done simply for convenience here, since it is obvious that

the trace of the service starting from a reachable state is a suffix of some trace

of the specification that satisfies the properties described in Section 9.1.1.)

4. Show that the implementation self-stabilizes to LI.

5. Conclude that the set of traces of the implementation stabilizes to the set of traces of

execution fragments of the specification starting in Ls. (This follows immediately

from points 3 and 4.)

For the rest of the section, we refer to a state variable v of Fail(TOBimplp) as vp. We

also refer to a state variable v of RWII Pbcast simply as v.

9.3.1 Legal sets

Here we describe a legal set of TOBimpl by describing four legal sets, each a subset of the

prior one. Recall from Lemma 3.13 that a legal set of states for a TIOA is one where each

closed execution fragment starting in a state in the set ends in a state in the set. We break

the definition of the legal set up into four legal sets in order to simplify the proof reasoning

and more easily prove stabilization later, in Section 9.3.3.

Legal state set LTOBimpi:

The first set of legal states describes some properties that become true at an alive process

at the time of the first GPSupdate for the process.

Definition 9.5 LToBimpl is the set of states x of TOBimpl where all of the following hold:

I. x[XRWjPbcast E InVRW|IPbcast.

This says that the state restricted to the variables of RW I Pbcast are reachable states

of RWIIPbcast (Theorem 6.12 showed that InvRW|IPbcast = reachableRWljpbcast).

122

2. For each p E P : (-if ailedp A updatesp = 0) :

(a) clockp = now A btime, < clock,.

This says that a non-failed process with a non-0 updates must have a local

clock that matches RW Pbcast's now, and a btime variable that is not set in

the future.

(b) V(m, s, t, f, b, r) E incomingp : [regSpanp(r, t) A t E [clockp - d, clockp)].

This says that the message tuples in the incoming set of a non-failed process

with a non-0 updates are labelled with timestamps that are not set in the future

or before d before the current time. It also says that each such tuple was sent

from a region at a time such that process p has been in range for the transmis-

sion period.

(c) 3(1, t) E updates(p) : [(region(1), t) E updates,

A V(a, t') E updates(p) U updatesp - {(l, t), (region(l), t)} : t' < t].

This says that the latest update for p matches between RW and TOBimpler,

and that the latest update is unique.

(d) outgoing- = A -

[3(v, t) E updatesp : t < clockp A]u E U : (u, clockp) E updatesp].

This says that the outgoing- queue of a non-failed process with a nonempty

updates is nonempty only if there is some recorded update that occurred before

the current time and an update that occurred at the current time.

Lemma 9.6 LTOBimpI is a legal set for TOBimpl.

Proof: Let x be any state in LwOBimp . By Definition 3.12 of a legal set, we must verify

two things for state x:

* For each state x' of TOBimpl and action a of TOBimpl such that (x, a, x') is in the

set of discrete transitions of TOBimpl, state x' is in LTOBimpl.

* For each state x' and closed trajectory 7- of TOBimpl such that T.f state = x and

7.Lstate = x', state x' is in LTOBimp'

123

By Theorem 6.4, we know that if x satisfies the first property of L p, then any

discrete transition of TOBimpl will lead to a state x' that still satisfies the first property,

and any closed trajectory starting with state x will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the state x' satisfies all parts of the second property of LTOBimp1.

For the first case of the legal set definition, we consider each action:

* drop((m, s, t, f, b, u), t, q, p), tocast(m)p: These don't impact property 2.

* fail,: This action trivially preserves property 2.

* restartp: Since this action sets updatesp to 0 if it makes any state changes at all,

property 2 would still trivially hold.

* torcv(m)p: This could impact property 2(b). However, since the only impact of the

action is the removal of a tuple in incomingp, then if property 2(b) holds in state x,

it continues to hold in state x'.

* GPSupdate(l, t)p: Let v be region(l). If the conditional on lines 44-45 holds, then

this action first sets clockp and btimep to now, bseqp to 0, updates, and incomingp

to 0, and outgoing+ to A. Then, regardless of whether the conditional holds, the

action adds (1, t) to updates(p) and (v, t) to updatesp, overwrites outgoing; with

outgoingj, clears outgoing+ , and removes any element of incomingp whose region

and time does not pass regSpanp. It is easy to see that the resulting state x' satisfies

properties 2(a)-2(c).

For property 2(d), it is obvious that the only thing to verify is that if outgoing; is

not empty, then there exists some pre-clockp timestamped pair in updatesp. We con-

sider the cases for whether the if conditional on lines 44-45 holds. If it held, then

outgoing; is empty in state x', meaning property 2(d) holds. If the conditional did

not hold, then by the fact that updatesp must have contained a pre-clockp times-

tamped pair in x, property 2(d) still holds.

* brcv((m, s, t, f, b, r))p: The only property this might impact is 2(b). However, the

124

conditional on line 58 ensures that if a new tuple is added to incomingp, then it

satisfies the property.

* bcast((m, q, t, f, b, r))p: Properties 2(b) - 2(d) are obviously not impacted. Since

this action sets btimep to clock,, property 2(a) still holds.

For the second case of the legal set definition, we now consider any closed trajectory 7

such that x = T.fstate. Let x' be T.lstate. We must show that x' E LTOBimpl. It is easy to

see that because the only evolving variables referenced in the properties are clockp and now

which evolve at the same rate, property 2(a) holds. With the trajectory stopping conditions

of TOBimpler on line 35, if an entry in some incomingp has a timestamp from more than

d time ago, then it is torcved. This means that property 2(b) remains true throughout a

trajectory. Property 2(c) is not impacted in a trajectory. Property 2(d) holds throughout a

trajectory because of the stopping conditions on line 35, enforcing that no time passes until

any entries in outgoing7 and outgoing+ are cleared. a

Legal state set LTOBimpl

The next legal set describes a subset of states of LTOBimpl that satisfy some additional

properties with respect to the pbcastq, outgoing, updates, and btime variables.

Definition 9.7 L'OBimp, is the set of states x of TOBimpl where all of the following hold:

1. xE LTOBimpl.

2. Vp E P, V ((m, s, t, f, b, r), t', P') in pbcastq(p) : t' = now:

(a) s = p At = t' A (f > 31 E R : (1, t) E updates(p) A region(l) = r)

Ar E {reg-(p, t), reg+(p, t)}.

This says that any message tuple in pbcastq(p) for some p E P has a source

tag equal to the process id, a timestamp equal to the time that the message was

actually sent, and a region tag consistent with the updates at that time. It also

says that if a message tuple has a true Boolean tag then its region is the ending

region of the process at transmission time.

125

(b) V((m', s', t", f', b', r'),t', P") E pbcastq(p) - {((m, s, t, f, b, r), t', P')} :

(f # f' V b b') A [((f, b) < (f', b') A r r') #= r = reg-(p, t)].

This says that any two message tuple records for messages that were sent by

the same process at the same time and with the same Boolean tag and sequence

number are actually the same tuple. It also says that if two message tuples

with the same correct timestamp have different region tags, then the one whose

Boolean tag paired with message sequence number is lower than the other's

has a region tag equal to the sender's region at the beginning of time t. Re-

member that the Boolean value is an indication of whether or not the sender

has received its first GPSupdate since starting at the time the message was

originally submitted; any message with a false Boolean is one that was origi-

nally submitted before any GPSupdate for the period occurred at the process,

while any message with a true Boolean is one that was submitted after Hence,

the region associated with a false Boolean is the region for the process at the

beginning of time t, while a region associated with a true Boolean is the region

for the process after a G PSupdate occurred at the process at time t.

(c) (-f ailed, A r = regp # reg;) # outgoing; = A.

This says that if some message was sent by a non-failed process with a non-I

region at the current time and with a region tag equal to the current local region

of the process which differs from the prior region, then outgoing- is empty.

(d) Let f, be a Boolean such that fp, 3u E U : {(u, clock) } = updatesp.

Let seqnumrr be a natural such that seqnump = 0 if btimep clockp and

seqnump = bseqp otherwise.

Then (-f ailedl A updatesp # 0) i= (clockp, fp, seqnump) > (t, f, b).

This says that any message ordering tags that might be added to an outgoing

message will be larger than any previously broadcast tags at this time.

Lemma 9.8 LToBimpl is a legal set for TOBimpl.

Proof: Let x be any state in LTOBimp. By Definition 3.12 of a legal set, we must verify

two things for state x:

126

* For each state x' of TOBimpl and action a of TOBimpl such that (x, a, x') is in the

set of discrete transitions of TOBimpl, state x' is in LTOBimpl.

* For each state x' and closed trajectory 7 of TOBimpl such that T.fstate = x and

7.lstate = x', state x' is in LTOBimpl.

By Lemma 9.6, we know that if x satisfies the first property of L'OBinpl, then any

discrete transition of TOBimpl will lead to a state x' that still satisfies the first property,

and any closed trajectory starting with state x will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the state x' satisfies all parts of the second property of LTOBimpl.

For the first case of the legal set definition, we consider each action:

* drop((m, s, t, f, b, u), t, q, p), tocast(m)p, torcv(m),, brcv((m, s, t, f, b, r)):

These don't impact property 2.

* failp: This action doesn't affect properties 2(a) and 2(b). It trivially preserves proper-

ties 2(c) and 2(d).

* restartp: This action doesn't affect properties 2(a) and 2(b). Since this action sets

updatesp to 0 if it makes any state changes at all, properties 2(c) and 2(d) still trivially

hold.

* GPSupdate(l, t)p: Let v be region(l). It is trivial to see that properties 2(a) and

2(b) are still satisfied in state x'.

The only way for this action to change any state relevant to the other parts of property

2 is if -if ailed. If the conditional on lines 44-45 holds, then the resulting state triv-

ially satisfies property 2(c). For property 2(d), we know that (clockp, fp, seqnump)

is equal to (clockp, true, 0) in state x'. This is at least as great as the correspond-

ing tags of pbcastq(p) messages sent at time clockp if we can show that any such

pbcastq(p) message tags have false in their second field. This follows from the fact

that state x' satisfies property 3 of InvRW (see Definition 6.1), meaning that no more

than one update occurred at the current time, and because property 2(a) held in state

x, implying that no messages with true flags were sent at the current time by p.

127

If the conditional on lines 44-45 does not hold, then the resulting state is one for

which property 2(d) obviously still holds. More interesting to show is property 2(c).

By property 3 of InvRW, we know that no other update could have occurred at this

time. Hence, since property 2(a) held in state x, all messages in pbcastq(p) must be

tagged with reg-(p, now), which is either equal to v, meaning we are done, or equal

to some other region, also meaning we are done.

* bcast((m, q, t, f, b, r)),: Examination of the attached tags in lines 63-65 show us

that property 2(a) still holds. If outgoing; was empty in state x, then this action sets

outgoing,+ to its tail and broadcasts a message with the current region. Property 2(c)

still holds. If outgoing- was not empty in state x, then this action sets outgoing;

to its tail and broadcasts a message with a region corresponding to the node's prior

update. Since property 2(c) held in state x, it must still hold in state x'. Since in x,

(clockp, fp, seqnump) is at least as large as any corresponding tags in pbcastq(p) for

this time, then this new message's tuple is strictly larger by the precondition for the

action, and btimep and bseq, are updated by the action to match this message's t and

b, preserving property 2(d). Since the tags are strictly larger, examination of the tags

attached to the message imply that property 2(b) still holds.

For the second case of the legal state definition, we consider any closed trajectory T such

that = rT.f state. Let x' be 7.lstate. We must show that x' E LTOBimp . It is easy to see

that because the only evolving variables referenced in property 2 are clockp and now, with

the trajectory stopping conditions of TOBimpler in line 35, messages in outgoing queues

will be removed through a bcast, preserving properties 2(a), 2(b), and 2(c). Property 2(d) is

easily seen to remain true throughout a trajectory since the only relevant variable is clock,

and any messages in transit that previously satisfied 2(d) have tags that continue to satisfy

2(d) when time passes. 0

Legal state set L OBimpl

The next legal set is a subset of states of L'OBimp, that satisfy some additional properties

with respect to the set of messages in transit and the history stored in updates.

128

Definition 9.9 LTOBimpl is the set of states x of TOBimpl where all of the following hold:

1. x E L oBimpl

2. Vt' > now - d, Vp E P, V ((m, s, t, f, b, r), t', P') in pbcastq(p):

(a) s = p A t = t'Ar E {reg-(p,t),reg+(p,t)}

A (f 31 E R : (1, t) E updates(p) A region(l) = r).

This is property 2(a) of LTOBimpl, extended to all t' > now - d.

(b) V((m', s', t", f ', b', r'), t', P") pbcastq(p) - {((m, s, t, f, b, r), t', P') }

(f = f' V b # b') A [((f, b) < (f', b') Ar = r') = r = reg-(p, t)].

This is property 2(b) of LTOBimpl , extended to all t' > now - d.

(c) (r E {reg-(p, t), reg+(p, t)} A t = t') > Vq E P- P' :

[((m, s, t, f, b, r) 0 incomingq A --f ailedq A 3(1', t') E updates(p) : [t' < t A

V(l, t") E updates(p) : t" > t' :> region(l) E nbrs(r)] A regSpan,(r, t)) =

(t < now - d A V(m', s', t, f', b', r') E incomingq : (s', f', b') > (s, f, b))].

In other words, consider any message tuple in a process's pbcastq such that

the tuple's region tag r is a region of the process at broadcast time, and the

attached timestamp t is the time when the message was broadcast. Now con-

sider any non-failed process q where q has been in range of the broadcast and

has local updates that indicate this (meaning q should receive the message).

This property says that RW I Pbcast has yet to deliver the message to q or if it

has delivered the message, the message tuple is either in incomingq (meaning

q received the message from Pbcast and has the tuple stored locally to pro-

cess) or the timestamp is at least d old and all tuples in incomingq have larger

timestamp/ source/ Boolean flag/ sequence number tags than the message tuple

(meaning that q received the message from Pbcast and processed the tuple lo-

cally and in order with respect to the other message tuples it was supposed to

receive).

3. For each p E P: (f ailedp A updatesp 0):

3(u, t) E updatesp: [(t < now - dVt = min({t' 3v E U : (v, t') E updates,})) A

129

Vt' > t {u (u, t') E updates} = {region(l) 1 (1, t') E updates(p)}].

This says that for any non-failed process p, there is some time t such that updatesp

corresponds with updates(p) for all entries with timestamps starting at t, and such

that t is either the minimum timestamp in updates or is at least d old.

Lemma 9.10 L'oBimpl is a legal set for TOBimpl.

Proof: Let x be any state in LTOBimpl. By Definition 3.12 of a legal set, we must verify

two things for state x:

* For each state x' of TOBimpl and action a of TOBimpl such that (x, a, x') is in the

set of discrete transitions of TOBimpl, state x' is in L3TOBimp.

* For each state x' and closed trajectory 7 of TOBimpl such that .fstate = x and

T7.state = x', state x' is in L OBimpl.

By Lemma 9.8, we know that if x satisfies the first property of L onp l , then any

discrete transition of TOBimpl will lead to a state x' that still satisfies the first property,

and any closed trajectory starting with state x will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the state x' satisfies all parts of the second and third property of L OBimpl. By

simple extension of the reasoning in Lemma 9.8, we can also quickly see that properties

2(a) and 2(b) hold. It is also simple to see that property 3 can only be affected by the

GPSupdate action. Hence, for each non-GPSupdate action we consider only property

2(c), and for GPSupdate we consider property 2(c) and 3.

For the first case of the legal set definition, we consider each action:

* drop((m, s, t, f, b, u), t, q, p): This action is only enabled in state x if there is some

set of ids P' such that P' contains q, ((m, s, t, f, b, u), t, P') E pbcastq(p), t # now,

and the distance between the last reported location of p at time t and the last reported

location of q is greater than rreal. The action results in the removal of q from P'.

However, by the precondition, we know that q is only removed from P' if the distance

above is more than treal. By Lemma 6.13, reg(q) must not be in nbrs+(u), so the

property remains true.

130

* fail,, restartp, bcast((m, q, t, f, b, r))p: These actions trivially preserve properties 2

and 3.

* tocast(m)p: This doesn't impact properties 2 and 3.

* torcv(m)p: For property 2(c), note that the precondition for the action guarantees that

in state x there must be some (m, s, t, f, b, r) E incomingp such that t < clockp - d

and (t, s, f, b) is ordered before all other similar tuple components in incomingp.

Since property 2(b) of L'oBipl holds in state x, we know that t > clockp - d.

This implies that t = clockp - d. Hence, the two conditions on the right of the last

implication in property 2(c) both hold.

* GPSupdate(l, t)p: Let v be region(l). For this action, we must consider both prop-

erty 2(c) and 3.

For 2(c), consider what happens if p is not failed. If the conditional on lines 44-

45 holds, then state x' will have updatesp = {(v, t)}. This means that regSpanp

will only be true for messages with t = now. By property 3 in the description of

InvPbcast, the attached P' in the pbcastq record contains q, satisfying property 2(c).

If the conditional on lines 44-45 does not hold, then we just need to be sure that

no message tuples that previously should not be in incomingq suddenly should be.

However it is obvious that the addition of a pair to updatesp does not suddenly allow

prior disallowed tuples. Property 2(c) is still satisfied.

For property 3, we are only interested in the case where p is not failed in state x.

If the conditional on lines 44-45 holds, then it is obvious that property 3 holds in

state x', since updatesp = { (v, t) } in state x'. If the conditional does not hold, then

we know that x(updatesp) # 0 and updatesp in x' equals updatesp in x, with an

additional (v, t) element. Since state x satisfied property 3 and updatesp was not

empty, there was some pair in updatesp such that the property held relative to the

pair. If we select the same pair, it is obvious that the property still holds in state x'.

* brcv((m, s, t, f, b, r))p: Property 2(c) could only be a problem if this action does not

add this tuple to incoming, or if it adds the tuple but t = clockp - d and (s, f, b) is

131

smaller than that of other entries with the same timestamp. The second can't happen

by property 2 of InVPbcast and the if condition on line 58. We examine the first. By

the if condition on line 58 in the action, if the tuple is not added it must mean that

either -regSpan(r, t) or t > clockp or t < clock, - dphys. By properties 1-3 of

InvPbca,t and since t is equal to the actual time the tuple is broadcast, then t < clockp

and t > clockp - dphys. Hence, for the tuple not to be added, -iregStart(r, t). In

either case, one of the conditions on the left of the last implication in property 2(c)

fails, so property 2(c) still holds.

For the second case of the legal state definition, we consider any closed trajectory T such

that x = T.fstate. Let x' be r.lstate. We must show that x' E L'OBimp . It is easy to

see that because the only evolving variables referenced in property 2 are clock, and now,

with the trajectory stopping conditions of both RW IPbcast, forcing updates at nodes and

delivery of messages or drops of those messages within dphy. time, and TOBimpler on line

35, forcing processing of messages from incoming whenever exactly d time has passed

since broadcast, properties 2 and 3 will remain true throughout a trajectory. 0

Legal state set LTOBimpl:

The final legal set is a subset of LoBimp1 that satisfies an additional property about the

entries of any incoming set with respect to the state of RW| Pbcast.

Definition 9.11 LToBimpl is the set of states x of TOBimpl where all of the following

hold.

1. x E L OBimpl

2. For each p E P (failedp A updatesp, 0) > V(m, s, t, f, b, r) E incomingp

P' C P- {p} ((m, s, t, f, b, r), t, P') pbcastq(s).

This says that any tuple in a process's incoming must be a tuple that was actually

handled for the process by RW Pbcast and sent by the process whose id is the

source tag in the message at the time indicated by the timestamp of the message.

Lemma 9.12 LTOipl is a legal set for TOBimpl.

132

Proof: Let x be any state in LTOBimpl. By Definition 3.12 of a legal set, we must verify

two things for state x:

* For each state x' of TOBimpl and action a of TOBimpl such that (x, a, x') is in the

set of discrete transitions of TOBimpl, state x' is in LTOBimpl.

* For each state x' and closed trajectory 7 of TOBimpl such that Tr.fstate = x and

T.lstate = x', state x' is in LTOBimpl.

By Lemma 9.10, we know that if x satisfies the first property of LTOBimpl, then any

discrete transition of TOBimpl will lead to a state x' that still satisfies the first property,

and any closed trajectory starting with state x will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the state x' satisfies the second property of LTOBimpl.

For the first case of the legal set definition, we could consider each action, but the only

non-trivial one to examine is brcv:

* brcv((m, s, t, f, b, r))p: For this action to occur, by the precondition for this output

in RWI Pbcast and property 2(a) of L oBimpt, an appropriately tagged version of this

tuple must have been in pbcastq(s). Hence, if the tuple is added to incomingp in this

action, then by the above observation, property 2 will hold.

For the second case of the legal state definition, we consider any closed trajectory 7

such that x = TJ.fstate. It is easy to see that because the only evolving variables referenced

in property 2 are clockp and now, property 2 will remain true throughout a trajectory. m

A trivial observation is that an initial state of TOBimpl is in LTOBimpl:

Lemma 9.13 An initial state of TOBimpl is in LTOBimpl.

9.3.2 Simulation relation

Here we show that Start(TOBimpl, LTOBimpl) implements

Start(TOBspec, reachableToBspec) (Lemma 9.19). We do this by first describing a

simulation relation RTOB from our implementation of the totally ordered broadcast

133

service, TOBimpl, to the TIOA specification of the totally ordered broadcast service,

TOBspec. We prove that RTOB is a simulation relation in Lemma 9.15, and then conclude

that TOBimpl implements TOBspec (Theorem 9.16). In other words, we conclude that

the traces of our implementation are traces of totally ordered broadcast. We then show in

Lemma 9.18 that for each state in LTOBimpl there exists some reachable state of TOBspec

that is related to it under RTOB.

You may notice in the definition below that for XRTOBY to hold, state x must be a state

in the legal set LTOBimpl. This constrains the simulation relation to only be concerned with

implementation states which we will later show are related to reachable states of TOBspec

(see Lemma 9.18).

Definition 9.14 RTOB is a relation between states of TOBimpl and states of TOBspec

such that if x is a state of TOBimpl and y is a state of TOBspec, then XRToBY exactly

when the following conditions are satisfied:

1. x E LTOBimpl and x(RW) = y(RW).

This says that our relation only holds for state pairs where the state of our imple-

mentation is in the legal set LTOBimpl and the RW state is equal in x and y.

2. y E InVTOBspec A y(procs) = P.

This says that y must be a reachable state of TOBspec, and that y(procs) is full.

3. For each p E P, x(failedp) = y(f ailed).

This says that the failure status of each process is the same in the two states.

4. For each p E P, - x(failedp) - [(x(updates) = 0 A y(rtimerp) = _)

Vl(u, t) E x(updates,) : ([t < z(now) - dA y(rtimerp) = d]

V [V(v, t') E x(updates) : t' > t At = x(now) - y(rtimer)])].

This says that the stored updates for each non-failed process corresponds to the

rtimer. In particular rtimer is I when updatesp is empty, and either rtimer is

as old as the first pair in updates, or both are at least d old.

5. For each p E P, (Ix(f ailed) A x(updatesp) / 0)

134

[x(outgoingp) = y(tosend7) A x(outgoing+) = y(to-send)].

This says that corresponding outgoing and tosend queues are equal.

6. Let ((ml, pti, f, bi, bl), t, PI), , i ((mn, pn, tn, fn, bn, un), tn, P,) be the subset

of UpeP x(pbcastq(p)) with t, > now - d, ordered by (ti, i, fi, bi).

Then y(sent) = (ml, ul, pi, tl), ... , (mn, un, Pn, tn).

This says that the sequence sent in TOBspec is the same as the sequence of re-

stricted message tuples in pbcastq that are less than d old and then sorted by tags.

7. For each p E P, let (ml, pi, t, f), bl, ul) , " " , (mn, Pn, t, fn, bn, Un) be the subset of

x(incomingp) with t = now - d, ordered by (pi, fi, bi).

If -x(failed) A x(updatesp) = 0, then y(to_rcvp) = (mi, ul), • , (mn, Un).

This says that for a non-failed process with a non-I region, the sequence of message

and region pairs in torcv in TOBspec is the same as the sequence of message and

region pairs from tuples in incomingp that are exactly d old and then sorted by tags.

Now we show that RTOB is a simulation relation from TOBimpl to TOBspec:

Lemma 9.15 RTOB is a simulation relation from TOBimpl to TOBspec.

Proof: By definition of a simulation relation we must show three things for all states of

the two automata:

1. We must show that for any x E ETOBimpl there exists a state y E OTOBspec such

that XJRTOBY. There is one unique initial non-failed and non-loc state for both the

first and the second automaton, and any values of failed and loc for each p E P is

possible for either automaton. It is easy to check that RTOB holds between any two

such states.

2. Say that x E QTOBimpl and y E QTOBspec, and that XRToBY. Then for any action a E

ATOBimpl, if TOBimpl performs action a and the state changes from x to x', we must

show that there exists a closed execution fragment P of TOBspec with 3.fstate =

y, trace(f) = trace(p(x)ap(x')), and x'RTOB/3 .lstate.

By Lemma 9.12, Property 1 of RTOB holds in x'.

135

For the other properties, we consider each action:

* drop: Let 3 be the point trajectory p(y). It is trivial to see that XIRTOBY and

that the trace of both 3 and a are empty.

* failp and restartp: These are trivial.

* tocast(m)p: Let 0 be p(y) tocast(m)p p(y'). It is easy to see the trace is

the same. If x(updatesp) 0 then since the same message is added to the

end of outgoing+ in TOBimpl and to tosend+ in TOBspec, then X'RTOBY'.

Otherwise, x(updatesp) is empty and we can trivially conclude that X'RTOBY'-

* torcv(m)p: Let 0 be p(y) torcv(m)p p(y'). We need to check that this action

is enabled in y. If the action is enabled in the implementation, then there is

an associated tuple in incomingp with timestamp t < clockp - d and with a

tag which is smaller than the tags of all others in the set. By property 2(b) of

L'oBjp l, t is at least clockp - d, implying it is equal to clock, - d. Since

xRy, this must mean that the tuple is the head of torcvp. Hence, this action is

enabled in the specification.

We now note that trace(a) = trace(3) and that it is easy to see that x'RToBy1:

since £RToBY and the associated tuple is removed from incomingp and the

corresponding tuple is removed from y(to-rcvp), x'RToBY' must hold.

* GPSupdate(l, t)p: Let 0 be p(y) GPSupdate(l, t)p, (y'). Let v be region(l).

It is easy to see that the traces of a and 3 are equal. To see that X'RTOBY', we

first note that properties 1-3 and 6 are easy to see hold. We consider several

cases for the other properties: If x(failedp), then checking that the properties

hold is trivial. So we consider where -7x(failedp).

Say the conditional on lines 44-45 holds. Since property 1 holds, we know that

the only way for the conditional to hold is if x(updates,) = 0. Since xRTOBY,

we know by property 4 of RTOB that y(rtimerp) = _1, which by property 2 of

RTOB means that TOBDelayp.updated = false and tosendp = to_send± =
A = to_rcvp. In state x', outgoingp outgoing+ = A, 0 = incomingp and

updatesp = {(v, t) }. In state y', tosend; = to_send+ = A = to_rcvp still,

136

satisfying properties 5 and 7. Also, in state y', rtimerp = 0, satisfying property

4.

Now we check the other case, where the conditional on lines 44-45 does not

hold. We know that in state x, updatesp is not empty. In this case, the only

changes between x and x' are that updatesp in x' also contains the pair (v, t),

and any tuples in incomingp that don't satisfy regSpan are removed; it is easy

to see that these will simply be those with region tags not equal to v or a neigh-

boring region. It is trivial to see that property 5 still holds. For property 4,

notice that in state y', rtimerp is not different from what it was in state y. Also,

we can choose the same (u, t') in x(updatesp) to satisfy property 4 in state x'.

Finally, to check property 7, notice that TOBDelayp removes any pair without

a region that is the same or neighboring v. Hence, property 7 still holds.

* brcv((m, s, t, f, b, r))p: Let / be p(y). It is easy to see that the traces are the

same, and that the possible addition of an element to incomingp doesn't affect

any properties since by property 2(a) of L OBimpl and property 3 of InVpbcast,

t > x(clock,) - d.

* bcast((m, q, t, f, b, r)),: Let / be p(y) tocast'(m, c)p p(y'), where c is true

iff y(to_sendp) is empty, and the tuple is added to sent so that any other tu-

ples for time t from p or any smaller id process is before the point of addi-

tion, and any tuples for time t from a larger id process is after the point. We

first check that tocast' is enabled in y. Since XRTOBY and bcast is enabled

in x, -y(failedp).Also, x(outgoing-) = y(to_sendp) and x(outgoing+) =

y(tosend+), meaning the same message is transmitted. Hence, tocast' is en-

abled.

Now we check that X'RToBy' holds. This is easy for property 5 since the heads

of two corresponding equal queues will be removed to leave new corresponding

equal queues. The only other property to check is 6. We must check that the

tags in the tuple added to pbcastq(p) are the largest in the set, ordering the tuple

after previously sent tuples by p. This is ensured through the fact that x satisfies

137

property 2(d) of LTOBimpl. By our condition on the way in which the tuple is

added to sent, we know that order is preserved between different senders.

3. Say that x E QTOBimpl, y E QTOBspec, and xRTOBy. Let a be an execution fragment

of TOBimpl consisting of one closed trajectory, with a.fstate = x.

We must show that there is a closed execution fragment 3 of TOBspec with

3. fstate = y, trace(3) = trace(a), and a.lstateRTOB/.1state.

Let Pl be the first id in P, P2 be the second, etc. Let (m1 ,ul, q1, t1),

(m 2, 2 q2, t2), (Mn, Un, uq, t,) be the y(sent) prefix containing all tuples with

ti < a.1state(now) - d.

Then 0 is the execution fragment Tr a T1 ,1 a
1

2 T1,2 * T a 2
...

PT 71,1 P2 71, 2 P "

anp 7T+,1, where 0.ltime = a.ltime, ti + d = i.lstate(now), and at E

{torcv'(mi, ui)p, drop(pj)}, for all i from 1 to n and j in 1 to |P . We select aj

to be torcv' if 3(v, t) E 7T.updates(pj) : t < now - d A V(v', t') E updates(p)

(t' > t = v' E nbrs + (u)), and drop otherwise.

In other words, 3 is an execution fragment where torcv and drop events are added

in order of process id for each message in the sent queue that is exactly d old. In

order to satisfy properties 2, 6 and 7 of the relation RTOB, our construction ensures

that in the last state of / no action torcv' or drop is enabled.

It is obvious that the traces of a and / are the same. It is also easy to

see that by construction, each torcv' and drop action will be enabled, and that

a.lstateRToB 3.istate.

The following theorem concludes that our implementation of the totally ordered broad-

cast service implements TOBspec.

Theorem 9.16 TOBimpl < TOBspec.

Proof: This follows directly from the previous lemma and Corollary 2.23.

138

One useful observation about the proof that RTOB is a simulation relation is the fol-

lowing, which says that, given any execution fragment a of TOBimpl started in the legal

set LTOBimpl and a state y of TOBspec that is related to the first state of a, there is an

execution fragment of TOBspec starting in state y that not only has the same trace as a but

also has the same RW and Fail-related projections as those of a (This is very useful later,

when reasoning about the Fail-transformed composition of the totally ordered broadcast

implementation pieces with pieces of other services):

Lemma 9.17 Let a be in frags LTOBmp and y be a state in reachableToBspec such that

a. .f stateRToBy. Then there exists a' in f ragsToBspec such that:

1. a'.f state = y.

2. trace(a) = trace(a').

3. If a is a closed execution fragment, then a.lstateRTOBa'.lstate.

4. C[(ARw, VRw) = C'[(ARW, VRW).

5. For each p E P, ac[({fail ,, restartp}, {failed, }) = a'[({failp, restartp}, {failedp}).

The first three properties of the lemma follow from the fact that RTOB is a simulation rela-

tion, while the last two properties follow from the construction of the matching execution

of TOBspec in the proof that RTOB is a simulation relation, which preserves the actions

and variables of RW and each of the processes' Fail-transform variables and actions.

Now, as mentioned previously, we tie the legal states LTOBimpl to reachable states of

TOBspec. In particular, we show that each state in LTOBimpl is related to some reachable

state of TOBspec.

Lemma 9.18 For any state x E LTOBimpl, there exists a state y E reachableToBspec where

XZRTOBY.

Proof: We prove this lemma by showing how, given a state x E LTOBimpl, we can con-

struct a state y of TOBspec such that XRTOBY. We do this by describing the state of

the components of state y. We then check that the constructed state y is one such that

y E InVTOBp and XRTOBy holds.

139

1. y(RW) = x(RW).

This says that the RW component is the same in both x and y.

2. For each p E P : y(TObcast.updates(p)) = {(region(l,t)) l (1,t) E
x(RW.updates(p)) }.

This says that the updates should correspond between RW and TObcast.

3. y(TObcast.now) = x(RW.now), and y(procs) = P.

This says that the realtime should correspond between TObcast and RW and that

procs should always be full.

4. For each p E P, x(f ailedp) = y(failedp).

This says that the fail status of the processes should match between the states.

5. For each p E P, if x(failed,) then y(TOBFilterp) and y(TOBDelay) are arbi-

trary.

This says that for failed processes the state of the TOBFilter and TOBDelay com-

ponents are arbitrary.

6. For each p E P, if -x(failedp) and x(updatesp) = 0, then: -y(updatedp),

y(to sendp) = y(tosend+) = y(to_rcvp) = A, and y(rtimerp) = I.

This says that if a process is not failed and has an empty updates in x, then in state

y updated is false, rtimer is I, and the tosend-, to_send+, and torcv queues are

empty.

7. For each p E P, if -x(failed) and x(updatesp) $ 0, then:

* y(updated).

This says that if a process is not failed and updates is not empty in x, then

updated is true for the process in y.

* y(to_sendp) = x(outgoingp) and y(to_send+) = x(outgoingp+).

This says that if a process is not failed and updates is not empty in x, then the

process's outgoing queues correspond to their counterpart to_send queues in y.

140

* Let t = min({t* E RO I 3u E U: (u, t*) E x(updatesp)}).

Then y(rtimerp) = min(d, x(now) - t).

This says that if a process is not failed and updates is not empty in x, then

rtimer in y is as old as the first pair in the process's updates in state x, or both

are at least d old.

* Let (mI, p, t, fi, bl,u), " , (mn, Pn, tf, be, un) be the subset of

x(incomingp) with t = x(now) - d, ordered by (pi, fi, bi).

Then y(to_rcvp) = (m, ul)," " , (mn, un)-

This is the same as property 7 of Definition 9.14.

8. Let ((ml, Pi, tl, fli, bl, ul), tl, P1), " " , ((mn, p, t!, f,, bn, un), tn, P,) be the subset

of UpEp x(pbcastq(p)) with ti > x(now) - d, ordered by (ti, Pi, fi, bi).

Then y(sent) = (mi, ui, pi, tl), I-* , (mn, un, pn tn).

This is the same as property 6 of Definition 9.14.

9. Let ((ml, pt, fl, bl, ul), t, P1), .* * , ((mn, pn, t, fn, bn, un), tn, P,) be the subset of

Up.p x(pbcastq(p)) with t = x(now) - d, ordered by (pi, fi, bi).

Then y(oldsent) = (mi, ul, pi, t), * * * , (mn, , u Pn, t).

This says that oldsent in y is calculated from d-old pbcastq messages.

Next we show that y E InVTOBspec. We check each property of InVTOBspec (Definition

9.1) in state y. Properties 1-5 and 7(a) of InVTOBspec are trivial to check. Property 6

of InvTroBspec holds in y because state x satisfies properties 2(a) and 2(b) of L'oBimpl

and because of properties 8 and 9 in the construction above. To see this, notice that by

properties 8 and 9 above, the concatenation of oldsent and sent in state y is the sequence

of pbcastq messages in state x with timestamps up to d old, in order of the timestamp,

sender, attached Boolean, and sequence number of the message tuple. Properties 2(a) and

2(b) of LTOBimpl guarantee that those tuples in state x satisfy the region ordering property

described in property 6 of InvTOBspec-

For the remainder of property 7 of InVTOBspec, we provide pointers to the properties

of state x and the construction that imply the property. Property 7(b) of InrTOBspec holds

in y because state x satisfies property 3 of LTOBimpl and because of the third bullet in

141

property 7 in the construction above. Property 7(c) of InvTOBspRc holds in y because state

x satisfies property 2(d) of Llozimpl and because of property 7 in the construction above.

Property 7(d) of InvTOBspec holds in y because state x satisfies property 2(c) of L oimpl

and because of properties 7-9 in the construction above.

All that remains is to show that xRTOBY. We check each property of RToB. Properties

1-3, 6, and 7 are trivial to check. Property 4 of R'TOB holds because of property 6 and the

third bullet of property 7 in the construction above. Property 5 of RTOB holds because of

the second bullet of property 7 in the construction above.

By Theorem 9.4, we know that InlVTOBspec = reachableToB pec, and we conclude that

for any state x in LTOBimpl, there is some reachable state y of TOBspec such that xRTOBY.

Now we can pull together the results in this section to finally conclude that

Start(TOBimpl, LToBimpl) implements Start(TOBspec, reachableToBpec).

Lemma 9.19 Start(TOBimpl, LTOBimptl) < Start(TOBspec, reachableToBspec).

Proof: By Lemma 9.15, RTOB is a simulation relation from TOBimpl to TOBspec. By

Lemma 9.18, we know that for each state x E LTOBimpl, there is some reachable state

y of TOBspec such that xRTOBy. Hence, by Corollary 2.22, trace frags LoBip C

tracefragsrToRsap TOBspec, which implies the result. M

9.3.3 Self-stabilization

We've seen that LTOBimpl is a legal set for TOBimpl, and that each state in LTOBimpl is

related to a reachable state of TOBspec. Here we show that TOBimpler self-stabilizes to

LTOBimpl relative to R(RW IPbcast) (Theorem 9.24), meaning that if certain program por-

tions of the implementation are started in an arbitrary state and run with R(RIW Pbcast),

the resulting execution eventually gets into a state in LTOBimpl. This is done in phases,
corresponding to each legal set LTOBipl, LO imp , L OBimpl, and finally LTOBmpl.

After we show that TOBimpler self-stabilizes to LToBimpl relative to R(RW Pbcast),

we use the fact that RTOB (see Definition 9.14) is a simulation relation that relates states

142

in LTOBimpl with reachable states of TOBspec to conclude that after an execution of TO-

Bimpl has stabilized, the trace fragment from the point of stabilization with bcast and brcv

actions hidden is the suffix of some trace of TOBspec (see Theorem 9.25).

The first lemma describes the first phase of stabilization, for legal set LToBimpl:

Lemma 9.20 Let tob be any t such that t > csample.

TOBimpler self-stabilizes in time ttob to L'OBimpl relative to R(RW Pbcast).

Proof: By definition of self-stabilization, we must show that
L1t ra LTOBirmpl

exeCSU(TOBimpler)IR(RWIIPbcast) stabilizes in time tlob to ragsTOBimperR(RWPbcast)
Li Li

.OBimp. TOBimpBy Corollary 3.11, the set frags TOBmerllR(RW IPbcast) is the same as f ragsr OBimp

By Lemma 3.21, we just need to show that for any length-tob prefix a of an element of

exeCSU(TOBimpler)IIR(RWIIPbcast), a.lstate is in LTOBimpl. We examine each property of

LTOBimpl"

By Theorem 6.4, since the state of RW| Pbcast in the first state of a is a reachable state

of RW| Pbcast, we know that property 1 of LTOBimpl holds in each state of a.

By the proof of Lemma 9.6, we know that for each p E P, if property 2 of LTOBimpl

holds for p in some state, it continues to hold for p in subsequent states. Consider the first

GPSupdatep in a for some p and the state x in a immediately after the event. It is easy to

see that property 2 holds for p in state x. Since a.ltime = tiob and tob > Csampl,, we know

that for each p E P at least one GPSupdate, action occurs in a. Hence, for each p E P,

property 2 of LOBimpl holds at a.lstate.

We conclude that a.lstate is in LOBimpl.

Lemma 9.21 Let t'ob be any t such that t > 0.
L
1 L

2

frags TOBimpl stabilizes in time t2 to frag TOBimp.
TOBimpl TOBimpl

Proof: By Lemma 3.21, we just need to show that for any length-t2tob prefix a of an element
L'TOBimpl a.lstate is in2

of f rags B , .lstate is in LTOBimpI. We examine each property of LTOBimpl'

By Lemma 9.6, since the first state of a is in LTOBimp, we know that property 1 of

L imp holds in each state of a.

Notice that there must be some state x of a such that x(now) = a.fstate(now) and

all actions that occur after x in a occur at a state with now > x(now). Consider any

143

state y in a such that y occurs a non-0 amount of time after a. fstate and no actions occur

between x and y. This means that there are no tuples in y(pbcastq(p)) that were sent at the

time y(now) and no tuples in y(outgoing;) or y(outgoingf+), meaning that property 2 is

trivially satisfied. This allows us to conclude that property 2 of LTOBimp holds at y and

hence, by Lemma 9.8, at a.lstate.

We conclude that a.lstate is in LTOBimpl.

Lemma 9.22 Let tob be any t such that t > d.
L
2 L

3

fragsToBimpi stabilizes in time t'b to frags TOBimpl

Proof: By Lemma 3.21, we just need to show that for any length-to b prefix a of an element

of f rags~~mp1 , a.lstate is in TOBimpl* We examine each property of LTOBimpl.

By Lemma 9.8, since the first state of a is in LTOBimpl, we know that property 1 of

L3OBimpl holds in each state of a.

For property 2, based on the proof of Lemma 9.10, the property can be considered as

a conjunction of separate statements, one for each possible time. It is also not difficult to

see that for any state x in a and time t larger than a.fstate(now), property 2 holds for

messages sent at time t. Hence, in order to ensure that property 2 as a whole holds at

state a.lstate, we need that property 2 holds at a.lstate for all times up to d time before

a.lstate(now). This is satisfied because a.ltime > d.

For property 3, we know that in a.fstate, any non-failed process with non-empty

updatesp has its latest update in updatesp correspond to its latest update at RW. After

d time passes, that particular latest update satisfies the requirements of the (u, t) in prop-

erty 3, if the process has not failed in the meantime. If the process has been failed in the

meantime or was failed in a.fstate, then it will have an updatesp set consistent with the

updates of RW starting from after it awakens.

L 3We conclude that a.lstate is in LTOBimpl. ULemma 9.23 f rags TOBi"p stabilizes in time d to frags TOBimp

Proof: By Lemma 3.21, we just need to show that for any length-d prefix a of an element
L3

of fragsTOBimpl , a.lstate is in LTOBimpl. We examine each property of LTOBimpl -

144

By Lemma 9.10, since the first state of a is in L}oBimpl, we know that property 1 of

LTOBimpl holds in each state of a.

It is plain that for any state in a, any new tuple added to an incoming queue for a pro-

cess will satisfy property 2 of LTOBimpl. Consider any p E P and tuple (m, s, t, f, b, r) E

incomingp in a.f state. By property 2(b) of L'OBimpl, we know that t < aj.fstate(clockp).

By our stopping conditions on line 35, this tuple will be removed when clockp = t + d.

Hence, the tuple will be removed in less than d time. This holds for any process p and any

tuple in a.f state(incomingp). This implies that in a.lstate, property 2 will hold.

We conclude that a.lstate is in LTOBimpt. M

Theorem 9.24 Let ttob be any t such that t > 2d + 6 sample.

TOBimpler self-stabilizes in time ttob to LTOBimpl relative to R(RW IPbcast).

Proof: We must show that exeCSU(ToBimpler)lR(RWIIPbcast) stabilizes in time ttob to

frag~T impler lR(RWIPbcast). By Corollary 3.11, frags LTOBimple is the same
TOBimplTOBimplerR(RWPbcast)

as frags LTO m. The result follows from the application of Lemma 3.7 to the four lem-

mas (Lemmas 9.20-9.23) above. Let tltob = sample + (ttob - 2d - Esample)/3, tob =

(ttob - 2d - Esample)/3, and t3ob = d + (ttob - 2d - 6sample)/3. (These terms are cho-

sen so as to satisfy the constraints that ttob > 6 sample, ttob > 0, and ttob > d, as well as the

constraint that t'ob + tob + d = ttob.)
L1 L2

Let Bo be exeCSU(TOBimpler) R(RW|Pbcast), B 1 be frags TOBimpl, B 2 be fragsOBimpl

B3 be frags OBimp, and B4 be ragSTOBimpl in Lemma 3.7. Let tl be tob, t 2 be
TOimpl, and B4 be fra T imltbt2e

tob, t3 be tob, and t4 be d in Lemma 3.7. Then by Lemma 3.7 and Lemmas 9.20-9.23,

exeCSU(TOBimpler) IIR(RWIIPbcast) stabilizes in time tob+ttob +ttobd = ttob to frags TOBimp.

We conclude that TOBimpler self-stabilizes in time ttob to LTOBimpl relative to

R(RW IPbcast). N

As promised, we can now conclude that an execution of TOBimpl eventually reaches

a point such that the trace of the execution from that point on is the same as the suffix of

some trace of the specification.

Theorem 9.25 Let ttob be any t such that t > 2d + 6 sample*

traceSActHide(HToimpl,U(TOBimpler)llR(RWIIPbcast)) stabilizes in time ttob to tracesR(TOBspec).

145

Proof: By Lemma 9.19, we know that tracefrags ,Bi'T C tracefragsreachableTOBspec.

By Theorem 9.24, we know that exeCSU(TOBimpler) R(RW|Pbcast) stabi-

lizes in time ttob to frags roBiperR(RWPbast By Lemma 3.10,
TOBimpler R(RW Pbcast)'

frags TOBimpl is the same as frags "Bim"p. By Lemma 3.5, this

implies that traceSActHide(HToimp,U(TOBimpler) IR(RWlPbcast)) stabilizes in time ttob to

LTOBimp
trace f rags impToimp

Since tracefrags TOBimp C_ trace ragsreachableTOBspec, we conclude that the set of

traces of ActHide(HToi,p l, U(TOBimpler) IR(RWI Pbcast)) stabilizes in time ttob to

ra reachable Tspec, which is the same as tracesR(TOBspec). U

146

Chapter 10

Leader election service

In order to simplify the implementation of the VSA layer, it is useful to have access to a

leader election service that allows nodes in the same region to periodically compete to be

named sole leader of the region for some time. In this chapter, we describe the specifica-

tion and implementation for a stabilizing round-based leader election service used in our

emulator implementation. We then show that our implementation is correct and that it is

self-stabilizing.

10.1 LeadSpec: Specification of the leader election service

We describe the specification of our leader election service as an algorithm in two parts:

LeadMain and LeadClp,p E P (see Figure 10-1). The specification of the leader

election service is then LeadSpec, which is equal to LeadMainllRW composed with

Fail(LeadClp) for all p E P, with certain actions hidden.

Notice that the LeadCl machines are for individual processes. In this thesis we are in-

terested in considering Fail -transformed mobile nodes. Separating the LeadCl machines

from LeadMain allows us to Fail-transform portions of LeadSpec. As with TOBDelay

and TOBFilter in Chapter 9, separating the leader election service into a Fail-oblivious

central component and Fail-transforming individual components makes it easier to use Fail-

transform theory from Chapter 5.

Our leader election service is a round-based service that collects information from po-

147

Figure 10-1: Leader election service. A LeadCl for a client performs a prefer'(f) to in-
dicate that its client should be considered by LeadMain as the leader of its client's region.
LeadMain determines the winners of the leader competition for each region and communi-
cates the results to each LeadC1. A winning process's LeadCl might then produce a leader
output to its client, indicating the client is a leader.

tential leaders at the beginning of each round, determines up to one leader per region, and

performs leader outputs for those leaders that remain alive and in their regions up to when

the round is exactly d old. We assume that rounds are of length tslice, where tslice > 2d+ c.

Rounds begin on multiples of tlice. A new leader competition for each region begins fresh

(remembering none of the prior round's leaders or nominations) at the start of each round.

This simple round-based structure, with little information remembered from one round to

the next, is helpful when discussing stabilization in Section 10.3.3.

LeadMain is the central decision-making portion of the leader election service, collect-

ing nominations from processes for leadership, and determining leaders for each region

from these nominations. LeadCl, sits between LeadMain and a process p. At the start of

each round, it communicates with LeadMain to nominate its process as the current round's

leader for its region by providing Boolean priority inputs to LeadMain, letting it know

that the process it represents is an alive process with knowledge of its region, and hence

competing for leadership. If it received an indication from its process that its entry should

be favored, the Boolean it communicates is true. Otherwise, the Boolean is false. These

Boolean priorities are later used by the emulation algorithm (Section 11.2) to communicate

148

1 Signature:
Input GPSupdate(l, t)p, 1 E R, t E RI>0, p E P

3 Input prefer' (val)p, val E Bool, p C P
Internal reset

5 Output leader' (val)p, val E Bool, p E P

7 State:

analog now: R >
IO, initially 0

9 reg: P - U U {1}, initially _ for all p E P
pref: P -- Bool, initially false for all p E P

11 cand: U -- (P x Bool) U {1}, initially _ for all u E U
serviced: 2 P , initially 0

13

Trajectories:
15 evolve

d(now) = 1
17 stop when

(now mod tslice = dphys A serviced = P)
19 V (now mod tslice = dphys+2e A serviced 0 0)

21 Transitions:
Input GPSupdate(l, t)p

23 Effect:
reg(p) - region(1)

Input prefer' (b)p
Effect:

pref(p) - b
if 3q E P: (q, b) = cand(reg(p)) then

cand(reg(p)) *- choose{cand(reg(p)), (p, b)}
else if b V cand(reg(p)) = Ithen

cand(reg(p)) - (p, b)

Output leader'(val)p
Precondition:

now mod t8sice E (0, dphys] Ap 0 serviced
val 4' (p, pref(p)) = cand(reg(p))

Effect:
serviced - serviced U {p}

Internal reset
Precondition:

now mod tslice > dphy,+e A serviced = 0
Effect:

for all u C U
cand(u) +- I

for allp E P
pref(p) +- false

serviced +- 0

Figure 10-2: LeadMain, electing a leader.

whether the submitting process is currently emulating its local region's VSA.

LeadMain takes Boolean priority inputs at the beginning of the round from the LeadCls,

and each time such an input occurs, LeadMain decides whether to replace whoever is the

current winner for the input process's region with the new process, always selecting a

process that submits a true value over one that submits a false value.

By the time the round is d old, LeadMain submits an input to each LeadClp saying

whether its process p is the round's leader for its region. If the input says it is and LeadClp

has a record of participating in the latest leader competition then it performs an output to

let its process know that it is the leader.

We describe the LeadMain and LeadCl components in more detail below.

10.1.1 LeadMain

Here we provide a description of LeadMain (Figure 10-2), the central leader-deciding ser-

vice. The interface of LeadMain consists of three kinds of actions:

Input GPSupdate(l, t)p, 1 E R, t E IR , p E P: This input indicates that a process

p is currently located at position 1.

149

1

* Input prefer'(val)p, val e Bool,p E P: This input indicates that process p is

proposing itself as a candidate to be leader of its current region. The Boolean val

indicates whether the process should have priority in leader selection. (Later, we

use this mechanism to give priority to processes in a region that are participating in

emulation of their region's VSA (Section 11.2).)

* Output leader'(val)p, val E Bool, p E P: This output indicates to process p

whether or not it was chosen as the leader for its current region. A true val indi-

cates yes, while a false val indicates no.

The state variables are:

* now : R"o: This variable is the real-time. It is initially 0.

* reg(p) : U U (1},p E P: This variable is the last reported region for each process,

initially I. For each GPSupdate(l, t)p input, the value region(l) is stored in reg(p).

* pref(p) : Bool, p E P: This variable is the priority for the process p. For each

prefer'(val)p input, the value val is stored in pref(p).

* cand(u) : (P x Bool) U {1}, u E U: This variable communicates who the current

leader of the region is. It is initially 1, but when a prefer'(b)p occurs when reg(p) =

u, it is updated to (p, b) if cand(u) was IL or b is true and the current pair is false. If

b matches the Boolean of a pair already in cand(u) then cand(u) may or may not be

updated to (p, b).

* services : 2 P: This is a bookkeeping variable used by LeadMain to keep track of the

processes for which a prefer' output has not yet occurred.

Whenever a prefer'(b)p occurs (line 26) at the start of a round, LeadMain stores b as

pref(p) (line 28). Then it checks to see if p's region has a current candidate for leader. If

not or if b is true and the current candidate tuple is false, the tuple (p, b) is stored as cand(u)

(lines 31-32). If b matches the Boolean in the current candidate tuple, then LeadMain

nondeterministically decides whether or not to replace the current candidate tuple with

(p, b) (lines 29-30).

150

1 Signature:
Input GPSupdate(l, t)p, 1 E R, t IR>o0

3 Input preferp
Input leader' (val)p, val E Bool

5 Output prefer'(val)p, val E Bool
Output leaderp

7

State:
9 analog clock C IR>oU {1}, initially I

reg: U U {1}, initially I
11 pref, participated: Bool, initially false

13 Trajectories:
evolve

15 if clock = Ithen
d(clock) = 1

17 else constant clock
stop when

19 (clock mod tice = 0 A - participated)
V (clock mod tli,, = dpnys + e Aparticipated)

21

Transitions:
23 Input GPSupdate(l, t)p

Effect:
25 if reg = region (1) V clock : t then

reg - region(l)
27 clock 4 t

pref, participated - false

Input preferp
Effect:

if clock mod tsli,, = 0 then
pref - true
participated <- false

Output prefer' (val)p
Precondition:

clock mod tlice = 0 A - participated A val = pref
Effect:

participated +- true

Input leader'(val)p
Effect:

if clock A ILA (- val V - participated) then
pref, participated +- false

Output leaderp
Precondition:

clock mod tli,,c = dphys + E Aparticipated
Effect:

pref, participated ~ false

Figure 10-3: LeadClp, client portion for electing a leader.

After some non-zero amount of time into the round and no later than dphy, into a

round, LeadMain services processes. For each process p not in serviced, it performs a

leader'(val)p output, where val is true exactly when cand(reg(p)) is equal to the tuple

(p, pref(p)) (lines 34-37). It then updates serviced to contain p, indicating that it has been

serviced (line 39).

After more than d into a round, LeadMain performs a reset, initializing pref, cand,

and serviced for the next leader election round (lines 41-49).

10.1.2 LeadCl

Here we provide a description of LeadClp. This piece communicates high priorities for

leader election from a process to LeadMain and acts as an intermediary for communicating

leadership decisions from LeadMain to a process. This piece is also the portion of LeadSpec

that allows us to model the impact of failures. For example, LeadMain may choose as leader

a process that has failed since the beginning of a round; LeadCl prevents that process from

151

becoming a leader.

Its interface consists of five kinds of actions:

* Input GPSupdate(l, t)p, l E R, t E R>o, p E P: This input indicates that a process

p is currently located at position 1.

* Input prefer, p E P: This input indicates that the process is to have priority in

leader election. (As mentioned earlier, this is used in Section 11.2 by processes

currently emulating their local VSA to indicate that they should be chosen as leader

over processes that are not yet participating in VSA emulation.)

* Input leader'(val)p, val E Bool, p E P: This input indicates whether or not Lead-

Main has chosen this process as the winning candidate for leader for p's current

region.

* Output prefer'(val)p, val E Bool, p E P: This output is the process putting itself

up for consideration as leader. The value val is true if a prefer has occurred in this

round at the process.

* Output leaderp, p E P: This output communicates that a process is the leader for

its current region.

Its state variables are the following:

* clock : IRo U {I}: This is the process's local clock. It is initially I, but is set to the

system's real-time when a GPSupdate occurs at the process.

* reg : U U {L}: This is the last reported region of the process since initialization.

* pref : Bool: This value indicates priority of the process. If a prefer occurs at the

beginning of a round, this value is set to true and triggers a prefer' output. Otherwise,

this value is false.

* participated : Bool: This indicates whether the process has participated in its cur-

rent region's leader election via a prefer' action. It can be reset after it has partici-

pated if a prefer input occurs.

152

At the start of a round, LeadClp performs a prefer'(pref)p output, setting participated

to true so as to prevent additional such outputs (lines 36-40). It may also receive a preferp

input (indicating that its client wants process p to have higher priority in the leader election

competition), resulting in the setting of pref to true and participated to false, triggering

a(nother) prefer' output (lines 30-34). Whenever a GPSupdate occurs at the process that

changes its region or clock, pref and participated are set to false, preventing the process

from later performing a leader output in the region it left (line 28).

Later, if it receives a leader'(val)p input (line 42), if val is false (meaning it was not

chosen as leader for its region) or if clock = 1 (meaning it has restarted and has not yet

received a GPSupdate) or participated is false (meaning it has moved or restarted since

the beginning of the round), then LeadClp sets pref and participated to false, initializing

those values for the next round (lines 44-45). Otherwise, it does nothing.

If, at exactly d into the round, participated is still true (meaning that it did not receive

a leader' input reporting it was not leader for its region) then LeadClp performs a leaderp

output (lines 47-49), and initializes pref and participated for the next round (line 51).

10.1.3 LeadSpec

As mentioned earlier, the full specification, LeadSpec, for the leader election service is

equal to the composition of the central leader-choosing service and RW composed with

the Fail-transformed LeadCl portion for each process, with certain actions hidden:

Definition 10.1 Let HLeadspec be {leader'(val)p, prefer'(val), I val E Bool, p E P}. Then

define LeadSpec to be ActHide(HLeadspec, 1pEp Fail(LeadClp) LeadMain RW).

Legal states of LeadSpec

Here we characterize a set of legal states for LeadSpec by providing a list of properties

describing those states. We then show that the set of states is legal.

Properties 1, 2, and 5 ensure that the state of RW is reachable and consistent with the

state of LeadMain. Properties 3 and 4 describe some basic facts about the state of LeadMain

153

based on the age of a round. The remaining properties describe facts about states based on

the value of each LeadCI.

Definition 10.2 Define InVLeadSpec to be the set of states x of LeadSpec such that the

following properties hold:

1. X [XRw E InvRw.

This says that the RW components are in a reachable state.

2. RW.now = LeadMain.now A RW.reg = LeadMain.reg.

This says that the clock time and region mapping is the same between RW and

LeadMain.

3. RWrnow mod tslice > dphys + 2e

= (serviced = 0 A Vu E U: cand(u) = I A Vp E P : --pref(p)).

This says that if the current round is greater than dphys + 2e old, then LeadMain's

serviced, cand, and pref variables are initialized.

4. RW.now mod tlice = 0 = serviced = 0 and RW.now mod tslic E (dphys, d] z

serviced = P.

This says that when a round starts, serviced must be empty. Also,when the round is

more than dphys old and up to d old, all processes must have been serviced.

5. Vu EU : Vp E P : Vb E Bool : Vt = tsce LRW.now/tsice] : cand(u) = (pb)

u C {RWreg-(p, t), RW.reg (p, t)}.

This says that if cand(u) is set to a pair containing some process, then that process

was in region u at the start of the current round.

6. Vp E P : -if ailedp A clockp 1:

(a) regp = RW.reg(p) I A clock = RW.now.

This says that an alive process with clockp I has a reg variable and time

corresponding to its region in RW and the time at RW.

154

(b) prefp z (participated V clock mod tslice = 0).

This says that an alive process with clockp # I and pre f set to true either has

a participated variable set to true, or the round has just started.

7. Vp E P : -if ailedp A clock, # I A participatedp:

(a) clockp mod tslice < d.

This says if there is an alive process with clockp I and participatedp, then

the round is at most d old.

(b) Vt > tslice Lclockpltslice] : RW.reg (p, t) = regp.

This says that an alive process with clockp _I and participatedp has been in

its current region since the time at the start of the current round.

(c) cand(reg(p)) f I A (pref, => 3q E P: cand(reg(p)) = (q, true)).

This says that if there is an alive process with clockp, I and participatedp,

then its current region has a candidate for leader If pre f is true in addition,

then the process's current region has a candidate for leader that is tagged with

"true" value.

(d) pref(p) = pref,.

This says that if a process is alive and has clock, =h I and participatedp is

true, then its local pre f value is the same preference value as that recorded in

LeadMain.

(e) p serviced V (RW.now mod tslice > 0 A cand(reg(p)) = (p, prefp)).

This says that an alive process with clock, I and participated, equal to

true is either not already serviced in LeadMain or the round is older than 0

and the process's current region has a candidate leader pair that is equal to p

paired with pre f.

We now show that the set of properties describing InVLeadSpec is a legal set for

LeadSpec. (Together with the fact that the initial state of the system is in InVLeadSpec,

this means that InVLeadSpec is a set of invariant states.)

Lemma 10.3 InVLeadSpec is a legal set for LeadSpec.

155

Proof: Let x be any state in InVLeadSpec. By Definition 3.12 of a legal set, we must verify

two things for state x:

* For each state x' of LeadSpec and action a of LeadSpec such that (x, a, x') is in the

set of discrete transitions of LeadSpec, state x' is in InVLeadSpec.

* For each state x' and closed trajectory 7 of LeadSpec such that T. .fstate = x and

T.Istate = x', state x' is in InVLeadSpec.

We previously showed that property 1 always holds. This leaves the remaining properties

to verify.

For the first cast of the legal set definition, we check that if the properties hold in some

state x and some action is performed that leads to state x', then the properties hold in state

x'. We break this down by action:

* failp, restartp, reset, preferp, leader,: The properties are trivial to verify with these

actions.

* GPSupdate(l, t)p: The only relevant properties are 2, 6, and 7. The properties are

trivial to check.

* prefer'(val)p: The only relevant properties are 5 and 7.

For property 5, consider if cand(regp) is updated as a result of the action. If not,

then property 5 still holds since it did in state x. If cand(regp) is updated, then it is

updated to (p, val). Since property 7(b) held in state x, then property 5 holds in x'.

For property 7, we know that x'(participatedp) is true. Also, properties 7(a), 7(b),

7(d), and 7(e) obviously still hold. For the first part of 7(c), we need to check that

cand(reg(p)) # i. If prefer' did not update cand(reg(p)), it must have been that

cand(reg(p)) was not equal to I. If it did update cand(reg(p)), it updated it to

(p, val). Either way, the first part of 7(c) holds. For the second part of 7(c), we need

to check that if x'(pref) is true then cand(reg(p)) is set to some tuple with a true

boolean. If prefer' did not update cand(reg(p)), it must have been that cand(reg(p))

was already set to a tuple with a true tag since val = pref, and the post-state only

156

fails to adopt a true tag if it already has one. If prefer' did update cand(reg(p)) then

it was updated to (p, true), satisfying the property.

leader'(val)p: The only interesting property to check is 7(e). Consider the two cases

for val. If val is false, then x'(participatedp) does not hold, and we are done. If val

is true and x(participatedp) is false, then x'(participatedp) is also false, and we are

again done. If val is true and x(participatedp) is true, then x'(participatedp) is also

true and p is in serviced, so we have to verify that RW.now mod tslice > 0 and

cand(reg(p)) = (p,pref,). That RW.now mod tli,,ce > 0 is easy to see by virtue

of the precondition for the action. To see that cand(reg(p)) = (p, pref,), notice

that the precondition for the action implies that x(cand(reg(p))) = (p, x(pref(p))).

Since cand and pref(p) are not updated by the action, we have that cand(reg(p)) =

(p, x(pref(p))). Since state x satisfies property 7(d), we know that x(pref(p)) =

x(pref,). Since pref, is not changed when val is true and participatedp is true, we

have our result.

For the second case of the legal set definition, we check that for any closed trajectory 7

starting with a state x where the properties hold and ending in a state x', the properties hold

in state x'. The most interesting properties to check for this are 3, 6(b), and 7(a). Property 3

is preserved by the stopping conditions on line 19 of LeadMain, forcing a reset action to

occur by dphy8 + 2e into a round. Property 4 is preserved by the stopping conditions on line

18 of LeadMain, forcing a leader' output to occcur for any unserviced processes. Property

6(b) is preserved by the stopping conditions on line 19 of LeadC1, forcing a prefer' output

to occur to update participated. Property 7(a) is preserved by the stopping conditions on

line 20 of LeadCl, forcing a leader output to occur to update participated. M

Properties of LeadSpec

In each execution a of LeadSpec such that c.f state E InVLeadSpec, we can show that the

following properties hold for each region u E U:

For each state x in a and process id j E P, we define aware(u, j, x) to be true exactly

when - x(failedy), x(clockp) IL, and x(reg(j)) = u. (This is a way of saying that

157

process j is alive and knows it is in region u in state x.) Then for each t E R "o

1. Say that t mod tslice = 0, ao.fstate(RW.now) < t < a.lstate(RW.now), and

there exists some p E P and state x in a where x(RW.now) = t and aware(u, p, x)

is true. Then there exists some q E P and state x' in a where x'(RW.now) =

t, aware(u, q, x') is true, and there exists a state x* after x' where either (a)

x* (RW.now) = t+d and there exists a leaderq at state x* or (b) x* (RW. now) < t+d

and aware(u, q, x*) is not true.

In other words, if there are processes in region u at the start of the timeslice and none

of those processes fail or leave the region until after the round is d old, then a leaderp

output occurs when the round is d old at one of those processes.

2. For each p E P, if a leaderp event occurs in a at state x where x(RW.now) = t and

x(reg(u)) = u then:

(a) t mod tslice = d.

This says that leader outputs can only occur when a round is exactly d old.

(b) If a. fstate(RW.now) < t-d, then there exists a state x' where x'(RW.now) =

t - d and for all states x" in a from x' until x, aware(u, p, x") is true.

This says that if a leaderp occurs then it must be that process p was aware that

it was in region u from the beginning of the round until the leader output.

(c) If a.fstate(RWunow) < t - d and there exists a process q and preferq at time

t - d where aware(u, q, x') is true for all states x' from the preferq until some

state where RW.now > t - d, then there exists some preferp at a state x" where

x"(RW.now) = t - d and aware(u, p, x*) is true for all x* from x" until x.

This says that a leader output will not occur at a process that did not experience

a prefer input at the beginning of the round unless no other process in its region

experienced a prefer at the beginning of the round and remained aware it was in

the region for some non-0 time. In other words, if there exists a higher priority

process that remains aware it is in the region past the very beginning of a round,

then no lower priority process will become leader of the region in that round.

158

Verification of these properties is relatively trivial under the assumption that a starts in a

state in InvLeadSpec (guaranteeing that appropriate regions and clock times are present in

all components and that rounds begin fresh). For property 1, any process that is aware it

is in some region at the start of a round will participate in the leader competition for that

round unless it fails or moves before getting a chance to do so. If no such process fails or

moves from the region until the round is more than d old, then LeadMain's cand for the

region will be set to a pair consisting of one of those process ids, together with its submitted

Boolean. The LeadCl for this process will then not reset its participated variable until the

round is exactly d old, when it performs a leader output.

Property 2(a) holds because of the precondition on line 49 of LeadCl. Property 2(c)

holds because priority nominations are preferred by LeadMain, and high priority nomi-

nees that manage to fail, restart and be renominated with low priority will not receive a

leader'(true) input.

Property 2(b) is the most interesting to show. It holds because GPSupdates that indi-

cate a region change or restarts after a process has failed both reset participated to false at

a LeadCl. If participated is set to false after the round is more than 0 old, then it does not

get reset to true again in the round, preventing a leader output at the process from being

enabled if a region change or restart happens when a round is more than 0 old. This means

that the only situation we need to examine is the one where a process is nominated for more

than one region.We need to verify that in this case, the process will not perform a leader

because it won the competition in the old region. The key observation here is that for this

case to occur, a GPSupdate must have occurred that changed the process's region. If the

process does not revert to the old region, then LeadMain will perform a leader' (false)

for the process, preventing a leader output. If the process does revert to the old region,

it must be when the round is more than 0 old (since at most one GPSupdate per process

is permitted per real-time value), implying that participated is false, as described in the

discussion of property 1.

159

Signature:
2 Input GPSupdate(l, t)p, 1 E R, t E RI>

Input preferp
4 Input brcv(m)v, m E {candidate} xBool xP xU

Output bcast(m)p, m E {candidate} xBool xP x U
6 Output leaderp

8 State:
analog clock: R>oU {1}, current real time, initially -I

to reg: U U {1}, current region, initially I
pref, participated: Bool, initially false

12

Trajectories:
14 evolve

if clock # Ithen
16 d(clock) = 1

else constant clock
18 stop when

(clock mod tstice, 0 A - participated A reg 0 1)
20 V (clock mod tice,, = dphys + e A participated)

22 Transitions:
Input GPSupdate(l, t)p

24 Effect:
if regz region(l)V clocks tV (t mod tlice> dphys+eA participated

26 V (t mod tslice > OA prefA - participated) then
clock --

28 reg 4- region (l)
pref, participated +- false

Input preferp
Effect:

if clock mod tlice = 0 then
pref 4- true
participated <-- false

Output bcast((candidate, val, p, u))p
Precondition:

clock mod tslice = 0 A participated
val = pref A u = reg # 1

Effect:
participated +- true

Input brcv((candidate, val, q, v))p
Effect:

if v= regA clock mod tsli,, E (0, dphy s] then
if (val A - pref) V (val = pref A q < p) then

pref, participated +- false

Output leaderp
Precondition:

clock mod tsli,, = dphys + e A participated
Effect:

pref, participated -- false

Figure 10-4: Leader,, electing a leader.

10.2 Leadlmpl: Implementation

Here we describe our implementation of LeadSpec (Figure 10-4). LeadSpec is implemented

by Leaderp automata with access to RW I Pbcast. At the beginning of each round, a process

tosses its hat into the ring as a possible leader for its region by broadcasting a candidate

message, together with its id and priority. Each process then collects these messages until

d time into the round. Whenever such a message for its region is received, if the process

is still participating then it compares the id and Boolean priority to its own local id and

priority. If the message's priority does not have priority over the process's local priority

and the message's process id is not lower, then the process does nothing. Otherwise, the

process ceases participating and readies itself for the next round.

The interface of Leaderp consists of the following five kinds of actions:

* Input GPSupdate(l, t)p, l E R, t E RI-o, p E P: This input indicates that a process

p is currently located at position 1.

160

I

* Input prefer, p E P: This input indicates that the process is to have priority in

leader election. (This is the prefer input for LeadClp.)

* Input brcv((candidate, val, q, v)),, val E Bool, v E U, q, p E P: This is the receipt

of a candidate message from some process.

* Output bcast((candidate, val, p, u))P, val E Bool, u E U,p E P: This output is

the process putting itself up for consideration as leader for its region u = regp. The

value val is true if pref is true, indicating a prefer has occurred in this round at the

process.

* Output leaderp, p E P: This output communicates that a process is the leader for

its current region.

Its state variables are the following:

* clock : R o U {1}: This is the process's local clock. It is initially I, but is set to the

system's real-time when a GPSupdate occurs at the process.

* reg : U U {I}: This is the last reported region of the process since initialization.

* pref : Bool: This value indicates priority of the process. If a prefer occurs at the

beginning of a round, this value is set to true and triggers a bcast output. Otherwise,

this value is false.

* participated : Bool: This indicates whether the process has or needs to participated

in its current region's leader election via a bcast action.

At the start of a round, Leaderp performs a bcast((candidate, pref, p, reg)), output,

setting participated to true so as to prevent additional such outputs (lines 37-42). It may

also receive a preferp input (indicating that its client wants to have priority in the leader

election), resulting in the setting of pref to true and participated to false, triggering

a(nother) bcast output (lines 31-35). Whenever a GPSupdate occurs at the process that

changes its region or clock, pref and participated are set to false, preventing the process

from later performing a leader output in the region it left (line 29).

161

Later, if it receives a brcv((candidate, val, q, reg))p input (line 44), then if it is no later

than dphy, into the round and either val is true while pref is false (meaning the sender

had a higher priority) or val and pref are the same but q < p (lines 46-47), then Leaderp

sets pref and participated to false, initializing those values for the next round (lines 48).

Otherwise, it does nothing.

If, at exactly d into the round, participated is still true (meaning that it did not receive

a candidate message for its region from a higher priority or same priority but lower id

process) then Leaderp performs a leader, output (lines 50-52), and initializes pref and

participated for the next round (line 54).

10.3 Correctness of the implementation

In this section we describe aspects of the correctness of our implementation of the leader

election service. We define the complete implementation system to be the composition of

the Fail-transformed Leader automata together with Pbcast and RW, with certain actions

hidden:

Definition 10.4 Let HLeadimpl be {bcast(m)p, brcv(m)p I p E P,m E {candidate} x

Bool x P x U}, and let Leadlmpler be p,,P Fail(Leaderp). Then define Leadlmpl

to be ActHide(HLeadimpl, Leadmpler IPbcastll RW).

To show correctness, we use the strategy described in Section 9.3:

1. Describe a legal set LLeader of Leadlmpl, and show that it is a legal set (Definition

10.8).

2. Define a legal set InVLeadSpec for the specification LeadSpec, and show that the set

is a legal set. (This was done in Section 10.1.3.)

3. Show that Start(Leadlmpl, LLeader) < Start(LeadSpec, InVLeadSpec) (Lemma

10.14). We show this in the following way:

(a) Define a simulation relation RLeader between Leadlmpl and LeadSpec (see Def-

inition 10.9). Show the relation is a simulation relation (Lemma 10.10).

162

(b) Show that for each state in LLeader, there exists a state in the invariant set

InVLeadSpec such that RLeader holds between the states (Lemma 10.13).

4. Show that Leadlmpler is self-stabilizing to LLeader relative to R(RW Pbcast) (The-

orem 10.17).

5. Conclude that the set of traces of the implementation stabilizes to the set of traces of

executions of LeadSpec starting in InVLeadSpec (Theorem 10.18).

10.3.1 Legal sets

Here we describe a legal set of Leadlmpl by describing two legal sets, one a subset of the

other. Recall from Lemma 3.13 that a legal set of states for a TIOA is one where each

closed execution fragment starting in a state in the set ends in a state in the set. We break

the definition of the legal set up into two sets in order to simplify the proof reasoning and

more easily prove stabilization later.

The first set of legal states describes some properties that become true at an alive process

at the time of the first GPSupdate for the process.

Definition 10.5 Define L'eader to be the set of states x of Leadlmpl such that each of the

following properties hold:

1. x[XPbcast|RW E InVPbcastRW.

This says that the state restricted to PbcastllRW is a reachable state of the

Pbcastll RW.

2. Vp E P : f ailedp A clockp # 1:

(a) regp = RW.reg(p) z I A clock = RW.now.

This says that alive processes with clockp = I have a local clock variable and

region setting that matches the clock and region setting in RW.

(b) participatedp = clock, mod tslice < d.

This says that if there is an alive processes with clockp # I and participatedp,

then the round is at most d old.

163

(c) pref, = (participatedp V clockp mod tslice = 0).

This says that if there is an alive processes with clockp = I and pref, then

either participatedp is true or the round has just started.

It is easy to check that L'Lader is a legal set for Leadlmpl.

Lemma 10.6 L'eader is a legal set for Leadlmpl.

Next we define a set of "reset" states for the algorithm. The reset states correspond

to states of Leadlmpl after the leader election competition for one round has completed

and before the competition for the next round begins (when the leader competition state is

"reset"). It also turns out that it is relatively simple to show that an execution fragment of

Leadlmpl reaches a reset state. When we define our final set of legal states in Definition

10.8 as states reachable from reset states, it makes the task of showing stabilization of

Leadlmpl in Section 10.3.3 much simpler.

Definition 10.7 Define ResetLeader to be the set of states x of Leadlmpl such that each of

the following properties hold:

1. x E L'Leader'

This says that x is a state in L'Leader'

2. RW.now mod tslice = 0 V RW.now > dphys + e.

This says that x is either at the beginning of a round or more than dphy, + C into one.

3. Vp E P : (-if ailedp A clockp I) : -pref.

This says that each alive process with clockp # I has pre f set to false.

4. Vp E P: V((candidate, b, q, u), t, P') E Pbcast.pbcastq(p): P' = 0.

This says that there are no candidate messages in transit.

The reset states are used to define our final set of legal states LLeader for LeadImpl.

LLader is the set of states reachable from a reset state.

Definition 10.8 Define LLeader to be reachablestart(LeadImpl,ResetLeader).

It is obvious that LLeader is a legal set for LeadImpl.

164

10.3.2 Simulation relation

Here we show that Start(Leadlmpl, LLeader) implements Start(LeadSpec, InvLeadSpec)

(Lemma 10.14). We do this by first describing a simulation relation RLeader from our

implementation of the leader election service, LeadImpl, to the TIOA specification of the

leader election service, LeadSpec (Definition 10.9). We prove that RLeader is a simulation

relation, and then conclude that LeadImpl implements LeadSpec. In other words, we con-

clude that the traces of our implementation are traces of leader election. We then show

that for each state in LLeader, there exists a state in the invariant set InVLeadSpec such that

RLeader holds between the states (Lemma 10.13).

You may notice in the definition below that for XRLeaderY to hold, state x must be a

state in the legal set LLeader. This constrains the simulation relation to only be concerned

with implementation states which we will then show are related to states of LeadSpec in

IrBVLeadSpec.

Now we define the simulation relation for our algorithm.

Definition 10.9 RLeader is a relation between states of Leadlmpl and LeadSpec such for

any states x and y of the two machines respectively, XRLeaderY exactly when the following

conditions are satisfied:

1. State x satisfies the following:

(a) x E LLeader-

This says that x is a state in LLeader.

(b) Vp E P: V((candidate, b, q, u), t, P') E Pbcast.pbcastq(p):

i. P' = 0 V t = tslice LRW.now/tsJcej.

This says that candidate messages submitted to Pbcast have either been

processed for each process or were sent at the beginning of the current

round.

ii. (RW.now mod tsjlice dphys + E A t = tsiiceLRW.now/tslj,,) = (q =

p A u E {RW.reg-(p, t), RW.reg+(p, t)}).

165

This says that if the current round is not more than d old, then any can-

didate messages sent at the beginning of the round are tagged with the

correct source and region for the process that sent it.

(c) Vp E P: - failed A clock, I A participatedp:

i. 3P' C P : ((candidate, pref, p, regp), tsiice RW.now/tsiceJ, P') E

Pbcast.pbcastq(p).

This says that each nonfailed process with non-I clock and participated

set to true sent a candidate message at the beginning of the round for its

current region and pref variable.

ii. Vq E P V((candidate, b, q, regp), tsice LRWnow/t Sije, P') E

Pbcast.pbcastq(q) : (p E P' V [pre fp = b A p < q] V [pre f A b]).

This says that for each nonfailed process p with non-I clock and

participated set to true and for each candidate message sent for the pro-

cess's region at the beginning of the current timeslice and processed for

p, either the candidate message's Boolean was false and pre f is true or

pre f is equal to the message's Boolean and id p is ordered before q.

2. State y satisfies the following:

(a) RW.now = LeadMlain.now A RW.reg = LeadMain.reg.

This says that LeadMain's clock is the real-time, and that its stores regions for

processes is consistent with RW 's.

(b) Vp E P : (-ifailed A clockp h IAparticipatedp) z (pref(p) = prefpA[p

serviced V (RWnow mod tslie > 0 A cand(reg(p)) = (p,prefp))]).

This says that for each nonfailed process with non-I clock and participated

set must have pref (p) match pre f and either p has not yet received a leader'

input or the round is more than 0 old and the process is the leader of its current

region.

(c) RW.now mod tuic > dphys + e = (serviced = 0 A Vu E U: cand(u)

IA Vp E P : -pref (p)).

166

This says that when a round is more than d old, serviced must be empty,

cand(u) must be initialized for each region, and pref(p) must befalsefor each

pE P.

(d) RW.now mod tsice = 0 = serviced = 0.
This says that at the beginning of a round, serviced must be empty.

3. x(RW) = y(RW).

This says that RW matches in both states.

4. Vp EP : x(Fail(Leaderp)) = y(Fail(LeadClp)).

This says that each process's failure status is the same in x and y.

5. Let leadCand : (U x Bool) - P U {I} be a function that takes a re-

gion u and Boolean b, and returns the lowest id p such that 3P' C P

((candidate, b,p, u), tslice[x(RW.now)/tsjce], P') E x(Pbcast.pbcastq(p)), or I if

no such p exists.

Let leader : U -* P U {I} be a function that takes a region u and returns

(p, true) if leadCand(u, true) = p I, (p, false) if leadCand(u, true) =

I and leadCand(u, false) = p I, or I if leadCand(u, true) =

leadCand(u, false) = I.

Then Vu E U: y(RW.now) mod tslice dph, + E == y(cand(u)) = leader(u).

This says that cand(u) in state y is set to the process, if it exists, with the lowest id

amongst the process tags for candidate messages with the same Boolean value for

the region sent at the beginning of the current round, and for which the Boolean was

either true or there were no such true Boolean-tagged messages in the round.

Now we show that RLeader is a simulation relation from Leadlmpl to LeadSpec.

Lemma 10.10 RLeader is a simulation relation between states of LeadImpl and

LeadSpec.

Proof: By definition of a simulation relation (Definition 2.20) we must show three things

for all states of the automaton:

167

1. We must show that for any x E OLeadlmpl there exists a state y E (LeadSpec such that

XRLeader Y

The corresponding state y of the specification is the one with the same RW as x,

with x(Fail(Leaderp)) = y(Fail(LeadClp)) for all p E P, and with the variables

of LeadMain set to their unique initial values. It is easy to check that XRLeaderY-

2. Say that x and y are states such that XRLeadery. Then for any action a E ALeadlmpl, if

Leadlmpl performs action a and the state changes from x to x', we must show there

exists a closed execution fragment 0 of LeadSpec with 3.f state = y, trace(3) =

trace(p(x)ap(x')), and 'RLeader 3 .lstate. For this proof we should consider each

action a.

* failp, restart,, GPSupdate(l, t),, preferp: The corresponding execution frag-

ment is p(y)ap(y'). The traces of a and/3 are the same, and checking that the

relation holds between x' and y' is trivial.

* brcv((candidate, b, q, u)),: The corresponding execution fragment is either:

p(y) or p(y)leader'(false)pp(y'). It is obvious that in each of these cases,

the traces of oa and / are both empty.

We select the corresponding execution fragment in the following way: If p is

alive and clockp I, u = x(regp), x(participatedp) and [(b A ix(pref)) V

(b = x(pref,) A q < p)] then the fragment is p(y)1eader'(false)p(y').

To see that the leader'(false), action is enabled, we need to check that

p x(serviced) and that x(cand(reg(p))) # (p,x(pref(p))). To see that

x' and y' are related, since state x satisfies property 2(b) of the simulation rela-

tion, we know that either p 0 x(serviced) or x(cand(reg(p))) = (p, x(pre f)).

Since x also satisfies property 5 of the relation, we know that p x(serviced)

and that x(cand(reg(p))) # (p, x(pre f (p))).

Otherwise the fragment is p(y). To see that x'and y' are related, the only prop-

erties we need to recheck are properties 1 (c)(ii) and 4. These are easy to check.

* bcast((candidate, b, p,))p: The corresponding execution fragment is

p(y)prefer'(pref,)pp(y'), where state y'(LeadlaiM.cand(reg(p))) is selected

168

in the following way: If cand(reg(p)) = _ V 3(q, b') = cand(reg(p)) :

[(b A b') V (b = b' A p < q)], then update cand(reg(p)) to be (p, b). Oth-

erwise, leave cand(reg(p)) the same.

The traces of a and / are both empty. To see that the prefer' action is en-

abled, note that the two actions basically have the same precondition. To see

that x' and y' are related, it is trivial to check that properties 1-4 of the sim-

ulation relation hold. For property 5, notice that if y(cand(reg(p))) = 1,

then y'(cand(reg(p))) = (p, b). This obviously satisfies property 5. If

y(cand(reg(p))) 4 I then since property 5 holds in state x, it must be that

there is some (q, b') = y(cand(reg(p))) such that there is an associated can-

didate message in pbcastq in x for the current round and reg(p). Since we

update y'(cand(reg(p))) exactly when (p, b) is such that b is true and b' is not,

or p < q and b = b', then we know that leader(reg(p)) in state x' is equal to

cand(reg(p)) in state y'.

* leaderp: The corresponding execution fragment is p(y)ap(y'). The traces of a

and 0 are the same, and checking that the action is enabled and that the relation

holds between x' and y' is trivial.

* drop((candidate, b, p', u), t, q, p): The corresponding execution fragment is

p(y). The traces of a and / are both empty. To see that x' and y' are re-

lated, since property 1 holds in state x, we know that the message was for a

different region than q's, meaning it has no bearing on the properties covered

by the simulation relation.

3. Say that XRLeaderY. Let a be an execution fragment of Leadlmpl consisting of

one closed trajectory, with a.fstate = x. We must show that there is a closed

execution fragment / of LeadSpec with P. fstate = y, trace(0) = trace(a), and

C.lstateLeader .1state.

Let to be a. .fstate(RW.now) and t3 be a.lstate(RW.now). Let tl be dphy +

tsliceto/tslce]. If t3 mod tlice > dphy, + then let t2 be min(t3, dphys + 2e +

tslice Lto/tsiuceJ), else let t2 be dphys + 2e + tslice Lto/tslice].

169

Let pl, -- - , pm be an ordering of the set of p E P such that p y(serviced) and

(p, y(pcand(ef(p))) .y(cafd(reg(p))). Let pm+,,'" ,p, be an ordering of the set of

p E P such that p y(serviced) and (p, y(pref(p))) = y(cand(reg(p))).

If t1 E [to, t 3) and t2 E (to, t3] then 0 is the execution fragment

Ti7eader'(false)p 1,Tl,leader'(false)P2T1, 2 , I leader'(false)pm rT,m, leader'(true)p,m+

TI,,+, " , leader'(true)pnl,n, 72 , resetT3 , where .ltime = .ltime and

7i.lstate(RW.now) = ti.

If tl E [to, t3) but t2 (to, t3] then 0 is the same as above, except that it ends with 72

and 72.lState = t3.

If tl [to, t3) and t2 (to, t3], then 3 is T2resetT3.

If tl [to, t3) and t2 (to, t3] then 0 is just 73.

In other words, we fill in leader' actions for processes that have not been ser-

viced when the time is dphys after the start of the round after other actions have

been completed, so as to not violate the trajectory stopping conditions on line 18 of

LeadMain. We also fill in reset actions at times dphy, + 2E into a round, or at time

t3 if t3 is before dphys + 2c and after dphys into a round, so as to not violate the trajec-

tory stopping conditions on line 19 of LeadMain and to satisfy property 2(c) of the

simulation relation.

It is easy to check that a.1stateRLeader .1state.

The following theorem concludes that our implementation of the leader election service

implements LeadSpec.

Theorem 10.11 Leadlmpl < LeadSpec.

Proof: This follows directly from the previous lemma and Corollary 2.23.

One useful observation about the proof that RLeader is a simulation relation is the fol-

lowing, which says that for any execution fragment of Leadlmpl starting in a state x in

170

LLeader and for any state y in InVLeadSpec such that XRLeaderY, there is some fragment of

the leader election specification starting in state y that not only has the same trace but also

has the same RW and Fail-related projections. (This is very useful later, when reasoning

about the Fail-transformed composition of the leader election implementation pieces with

pieces of other services):

Lemma 10.12 Let be in frags LLeader and y be a state in InVLeadspec such that

a. fstateRLeadery. Then there exists an a' in frags ILeadSp ec such that:

1. a'.f state = y.

2. trace(a) = trace(a').

3. If a is a closed exectuion fragment, then a.l stateZLeader '.l state.

4. a[O(ARW, VRW) = C'[(ARW, VRW).

5. For each p P, a [({failp, restartp}, {failedp}) = a'[({failp, restartp}, { failedp}).

The first three properties of the lemma follow from the fact that RLeader is a simulation re-

lation, while the last two properties follow from the construction of the matching execution

of LeadSpec in the proof that RLeader is a simulation relation, which preserves the actions

and variables of RW and each of the processes' Fail-transform variables and actions.

Now, to show that each state in LLeader is related to a legal state of the specification, it is

enough to show that each state in ResetLeader is related to a legal state of the specification.

Lemma 10.13 For each state x E LLeader, there exists a state y E InTVLeadSpec such that

XRLeaderY.

Proof: Let x be a state in LLeader. By definition of LLeader, x is a state reachable from a

state in ResetLeader. Hence, we just need to show that for any state x in ResetL ader, we

can construct a state y based on state x such that XRLeaderY holds.

Let state y(RW) = x(RW), y(LeadMain.now) = x(RW.now),

y(LeadMain.reg) = x(RW.reg), y(serviced) = 0, Vu E U : y(cand(u)) = i,

Vp E P : y(prob(p)) = false, and y(Fail(LeadClp)) = x(Fail(Leaderp)).

171

It is trivial to verify both that state y satisfies the properties of InVLeadSpec and that

XRLeaderY holds. 0

We can now conclude that a trace of an execution of LeadImpl started in a state in

LLeader is the same as the trace of some execution fragment of LeadSpec starting in a legal

state.

Lemma 10.14 tracef ragsneadl C tracef rags eadSpec.

Proof. This follows from Lemma 10.13 and Lemma 10.12. M

10.3.3 Self-stabilization

We've seen that LLeader (Definition 10.8) is a legal set for Leadlmpl, and that each state

in LLeader is related to a state in InVLeadSpec (Lemma 10.13). Here we show that Leadlm-

pler self-stabilizes to LLeader relative to R(RWIIPbcast) (Theorem 10.17), meaning that

if certain program portions of the implementation are started in an arbitrary state and run

with R(RWflPbcast), the resulting execution eventually gets into a state in LLeader. This

is done in two phases, corresponding to each legal set L'Lader and LLeader.

After we show that Leadlmpler self-stabilizes to LLeader relative to R(RW|jPbcast),

we use the fact that RLeader (see Definition 10.9) is a simulation relation that relates states

in LLeader with states of LeadSpec in InVLeadSpec to conclude that after an execution of

Leadlmpl has stabilized, the trace fragment from the point of stabilization with bcast and

brcv actions hidden is the suffix of some trace of LeadSpec starting in InVLeadSpec (Theo-

rem 10.18).

It is easy to check that pP Fail(Leaderp) is self-stabilizing to L'Leader in time te

relative to R(Pbcast |RW), where tead is any t such that t > Esample. (To see this stabiliza-

tion result, just consider the moment after each node has received a GPSupdate, which

takes at most 6 saple time to happen.)

Lemma 10.15 Let tlad be any t such that t > Eam,ple.

-,Jpp Fail(Leader) is self-stabilizing to L'Leader in time tad relative to R(Pbcast RW).

172

We show that starting from a state in L'eader, LeadImpl ends up in a state in LLeader

within tead time, where tead is any t such that t > 2dphys + E.

Lemma 10.16 Let t'ad be any t such that t > 2dphys + .f Lagjleaeader 2 ags

fragSLadeipt stabilizes in time t2ead to fragsLLead

Proof: We just need to show that for any length-tead prefix a of an element of
L'

frags Leader a.lstate E LLeader. By the definition of LLeader, we just need to show

that there is at least one state in ResetLeader that occurs in a.

Let to be equal to a.fstate(RW now), the time of the first state in a. In a. fstate,

there may be messages in Pbcast.pbcastq that can take up to dphys time to be dropped or

delivered at each process. We'll call any of these above messages "bad" messages. We

know that all "bad" messages will be processed (dropped or delivered at each process) by

some state x in a such that x(RW.now) = tl = to + dphys.

Code inspection tells us that for any state in L'eader and hence for any state in a,

any new bcast transmissions of candidate messages will occur exactly when RW.now

mod t lie = 0, and will be processed (dropped or delivered at each process) by dphy later.

Notice that in each of these cases, any bcast transmission is processed by dphys into a

round. This implies that any state after state x in a where RW.now mod tslice > dphys or

RW.now mod tslice = 0 satisfies properties 1, 2, and 4 of ResetLeader*

Notice that any state after x in a where RW.now mod tlice > dphys + also satisfies

property 3 of ResetLeader. This means that to complete our proof we just need to bound

the amount of time that could be required to get from state x to a state x* such that t2 =

x*(RW.now) mod tslice > dphu + E and x*(RW.now) > x(RW.now).

We consider three cases for time tl. First, if tl mod tli,,e > dphys + 6, then for any t2

such that t2 - tl E (0, tslice - (tl mod tsiice)), we're done. Second, if tl mod tsice

dphys + E but does not equal 0, then for t 2 = t1 + dphy, + E, t 2 mod tsice > dphys + E, and

we're done. Last, if tl mod tlie = 0, then for any t2 such that t 2 - tl E (dphys + E, tslice),

t2 mod tslice > dphys + e, and we're done.

This implies the total time for stabilization is any t > 2dphys + E, which tad satisfies. m

Now we can combine our stabilization results to conclude that Fail(Leaderp) compo-

173

nents started in an arbitrary state and run with R(Pbcast II RW) stabilizes to LLeader in time

tlead, where tlead is any t such that t > 2dphys + E + 6 sample.

Theorem 10.17 Let tlead be any t such that t > 2dphys + 6 + Esample-

Leadlmpler is self-stabilizing to LLeader in time tlead relative to R(Pbcast| RW).

Proof: We must show that execSU(Leadmpler)IIR(RWIPbcast) stabilizes in time tlead to

fragsLLeader By Corollary 3.11, fragS Leadmpler is the sameLeadlmplerjjR(RWjjPbcast) Leader is the same

as fragSLLealpl. The result follows from application of transitivity of stabilization

(Lemma 3.6), applied to the two lemmas above. Let ted = Esample + (tlead - 2dphs -

6 - Esample)/2 and tead = 2dphy + + (tlead - 2dphys - E - Esample)/2.

L'
First, let B be execSU(Leadlmpler)I|R(RWIlPbcast), C be frags dmpl, and D be

frags L ead in Lemma 3.6. Then by Corollary 3.11 and Lemmas 10.15 and 10.16, we

have that exeCSU(LeadImpler)|IR(RWIPbcast) stabilizes in time tad + tead to fragSLLeadnpl.

Since tlead = tlead tead, we conclude that Leadlmpler self-stabilizes in time tlead to

LLeader relative to R(RW IPbcast).

We can finally pull our results together to conclude that traces of Leadlmpl with

Fail(Leaderp) components started in an arbitrary state and run with R(Pbcast| RW) sta-

bilize in time tead to traces of LeadSpec starting from a state in InVLeadSpec.

Theorem 10.18 Let tlead be any t such that t > 2dphys + E + Esample*

traceSU(Leadlmpler) IR(PbcastllRW) stabilizes in time tlead to tracesstart(LeadSpec,InLeadSpec).

Proof: By Theorem 10.17 and the definition of self-stabilization, we have that

traceSU(Leadlmpler) 1iR(Pbcastll RW) stabilizes in time tlead to trace frags) Leadmpl Since we

showed in Lemma 10.14 that tracefragsLLeaI pl C traceStart(LeadSpec,InLadSp,) we

have our result. M

174

Chapter 11

Implementation of the VSA layer

Here we describe an implementation of the VSA layer (defined in Chapter 7) by the mobile

nodes in a network. This implementation uses RW, the totally ordered broadcast service,

and the leader election service.

We present the implementation as a trivial client implementation, together with a more

involved VSA implementation. We then reason that this implementation describes a stabi-

lizing VSA layer emulation algorithm.

11.1 Client implementation

Recall the VSA abstraction consists not just of VSAs and Vbcast, but also client au-

tomata, corresponding to mobile nodes in the network. The implementation of client

automata is almost trivial; CE[alg]p is equal to alg(p), except that the vcast and vrcv

actions are replaced by tocasts and torcvs of message tuples. A vcast(m) becomes a

tocast((vmsg, false, m)). A vrcv(m) input becomes a torcv((vmsg, b, m)), b E Bool,

action. The effect on local state is the same for both actions.

11.2 VSA implementation

We describe a fault-tolerant implementation of a VSA by mobile nodes in its region of

the network. At a high level, the individual mobile nodes in a region share emulation of

175

Figure 11-1: VSA layer implementation. Each process runs a collection of algorithms:
LeadC1, TOBDelay, and TOBFilter, defined previously, together with CE[alg] and
VSAE[alg], the client and VSA emulator algorithms.

the virtual machine through a deterministic state replication algorithm while also being

coordinated by a leader. Each mobile node runs its portion of the totally ordered broadcast

service, leader election service, and a Virtual Node Emulation (VSAE) algorithm, for each

virtual node. The TIOA implementation for VSAEp is in Figure 11-2.

For each alg E VALgs, VSAE[alg]p has five kinds of interface actions:

* Input GPSupdate(l, t)p, 1 E R, t E R>o, p E P: This input indicates that a process

p is currently located at position 1.

* Input leaderp, p E P: This input communicates that a process is the leader for its

current region.

* Input torcv(m),, m E VM,p E P: This input is either of a vmsg containing a

virtual node layer message to be received by the region or a vstate, which contains

the state of a VSA.

* Output tocast(m)p, m E VM, p E P: This output is either of a vmsg containing

a virtual node layer message from the current region's VSA or a vstate message

containing the state of the current region's VSA.

176

* Output preferp, p E P: This input indicates that the process is an emulator of its

current region's VSA.

It also has the following state variables:

* clock : Ro U {I}: This variable is I initially, and then updated to real-time through

a GPSupdate input. Once set, it progresses at the rate of real-time.

* reg : U U {I}: This variable is I initially, but it is updated to reg(l) whenever a

GPSupdate(l, t)p input occurs.

* part : Bool: This Boolean indicates whether the process is attempting to participate

in the virtual machine emulation in the current round.

* leader : Bool: This Boolean indicates whether the process is currently the leader of

its region.

* vstate : U,,EUQalg(u) U {I}: This variable stores the local copy of the emulator state,

if it is known by the emulator. Otherwise, it is I.

* savedq : (Msg x R-O)*: This queue stores timestamp-tagged messages to be re-

ceived by the VSA. Whenever a vmsg is received via a torcv, the included message

is stored together with the current time at the end of savedq.

* outq : Msg*: This queue is a queue of outgoing messages for the local region's

VSA.

Mobile nodes in a region u use a leader-based emulation algorithm to implement the

region u's virtual node. At a high level, a leader is periodically selected in a zone by

the leader election service (described in Chapter 10). A leader is responsible for both

broadcasting the messages that would have been sent by the virtual machine in its region

in the last e time, where e is the VBDelay buffer delay parameter, and broadcasting an

up-to-date version of the VSA state. This broadcast is used to both stabilize the state of

the emulation algorithm, forcing all emulators in the same region to have the same virtual

machine state, and to allow newly joining emulators (those that have just restarted or moved

177

into the region) to start participating in emulation. This virtual machine state is frozen

from the point of the sending of this virtual machine state message, until the mobile nodes

again participate in the leader election service. During that time, the virtual machine runs

at an accelerated pace, simulating the receipt of messages received from TOBcast while

doing so, until the machine is caught up with real-time and the next leader is chosen. Any

broadcasts that this emulation of the virtual machine produces are stored in a local outgoing

queue for broadcast if the emulator becomes a leader.

We now describe the emulation algorithm in more detail.

Round-based virtual machine emulation. Our VSA emulation algorithm follows a

round-based structure. As in the leader election service, time is divided into rounds of

length tsice = e, where each round begins at a multiple of tslice.

All active simulation of VSA actions is done only in the first d time of a round, after

which the VSA state is frozen until the next round. During that d period, each emulator in

a region stores and updates the state of the VSA (including the VSA's clock value) locally,

simulating all actions of the VSA based on it. To guarantee the VSA emulation satisfies

the specifications from Chapter 7 (bounding the time the output trace of the emulation may

be behind that of the VSA being emulated), the virtual clock must catch up to real time.

This is done by having the virtual clock advance at a rate that allows it to simulate an entire

timeslice's worth of the VSA in d time. This is illustrated in Figure 11-3, where the virtual

clock proceeds in fits and starts relative to real time, occasionally falling behind and then

catching up. It is formally described in lines 34-36.

At any time, when an emulator receives a TObcast message with a vmsg tuple (contain-

ing a Vbcast message), it places the message in a local saved message queue (lines 50-52)

from which it later simulates the VSA vrcving (processing) the message (lines 72-78). If

the VSA is to perform a local action, the emulator simulates its effect on the VSA state

(lines 80-87). If the VSA action is to vcast a message, the emulator places the message in

an outgoing VSA queue (lines 86-87), to be removed and tocasted in a vmsg message as a

VSA message by the leader, in the VSA's stead (lines 89-93). This queue starts each round

empty.

Leader responsibilities. For fault-tolerance and load balancing reasons, it is necessary

178

Signature:
2 VM= ({vstate}x UxU UEuQalg(u))U ({vmsg} xBoolxMsg)

Input GPSupdate(l, t)p, I E R, t E R
4 Input leaderp

Input torcv(m)p, m E VM
6 Output tocast(m)p, m E VM

Output preferp
8 Internal participatep

Internal VSArcv(m)p, m E Msg
lo Internal VSAlocal(act)p, act E UuEU(Halg(u) U Oalg(u))

Internal resetRoundp
12

State:
14 analog clock: R -oU {I}, initially I

reg: U U {1}, initially 1
16 part, leader: Bool, initially false

vstate: UuEUQalg(u) U {I}, initially I
18 savedq: (Msg xR-0)* ,

initially A
outq: Msg*, initially A

20

Derived variable: legal: Bool= = clock 7 1=4
22 [(leader= clock mod tlice= d) A (part ,clock mod tslice < 2d+e)

A reg ILA sorted(savedq)A V(m,t)E savedq:t< clock
24 A (vstate7 IL=[vstateE Qalg(reg)A V(m,t)G savedq:t> vstate.clock

A Vt= clock mod tlice: ([t> dtclock-vstate.clock= t-d]A [trE

26 (0,2d) =part]A [t< d -clock-vstate.clock= (t-d)(1-)])])

28 Trajectories:
evolve

30 if clock = Ithen
d(clock) = 1

32 else constant clock
r(clock).vstate = -ag(reg) (-r (clock).vstate.clock)

34 if vstate.clock < clock A clock mod tlic e < d then
d(vstate.clock) = tice / d

36 else constant vstate
stop when

38 Any precondition is satisfied.

40 Transitions:
Input GPSupdate(l, t)p

42 Effect:
if clock : t V reg 0 region(1) V legal then

44 clock - t

reg -- region(l)
46 part, leader - false

vstate I-
48 savedq, outq +- A

50 Input torcv((vmsg, b, m))p
Effect:

52 savedq -- append (savedq, (m, clock))

54 Output preferp
Precondition:

56 clock mod tli, ce= 0 A - part A vstate : I
Effect:

58 outq <-- A
part - true

Internal participatep
Precondition:

clock mod tlice = 0 A - part A vstate = I
Effect:

part ,- true

Input leaderp
Effect:

if clock mod tslice = d then
leader <- true

Internal VSArcv(m)p 72
Precondition:

vstate.clock < clock A next(vstate, 6alg(reg))= 1 74

part A (m, vstate.clock) = head(savedq)
Effect: 76

vstate - alg(reg)(vstate, vrCV(m))
savedq ~ tail(savedq) 78

Internal VSAlocal(act)p 80
Precondition:

vstate.clock < clock Apart 82
act = next(vstate,

6
alg(reg)) ' I

Effect: 84
vstate -- alg(reg) (vstate, act)
if act = vcast(m) then 86

outq -- append(outq, m)
88

Output tocast((vmsg, true, m))p
Precondition: 90

clock IA leader A vstate $ ILA m = head(outq)
Effect: 92

outq - tail(outq)
94

Output tocast((vstate, u, vstate'))p
Precondition: 96

clock 7 IA reg = u A leader
vstate = vstate' A [vstate = IV outq = A] 98

Effect:
leader +- false lo0

Input torcv((vstate, u, vstate'))p 10:
Effect:

if clock mod tslice = 2d A (part V vstate $ 1) 104
A reg = u then

vstate +- vstate' 10(
if vstate Qalg(reg) then

vstate - startalg(reg) (clock-d) lo

vstate.clock - clock -d
savedq +- savedq - {(m, t): t < clock -d} i1
part * false

11E

Internal resetRoundp
Precondition: 114

clock mod tice = 2d + e Apart
Effect: I

vstate ~ I
part - false I1

Figure 11-2: VSAE[alg],, emulator at p of alg E VAlgs.

179

I

t' t"

virtual clo k

real clock ", ," t t"

t-t'=e-d

Figure 11-3: Relationship between virtual and real time. A virtual clock behind real time
runs faster until it catches up.

to have more than just one process maintaining a VSA. In our virtual machine emulation,

at the beginning of a round, each process already emulating the VSA performs a prefer

output, and d later at most one of the mobile nodes in a VSA's region is chosen as a leader

by the leader election service. Recall from Section 10.1.3 that processes that perform a

prefer output are chosen over processes that do not by the leader election service. Hence,

a process that is already participating in the emulation of its local region's VSA is chosen

as a leader over a process that is not already participating in the emulation. The leader

has primary responsibility for performing VSA outputs and helping new emulators join the

virtual machine emulation. In our multiple emulator approach, a VSA is maintained by sev-

eral emulators, including at most one leader. However, only a process that is leader actually

performs the sending of the stored messages in outq, preventing multiple transmission of

messages from the VSA.

To keep emulators consistent, each emulator must develop the VSA variables in the

same way, and choose the same discrete actions to perform at the same points in a VSA

execution and with the same results. We assume that each emulator chooses the same VSA

trajectory from any particular VSA state and uses the same deterministic function next,

mapping a state and a transition set to a next action to perform. The results of a transition

180

are also determinized; if more than one state is possible as a result of a transition, then

some deterministic method for selecting one of the states is employed by each process. In

addition, emulators continue to simulate locally controlled VSA actions until no more are

possible before simulating receipt of received messages (line 83), also helping to ensure

that local emulator state remains consistent.

Emulation details. There are several complications in VSA emulation that arise due to

both message delays and process failure:

Joining: When a node discovers it is in a new region, it sets its local region and clock to

match that from GPSupdate, and initializes its remaining variables (lines 41-48). At the

beginning of the first full round it is alive for, the process will perform a participate action,

setting its local part variable to true (lines 61-65), indicating that the process has been in

the region since the beginning of the round, allowing us to conclude that the process expects

to receive all TObcast messages sent since the beginning of the round. 2d time later, when

any process in the region with part set to true or already emulating the VSA receives a

vstate message for its region, it computes its region's VSA's state from the information in

the message and stores it as the frozen VSA state for use in the next round (lines 102-111).

The clock in the resulting VSA state is set to be the time when the VSA state was current,

d into the current round. It also removes any messages from its local saved message queue

that were sent before the beginning of the round (line 110).

If no such vstate message arrives in the round (meaning the leader of the round failed

or left the region before sending such a message), then each process with part set to true,

regardless of whether or not the process is emulating the VSA, sets part to false and erases

its local VSA state (lines 113-118).

Restarting a VSA: If a process is leader and has no value for the VSA state (implying

that all processes that entered the leader competition for that region u in that round were

not emulating the VSA), it restarts the emulation (95-99). It does this by sending a vs-

tate message with attached state of I. Let 'alg(u) be a designated element of Oag(u) and

startalg(u) (t) be 5a1g(u) ('alg(u), time(t)). When a process in the region that is either em-

ulating the VSA or has part set to true receives such a vstate message, it computes and

stores the state startalg(u) (clock - d) as its local VSA state (lines 107-108), corresponding

181

to having restarted the VSA d time ago and immediately having it receive a time(clock - d)

input.

Self-stabilization. In order to make the implementation self-stabilizing, we use local cor-

rection during GPSupdate actions and the receipt of the periodic vstate messages sent by

leaders. The vstate messages sent by a leader contain state information which overwrites

any VSA state information at other emulators, bringing emulators into agreement about

VSA state.

11.3 Correctness of the implementation

Here we discuss several aspects of the correctness of our implementation of the VSA layer.

Each process runs the Fail-transformed composition of its local CE[alg], VSAE[alg],

TOBDelay, TOBFilter, and LeadCl automata (see Figure 11-1). We define our imple-

mentation system as the composition of these automata with RWlITObcastl LeadMain,

with certain actions hidden.

Definition 11.1 For each alg E VAigs, define VEmu[alg] to be

ActHide(HTOspec U HLeadspec, RW I I TObcast I I LeadMain

I ,,P Fail(CE[alg] IVSAE[alg] llLeadCl, lTOBDelay TOBFilter,)).

Before continuing, we will first present several definitions useful in our discussion.

Then, to show correctness, we use the strategy described in Section 9.3, tweaked slightly

to account for the fact that we are building on self-stabilizing implementations of services

in our implementation:

1. For each a1g E VAlgs, describe a legal set L Emu[alg] of VEmu[alg], and show that

it is a legal set (Lemma 11.8).

2. Define a legal set for the specification, and show that the set is a legal set. (The legal

set is the relatively trivial one,where RW IIVWII Vbcast is started in a reachable state,

and all other state is arbitrary.)

182

3. Show that the implementation started in LVEmu[alg] implements VLayer[alg] started

in a reachable state of RW| VW| Vbcast (Lemma 11.15). We show this in the fol-

lowing way:

(a) Define a simulation relation REmu[ag] between VEmu[alg] and VLayer[alg]

(see Definition 11.9). Show the relation is a simulation relation, after some

action hiding (Lemma 11.10).

(b) Show that for each state in LVEmu[alg], there exists a state in the invariant set

{X E QVLayer[alg] I X[XRWI VWIVbcast E InVRW||VW||Vbcast} such that REmu[alg]

holds between the states (Lemma 11.14) (Recall that InvRwIIVWIIVbcast, the

reachable states of the composition, is defined in Definition 7.5).

4. Show that the set of executions of the implementation started in invariant states of

TOBspec and LeadSpec stabilizes to the set of executions of VEmu[alg] started

in L3VEmu[alg] (Lemma 11.19). Notice that this differs slightly from the strategy de-

scribed in Section 9.3, since we will ultimately be using implementations of the to-

tally ordered broadcast and leader election services that stabilize themselves so that

they appear to be starting in invariant states of the two services. As we mention be-

low, we add an additional set of results to the strategy in Section 11.3.4 that allows us

to conclude that these stabilizing implementations together with the main emulation

algorithm self-stabilize to reach states related to states in LVEmu[ag]'

5. Conclude that the set of traces of VEmu[alg] stabilizes to the set of traces of

executions of VLayer[alg] starting in {x E QVLayer[alg] x [XRWIIVWlVbcast E

InvRWIIVWIIVbcast} (Theorem 11.20).

We also conclude another result (Theorem 11.21), which constrains the execution frag-

ments of VLayer that implementation fragments correspond to after stabilization. We then

add one more set of results, connecting the implementations of the totally ordered broad-

cast and leader election services to conclude that we actually have a stabilizing emulation

of the virtual node layer (Section 11.3.4).

183

procVstateu(t: R>O,
sentseq: (Msg x UxPxR>O)): Qalg(u)U {I}

2
rVstate: Qalg(u) U {1} +-- I

4 while sentseq 4 A
if head(sentseq)= ((vstate, u, vstate),v,p,t) A vE nbrs+ (u) then

6 rVstate - vstate
if rVstate Qalg(u) then

8 rVstate - startalg(u) (t)

rVstate.clock <-- t
10 sentseq - tail(sentseq)

return rVstate
12

procVmsgs(u:U,t:R>O,sentseq:(Msg x UxP xR >)*):(Msg xIR>o)*
14

rSeq: (Msg xR>O)* -- A
16 while sentseq : A

if head (sentseq) = ((vmsg,v,m),w,p,t') A wE nbrs+ (u) A t'> t
18 then

rSeq - append(rSeq, (m, t' + d))
20 sentseq 4- tail(sentseq)

return rSeq

toryVmsgs(to_rcv:(Msg x U)*,t:R>O):(MsgxR>0) =
rSeq: (Msg xIR'

0)* - A 46
while torcv z A

if head(torcv) = ((vmsg, u, m), v) then 48
rSeq -- append(rSeq, (m, t))

to_rcv +- tail(to_rcrv) 5o

return rSeq
52

lookAhead(u: U, vstate, vstate': Qalg(u), savedq:

(Msg x R>0)*,outq,to_send:Msg*):Boolean= = 54
return 371a172a2 ... Tn GEfragsvg() :

1. Tj.fstate = vstate A T .1state = vstate' 56
2. next(Tn.lstate, al9g(u)) = I
3. Vai: ai = next(ri.lstate, 6

5
ag(u)) # 1 58

V (next(ri.lstate, 6alg(u)) = 1
A 3m E Msg : ai = vrcv(m)) 60

4. Let (ml, ti), -.- , (m,, t,)= sequence
of received messages and vstate.clock 62
values for the vrcv actions in al, - -- , a,.
Then savedq = (mI, ti), .- - - ,m, mm ,). 64

5. Let mi, - --m= sequence of sent messages
for the vcast actions in al, - - - , an. 66
Then tosend= append(outq, (ml,- , ml)).

Figure 11-4: Functions for use in correctness proofs.

Now, we'll describe several functions and definitions helpful for the rest of the chap-

ter (Figure 11-4). This next definition is simply shorthand for the queue of messages in

TObcast.oldsent followed by the head of TObcast.sent if the message has already been

processed by TObcast for the input process.

Definition 11.2 Define procSent(p) to be oldsent if p

append(oldsent, head(sent)) if p E procs.

procs or

The functions in Figure 11-4 are described in more detail below:

* procVstate : (R -o x (Msg x U x P x Ro)*) + Qalg(u) U {I1, u E U: Consider

procVstateu(t, sentseq). This function takes a time t and a sequence of message

tuples sentseq, and returns a state for the VSA in region u. It finds the last vstate

tuple, of the form ((vstate, u, vstate), v, p, t) in the sequence. A state for the VSA

in region u is then calculated based on the tuple's vstate: if vstate E Qalg(u) then

the function returns vstate after replacing vstate.clock with t, and if not then the

function returns startalg()(t). (We later use this function to calculate the state of a

region's VSA based on vstate messages that have been sent (Section 11.3.2).)

* procVmsgs: (U x R ° x (Msg x U x P x R>O)*) - (Afsg x R'O)*: Consider

procVmsgs(u, t, sentseq). This function takes a region u, time t, and sequence of

184

message tuples sentseq, and returns a sequence of timestamped messages. It takes

all tuples in sentseq of the form ((vmsg, v, m), w, p, t'), where w E nbrs+(u) amd

t' > t, and returns the sequence projected onto m and t', after adjusting t' up by

d. (We later use this function to calculate the list of messages to be received by a

VSA based on information in TObcast (Section 11.3.2). The timestamp indicates

the virtual time at which the VSA should receive the message.)

* to_rcvVmsgs : ((Msg x U)* x R>-O) - (Msg x RO)*: Consider

to_rcvVmsgs(to_rcv, t). This function takes a sequence to_rcv of messages tagged

with regions and a time t, and returns a sequence of timestamped messages. It se-

lects the messages in to_rcv of the form ((vmsg, u, m), v), and returns the sequence

projected onto m and then paired with t. (This function is used for a reason similar

to the one for why we use procVmsgs. It calculates messages to be received by a

VSA based on information in TOBFilter. (See Section 11.3.2.))

* lookAhead: (U x Qalg(u) x Qalg(u) x (Msg x R--)* x Msg* x Msg*) -- Bool:

Consider lookAhead(u, vstate, vstate', savedq, outq, to_send). This function takes

a region u, an early state of u called vstate, an ending state of u called vstate', a

queue of timestamped messages to process called savedq, and queues of outgoing

messages called outq and to_send, and returns a Boolean indicating whether there

exists some execution of alg(u) such that:

1. The execution begins in vstate and ends in vstate'.

2. There are no locally controlled actions enabled in vstate'.

3. Each locally controlled action in the execution is the one arrived at from use of

the function next, and no vrcv actions occur unless no locally controlled action

is enabled.

4. Consider the sequence of vrcv actions in the execution, and construct a se-

quence of tuples corresponding to the messages in the vrcv actions, paired with

the value of vstate.clock when the action occurred. This sequence is equal to

savedq.

185

5. Consider the sequence of vcast actions in the execution, and construct a se-

quence corresponding to the messages in the vcast actions. Then outq followed

by this sequence is equal to to_send.

In other words, this function takes a VSA in state vstate and with a queue of outgoing

messages outq and indicates whether the VSA can then consume the messages in

savedq in a carefully prescribed way and end in state vstate' with a new sequence

of outgoing messages tosend. (We later use this function to verify that the frozen

state of a VSA emulation is consistent with a future abstract VSA state. (See Section

11.3.2.))

11.3.1 Legal sets

Fix some alg E VAlgs. Here we describe a legal set for VEmu[alg]. Recall from Lemma

3.13 that a legal set of states for a TIOA is one where each closed execution fragment start-

ing in a state in the set ends in a state in the set. We break down the legal set definition into

three legal sets in order to simplify the proof reasoning and more easily prove stabilization

in Section 11.3.3.

Legal state set LVEmu[a'lg

The first set of legal states describes some properties that become true at an alive process

at the time of the first GPSupdate for the process.

Definition 11.3 LVEmu[alg] is the set of states x of VEmu[alg] where each of the following

properties hold:

1. X[XLeadSpec E InVLeadSpec and X FXTOBspec E InvTOBspec.

This says that the state is such that when restricted to the variables of LeadSpec or

the variables of TOBspec, the result is in the respective invariant set.

2. For each p E P : -f ailedp A clockp, f I (nonfailed client with a non-l clock

value):

186

(a) reg, = reg(p) A clock, = LeadClp.clock = now A updated, A rtimerp, I.

This says that the client's reg matches its actual region, its clock is set to the

real time as is its clock in LeadCl, and its rtimer in TOBcast has started

running.

(b) [leader1, # clock, mod tslice = d] A [partp, = clock, mod tslice < 2d + e].

This says that if the leader bit is set, then it is d into the current round. Also, if

part is set, then it is at most 2d + e into the current round.

(c) sorted(savedq,) A V(m, t) E savedq, : t < clock, .

This says that the elements of savedq are ordered with respect to timestamp,

and that the highest timestamp the can be observed is the current time.

3. For each p E P : -failed , A clockp, # I A vstatep, _L (nonfailed client with a

non-I_ clock value and a non-L vstate):

(a) vstateP E Qalg(regp) A V(m, t) E savedq, : t > vstatep.clock.

This says that the client's vstate must be a state of the client's current region

VSA, and that all messages in savedq must have timestamps that are not smaller

than the vstate's clock value.

(b) clock , mod tslice (0, 2d) => part, .

This says that if the round is greater than 0 but less than 2d old, then part is

true.

(c) clockp, mod tsiice > d j== clockp - vstatep.clock = (clock, mod tsice) - d.

This says that when the round is at least d old, then the virtual clock's value is

set to equal what the real time was d into the current round.

(d) clock , mod tslice < d =,

clock , - vstatep.clock = (d - clock , mod tsice)(L - - 1).

This says that when the round is at most d old, then the virtual clock's value is

behind the real time by exactly the amount of time remaining until the round is

d old, times (tice - d)/d.

It is easy to observe that L Emu[alg] is a legal set for the implementation.

187

Lemma 11.4 LVEmu[alg] is a legal set for VEmu[alg].

Legal state set L2 Emu[alg]

The next legal set describes a subset of states of L'Vmu[alg] that satisfy some additional

properties with respect to the relationship between states of the leader election algorithm

and the core emulation algorithm.

Definition 11.5 L2Emu[alg] is the set of states x of VEmu[alg] where each of the following

hold.

1. x E LVEmu.

This says that L 2VEmu is a subset of LVEmu*

2. For each p E P : -f ailedp A clockp, I (nonfailed client with non-I clock value):

(a) partP : rtimer > min(d, clockp mod tsiice).

This says that if part is set, then TOBcast's rtimer is either d or is at least as

large as the age of the current round.

(b) [pref = vstatep = I] A [vstate, _ I :> rtimerp = d].

This says that if pref is set in the leader election service, then vstate is not I.

Also, if vstate is not I then rtimer must be equal to d.

(c) participatedp > (part, V clockp mod tslice = 0).

This says that if participated is set, then either part is set or the round has just

begun.

(d) [clockp mod tslice < d A partp]

: [(clockp mod tslice = 0 A -participatedp A [pre f 4 vstatep I])

V ([participatedp Vp E serviced] A [pref (p) 4: vstatep I]A

cand(regp) # I A [vstatep # I _ 3q E P: cand(reg) = (q, true)])].

This says that if part is set and the round is at most d old, then either: (a) the

round has just begun, pre f indicates whether vstate is not I, and a prefer' is

about to occur; or (b) participated is set or p is in serviced, pref (p) indicates

188

whether vstatep = I, some process is the leader candidate for regp, and if

vstate is not I then that leader candidate's pair is a "true " pair

(e) leaderp [-participatedp A cand(regp) = (p, pref (p))].

This says that if leader is set, then participated is not set and (p, pref (p)) is

the leader tuple for regp.

3. For each p E P : f ailedp : Vu, u' E U:

(a) [(u = reg-(p) A](vmsg,true, m) E to_sendp) V (u = regp A

I(vmsg, true, m) E tosendf)]

= [now mod tslice = d A 3b E Bool : (p, b) = cand(u)].

This says that if a non-failed client has a (vmsg, true, m) tuple in one of its

TOBDelay buffers then the round is exactly d old, and the process is the one

that won the leader competition for the region of the vmsg tuple.

(b) [(u = reg-(p) A 3(vstate, u', q) E to_sendpy) V (u = regp A 3(vstate, u', q) E

tosend+)] = [now mod tslice = d A -leaderp A -participatedp A u

u' A 3b E Bool : (p, b) = cand(u) A Vi E [1, Ito_sendptosend+l] :

[to_send-to_send+ [i] = (vstate, u,q') > Vj > i: tosend-to_send+ [j]

{(vstate, u, q) I q E Top} U {(vmsg, true, m) I m Msg}]].

This says that if a non-failed client has a vstate message in one of its

TOBDelay buffers then the region tag on the message corresponds to the re-

gion it was broadcast in, the client is the one that won the leader competition for

that region, the process will not be performing more leader-related actions, and

no vmsg or vstate messages for the region's VSA were sent after the vstate

message.

4. Vu E U: Vv E nbrs+(u) : [(now mod tslice = dA [3((vstate, u, q), v, p, now) E

sent : v E nbrs+(u) V 3((vmsg, true, m), u, p, now) E sent : /b E Bool : (p, b) =

cand(u)]) Vp E P : Vb E Bool : [(-f ailedp A cand(u) = (p,b)) # ([u =

regp = (--participated A -leaderp A Vm E Msg : (vmsg, true, m) to_send+)]

A [u = reg-(p) #= Vm E Msg : (vmsg, true, m) 5_ tosend;]

189

A Vq E Top : (vstate, u, q) tosend;tosend+)]].

This says that if a vstate message for a region exists or if a vmsg for the region

exists but was sent by a process that did not win the region's leader competition,

then the process that won the region's leader competition will not be producing any

vstate or vmsg messages for the region, and does not have any such messages in its

TOBDelay buffers. (In other words, any vstate and vmsg messages in existence

are not going to be second-guessed by another process sending more messages, and

we can find a single virtual layer state to map to that won't be changed based on

leader actions. Non-leader messages might have been sent, but they are not prob-

lematic if the leader won't be performing any more emulation-related broadcasts.)

5. For each p E P : -if ailed : [clock mod tslice = d A -ileaderp A -iparticipatedp A

part A cand(regp) = (p, pref(p))] => 3q E Top : ((vstate, regp, q) E

tosend tosend+ V ((vstate, regP, q), regp, p, now) E sent).

This says that if the round is d old, leader and participated are not set, part is

set, and (p, pref (p)) is the leader pair (meaning the client has completed its leader

duties), then a vstate message for the region has been sent by the client.

Lemma 11.6 LVEmu[alg] is a legal set for VEmu[alg].

Proof: Let x be any state in L2'Emu[alg] By Definition 3.12 of a legal set, we must verify

two things for state x:

* For each state x' of VEmu[alg] and action a of VEmu[alg] such that (x, a, x') is in

the set of discrete transitions of VEmu[alg], state x' is in L2VEu[alg].

* For each state x' and closed trajectory 7 of VEmu[alg] such that ..fstate = x and

T.lstate = x', state x' is in L'Emu[alg].

By Lemma 11.4, we know that if x satisfies the first property of L'Emu[alg], then any

discrete transition of VEmu[alg] will lead to a state x' that still satisfies the first property,

and any closed trajectory starting with state x will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

190

definition, the state x' satisfies all parts of the remaining properties of LEmu[alg]. Since the

state of CE[alg]p is not constrained in the legal set definition, we consider only the tocast

outputs of those automata while checking the legal set properties.

For the first case of the legal set definition, the proof is one large, rather simple, case

analysis for each action. For each action, most properties are trivial to verify:

* failp, restartP, drop(p), resetRoundp, VSArcv(m)p, VSAlocal(act),,

torcv'(m, u)p: All properties will still hold in state x' after any of these actions.

* GPSupdate(l, t),: Since x is in LVEmu[ag], we know that the only time a state

change could occur that might affect any of the properties is if the process is changing

regions. However, in that case, local boolean variables are changed to be mostly false,

making properties 2 and 5 trivially hold. Properties 3 and 4 are also easy to verify in

this case.

* tocast(m)p: The cases of interest to check are where the message being sent is a

true-tagged vmsg message or a vstate message.

When the message is a true-tagged vmsg message, the only interesting properties

to check are properties 3 and 4. For property 3(a), we need to check that now

mod tslce = d and p is the winner of the leader competition for its current region.

That now mod t,lice = d follows from the fact that the precondition specifies that

leaderp must hold, which implies that now mod tslie = d because property 2(a)

and property 2(b) of LEm[alg] held in state x. That the process is the winner of the

leader competition follows from the fact that property 2(e) holds in state x.

For property 3(b) , we need to check that there were not already any vstate messages

for the region in a TOBDelay queue. However, the fact that leader, was a precon-

dition for the action implies that in state x there could have been no such messages in

a TOBDelay queue. Similar reasoning reveals that property 4 also must still hold.

When the message is a vstate message, the interesting cases to check are for prop-

erties 3(b), 4, and 5. Property 5 is easy to immediately see since a vstate message

is added to a TOBDelay queue. Property 3(b) and 4 hold for reasons similar to

reasons they held in the vmsg case.

191

* tocast'(m, f)p: The interesting cases to check are for properties 4 and 5.

For property 4, the main thing to check is that if the message transferred to TObcast

is a vstate for some region u or if it is a vmsg purportedly for the region's VSA but

not sent by the leader, then there wasn't already a vstate or vmsg for the region in a

process's TOBDelay buffer and that the leader of the region would not be submitting

any. The case where the message is a vmsg follows from the fact that property 3(a)

held in state x, making the vmsg case impossible. The vstate case follows from the

fact that property 3(b) held in state x, meaning that the leader must be done doing

work for the round and there are no other vstate or vmsg messages for the region in

its TOBDelay buffers.

For property 5, it is trivial to see that since a vstate message tuple is only transferred

via tocast' if the vstate tuple was in a to_send queue. Also, since property 3(b) held

in state x, the region attached to the message was the correct one with respect to the

to_send queue it was in. As a result of the tocast' action, the tuple is decorated with

the same region as in the to_send tuple and put into sent, implying property 5 holds

in state x.

* torcv(m),: The only interesting case to check is that of the receipt of a vstate tuple

message. The property that is interesting to check is the second conjunct of property

2(b). We need to show that if vstatep, i, then rtimer = d. If vstatep is not

updated by this action, then the fact that this property held in state x implies it still

holds in state x'. If vstatep is updated by this action, then it must be that either

vstate f I in state x or partP was true. If vstatep was not I in state x, then

the fact that this property held in state x implies that rtimerp is still equal to d. If

partp was true, then by the fact that property 2(a) held in state x, we know that

rtimer > min(d, clockp mod tslice). For vstatep to have been updated, we know

that clockp mod tsli = 2d, implying that rtimerp = d.

* reset: Since the precondition for this leader election action specifies that a round is

more than d old, all properties will hold in x'.

192

* preferp: The properties that must be checked are 2(a)-2(d).

For property 2(a), notice that the action sets partp to true. Since the precondition for

the action says that clockp mod tslice = 0, we must show that rtimer > 0. In other

words, we need to check that rtimer is not i. This follows from property 2(a) of

VEmu[alg]'

For property 2(b), notice that the precondition for the action says that vstatep h I,

and that one of the results of the action is the setting of pref, to true. This implies

that the first conjunct in property 2(b) holds. To see that the second conjunct holds,

we need to check that rtimerp = d. However, since vstatep was not _ in state x and

this property held in state x, we know that rtimerp = d in state x. Since rtimerp

and vstatep are not changed by this action, we can conclude that rtimerp = d.

For property 2(c), notice that a result of the action is that participatedp is set to false,

making property 2(c) trivially true.

For property 2(d), notice that since a precondition of the action is that clockp

mod tsic = 0, and a result of the action is that participatedp is set to false and

pref, is set to true, property 2(d) holds.

* prefer'(val)p: The properties that must be checked are 2(c) and 2(d).

For property 2(c), since one of the preconditions for the action is that clockp

mod tslice = 0, this property trivially holds.

For property 2(d), since participatedp is set to true by this action, we must show that

if partP is true, then cand(regp) is set to a non-I value, pref(p) indicates whether or

not vstatep I, and if vstatep I then some true-tagged process is cand(regp).

Since two of the preconditions for this action are that participatedp is not true and

val = prefp, if partp is true then since property 2(d) held in state x it must have

been the case that pref, indicated whether vstatep # I. As a result of this action,

we know then that pref (p) would also indicate this. Also as a result of this action, we

know that cand(regp) will not be set to _, and that if vstatep I then cand(regp)

would be set to some "true" pair.

193

* leaderp: The properties to verify are properties 2(e), 3(b), and 4. Since the two

preconditions of this action are that clockp mod tslice = d and that participatedp

be set, we know that properties 3(b) and 4 trivially still hold. For property 2(e), we

need to verify that participatedp is false and that cand(regp) = (p, pref (p)). That

participatedp is false is a result of the action. That cand(regp) = (p, pref(p)) is

true is because properties 4 and 7(e) of InVLeadSpec hold in state x.

* leader'(val)p: The only nontrivial check is for property 2(d). However, this is also

easy to check since the property is assumed to have held in state x and a precondition

for this action is that now mod tslice # 0.

* participatep: The properties that must be checked are 2(a)-2(d). The reasoning for

property 2(a) is the same as for preferp.

For property 2(b), since one precondition of the action is that vstatep = I, we must

show that pref, does not hold. This follows from the fact that this property held in

state x, when vstatep also was equal to I, and pref, is not updated as a result of this

action.

For property 2(c), since one precondition of the action is that clockp mod tslie = 0,

the property trivially holds.

For property 2(d), we must verify that either participatedp is false and pref, is

false, or that participatedp is true, pref(p) is false, and cand(regp) is not I. Since

property 2(c) held in state x and pref, is not changed by this action, we know that

pref is false in state x'. This means we just have left to show that if participatedp

is true, then pref(p) is false and cand(regp) is not I. However, since property 2(c)

held in state x and this action does not change the value of participatedp, we know

that participatedp must have been true in state x as well. By property 7(c) and 7(d)

of InVLeadSpec, we know that pref(p) is false and cand(regp) is not I in state x.

Since none of these variables were modified by this action, the property must still

hold in state x'.

For the second case of the legal set definition, we now consider any closed trajectory 7 such

194

that x = 7.fstate. Let x' be T.lstate. We must show that x' E LEmu[alg]. The interesting

cases to verify are for properties 2(a), 2(c), 2(d), and 3. Property 2(a) is preserved by the

fact that rtimer and clock variables both increase at the same rate until rtimer hits d.

Property 2(c) is preserved because of stopping conditions on lines 56 and 63 that force

the part variable to be changed to true when clock mod tslice = 0. Property 2(d) is

preserved because of leader election service stopping conditions forcing a process with

false participated to perform a prefer' action when now mod tsice = 0. Property 3 is

preserved because stopping conditions for TOBDelay force messages in tosend buffers

to immediately be sent. m

Legal state set L3
VEmu[alg]

The final legal set describes a subset of states of LEmu[alg] from which the system demon-

strates consistency for the emulated state of a VSA.

Definition 11.7 L3VEm is the set of states x of VEmu where each of the following hold:

1. x E L2VEmu

This says that LVEmn is a subset of L2Emu.

2. For each p E P : -f ailedp A clockp = I (non-failed client with non-I clock value):

(a) [partp V clockp mod tslice = 0]

procVmsgs(regP, tslice now/tsice], procSent(p)) = append (savedq -

{(m, t) t - d < tsse Lnow/tsuice}, to_rcvVmsgs(to_rcvp, now)).

This says that if part is set, then each message sent since the beginning of

the current round that can be received by the client's current region will be

received by the client or has been stored in the client's savedq.

(b) partp V((vstate, regp, vstate'), v, q, d + tsuceLclockp/tsuc,,) E

procSent(p) : (v nbrs+(regp) V ((vstate, regp, vstate'), v) C to_rcvp).

This says that if part is set then it has not yet received a vstate message sent

at d into the current round for its current region.

195

(c) [vstate f I A -part] [procVmsgs(regp, vstatep.clock -

d, procSent(p)) = append(savedqp, torcvVmsgs(torcvp, now))

A(vstate, = procVstate(d + tsice([now/tslicel - 1), procSent(p))

V [clockp mod tsice = 2d A 3((vstate, reg, vstate'), v) E torcvp])].

This says that if vstate is not I and part is not set, then each message sent

since d before the client's virtual clock time that can be received by the client's

current region will be received by the client or has been stored in the client's

savedq, which contains no other messages but these. Also, either the client's

vstate is equal to the one from the last vstate message for the region, or the

round is 2d old and the client is about to receive such a message.

(d) [vstatep I A part, A clockp mod tslice = 0]

]seq = (ml, vstatep.clock), (m 2 , vstatep.clock) . ,(m, vstatep.clock)

[lookAhead(reg, procVstate(regp, vstatep.clock, procSent(p)), vstatep, seq, A, outq,)

AprocVmsgs(regp, vstatep.clock - d, procSent(p)) =

append(seq, append(savedq, torcvsgys(to_rcv,, now)))].

This says that if the round has just begun, vstate is not I, and the process

has already performed a prefer output, then there is a tagged sequence seq of

messages such that seq followed by savedq and the vmsg messages about to be

received from TOBFilter is equal to the sequence of vmsg tagged messages

sent d before vstate.clock for receipt in the current region and processed for p

by TObcast. Also, vstate and outq are consistent with the state and outgoing

buffer that would result if the virtual machine ran starting from the attached

virtual state of the last vstate message for the region in the prior round, and

performed vrcv actions based on the messages and timestamps in seq.

Lemma 11.8 L3Emu[alg] is a legal set for VEmu[alg].

Proof: Let x be any state in LVEmu[alg]. By Definition 3.12 of a legal set, we must verify

two things for state x:

* For each state x' of VEmu[alg] and action a of VEmu[alg] such that (x, a, x') is in

the set of discrete transitions of VEmu[alg], state x' is in L3VEmu[alg]'

196

* For each state x' and closed trajectory T of VEmu[alg] such that T.fstate = x and

T.lstate = x', state x' is in LVEmu[alg]

By Lemma 11.6, we know that if x satisfies the first property of L3 Emu[alg , then any

discrete transition of VEmu[alg] will lead to a state x' that still satisfies the first property,

and any closed trajectory starting with state x will end in some state that satisfies the first

property. This implies that we just need to check that in the two cases of the legal set

definition, the state x' satisfies all parts of the remaining properties of L. Since the

state of CE[alg]p is not constrained in the legal set definition, we only consider the tocast

outputs of those automata while checking the legal set properties.

For the first case of the legal set definition, we consider each action:

* failp, restart,, reset, prefer'(val)p, leaderp, leader'(val)p, tocast(m),,

tocast'(m, f)p, drop(p): All properties will still hold in state x' after any of these

actions.

* GPSupdate(l, t)p: The only interesting case is where GPSupdate changes the re-

gion of a process. However, in that case, emulation-related Boolean variables are all

set to false, savedq is cleared, and vstate is set to 1, making property 2 trivially

hold.

* torcv(m)p: If the message is a vmsg message, then the interesting properties to

check are properties 2(a), 2(c), and 2(d).

For property 2(a), it is easy to see that if part is true, it must have also

held in state x and that the property holds because the message at the head of

to_rcvVmsgs(x(to_rcvp), now) is now moved to the end of savedq, preserving the

property. The reasoning for properties 2(c) and 2(d) is similar.

If the message is a vcast message for the process's current region and the round is

exactly 2d old, then the interesting properties to check are properties 2(b) and 2(c).

For property 2(b), if partp was set in state x, then a result of this action is that

partP is set to false, making this property hold. For property 2(c), this action only

changes vstate or part if part held in state x or vstate was not I. The result of the

197

action is then to set vstate to a non-1 value consistent with the one in the m, strip

savedq of messages sent before the start of the round, and set part to false. That

procVmsgs has the appropriate relationship to savedq and torcv holds because

in state x either vstate was not I, implying that this statement held in that state,

or partp held, implying property 2(a) held in state x, and hence still holds in this

one. For the second conjunct we must show this vstate message was the one that

procVstate uses to calculate the virtual state it returns or that that message is still in

torcv. We know by property 7(d) of InvToBsPe that to_rcv contains a suffix of the

messages that the process was to receive in procSent(p). Hence, if there exists no

other vstate message for the region in torcv we know that m must have been the

one consistent with the result of procVstate. (This is partly because properties 2(a)

and 2(b) of LEiu[alg]1 tells us that rtimer must be d and hence that the process will

receive any messages that should be received by processes in its region.)

* torcv'(m, u)p: The reasoning for this action is very similar to the reasoning for

torcv(m),.

* preferp: The reasoning for properties 2(a) and 2(b) mirror those of the participate,

action. The only additional property to check for this action is property 2(d).

Since a precondition of the action is that vstatep, # and clockp mod tslice =

0 and a result is that part, is set to true, we note that since property 2(c)

held in state x, it must be that vstate, = procVstate(d + tsice(Fnow/tsicel -

1),procSent(p)) and procVmsgs(regp, vstatep.clock - d, procSent(p)) =

append(savedq, torcvVmsgs(to rcvp, now)). We also know that outq is set to

A by this action. Hence, it is apparent that by selecting seq = A, the condition holds.

* participatep: Since a precondition of this action is that vstate = I and the result is

that part gets set to true, the only properties we need to verify are properties 2(a) and

2(b). Property 2(b) trivially holds since no such vstate messages could yet exist. To

show property 2(a) holds, notice that the left hand side of the equality consists of no

messages, due to properties 4 and 5 of InVTOBspec. Also property 7(d) of InVTOBspec

implies that the result of torcvVmsgs is also empty. Hence, all that remains is to

198

show that savedq contains no messages tagged with the current time. This follows

from the fact that a precondition is that clock mod tslic = 0 and this property held

in state x, which implies that savedq then contained no such tagged messages.

* VSArcv(m)p: Since a precondition of this action is that part is true and that the mes-

sage at the head of savedq is timestamped less than d into the round, the only inter-

esting property we need to check is property 2(d). Since this property held for some

seq and vstate in state x, we simply extend seq by appending (m, vstatep.clock),

which gives the second conjunct. Also, since the result of this action is exactly the

same change in vstate as with a vrcv(m) action, we have that the first conjunct must

also hold.

* VSAlocal(act)p: Since a precondition of this action is that part is true, the only

interesting property we need to check is property 2(d). Since this property held for

some seq and the vstate in state x, we keep the same seq, which preserves the second

conjunct. For the first, notice that since the result of this action is exactly the same

change in vstate as with a locally controlled action, and a vcast message will be

added to outq, we have that the first conjunct must also hold.

* resetRound: Since a result of this action is that vstatep is set to I and part is set

to false, property 2 will trivially hold.

For the second case of the legal set definition, we now consider any closed trajectory - such

that x = -r.fstate. Let x' be -.lstate. We must show that x' E L3 [alg]. The interesting

properties to check are properties 2(c) and 2(d). Property 2(c) holds because TOBDelay

stopping conditions force the processing of messages in to_send queues, guaranteeing re-

ceipt of any vstate messages before time moves beyond 2d into a round. Also, the local

copies of vstate cannot be updated at time 0 until part is updated through a prefer ac-

tion, which line 56 guarantees. Property 2(d) holds because of stopping conditions on lines

74-75 and 82-83, restricting the order in which simulated actions are performed on virtual

VSA state. 0

199

11.3.2 Simulation relation

Here we show that the implementation started in set L3 Emu[alg] implements the VLayer

started in a reachable state of RW| VW Vbcast. We do this by first describing a simula-

tion relation REmu[alg] for each alg E VAigs from our implementation of the VSA layer to

the VSA layer. We prove that REmu[alg] is a simulation relation in Lemma 11.10, and then

conclude that VEmu[alg] implements the VSA layer (Theorem 11.11). In other words, we

conclude that the traces of our implementation are traces of the VSA layer. We then show

in Lemma 11.14 that for each state in L3 there exists some state of VLayer[alg]

where RW IVW| Vbcast is in a reachable state that is related to it under the simulation

relation. We also show another result, that ties traces of the implementation to traces of a

constrained set of execution fragments of the VSA layer (Lemma 11.13).

The definition is structured in the following way: Property 1 constrains the relation so

that for XREmu[alg]y to hold, state x must be a state in the legal set L' Emu[alg]. This con-

strains the simulation relation to only be concerned with implementation states which we

will show are related to certain desirable states of VLayer [alg] (see Lemma 11.14). Prop-

erty 2 states some consistency properties of state y of the virtual layer. Property 3 relates

the value of RW between the implementation and the specification. Property 4 constrains

the value of vbcastq in the specification based on messages sent in the implementation.

Properties 5 and 6 relate the failure status and state of physical nodes in the implementa-

tion to the state of client nodes in the specification. Property 7 describes the failure status

and state of the virtual nodes based on the state of the implementation. One of the other

things to note in property 7 is the relationship between the failure status of a VSA and the

state of the emulation in a region. Intuitively, a VSA is failed when there are no emulators

in a region that will be able to continue or perform emulation of the VSA. The conditions

describing exactly when a VSA for some region is failed is described in property 7(a).

Definition 11.9 For each alg E VAlgs, define REmu[alg] to be a relation between states x

of VEmu[alg] and states y of VLayer[alg] such that XREmu[alg]Y if each of the following

holds:

1. x c L3Emu[alg]'

200

This says that state x must be a state in the legal set LVEmu[alg].

2. State y satisfies the following properties:

(a) y [XRWIIVWIIVbcast E InVRWIIVWIIVbcast.

This says that the RW IVWI Vbcast components of y are in InvRWIIVWIVbcast.

(b) Vu E U: [(-f ailedu =' clocku = RW.now)Alast(u) > max({t E R>O 1 1 E

R: 3p E P: (1, t) E updates(p)})].

This says that any non-failed VSA has a clock equal to the real-time and that

VW has updated each region with a time action no longer ago than the last

GPSupdate.

(c) Vu E U: -f ailedu : V(m, t) tosendu:

[now mod tslice > d > e + t - rtimeru 2 d - now mod tslice + tsice]

A [now mod t slice < d # e + t - rtimeru > d - now mod tsiice].

This says that at any nonfailed VSA, the oldest message in its VBDelay buffer

is one that will not be older than e by the next time a round is d old.

3. x(RW) = y(RW).

This says that the RW component in both states is the same.

4. Let ((vmsg, bX, mj , u , p, t), ,((vmsg, b , mX , ux , p,, tx) be the subsequence

of x(oldsent)x(sent) of vmsg messages where tx > now - d. Let

(my1 , y ~, , P .. , (my, u, yt, P, r) be the subsequence of y(vbcastq) such that

ty > now - d. Then there exists a bijection between elements of the two sequences

such thatfor any two related tuples ((vmsg, b~, m) , U, pi, tx) and (my, y, ty ,):

(a) m = m A u i uj A t i = tj.

This says that the related tuples match with respect to the message sent, the

region they were sent from, and the time they were sent.

(b) Vu E U: au Pj' [i < n- x(sent)IV(i = 1+n-|x(sent) Alprocs| < PI)].

This says that a region is not in the set of "to-be-processed" ids in Vbcast

exactly when the TObcast tuple it is associated with is either in x(oldsent) or

is the head of x(sent) and the message was processed for some process.

201

(c) Vp E P: p Pj 4

[([i < n - x(sent) V (i = 1 + n - |x(sent)| Ap x(procs))] A [failed, V

((vmsg, bx, mx), ux) x(to_rcvy)]) V (tx # now A -regSpan (p, ux, tx))].

This says that a client id is not in the set of "to-be-processed" ids in Vbcast

exactly when either (a) the process fails the regSpan test and the timestamp for

the message is not now or (b) the TObcast tuple it is associated with is either

in x(oldsent) or is the head of x(sent) and p was processed, and either the

client is failed or has already processed the message tuple from its TOBFilter

queue.

5. Vp E P : x(failed) = y(failed).

This says that the fail status matches between the states for each client.

6. Vp EP : -,f ailedp:

(a) x(updatedp) y(updatedp) A x(CE[alg]) = y(alg(p)).

This says that the updated variable matches between the VBDelay and

TOBDelay automata in the two states. It also says that the state of the client

algorithm for the virtual layer being run is the same.

(b) Let (vmsg, false, mi),... (vmsg, false, m,) be the subsequence of

z(to_sendp-) of (vmsg, false, m) tuples. Then mi, . . , m, = y(to_sendp).

This says that to_send- delay buffer in VBDelay corresponds to the sequence

offalse-tagged vmsg tuples in the to_send- delay buffer in TOBDelay.

(c) Let (vmsg, false, mi), (vmsg, false, mn) be the subsequence of

x(to_send+) of (vmsg, false, m) tuples. Then nm,, .- - , Tn.= y(tosend+).

This says that to_send+ delay buffer in VBDelay corresponds to the sequence

offalse-tagged vmsg tuples in the to_send+ delay buffer in TOBDelay.

7. For each u E U: Let (mn, ti), - - - , (m,, t-) be y(to_sendu).

For each p E P, let (vmsg, true, n, ... , (vmsg, true, nm) be the subsequence of

x(tosendp) x(to_send+) of (vmsg, true, m) tuples.

(a) y(failed,) #= each of the following holds in state x:

202

i. /p E P : [-if ailedA([u = reg-(p)A3(vmsg, true, m) E x(tosendp)] V

[u = regp A 3(vmsg, true, m) E x(to_send+)])].

ii. now mod tlice d =

(,ip E P : [-if ailedp A clockp, I A regp = u A (part, V vstatep, 1)]

V(procVstateu(d + tslice Lnow/tslice], oldsent sent) = IA ,/p E P

[-7f ailed, A 3(vstate, u, vstate) E x(to_send-)x(to_send+)])).

iii. /3p E P : [-failedp A clockp # I A reg, = u A (-ipart V

-iparticipatedp) A vstatep # I A now mod tslice = 0].

iv. / Ep E P : [-if ailedp A clockp / I A regp = uA partp A

cand(u) = (p, pref (p)) A (participatedp V leaderp) A (vstatep, IV now

mod tslice = d)].

This property describes exactly when a VSA is failed. These four properties are

basically the negation of the preconditions that will be described in part(c)(ii)-

(v). In part(c)(ii)-(v), we describe how to determine the state of non-failed VSAs

based on a case analysis of the state of the implementation. For each region,

property 7(a) makes the region be failed if it doesn't fit into any of the cases in

part(c)(ii)-(v).

(b) Vp E P :-f ailed,: [(u = reg-(p)A3(vmsg, true, m) E x(to-send7)) V (u =

regp A I(vmsg, true, m) E x(to-sendp+))] => (nP, ' ' ' , n) = (i , 1 , mm).

This says that true-tagged vmsgs in a non-failed process's TOBDelay buffers

correspond to a prefix of the sequence of messages in the appropriate region's

VSA VBDelay buffer

(c) If there exists a (m, now - d) = head(sent) and |x(procs)| < IPI then let

procSent = append(oldsent, head(sent)), else let procSent = oldsent.

Then -y(failed) = 3vstate E Qalg(u) : 3savedq E (Msg x R>o)* : 3outq E

Msg* such that each of the following holds:

i. lookAhead(u, vstate, y(vstate), savedq, outq, (mi, • , n)) .

ii. Vv E Top: [now mod tslice = d

A3p EP : (failed A clockp I A regp = u A [part, V vstate, # I])

203

A:p E P : (f ailedp A 3((vstate, u, v)) E x(tosend,)x(to_send+))] =

* [v E Qalg(u) 4 v [(Xalg(u) - {clock}) = vstate [(Xalg(u) - {clock})] A

[v Qalg(u) 4 vstate = startalg(u)(now)] A vstate.clock = now.

* savedq = procVmsgs(u, tslice [now/tsice],J procSent).

* outq = (n, n,).

This is the case where a round is d old and there exists a process in the

region that is eligible to process an incoming vstate message for the region

in that round, and some alive process has a vstate message for the region

in a TOBDelay buffer (In other words, the case where a vstate message

for a region has been queued for sending and some process is currently

eligible to receive it and continue the emulation.) Then y(vstateu) and

y(to_sendu) are consistent with the state that would result if the VSA at

region u were to start at the state calculated from that vstate message,

process messages that were sent starting in the beginning of the round and

that would be received in the region, and add messages generated by vcast

actions to the end of the true-tagged vmsgs in the process's TOBDelay

buffer

iii. [now mod tslice > d

Ap E P : (-if ailedp A clockp # I A regp = u A [partp V vstatep I])

AprocVstateu(d + tslice Lnow/tslice], oldsent sent) _1] 4

* vstate = procVstateu(d + tslice Lnow/tsicej , oldsent sent).

* savedq = procVmsgs(u, tslice Lnow/tsiice, procSent).

* outq = A.

This is the case where there is a vstate message for the region sent in this

round and there exists a process in the region that is eligible to process it.

(In other words, the case where a vstate message has successfidly been

transmitted and some process is currently eligible to receive it and con-

tinue the emulation.) Then y(vstateu) and y(tosendu) are consistent with

the state that would result if the VSA at region u were to start at the state

204

calculated from the vstate message, process messages that were sent start-

ing in the beginning of the round that would be received in the region, and

add messages generated by vcast actions to an initially empty tosend,.

iv. [now mod tslice = 0 A 3p E P : (-if ailed A clockp I A regp =

u A vstatep I A [-ipartp V -participatedp])] =

* vstate = procVstate (now - tli,, + d, oldsent).

* savedq = procVmsgs(u, now - tsice, procSent).

* outq = A.

This is the case where it is the beginning of the round and there is still

some process in the region with a non-I vstate that has not yet competed

in the leader election service. (In other words, the case where a round has

just begun and some emulator has yet to participate in the leader election

service, meaning it is still possible that an emulator will continue the VSA

emulation.) Then y(vstateu) and y(to_sendu) are consistent with the state

that would result if the VSA at region u were to start at the state calculated

from the vstate message for the region in the last round, process messages

that were sent starting in the beginning of the last round that would be

received in the region, and add messages generated by vcast actions to an

initially empty tosendu.

v. If head(x(sent)) is equal to some ((vmsg, b, m), v, p', now - d) where

v E nbrs+(u) and Ix(procs)l < IPI, then let X = (rm,now), else let

it be A. Then Vp E P : [-if ailedp A clockp, 7 1 A regp = u A partp A

(participatedp V leaderp) Acand(u) = (p, pref (p)) A (vstatep Vnow

mod tslice = d)]

* [x(vstatep) I A vstate = x(vstatep)]

V[x(vstate,) = I A vstate = startalg()(now)].

* savedq = append(savedqp - {(m',t') I t' < now - d},

append (to_rcvVmsgs (torcvp, now), x)).

* [x(vstatep) # I A outq = append((n, ... nP), x(outqp))]

205

V[x(vstatep) = 1 A outq = A].

This says that if a non-failed process is in a region, has part set, and is go-

ing to send a vstate message (it won the leader competetion for the region

and has not yet switched both its participated and leader bits off) then:

(a) if its vstate is not I then y(vstateu) and y(to_sendu) are consistent

with the state that would result if region u's VSA were to start at the pro-

cess's current vstate, process messages that were sent starting in the be-

ginning of the round that would be received in the region, and add mes-

sages generated by vcast actions to the end of the concatenation of the

true-tagged vmsgs in the process's TOBDelay buffer with the process's

outq;

(b) if its vstate is I (meaning the leader was not previously an emula-

tor) and the round is d old then y(vstateu) and y(tosendu) is consistent

with the state that would result if region u's VSA were to start at state

startalg(u) (now), process messages that were sent starting in the begin-

ning of the round that would be received in the region, and add messages

generated by vcast actions to an initially empty to_send.

Now we show that RJEmu[alg] is a simulation relation from VEmu[alg] to VLayer[alg],

both with some actions hidden.

Lemma 11.10 Define HVEu be {tocast(m)p, torcv(m)p, leaderp, preferp I m E Msg, p E

P}. Then for each alg E VAlgs, REmu[alg] is a simulation relation from

ActHide(HvEu, VEmu[alg]) to ActHide(HvL, VLayer[alg]).

Proof: By definition of a simulation relation we must show three things for all states of

the two automata:

1. We must show that for any x E OVEmu[alg] there exists a state y E OVLayer[ag] such

that XREmn[alg]Y. There is one unique initial non-failed and non-loc state for mobile

nodes in both the first and the second automaton, and any values of failed and loc for

each p E P is possible for either automaton. Have each VSA be failed. It is easy to

check that REmu[alg] holds between any two such states.

206

2. Say that x E QVEmu[alg] and y E QVLayer[alg], and that XREmu[alg] y. Then for any ac-

tion a E AVEmu[alg], if ActHide(HVEmu, VEmu[alg]) performs action a and the state

changes from x to x', we must show that there exists a closed execution fragment 0

of ActHide(HvL, VLayer[alg]) with 3.fstate = y, trace(/) = trace(p(x)ap(x')),

and z'REmu[alg].l1state. The interesting thing to note in this portion of the proof is

the failures of VSAs. There are several actions that can result in the failure of a VSA:

a fail of a process in its region, a GPSupdate that indicates that a process has left its

region, a tocast' of a vmsg message for the region by a process not in the region, or

a prefer'(true) at a process that will not win the leader election competition. In each

case, the VSA fails in the abstract level only if the resulting state in the implementa-

tion is one that satisfies property 7(a) of RVEmu[alg], which describes the conditions

corresponding to VSA failure.

By Lemma 11.8, Property 1 of REmu[alg] holds in x'.

For the other properties, we consider each action:

* Internal action a of CE[alg]p: Let / be p(y) a p(y'). It is trivial to see that

X'REmu[alg]Y and that the trace of both P and a are empty.

* reset, participate,, resetRoundp, preferp, leader'(val)p, or leaderp: Let /

be the point trajectory p(y). It is easy to check that X'R)Emu[alg]Y for each of

these cases and that the trace of both / and a are empty.

* failp: If the conditions in property 7(a) hold for regp in state x', then let 0 be

p(y) failpp(y*) failregpp(y'). Otherwise, let /3 be pg(y) failregp(y'). It is trivial

to see that the traces of a and /3 are the same in both cases. It is obvious that all

properties of the simulation relation hold between states x' and y'.

* restartp: Let /3 be p(y) restart, p(y'). It is trivial to see that X'REmu[alg]Y and

that the traces of /3 and a are the same.

* GPSupdate(l, t)p: Let ul -.ulul be some ordering of the region ids.

Let (ni,ji), - - - , (nk,k) be an ordering of the indices ni of tuples

(mi, uiti, P') in y(vbcastq) and process ids ji such that ti #: x(now),

207

ji E P', and -ix(regSpan(ji, ui,t)). If x(regp) - x'(regp)

and the properties in 7(a) hold for x(regp) in state x', then let 0

be p(y) GPSupdate(l,t)p p(y*) time(t),, p(y,)... time(t)u I P(Y1, 1)

drop(nil,ji) p(yi) ' drop(nk,jk) P(Yk) failregP p(y'). Otherwise, let 0 stop

after P(Yk). It is trivial to see that the traces of a and / are the same in both

cases.

The only interesting properties to check are properties 4(c) and 7(a). For prop-

erty 4(c), it is obvious that if the property held between state x and y, then it

will also hold between x' and Yk.lstate since the GPSupdate removes the as-

sociated message tuple for TOBFilter or will drop the message in TObcast

when exactly d time has passed since it was sent.

For property 7(a), the GPSupdate only affects the property if the process has

changed regions from some region u. If it has, then if the conditions in 7(a)

hold in state x', the simulation relation implies that that y'(failed,) must be

true. This is obviously the case after the addition of the fail event.

* tocast(m),: If there exists an m' such that m = (vmsg, false, m'), then let

3 be p(y) vcast(m')p p(y'). It is obvious that the properties of the simulation

relation hold between x' and y'. It is obvious that the traces of a and j are the

same.

If there is no such m', then let / be the point trajectory p(y). It is obvious that

the traces of a and 3 are the same. The only interesting properties to check

are property 7(b) if the message was a true-tagged vmsg message or property

7(c)(ii) if the message was a vstate message.

In the case of a true-tagged vmsg, we need to verify that the resulting

TOBDelay buffer of such messages corresponds to a prefix of the VSA's

VBDelay messages. This follows from the fact that property 7(c)(v) holds

between state x and y, implying that when the head of x(outq) is removed and

decorated to sit at the end of the TOBDelay buffers, the resulting outq com-

puted by the property for state x' is the same as in state x, implying the property

208

still holds.

In the case of a (vstate, u, q) message, we look at two cases, where q is in

Qalg(u) and where q is not. Notice that for this action to occur, it must be that

-if ailedp, clockp, I, regp = u, and leader,.

If q is in the set of states, then since state x and y satisfied property 7(c)(v)

and a precondition for the action is that outqp = A and no changes to vstatep,

savedqp, to_rcvp, or outqp are made by the current action, then the lookAhead

statement over the same arguments most hold between states x' and y'.

If q is not in the set of states, then since state x and y satisfied property 7(c)(v)

and a precondition for the action is that vstate = I and no changes to vstatep,

savedqp, to_rcvp, or outqp are made by the current action, then the lookAhead

statement over the same arguments most hold between states x' and y'.

* tocast'(m, f)p: If m is not a vmsg tuple then let / be the point trajectory

p(y). It is obvious that the traces of a and / are the same. The only in-

teresting property to check in this case is property 7(c)(iii). In order for

a tocast' of a vstate message for a region u to occur it must be that the

message was in a TOBDelay buffer, and by property 3(b) of LEmu[alg]

there can be no other vmsg or vstate messages after it in TOBDelay.

This implies that the x(procVmsgs(u, tslice[now/tsiceJ , procSent)) =

x'(procVmsgs(u, tsiceLnow/tsiuce ,procSent)), x(n, - - - , n) = A and

x'(procVstate(d + tslice Lnow/tslice] , oldsent sent)) is equal to the calculated

vstate in state x for property 2(c)(ii). All this implies that the result of the

lookAhead function between x' and y is still true.

If there exists an m' E Msg such that m = (vmsg, false, m')

then let / be p(y) vcast'(m',f)p p(y'). If there exists an m' E

Msg such that m = (vmsg, true, m') then we have four cases. If

f is true and state x' satisfies the conditions in property 7(a) then

let 0 be p(y) vcast'(m', true)regp (y*)fairg,,eg(y'). If f is true and

state x' does not satisfy the conditions in property 7(a) then let / be

209

p(y) vcast'(m', true)regp p(y'). The remaining two cases are for when f is

false, and where we replace regp with reg-(p). The most interesting property

to check is property 7(c)(v). However, since this same property held between

x and y and the only difference is that the tuple in TOBDelay that is associ-

ated with x(nl) is removed both from TOBDelay and the VSA's VBDelay,

preserving the property between state x' and y'.

* torcv(m): If there exists an m' E Msg and a b E Bool such that m =

(vmsg, b, mn') then let 0 be p(y) vrcv(m')p p(y'). Otherwise, let 0 be the point

trajectory p(y). It is obvious that the properties of the simulation relation hold

between x' and the either of the final states of 0. It is obvious that the traces of

oa and/3 are the same.

* torcv'(m, u)p, drop(p): If there exists a ((vmsg, b, m'), u, q, (now) - d) =

head(x(sent)) and xI(procs)l = IPI, then let n be the index of the el-

ement of y(vbcastq) associated with the tuple at the head of x(sent), let

uL,..U k be an ordering of the elements in nbrs+(u) and let k+l, - - -uk+l

be an ordering of the elements in U - nbrs+(u). Then let / be

p(y) vrcv(m'), /1 ... vrcv(m')u, /kdrop(n, Uk+1) /k+1 ... drop(n, uk+l) 3k+l,

where for each i E [1, k], /i reflects the maximal local computation of the VSA

in region ui after receipt of the message. Otherwise, let / be the point trajectory

p(y). It is obvious that the traces of a and / are the same in either case.

In the case where the message is a vmsg message, the interesting properties to

check are properties 4(b) and 7(c)(ii-iv). Property 4(b) holds since all region ids

are removed from the associated vbcastq message tuples's P' variable exactly

when procs in TObcast goes from being full to having processed a member.

The portions of property 7(c) of interest will hold between x' and 3.1state be-

cause the only difference in the computed vstate, savedq, and outq for the

lookAhead function is in the possible extension of the savedq from state x by

the appropriate received vmsg. The message is added to the computed savedq

for the implementation exactly when it is processed by the VSA in regp, imply-

210

ing that if property 7(c) held between state x and y then it also holds between

x' and /.lstate.

* prefer'(val),: If val is true and the properties of 7(a) hold in state x' then let 0

be p(y) failregp(y'). Otherwise let / be the point trajectory p(y). It is obvious

that the traces of oa and / are the same. It is obvious that the simulation relation

holds between state x' and the final state of 0.

* VSArcv(m)p: Let 0 be the point trajectory op(y). It is obvious that the traces of

a and / are the same. The only interesting property of the simulation relation

to check is property 7(c)(v). We know that the only difference in the calculated

vstate, savedq, and outq is that the vstate is the result of receiving mesasge m

and performing local computations until no more are possible at the VSA, and

removing the first element of the calculated savedq. Inspection of the function

lookAhead reveals that since property 7(c)(v) held between state x and y, it

must hold between state x' and y.

* VSAlocal(act)p: Let /3 be the point trajectory p(y). It is obvious that the traces

of a and /3 are the same. The only interesting property of the simulation relation

to check is property 7(c)(v), but the reasoning is similar to that of VSArcv.

3. Say that x E QVEmu[alg], Y E QVLayer[alg], and XREmu[alg]Y. Let a be an execution

fragment of ActHide(HvEmu, VEmu[alg]) consisting of one closed trajectory, with

a. fstate = x.

We must show that there is a closed execution fragment /3 of

ActHide(HvL, VLayer[alg]) with 3.fstate = y, trace(3) = trace(a), and

a.lstateREmu[alg]3.1 state. The interesting thing to note in this portion of the proof

is the VSA restarts in the abstract level. They occur when rounds are d old and

certain conditions are satisfied. They are added to executions of the abstract layer

based on trajectories of the implementation that straddle the point where a round is

d old.

If there exists a time t such that x(now) < t < x'(now) and t mod tsuce = d

then let ul, --- , k be some ordering of the region ids for which for each i E

211

[1, k] there exists a process pi such that -failed,,, clockp, - I , regp, = ui,

participated, V leaderp,, and cand(ui) = (pi,pref(pi)). If such a t exists

then let / be 3o restart,, p(y')time(t)1, p(yl) ... restartu p(y')timed (t) , Yk, where

3o.lstate(now) = t. Otherwise, let 0 consist just of Yk. Both o0 and Yk are required

to provide maximal ordered local computation at the VSAs (the actions performed at

each VSA are the ones as indicated by the next function for the VSA and there exist

no locally controlled actions for any VSA in state yk.lstate).

Finally, if x(now) < x'(now) then y contains a drop(n,j) action at time

yk.lstate(now) for each tuple (m, u, t, P') = vbcastq[n] and process id j such that

j E P' and ux'(regSpan(j, u, t)). This ensures that for property 7(c) the calculated

savedq for each subpart corresponds to the messages that have been received by the

VSA.

Since each of the actions possibly added above are internal to the abstract system,

it is apparent that the traces of a and I are the same. To check that the simulation

relation holds between state x and state Yk.lstate, we note that the most interesting

properties to check are properties 7(a) and 7(c).

For property 7(a), notice that by construction at d into a round, if there is a process

that will perform send a vstate message, then the VSA of the process's region is

alive, tacking the fourth part of property 7(a). Since the VSA cannot fail until a

discrete action occurs to change a variable referenced in property 7(a)(iv), we know

that property 7(a) holds between states x' and Yk. 1state.

For property 7(c), notice that in state Yk, each alive VSA performs an ordered se-

quence of locally controlled events until no more are enabled. Since x and y are

related and each VSA has simply developed its state forward from y in a manner

consistent with the lookAhead function, it is obvious that property 7(c) holds be-

tween states x' and Yk.lstate.

The following theorem concludes that for each alg E VAlgs, our implementation of

the VSA layer implements VLayer[alg], after the hiding of several actions.

212

Theorem 11.11 For each alg E VAlgs, ActHide(HvEmu, VEmu[alg]) <

ActHide(HvL, VLayer[algj).

Proof: This follows directly from the previous lemma and Corollary 2.23. M

One useful corollary of this result and the construction of the matching ex-

ecution in the proof of the simulation relation 7 ZEmu[alg] is that fragments of

ActHide(HVEmu, VEmu[alg]) starting in states in LVEmu[alg] correspond to fragments of

ActHide(HvL, VLayer[alg]) started in states in {y E QVLayer[alg] I YFXRWIIVWIIVbcast &

InVRWIlVWIlVbcast} that are also in the set S defined below. S describes execution frag-

ments of the virtual layer that satisfy certain properties with respect to the failure status of

a VSA. In particular, it describes when a fail or restart for a VSA is allowed to occur, and

when a restart of a VSA is guaranteed to occur.

Definition 11.12 Define S to be the function that maps, for each alg E VAlgs,

VLNodes[alg] to the suffix-closed set of execution fragments a of VLayer[alg] where

for each u E U:

1. If a restartu occurs in a at time t then t mod tslice = d and no fail or GPSupdate

actions occur in a at time t before restart,.

This says that a VSA can only restart exactly d into a timeslice, before any fail or

GPSupdate actions have occurred.

2. For each t E Ro such that t mod tiue = 0 and a.fstate(RW.now) < t <

a.lstate(RW.now) we define the following:

* For each state x in a and process id j E P, we define aware(u, j, x) to be true

exactly when -7x(f ailedj), x(VBDelayj.updated) = true, and x(reg(j)) = u.

(This is a way of saying that process j is alive and knows it is in region u in

state x.)

* Define Ju to be the set of process ids j such that there exists a state x in a with

x(RWnow) = t such that aware(u, j, x) is true.

213

* For each j E Ju, define xj to be the first state in a such that x(RW.now) = t

and aware(u, j, x) is true.

Then

(a) Let x be the first state in a such that RWnow = t. If -x(f ailed), then there

exists some process j such that aware(u, j, x).

This says that at the beginning of a new timeslice, if a VSA is not failed then it

must be the case that there is some alive process that knows it is in the VSA's

region.

(b) If a.lstate(RW.now) > t + d, Ju > 0 and aware(u, j,x') is true for each

j E Ju and each state x' in a starting from state xj and ending with the first

state such that RW.now = t + d, then there exists a restart, action in a at time

t + d.

This says that if the set of processes alive and aware they are in region u at the

beginning of a timeslice is nonempty and none of the processes in the set fail

or leave the region before d into the timeslice, then a restart, action will occur

for the region's VSA.

(c) If there exists a fail, action at state x in a at time t' such that t' -t' mod tslice =

t and ix(failedu), then there exists a j E Ju and a state x' in a after xj and

no later than x such that -laware(u, j, x).

This says that if an alive VSA fails, then there must have been some process that

was alive and aware it was in the VSA's region at the beginning of the timeslice

but that has failed or left the region in the meantime.

(d) If there exists a fail, action at state x in a at time t' such that t' E (t+d, t+tsice)

and zx(f ailedu), then for each j E J,, there exists a state x' in a after xj and

before the fail, such that -~aware(u, j, x').

This says that if an alive VSA fails when the round is more than d old, then

it must be the case that each process that was alive and aware it was in the

VSA's region at the beginning of the timeslice has failed or left the region in the

meantime.

214

As mentioned before Definition 11.12, the following result says that for any exe-

cution fragment of VEmu[alg] starting in a state in LEmu[alg] and for any state in

{y E QVLayer[alg] I Y[XRW|IVWIIVbcast E InVRWVWIVbcast} such that the two states are

related, there is some fragment of VLayer[alg] that not only has the same trace but also

has the same RW and Fail-related projections. In addition, that fragment is a fragment

allowed by S.

L3

Lemma 11.13 Let alg be in VAlgs and a be in frags td(HvEmVEmu[ag]) Let y

be a state in {y E QVLayer[alg] I Y[XRWIIVW||Vbcast E InVRWVWIIVbcast} such that

a. fstateREmu[alg]y. Then there exists an a' in fragsActHide(HvL,VLayer[alg]) such that:

1. a'. f state = y.

2. trace(a)= trace(a').

3. If a is a closed execution fragment, then a.lstateaREmu[alg] Ca'.1 state.

4. a C(ARW, VRW) = c'[(ARW, VRw).

5. For each p E P, a[(AFail(CE[alg]p), VFail(CE[alg]p)) = o'[(AFail(alg(p)), VFail(alg(p))).

6. a' E S[VLNodes[alg]].

The first three properties of the lemma follow from the fact that REmu[alg] is a simulation

relation, while the fourth and fifth follow from the construction of the matching execution

of VLayer [alg] in the proof that REmu[alg] is a simulation relation in Lemma 11.10, which

preserves the actions and variables of RW and each of the processes' Fail-transform vari-

ables and actions. The only interesting property to show is property 6, and in particular,

property 2(b) of the definition of S. This can be shown by noting that this property follows

immediately from use of the leader election service, which guarantees that in the circum-

stance described in property 2(b), a leader output will be ready to be performed exactly d

into the timeslice (see Property 1 of Section 10.1.3), and the construction of the VLayer

execution will add a restart action for the region at that time.

The following result ties the legal states La3Emu[alg] to certain states of VLayer [alg].

215

Lemma 11.14 For any alg E VAigs and state x E L3Emnu[ag], there exists a state y E

QVLayer[alg] such that y rXRWI VWIIVbcast E InVRWIIVW IVbcast and XREmu[alg] Y

Proof: We prove this lemma by showing how, given a state x E L3Emu[alg], we can

construct a state y of VLayer[alg] such that y rXRWIVW IVbcast E InVRWIIVWllVbcast and

XREmu[algy. This construction is relatively trivial given the manner in which REmu[alg] is

defined; the relation mostly describes what the state y will be. The only components in

state y for which the relation does not dictate the state values exactly are as follows:

* VW.last: We require that for each u E U, last(u) is no older than the most recent

of the GPSupdates that occurred or the last time that a round was d old.

* Vbcast.vbcastq: Property 4 of the simulation relation constrains the messages sent

no more than d before x(now). We have vbcastq contain no messages before that

time. This obviously satisfies property 4.

It is not difficult to check that such a state y is one where x is related to y and

yrXRWI VWIIVbcast C InVRW VWjVbcast-

We conclude that for any state x in L Em[alg], there is some state y of VLayer[alg]

such that XREmu[alg]y and y [XRWllVW||Vbcast E InvRWIVWjVbcast-

Lemma 11.14 and Theorem 11.11 immediately imply:

Lemma 11.15 Start(ActHide(HvEmu, VEmu[alg]), L 3Emualg)

Start(ActHide(HVL, VLayer[alg]), {x E QVLayer[alg] XXRWIIVWIIVbcast E

InVRW |VWI Vbcast}).

11.3.3 Self-stabilization

We've seen that L Emu[alg] is a legal set for the emulation, and that each state in L ~E7[alg]

is related to some desirable state of VLayer[alg]. Here we show that for any alg E VAlgs,

VEmu[alg] started in any state x such that the LeadSpec component states are in

InVLeadSpec and the TOBSpec component states are in InVTOBSpec stabilizes to execution

216

fragments whose states are in LVEmu[alg] (Lemma 11.19). This is done in phases, corre-

sponding to each legal set: we show that we stabilize to each set from the one before it.

After we show this stabilization result, we conclude that after an execution of VEmu[alg]

has stabilized, the trace fragment from the point of stabilization is a trace of a fragment of

VLayer[alg], with certain actions hidden and with the centralized components started in a

somewhat consistent state (Theorem 11.21).

The first lemma describes the first phase of stabilization, for legal set

L'Emu[alg]. Recall that this legal set is one that is arrived at after GP-

Supdate actions have occurred at each process. It is easy to check that

f r{ XQVEmu[alg] XrXLeadSpecGInVLeadSpecAX XTOBspecGInVTOBspec stabilizes to
ragSVEmu[alg]

frags VEmu al in time t estab, where testab is any t such that t > sample. (To see

this stabilization result, just consider the moment after each node has a received a

GPSupdate, which takes at most Esample time to happen.)

Lemma 11.16 Let alg be in VAlgs and tvestab be any t such that t > sample.

f ragsEQVEmu[alg]X XLeadSpecEInVLeadSpecAXr[XTOBspecEInVTOBspec stabilizes to
r Emu[alg]

L VEmu[alg]
TragsvEmu[alg] in time tvestab*

We now show that execution fragments starting in LVEmu[alg] stabilize to execution

fragments starting in L [a Recall that L2Emualg] describes states that satisfy certain

properties with respect to the relationship between the leader election service state and the

emulation algorithm state. The proof of this lemma takes advantage of the fact that when

a round is more than d old, a large number of the properties of LEmu[alg] are trivially

satisfied.

Lemma 11.17 Let alg be in VAlgs and t estab be any t such that t > d.
L
1

L
2

Then f rags Em[alg] stabilizes to frags VEmu[alg] in time tvestab'

Proof. By Lemma 3.21, we just need to show that for any length-t2estab prefix a of

an element of frags Emu[alg] , a.lstate is in LVEmu[alg] We examine each property of

VEmu[alg]'

By Lemma 11.4, since the first state of a is in L1Em[alg], we know that property 1 of

LVEmu[alg] holds in each state of a. That property 2(a) and the second conjunct of property

217

2(b) hold after d time passes is immediately obvious. It is also easy to check that these

properties do not affect the other properties, and so can be stabilized independently.

For the remaining properties, consider a state x in a such that x(now) mod tsulie > d.

Such a state must exist in a since a is of length tvestab > d. We just need to show that

the remaining properties hold in state x and we are done. The crux of this part of the

proof is that when x(now) mod tlice > d, the properties of L'Emu[alg] make many of the

remaining cases trivially satisfied. Properties 2(d), 4, and 5 trivially hold in state x.

For property 2(b)'s first conjunction, if pref, is true at a non-failed process then prop-

erty 6(b) of L'Emualg] implies that either x(now) mod tslice = 0 or participated, is true.

Since we are assuming that x(now) mod tslice > d, then participatedp is true, which by

property 7(a) of InVLeadSpec implies that x(now) mod tlice < d. Hence, we know that

property 2(b)'s first conjunct is trivially true. Property 7(a) of InvLeadspec also implies that

property 2(c) trivially holds.

For property 2(e), notice that by property 2(b) of L' Emu[alg] if leaderp is true then

x(now) mod tlice = d, so property 2(e) also trivially holds in state x.

Finally, for property 3, notice that true-tagged vmsg messages and vstate messages

are only sent by a process for which leaderp is true. As just established, this does not hold

for any process in state x. Any such messages that were previously in the queue will be

removed before time passes.

We conclude that a.lstate is in L Emu[alg]

We now show that execution fragments starting in L'Emu[alg] stabilize to execution frag-

ments starting in the final set of legal states, L [g. Recall that L describesVEmu[al] VEmu[alg]

states that can be related to certain states of the VSA layer. The proof of this lemma takes

advantage of the fact that when a round is more than 0 old, but less than d old, many of the

properties of L3 Eu[alg] are satisfied.

Lemma 11.18 Let alg be in VAl gs and t~estab be any t such that t > tsli - d.
L
2 L

3

Then f ragsv EL[al9] stabilizes to f rags Emu[alg] in time testab.

Proof: By Lemma 3.21, we just need to show that for any length-testab prefix a of
L

2

an element of frags VEmu[alg] c.lstate is in LEmu[al. We examine each property ofVEmu[alg] I * VEmu[alg'

218

L3VEmu[alg]'

By Lemma 11.6, since the first state of a is in LVEmu[alg], we know that property 1 of

L3Emu[alg] holds in each state of a.

For the remaining properties, consider a state x in a such that x(now) mod tslice E

(0, d). Such a state must exist in a since t3estab > tslice - d. We just need to show that all

the properties hold in state x and we are done. Properties 2(a) and 2(d) trivially hold in x.

For property 2(b), notice that properties 4 and 5 of InvTOBspec imply that no such

vstate message could exist, since the timestamp on the message would be from the future.

Hence, property 2(b) is trivially satisfied.

For property 2(c), property 3(b) of LVEmu[alg] implies partp is true, making property

2(c) trivially satisfied.

We conclude that a.lstate is in L Em[
VEmu[alg]"

We've shown that executions of VEmu[alg] started in a consistent leader election and

totally ordered broadcast state stabilize to executions of VEmu[alg] started in L Emu[alg],

which stabilize to executions started in L Emu[alg], which in turn stabilize to executions

started in LEmualg] Now we can combine these stabilization results to conclude that

executions of VEmu[alg] started in consistent leader election and totally ordered broadcast

states stabilize to executions of VEmu[alg] started in LEmu[alg] in time tvestab, where

tvestab is any t such that t > Esample + tslice.

Lemma 11.19 Let alg be an element of VAlgs, and tvestab be any t such that

t > Esample + tslice.

Then rag{XQVEmu[alg]l [XLeadSpecEInVLeadSpecAX[XTOBspecEInVTOBspec stabilizes toThen tragSEmu[ag]
L3frags Emu[a i time tvestab.

Proof: This result follows as a direct application of Lemma 3.7 to Lemmas 11.16, 11.17,

and 11.18. Let testab 6 sample + (tvestab - tslice - Esample)/3, t =estab = d + (tvestab - tslice -

Esample)/3, and tvestab tslice - d + (tvestab - tslice - Esample)/3.

Let B be rags E
QVEmu[alg]

x [
XLeadSpec

E
lnvLeadSpecAX FXTOBspec

E I n
vTOBspec} B 1 be

Let o be ragVEmu[alg]
L
i L

2 L
3

frags'Emu[al l, B2 be frags VEmu[alg and B 3 be frags Emu alg in Lemma 3.7. Let

t1 be testab, 2 be tvstab, and t3 be t~estab in Lemma 3.7. Then by Lemma 3.7 and Lemmas

219

11.16-11.18, we have that frags QVEmu[ag] XLeadSpecEInVLeadSpecAXXTOBspecElnvTOBspec}11.16-11.18, we have that fragsVEmu[agl
L3

ra VE ru[alg]stabilizes in time testab estab estab to fagsVEua].

Since tvestab vestab testab + tvestab, we conclude that

f {XZQVEmu[alg] XXLeadSpecGInVLeadSpecAX FXTOBspecnVTOBspec} stabilizes to
frag SvEmu[alg]stabilizes

to

L
3

fTrag VEmu[alg] in time tvestab.

We can now conclude from Lemma 11.19 and Lemma 11.15 that an execution of

VEmu[alg] eventually reaches a point such that the trace of the execution from that point

on is the same as the trace of an execution fragment of VLayer[alg] starting an arbitrary

state of its nodes, both after some action hiding.

Theorem 11.20 Let alg be an element of VAigs, and tvestab be any t such that t >

6 sample + tslice.

Then taefrags QVEmu[alg] FXLeadSpecInVLeadSpecAX FXTOBspecEfVTOBspec} stabilizes in
Then ce fagActHide(HEmu,VVEu[alg])

time tvestab to traceSActHide(HvL,U(VLNodes[alg])IIR(RWIVWIIVbcast))*

As promised at the beginning of Section 11.3.3, we can actually conclude even more

than the above result; we can conclude that an execution of VEmu[alg] eventually reaches

a point such that the trace of the execution from that point on is the same as the constrained

trace of certain execution fragments of VLayer [alg], both after some action hiding.

Theorem 11.21 Let alg be an element of VAlgs, and tvestab be any t such that

t > 'sample + tslice.

S{xQVEmu[alg] Ix XLeadSpecEInvLeadSpecA XFXTOBspecEInVTOBspece
Then tracerags ActHide(HvEm,,,VEmu[alg])

stabilizes in time tvestab to {trace(a) a E S[VLNodes[alg]] n

eXeCSActHide(HL ,U(VLNodes[alg])lR(RWiVWIiVbcast)) .

Proof: By Theorem 11.19, we know that f ragsi mVEm[alg x XLeadSpecIInVLeadSpecAXFXTOBspecInVTOBspec

L3

stabilizes in time tvestab to fragsv Emua]. By Lemmas 3.5 and 3.10, this implies that

traceSStart(VEmu[alg],{XEQVEu[aIg] I FXL e a dSpec E l n v LeadSpecA[XT sp ec nBspec) stabilizes in

L3

Since Lemmas 11.13 and 11.15 imply that tracefrags ActHe C,VEmu[alg])

{trace(a) a E S[VLNodes[alg]] n fragsActHide(HvL,U(VLNodes[alg]) |R(RW|IVWilVbcast))

220

we conclude that the traces of ActHide(HVEmU, Start(VEmu[alg], {x E

QVEmu[alg IX [XLeadSpec e InvLeadSpec A x[XTOBspec E InVTOBspec))

stabilize in time tvestab to {trace(a) I a E S[VLNodes[alg]] n

exeCSActHide(HyL ,U(VLNodes[alg]) 1 R(RWlI|VWlIVbcast))

11.3.4 Stabilizing emulations

Now we finally tie all this back to the concept of VSA layer emulations and stabilizing VSA

layer emulations. We've described VEmu[alg], which is a system that emulates the VSA

layer for any VSA layer algorithm alg. However, a VSA layer emulation (Definition 8.3)

is concerned with physical layer programs, which don't include leader election services

or totally ordered broadcast services, that emulate virtual layer programs. Here we relate

our emulation algorithm to the implementations of the leader election and totally ordered

broadcast services, which allows us to talk about an implementation of the VSA layer using

the physical layer. We do this by defining our VSA layer emulation algorithm based on our

implementations of leader election and totally ordered broadcast, together with VSAE[alg]

for each alg E VAigs; we replace the leader election and totally ordered broadcast spec-

ification automata (TObcast, LeadMain, and LeadCLP, TOBDelayp, and TOBFilter

for each p in P) in VEmu[alg] with the physical layer implementations (TOBImplerp

and Leaderp for each p in P) of these automata (Lemma 11.22). We then show that this

also defines a stabilizing VSA layer emulation algorithm (Theorem 11.24).

Lemma 11.22 * Let amap : VAlgs -* PAlgs be defined as follows:

For each alg E VAlgs, amap[alg] is the function from P --

PProgramp such that for each p E P, amap[alg](p) =

ActHide(HvEmu, TOBImplerp| Leaderp |CE[alg]|I VSAE[alg]p).

This describes the mapping of VSA layer algorithms to physical layer algorithms

that map each process to the composition of its totally ordered broadcast and leader

election implementation pieces and the CE and VSAE pieces for the particular

VSA algorithm.

* Let tstab be any t such that t > 2d + 2 6sample + tslice.

221

* Let B be {PLNodes[amap[alg]] I alg E VAlgs}.

These are programmable components of the emulating system, namely the physical

nodes.

* Let C be {VLNodes[alg] I alg E VAlgs}.

These are programmable components of the emulated system, namely the virtual

nodes and client nodes.

* Let emu be the ftinction of type C - B such that for each alg E VAigs,

em'u(VLNodes[alg]) = PLNodes[amap[alg]].

* Let S be the finction in Definition 11.12.

Then amap is an S-constrained VSA layer emulation algorithm. (In other words, for

each alg E VAlgs, having each process run the Fail-transform of amap[alg] (p) together

with the RW and Pbcast produces traces that look like traces of executions of the virtual

layer running alg and in S, after some action hiding.)

Proof: By Definition 8.3 of a VSA layer emulation algorithm, we must show

that (B, RW jPbcast, HPL) emulates (C, RWIIVW IVbcast, HVL) constrained to S

with emu. By Definition 4.1 of emulation, this means that we must show

that for each C E C, tracesActHide(HpL,emu(C) RWIIPbcast) C {trace(a) Ia E

S(C) n exeCSActHide(HvL,CIRW|IVWlJVbcast)}. Substituting for the components in

this expression, we must show that for each alg E VAlgs and each a

in XCeCSActHide(HVEmuUHp L , - p EP Fail (TOBImplerp ILeaderp 1CE[alg]p 1VSAE[alg]p) |RW Pbcast), there

exists an a' in exeCSActHide(HvL,VLayer[alg]) such that:

1. trace(a) = trace(a').

2. a' E S(VLNodes[alg]).

(In other words, we must show that for each VSA layer algorithm alg, an execution of the

emulation algorithm at the physical layer shares the same trace as that of an execution of

the virtual layer that also satisfied the properties of S, after some action hiding.)

222

Consider execution a. We first show how to break down the execution into compo-

nent executions that are related to executions of components of VEmu[alg], rather than

the physical layer. We then paste these executions together to arrive at an execution of

VEmu[alg], which we have shown (Lemma 11.13) to behave as desired executions of the

virtual layer.

By Lemma 2.14 and Theorem 5.3, we know that a [(ATOBImpl, VTOBImpl) is an execu-

tion of TOBImpl. We also know, by Lemma 9.15, that there must exist an initial state YTOB

of TOBspec such that a. .fstate[XTOBimpRTOBYTOB. By Lemma 9.17, this implies that

there exists some execution aTOB of TOBspec that starts in state YTOB such that:

* trace(aToB) = trace(a[(ATOBimpi, VTOBimpI)).

* aroTB[(ARW, VRW) = a[(ARW, VRw).

* For each p E P, a [({fail,, restartp}, {failedp})

aTOB [({fail,, restartp}, { failedp}).

Similar reasoning for LeadImpl and LeadSpec gives us an execution aLead of Lead-

Spec such that:

* trace(aLead) = trace(a[(ALeadmpl, VLeadlmpl)).

* aLead [(ARw, VRW) = a[(ARw, VRW).

* For each p E P, a[({failp, restartp}, {failedp})

Lead [((failp, restartp), { failedp}).

Consider executions a TOB = aTOB [(AFail(TOBDelayp lTOBFilterp), VFail(TOBDelayp ITOBFilterp),

aLead = aLead [(AFail(LeadClp), VFail(LeadClp)), and apC =

a [(AFail(CE[alg]pjVSAE[alg]p), VFail(CE[alg]plVSAE[alg]p)). Since each of these ex-

ecutions begins with the same value of the failedp variable, we have that

Theorem 5.4 implies that for each p E P there exists an execution ap of

Fail(TOBFilterp ITOBDelayp lLeadClp ICE[alg]p IVSAE[alg]p) that is the re-

sult of pasting the aTOB, a Lead, and acr component executions. (This follows from two

223

applications of Theorem 5.4.) This and Corollary 2.17 then imply that there exists an

execution a" of VEmu[alg] such that trace(a) = trace(a").

Lemma 11.10 implies that there exists some initial state y of VLayer[alg] such

that a".fstateREmu[alg]y, and Lemma 11.13 implies that there exists some a' in

eXeCSActHide(HVL,VLayer[alg]) such that trace(a) = trace(a') and a' E S(VLNodes[alg]).

Now we have shown that we have a VSA layer emulation. Before we can use this

result to show that we have a stabilizing VSA layer emulation (Theorem 11.24), we need

to also show the following result, which says that our low-level physical layer algorithm

stabilizes to a point after which it looks like VEmu[alg] started from a legal state. This

connects the states of the implementation of VEmu[alg] with the legal states L3 Emu[alg]

of VEmu[alg]. Since we have results showing that fragments of VEmu[alg] starting in

LVEm[alg] are related to desirable execution fragments of VLayer[alg] (Lemma 11.13),

this will allow us to conclude the final stabilizing VSA layer emulation result. (It is worth

noting that this proof would be improved if a general stabilizing composition result that

takes into account Fail-transforms was available. I discuss this point in the Conclusions

(Chapter 16).)

Lemma 11.23 Let alg be an element of VAlgs.

Let Impler[alg] be IpJp Fail(TOBImplerp Leaderp, CE[alg]pI VSAE[alg]p).

Let L[alg] be the set of states x E QImpler[alg]|IRW|IPbcast such that 3y EL Emu[alg]'

1. X[XTOBimpR TOBy [XTOBspec.

2. XFXLeadImpl LeaderY [XLeadSpec.

3. For each p E P, x[XCE[alg]p VSAE[alg]p = y[XCE[alg]p VSAE[alg]p"

Then Impler[alg] self-stabilizes to L[alg] relative to R(RW |jPbcast) in time tstab.

Proof: Consider any execution aPL = aZPLcLPL of the emulation algorithm at

the physical layer such that a' L.lstate = a2L.fstate, 3 L.lstate = cPL.fstate,

aPL.ltime = 2d + Esample + (tstab - 2d - 2Esample - tslice)/2, and a2L.ltime = tstab -

224

c L.ltime. Notice that this makes aL a state-matched tstab-SUffiX of apL. We must show

that c pL.fstate is in L[alg]. The proof proceeds by showing that cpLc pI (the execution

after the underlying leader election and totally ordered broadcast service implementations

have stabilized) is related to an execution acEmu[alg] Emu[alg] of VEmu[alg] started in

invariant states of the leader election specification and the totally ordered broadcast speci-

fication. It then shows that cVEmu[alg] (the execution of VEmu[alg] after it has stabilized)

is related to an execution of the virtual layer starting from a state with reachable states of

RW VW Vbcast.

By Lemma 2.14, Corollary 2.17, and Theorem 5.3 (pro-

jection and pasting lemmas), we have the trivial result that

aPL [(ATOBImpl, VTOBImpl) aPL[(ATozBImp, VTOBImpl) 0pL [(ATOBImpl, VTOBImpl)

is an execution of U(TOBimpler) |R(RW| Pbcast). Since a4.ltime > 2d + 6sampe,

Theorem 9.24 implies that cPL.fStateFXToBImpl is in LTOBimpl. Lemma 9.18 implies

there exists some reachable state of TOBspec such that a~L.fstate [XToBim, is related

to it. Lemma 9.17 then implies that there exists an execution aOBspec TOBspec of

R(TOBspec) such that:

1. QTOBspec.f state = aTOBspec.lstate.

2. aL. fstateToBcBOSspec. fstate and cL. fstaterToBcTOBpec. fstate.

3. ToBspec.f state E reachableToBpec and a oBsp~. fstate E reachableTroBpec.

4. trace(coBspec) = trace(pL[(ATOBnmpl, VTOBImpl) and trace(clOBpec

trace(pL [(ATOBImpl, VTOBImpl).

Lemma 2.14 then implies that there exists executions c W R of RW, ObcastObcast2 of

TObcast, and 1BFiDep,2BFi of Fail (TOBFilter TOBDelayp) for each p E P

such that:

1. cay = aTOBspec[(ARW, VRW) = apL[(ARw, VRW), and a =

aTOBspe(ARW, VRW) = aPL[(ARW, VRw).

2. a bcast OBspec[(ATObcast VTObcast) and aTObcast

CaBspec [(ATObcast, VTObcast)-

225

3. For eachp E P, aTOBFilDel TOBspec r(AFail(TOBFilterp [TOBDelayp)) VFail(TOBFilterp| TOBDelayp))

and aTOBspec.f state(failedp) = apL.f state(f ailedp).

4. For eachp E P, OTOBFilDel= TOBspec[(AFail(TOBFilterp TOBDelayp)) VFail(TOBFi1terp |TOBDelayp))

and aTOBspec.fstate(failedp) = pL.f state(f ailedp).

Similar reasoning for LeadSpec and Leadlmpl tells us that there exist executions
aLeadSpec eadSpec of LeadSpec and executions eaain ea i of LeadMain and

al aoeadl2 of Fail(LeadClp) for each p E P such that:

1. aLeadSpec[(ARW, VRW) = aPL(ARW, VRW), and Leadspec[(ARw, VRw) =

aPL [(ARW, VRW).

2. a'l ad (Vda and a 2

ain Leadec (ALeadaiMain, LeadspecMain) and eadMain

a eadspec[(ALeadMain, VLeadMlain).

3. For each p E P, aOLead1 a Leadspec (AFail(LeadClp), VFail(LeadClp)) and

aeadspecf state(failedp) = PL. f state failed).

4. For each p C P, ,2ad = 0 2eadspec[(AFail(LeadClp), VFail(LeadClp)) and

Leadspec.f state (failedp) = 3 L.fstate(failedp).

Since for each p E P and i E {1, 2}, the value of failed, is the same in the first state

of aCTOBFilDel' adCl, and a lr [(AFail(CE[alg]p IVSAE[alg]p), VFail(CE[alg]p|VSAE[alg]p)),

Theorem 5.4 (applied twice) implies that for each p E P there exists an execution

fragment a' of Fail(LeadClp TOBFilterp TOBDelayp |CE[alg]p VSAE[alg]p)

such that a [r(AFail(TOBFilterp lTOBDelayp), VFail(TOBFilterp TOBDelayp))

aTOBFilDel, a' [(AFail(LeadClp), VFail(LeadClp)) = leadCl,

and a' [(AFail(CE[alg]p VSAE[alg]p) , VFail(CE[alg]p| VSAE[alg]p))

a2L [(AFail(CE[alg]plVSAE[alg]p), VFail(Ce[alg]p IVSAE[alg]p)). Corollary 2.17 then implies

that there exists an execution fragment a Emu [alg of VEmu[alg] that is the result of
pasting executions , a l, eadlai, and aOb and hiding actions in HPL. We arrive

SEup a , LeadMain TObcast

atE 0 [a] similarly.

226

Notice that VEmu[alg] Emu[alg] is in the set of executions of Start(VEmu[alg], {x E

QVEmu[alg] IX [XLeadSpec E InVLeadSpec Ax [XTOBspec E InVToBspec}), and that OVEmu[alg]

is the state-matched tstab - c pL.ltime-suffix of V 2Emu[alg]Emu[alg] Since tstab -

aPL.ltime > Esample + tslice, Lemma 11.19 implies that a Emu[alg] is in the set of exe-

cution fragments of VEmu[alg] starting in a state in LVEmu[alg].

Set y to be ac Emu[a l.fstate. All that remains to show is that the three conditions of

the lemma hold between aL.fstate and y. This follows immediately from construction

of e2
ofOVEmu[alg]'

Now we can conclude the final result, namely that amap is an S-constrained t-

stabilizing VSA layer emulation algorithm. The proof is a direct consequence of Lemmas

11.22, 11.23, and 11.13- Since we have already shown that amap is an S-constrained VSA

layer emulation algorithm (Lemma 11.22), Definition 4.4 of an S-constrained t-stabilizing

VSA layer emulation algorithm implies that all that remains is to show that the traces of

the emulation algorithm at the physical layer stabilizes to traces of execution fragments

of the virtual layer that both satisfy the properties of S and that start in reachable states

of RW IVWIIVbcast. Lemma 11.23 gives that the executions of the emulation algorithm

at the physical layer stabilize to executions beginning in states in L[alg], which we show

to be related to executions of VEmu[alg] with the same trace and that begin in states in

L3 Emu[ag Lemma 11.13 gives that these executions are in turn related to executions of

the virtual layer with the same trace and that start in reachable states of RW II VWI Vbcast.

Theorem 11.24 amap is an S-constrained t8tab-stabilizing VSA layer emulation algo-

rithm.

Proof: By Definition 8.3 of a stabilizing VSA layer emulation algorithm, we

must show that (B, RW||Pbcast, HPL) emulation stabilizes in time tstab to

(C, RW| VW| Vbcast, HVL) constrained to S with emu. By Definition 4.4, this means

that we must show that (B, RW |Pbcast, HPL) emulates (C, RW| VW IVbcast, HVL)

constrained to S with emu (which we have already shown in Lemma 11.22) and that

traceSActHide(HpL,U(emu(C))|R(RW|IPbcast)) stabilizes in time tstab to {trace(a) I a E

S(C) n execSActHide(HVL,U(C) IR(RWIlVW|Vbcast)) .

227

By Lemma 11.23 we know that execSActHide(HL,U(emu(C)) R(RW||Pbcast)) stabilizes in

time tstab to rag de(HL,emu(C)RWPbcast). By reasoning similar to that in the proof

of Lemma 11.22, following the same tedious process of breaking down executions of

the physical layer algorithm into component executions that can be related to execu-

tions of VEmu[alg], we know that for any a' E frags AHide(HpLemu(C)IRPbcast),

L3

there exists some a" E frags ActH EmVEmu[alg]) with the same trace as oa'. Be-
L3 u[alg]

cause a" E fragsctHdu[g]), Lemma 11.13 implies that there exists some

a E S(C) n execSActHide(HvL,U(C) jR(RWIVW|Vbcast)) such that trace(a) = trace(a'). a

In other words, consider any VSA layer program alg, and the physical nodes running

their emulation of the VSA layer running alg (consisting of totally ordered broadcast and

leader election implementations and the main emulation programs for VSAs and their local

clients). Traces of this system where the physical nodes start in an arbitrary state and are run

with RW I Pbcast in a reachable state stabilize in time tstab to traces of execution fragments

of the VSA layer running alg (and satisfying properties of S), only from arbitrary states of

the clients and VSAs.

Given this result, an application programmer can now write programs for the VSA layer

without reasoning about the implementation of the VSA layer.

11.3.5 Message complexity

The message overhead introduced by this algorithm consists of the extra messaging gener-

ated for the leader election service (one message per process), and the one Ivstatel-sized

message communicated every tslice time.

11.4 Extending the implementation to allow more failures

Rather than considering a VSA failed immediately after a vstate message fails to be sent

by a leader, we can extend the emulation to allow some finite number k of such rounds

to pass before failing the VSA. This extension potentially makes the VSA more fault-

tolerant, though it does introduce some additional complication. If a leader is supposed to

228

perform broadcasts on the VSA's behalf, but fails or leaves before sending them, the next

leader needs to transmit the messages. Since emulators store outgoing VSA messages in

a local outgoing queue but clears that queue at the beginning of a new round, an extended

algorithm must allow all emulators to carry their outgoing queue forward into subsequent

rounds. A new leader then just transmits any messages stored in its outgoing queue and

removes them. To prevent messages from being rebroadcast by future leaders, emulators

that receive a VSA message broadcast by the leader remove it from their own outgoing

queues.

Stabilization of an extended algorithm would also take about k times the amount of

time of the original algorithm.

229

Part III

VSA layer applications

230

Part III of this thesis describes applications that we implement using the VSA layer. In

the thesis, each implementation, whether of the VSA programming layer or of applications

built on the layer, is proved correct using the TIOA formal framework. The first three chap-

ters describe a suite of three algorithms that together define a program for the VSA layer

that offers end-to-end routing; Chapters 12 and 13 describe geocast and location manage-

ment automata that are parts of a larger end-to-end routing automaton at each region. The

last chapter describes a motion coordination application.

In Chapter 12, I describe the first piece of the end-to-end routing application, a stabi-

lizing region-to-region communication service. The algorithm is based on a shortest path

procedure. When a region receives a geocast message it has not previously seen from re-

gion u to region v for which it is on a shortest path from u to v, it forwards the message

closer to region v.

Chapter 13 describes the second piece of the end-to-end routing application, a location

management service built over the geocast service of Chapter 12. The solution is based

on the concept of home location servers, where each mobile client identifier hashes to a

home location, a region of the network that is periodically updated with the location of the

client and that is responsible for answering queries about the client's location. The periodic

location updates and the forwarding of queries and responses are done using the geocast

service of Chapter 12.

In Chapter 14, I describe a simple self-stabilizing program for the VSA layer to provide

a mobile client end-to-end routing service. A client sends a message to another client by

forwarding the message to its local VSA, which then uses the home location service to

discover the destination client's region and forwards the message to that region using the

geocast service.

Finally, in Chapter 15, we study how the VSA layer can help us solve the problem

of coordinating the behavior of a set of autonomous mobile robots (physical nodes) in the

presence of changes in the underlying communication network as well as changes in the set

of participating robots. Each VSA must decide based on its own local information which

robots to keep in its own region, and which to assign to neighboring regions; for each robot

that remains, the VSA determines where on the curve the robot should reside. Unlike in the

231

prior three algorithms (Geocast, location management, and end-to-end communication),

the client motion in the motion coordination protocol is controllable by the client, allowing

the client to change its motion trajectory based on instructions from a VSA.

232

Chapter 12

GeoCast

In this chapter, we describe a self-stabilizing algorithm that uses RW, VW, Vbcast, and

VBDelay, u E U automata to provide geographic routing between regions of the net-

work, allowing communication between regions of the virtual infrastructure. In order to

route location information between geographic regions, we use a shortest path algorithm.

GeoCast algorithms [14,73], GOAFR [59], and algorithms for "routing on a curve" [72]

route messages based on the location of the source and destination, using geography to

delivery messages efficiently. GPSR [57], AFR [60], GOAFR+ [59], polygonal broad-

cast [35], and the asymptotically optimal algorithm [60] are algorithms based on greedy

geographic routing algorithms, forwarding messages to the neighbor that is geographically

closest to the destination. The algorithms also address "local minimum situations", where

the greedy decision cannot be made. GPSR, GOAFR+, and AFR achieve, under reasonable

network behavior, a linear order expected cost in the distance between the sender and the

receiver.

In [37], we used a variant of the VSA layer to simplify the implementation of the

geocast routing service. There we used a simple variant of a greedy depth first search

algorithm to communicate messages between VSAs. Here we implement the geocast por-

tion of a larger VSA program (the end-to-end routing program described in Chapter 14)

using a simple shortest path routing algorithm that runs on top of the VSA layer's fixed

infrastructure.

In the rest of this chapter, we describe the service (Section 12.1), then describe a set

233

1 Signature:
Input time(t),, t E R>O

3 Input geocast(m, v) , mE Msg, v C U

Input vrcv((geocast, m, w, v, t)),, mE Msg,w,vC U,tE R>O
5 Output vcast((geocast, m, w, v, t)),, mE Msg,w,ve U,tE R>O

Output georcv(m)u, m E Msg
7 Internal ledgerClean((m,w,v,t)),, mE Msg,w,vc U,tE Ro>O

9 State:

analog clock: R>oU {I}, initially I
I ledger: (Msg x U x U xR>o)-+ Bool, initially null

13 Trajectories:
evolve

15 d(clock) = 1
stop when

17 3m: Msg, 3w, v: U,]t: IR>
0

: [ledger((m, w, v, t)) = null
A (ledger((m, w, v, t))= false V [u : w A clock = tr]

19 V clock < t V t+(e+d)dist(w, u)< clock-c
V dist(w, v) # dist(w, u) + dist(u, v))]

21

Transitions:
23 Input time(t),

Effect:
25 if clock : t then

ledger -- null
27 clock - t

Input geocast(m, v)
Effect: 30

if (ledger(m, u, v, clock) = nullV u= v)A clock # Ithe
ledger(m, u, v, clock) false 32

Output vcast((geocast, m, w, v, t)), 34
Precondition:

ledger((m, w, v, t)) = false Av u 36

Effect:
ledger((m, u, v, t)) true 38

Input vrcv((geocast, m, w, v, t)), 40

Effect:
if ledger((m,w,v,t))= null A t+(e+d)dist(w, u)> clock 42

A t< clockA dist(w, v)= dist(w, u)+dist(u, v)
Av # w # u then 44

ledger((m. w, v, now)) +- false
46

Output georcv(m),

Local: v: U, t: IR
> 48

Precondition:
ledger((m, v, u, t)) = false 50

Effect:
ledger((m, v, u, t)) -- true 52

Internal ledgerClean((m, w, v, t)), 54
Precondition:

t + (e + d) dist(w, u) < clock V (u : w A clock t) 56
V clock < t V dist(w, v) # dist(w, u) + dist(u, v)

Effect: 58
ledger((m, w, v. t)) ~ null

Figure 12-1: VSA geocast automaton at region u, Veo

of legal states of

12.3), and finally

the service and properties of executions starting in legal states (Section

argue that our service is self-stabilizing (Section 12.4).

12.1 Specification

Our geocast service allows a region a to broadcast a message m to region v

via geocast(m, v)u. It allows a region to receive such a broadcast message via

georcv(m), under certain conditions. The TIOA specification algorithm for individ-

ual regions is in Figure 12-1. The complete service, GeoCast, is the composition of

lU,, Fail(VGeollVBDelayu) with RWIIVWIIVbcast. In other words, the service con-

sists of a Fail-transformed automata at each region of the geocast machine and VBDelay

machine for that region, as well as RWIIVWI Vbcast.

VSA-to-VSA communication is based on a shortest path procedure. We assume that

each VSA can calculate its hop count distance in the static region graph to other VSAs.

234

When a VSA receives a geocast message it has not previously seen from region u to region

v for which it is on a shortest path from u to v, it forwards the message, tagged with a

geocast label, via a vcast output. Whenever the destination VSA receives such a message

it performs a georcv of the message.

Note: Notice that for each u E U, VGe is technically not a valid VSA since its external

interface contains non-vcast, vrcv, time actions. However, we will later (in Chapters

13 and 14) be composing this automaton with other automata and hiding these actions to

produce new automata that are VSAs. In the meantime, we may refer to these almost-VSAs

as VSAs, with the understanding that this technical detail will be resolved later. None of

the results in this chapter require that VGo be a VSA.

In this thesis, VGeO happens to be part of a specific VSA that is the composition of TVGeo

with specific other automata, namely a location management automaton and an end-to-end

routing automaton. However, the V eo automaton can be part of other VSAs as well,

as long as it is composed with automata that allow us to hide the geocast and georcv

actions. For example, consider the following variant of the geocast service, C - Geocast:

The C - Geocast service allows a client Cp to broadcast a message m to clients in region

v via C-geocast(m, v)p. It allows each client Cq in region v to receive such a broadcast

message via C-georcv(m),, under certain conditions.

The C - Geocast application can be implemented using the VSA layer in the following

way: Each region's VSA is composed of two subprograms, VGeo and a new automaton

V-Geo that interacts with VGeO and has an external interface consisting only of time,

vbcast, vrcv, geocast, and georcv actions; the geocast and georcv actions are hid-

den in the composition of V Geo and V§ - Geo, resulting in a new machine that is a valid

VSA. Whenever a client in a region u receives a C-geocast(m, v), input, it vcasts a

(C-geocast, m, v, u) message to its local VSA. When the local VSA's V§ - Go subprogram

vrcvs such a message from a client in its region, it submits a geocast(m, v), input to the

local VGeo VSA subprogram. When such a georcv(m), later occurs at the V Geo VSA

subprogram in region v, the output goes to the local VSA's VC- Geo subprogram. This sub-

program then performs a vcast((C-georcv, m, v)), output. Any client Cq in region v that

receives this message through vrcv performs a C-georcv(m)q output.

235

Detailed VSA code description

The following code description refers to the TIOA code for the machine at region u, VGeo

in Figure 12-1.

The state variable ledger keeps track of information with respect to each non-expired

geocast-tagged message (one for which VGeo might still receive messages) that the VSA

has heard of. The message is stored in ledger together with its source, destination, and

timestamp. For each such unique tuple of message information, the table stores a Boolean

indicating whether the region has yet processed the message, either by forwarding it in a

geocast broadcast or by receiving it. If the Boolean is false, then the VSA has not yet

processed the message.

When VGeo receives a time(t) input (line 23, supplied by the virtual time service VW),

it checks its local clock to see if it matches t. If not (line 25), VGe resets its ledger values

(line 26). Either way, Veo sets its clock to t (line 27). (Notice that in normal operation,

once an alive VSA has received its first time input its clock should always be equal to the

real time since its clock variable advances at the same rate as real time.)

When Veo receives a geocast(m, v), input at some time t and either it is the

first occurrence of geocast(m, v), at time t or u = v (lines 29-31), Vfeo sets

ledger((m, u, v, clock)) to false (line 32), indicating the geocast tuple must be processed

so that the message can be forwarded to region v.

Whenever any V, eo has a false ledger entry for some tuple (m, w, v, t) where u = v,

the message has reached its destination, and Veo performs a georcv(m), output (lines

47-50) and sets the ledger entry to true (line 52). If, on the other hand, u v (line 36,
meaning V1 eO has heard of a particular geocast it should forward but has not yet done

anything about it), VGeo sends a message consisting of a geocast tag and the tuple via

vcast (line 34), and sets the ledger entry to true (line 38).

Whenever Veeo receives a (geocast, m, w, v, t) message (line 40), it checks the fol-

lowing in lines 42-44: (1) it does not yet have a non-null ledger entry for the tuple,
(2) u is on some shortest path between w and v (equivalent to saying that dist(w, v) =

dist(w, u) +dist(u, v)), and (3) the current time clock is not more than t+ (e+d)dist(w, u)

236

(meaning that VGeo received the message no later than the maximum amount of time a

shortest region path trip from w would have taken to reach u). If the three conditions hold

then V,Ge" sets ledger((m, w, v, t)) to true (line 45).

The internal action ledgerClean((m, w, v, t))u (line 54) serves to clean ledger of tu-

ples that correspond to geocasts that VGeo no longer will be involved with (line 59). In

particular it clears entries for which t + (e + d)dist(w, u) < clock (line 56), corresponding

to geocasts that are too old for V GeO to forward. This action is also used for local correc-

tion, removing ledger entries for geocast messages between regions that region u is not

on a shortest path between and for geocast messages that are timestamped in the future

(lines 56-57). Self-stabilization of the system as a whole is then accomplished by the clear-

out of older geocast records based on their timestamps, and by the screening of incoming

messages in lines 42-44. Too old forwarded messages are eliminated from the system and

newer forwarded messages do not impact the treatment of the older ones.

12.2 Properties of executions of the geocast service

We say that a geocast by a region u to a region v, at time t is serviceable, if there exists at

least one shortest path from u to v of regions that are nonfailed and have clock values equal

to the real-time for the entire interval [t, t + (e + d)dist(u, v)].

With this definition, we can show the following result:

Lemma 12.1 The service guarantees that in each execution 0a of GeoCast, there exists a

function mapping each georcv(m)v event to the geocast(m, v), event that caused it such

that the following hold:

1. Integrity: If a georcv(m), event -r is mapped to a geocast(m, v), event 7', then -r'

occurs before ir.

2. Same-time self-delivery: If a georcv(m)v event 7 is mapped to a geocast(m, v),

event -F' where i' occurs at time t, then event 7 occurs at time t.

3. Bounded-time delivery: If a georcv(m)v event 7 is mapped to a geocast(m, v)u

237

event F' where 7i' occurs at time t and u = v, then event 7 occurs in the interval

(t, t + (e + d)dist(u, v)].

4. Reliable self-delivery: This guarantees that a geocast will be received if sent to itself

and no failures occur: If a geocast(m, v), event -7' occurs at time t, a.ltime > t,

and region v does not fail at time t, then there exists a geocv(m), event -r such that

7 is mapped to some geocast(m, v), event (not necessarily 7') at time t.

5. Reliable serviceable delivery: This guarantees that a geocast will be received if it

is serviceable: If a geocast(m, v), event 7' occurs at time t, a.ltime > t + (e +

d)dist(u, v), and 7' is serviceable, then there exists a georcv(m)v event 7 such that

i7 is mapped to some geocast(m, v), event (not necessarily 7') at time t.

Proof sketch: It is easy to define the mapping from georcv to geocast events described

above as follows: For each georcv(m), event, there is some region v and time t where the

tuple (m, v, u, t) is in a ledger that changes from being mapped to false to being mapped to

true (lines 50-52). We map the georcv event to the first geocast(m, u), event that occurs

at time t.

It is easy to see that most of the properties hold. We show here that the most in-

teresting properties, Bounded-time delivery and Reliable serviceable delivery, hold. To

see that Bounded-time delivery holds, notice that for a georcv(m), to happen, there
must be some u E U and t E RO such that ledger((m,u vt) = false. This

can only occur if a geocast(m, v) occurred (trivially satisfying the property), or if a

vrcv((geocast, m, U, v, t)), occurred at some time t' to set the ledger entry to false. For

the second case, by the conditional on lines 42-43, the ledger entry is only changed if

t + (e + d)dist(w, v) < t'. By the stopping conditions on line 18, the georcv(m), must

have occur at time t' as well, giving the result.

To see that the more interesting Reliable serviceable delivery property holds, assume

that a geocast(m, v), event 7i' occurs at time t and 7' is serviceable. Let one of the shortest

paths of VSAs that satisfy the serviceability definition be ul, -- , Udit(u,v)->, v, where ul

is a neighbor of u and each region in the sequence neighbors the regions that precede or

follow it in the sequence. We argue that there exists a geocv(m), event 7 such that 7r is

238

mapped to the first geocast(m, v), event at time t. Since the first such geocast(m, v),

event occurs at an alive process that does not fail at time t, it will immediately vcast a

geocast-tagged (m, u, v, t) message. Such a message takes more than 0, but no more than

e + d time to be delivered at neighboring regions, one of which is ul. VG,, will then

immediately vcast a geocast-tagged (m, u, v, t) message, since the conditional on lines

42-43 will hold. Such a message takes more than 0, but no more than e + d time to be

delivered at neighboring regions, one of which is u2. Either the same case as for ul holds

or u2 received the earlier transmission and immediately transmitted or is about to transmit.

This argument is repeated until a geocast-tagged (m, u, v, t) message is received at region

v. This process will then immediately perform a geocast(m)v event. This event is mapped

to the first geocast(m, v)u event at time t, and we are done. m

12.3 Legal sets

Here we describe a legal set of GeoCast by describing two legal sets, the second a subset

of the first. Recall from Lemma 3.13 that a legal set of states for a TIOA is one where each

closed execution fragment starting in a state in the set ends in a state in the set. We break

the definition of the legal set up into two legal sets in order to simplify the proof reasoning

and more easily prove stabilization later, in Section 12.4. At the end of this section, we

discuss properties of execution fragments of GeoCast that start in our set of legal states.

12.3.1 Legal set Leo

The first set of legal states describes some properties that are locally checkable at a region

and that become true at an alive process at the time of the first time input for the process

and possibly a ledgerClean action.

Definition 12.2 Let L1eo be the set of states x of GeoCast where all of the following hold:

1. X[XRWIVWIVbcast E In2VRwlVW|Vbcast-

This says that the state restricted to the variables of the composition of RW, VW,

and Vbcast are reachable states of their composition.

239

2. For each u E U : [-,f ailed => V(m, t) E to_send, : rtimer - t E [0, e]].

This says that VBDelay messages queued for a region have been waiting in the

buffer at least 0 and at most e time.

3. For each u E U : (-if ailed A clock, = I):

(a) There are no geocast tuples in VBDelay.to_send.

This says that non-failed regions that have not yet received a time input do not

have any geocast messages queued up for sending.

(b) For each (m, w, v, t) : ledger((m, w, v, t)) $ false.

This says that non-failed regions that have not yet received a time input do not

have any ledger entries that need to be processed.

4. For each u E U : (-failed A clock # I):

(a) clock, = now.

This says that non-failed regions that have a non-I clock have a clock time that

is the same as the actual time.

(b) For each (m, w, v, t) : ledgeru((m, w, v, t)) -/ null (For each non-failed re-

gion with a non-I clock, each non-null ledger entry satisfies the following):

i. t + (e + d)dist(w, u) > clock, - e A (t + (e + d)dist(w, u) > clocku V

ledgeru ((m,w,v,t)) = true).

This says the entry has not expired too long ago- if we add the maximum

amount of time for a message to follow a shortest path from w to our region

to the time when the geocast message originated, the result is no less than

e before the current time. Also, if the tuple's expiration point has passed

then ledger maps it to true.

ii. clock, € t V u = w.

This says that if t is equal to the current time, then the source of the geo-

cast message must be the current region. (Recall that vcasts, such as of

geocast-tagged messages, take non-0 time to be delivered, implying that

the only current-time ledger entries must be from self-geocasts.)

240

iii. (clock, > t A u = w) 4 ledger,((m, w, v, t)) = true.

This says that self-geocasts are processed at the time they occur

iv. clocku > t.

This says that entries in ledger can't be for geocast messages sent in the

future.

v. dist(w, v) = dist(w, u) + dist(u, v).

This says that u must be on a shortest path between the sender of the geo-

cast and the destination.

It is trivial to check that Lleo is a legal set for GeoCast:

Lemma 12.3 L'eo is a legal set for GeoCast.

12.3.2 Legal set L2
geo

The next legal set, Lgeo, is a subset of L1eo that satisfies additional properties with respect

to the state of each Veo and Vbcast. The properties are concerned with geocast tuples,

whether they are in a region's ledger or in transit in the communication service.

Definition 12.4 Let L2eo be the set of states x of GeoCast where all of the following hold:

1. x E Lo.

This says that Leo is a subset of L~o.

2. For each u E U : (-failed, A clock,, = I), and for each (m, w, v, t)

ledger,((m, w, v, t)) null:

(a) [u v A ledger,((m,w,v,t)) = true] 3 Et' E R>Io

((geocast, m, w,v,t),t') E to_send V 3t" > t : 3P' c P U U

((geocast, rn, w, v, t), u, t", P') E vbcastq.

This says that if the ledger of an alive region with non-I clocku maps a tu-

ple (m, w, v, t) to true and u is not the destination, then the tuple tagged with

geocast is either in VBDelay, or in vbcastq. (Recall that vbcastq contains a

record of all previously vcast messages.)

241

(b) u w j t' E [t,t + e] : 3P' C P U U: ((geocast, m, w, v, t), w, t', P')

vbcastq.

This says that if a non-source's ledger maps the tuple to a non-null value, then

there exists a record of the original broadcast of the geocast tuple in vbcastq

within e time of the tuple's timestamp.

3. For each u E U : -if ailed: 3((geocast, m,w, v, t), t') E to_send = [t +

(e + d)dist(w, u) > now - rtimer + t' A Et" E [t, t + e] : P' C PU U :

((geocast, m, w, v, t), w, t", P') E vbcastq].

This says that if a nonfailed region's VBDelay queue contains a geocast message,

then the timestamp on the message is such that it was sent by the region before it

expired, and there exists a record of the original broadcast of the geocast tuple in

vbcastq within e time of the tuple's timestamp.

4. For each ((geocast, m, , v, t), u, t', P') E vbcastq : [P' #0 # =]t" E [t, t + e]:

3P" C P: ((geocast, m, w, v, t), w, t", P") E vbcastq].

This says that if a geocast tuple with timestamp t is in transit in Vbcast (meaning

the tuple has yet to be either delivered or dropped by each process), then a vcast of

the tuple happened between time t and time t + e and was either received or dropped

by at least one process. (In other words, if a geocast tuple is still in transit, then

there exists a record of the original broadcast of the geocast tuple in vbcastq within

e time of the tuple's timestamp.)

Next we check that L9eo is a legal set for GeoCast.

Lemma 12.5 L2eo is a legal set for GeoCast.

Proof: Let x be any state in Lgeo. By Definition 3.12 of a legal set, we must verify two

things for state x:

* For each state x' of GeoCast and action a of GeoCast such that (x, a, x') is in the

set of discrete transitions of GeoCast, state x' is in LTOBimpl .

* For each state x' and closed trajectory 7 of GeoCast such that T.fstate = x and

T.lstate = x', state x' is in L2Geo

242

By Lemma 12.3, we know that if x satisfies the first property of Lgeo, then any discrete

transition of GeoCast will lead to a state x' that still satisfies the first property, and any

closed trajectory starting with state x will end in some state that satisfies the first property.

This implies that we just need to check that in the two cases of the legal set definition, the

state x' satisfies all parts of the second property of L2geo

For the first case of the legal set definition, we consider each action:

* GPSupdate(l,t)p, drop(n,j), fail,, restart,, geocast(m,v),, georcv(m),,

ledgerClean((m, w, v, t)),: These are trivial to verify.

* time(t),: If failed,, holds in state x, then none of the properties are affected. Let's

consider the case where -ifailed,. Since property 4(a) holds in state x, either t =

clocks, meaning all properties still hold since no changes to region u's state occur,

or clock, = _ and the action initializes ledgeru. In the second case, property 2

becomes trivially true, and property 4 is not affected. Since property 3(a) of Lgeo

holds in state x, we know that no geocast tuples are in to_sendu, making property 3

of L'eo trivially true.

* vrcv((geocast, m, w, v, t)),: The only non-trivial property to verify is property 2(b).

Assume that u w, meaning that the region receiving the message is not the re-

gion that received the associated geocast. We must show that there exists some

t' E [t, t + e] :]P' C P U U such that the received tuple, tagged with w, t', and

P' is in vbcastq. By the precondition for this action, we know that there exists some

((geocast, m, w, v, t), w', t", P") in x(vbcastq) such that P" is non-empty. Since

state x satisfies property 4, we know that there exists some t' E [t, t + e] and P' a

proper subset of P U U such that ((geocast, m, , v, t), w, t', P')is in vbcastq, show-

ing the property.

* vcast((geocast, m, , v, t)),: The only non-trivial properties to verify are properties

2(a) and 3. To check property 2(a) we consider two cases: one where u = w and

one where it does not. If u w, then property 2(a) follows from the fact that

property 2(b) held in state x. Otherwise, it follows from the fact that an effect of

243

the action is the addition of an appropriate tuple to to_send. To check property

3 we need to check that the tuple added to to_send, has a timestamp t such that

t + (e + d)dist(w, u) > now and there is a record of the original broadcast of the

geocast tuple. The first follows from the fact that property 4(b)i. of Leo holds in

state x. The second follows from the fact that property 2(a) holds in state x.

vcast'((geocast, m, w, v, t), true)u: The only non-trivial properties to verify are

properties 2(a) and 4. Property 2(a) is easy to see since an effect of this action is

moving a tuple from tosendu into vbcastq. To check property 4, we need to show

that there is a ((geocast, m, w, v, t), w, t", P") in x(vbcastq) = x'(vbcastq), where

t" E [t, t + e], which follows from the fact that property 3 held in state x.

For the second case of the legal set definition, we now consider any closed trajectory

T- such that x = F. fstate. Let x' be T.lstate. We must show that x' E L~, o, by verifying

that each property of Lgeo holds. It is easy to see that because the only evolving variables

referenced in the properties are clocku, rtimers, and now which evolve at the same rate,

properties 2 and 4 hold.

The only interesting property to check is property 3. In particular, the only thing of

interest to check is that if a region u is not failed and its VBDelay buffer contains a

geocast tuple from region w with timestamp t and VBDelay timer tag t', then t + (e +

d)dist(w, u) > now - rtimer + t'. However, since now and rtimer evolve at the same

rate, the value on the right of the inequality remains the same over a trajectory. The values

on the left of the inequality remain the same over a trajectory because they are discrete

variables. U

Properties of execution fragments starting in Lgeo

One thing to note is that execution fragments of GeoCast that begin in a state in L2geo

satisfy a set of properties very close to the ones described for executions in Section 12.2.

Recall that in Section 12.2, we showed that GeoCast guarantees that for every execution

there exists a function mapping each georcv(m), event to the geocast(m, v), event that

caused it such that five properties (Integrity, Same-time self-delivery, Bounded-time deliv-

244

ery, Reliable self-delivery, and Reliable serviceable delivery) hold.

Now we consider execution fragments of GeoCast rather than executions and show that

properties similar to those in Section 12.2 still hold. The first property basically says that

the properties of an execution of GeoCast also hold for execution fragments of GeoCast

that begin in a state in Lgeo, provided that we are allowed to consider a function that maps

only a subset of georcv events in ac. The second property constrains the set of georcv

events that we don't map to be ones that occur early enough in the execution fragment that

there is not required to be a corresponding geocast event.

Lemma 12.6 GeoCast guarantees that for every execution fragment a beginning in a state

in L eo there exists a subset H of the georcv(m), events in a such that:

1. There exists a function mapping each georcv(m), event in I to the geocast(m, v)

event that caused it such that the five properties (Integrity, Same-time self-delivery,

Bounded-time delivery, Reliable self-delivery, and Reliable serviceable delivery)

hold.

2. For every georcv(m)v event 7 not in II where -r occurs at some time t, it must be the

case that t - a.f state(now) < (e + d) * maxcu dist(u, v).

Proof sketch: The two properties together say that execution fragments of GeoCast that

begin in a state in Lo,, demonstrate behavior similar to that of executions of GeoCast,

modulo several orphan georcvs that can be viewed as events that would have been mapped

to geocast events that occur before the start of cz. In particular, consider the same mapping

described in Section 12.2. We can show the same results as in Section 12.2 for geocasts

and those georcvs that are mapped to geocasts. Now consider each georcv(m)v that oc-

curs at some t time after the start of the execution fragment and is not mapped to a geocast.

We just need to show that there exists some region u such that t < (e + d)dist(u, v), im-

plying that the georcv could be viewed as being mapped to a geocast(m, v), that occurs

before the start of the execution fragment. Each such georcv corresponds to a ledger

entry that satisfies property 4(b) of Lleo. Taking the source region in the entry as u,

we know that the associated timestamp t' satisfied the property that it was no more than

245

(e + d)dist(u, v) old when the georcv occurred. Since this tuple must have been in the

system (either in transit or in a ledger) at the beginning of the execution fragment, this

implies that t < (e + d)dist(u, v).

12.4 Self-stabilization

We've seen that L co is a legal set for GeoCast. Here we show that

,, Fail(VBDelay11 Vfeo) self-stabilizes to L2 o relative to R(RW| VW jVbcast)
(Theorem 12.9), meaning that if certain program portions of the implementation are started

in an arbitrary state and run with R(RWj| VW | Vbcast), the resulting execution eventually

gets into a state in L eo. This is done in two phases, corresponding to the legal sets L co

and L'co .

Using Theorem 12.9, we then conclude that after an execution of GeoCast has sta-

bilized, the execution fragment from the point of stabilization on satisfies the properties

described in Section 12.3.2.

The first lemma describes the first phase of stabilization, for legal set L eo. It

says that I-,, Fail(VBDelayu Velo) self-stabilizes in time t0 o to L'.o relative to

R(RW IVW| Vbcast), where t1eo is any time greater than Csample:

Lemma 12.7 Let teo be any t such that t > Esample.

U,,, Fail(VBDelayuI VeO) self-stabilizes in time teo to L 0o relative to

R(RW IVWJ Vbcast).

Proof sketch: To see this result, just consider any time after each node has received a time

input, which takes at most Esaple time to happen. U

The next lemma shows that starting from a state in Lg o0 , GeoCast ends up in a state in

L2go within t2 o time, where t2o is any time greater than e + (e + d)(D + 1). (Recall that

D is the network diameter in region hops.) This result takes advantage of the timestamping

of geocast tuples as a way to prevent data from being too old.

Lemma 12.8 Let t2eo be any t such that t > c + (e + d) (D + 1).
L L 2eo

ragSG 9oCast stabilizes in time t2o to f ragSgoCsGeo ast geo eoCast'

246

Proof: By Lemma 3.21, we just need to show that for any length-t o,, prefix a of an ele-

ment of fragseoocas t , a.lstate is in Lgeo. We examine each property of Lgeo.

By Lemma 12.7, since the first state of a is in Lgo, we know that property 1 of L2eo

holds in each state of a.

For property 2(a) it is plain that for any state in a, any new tuple added to a region

u's ledger will satisfy the property since the tuple will initially map to false, making the

property trivially hold with respect to that tuple. Also, any tuple that maps to false will

continue to satisfy the property even when it changes to being mapped to true, since such a

change only occurs when the geocast-tagged tuple is added to to_send. The tuple is then

only removed from to_send if the process fails or a similar tuple is added to vbcastq, either

or which would have property 2(a) continue to hold.

This leaves tuples with a non-u destination that a region u's ledger maps to true in the

first state of a. Since a.f state E Llb and hence satisfies property 4(b)i., we know that

such a tuple will have a timestamp no smaller than now - c - (e + d)D. This means that in

a.lstate, the entry will have been removed, giving us that the algorithm stabilizes to satisfy

the property.

For property 3, consider what happens when a nonfailed region has a geocast tuple

in its tosend buffer. The first thing we would like to show is that the tuple's timestamp

is consistent with what it would have been if the tuple were broadcast before it expired.

Since a.f state E Ltob and hence satisfies property 4(b)i., we know that any new messages

added to to_send will satisfy this requirement. This leaves only problematic tuples that

were present in tosend in a.f state. However, we know that each tuple in to_send spends

at most e time there. Since this is less than teo we are done with this portion of property 3.

The remainder of property 3, together with property 2(b) and property 4 are very similar

in their proof obligations. Hence, we only discuss the proof of property 4 here.

For property 4, notice that for each geocast tuple added for the first time in the system

to a tosend queue and then propagated within e time to vbcastq, the property will hold

and continue to hold as the message makes its way through the system. The only thing

we need to consider are the tuples throughout the system in a.f state. Consider the worst

case of a "bad" tuple in a to_send queue. The tuple could, at worst, take maximum time

247

to be propagated to vbcastq and delivered at a client (which works out to e + d time),

and could contain a timestamp just under e + d ahead of real-time in a. fstate. The tuple

will eventually stop being forwarded when it stops being accepted for ledger entries, up to

(e + d) (D - 1) later. Its entries in ledgers can take up to an additional e + d + e time before

being removed by ledgerClean actions. This total time of e + (e + d)(D + 1) is less than

t2o, and we are done. 0

Now we can combine our stabilization results to conclude that Fail(VBDelay iVGeo)

components started in an arbitrary state and run with R(RWI VW| Vbcast) stabilizes to

L 2 o in time tgeo, where tgeo is any t such that t > Esample + + (e + d)(D + 1). The result is

a simple application of the transitivity of stabilization (Lemma 3.6) to the prior two results.

Theorem 12.9 Let tgeo be any t such that t > Csample + e + (e + d)(D +

1). Iu,, Fail (V BDelayu, lVGe) self-stabilizes in time tgeo to L2 o0 relative to

R(RW VWlVbcast).

Proof: We must show that eXeCSU(HC, Fail(VBDelay, II VFo)) R(RWIJVWII Vbcast) stabilizes

L
2

in time tgeo to frags ° Fail(VBDelay|llVGeO)R(l|VW lVbcast). By Corollary 3.11,
L
2 L

2

frags~ 0 Fail(VBDelayg lVeo)" R(RWI VWgIVbcast) is the same as fragGocast . The result

follows from the application of transitivity of stabilization (Lemma 3.6) on the two lemmas

(Lemmas 12.7 and 12.8) above. Let teo = Esample + (tgo - Esample - e - (e + d) (D + 1))/2

and t2eo = e + (e + d)(D + 1) + (tgeo - Esample - e - (e + d)(D + 1))/2. (These terms are

chosen so as to satisfy the constraints that teo > Esampl and t eo > + (e + d)(D + 1), as

well as the constraint that teo +t2 = t.)
L1

First, let B be execsu(HI Fail(VBDelay, 1lVeeo)) 1R(RWIJVWi1Vbcast), C be frags eoCast,

L2

and D be fragSL oCa t in Lemma 3.6. Then by Lemma 3.6 and Lemmas 12.7 and 12.8, we

have that execsU((n1CU Fail(VBDelayllVeo))||R(RWiVW1 Vbcast) stabilizes in time tlo + t2 o to
L
2

f ragsGeoCast
frags'GeoCast

Since tgeo = tlo + teo, we conclude that I u Fail(VBDelay V Geo) self-stabilizes

in time tgeo to L 2 o relative to R(RWIIVWIIVbcast).

With Lemma 12.6, this allows us to conclude that after an execution of GeoCast has

248

stabilized, the execution fragment from that point on satisfies the properties in Section

12.3.2:

Lemma 12.10 Let tgeo be any t such that t > csam,ple + E + (e + d)(D + 1).

Then execsU(HjIU Fail(VBDelay, V1Veo))IlR(RW IVW Vllbcast) stabilizes in time tgeo to a set A of

execution fragments such that for each a E A, there exists a subset II of the georcv(m),

events in a such that:

1. There exists a function mapping each georcv(m), event in II to the geocast(m, v)

event that caused it such that the five properties (Integrity, Same-time self-delivery,

Bounded-time delivery, Reliable self-delivery, and Reliable serviceable delivery)

hold.

2. For every georcv(m), event ir not in H where r occurs at some time t, it must be the

case that t - a. f state(now) < (e + d) * maxu dist(u, v).

249

250

Chapter 13

Location Management

In this chapter, we describe a self-stabilizing algorithm for the location management part of

the end-to-end routing service in Chapter 14. The algorithm is built on the Geocast service

and the VSA layer and provides a location service that allows VSAs in the network to

find relatively recent information about the region locations of clients. Each mobile client

identifier hashes to a home location, a region of the network that is periodically updated

with the location of the client, and that is responsible for answering queries about the

client's location.

Finding the location of a moving client in an ad-hoc network is difficult, much more

so than in cellular mobile networks where a fixed infrastructure of wired support stations

exist (as in [54]), or in sensor networks where some approximation of a fixed infrastructure

may exist [6]. A location service in ad-hoc networks is a service that allows any client to

discover the location of any other client using only its identifier. The basic paradigm for

location services that we use here is that of a home location service: Hosts called home

location servers are responsible for storing and maintaining the location of other hosts in

the network [1,48, 62]. Several ways to determine the sets of home location servers, both

in the cellular and entirely ad-hoc settings, have been suggested.

The locality aware location service (LLS) in [1] for ad-hoc networks is based on a hier-

archy of lattice points for destination nodes, published with locations of associated nodes.

Lattice points can be queried for the desired location, with a query traversing a spiral path

of lattice nodes increasingly distant from the source until it reaches the destination. An-

251

other way of choosing location servers is based on quorums. A set of hosts is chosen to be

a write quorum for a mobile client and is updated with the client's location. Another set

is chosen to be a read quorum and queried for the desired client location. Each write and

read quorum has a nonempty intersection, guaranteeing that if a read quorum is queried,

the results will include the latest location of the client written to a write quorum. In [48],

a uniform quorum system is suggested, based on a virtual backbone of quorum representa-

tives.

Location servers can also be chosen using a hash table. Some papers [51,62, 82] use

geographic locations as a repository for data. These use a hash to associate each piece of

data with a region of the network and store the data at certain nodes in the region. This data

can then be used for routing or other applications. The Grid location service (GLS) [62]

maps each client CP's id to some geographic coordinates xP. A client Cp's location is then

saved by clients located closest to the coordinates x,.

The location managment scheme we present here is based on the hash table concept

and built on top of the VSA layer and the Geocast service. VSAs and mobile clients are

programmed to form a self-stabilizing, fault-tolerant distributed data structure for location

management, where VSAs serve as home locations for mobile clients. Each client's id

hashes to a VSA region, the client's home location, whose VSA is responsible for main-

taining the location of the client. Whenever a VSA wants to locate a client node Cp, the

VSA computes the home location of C, by applying a predefined global hash function to

C,'s id, and queries the region represented by the result of that hash for Cp's location.

In the rest of this chapter, we describe the service (Section 13.1) and properties of the

service (Section 13.2), then describe a set of legal states of the service and properties of

executions starting in those legal states (Section 13.3), and finally argue that our service is

self-stabilizing (Section 13.4). As a wrap-up we also mention some possible extensions to

this work.

252

Signature: Transitions: 16

2 Input GPSupdate(l, t)p, 1 E R, t C R>o Input GPSupdate(l, t)p

Output vcast((update, p, u, t))p, u E U, t e R>o Effect: 18

4 if reg = region(l) V clock $ t then

State: clock - t 20

6 analog clock E R>oU {I}, initially I reg - region(l)
reg E U U {1}, the current region, initially I

8 hbTO E N, initially 0 Output vcast((update, p, u, t))p 24
Precondition:

lio Trajectories: Precondition:

evolve t = clock A u = reg _L 26
12 d(clock) = hbTO *ttlhb < clock V hbTO *ttlhb > clock + ttlhb

stop when Effect: 28

14 Any precondition is satisfied. hbTO - clock/ttlhbJ + 1

Figure 13-1: Client CHL[ttlhb]p periodically sends region updates to its local VSA.

13.1 Location service specification

Our location service allows a VSA u to submit a query for a recent region of a client node

p via a HLquery(p)u action. It allows the region to receive a reply to this query indicating

that p was recently in a region v though a HLreply(p, v)u action, under certain conditions.

In our implementation, called the Home Location Service (HLS), we accomplish this using

home locations. Recall that the home location of a client node p is the region whose VSA

is periodically (at least every ttlhb time) updated with p's region. The home locations are

calculated with a hash function h, mapping a client's id to a VSA region, and is known to

all VSAs. These home location VSAs can then be queried by other VSAs to determine a

recent region of p.

The HLS implementation consists of two parts: a client-side portion and a VSA-side

portion. CIL is a subautomaton of client p that interacts with VSAs to provide HLS. It is

responsible for notifying VSAs in its current and neighboring regions which region it is in.

For the VSA-side, VHL is a subprogram of the VSA at region u that takes a request for

some client node p's region, calculates p's home location using the hash function, and then

sends location queries to the home location using Geocast. The home location subprogram

at the receiving VSA responds with the region information it has for p, which is then output

by VHL. VHL also is responsible both for informing the home location of each client p

located in its region of p's region, and maintaining and answering queries for the regions

of clients for which it is a home location.

253

1 Signature:
Input time(t),, t E R>o

3 Input vrcv((update, p, v, t)),, p E P, v E U, t E Ro>
Input HLQuery(p),

5 Input georcv(m)u,m C ({hlquery} xP xU)
U ({update, hlreply} xP xU xR>O)

7 Output geocast(m, v),, v E U, m ({hlquery} xP x {u})
U ({update, hlreply} xPx xU xR 0)

9 Output HLreply(p, v)u,p E P, v E U
Internal clean,

11

State:
13 analog clock: IR>oU {I}, initially -I

local, lastreq: P - R>oU {1}, initially I

is dir, lastLoc: P -- U xR >-
o, initially null

req: P - Bool, initially false
17 answer: P -- 2 U, initially 0

19 Trajectories:
evolve

21 d(clock) = 1
stop when

23 Any output precondition is satisfied
V Ep E P: [lastreq(p) < clock -2(e+d) dist(u, h(p)) -e

25 V 3(v, t) = dir(p): t < clock -ttlhb -d -(e + d) dist(v', u) -e

V 3(v, t) = lastLoc(p): t < clock -ttlhb -d
27 -(e + d) (dist(v, h(p)) + dist(h(p), u)) -e]

29 Transitions:
Input time(t),

31 Effect:

if clock # t V 3p E P: (local(p) [clock -d, clock) U {_L}
33 V lastreq(p) > clock V [req(p) A lastreq(p) =]

V [3(v, t) E {dir(p), lastLoc(p)}: t > clock]
35 V [K B(v, t) = dir(p): t > clock -ttlhb -d -

(e + d) dist(v', u)
A answer(p) # 0]V [h(p) u A dir(p) I])then

37 clock - t

for each p E P
39 local(p), lastreq(p) - IL

dir(p) ' null
41 req(p) +-- false

answer(p) 0
43

Input vrcv((update, p, v, t)),
45 Effect:

if v = u A t E [clock -d, clock) then
47 local(p) -- t

49 Output geocast((update, p, u, t), v)
Precondition:

51 local(p) C [clock -d, clock) A v = h(p)
Effect:

53 local(p) l

Input georcv((update, p, v, t))
Effect: 56

if h(p) = u At E [clock -d -(d + e) dist(u, v), clock)
A (dir(p) = null V [dir(p) = (v', t) A t' < t]) then 58

dir(p) - (v, t)
60

Input HLQuery(p)6
Effect: 62

if clock : Ithen
lastreq(p) -- clock 64
req(p) -- true

66

Output geocast((hlquery, p, u), v),
Precondition: 68

clock # IA req(p) = true A v = h(p)
Effect: 70

req(p) - false
72

Input georcv((hlquery, p, v)),
Effect: 74

if h(p) = u A 3(v', t) = dir(p):
t E [clock -ttlhb -d -(e + d) dist(v', u), clock) then 76

answer(p) <-- answer(p) U {v}
78

Output geocast((hlreply, p, v, t), v'),
Precondition: 8so

clock IA v' E answer(p) Au = h(p) A dir(p) = (v, t)
Effect: 82

answer(p) +- answer(p) - {v'}
84

Input georcv((hlreply, p, v, t)),
Effect: 86

if tE [clock-ttlhb -d- (e+d) (dist(v,h (p))+dist(h (p),u)),clock)
A [(3v' E U: lastLoc(p) = (v', t) A t' < t) 88

V lastLoc(p) = null] then
lastLoc(p) - (v, t) 90

Output HLreply(p, v), 92
Precondition:

[3tE [clock -ttlhb -d-(e+d) (dist(v,h (p))+dist(h(p),u)),clock)4
lastLoc(p)= (v,t)]A lastreq(p)> clock-2(e+d)dist(u,h(p))

Effect: 96

lastreq(p) e- I
98

Internal clean,
Precondition: 100

3p E P: [lastreq(p) < clock -2(e+d) dist(u, h(p))
V B(v, t) = dir(p): t < clock -ttlhb -d -(e + d) dist(v', u) 102
V 3(v, t) = lastLoc(p): t <

clock -ttlhb -d -(e + d) (dist(v, h(p)) + dist(h(p), u))I))4
Effect:

for each p C P 106
if lastreq(p) < clock -2(e+d) dist(u, h(p)) then

lastreq(p) -- I 1 lo
if 3(v,t)= dir(p):t< clock-ttlhb -d- (e+d) dist(v',u) then

dir(p) -- 1 110
if 3(v, t) = lastLoc(p): t < clock -ttlhb -d

-(e + d) (dist(v, h(p)) + dist(h(p), u)) then 112
lastLoc(p) +- I

Figure 13-2: VSA VHL [ttlhb, h P -- U], automaton.

254

i

The TIOA specification for the the individual clients is in Figure 13-1. The specifi-

cation for the individual regions is in Figure 13-2. The complete service, HLS, is the

composition of 1u,,u Fail(VHLI VGeo IVBDelay,), HPEp Fail(CHL VBDelayp), and

RWIIVWIVbcast. In other words, the service consists of a Fail-transformed automata

at each region of the home location machine, geocast machines and VBDelay machine; a

Fail-transformed automata at each client of the geocast machine and VBDelay machine;

and RW fVWI Vbcast.

Just as with the geocast automata VG"eO in Chapter 12, we note that for each u e U,

VHL I VGeo is not technically a valid VSA since its external interface consists of non-vcast,

vrcv, and time actions. However, we will later (in Chapter 14) compose this automaton

with other automata and hide these actions to produce new automata that are VSAs. In the

meantime we map refer to these almost-VSAs as VSAs, with the understanding that the

technical detail will be resolved later.

Again, just as with the geocast service, the VUHL subprograms can be used in other VSA

layer programs, as long as each VHL is composed with other VSA subprograms that allow

us to hide the HLQuery and HLreply actions. For example, we could define a C - HLS

service that allows clients to query for the region of other clients, and to subsequently

receive replies. We could implement this service in the same way as we implemented the

C - Geocast service at the end of Section 12.1: have clients broadcast queries to and

receive replies from their local region u's VSA subprogram for C - HLS, which in turn

interacts with the region's VHL subprogram to have those queries answered.

We now describe the pieces of the HLS service in more detail.

13.1.1 Client algorithm

The code executed by client p's CHL is in Figure 13-1.

Clients receive GPSupdates every Csampl, time from the GPS automaton (lines 17-22),

making them aware of their current region and the time. If a client's region or local clock

changes as a result, the variable hbTO is set to 0 (line 22), forcing the immediate send of an

update message, with its id, current time and region information (lines 24-29). The client

255

also periodically (at every multiple of ttlhb time) reminds its current VSA of its region by

broadcasting an additional update message.

13.1.2 VSA algorithm

The code for automaton V'HL appears in Figure 13-2.

First, the VSA knows which clients are in its or neighboring regions through update

messages. If a VSA vrcvs an update message from a client p claiming to be in its region

(lines 44-47), the VSA sends an update message for p, with p's heartbeat timestamp and

region, through Geocast to h(p), the VSA home location of client p (lines 49-53).

When a VSA receives one of these update messages for a client p, it stores both the

region indicated in the message as p's current region and the attached heartbeat timestamp

in its dir table (lines 55-59). This location information for p is refreshed each time the

VSA receives an update for client p with a newer heartbeat timestamp (line 58). Since

a client sends an update message every ttlhb time, which can take up to d time to arrive

at and trigger its local VSA u to send an update message through Geocast, which can

take (e + d)dist(u, h(p)) time to be delivered at the home location, an entry for client p

indicating the client was in region u is erased by its home location if its timestamp is older

than ttlhb + d + (e + d)dist(u, h(p)) (lines 102 and 109-110).

The other responsibility of the VSA is to receive and respond to requests for loca-

tion information on clients. A request for a client p's location comes in to region u via a

HLquery(p), input (line 61). This sets lastreq(p), the time of the last query for p's loca-

tion (used later to clean up expired queries), to the current time, and updates the flag req(p)

to true, indicating that a query should be sent to p's home location (lines 63-65). This trig-

gers the geocast of a (hlquery, p, u) message to p's home location (lines 67-71). Any home

location that receives such a message and has an unexpired entry for p's region responds

with a hlreply to the querying VSA with the region and the timestamp of the information

(lines 79-83).

If the querying VSA at u receives a hlreply for a client p with newer information than

it currently has, it stores the attached region, v, and timestamp in lastLoc(p) (lines 84-

256

90). This information stays in lastLoc(p) until replaced with newer information or until

the entry's timestamp is older than the maximum time for a client to have sent the next

update, had the update received by its local VSA, and had the information propagated to

its home location and from the home location to VSA u (lines 99, 103-104, and 111-113).

If there is an outstanding request for p's location (indicated by the condition that

lastreq(p) > clock - 2(e +d)dist(u, h(p)) in line 95), the VSA performs a HLreply(p, v)u

output and clears lastreq(p), indicating that all outstanding queries for p's location are sat-

isfied (lines 92-97). If, however, 2(e + d)dist(u, h(p)) time passes since a request for p's

region was received and there is no entry for p's region, lastreq(q) is just erased (lines 99,

101, and 107-108), indicating that the query has expired.

13.2 Properties of executions of the location service

A location service answers queries for the locations of clients. A VSA u can submit a

query for a recent region of client node p via a HLquery(p)u action. If p's home location

can be communicated with and p has been in the system for a sufficient amount of time,

the service responds within bounded time with a recent region location v of p through a

HLreply(p, v) action.

More formally, we say that a process p is findable at a time t if there exists a time tsent

such that:

1. tent mod ttlhb = 0 and process p has been alive since time tsent - 6 sample

2. For each u E {reg-(p, tsnt), rCg(p, tsent)}, tst + d + (e + d)dist(u, h(p)) < t.

3. For each t' E [tsent, t] and v E {reg-(p, t'), reg+(p, t')}, there exists at least one

shortest path from v to h(p) of regions that are nonfailed and have clock values equal

to the real-time for the interval [t', t' + (e + d)dist(v, h(p))].

(Notice that this amounts to saying that a process is findable if we can be assured that its

home location will have some information on the whereabouts of the process.)

We say that a HLQuery by a region u for a process p at time t is serviceable if:

257

1. Process p is findable at time t' for each t' E [t, t + (e + d)dist(u, h(p))].

2. There exists at least one shortest path from u to h(p) of regions that are nonfailed and

have clock values equal to the real-time for the interval [t, t + 2(e + d)dist(u, h(p))].

Then we can show the following result:

Lemma 13.1 The HLS service guarantees that in each execution a of HLS, there ex-

ists a function mapping each HLreply(p, v)u event to a HLQuery(p) event such that the

following hold:

1. Integrity: If a HLreply(p, v), event -r is mapped to a HLQuery(p), event 7r', then 7r'

occurs before 7.

2. Bounded-time reply: If a HLreply(p, v), event 7i is mapped to a HLQuery(p)u

event 7r' where 7' occurs at time t, then event 7 occurs in the interval [t, t + 2(e +

d)dist(u, h(p))].

3. Reliable reply: This guarantees that a query will be answered if it is serviceable: If a

HLQuery(p), event 7r' occurs at time t, a.ltime > t + 2(e + d)dist(u, h(p)), and 7r'

is serviceable, then there exists a HLreply(p, v), event 7r such that -r occurs at some

time t' E [t, t + 2(e + d)dist(u, h(p))].

4. Reliable information: If a HLreply(p, v), event occurs at some time t, then there

exists a time t' E [t - ttlhb - d - (e + d)(dist(v, h(p)) + di st(h(p), u)), t] such that

v E {reg-(p, t'), reg+(p, t')}.

Proof sketch: It is easy to define the mapping from HLQuery to HLreply events described

above as follows: For each HLreply(p, v), event, there is some time t h I such that

t = lastreq(p) (line 95). We map the HLreply event to the first HLQuery(p)u event that

occurs at time t.

It is very easy to check that the first two properties hold. To see that Reliable reply

holds, we note that for a HLQuery(p) event the properties of the underlying Geocast

service make the property easy to check. (Due to properties of Geocast, the only thing

258

that really needs checking is that if p is findable, then when any (hlquery, p, u) message

sent because of the HLQuery is received by p's home location, the home location will

have information on p's location. We can see that this holds because if p is findable, the

properties of Geocast ensure that some recent-enough update message about p will have

been received by p's home location.)

To see that the Reliable information property holds, assume that a HLreply(p, v)u event

7 occurs at some time t. We must show that there exists a time t' E [t - ttlhb - d -

(e + d)(dist(v, h(p)) + dist(h(p), u)), t] such that v E {reg-(p, t'), reg+(p, t')}. By the

precondition for the HLreply event on lines 94-95, we know that there exists a pair (v, t")

equal to lastLoc(p) such that t" > t - ttlhb - d - (e + d)(dist(v, h(p)) + dist(h(p), u)).

We now argue that t" satisfies the properties of the t' we are looking for. The only way that

lastLoc(p) is set to (v, t") is by the receipt of a (hireply, p, v, t") message (lines 85-90).

Such a message is only sent by p's home location if the home location's dir(p) is set to

(v, t") (lines 79-81). The home location's dir(p) is only set to (v, t") by the receipt of

an (update, p, v, t") tuple (lines 55-59). Such an update tuple is only sent by the region

v if its local(p) is set to t" (lines 49-51). Its local(p) is only set to t" if it received an

(update, p, v, t") message through the Vbcast service (lines 44-47). Such a message must

have been sent by a process p at time t. Since the message is only sent by the process p if

its latest region update by time t was for region v, we have our result. m

13.3 Legal sets

Here we describe a legal set of HLS by describing a sequence of five legal sets, each a

subset of the prior. Recall from Lemma 3.13 that a legal set of states for a TIOA is one

where each closed execution fragment starting in a state in the set ends in a state in the

set. We break the definition of the legal set up into multiple legal sets in order to simplify

the proof reasoning and more easily prove stabilization later, in Section 13.4. Because the

proofs in this section are routine, we omit them. At the end of this section, we discuss

properties of execution fragments of HLS that start in our set of legal states.

259

13.3.1 Legal set L' 1

The first set of legal states describes some properties that are locally checkable at a region

or client and that become true at an alive VSA at the time of the first time input for the

VSA and GPSupdate input at a client, assuming the underlying GeoCast system is in a

legal state.

Definition 13.2 Let Ll 1s be the set of states x of HLS where all of the following hold:

1. X [XGeoCast E L 2

This says that the state restricted to the variables of GeoCast is a legal state of

GeoCast.

2. For each p E P :-if ailed (nonfailed client):

(a) clockp I = [clockp = now A reg, = reg(p)].

This says that if the local clock is not I, then it is set to the current real-time

and regp is p's current region.

(b) [hbTO * ttlhb clockp + ttlhb A (update, p, regp, clockp) '

tosendpto_send+] = ((update, p, regp, clockp), regp, clock, P U U) E

vbcastq.

This says that if hbTO indicates that the client should have just sent an update

and there is no such message in the client's VBDelay, then the update has

already been propagated to Vbcast.

(c) [3q E P, u E U,t E R o : (update, q,u,t) E to_sendPto_send+] => [q =

p A t = now A u {reg-(p, now), reg+(p, now)}].

This says that if an update message is in one of a client's VBDelay queues,

then the message correctly indicates a region that the client has been in at this

time.

3. For each u E U : -f ailed, A clocku, 1 I (nonfailed VSA that has received a time

input):

260

(a) clock, = now.

This says that the local clock should be equal to the real-time.

(b) -3p E P : (local(p) [clock - d, clock) U I V lastreq(p) > clock V [req(p) A

lastreq(p) = 1] V [3(v,t) E {dir(p),lastLoc(p)} : t > clock] V [(v, t) =

dir(p) : t > clock - ttlhb - d - (e + d)dist(v', u) A answer(p) = 0] V [h(p) #

u A dir(p) h I]).

This just says that a non-failed VSA's state must satisfy a litany of local consis-

tency conditions, none of which is very interesting.

It is trivial to check that L'11 is a legal set for HLS.

Lemma 13.3 L' 18 is a legal set for HLS.

13.3.2 Legal set L'18

The second set of legal states describes some properties that hold after any spurious VSA

messages are broadcast and spurious Vbcast messages are delivered.

Definition 13.4 Let L2is be the set of states x of HLS where all of the following hold:

1. x E Lh1s'

This says that L'Is is a subset of L't1 .

2. For each ((update, p, u, t), q, v, t', P') E vbcastq:

t' > now - d => [q = pAt = t' Au E {reg-(p,t),reg+(p,t)}].

This says that any update tuple in vbcastq sent in the last d time must correctly

indicate a region of the sender at the time the message was sent.

3. For each u E U : -if ailed (nonfailed VSA):

(a) /((update, p, v, t), t') E to_send,.

This says that a VSA should not vcast an update tuple. (VSAs only geocast

update tuples.)

261

(b) For each p E P: local (p) = t f i = u E {reg-(p, t), reg+(p, t)}.

This says that if local(p) is set to t, then the VSA's region is a region of the

process p at time t.

(c) For each v, v' E U, p E P, t E R O : [ledger(((update, p, v, t), u, v', now)) f

null V ((geocast, (update, p, v, t), u, v', now), rtimer,,) E tosend] = [u =

vA v' = h(p) A u E reg-(p, t), reg (p, t)}].

This says that if an update message for p has been geocast but not yet been

turned over to Vbcast, then it is being geocast to the home location of the

process and correctly indicates one of the regions of p at the time t included in

the message.

(d) For each p E P, (v, t) = lastLoc(p) t > clock, - d

3((geocast, (hlreply, p, v, t), v', u, t'), v", t", P') E vbcastq : t" > t.

This says that if lastLoc(p) is set to some (v, t) where t > now - d, then there

exists a geocast of an hlreply tuple no older than t that indicates that v is a

region of p at time t.

4. For each ((geocast, (update, p, v, t), u, v', t'), u', now, P U U) in vbcastq:

[t' E (t, t + d] A u = v = u' A v' = h(p) A u E {reg-(p, t), reg+(p, t)}].

This says that any update tuple for a process p and time t that has just been geocast

and whose record is in Vbcast correctly indicates a region of the process p at time t.

It also says that the message is being geocast to the process's home location.

For the sake of brevity and reader sanity, we do not include the proof of the following

lemma here. The proof is a tedious but not difficult case analysis, based on the actions and

trajectories of the HLS system.

Lemma 13.5 L2hI is a legal set for HLS.

13.3.3 Legal set L'18

The third set of legal states describes some properties that hold after any spurious geocast

messages are delivered.

262

Definition 13.6 Let L hs be the set of states x of HLS where all of the following hold:

1. x E L2his

This says that L is a subset of L s.

2. For each (geocast, ((update, p, v, t), u, v', t'), u', t", P') in vbcastq: t" > now - (e +

d)D => [t' E (t, t + d] A u = v = u' A v' = h(p) A u E {reg-(p, t), reg+(p, t)}].

This says that a geocast of an update for a process p at time t that was passed to

Vbcast at some time t" > now - (e + d)D was sent to p's home location by the VSA

at a region of the process at time t.

This lemma is also easy to check:

Lemma 13.7 L3,1 is a legal set for HLS.

13.3.4 Legal set L4

The fourth set of legal states describes some properties that hold after any bad location

information stored at home locations of processes is cleaned up.

Definition 13.8 Let L ts be the set of states x of HLS where all of the following hold:

1. x E L h.

This says that L t is a subset of L3.

2. For each (geocast, ((update, p, v, t), u, v', t'), u, t", P') in vbcastq : t" > now - d -

ttlhb-2(e+d)D: [t' E (t,t+ d]Au = vAv'= h(p)Au E {reg-(p,t),reg+(p,t)}].

This is similar to property 2 of L~s, only extendedfor t" > now-d-ttlhb-2(e+d)D.

3. For each u E U : -failedu: Vp E P : V(v, t) = dir(p) : t > clock, - ttlhb - d -

(e + d)dist(v, u) = 3(geocast, ((update, p, v, t), v, u, t'), v, t", P') E vbcastq : t" >

now - d - ttlhb - (e + d)D.

This says that at a nonfailed VSA, if the VSA is storing the location of a process p as

region v at time t, then if t > clock, - ttlhb - d - (e + d)dist(v, u), there was a

geocast of an update tuple indicating the same region and time information.

263

4. For each u E U : -f ailed, v, v' E U, p E P, t E

R >O : [ledger(((hlreply, p, v, t), u, v', now)) f null V

((geocast, (hlreply, p, v, t), u, v', now), rtimeru) E to_sendu] = [u = h(p) A v E

{reg-(p, t), reg(p, t)}].

This says that if an hlreply message for a process p has been geocast but not yet

turned over to Vbcast, then the VSA is the home location for p and the attached

region v is a region of p at time t.

5. For each (geocast, ((hlreply,p, v, t), u, v', t'), u', now, P U U) in vbcastq: [u

h(p) A v E {reg-(p, t), reg+(p, t)}].

This says that any geocast of an hlreply that has just been turned over to Vbcast

correctly names a region that a process p was in at a time t and was sent by p's home

location.

6. For each u U : -f ailedu, for each p E P, (v, t) = lastLoc(p):

t > clock,, - d - ttlhb - (e + d)D

3(geocast, ((hlreply, p, v, t), h(p), u, t'), h(p), t", P') E vbcastq : [t" > t A v E

{reg-(p, t), reg+(p, t)}].

This says that if lastLoc(p) is set to some (v, t) where t > now - d - ttlhb - (e+d) D,

then there exists a geocast of an hlreply tuple no older than t that indicates that v

is a region of p at time t. In addition, v was a region of p at time t.

The proof of the following lemma is again omitted because it is routine.

Lemma 13.9 L'18 is a legal set for HLS.

13.3.5 Legal set L'1s

The fifth set of legal states describes some properties that hold after any bad location infor-

mation stored at location queriers is cleaned up.

Definition 13.10 Let L~I8 be the set of states x of HLS where all of the following hold:

1. x E L is

This says that L 1s is a subset of Lis.

264

2. For each (geocast, ((hlreply, p, v, t), u, v', t'), u, t", P') in vbcastq: t" > clock, -

(e + d)D = v E {reg-(p, t), reg+(p, t)}.

This is similar to property 5 of L~1s, only extended for t" > clock, - (e + d)D, rather

than just t" = now.

3. For each u E U : -f ailed, andfor each p E P : (v, t) = lastLoc,(p)At > clock, -

ttlhb - d - 2(e + d)D : 3(geocast, ((hreply, p, v, t), h(p), u, t'), h(p), t", P') E

vbcastq : [t" > t A v E {reg-(p, t), reg+(p, t)}].

This is similar to property 6 of L ,, only extended for t" > clockuttlhb - d - 2(e +

d)D.

It is trivial to see that since the second two properties are simply properties of Lhis

observed for longer periods of time, the following result will follow:

Lemma 13.11 L'1, is a legal set for HLS.

Properties of execution fragments starting in L' 1h

As with the Geocast service, we can describe properties of execution fragments of HLS

that start in L s as properties of executions of HLS, as described in Section 13.2. As be-

fore, the difference is in the mapping of some subset of HLreply events that occur towards

the beginning of the execution fragment.

More formally, we can say the following:

Lemma 13.12 HLS guarantees that for an execution fragment a starting in Lh1s, there

exists a subset H of the HLreply events in a such that:

1. There exists a function mapping each HLreply event in I to a HLquery event such

that the four properties (Integrity, Bounded time reply, Reliable reply, and Reliable

information) hold.

2. For every HLreply(p), event ir not in II where 7r occurs at some time t, it must be the

case that t - a.f state(now) < 2(e + d)dist(u, h(p)).

265

This concept and proof is similar to the material in Section 12.3.2, where we described the

properties of execution fragments of Geocast as a variant of the properties of executions of

Geocast, adjusting for a subset of receive events towards the beginning of a fragment.

13.4 Self-stabilization

We've seen that L ~5 is a legal set for HLS. Here we show that

L U Fail(VBDelay,|Ve°oVHL) Jp-P Fail(VBDelayp CfHL) self-stabilizes to

L51s relative to R(RW| VWI Vbcast) (Theorem 13.19), meaning that if certain pro-

gram portions of the implementation are started in an arbitrary state and run with

R(RW IVW Vbcast), the resulting execution eventually gets into a state in L 1ls . Using

Theorem 13.19, we then conclude that after an execution of HLS has stabilized, the

execution fragment from the point of stabilization on satisfies the properties described in

Section 13.3.5.

The proof of the main stabilization result for the chapter, Theorem 13.19, breaks sta-

bilization down into two large phases, corresponding to stabilization of the lower level

Geocast service, followed by stabilization of the HLS service assuming that Geocast has

stabilized. We have seen that GeoCast stabilizes to the set of legal states L'eo in Section

12.4. What we need to show for Theorem 13.19 is that, starting from a set of states where

GeoCast is already stabilized, HLS stabilizes to L 18 (Lemma 13.18). We do this in five

stages, one for each of the legal sets described in Section 13.3. The first stage starts from

a state where GeoCast is already stabilized and ends up in the first legal set. The second

stage starts in the first legal set and ends up in the second, etc.

The first lemma describes the first stage of HLS stabilization, to legal set L 18s. It says

that within t'l, time of GeoCast stabilizing, where t'lf > Esaple, the system ends up in a

state in L s'

thr a 17 5jfe' { s fXFXGeoCasstaL 2 eo
Lemma 13.13 Let t' be any t such that t > Esample. fragSH 1S stabilizes in

time t ', to frags h.

Proof sketch: To see this result, just consider the first time after each node has received a

266

time or GPSupdate input, which takes at most esample time to happen.

The next lemma describes the second stage of HLS stabilization. It shows that starting

from a state in Lhs, HLS ends up in a state in L', within tl ,8 time, where t 7, is any time

greater than 2e + d.

Lemma 13.14 Let t2 h be any t such that t > 2e + d. fragshls stabilizes in time t218 to
L
2

fragsH.

Proof: By Lemma 3.21, we just need to show that for any length-t215 prefix a of an ele-

ment of frags s, a.lstate is in L,18 . We examine each property of L .

By Lemma 13.13, since the first state of a is in Lhls, we know that property 1 of Lhis

holds in each state of a.

For property 2 notice that for each update message added for the first time to one of

a client's tosend queue and then propagated to Vbcast, the property will hold and will

continue to hold thereafter. Hence, the only thing we need to worry about are the messages

already in a to_send queue or already in Vbcast in a.f state. However, after d time elapses

from the start of a, the property will be trivially true.

For property 3, we consider each part. Property 3(a) will hold after at most e time,

the time it takes for any such errant messages in a. fstate to be propagated out to Vbcast.

Property 3(b) will hold after at most d time after property 3(a) holds (giving any messages

with bad location information to be received and then removed from local through the

geocast of an update). Property 3(c) will hold within any non-0 time after property 3(b)

holds, as each new geocast of an update will use location information that is correct.

Property 3(d)

For property 4 notice that for each geocast tuple of an update message added for the

first time to a to_send queue after property 3(b) holds (which takes up to e + d time) and

then propagated within e time to vbcastq, the property will hold and continue to hold as

the message makes its way through the system. The only thing we need to consider are the

tuples that are already in a to_send queue in a. fstate. In the worst case, such a tuple takes

e time to be placed in vbcastq, and any non-0 time afterwards to have its Vbcast timestamp

no longer be the current time. 0

267

For the third stage of HLS stabilization, the next lemma shows that starting from a

state in Li 8, HLS ends up in a state in L 3s within t 3i time, where t3, is any time greater

than (e + d)D.

Lemma 13.15 Let t3l, be any t such that t > (e+d)D. (Recall D is the hop count diameter
L

2
L3

of the network.) fragsHjS stabilizes in time t'Es to fragsHS .

Proof: By Lemma 3.21, we just need to show that for any length-t31* prefix a of an ele-
L
2

ment of fragsH "S, a.lstate is in Lhl,. We examine each property of LhI.

By Lemma 13.14, since the first state of a is in Li, we know that property 1 of L ls

holds in each state of a.

For property 2, notice that by property 4 of Lhls we have that all geocast tuples of

update messages added to vbcastq in a will satisfy the property and continue to do so.

After (e + d)D time has passed, we will have that the property holds for all such tuples

broadcast within the prior (e + d)D time. 0

The next lemma, for the fourth stage of HLS stabilization, shows that starting from a

state in L 18, HLS ends up in a state in L' ,% within t ,1 time, where tsl, is any time greater

than d + ttlhb + (e + d)D.

Lemma 13.16 Let t~i be any t such that t > d + ttlhb + (e + d)D. frags HL stabilizes in

time tto fragsL H S

Proof: By Lemma 3.21, we just need to show that for any length-t41 prefix a of an ele-

ment of fragsHf, a.state is in L,1s . We examine each property of LhI.

By Lemma 13.15, since the first state of a is in L 3, we know that property 1 of L4ts

holds in each state of a. Property 2 is easy to see due to its similarity to property 2 of L3I.s

For property 3, notice that at the beginning of o, the newest values of t in a dir tuple

is less than a.fstate(now). After t4i time passes, these entries will be expired and won't

affect the property. This means that all we have to check is that whenever a dir entry is

updated in a, it satisfies the property. This is obvious since such an update only occurs

through the georcv of an update message, which can only happen if property 3 holds.

268

For property 4, notice that any new hireply tuple that is added to the ledger or added to

VBDelay after property 3 holds will satisfy property 4. Similarly, for property 5, any new

hlreply tuple added to vbcastq after property 4 holds will satisfy property 5.

For property 6, notice that at the beginning of a, the newest values of t in a lastLoc

tuple is less than a.fstate(now). After t'l s time passes, those entries still in lastLoc will

be timestamped with values less than those of concern to the property. This means that all

we have to check is that any additions or updates to lastLoc satisfy the property. Since

such changes only occur through the georcv of an hireply, we just need to verify that any

such message that arrives with the wrong region for p at some time has a timestamp that is

older than tIs. This follows from the fact that any hireply sent in a with bad information

must be using information timestamped from before a (by property 2 of L 18,).

For the fifth stage of HLS implementation, the next lemma shows that starting from a

state in L4 HLS ends up in a state in L 1, within t5 l, time, where t'l, is any time greater

than (e + d)D.

Lemma 13.17 Let t'is be any t such that t > (e + d)D. frags L s stabilizes in time t 5i

L5

to fragSH L.

The proof of this lemma is simple for the same reason that the proof that L 8 is trivial; the

property is a longer-interval version of properties that we already know hold.

We now have all of the pieces of reasoning for the five stages of the second phase

of HLS stabilization. (Recall that the second phase of HLS stabilization occurs after

GeoCast has stabilized, corresponding to GeoCast state being in the set L 2o.) We then

combine this reasoning from Lemmas 13.13-13.17 to show that the second phase of stabi-

lization of HLS takes t ', time, t',, > Esample + ttlhb + 2e + 2d + 3(e + d)D, to stabilize:

Lemma 13.18 Let t hs be any t such that t > Esaple + ttlhb + 2e + 2d + 3(e + d)D. Then
f a5{XIXFXGCastEL } L 5

frags HL GeoCas stabilizes in time t 1 to fragssh.

Proof: The result follows from the application of Lemma 3.7 on the five lemmas (Lemmas

13.13-13.17) above.

269

Let t' be (thl, - (Esampl + ttlhb + 2e + 2d + 3(e + d)D))/5. Then let tPls be t' + Esample,

t2lbe t' + 2e + d, t hbe t' + (e + D)D, t hlS be t' + d + ttlhb + (e + d)D, and t5 s be

t' + (e + d)D. (These terms are chosen so as to satisfy the constraints that thls > Esample,

t2 s > 2e + d, etc.)
Le b x4XGeoCastLgeo} L L2

Let Bo be fragSH S e L , 1 be fragsHLS, B 2 be fragsHLS, B3 be
L

3
L4e L51 t 2

frags HS, B 4 be f ragsHL, and B5 be fragsH/ in Lemma 3.7. Let tl be tl 2 his,

t3 be this, t4 be t1,, and t5 be this in Lemma 3.7. Then by Lemma 3.7 and Lemmas 13.13-
..{ X GeoCastEL 2eo13.17, we have that frags GeoCas o stabilizes in time t. + t2 + t + t4 + t 5

L
5

to fragsH .
S +..2+.t {xxFXGeoCastGL~eo}

Since t'hl = t t i + t is + tzl1 + t is , we conclude that frags gLS

Ls

stabilizes in time t'is to fragsHLS' 5

Using this and our prior result on GeoCast stabilization (Theorem 12.9) we can now fi-

nally show the main stabilization result of this chapter. The proof of the result breaks down

the self-stabilization of HLS into two phases, the first being where GeoCast stabilizes,

and the second being where the remaining pieces of HLS stabilize.

Theorem 13.19 I~geU Fail(VBDelay IVGeo VHL) I-p P Fail(VBDelayp| CIL) self-

stabilizes in thl, time, this > tgeo + 6 sample + ttlhb + 2e + 2d + 3(e + d)D, to L Is relative

to R(RW VW Vbcast).

Proof: For brevity, we will use execSU-HLS to refer to

execsU(,EU Fail (VBDelay,, 1 VGeo I1 VL) lpcP Fail(VBDelayp ICPL))IIR(RWIIVW IVbcast).

We must show that execsU-HLS stabilizes in time this to

L
5

fragsIE Fail(VBDelay JVGeo VHL) fpH Fail(VBDelayp lCHL) I R(RWI V W IJV bcast) By Corollary
L5

3.11, frags Fail(VBDelayu~llVeo jV,HL) rlp Fail(VBDelayllICHL) IR(RWTlVWVbcast) is the
La

same as fragsHjS . This means that we must show that execSU-HLS stabilizes in time
La

this to fragSHis. The result follows from the application of transitivity of stabilization

(Lemma 3.6) on the two phases of HLS stabilization.

For the first phase, we note that by Theorem 12.9, execsU-HLS stabilizes in time t geo

{xx XGeoCast CL
2 }to fragsHLs

270

For the second phase, let th s be this - tgeo. Since this > tgeo + Esample + ttlhb + 2e +

2d + 3(e + d)D, this implies that t~ls > Csample + ttlhb + 2e + 2d + 3(e + d)D. By Lemma
{XIXFXGeoCasEL

2 }L 5

13.18, we have that frags Ca o stabilizes in time t' , to fragsH 5h .

{XIX XGeoCast EL 2eo } L5hj
Taking B to be execSU-HLS, C to be fragsHLS eo, and D to be fragsHLS

L5
in Lemma 3.6, we have that execSUHLs stabilizes in time tgeo + t1 is to fragsH I .

Since this = tgeo + this, we conclude that

1Iuu Fail(VBDelayu /e OllV fHL) p Fail(VBDelayp CH L) self-stabilizes in

this time to L i relative to R(RW VW Vbcast). m

With Lemma 13.12, this allows us to conclude that after an execution of HLS has

stabilized, the execution fragment from that point on satisfies the properties in Section

13.3.5:

Lemma 13.20 Let thl, be any t such that t > tgeo+Csampe+ttlhb+2e+2d+3(e+d)D. Then

execsU(FlU Fail(VBDelayu IVGe o IVHL) HPEp Fail(VBDelayp |CpHL)) IR(RWIIVWVllbcast) stabilizes in

time this to a set A of execution fragments such that for each a E A, there exists a subset

II of the HLreply events in a such that:

1. There exists a function mapping each HLreply event in II to a HI-query event such

that the four properties (Integrity, Bounded time reply, Reliable reply, and Reliable

information) hold.

2. For every HLreply(p) event -r not in II where 7r occurs at some time t, it must be the

case that t - a. fstate(now) < 2(e + d)dist(u, h(p)).

13.5 Extensions

Here we briefly describe some possible extensions to our HLS algorithm:

Multiple home locations: In order for our scheme to tolerate crash failures of a limited

number of VSAs, each mobile client id could map to a set of VSA home locations; the hash

function would return a sequence of region ids as the home locations. We could use any

hash function that provides a sequence of region identifiers; one possibility is a permutation

271

hashfunction, where permutations of region ids are lexicographically ordered and indexed

by client id. A version of the home location service was presented in [37] that used this

idea.

Randomized asymmetric quorums: It is possible to have asymmetric updates and

queries, such as with local updates to close-by VSAs and uniformly selected VSAs or vice

versa (the expected number of VSAs that are required to be updated and queried is small,

as proved in [68]). Instead of using a predefined set to query, one might use a randomized

scheme based on [68], where a random set of regions is chosen for updating and inquiring

about the location of a client node. Moreover, we could enhance the scheme in [68] by

using a predefined set for location updates (such as the close-by regions) and random set

for location queries (or vice versa).

Attribute queries: There are scenarios in which one would like to query for client nodes

with certain attributes in a geographic area (e.g., a search for a medical doctor that is cur-

rently near by). Our scheme supports such queries in a natural way: Attributes can hash

to home locations that store tables of clients with the attribute, and their locations. Clients

searching for another nearby client with some attribute could then have a local VSA query

home locations for the attribute, and select a nearby client from the list that is returned.

272

Chapter 14

End-to-end Routing

One basic, but often difficult to provide, service in mobile networks is end-to-end routing.

We describe a self-stabilizing algorithm over the VSA layer to provide a mobile client

end-to-end routing service. This service is built on prior geocast and location management

services in such a way that the resulting application remains self-stabilizing.

Our self-stabilizing implementation of a mobile client end-to-end communication ser-

vice is simple, given the geocast and home location services. A client sends a message

to another client by forwarding the message to its local VSA, which then uses the home

location service to discover the destination client's region and forwards the message to that

region using the geocast service.

In the rest of this chapter, we describe the service (Section 14.1) and some of its prop-

erties (Section 14.2), then describe a set of legal states of the service and properties of

execution starting in those legal states (Section 14.3), and finally argue that our service is

self-stabilizing (Section 14.4).

14.1 Client end-to-end routing specification

End-to-end routing is an important application for ad-hoc networks. End-to-end routing

(E2E) is a service that allows arbitrary clients to communicate: a client p sends a message

m to client q using the esend(m, q)p action. The message may then be received by q

through the ercv(m)q action.

273

Our implementation of the end-to-end routing service, E2E, uses the home location

service to discover a recent region location of a destination client node and then uses this

location in conjunction with Geocast to deliver messages. As in the implementation of the

Home Location Service, there are two parts to the end-to-end routing implementation: the

client-side portion and the VSA-side portion.

The client-side portion CE2E takes a request to send a message m to a client q and

transmits it to its local VSA for forwarding. It also listens for Vbcast messages originating

at other clients and addressed to it, and delivers them.

The VSA V[2E portion is very simple. A client may send it a message to be forwarded

to a client. It looks up a somewhat recent location of the destination client using HLS and

then sends the message via geocast to the reported region.

The TIOA specification for the individual clients is in Figure 14-1. The specification

for the individual regions is in Figure 14-2. The complete service, E2E is the composition

of ,,u Fail(V 2EIVeo II HLIIVBDelayu), Hpp Fail (CE2E IICLI VBDelayp), and

RWI VW| Vbcast. In other words, the service consists of a Fail-transformed automaton at

each region of the composition of the end-to-end, home location, geocast, and VBDelay

machines; a Fail-transformed automaton at each client of the composition of the end-to-

end, home location, and VBDelay machines; and RW| IVW| Vbcast.

Recall that in the Geocast (Chapter 12) and Location Management (Chapter 13) chap-

ters, we noted that for each u E U, the various geocast and home location automata at

the regions were not technically VSAs since their external interfaces included more than

just the allowed vcast, vrcv, and time actions. Here we can finally resolve this issue. For

each u E U, the VSA at region u is the composition VE2E IIVeo VHL, with all geo-

cast, georcv, HLQuery and HLreply actions hidden. The resulting machine satisfies the

conditions for being a VSA.

We now describe the pieces of the E2E service in more detail.

14.1.1 Client algorithm

The signature, state, and transitions of CE2E are in Figure 14-1.

274

Signature:
2 Input GPSupdate(, t)p,l E R,t c R> 0

Input esend(m, q)p, m E Msg, q E P
4 Input vrcv((rdata, m, p))p, m E Msg

Output vcast((sdata, m, q))p, m C Msg, q E P
6 Output ercv(m)p,m E Msg

8 State:

analog clock E IR>oU {I}, initially I
lo reg E U U {1}, initially I

sdataq E (Msg xP)*, initially A
12 deliverq E Msg*, initially A

14 Trajectories:
evolve

16 d(clock) = 1
stop when

18 Any precondition is satisfied.

20 Transitions:
Input GPSupdate(l, t)p

22 Effect:
if clock = t V reg = Ithen

24 sdataq, deliverq - A
clock - t

26 reg +- region(l)

Input esend(m, q)p
Effect:

sdataq +- append(sdataq, (m, q))

Output vcast((sdata, m, q, reg))p
Precondition:

(m, q) = head (sdataq) A clock ILA reg # I
Effect:

sdataq +- tail(sdataq)

Input vrcv((rdata, m, p))p
Effect:

deliverq - append(deliverq, m)

Output ercv(m)p
Precondition:

m = head (deliverq) A clock _ ILA reg # I
Effect:

deliverq - tail(deliverq)

Figure 14-1: Client C E 2E automaton.

The two main variables, sdataq and deliverq, are queues. Variable sdataq stores pairs

(m, q) of esend requests that have not yet been forwarded to a VSA, where m is a message

and q the intended recipient. Variable deliverq stores messages intended for receipt by the

client, but not yet ercv'ed.

The GPSupdate(l, t)p action (line 21) results in an update of the client's reg variable

to the region region(l) and a reset of the local clock to time t (lines 25-26). If the clock

variable was not t when the action occurred or if reg was I, then the sdataq and deliverq

queues are also cleared (lines 23-24); this corresponds to a resetting of the queues either

because the client has just started or because the client had incorrect local state.

A message m is sent to another client q via an esend(m, q)p input (line 28), which adds

the pair (m, q) to sdataq (line 30). This results in the forwarding of the information to p's

current region's VSA through vcast((sdata, mn, q, reg))p and the removal of the pair from

sdataq (lines 32-36).

Information about a message m for client p from other clients can be forwarded and

ultimately received through a vrcv((rdata, m, p))p input (line 38). This adds the message

m to deliverq (line 40). The message m is subsequently delivered through the output

275

I

I Signature:
Input time(t),, t c R>0o

3 Input vrcv((sdata, m, q, u)),, m E Msg, q E P
Input HLreply(p, v)u, p E P, v E U

5 Input georcv((fdata, m, p))u, m E Msg, p E P
Output HLQuery(p)., p E P

7 Output vcast((rdata, m, p)),, m C Msg, p c P
Output geocast((fdata, m, p), v)u,

9 mE Msg, pE P, v U

S11 State:
analog clock E R>OU {I}, initially 1

13 bcastq E 2
M

sg x
P , initially 0

tosend E P - 2 (Msg (R
0 U i-)), initially 0

15 findreg C P -+ U U {1}, initially I

17 Trajectories:
evolve

19 d(clock) = 1
stop when

21 Any output precondition is satisfied
V]p E P: [findreg(p) ILA tosend(p) = 0]

23 V 3p E P, m E Msg, t E R>o: ((m, t) E tosend(p)
A [t> clock Vt < q clock -2(e+d)dist(u, h(p)) -I])

25

Transitions:
27 Input time(t),

Effect:
29 if clock 0 t then

clock - t
31 bcastq +- 0

for each p E P
33 tosend(p) * 0

findreg(p) -- I
35

Input vrcv((sdata, m, p, u)),
37 Effect:

tosend(p) - tosend(p) U { (m, I)}

Figure 14-2: VSA

Output HLQuery(p), 40
Local: m E Msg
Precondition: 42

clock # IA (m, I)E tosend(p)
Effect: 44

tosend(p) -- tosend(p) - {(m, I)} U {(m, clock)}
46

Input HLreply(p, v),
Effect: 48

findreg(p) - v
50

Output geocast((fdata, m, p), v)u
Precondition: 52

clock LA IAfindreg(p) = v 0 I
3t:((m, t)E tosend(p) A [t= IV t< clock-2(e+d) dist(u, h(p)) }}

Effect:
tosend(p) -- tosend(p) - {(m', t) im' = m} 56

Internal cleanFind(p), 58
Precondition:

findreg(p) LIA tosend(p) = 0 60

Effect:
findreg (p) - 1 62

Internal cleanSend(p)u 64
Precondition:

3(m, t)E tosend(p): [t > clock V t < clock-2(e+d) dist(u, h(p))6}
Effect:

tosend(p) tosend(p) 68
- {(m, t) It > clock V t < clock -2(e+d) dist(u, h(p))}

70

Input georcv((fdata, m, p)),
Effect: 72

bcastq *- bcastq U { (m, p)}
74

Output vcast((rdata, , p)),
Precondition: 76

clock ILA (m, p) E bcastq
Effect: 78

bcastq +- bcastq - {((m, p)}

VE2E[ttlhb, h]u automaton.

ercv(m), action (lines 42-46).

14.1.2 VSA algorithm

The signature, state, and transitions of VE2E are in Figure 14-2.

There are three main variables in the VE2E [ttlhb, h]u automaton. The variable bcastq

is a set of pairs of messages and process ids; each pair corresponds to a mesasge that the

VSA is about to broadcast locally for receipt by some client. The variable tosend maps

each process id p to a set of messages that local clients have asked the VSA to forward to

p, tagged either with a timestamp indicating when it arrived at the VSA or I, indicating

the message has just arrived but the location of p has not yet been queried. The variable

276

findreg maps each process id either to a region corresponding to a recent location of the

process, or 1.

The VSA at a region u is told by a local client of their esends of message m to a client p

via the receipt of a (sdata, m, p, u) action (line 36). This adds the pair (m, _) to tosend(p)

(line 38), indicating that m is to be sent to p and that the VSA needs to look up p's region.

This results in an HLQuery(p)u to look up the region, resulting in the update of the pair

(m, _) to (m, clock) (lines 40-45). Whenever a response in the form HLreply(p, v)u occurs

(line 47), the variable findreg(p) is updated to v (line 49), indicating p was in region v

recently.

For each pair (m, t) in tosend(p), if findreg(p) is not I, meaning that the VSA

has a relatively recent location for p, the VSA forwards the message information to

p's location and removes the message record from tosend. This is done through a

geocast((fdata, m, p)), output (lines 51-56). If there are no tuples in tosend(p), mean-

ing there are no messages that need to be forwarded to p outstanding, then findreg(p) is

cleared (lines 58-62).

When a (fdata, m, p) message is received from the geocast service, indicating that

there is a message m intended for some client p that should be nearby, the VSA adds

the pair (m,p) to its bcastq (lines 71-73). This results in the local broadcast via

vcast((rdata, m, p))u (lines 75-79) to inform the client p of the message m.

If a tuple (m, t) is in tosend(p) but the timestamp t is either from the future (the result

of corruption) or from longer than 2(e + d)dist(u, h(p)) ago (meaning that the HLQuery

for p's location timed out), then (m, t) is considered to be expired and is removed from

tosend(p) (lines 64-69).

14.2 Properties of executions of the end-to-end routing

service

The end-to-end communication service allows clients to send messages to other clients. A

client p can send a message m to another client q through the esend(m, q)p action. If client

277

q can be found at an alive VSA and q does not move too far for a sufficient amount of time,

the message will then be received by client q through the ercv(m), action.

More formally, we say that a process p is hosted by region u at a time t if:

1. For each t' E [t, t + 3(e + d)D + e + d], u is not failed.

2. For each t' E [t-ttlhb-d-(e+d)D,t+(e+d)D+d],reg-(p,t') = reg+(p,t') = u.

3. For each t' E [t+(e+d)D+d, t+3(e+d)D+e+2d], {reg-(p, t') = reg+(p, t')} C

nbrs+ (u) and p is not failed.

This amounts to saying that a proces sis hosted by a region u at time t if: (1) region u is

not failed from time t until d before what will be the deadline for message delivery in the

end-to-end communication service; (2) region u has been the region of p long enough that

any location information stored at p's home location from t until any home location query

started at time t can complete will indicate that p is either in u or some newer region; and

(3) process p stays in u or a neighboring region of u until any end-to-end communication

started at t can complete.

We say that a esend(m, q)p at a time t is receivable if there exists some region u such

that:

1. Process p is not failed at time t.

2. Process q is hosted by region u at time t.

3. For each t' E [t, t + d] and each v E {reg-(p, t), reg+(p, t)}, an HLquery(q), at

time t' is serviceable.

4. For each v E {reg-(p, t), reg+(p, t)}, there exists at least one shortest path from v

to u of regions that are nonfailed and have clock values equal to the real-time for the

interval [t, t + (e + d)(2dist(v, h(p)) + dist(v, u))].

Then we can show the following result:

Lemma 14.1 The E2E service guarantees that in each execution a of E2E, there exists

a function mapping each ercv(m), event to a esend(m, q)p event such that the following

hold:

278

1. Integrity: If an ercv(m), event 7r is mapped to an esend(m, q)p event 7r', then 7r'

occurs before 7r.

2. Bounded-time delivery: If an ercv(m)q event 7r is mapped to an esend(m, q)p event

7r' where -r' occurs at time t, then event 7r occurs in the interval (t, t + 3(e + d)D +

e + 2d].

3. Reliable receivable delivery: This guarantees that a message that is end-to-end sent

will be received if it is receivable: If an esend(m, q)p event 7r' occurs at time t,

a.ltime > t + 3(e + d)D + e + 2d, and 7r' is receivable, then there exists a ercv(m)q

event 7 such that 7r occurs in the interval (t, t + 3(e + d)D + e + 2d].

Proof sketch: It is easy to define the mapping from ercv to esend events described above

by reasoning about the chain of actions connecting a ercv and esend event: For each

ercv(m)q event, m must have been removed from deliverq (line 44). Such an m is added

to deliverq through the receipt of a rdata message containing m (lines 38-40), which in

turn was sent by a VSA based on one of its local bcastq tuples (lines 75-79). Such a tuple

in bcastq came from the receipt of an fdata message (lines 71-73), which was geocast

by some VSA based on its local tosend and findreg variables (lines 51-56). Such values

in tosend queues are added based on receipt of an sdata message (lines 36-38) which are

only sent by a client in response to an esend. Hence, for each ercv(m)q event there must

have been an esend(m, q)p event that occurred before. The mapping selects the latest such

one.

The two interesting properties to check are Bounded-time delivery and Reliable receiv-

able delivery. Bounded-time delivery is guaranteed by the fact that in the reasoning above,

there is an upper bound on the amount of time each step can take. The receipt of the rdata

message sent by a VSA can take up to e + d time. The receipt of the fdata message at the

VSA that caused the rdata message can take up to (e + d)D time, the maximum time for a

geocast to complete. The VSA that geocast that fdata message only did so if its findreg

indicated a location for the end-to-end message recipient; this can take up to 2D(e+d) time

for the VSA to discover (the time is the maximum time for an HLQuery for the location

279

to complete). This is all after the VSA that geocast that fdata message received an sdata

message sent from a client up to d time before. The sum of these times is 3D(e+d)+e+2d.

For Reliable receivable delivery, we note that the properties of the underlying HLS and

Geocast services make the property easy to check. Consider a receivable esend(m, q)p

event 7r' occurs at time t. We need to show that an ercv(m)q event ir occurs within 3D(e +

d) + e + 2d time. By property 1 of receivable, we know that p doesn't fail at time t.

This means that it will transmit an sdata message to its VSA at time t. By property 3 of

receivable, a local VSA will receive this sdata message by time t + d and either already

have a listed location u for q or will HLQuery for one. If it must perform an HLQuery, we

know it will receive a reply by time t + d+ 2D(e + d), or 2D(e + d) later. This then prompts

the VSA to geocast an fdata message to u. Since property 4 of receivable holds, we know

that the geocast will arrive at region u at most (e + d)D later, by time t + d + 3D(e + d).

By property I of our definition of hosting, we know that region u will be alive to receive

the message. It then takes region u up to e time to vcast a rdata message to q, and a further

d time for the message to arrive at q. By property 3 of hosting, we know that q is alive and

will vrcv the rdata message, causing it to immediately ercv the message embedded in the

rdata message. This happens by at time at most t + 3D(e + d) + e + 2d. m

14.3 Legal sets

Here we describe a legal set of E2E by describing a sequence of four legal sets, each a

subset of the prior. Recall from Lemma 3.13 that a legal set of states for a TIOA is one

where each closed execution fragment starting in a state in the set ends in a state in the

set. We break the definition of the legal set up into multiple legal sets in order to simplify

the proof reasoning and more easily prove stabilization later, in Section 14.4. Because the

proofs in this section are routine, we omit them. At the end of this section, we discuss

properties of execution fragments of E2E that start in our set of legal states.

280

14.3.1 Legal set L' 2 e

The first set of legal states describes some properties that are locally checkable at a region

or client and that become true at an alive VSA at the time of the first time input for the

VSA and GPSupdate input at a client, assuming the underlying HLS system is in a legal

state.

Definition 14.2 Let L' 2e be the set of states x of E2E where all of the following hold:

I. X[XHLS E L .

This says that the state restricted to the variables of HLS is a legal state of HLS.

2. For each p E P : f ailedp (nonfailed client):

(a) clock, f I >clock = now A reg, = reg(p)].

This says that if the local clock is not I, then it is set to the current real-time

and regp is p's current region.

(b) For each u E U, [3(sdata,m,q,u) E to_sendtosend+] = u E

{reg-(p, now), reg+(p, now)}.

This says that if an sdata message is in one of a client's VBDelay queues,

then the message correctly indicates a region that the client has been in at this

time.

(c) For each m E deliverq,, 3((rdata, m, p) , u, t, P') E vbcastq :

t > now - dA p P'.

This says that each message sitting in deliverq was sent in an rdata message

to p within the last d time.

3. For each u E U : -f ailed Aclock, Z I (nonfailed VSA that received a time input):

(a) clock, = now.

This says that the local clock should be equal to the real-time.

(b) For each p E P and (m, t) E tosend,,(p) : t < clocku.

This just says that any records of messages that are waiting to be geocast to

another region do not have timestamps from the future.

281

(c) For each p E P, v E U, findreg,(p) = v => It E [now - ttlhb - d - (e +

d)(dist(v, h(p)) + dist(h(p), u)), now] : v E {reg(p, t), reg-(p, t)}.

This says that if the VSA's findreg indicates that a process p was recently

located at region v, then process p was in that region within the last ttlhb + d +

(e + d) (dist(v, h(p)) + dist(h(p), u)) time.

(d) For each (m, p) E bcastq,,

3((geocast, (fdata, m, p), w, u, t), w, t', P') E vbcastq : t > now-(e+d)D.

This says that any pair in a VSA 's bcastq was part of an fdata message that was

geocast to u within the last (e + d)D time.

Lemma 14.3 L'2e is a legal set for E2E.

14.3.2 Legal set L 2e

The second set of legal states describes some properties that hold after any spurious VSA

messages are broadcast and spurious Vbcast messages are delivered.

Definition 14.4 Let L. 2e be the set of states x of E2E where all of the following hold:

1. x C L' 2e'

This says that L.2e is a subset of L' 2e.

2. For each ((sdata, m, q, reg), u, t, P') E vbcastq,

t > now - d = reg E {reg-(p, t), reg (p, t)}.

This says that for any sdata transmission made within the last d time, the sdata

message was sent by a process to a local VSA.

3. For each u E U : -f ailedu (nonfailed VSA):

(a) A((sdata, m, q, v), t) E to_send.

This says that a VSA cannot be in the process of transmitting an sdata message.

(b) For each ((rdata, m, p), t) E to_send

=((geocast, (fdata,m,p),w, u,t'), v,t",P') E vbcastq : t' + (e + d)D + e >

282

t + now - rtimer,.

This says that any rdata message in VBDelay, can be matched to an fdata

transmission to region u made within the last (e + d)D + e time.

4. For each ((rdata,m,p),u,t,P') E vbcastq, t > now - d =

3((geocast, (fdata, m, p), w, u, t'), v, t", P') E vbcastq : t' + (e + d)D + e > t.

This says that any rdata transmission in Vbcast from the last d time can be matched

to an fdata transmission to region u made up to (e + d)D + e time before the rdata

transmission.

Lemma 14.5 L' 2e is a legal setfor E2E.

14.3.3 Legal set L 2e

The third set of legal states describes some properties that hold after any VSA records that

could cause the forwarding of spurious end-to-end messages are removed.

Definition 14.6 Let L' 2e be the set of states x of E2E where all of the following hold:

1. x E L 2 e'

This says that L' 2e is a subset of L 2 e

2. For each u E U : if ailed,, for each p E P, [(3v E U, m E Msg

ledgeru(((fdata, m, p), u, v, now)) # null) V 3(m, t) E tosendu(p) : t > now -

2D(e+d)] = 3((sdata, m, p, u), v, t', P') E vbcastq : [u 0 P' At' > now - dA (t

This says that any record in tosend or any fdata message that was just geocast can

be matched to an sdata transmission to the region made no more than d ago and d

before the record's timestamp if a non-_I timestamp exists.

Lemma 14.7 L' 2e is a legal set for E2E.

283

14.3.4 Legal set L42e

The fourth set of legal states describes some properties that hold after any bad forwards of

end-to-end messages are removed.

Definition 14.8 Let LI 2e be the set of states x of E2E where all of the following hold:

1. x E L2 e '

This says that L42e is a subset ofL 2e.

2. For each ((geocast, (fdata, m, p) , , v, t), w, t', P') E vbcastq: t > now - (D(e +

d) + e + d) => [(]((sdata, m,p, u), v, t", P') E vbcastq : t" + d + 2(e +

d)dist(u, h(p)) > t) A3t* E [t - ttlhb-d- (e + d)(dist(v, h(p)) +dist(h(p), u)), t]:

v E {reg-(p, t*), reg+(p, t*)}].

This says that any f data transmission from within the last (e +d)D +e +d time can be

matched to an sdata transmission that occurred no more than 2(e+d)dist(u, h(p)) +

d time before the timestamp of the fdata geocast. In addition, the fdata message is

being geocast to a region v that contained the intended end-to-end recipient at some

time in the ttlhb + d + (e + d)(dist(v, h(p)) + dist(h(p), u)) interval leading up to

the time of the fdata transmission.

Lemma 14.9 L42e is a legal set for E2E.

Properties of execution fragments starting in L'2e

As in the location management service, we can describe the properties of execution frag-

ments of E2E that start in L42e as properties of executions of E2E, as described in Section

14.2. As before, the difference is in the mapping of some subset of ercv events that occur

towards the beginning of the execution fragment.

More formally, we can say the following:

Lemma 14.10 E2E guarantees that for an execution fragment a starting in L 2e, there

exists a subset II of the ercv events in a such that.

284

1. There exists a function mapping each ercv event in II to an esend event such that the

three properties (Integrity, Bounded-time delivery, and Reliable receivable delivery)

hold.

2. For every ercv(m), event 7r not in II where 7r occurs at some time t, it must be the

case that t - a. fstate(now) < 3D(e + d) + e + 2d.

This concept and proof is similar to the material in Section 13.3.5, where we described the

properties of execution fragments of HLS as a variant of the properties of executions of

HLS, adjusting for a subset of reply events towards the beginning of a fragment.

14.4 Self-stabilization

We've seen that L42e is a legal set for E2E. Here we show that

Hu, Fail(VBDelay| |VIeo VHLII UE2E)pP Fail(VBDelay CHL IICE2E) self-

stabilizes to L 2 relative to R(RW jVW| Vbcast) (Theorem 14.16), meaning that if

certain program portions of the implementation are started in an arbitrary state and run

with R(RW IVW| Vbcast), the resulting execution eventually gets into a state in L 2e.

Using Theorem 14.16, we then conclude that after an execution of E2E has stabilized, the

execution fragment from the point of stabilization on satisfies the properties described in

Section 14.3.4.

The proof of the main stabilization result for the chapter, Theorem 14.16, breaks stabi-

lization down into two large phases, corresponding to stabilization of the lower level HLS

service (which includes the stabilization of the GeoCast service), followed by stabilization

of the E2E service assuming that HLS has stabilized. We have seen that HLS stabilizes

to the set of legal states L 11, in Section 13.4. What we need to show for Theorem 14.16 is

that, starting from a set of states where HLS is already stabilized, E2E stabilizes to L42e

(Lemma 14.15). We do this in four stages, one for each of the legal sets described in Sec-

tion 14.3. The first stage starts from a state where HLS is already stabilized and ends up

in the first legal set. The second stage starts in the first legal set and ends up in the second,

etc.

285

The first lemma describes the first stage of E2E stabilization, to legal set L,2e . It says

that within t' 2e time of HLS stabilizing, where t12e > Esample, the system ends up in a state

in L' 2e'

S{XXlXHLsGLsI}
Lemma 14.11 Let t'2e be any t such that t > Esampte. fragsE2 XHL s stabilizes in

time t' to frags e2e

Proof sketch: To see this result, just consider the first time after each node has received a

time or GPSupdate input, which takes at most Esample time to happen. 0

The next lemma describes the second stage of E2E stabilization. It shows that starting

from a state in Ll 2e, E2E ends up in a state in L 2e within te2 e time, where t 2 is any time

greater than e + d.

Lemma 14.12 Let t22e be any t such that t > e + d. fragse2e stabilizes in time t o2

L 2

frags2e

Proof. By Lemma 3.21, we just need to show that for any length-t(2e prefix a of an ele-
e2e 2 2

ment of fragsE 2E , c.lstate is in L2e. We examine each property of L.2e.

By Lemma 14.11, since the first state of a is in L' 2e, we know that property 1 of L 2e

holds in each state of a.

For property 2, we note that each new such sdata message added to one of a client's

to_send queues and then propagated to Vbcast, the property will hold and continue to hold

thereafter. Hence, the only thing we need to worry about messages already in a tosend

queue or in vbcastq in a.fstate. However, after d time elapses from the start of o, the

property will be trivially true.

For property 3, we consider each part. Property 3(a) will hold after at most e time,

the time it takes for any such errant messages in a. fstate to be propagated out to Vbcast.

For property 3(b), we note that a new rdata message is only added to to send, if there

previously was a corresponding pair (m, p) in the VSA's bcastq, which by property 3(d) of

L12e implies that any newly added rdata message satisfies this property 3(b). This means

that we only need to worry about rdata messages already in tosend, at the start of a.

286

Once in tosend, it is at most e time before a message is removed from to_send. Hence,

after e time has passed, the property will be trivially true.

For property 4, since each new rdata message added to vbcastq first is in to_sends, we

know that any such messages added after property 3(b) holds will satisfy property 4. After

d time elapses from when property 3(b) holds, the property will be trivially true. 0

For the third stage of E2E stabilization, the next lemma shows that starting from a state

in L 2 e, E2E ends up in a state in L' 2e within t 2e time, where t 2e is any time greater than

2D(e + d).

Lemma 14.13 Let t' 2e be any t such that t > 2(e + d)D. (Recall D is the hop count
daee of the network.) ~t; ; t Le2e

diameter of the network.) frags E2 stabilizes in time t32e to frags 2E

Proof: By Lemma 3.21, we just need to show that for any length-t32e prefix a of an ele-
L2 e

ment of fragsE2E , a.lstate is in L 2e. We examine each property of Le2e.

By Lemma 13.14, since the first state of a is in L 2e, we know that property 1 of L 2e

holds in each state of a.

For property 2, notice that for each new entry added to tosend the property will hold,

since the new entry will be the result of the receipt of an sdata message that satisfies the

properties from Vbcast. Hence, the only tosend entries we need to worry about are the

tosend entries already there in a. fstate. However, after 2D(e + d) time elapses from the

start of a, the property will be trivially true. For the ledger entries, we note that each new

entry in the ledger after the bogus tosend entries are cleared satisfy the property. 0

The next lemma, for the fourth stage of E2E stabilization, shows that starting from a

state in L32e E2E ends up in a state in L 2e within t42e time, where t is any time greater

than d + e + (e + d)D.

L
3

Lemma 14.14 Let t42e be any t such that t > d + e + (e + d)D. frags 2 stabilizes in

time te2 e to fragE2.

Proof: By Lemma 3.21, we just need to show that for any length-t42 e prefix a of an ele-

ment of frags 2, a.lstate is in L 2e. We examine each property of Le2e.

287

By Lemma 14.13, since the first state of a is in L' 2e, we know that property 1 of L42e

holds in each state of a.

For property 2, notice that for each new tuple added to vbcastq for a geocast of a fdata

message, the property will be true since the message will come from the VSA's ledger,

which we know by property 2 of L 2e will satisfy the property we need here. Hence, the

only fdata geocast messages in vbcastq that we need to worry about are those that are

present in the first state of a. However, after d + e + (e + d)D time, the property will

trivially be true. 0

We now have all of the pieces of reasoning for the four stages of the second phase of

E2E stabilization. (Recall that the second phase of E2E stabilization occurs after HLS

has stabilized, corresponding to HLS state being in the set Ls,,.) We then combine this

reasoning from Lemmas 14.11-14.14 to show that the second phase of stabilization of E2E

takes t'e2 time, t 2 e >sample + (3D + 2)(e + d), to stabilize:

Lemma 14.15 Let t' 2e be any t such that t > s,,mple + (3D + 2)(e + d). Then
{XIXFXHLCL5hlsl } L 2 efrags 2 H S stabilizes in time t/2e to fragsE2E.

Proof- The result follows from the application of Lemma 3.7 on the four lemmas (Lemmas

14.11-14.14) above.

Let t' be (te2 e - (Esample + (3D + 2)(e + d)))/4. Then let t. 2 e be t' + Esample, te2 e be

t' + e + d, ta2e bet' + 2(e + d)D, and t 2e be t' + d + e + (e + d)D. (These terms are chosen

so as to satisfy the constraints that t12e > a te2e > e + d, etc.)

hllB 2e b 2e L 2e
Let Bo be frags , 1 be frag be fragss2 , B3 be fragS f 2 gs

and B4 be frags 2e in Lemma 3.7. Let tl be t2e t2 be te2e, t3 be t32 , and t4

be t42e in Lemma 3.7. Then by Lemma 3.7 and Lemmas 14.11-14.14, we have that
f{xIxfXHLSEL 5 }frags hLS l stabilizes in time te + te2 + t 2 + t12e to frags e2e

tI + P + t3 ee + tI{xlXHLSEL
5 }

Since t2 = t2e +t2 + t 2 + t2e, we conclude that frags his } stabilizes

in time t. 2e to frags E .

Using this and our prior result on HLS stabilization (Theorem 13.19) we can now

finally show the main stabilization result of this chapter. The proof of the result breaks

288

down the self-stabilization of E2E into two phases, the first being where HLS stabilizes,

and the second being where the remaining pieces of E2E stabilize.

Theorem 14.16 -,, Fail(VBDelay,| VGeo VHL VE2E) Ip Fail(VBDelayp CIL CE2E)

self-stabilizes in te2e time, te2 e > thls + Esample + 2e + 2d + 3(e + d)D, to L42e relative to

R(RW VWI Vbcast).

Proof: For brevity, we will use execSU-E2E to refer to

execSU(HI,u Fail(VBDelayuj IVeoj IVHLj IIVE2E) lp p Fail(VBDelaypllCH L IICE2E))II R(RWIIVWllVbcast)*

We must show that execsu-E2E stabilizes in time te2e to
L4

fragsne Fail(VBDelay II VG e
o lV, LIIv'2E) flp Fail(VBDelayp ICpHLIIC E2E)IIR(RWIIVWIVbcast)"

L4

By Corollary 3.1 1, frags EU Fail(VBDelay IIVeo |v HL II'V2E) IpEp Fail(VBDelayp |CPHL ICE2E) IIR(RWIIVWIIVbcast)

is the same as frags22e . This means that we must show that execSU-E2E stabilizes in time

te2e to fragsL2e . The result follows from the application of transitivity of stabilization

(Lemma 3.6) on the two phases of E2E stabilization.

For the first phase, we note that by Theorem 13.19, execSU-E2E stabilizes in time thls
{xlx[XHLSEL 5s}

to fragsE2E

For the second phase, let t'e2e be te2e - thls. Since te2e > this + Esample + 2e + 2d + 3(e +

d)D, this implies that t' 2e > 6sample + 2e + 2d + 3(e + d)D. By Lemma 14.15, we have

that {fragsE2 e2e stabilizes in time t'e2e to fragsE2E .
fX XFXHLsELhls } L4Le2e

Taking B to be exeCSU-E2E, C to be fragsE and D to be frag in
L4

Lemma 3.6, we have that execsu-E2E stabilizes in time this + te2 to fragSEe22.

Since te2e ths te2e, We conclude that

HEu Fail(VBDelayu IGeo VHL u
E2 E) P Fail(VBDelay CH IC2E) self-

stabilizes in te2e time, te2 e > this + Esample + 2e + 2d + 3(e + d)D, to L 2e2 relative to

R(RW IVWI Vbcast). 0

This immediately implies the following result about the associated VSA layer algo-

rithm:

Lemma 14.17 Let alge2e be a VAIg such that for each p E P,

alge2e(p) = C H L C E 2E and for each u e U, alge2 e()

289

ActHide({geocast(m, v),, georcv(m),, HLQuery(p),, HLreply(p, v),,m E Msgu, v E

U, PE P}, VGeo VHL E2E

Let te2e be any t such that t > this + Esample + 2e + 2d + 3(e + d)D.

Then VLNodes[alg,2e] self-stabilizes in time te2e to L42e relative to R(RWI VWj Vbcast).

With Lemma 14.10, this allows us to conclude that after an execution of E2E has

stabilized, the execution fragment from that point on satisfies the properties in Section

14.3.4:

Lemma 14.18 Let te2e be any t such that t > this + 6sample + 2e + 2d + 3(e + d)D.

Then eXeCSU(VLNodes[alg 2])llR(RWI|VW|lVbcast) stabilizes in time te2e to a set A of execution

fragments such that for each a E A, there exists a subset II of the ercv events in a such

that:

1. There exists afunction mapping each ercv event in II to an esend event such that the

three properties (Integrity, Bounded-time delivery, and Reliable receivable delivery)

hold.

2. For every ercv(m), event 7r not in II where 7r occurs at some time t, it must be the

case that t - a. f state(now) < 3D(e + d) + e + 2d.

In other words, if we start each client and VSA running the end-to-end routing program

in an arbitrary state and run them with RW IVWIIVbcast started in a reachable state,

then the execution eventually reaches a point from which the properties of the end-to-end

routing service described in Section 14.3.4 are satisfied. These properties basically say that

Integrity, Bounded-time delivery, and Reliable receivable delivery hold for most of the ercv

and esend events in the fragment, modulo several straggler ercv events that occur early in

the execution fragment.

14.5 Extensions

Here we briefly describe some possible extensions to our E2E algorithm:

290

Routing optimizations: Once the location of a client is known, communication with the

client can be continued directly, and movements during the conversation may be piggy-

backed on the information transferred in order to update the destination according to the

move (as suggested [38]). We also note that we can use an embedded tree location scheme

such as the one in [38], implemented by virtual automata, where intermediate tree nodes

are also mapped to regions.

Sleeping client messaging service: Mobile clients might be able to shut down to conserve

power. We could guarantee that a sleeping client eventually receives messages intended for

it by having local VSAs save the messages. The VSAs then, at predefined times, broadcast

the messages. Sleeping clients wake up for these broadcasts, receive their messages, and

can go to sleep again afterwards.

291

292

Chapter 15

Motion Coordination

In this chapter, we describe how to use a variant of the VSA layer to help a set of mobile

robots arrange themselves on any specified curve on the plane in the presence of dynamic

changes both in the underlying ad hoc network and the set of participating robots. This

application serves as an example of a coordination problem, where VSAs can communicate

with client nodes to change the motion trajectories of those clients. The VSAs coordinate

among themselves to distribute the client nodes relatively uniformly among the VSAs'

regions. Each VSA directs its local client nodes to align themselves on the local portion

of the target curve, and each client node then moves towards the points indicated. The

resulting motion coordination protocol is self-stabilizing, in that each robot can begin the

execution in any arbitrary state and at any arbitrary location in the plane. In the context of

this application, self-stabilization is especially desirable since it ensures that the robots can

adapt to changes in the desired target formation.

15.1 Background

In this chapter, we study the problem of coordinating the behavior of a set of autonomous

mobile robots (physical nodes) in the presence of changes in the underlying communica-

tion network as well as changes in the set of participating robots. Consider, for example, a

system of firefighting robots deployed throughout forests and other arid wilderness areas.

Significant levels of coordination are required in order to combat the fire: to prevent the

293

fire from spreading, it has to be surrounded; to put out the fire, firefighters need to create

"firebreaks" and spray water; they need to direct the actions of (potentially autonomous)

helicopters carrying water. All this has to be achieved with the set of participating agents

changing and with unreliable (possibly wireless) communication between agents. Similar

scenarios arise in a variety of contexts, including search and rescue, emergency disaster

response, remote surveillance, and military engagement, among many others. In fact, au-

tonomous coordination has long been a central problem in mobile robotics.

We focus on a generic coordination problem that, we believe, captures many of the

complexities associated with coordination in real-world scenarios. We assume that the mo-

bile robots are deployed in a large two-dimensional plane, and that they can coordinate their

actions by local communication using wireless radios. The robots must arrange themselves

to form a particular pattern, specifically, a continuous curve drawn in the plane. The robots

must spread themselves uniformly along this curve. In the firefighting example described

above, this curve might form the perimeter of the fire.

The problem of motion coordination has been studied in a variety of contexts, focusing

on several different goals: flocking [55]; rendezvous [5, 63, 69]; aggregation [43]; deploy-

ment and regional coverage [21]. Control theory literature contains several algorithms for

achieving spatial patterns [10, 19, 41,77]. These algorithms assume that the agents pro-

cess information and communicate synchronously, and hence, they are analyzed based on

differential or difference equations models of the system. Convergence of this class of algo-

rithms over unreliable and delay-prone communication channels have been studied recently

in [15].

Geometric pattern formation with vision-based models for mobile robots have been

investigated in [22, 40, 42, 80, 81, 83]. In these weak models, the robots are oblivious,

identical, anonymous, and often without memory of past actions. For the memoryless

models, the algorithms for pattern formation are often automatically self-stabilizing. In [22,

23], for instance, a self-stabilizing algorithm for forming a circle has been presented. These

weak models have been used for characterizing the class of patterns that can be formed

and for studying the computational complexity of formation algorithms, under different

assumptions about the level of common knowledge amongst agents, such as, knowledge of

294

distance, direction, and coordinates [80, 83].

These types of coordination problems can be quite challenging due to the dynamic

and unpredictable environment that is inherent to wireless ad hoc networks. Robots may

be continuously joining and leaving the system, and they may fail. In addition, wireless

communication is notoriously unreliable due to collisions, contention, and various wireless

interference.

Here we show how the VSA Layer can implement a reliable and robust protocol for

coordinating mobile robots. The protocol relies on the VSAs to organize the mobile robots

in a consistent fashion. Each VSA must decide based on its own local information which

robots to keep in its own region, and which to assign to neighboring regions; for each robot

that remains, the VSA determines where on the curve the robot should reside. Unlike in the

prior three applications (Geocast, location management, and end-to-end communication),

the client motion in the motion coordination protocol is controllable by the client, allowing

the client to change its motion trajectory based on instructions from a VSA.

We have previously presented a protocol for coordinating mobile devices using virtual

infrastructure in [66]. The paper described how to implement a simple asynchronous virtual

infrastructure, and proposed a protocol for motion coordination. This earlier protocol relies

on a weaker (i.e., untimed) virtual layer (see [30,75]), while the current protocol relies on a

stronger (i.e., timed) virtual layer. As a result, our new coordination protocol is somewhat

simpler and more elegant than the previous version. Virtual infrastructure has also been

considered in [11] for collision prevention of airplanes.

In order that the robot coordination be truly robust, our new coordination protocol is

also self-stabilizing, meaning that each robot can begin in an arbitrary state, in an arbitrary

location in the network, and yet the distribution of the robots will still converge to the

specified curve. When combined with our stabilizing emulation of the VSA Layer, we end

up with entirely self-stabilizing solution for the problem of autonomous robot coordination.

Recall that self-stabilization provides many advantages. Given the unreliable nature of

wireless networks, it is possible that occasionally (due to aberrant interference) a signifi-

cant fraction of messages may be lost, disrupting the protocol; a self-stabilizing algorithm

can readily recover from this. Moreover, a self-stabilizing algorithm can cope with more

295

dynamic coordination problems. In real-life scenarios, the required formation of the mobile

nodes may change. In the firefighting example above, as the fire advances or retreats, the

formation of firefighting robots must adapt. A self-stabilizing algorithm can adapt to these

changes, continually re-arranging the robots along the newly chosen curve.

Another technical contribution of this chapter is the exemplification of a proof tech-

nique for showing self-stabilization of systems implemented using virtual infrastructure.

The proof technique has three parts. First, using invariant assertions and standard control

theory results we show that from any initial state, the application protocol, in this case,

the motion coordination algorithm converges to an acceptable state (Section 15.3). Next,

we describe a set of legal states of the algorithm (Section 15.4.1). Using a simulation re-

lation we show that the set of legal states behaves just like the set of reachable states of

the complete system-the VSA layer running the coordination algorithm (Section 15.4.2).

Then we show that the algorithm always stabilizes to a legal state even when it starts from

some arbitrary state after failures (Section 15.4.3). From any legal state the algorithm then

eventually behaves as if it has reached an acceptable state provided there are no further

failures. It has already been shown in Section 11.3.4 that our implementation of the VSA

layer itself is self-stabilizing and produces traces that satisfy certain properties with respect

to the failure pattern of VSAs. Combining the stabilization of the implementation of the

VSA layer and the application protocol, we are able to conclude self-stabilization of the

emulation of the system (Theorem 15.22).

15.2 Motion Coordination using Virtual Nodes

We assume a variant of the VSA layer described in Chapter 7. The only difference between

the original VSA layer and the variant used in this chapter is in the control of the motion of

client nodes, described in Section 15.2.3.

To describe the motion coordination problem, we fix F : A --+ to be a simple, dif-

ferentiable curve on R that is parameterized by arc length. The domain set A of parameter

values is an interval in the real line. We also fix a particular network tiling given by the

collection of regions {R },,u such that each point in F is also in some region R,. Let

296

A {p E A : region(F(p)) = u} be the domain of F in region u. We assume that Au

is convex for every region u; it may be empty for some u. The local part of the curve F

in region u is the restriction F : Au -* R,. We write I Au for the length of the curve

Fu. We define the quantization of a real number x with quantization constant o > 0 as

q,(x) = [x]r. We fix o, and write q, as an abbreviation for q,(AI), q,in for the mini-

mum nonzero qu, and qmax for the maximum q,.

15.2.1 Problem Statement

Our goal is to design an algorithm for mobile robots such that, once the failures and recov-

eries cease, within finite time all the robots are located on F and as time progresses they

eventually become equally spaced on F. Formally, if no fail and restart actions occur after

time to, then:

1. there exists a constant T, such that for each u E U, within time to + T the set of

robots located in R, becomes fixed and its cardinality is roughly proportional to q,;

moreover, if q, 7 0 then the robots in R, are located on' F, and

2. in the limit, as time goes to infinity, all robots in Ru are uniformly spaced2 on Fu.

15.2.2 Overview of Solution using the VSA Layer

The VSA Layer is used as a means to coordinate the movement of client nodes, i.e., robots.

A VSA controls the motion of the clients in its region by setting and broadcasting target

waypoints for the clients: VSA VN,, u E U, periodically receives information from clients

in its region, exchanges information with its neighbors, and sends out a message containing

a calculated target point for each client node "assigned" to region u. VN, performs two

tasks when setting the target points: (1) it re-assigns some of the clients that are assigned to

1For a given point x E R, if there exists p E A such that F(p) = x, then we say that the point x is on the
curve F; abusing the notation, we write this as x C F.

2A sequence x 1,..., x, of points in R is said to be uniformly spaced on a curve F if there exists a
sequence of parameter values pi < p2 ... < pn, such that for each i, 1 < i < n, F(pi) = xi, and for each i,
1 < i < n, pi - pi-_1 = pi+l - pi.

297

itself to neighboring VSAs, and (2) it sends a target position on F to each client that is as-

signed to itself. The objective of (1) is to prevent neighboring VSAs from getting depleted

of robots and to achieve a distribution of robots over the regions that is proportional to the

length of F in each region. The objective of (2) is to space the nodes uniformly on F within

each region. The client algorithm, in turn, receives its current position information from a

modified version of RW called RW' and computes a velocity vector for reaching its latest

received target point from a VSA.

Each virtual node VN, uses only information about the portions of the target curve F

in region u and neighboring regions. For the sake of simplicity, we assume that all client

nodes know the complete curve F. We could as well have modeled the client nodes in u

as receiving external information about the nature of the curve in region u and neighboring

regions only.

15.2.3 RW': modified RW

In our solution, we have VSAs direct CNs to new locations. In order to have CNs comply,

we need to modify our virtual layer model. In particular, we need to modify RW slightly to

allow a mobile node to communicate to the real world automaton what its desired velocity

is, rather than allowing RW to nondeterministically choose the node's velocity itself.

We call our modified real world automaton RW'. It is very similar to RW, except

for the addition of the velocity action for each mobile node. As before, RW' models

system time and mobile node locations. It is an external source of reliable time and location

knowledge for physical nodes. The RW' TIOA in Figure 15-1 maintains location/ time

information and updates mobile nodes with that information.

The new velocity input allows a mobile node to communicate a new desired velocity to

RW'. In particular, a velocity(v)p input prompts RW' to change process p's velocity to v.

As you can see, in addition to the new velocity action, RW' is also different from RW

in that it has one additional state variable, vel. In addition, the development of the loc

variable for each process p is now as before, unless vel(p) is not I, in which case loc(p)

changes as specified by vel(p):

298

Signature:
2 Output GPSupdate(l, t)p, I E R, p E P, t E R >o

Input velocity(v),, v E R2 , p E P
4

State:
6 analog now: IR>o, initially 0

updates(p): 2 Rx -
>

0 , for each p E P, initially 0
8 analog loc(p): R, for each p E P, initially arbitrary

vel(p):R 2U (I-:l veI(p) vma,,,,for each p E P, initially _L
10

Trajectories:
12 evolve

d(now) = 1
14 Vp E P:

if vel(p) I_ then d(loc(p)) =
vel(p) else Id(loc(p))l Vmax

16 stop when
]p E P: V(1, t) E updates(p): now > t+ Esample

Transitions:
Output GPSupdate(l, t)p
Precondition:

V(u, t') E updates (p): t t'
l= loc(p) A t = now

Effect:
updates (p) - updates(p) U {(1, t)}

Input velocity(v),
Effect:

vel(p) -- v

Figure 15-1: RW' .[vmax, Esample].

* loc : P -- R maps each physical node id to a point in R indicating the node's current

location. Initially this is arbitrary. We assume that the change in loc for each p E P is

equal to vel(p), unless vel(p) = _, in which case loc(p) changes at a rate no greater

than Vmax.

* vel : P --+ R2 U {} is the

updated via velocity inputs.

The set of reachable states for

arbitrary.

velocity of each mobile node. It is initially I, and is

RW' is the same as for RW, except that vel can be

15.2.4 CN: Client Node Algorithm

The algorithm for the client node CN(6),, p E P (see Figure 15-2) follows a round struc-

ture, where rounds begin at times that are multiples of 6. At the beginning of each round,

a CN stops moving and sends a cn-update message to its local VSA (that is, the VSA in

whose region the CN currently resides). The cn-update message tells the local VSA the

CN's id and its current location in R. The local VSA then sends a response to the client,

i.e., a target-update message. Each such message describes the new target location x* for

CNP, and possibly an assignment to a different region. CNp computes its velocity vector

vp, based on its current position xp and its target position x;, as v, = (xp - x*)/1xp - x l1

299

and communicates VmaxVp to RW'. As a result then RW' moves the position of CNp (with

maximum velocity) towards xc.

Signature:
Input GPSupdate(l, t)p, 1 E R, t E R -o°

Input vrcv(m)p, m E {target-update} x (P - R)
Output vcast((cn-update, p, 1))p, I E R
Output velocity(v)p, v E R 2

State:
analog clock: Ro>U {1}, initially I
analog x E R U {L}, location, initially I
x* E R U {1}, target point, initially I
v E {I-, 0} U {v : R2 I vJ = 1}, initially I

Trajectories:
evolve
if clock # 1

then d(clock) = 1 else d(clock) = 0
ifv 1

then d(x) = v - vmax else d(x) = 0
stop when [x 5 I A x* = I

A clock mod 6 = 0]
V [x #iL Ax* _L A v x* -x l x* -x]
V [(x = x*Vx= IVLVx* = L) A v0]

Figure 15-2: Client node

Transitions:
Input GPSupdate(l, t)p
Effect
if (x, clock) (1, t)V

IIx*-111> vmax (6Ft/6 -t-dr) V
x*= IV t mod 6 (e+2d+2e, 6-dr)

then x, x* -- 1: clock - t

Input vrcv((target-update, target)),
Effect

if ltarget(p) -xl < vmax (6[F cck]-clock-dr)
A clock mod 6 > e + 2d + 2e

then x* - target(p)

Output vcast((cn -update, p, x))p
Precondition

x= x# IA clock mod 6 = 0 A x* _L
Effect

* -

Output velocity(v),
Precondition

V = Vmax (x* - 2)/ lx* - x11
V (v= OA [x = x* V x*= IV x= _L])

Effect
V v+ V/max

CN(J), automaton.

15.2.5 VN: Virtual Stationary Node Algorithm

The algorithm for virtual node VN(6, k, pi, p2)u, u E U, appears in Figure 15-3, where

k E Z+ and Pi, P2 E (0, 1) are parameters of the TIOA. VN, collects cn-update messages

sent at the beginning of the round from CN's located in region Ru, and aggregates the

location and round information in a table, M. When d + c time passes from the beginning

of the round, VN, computes from lM the number of client nodes assigned to it that it has

heard from in the round, and sends this information in a vn-update message to all of its

neighbors.

When VN, receives a vn-update message from a neighboring VSA, it stores the CN

population information in a table, V. When e + d + e time from the sending of its own

vn-update passes, VN, uses the information in its tables MA and V about the number of

CNs in its and its neighbors' regions to calculate how many CNs assigned to itself should

300

i Signature:
Input time(t)u, t E R>o

3 Input vrcv(m)u,
m E ({cn-update} xP xR) U ({vn-update} xU x N)

5 Output vcast(m),,
m E ({vn-update} x{u} xN) U ({target-update} x

(P -- R))
7

State:
9 analog clock: IR>oU {1}, initially I.

M:P-R, initially 0.
1 V : U - N, initially 0.

13 Trajectories:
evolve

15 if clock #t
then d(clock) = 1 else d(clock) = 0

17 stop when Any precondition is satisfied.

19 Transitions:
Input time(t)

21 Effect
if clock # t Vt mod 6 (0, e + 2d + 2E]

23 then M, V - 0; clock - t

Input vrcv((cn-update, id, loc)),
Effect
if u = region(loc) A clock mod 6 E (0, d]

then M(id) - loc; V -- 0

Output vcast((vn-update, u, n)),
Precondition

clock mod 6 = d+E

n= IMI OA V# {(u, n)}
Effect

V - {(u, n)}

Input vrcv((vn-update, id, n)),
Effect

if id E nbrs(u) then V(id) +- n

Output vcast((target-update, target))u
Precondition

clock mod 6 = e + 2d + 2c AM # 0
target = calctarget(assign(id(M), V), M)

Effect
M, V<- 0

Figure 15-3: VN(6, k, pi, p2)u TIOA, with parameters: safety k, and damp-
ing P1, P2*

be reassigned and to which neighbor. This is done through the assign function, and these

assignments are then used to calculate new target points for local CNs through the calctar-

get function (see Figure 15-4). The choice of point assignments draws on the intuition

for solutions to what members of the control community call the consensus problem [77],

where several agents try to converge at a point, usually their average. One standard way for

solving continuous consensus is for the agents to interact pair-wise and replace their current

values with their average. Our assignment algorithm is similar, but more complicated due

to a policy of maintaining a minimum number of agents in an alive region (to help prevent

alive VSAs from failing), the fact that each region has multiple neighboring regions with

which to coordinate, and the effects of quantization.

If the number of CNs assigned to VN, exceeds the minimum safe number k, then

assign may reassign some CNs to neighbors, based on the number of CNs at those neigh-

bors. Let In, denote the set of neighboring VSAs of VN, that are on the curve F and

y1 (g), denote the number num(V(g)) of CNs assigned to VNg, where g is either u or

a neighbor of u. If q, : 0, meaning VN, is on the curve then we let lower, denote the

subset of nbrs(u) that are on the curve and have fewer assigned CNs than VN, has after

301

i

function assign(assignedM: 2
P , y: nbrs+ (u) -* N) =

assign: P - U, initially {(i, u)} for each i E assignedM 2
n: N, initially y(u); ra: N, //initially 0
if y(u) > k then 4

if qu , 0 then
let lower = {g E nbrs(u): q9 y(u) > y(g)} 6

for each g C lower
ra - min(Lp2 - [' y(u) - y(g)]/2(lower+1)j, n - k) 8

update assign by reassigning ra nodes from u to g
n 4-n - ra 10

else if {v E nbrs(u): q, f 0} = 0 then
let lower = {g E nbrs(u) : y(u) > y(g)} 12
for each g E lower

ra - min(L[p2 [y(u) - y(g)]/2(lower+l1), n - k) 14
update assign by reassigning ra nodes from u to g
n - n - ra 16

else ra - L (y(u) -k)/ I{v e nbrs(u): q, f 0}|
for each g E {v E nbrs(u): q, # 0} 18

update assign by reassigning ra nodes from u to g
return assign 20

function calctarget(assign: P - U, locM: P - R) = 22
seq, indexed list of pairs in A x P, initially the list,
for each i E P : assign(i)= u A locM(i) cE r, of (p, i) 24
where p= ,u (locM(i)), sorted by p, then i
for each i E P : assign(i) # null 26

if assign(i) = g 4 u then locM(i) -- 0
else if locM(i) Fu then locM(i) - choose {minxEr {dist(x, locM(i))}} 28
else let p = r I (locM(i)), seq(k) = (p, i)

if k = first(seq) then locM(i) +- Fu(inf(Au)) 30o
else if k = last(seq) then locM(i) - Fr (sup(Au))
else let seq(k - 1) = (Pk i, ik-1), 32

seq(k + 1) = (Pk+l, ik+l)

locM(i) +- r,,(p +p (-Pk Pk p)) 34
return locM

Figure 15-4: VN(k, pl, P2)u TIOA functions.

normalizing with q. For each g E lower,, VN, reassigns the smaller of the following two

quantities of CNs to VNg: (1) ra = P2 [Yu(U) - Y (g)]/2(lower, + 1), where P2 < 1

is a damping factor, and (2) the remaining number of CNs over k still assigned to VN.

If q, = 0, meaning VN, is not on the curve, and VN, has no neighbors on the curve

(lines 11-15), then we let lower denote the subset of nbrs(u) with fewer assigned CNs

than VNu. For each g E lower,, VN, reassigns the smaller of the following two quantities

of CNs: (1) ra = P2" [y(u) - yu(g)]/2(|loweru| + 1) and (2) the remaining number of CNs

over k still assigned to VNu. VN, is on a boundary if qu = 0, but there is a g CE nbrs(u)

with qg O. In this case, y,(u) - k of VN's CNs are assigned equally to neighbors in

In, (lines 17-19).

The calctarget function assigns to every CNp assigned to VN, a target point locM (p)

302

in region Rg,, where g = u or it is one of u's neighbors. The target point locMu(p) is

computed as follows: If CNP is assigned to VNg, g h u, then its target is set to the center

o, of region g (line 27); if CNP is assigned to VN but is not located on the curve Fr then

its target is set to the nearest point on the curve, nondeterministically choosing one if there

are several (line 28); if CNP is either the first or last client node on Fr, then its target is set

to the corresponding endpoint of Fr (lines 30-31); if CNP is on the curve but is not the first

or last client node then its target is moved to the mid-point of the locations of the preceding

and succeeding CNs on the curve (line 34). For the last two computations a sequence seq

of nodes on the curve sorted by curve location is used (line 25).

Lastly, VN, broadcasts new waypoints for the round via a target-update message to

its CNs.

15.2.6 MC: Complete System

Define MC to be the element of VAlgs, the set of VSA layer algorithms (Definition 7.3),

where for each p E P, MC(p) = CNp, and for each u E U, MC(u) = VN,.

The complete system is then VLayer'[MC], which is exactly the same as

VLayer[MC], the VSA layer instantiated with MC (Definition 7.4), except that RW is

replaced with RW':

* RW',

* VW,

* VBcast,

* Fail(VBDelay, CN,), one for each p E P, and

* Fail(VBDelay lVNu), one for each u E U.

Recall that Fail(A) denotes the fail-transformed version of TIOA A (see Chapter 5).

Round length

Given the maximum Euclidean distance, r, between points in neighboring regions, it can

take up to r time for a client to reach its target. Also, after the client arrives in theVMax

303

region it was assigned to, it could find the local VSA has failed. Let dr be the time it

takes a VSA to start up, once a new node enters the region and assuming no nodes in

the region fail or leave until after the startup (notice that such a constant may not exist;

however, under the assumption that executions of the virtual layer are in the execution

fragment set S described in Definition 11.12, such a constant does exist and is equal to

d + ts8ice). To ensure a round is long enough for a client node to send the cn-update,

allow VNs to exchange information, allow clients to receive a target-update message

and arrive at new assigned target locations, and be sure virtual nodes are alive in their

region before a new round begins, we require that 6, the round length parameter, satisfies

6 > 2e + 3d + 2E + r/vmax + d,.

15.3 Correctness of the Algorithm

In this section, we show that starting from an initial state and assuming that executions

of the virtual layer satisfy the properties of set S in Definition 11.12 (where S describes

execution fragments of the virtual layer that satisfy certain properties with respect to when a

fail or restart of a VSA is allowed to occur and when a VSA restart is guaranteed to occur),

the system described in 15.2.2 satisfies the requirements specified in Section 15.2.1. The

proofs of the results in this section parallel those presented in [66], albeit the semantics

of the Virtual Layer used here is different (the virtual nodes used in [66] were untimed

and hence dependent on the timing of client node messages to complete their tasks). The

proofs still look similar since the reasoning both here and in [66] uses the same round-based

structure. In the following section we show self-stabilization.

We define round t as the interval of time [6(t - 1), 6 t). That is, round t begins at time

6(t - 1) and is completed by time 6. t. We say CNp,p E P, is active in round t if node

p is not failed throughout round t. A VN,, u E U, is active in round t, t > 0 if it is alive

from the beginning of round t until its VBDelay performs a vcast' of a target-update

message. By definition none of the VN s is active in the first round. We also define the

following notation:

* In(t) C U is the subset of VN ids that are active in round t and q, 4 0;

304

* Out(t) c U is the subset of VNs that are active in round t and qu = 0;

* C(t) C P is the subset of active CNs at round t;

* Cin(t) _ P is the set of active CNs located in regions with id in In(t) at the begin-

ning of round t;

* Cot(t) c P is subset of active CNs located in regions with id in Out(t) at the

beginning of round t.

For every pair of regions u, w and for every round t, we define y(w, t), to be the value

of V(w)u (i.e., the number of clients u believes are available in region w) immediately prior

to VNu performing a vcastu in round t, i.e., at time e + 2d + 2c after the beginning of round

t. If there are no new client failures or recoveries in round t, then for every pair of regions

u, w E nbrs±(v), we can conclude that y(v, t), = y(v, t),, which we denote simply as

y(v, t). We define p3 A 2
m . The rate P3 effects the rate of convergence, and will be

used in the analysis. Notice that p3 > 1. Notice that for any v, w E nbrs(u) U {u}, in the

absence of failures and recoveries of CNs in round t, Yv,t = Yw,t; we write this simply as

Yh(t).

15.3.1 Approximately Proportional Distribution

For the rest of this section we fix a particular round number to and assume that, for all

p E P, no failp or restartp events occur at or after round to. We also assume that all

executions of VLayer'[MC] satisfy the properties of S in Definition 11.12. The first lemma

states some basic facts about the assign function.

Lemma 15.1 In every round t > to:

1. If y(u, t) > k for some u E U, then y(u, t + 1) > k;

2. In(t) C In(t + 1);

3. Out(t) c Out(t + 1).

305

Proof: We fix round t > to.

1. From line 4 of the assign function (Figure 15-4) it is clear that VN,, u E U, reas-

signs some of its CN s in round t only if y(u, t) > k. And if a CN is not reassigned

and does not fail, it remains active in the same region.

2. For any VN,, u C In(t), if y(u, t) < k then VN, does not reassign CN s, and

y(u, t + 1) = y(u, t). Otherwise, from line 8 of Figure 15-4 it follows that y(u, t +

1) > k. In both cases u E In(t + 1). (Since all processes that move do so after

receiving a target-update message from their region, an alive VSA won't fail in a

round until after its vcast' of a target-update has occurred. Also, by our assumption

on the size of 6, it is obvious that by the start of the next round the VSA will again

be alive since no processes die or leave in the first d portion of a round.)

3. For any VNu, u E Out(t), if y(u, t) < k then VN, does not reassign CN s, and

y(u, t + 1) = y(u, t). Otherwise, from line 14 and line 17 of Figure 15-4 it follows

that y(u, t + 1) > k. In both cases u e Out(t + 1). (This follows the reasoning of

the prior item.)

We now identify a round tl 2 to after which the set of regions In(t) and Out(t) remain

fixed.

Lemma 15.2 There exists a round tl > to such that for every round t E [tl tt + (1 +

p3)m 2 n 2]:

1. In(t) = I n(tl);

2. Out(t) = Out(tl);

3. Cin,(t) C Cin(t + 1); and

4. Cout (t + 1) c Cou, (t).

306

Proof: By Lemma 15.1, Part 2, we know that the set In(t) C U is non-decreasing as t

increases. From Part 3, we know that set Out(t) C U is non-decreasing as t increase. Since

U is finite, we conclude from this that there is some round tl after which no new regions

u E U are added to either In(t) or Out(t). Thus we have satisfied Parts 1 and 2. Notice

that this occurs no later than round to + 2m2 . (1 + p3)m2n2 .

For Part 3, consider a client CNP, p E Cin(t), that is currently assigned in round t to

VNu, u E In(t). From lines 5-9 of Figure 15-4 we see that CNp is assigned to some VN,,

w E nbrs+(u) where q, # 0. If VN, is inactive in round t + 1, then client CNp remains

in VN, until it becomes active, resulting in VN, being added to In (t), thus contradicting

the fact that for every round t' > tl, In(t') = In(ti). We conclude that VNw is active in

round t, and hence round t + 1, from which the claim follows.

For Part 4, notice that since there are no failures and recoveries of CN s, C(t) =

C(t + 1). By definition, Cin(t) U Cot(t) = C(t), C2i(t) n Cout(t) = 0, and C,(t + 1) U

Cout(t + 1) = C(t + 1), Ci(t + 1) n Cot(t + 1) = 0. The result follows from Part (3). m

Fix tl for the rest of this section such that it satisfies Lemma 15.2. The next lemma states

that eventually, regions bordering on the curve stop assigning clients to regions that are on

the curve. That is, assume that u is a region where q, = 0, but that u has a neighbor v

where q, # 0; then, eventually, from some round onwards, u never again assigns clients to

V.

Lemma 15.3 There exists some round t2 E [tl, t +(1 +p3)m 2n2] such thatfor every round

t E [t2 , t2 + (1 + p3)m2n]: ifu E Out(t) and v E In(t) and if u and v are neighboring

regions, then u does not assign any clients to v in round t.

Proof: Notice that if u assigns a client to v, then Cout decreases by one. During the

interval [tl, tl + (1 + p3)m2 n2], we know that Cot is non-increasing by Lemma 15.2.

Thus, eventually, there is some round t2 after which either Cout = 0 or after which no

further clients are assigned from a region Out(.) to a region In(.). Since there are at most

n clients, we can conclude that this occurs at latest by round tL + n - [(1 + p3)m 2rn]. *

Fix t2 for the rest of this section such that it satisfies Lemma 15.3. Lemma 15.2 implies

that in every round t > tl, In(t) = In(tl) and Out(t) = Out(ti); we denote these simply

307

as In and Out. The next lemma states a key property of the assign function after round tl.

For a round t > tl, consider some VNo, u E Out(t), and assume that VN, is the neighbor

of VN, assigned the most clients in round t. Then we can conclude that VN, is assigned

no more clients in round t + 1 than VN, is assigned in round t. A similar claim holds for

regions in In(t), but in this case with respect to the density of clients with respect to the

quantized length of the curve. The proof of this lemma is based on careful analysis of the

behavior of the assign function.

Lemma 15.4 In every round t E [t2, t2 + (1 + p3)m 2n], for u, v E U and u E nbrs(v):

1. If u, v E Out(t) and y(v, t) = maxwEnbrs(u)nout(t) y(w, t) and y(u, t) < y(v, t), then

y(u,t + 1) < y(v, t).

2. If u, v E In(t) and y(v, t)/q, = maxwEnbrs(u)nIn(t) [y(w t)lqw] and y(u, t)/q <

y(v, t)/q,, then:
y(u,t + 1) y< (v, t) P

qu q qmax

Proof: For Part 1, fix u, v and t, as in the statement of the lemma. Consider some region

w that is a neighbor of u and that assigns clients to u in round t + 1. Since q, = 0, notice

that w assigns clients to u only if the conditions of lines 11-16 in Figure 15-4 are met.

This implies that w E Out(t), and hence y(w, t) < y(v, t), by assumption. We can also

conclude that lower, > 1, as w assigns clients to u only if u E lower,,. Finally, from

line 14 of Figure 15-4, we observe that the number of clients that are assigned to u by w in

round t is at most:

P2 [y(w, t) - y(u, t)] P2 [Y(v, t) - Y(U, t)]
2(Ilower,(t)j + 1) - 4

Since u has at most four neighbors, we conclude that it is assigned at most

308

P2 [y(v, t) - y(u, t)] clients. Since P2 < 1 and y(u, t) < y(v, t), this implies that:

y(u, t + 1) _ y(u, t) + p2 [y(v, t) - y(, t)]

" P2 y(v, t) + (1 - p2)y(, t)

< P2 . y(v, t) + (1 - p2)y(v, t)

< y(v,t) .

For Part 2, as in Part 1, fix u, v and t as in the lemma statement. Recall we have assumed

that y(u, t)/q, < y(v, t)/qv. We begin by showing that, due to the manner in which the

curve is quantized, y(u, t)/q, < y(v, t)/qv - o/qmax. Since q, is defined as [Pla]o, and

since qv is defined as [P/la] a, we notice that, by assumption:

y(ut) P ar < y(vt)
0 0

We divide both sides by o, and since both sides are integral, we exchange the '<' with a

From this we conclude:
y(ut) y(v,t) o2

[] -[1 u1
Dividing everything by o, and bounding q, and q, by qmax, we achieve the desired calcula-

tion.

Now, consider some region w that is a neighbor of u and that assigns clients to u in

round t + 1. First, notice that w Out(t), since by Lemma 15.3, no clients are assigned

from an Out region to an In region after round t2 (prior to t2 + (1 + p3)m 2 n). Thus, w

assigns clients to u only if the conditions of lines 5-10 in Figure 15-4 are met. This implies

that w E In(t), and hence y(w, t)/qw < y(v, t)/q,, by assumption. We can also conclude

that lower, > 1, as w assigns clients to u only if u E lower,. Finally, from line 8 of

Figure 15-4, we observe that the number of clients that are assigned to u by w in round t is

309

at most:

2(|lower(t) + 1) 4

Since u has at most four neighbors, we conclude that it is assigned at most

P2 [(q/qv)y(v, t) - y(u, t)] clients. This implies that:

(q) ,

Thus, dividing everything by q,, and recalling that y(u, t)/q, < y(v, t)/q - o/q a:

y(u, t + 1) < (vt (Y(u, t)

qu qV) qu)

(P2 (v, t) +l P (Y(v, t) o

qrqaqax

y(v, t) a

The next lemma states that there exists a round Tout such that in every round t > Tout,

the set of CNs assigned to region u E Out(t) does not change.

Lemma 15.5 There exists a round Tout E [t2 , t2 + 72n such that in any round t 2 Tout,

the set of CNs assigned to VNu, u E Out(t), is unchanged.

Proof: First, we show that there exists some round Tout such that the aggregate number

of CN s assigned to VN, remains the same in both Tout and Tout + 1 for all u E Out(t 2).

We then show that the actual assignment of individual clients remains the same in Tot and

Tout + 1.

We consider a vector E(t) that represents the distribution of clients among regions

in Out(t). That is, the first element in E(t) represents the largest number of clients in

310

any region; the second element in E(t) represents the second largest number of clients in

any region; and so forth. We then argue that, compared lexicographically, E(t + 1) <

E(t). Since the elements in E(t) are integers, we conclude from this that eventually the

distribution of clients becomes stables and ceases to change.

We proceed to define E(t) as follows for t > t2. Let Nt = Out. Let I(t) be

a permutation of Out that orders the regions by the number of assigned clients, i.e., if u

precedes v in HI(t), then y(u, t) < y(v, t). When we say that some region u has index k,

we mean that II(t)k = u. Define E(t) as follows:

E(t) = (y(II(t)No, .t), y(I(t)Not l, t), .. .,y(H(t),t) .

We use the notation E(t)e to refer to the fth component of E(t) counting from the right, i.e.,

it refers to II(t)e. Any two vectors E(t) and E(t + 1) can be compared lexicographically,

examining each of the elements in turn from left to right, i.e., largest to smallest.

We now consider some round t [t2 , t2 + m2n], and show that E(t) > E(t + 1).

Consider the case where E(t) # E(t + 1), and let u be the region with maximum index

that assigns clients to another region. Let k be the index of region u.

First, we argue that for every region v with index < k, we can conclude that y(v, t+l1) <

y(u, t). Consider some particular region v. Notice that v has no neighbors in Out that are

assigned more than y(u, t) clients in round t; otherwise, such a neighbor would assign

clients to v, contradicting our choice of u. Thus, by Lemma 15.4, Part 1, we can conclude

that y(v, t + 1) < y(u, t) (as long as t E [t2, t2 + 2m 2n], which we will see to be sufficient).

Since this implies that there are at least k regions assigned fewer than y(u, t) = E(t)k

clients in round t + 1, we can conclude that E(t + 1)k < E(t)k. In order to show that

E(t + 1) < E(t), it remains to show that for every k' > k, E(t)k' = E(t + 1)k'.

Consider some region v with index > k. By our choice of u, it is clear that v is not

assigned any clients by a region with index > k. It is also easy to see that v is not assigned

any clients by a region w with index < k, since y(v, t) > y(u, t) > y(w, t); as per line 12,

region w does not assign any clients to a region with > y(w, t) clients. Thus no new clients

are assigned to region v. Moreover, by choice of u, region v assigns none of its clients

311

elsewhere. Finally, since t > to, none of the clients fail. Thus, y(v, t) = y(v, t + 1).

Since the preceding logic holds for all Not - k + 1 regions with index > k, and all

have more than y(u, t) > y(u, t + 1) clients, we conclude that for every k' > k, E(t)k, =

E(t + 1)k,, implying that E(t) > E(t + 1), as desired.

Since E(.) is non-increasing, and since it is bounded from below by the zero vector, we

conclude that eventually there is a round Tot such that for all t > Tout, E(t) = E(t + 1).

Now suppose the set of clients assigned to region u changes in some round t > Tot.

The only way the set of clients assigned to region u could change, without changing y(u, t)

and the set Cot, is if there existed a cyclic sequence of VN s with ids in Out in which

each VN gives up c > 0 CN s to its successor VN in the sequence, and receives c CN

s from its predecessor. However, such a cycle of VN s cannot exist because the lower set

imposes a strict partial ordering on the VN s.

Finally, we observe that if E(t) = E(t+ 1) for any t, then the assignment of clients does

not change from that point onwards: since all the clients remained in the same regions in

E(t) and E(t+ 1), we can conclude that the assign function produced the same assignment

in E(t + 1) as in E(t). Since the vector E(.) has at most m2 elements, each with at most n

values, we can conclude that Tout is at most m2n rounds after t2. M

For the rest of the section we fix Tout to be the first round after to, at which the property

stated by Lemma 15.5 holds. Lemma 15.5, together with Lemmas 15.1, 15.2, and 15.3,

imply that in every round t > Tout, C,(t) = Cin(tl) and Cout(t) = Cot(ti); we de-

note these simply as Cn and Cout. The next lemma states a property similar to that of

Lemma 15.5 for VN,, u E In, and the argument is similar to the proof of Lemma 15.5,

and uses Part (2) of Lemma 15.4.

Lemma 15.6 There exists a round Ttab E [Tout, Tout + p3m 2n] such that in every round

t > Tstab, the set of CNs assigned to VNu, a E In, is unchanged.

Proof. We proceed to define E(t) as follows for t > Tout. Let Ni, = IInI. Let I(t)

be a permutation of In that orders the regions by the density of assigned clients, i.e., if u

precedes v in I(t), then y(u, t)/qu < y(v, t)/q,. When we say that some region u has

312

index k, we mean that II(t)k = u. Define E(t) as follows:

E(t) y((t)N , t) Y(11 (t) N , t) Y(I (t)I t)

E(t) (t)N, q (t)N 1 qn(t)l1

We use the notation E(t)e to refer to the fth component of E(t) counting from the right, i.e.,

it refers to II(t)e. Any two vectors E(t) and E(t + 1) can be compared lexicographically,

examining each of the elements in turn from left to right, i.e., largest to smallest.

We now consider some round t > Tot, and show that E(t) > E(t + 1). Consider the

case where E(t) = E(t + 1), and let u be the region with maximum index that assigns

clients to another region. Let k be the index of region u.

First, we argue that for every region v with index < k, we can conclude that y(v, t +

1)/q, < y(u, t)/q, - (for some constant (. Consider some particular region v. Notice that

v has no neighbors in In that have density greater than y(u, t)/q, in round t; otherwise, such

a neighbor would assign clients to v, contradicting our choice of u. Thus, by Lemma 15.4,

Part 2, we can conclude that y(v, t + 1)/qv < y(u, t)/qu - (where (= (1 - P2) q (as

long as t E [t2 , t 2 + (1 + p3)m 2 n], which we will see to be sufficient).

Since this implies that there are at least k regions assigned fewer than y(u, t) = E(t)k

clients in round t + 1, we can conclude that E(t + 1)k < E(t)k - . In order to show that

E(t + 1) < E(t), it remains to show that for every k' > k, E(t)k' = E(t + 1)k'.

Consider some region v with index > k. By our choice of u, it is clear that v is not

assigned any clients by a region with index > k. It is also easy to see that v is not assigned

any clients by a region w with index < k, since y(v, t)/qv _ y(u, t)/qu 2 y(w, t)/q,,; as

per line 6, region w does not assign any clients to a region with a density > y(w, t)/q,.

Thus no new clients are assigned to region v. Moreover, by choice of u, region v as-

signs none of its clients elsewhere. Finally, since t > to, none of the clients fail. Thus,

y(v, t)/lq = y(v, t + 1)/q,.

Since the preceding logic holds for all Ni, - k + 1 regions with index > k, and all

have more than y(u, t)/q, clients, we conclude that for every k' > k, E(t)k' = E(t + 1)k',

implying that E(t) > E(t + 1), as desired.

Since E(.) is non-increasing, and since it decreases by at least a constant (in every

313

round in which it decreases, and since it is bounded from below by the zero vector, we

conclude that eventually there is a round Tstab such that for all t > Tstab, E(t) = E(t + 1).

Now suppose the set of clients assigned to region u changes in some round t > Tstab.

The only way the set of clients assigned to region u could change, without changing

y(u, t)/qu and the set Ci,, is if there existed a cyclic sequence of VN s with ids in In

in which each VN gives up c > 0 CN s to its successor VN in the sequence, and re-

ceives c CN s from its predecessor. However, such a cycle of VN s cannot exist because

the lower set imposes a strict partial ordering on the VN s.

Finally, we observe that if E(t) = E(t+ 1) for any t, then the assignment of clients does

not change from that point onwards: since all the clients remained in the same regions in

E(t) and E(t+ 1), we can conclude that the assign function produced the same assignment

in E(t + 1) as in E(t). Since the vector E(.) has at most m2 elements, each with at most

n q, ax values, we can conclude that Tstab is at most p3m 2 n rounds after Tout, and hence at

most (1 + p3)m 2n rounds after t2, as needed. 0

The following bounds the total number of clients located in regions with ids in Out to be

O(m').

Lemma 15.7 In every round t > Tout, ICout(t)I = O(m 3).

Proof: From Lemma 15.5, the set of CN s assigned to each VNu, u E Out(t), is un-

changed in every round t > Tout. This implies that in any round t > Tout, the number of

CN s assigned by VN, to any of its neighbors is 0. Therefore, from line 17 of Figure 15-4,

for any boundary VN,, (y(v, t) - k)/|Inv, < 1. Recall that In is the (constant) set of

neighbors of v with quantized curve length z 0. Since In I < 4, y(v, t) < 4 + k.

From line 14 of Figure 15-4, for any non-boundary VN,, v E Out(t), if v is 1-hop

away from a boundary region u, then (y(,t)-(,t < 1. Since lower,(t) < 4, y(v, t)

10 -+ 4 + k. Inducting on the number of hops, the maximum number of clients assigned
P2

to a VN,, v E Out(t), at f hops from the boundary is at most 10 + k + 4. Since for any
P2

£, 1 < f < 2m - 1, there can be at most m VN s at f-hop distance from the boundary,

summing gives ICout < (k + 4)(2m - 1)m + 10 m2(2m-1) = O(m 3). m
P2

314

For the rest of the section we fix Ttab to be the first round after Tot, at which the prop-

erty stated by Lemma 15.6 holds. Lemma 15.8 states that the number of clients assigned to

each VNo, u E In, in the stable assignment after Tstab is proportional to q, within a con-

stant additive term. The proof follows by induction on the number of hops from between

any pair of VNs.

Lemma 15.8 In every round t > Tstab, for u, v E In(t):

y(u, t) y(v, t) 10(2m - 1)

qu qv qminP2

Proof: Consider a pair of VN s for neighboring regions u and v, u, v E In. Assume

without loss of generality that y(u, t) > y(v, t). From line 8 of Figure 15-4, it follows that

p2('y(u, t) - y(v, t)) < 2(lower(t) + 1). Since Ilower(t)I < 4, I - Y(vt) < 10

< 10 . By induction on the number of hops from 1 to 2m - 1 between any two VN s,
- qminP2

the result follows. •

15.3.2 Uniform Spacing

From line 28 of Figure 15-4, it follows that by the beginning of round Ttab + 2, all CNs

in Cn are located on the curve r. Thus, the algorithm satisfies our first goal. The next

lemma states that the locations of the CNs in each region u, u E In, are uniformly spaced

on F, in the limit, and it is proved by analyzing the behavior of calctarget as a discrete time

dynamical system.

Lemma 15.9 Consider a sequence of rounds tl = Tstab, .• , t-. As n - oo, the locations

of CNs in u, u E In, are uniformly spaced on F,.

Proof: From Lemma 15.6 we know that the set of CN s assigned to each VN,, u E In,

remains unchanged. Then, at the beginning of round t2, every CN assigned to VN, is

located in region u and is on the curve Fr. Assume without loss of generality that VN, is

assigned at least two CN s. Then, at the beginning of round t3, one CN is positioned at

315

each endpoint of F, namely at F,,(inf(P,)) and r,(sup(P)). From lines 30-31 of Figure

15-4, we see that the target points for these endpoint CN s are not changed in successive

rounds.

Let seq(t 2) = p, 1(0)), ... , Pn+1 , i(n+l)), where yu = n + 2, po = inf(P,), and

Pn+I = sup(Pu). From line 34 of Figure 15-4, for any i, 1 < i < n, the i th element in seq,

at round tk, k > 2, is given by:

Pi(tk+l) = Pi(tk) + Pi-l(tk) + Pi+l(tk) - Pi(tk)

For the endpoints, pi(tk+l) = pA(tk). Let the it h uniformly spaced point on the curve F,

between the two endpoints be xi. The parameter value pi corresponding to xi is given by

P = Po + 1 (Pn+ - Po). In what follows, we show that as n - oc, the pi converge to fpi

for every i, 0 < i < n + 1, that is, the location of the non-endpoint CN s are uniformly

spaced on F. The rest of this proof is exactly the same as the proof of Theorem 3 in [46]

in which the authors prove convergence of points on a straight line with uniform spacing.

Observe that pi = 1 (pi-1 + pi+I) = (1 - p1)i + (pi-1 + pi+l). Define error at step

k, k > 2, as e1(k) = pi(tk) - pi. Therefore, for each i, 2 < i < n - 1, ei(k + 1)

pi(tk+l) -pi (- pl)ei(k)+2-(ei (k) ei+ (~k)), el (sk1 = (1 - p)e1 (k) + -e2(k),

and e,(k+l) = (1-p)e,(k)+ -e,-_l(k). The matrix for this can be written as: e(k+1) =

Te(k), where T is an n x n matrix:

1 - pi p1/ 2 0 0 ... 0

P1/2 1 - p p/ 2 0 ... 0

0 ... 0 p1/ 2 1 - p p 1/2

0 ... 0 0 1- pi p/2

Using symmetry of T, pi < 1, and some standard theorems from control theory, it follows

that the largest eigenvalue of T is less than 1. This implies limo,,oT k = 0, which implies

lirnmkce(k) = 0. m

We conclude by summarizing the results in this section, Section 15.3:

316

Theorem 15.10 If there are no fail or restart actions for robots at or after some round to

and the execution fragments of VLayer' [MC] satisfy the properties of set S from Definition

11.12, then:

1. Within a finite number of rounds after to, the set of CNs assigned to each VNu,

a E U, becomes fixed, and the size of the set is proportional to the quantized length

q,, within a constant additive term 1(2m-1)
qminP2

2. All client nodes in a region u E Ufor which qu 0 are located on F, and uniformly

spaced on r, in the limit.

15.4 Self-stabilization of the Algorithm

In this section we show that the VSA-based motion coordination scheme is self-stabilizing.

Specifically, we show that when the VSA and client components in the VSA layer start

out in some arbitrary state owing to failures and restarts, they eventually produce traces

that look like reachable traces of the motion coordination algorithm. Thus, the traces of

VLayer'[MC] running with some reachable state of VbcastllRW'||VW, eventually, be-

comes indistinguishable from a reachable trace of VLayer'[MC]. Note that the virtual

layer algorithm alg is instantiated here with the motion coordination algorithm MC of

Section 15.2.

To show correctness, we use the strategy described in Section 9.3, where we describe

a legal set LMC of VLayer'[MC], and show that it is a legal set (Section 15.4.1), and

then legal states of the specification (here they are the reachable states). We then define

a simulation relation RZMC between states of VLayer'[MC] (see Definition 15.13), and

show the relation is a simulation relation (Lemma 15.14). We then show that for each

state in LMC, there exists a state in the invariant set reachablevLayer'[MC] such that RMc

holds between the states (Lemma 15.15). (This is to conclude that the system started in

the set of legal states implements the system started in a reachable state.) We then show

that VLNodes[MC] is self-stabilizing to LMC relative to R(RW'j| I VWIVbcast) (Theorem

15.20). We conclude that the set of traces of the implementation stabilizes to the set of

317

reachable traces of executions of VLayer'[MC].

We then go a step further, and connect the result to an emulation of the VSA layer.

In Chapter 11 we showed how to implement a self-stabilizing VSA Layer. In particular,

that implementation guarantees that for each algorithm alg E VAlgs, the implementation

stabilizes in some tstab time to execution fragments whose traces are the same as those of

execution fragments of the virtual layer that also happen to be in the set S described in

Definition 11.12. Thus, if the coordination algorithm AMC is such that VLNodes[AMC]

self-stabilizes in some time t to LMc relative to R(RW' IVW| Vbcast), then we can con-

clude that physical node traces of the emulation algorithm on AIMC stabilize in time tstab + t

to client traces of executions of the VSA layer started in legal set LMc and that satisfy the

properties of S (Theorem 15.22).

15.4.1 Legal Sets

First we describe two legal sets for VLayer'[AIC], L'ic and LAIc where Lmc is a subset

of L1,c. Recall from Lemma 3.13 that a legal set of states for a TIOA is one where each

closed execution fragment starting in a state in the set ends in a state in the set. We break

the definition of the legal set up into two sets in order to simplify the proof reasoning and

more easily prove stabilization later.

Legal set LN1 c

The first legal set L 1 c describes a set of states that result after the first GPSupdate occurs

at each client node and the first timer occurs at each virtual node.

Definition 15.11 A state x of VLayer'[MC] is in Le1C iff the following hold:

1. x[XVbcast|RW' ivw E reachablebcast|RW'I IVW.

2. Vu E U : -failed : clock, E {RW'.now, 1} A (AI ' 0 =~ clock, mod 6 E

(0, e + 2d + 2c]).

3. Vp E P : -f ailedp # vp E f{RW'.vel(p)/vmax, I}.

318

4. Vp E P : -if ailedp A xp = I:

(a) x, = RW'.loc(p) A clockp = RW'.now.

(b) x; E {xp, 1} V 1X -x I < Vmax(6[clockp/61 - Clok, - d,).

(c) Vbcast.reg(p) = region(xp) V clock mod 6 E (e + 2d + 2e, 6 - d, + Esampe).

Part (1) requires that x restricted to the state of VbcastI RW' IVW be a reachable state of

VbcastlRW'lVW. Part (2) states that nonfailed VSAs have clocks that are either equal

to real-time or I, and have nonempty M only after the beginning of a round and up to

e + 2d+ 2E time into a round. Part (3) states that nonfailed clients have velocity vectors that

are equal either to I or equal to the client's velocity vector in RW', scaled down by vmax

(this scaling to a unit velocity vector is done for convenience; the domain of the client's

local velocity variable is simply a direction, not a magnitude, which constrains the possible

values of the variable and hence marginally simplifies stabilization reasoning). Finally,

Part (4) states that nonfailed clients with non-I positions have: (4a) positions equal to

their actual location and local clocks equal to the real-time, (4b) targets that are one of

1, the location, or a point reachable from the current location within d, before the end of

the round, and (4c) Vbcast last region updates that match the current region or the time is

within a certain time window in a round. It is routine to check that L 1c is indeed a legal

set for VLayer'[MC].

Legal set LMC

Now we describe the main legal set LMc for our algorithm. First we describe a set of reset

states, states corresponding to states of VLayer'[MC] at the start of a round. It turns out

that it is relatively simple to show that an execution fragment of VLayer'[MC] reaches a

reset state. We define LM to be the set of states reachable from these reset states. Due to

our use of reset states, it is simple to show that our algorithm stabilizes to LMc.

Definition 15.12 A state x of VLayer'[MC] is in ResetMc iff.

1. x E L1ic.

319

2. Vp E P: --f ailedp

[to_send; = to_send+ = A (x, = I V (x;, 7 J IA v, = 0))].

3. Vu E U: -if ailed, = tosend = A.

4. V(m, u, t, P') E vbcastq : P' = 0.

5. RW'.now mod 6 = 0 A Vp E P : V(1, t) E RW'.updates(p) : t < RW'.now.

LMC is the set of reachable states of Start(VLayer'[MC], Reset Ac).

ResetMc consists of states in which (1) the state is in Lmc, (2) each nonfailed client has

an empty queue in its VBDelay and either has a position variable equal to I or has both a

non-I target and 0 velocity, (3) each nonfailed VSA has an empty queue in its VBDelay,

(4) all messages in Vbcast have either been delivered or dropped at each process, and (5)

the time is the starting time for a round and no GPSupdates have yet occurred at this time.

Once again, it is routine to check that that LMc is a legal set for VLayer'[MC].

15.4.2 Relationship between LMC and reachable states

Now we define a simulation relation RMc on the states of VLayer'[MC], and then prove

that for each state x E LAMc, there exists a state y E reachableLayer'[MC] such that x

and y are related by RMC. This implies that the trace of any execution fragment starting

with x is the trace of an execution fragment starting with y, which is a reachable trace

of VLayer'[MC]. We define the candidate relation RMc and prove that it is indeed a

simulation relation.

Definition 15.13 RMC is a relation between states of VLayer'[IMC] such for any states x

and y of VLayer'[[MC], xRvcy iff the following conditions are satisfied:

1. x(RW'.now) = y(RW'.now) A x(RW'.loc) = y(RW'.loc).

2. For all p E P, y(vel(p)) E {x(vel(p)), I} A

{t E R>0 3l c R : (1, t) E x(RW'.updates(p))}

= {t cE R I 1l E R : (1,t) E y(RW'.updates(p))}.

320

3. x(VW) = y(VW) A x(Vbcast.now) = y(Vbcast.now).

4. x(Vbcast.reg) = y(Vbcast.reg) A

{(m, u, t, P') E x(Vbcast.vbcastq) I P' # 0}
= {(m, u, t, P') E y(Vbcast.vbcastq) IP' 0}.

5. For all i E P U U, x(f ailedi) = y(failedi).

6. For all u E U : -x(failed,):

(a) x(clock,) = y(clocku) A x(M,) = y(M,)

A [x(M,) f 0 - Vv E nbrs+(u) : x(V(v)) = y(V(v))].

(b) Ix(to_send)I = y(tosend)I A Vi E [1, x(tosend)] : V(m,t) =

x(to_send,[i]) : y(tosend,[i]) = (m, t + y(rtimeru) - x(rtimer)).

7. For all p E P : -x(f ailedp):

(a) x(CNp) = y(CNp) V [x(xp) = y(Xp) = A x(vp) = y(Vp)].

(b) x(VBDelayp) = y(VBDelayp).

(c) x(to_send7) h -A =-= x(Vbcast.oldreg(p)) = y(Vbcast.oldreg(p)).

We describe the various conditions two related states x and y must satisfy. Part (1) requires

that they share the same real-time and locations for CNs. Part (2) requires that for each

client, the velocity at RW' is equal or the velocity in y is I, and GPSupdate records in

the two states are for the same times. Part (3) requires that VW's state and Vbcast.now

are the same in x and y. Part (4) requires that the unprocessed message tuples are the same

and that the last recorded regions in Vbcast for clients are the same in both states. Part (5)

says that failure status of each CN and VN is the same in both states. Part (6a) requires

that for a nonfailed VSA, local time and the set M are equal in x and y, and further, if M

is nonempty then V is equal for local regions in both states. Part (6b) says that the to_send

queues for a nonfailed VSA are the same, except with the timestamps for messages in y

adjusted up by the difference between rtimer, in state y and x. Part (7a) requires that the

algorithm state of a nonfailed CN is either the same, or both states share the same local v

321

and have locations equal to 1. Part (7b) says that the VBDelay state is the same for each

nonfailed CN in x and y. Finally, Part (7b) requires that if the to sendp buffer is nonempty

in state x for a nonfailed client, then Vbcast.oldreg(p) is the same in both states.

The proof of the following lemma is also routine and it breaks down into a large case

analysis. Say that x and y are states in QVLayer'[MC] such that xRAcy. For any action or

closed trajectory or of VLayer'[MC], suppose x' is the state reached from x, then, we have

to show there exists a closed execution fragment 0 of VLayer'[MAC] with .f state = y,

trace(3) = trace(o), and x'Rmcd3 .lstate.

Lemma 15.14 RMc is a simulation relation for VLayer'[[MC].

Proof. It suffices to show that for every state x E VLayer'[MC], the following three

conditions hold:

1. If x E OVLayer'[AMc] then there exists a state y E OVLayer'[MC] such that xRAlcy. It

is obvious that taking y = x satisfies this condition.

2. Say that x and y are states in QVLayer[[McI such that xRMcy. Then for any action

a c AVLayer'[AIC], if VLayer'[MC] performs action a and the state changes from

x to x', we must show there exists a closed execution fragment / of VLayer'[MC]

with /.fstate = y, trace(3) = trace(p(x)ap(x')), and x'RAIC3.lstate. For this

proof we must consider each action. For each action, we can show the closed execu-

tion fragment 3 is simply p(y)ap(y'). This obviously satisfies the trace requirement.

It is also easy to verify that x'RXcy'. This is because the relation RMc holds be-

tween states that are effectively the same (any differences in state variables occur

in circumstances where the differences are irrelevant). We do not perform the case

analysis here since it is trivial.

3. Say that {X, y} C QVLayer'[AMC] and xzRAcy. Let c be an execution fragment of

VLayer[MC] consisting of one closed trajectory, with a.fstate = x. We must

show that there is a closed execution fragment 3 of VLayer'[MC] with /3.fstate =

y, trace(/3) = trace(a), and ac.lstateRvNc /3.1 state. This is trivial in that we just take

0 to be the actionless fragment where client locations, clocks, and timers develop in a

322

similar manner to their counterparts in a. The only interesting thing to check is that if

for some p E P, x(vel(p)) # I and y(vel(p)) = I, then any change in location for

p in a is permissible in 0. This holds because any change in location that is bounded

by speed vax is permissible when vel(p) is set to I.

To show that each state in LmC is related to a reachable state of VLayer'[MC], it is

enough to show that each state in ResetL is related to a reachable state of VLayer'[MC]. it is

The proof proceeds by providing a construction of an execution of VLayer'[MC] for each

state in ResetMc.

Lemma 15.15 For each state x E ResetMc, there exists a state y E reachablevLayer'[Mc]

such that xRMcy.

Proof: Let x be a state in ResetMc. We construct an execution a based on state x such

that xRMca.lstate. The construction of a is in three phases. Each phase is constructed by

modifying the execution constructed in the prior phase to produce a new valid execution

of VLayer'[MC]. After Phase 1, the final state of the constructed execution shares client

locations and real-time values with state x. Phase 2 adds client restarts and velocity ac-

tions for nonfailed clients in state x, making the final state of clients consistent with state

x. Phase 3 adds VSA restart actions to make the final state of VSAs consistent with state

x.

1. Let a be an execution of VLayer'[MC] where each client and VSA starts out failed,

no restart or fail events occur, and ol.ltime = x(RW.now). For each failed p E P,

there exists some history of movement that never violates a maximum speed of Vmax,

is consistent with stored updates for p, and that lead to the current location of p. We

move each failed p in just such a way and add a GPSupdate((l, t))p at time t for

each (1, t)E x(RW'.updates(p)).

For each nonfailed p E P and each state in a , we set RW'.loc(p) =

x(RW'.loc(p)) (meaning the client does not move). For each nonfailed p e

323

P, add a GPSupdate(x(RW'.loc(p)),t)p action for each t such that](l,t) E

x(RW'.updates(p)).

For each u E U, if x(last(u)) 1 I then add a time(t), output at time t in a1 for

each t in the set {t* It* = x(last(u)) V (t* < x(last(u)) A t* mod Csample - 0)}.

Validity: It is obvious that the resulting execution is a valid execution of

VLayer'[MC].

Relation between x and 1 .lstate: They satisfy (1)-(4) of Definition 15.13.

2. In order to construct a 2, we modify c1 in the following way for each p E P such

that -ix(failedp): If x(xp) 1 I, we add a restart, event immediately before and a

velocity(0)p immediately after the last GPSupdatep event in al. If x(xz) = 1_ and

x(v) = 0, then we add a restartp and velocity(0)p event immediately after the last

GPSupdatep event in al. If x(xz) = _L and x(vp) = I, then we add a restartp

event at time x(RW'. now) in al.

Validity Since restart actions are inputs they are always enabled, and a velocity, ac-

tion is always enabled at client CN. Also, there can be no trajectory violations since

any alive clients receive their first GPSupdate within Es,aple time of x(RW'.now)

in a 2, meaning that since J is larger than 6 sample and x(RW'.now) is a round bound-

ary, there is no time before x(RW'.now) in c 2 where a cn-update should have been

sent. It is obvious that this is a valid execution of VLayer'[MC].

Relation betweem x and a2.lstate They satisfy (1)-(4) and (7) of Definition 15.13.

3. To construct a, we modify a 2 in the following way for each u E U such that

-x(failed): If x(clocku) = I, we add a restart, event after any time, actions.

If x(clocku) I_, we add a restart, event immediately before the last time, action.

Validity A restart action is always enabled. Also, there can be no trajectory viola-

tions since no outputs at a VSA are enabled until its local M is nonempty. Since M

is empty, we can conclude that this is a valid execution of VLayer'[MC].

Relation between x and ac.lstate xR cace.lstate.

324

We conclude that a is an execution of VLayer'[MC] such that if we take y = a.lstate,

then y E reachablevLayer[Mc] and xRmcy. 0

It directly follows that for every state in LMC there is a reachable state of VLayer' [MC]

that is related to it. (This result can be seen by noting that each state in LMC is reach-

able from a state in ResetMc, which the prior lemma implies is related to some state in

reachablevLayer [Mc].)

Lemma 15.16 For each state x E LMc, there exists a state y E reachablevLayer[MC]

such that xRMCY.

From Lemmas 15.16 and 15.14 it follows that the set of trace fragments of

VLayer'[MC] corresponding to execution fragments starting from LMc is contained in

the set of traces of R(VLayer'[MC]).

As a corollary to this result, we have the following simple observation, based on the

matching execution constructed in the proof of the simulation relation above. It says that

for any execution fragment a of VLayer'[MC] in S[VLNodes[MC]] and starting in a

state x in LMC, and given a state y related to x, there is an execution fragment starting

with y that has the same trace as a and is also in S[VLNodes[MC]]. (This is very useful

in Theorem 15.22, where we show that our emulation of a VSA layer can run the MC

algorithm and eventually produce reachable traces of execution fragments satisfying certain

failure patterns of VSAs.)

Corollary 15.17 Let a be an execution fragment of VLayer'[MC] where a.f state E

LMC and a is in S[VLNodes[MC]]. Let y be a state in reachableVLayer'[MC] such that

a.f stateRmcy. Then there exists an execution fragment a' of VLayer'[[MC] where:

1. a'. f state = y.

2. trace(a)= trace(a').

3. If a is a closed execution fragment, then a.lstate C Mca'.lstate.

4. a' E S[VLNodes[MC]].

325

The first three properties of the corollary follow from the fact that RAMc is a simulation re-

lation. The fourth follows from the proof that RCM is a simulation relation; the constructed

execution in the proof shows exactly the same mobile node movements and process failures

and restarts. Hence, if a satisfies the properties of Definition 11.12, then a' must as well.

15.4.3 Stabilization to LMC

We've seen that LMC (Section 15.4.1) is a legal set for VLayer'[MC], and that each state

in LAc is related to some reachable state of the system (Lemma 15.16). Now we can show

that our algorithm stabilizes to the legal set (Theorem 15.20). We do this in two phases,

corresponding to each legal set.

After we show that VLNodes[MC] self-stabilizes to LAC relative to

R(RW' VWj Vbcast), we use the fact that RMC (see Definition 15.13) is a simu-

lation relation that relates states in LMC with reachable states of VLayer'[MC] to

conclude that a stabilizing VSA emulation algorithm emulating MC will eventually

produce reachable traces of the system (Theorem 15.22).

First, we state the following the stabilization result. To see this, consider the moment

after each client has received a GPSupdate and each virtual node has received a time,

which takes at most Esample time.

Lemma 15.18 VLNodes[MAC] is self-stabilizing to Lkmc in time t for any t > 6 sample

relative to the automaton R(Vbcast IRW' I VW).

Next we show that starting from a state in L 1M, we eventually arrive at a state in

ResetMc, and hence, a state in LAc.

Lemma 15.19 Executions of VLayer'[AIC] started in states in L 1,C stabilize in time 6 +

d + e to executions started in states in LAc.

Proof: It suffices to show that for any length-6 + d+ e prefix a of an execution fragment of

VLayer'[AMC] starting from Lmc, a.istate E LAC. By the definition of LAIc, it suffices

to show that there is at least one state in ResetMA that occurs in a.

326

Let to be equal to a.fstate(RW'.now), the time of the first state in a. We consider

all the "bad" messages that are about to be delivered after a.fstate. (1) There may be

messages in Vbcast.vbcastq that can take up to d time to be dropped or delivered at each

process. (2) There may be messages in to_send- or to_send+ queues at clients that can

submitted to Vbcast and take up to d time to be dropped or delivered at each process. And

(3), there may be messages in to_send queues at VSAs that can take up to e time to be

submitted to Vbcast and an additional d time to be dropped or delivered at each process.

We know that all "bad" messages will be processed (dropped or delivered at each process)

by some state x in a such that x(RW'.now) = tl = to + d + e.

Consider the state x* at the start of the first round after state x. Since x* (RW'.now) =

6(Lt/s6] + 1), we have that x*(RW'.now) - to = x*(RW'.now) - tl + e + d < 6 + e + d.

The only thing remaining to show is that x* is in ResetMc. It's obvious that x* satisfies

(1) and (5) of Definition 15.12. Code inspection tells us that for any state in L 1c, and

hence, for any state in a, any new vcast transmissions of messages will fall into one of

three categories:

1. Transmission of cn-update by a client at a time t such that t mod 6 = 0. Such a

message is delivered by time t + d.

2. Transmission of vn-update by a virtual node at a time t such that t mod 6 = d + e.

Such a message is delivered by time t + d + e.

3. Transmission of target-update by a virtual node at a time t such that t mod 6 =

2d + e + 2c. Such a message is delivered by time t + d + e.

In each of these cases, any vcast transmission is processed before the start of the next

round. Thus, x* satisfies properties (2), (3), and (4) of Definition 15.12. To check (2), we

just need to verify that for all nonfailed clients if xz is not I then x* is not I and v, is

0. It suffices to show that at least one GPSupdate occurs at each client between state x

and state x*. (Such an update at a nonfailed client would update xp to be xp for clients

with x = 1 or x* too far away from xz to arrive at z* before x*. Any subsequent receipts

of target-update messages will only result in an update to zx if the client will be able to

327

arrive at x* before x*. This implies that v, can only be I or 0, and since no GPSupdates

could have occurred at the same time as x*, stopping conditions ensure that vp, 1I.)

To see that at least one GPSupdate occurs at each client between state x' and state

x*, we need that x*(RW'.now) - x'(RW'.now) > Esample. Since x*(RW'.now) -

x'(RW'.now) = 6 - (x'(RW'.now) mod 6) > 6 - e - 2d - 2c, 6 > e + 2d + 2c + dr,

and d, > Csample it follows that 6 > e + 2d + 2 + esample. N

Combining our stabilization results we conclude that VLNodes[MAC] started in an arbi-

trary state and run with R(VbcastlIRW'lIVW) stabilizes to LAM in time tmcstab, where

tmcstab is any t such that t > 6 + d + e + Esampei. From transitivity of stabilization and

15.19, the next result follows.

Theorem 15.20 Let tmcstab be any t such that t > 6 + d + e + 6 sample.

VLNodes[MC] is self-stabilizing to LAc in time tmcstab relative to

R(Vbcastl RIW' VW).

Thus, despite starting from an arbitrary configuration of the VSA and client components

in the VSA layer, within tmcstab time, the system reaches a state in LAc.

We can take this a step further to reason about the behavior of the system from the

physical level implementation of the virtual layer:

Lemma 15.21 Consider the S-constrained tstab-stabilizing VSA emulation algorithm

defined in Lemma 11.22. Then tracesActHide(HPL,U(PLNodes[amap[AIC])IIR(RW' lPbcast)) stabi-

lizes in time tstab + tmcstab to {trace(a) a E exeCSActHide(HvL,Start(VLayer'[MIC],LAtc)) o
S(VLNodes[MC]) }.

The result is just an application of Corollary 8.4 to the emulation algorithm amap of

Lemma 11.22 and Theorem 15.20.

We then combine this result with Corollary 15.17 and Lemma 15.15 to arrive at the fol-

lowing result, which says that our stabilizing emulation algorithm from Section 11 running

the MC algorithm produces traces that stabilize in time tstab + tmcstab to traces of reach-

able execution fragments of the MC algorithm that also happen to satisfy the VSA failure

patterns described in Definition 11.12:

328

Theorem 15.22 Consider the S-constrained tstab-stabilizing VSA emulation algorithm

defined in Lemma 11.22. Then traceSActHide(HpL,U(PLNodes[amap[MC]]) jR(RW'|iPbcast))

stabilizes in time tstab + t mcstab to {trace(a) a E eXeCSActHide(HVL,R(VLayer'[MC])) n

S(VLNodes[MC])}.

Thus, putting together this result and Theorem 15.10, we can make the following state-

ment about the locations of physical nodes that run our VSA emulation of the MC algo-

rithm starting in some arbitrary state:

Theorem 15.23 Let a be any execution of the S-constrained tstab-stabilizing VSA emu-

lation algorithm defined in Lemma 11.22, running MC and starting from an arbitrary

configuration of the physical nodes. Assume that there is some time t after which there are

no failures or restarts of the physical nodes.

Then: (1) within a finite amount of time after t, the set of physical nodes assigned to each

region becomes fixed and the size of the set is proportional to the quantized length q,,

within a constant additive term 10(2m1) and (2) and the physical nodes in regions u for
qminp2

which q, Z 0 are located on F, and uniformly spaced in the limit.

15.5 Conclusion

We have described how we can use the Virtual Stationary Automaton infrastructure to de-

sign protocols that are resilient to failure of participating agents. In particular, we presented

a protocol by which the participating robots can be uniformly spaced on an arbitrary curve.

The VSA layer implementation and the coordination protocol are both self-stabilizing.

Thus, each robot can begin in an arbitrary state, in an arbitrary location in the network,

and the distribution of the robots will still converge to the specified curve. The proposed

coordination protocol uses only local information, and hence, should adapt well to flocking

or tracking problems where the target formation is dynamically changing.

329

330

Chapter 16

Conclusions

In this thesis we have introduced the idea of the Virtual Stationary Automata layer for

simplifying implementations of applications for mobile wireless networks, a theory for self-

stabilization in timed systems, and a theory for stabilizing emulations. We have provided a

stabilizing emulation of the VSA layer and shown it to be a stabilizing emulation. We have

demonstrated the use of the VSA layer to provide implementations of several services for

mobile networks.

In this chapter, we begin by reviewing the main contributions of this thesis (Section

16.1). We then discuss some conclusions about our approach (Section 16.2) and some

open questions and ongoing research (Section 16.3).

16.1 Contributions

The first main contribution of this thesis is the introduction of formal semantics for stabi-

lization and crash/ restart failures in the TIOA model (Chapters 3 and 5). Self-stabilization

[26, 27] is the ability to recover from an arbitrarily corrupt state. We define stabilization in

the TIOA systems using hybrid sequences, and develop several techniques to use this the-

ory throughout the thesis. Our definition of stabilization makes provisions for discussing

external sources of stability and allows us to tackle stabilization of implementations of

long-lived services with invocation / response or send / receive behavior, where it might

not be possible to find a "reset" state. Our crash/ restart failure modeling is done with a

331

general transformation that takes a TIOA program and produces a new program that can

suffer from crash failures and restarts.

The second main contribution of this thesis is the presentation of a formal semantics for

emulation of a system (Chapter 4) and the application of this definition to an emulation of a

virtual layer by a physical node layer (Chapter 8). This provides proof obligations required

to conclude that one system successfully emulates another system. We describe an emula-

tion as a kind of implementation relationship between two sets of timed machines, where

an emulation of a program produces behavior that looks like that of the program being em-

ulated. We also present a formal semantics for a stabilizing emulation of a system, where

an emulation of a program can start in an arbitrary state but eventually behave as though

it is the program started in an arbitrary state. We observe that if a stabilizing emulation

of a stabilizing program is used, then the resulting system will eventually behave like the

program started from some desirable state.

The third main contribution of this thesis is the introduction of the timed Virtual Sta-

tionary Automata programming layer (Chapter 7), which can help application developers

write simpler algorithms for mobile networks. This is a virtual fixed infrastructure, con-

sisting of timing-aware and location-aware VSAs at fixed locations which mobile nodes

can interact with. Each VSA represents a predetermined geographic area and has broadcast

capabilities similar to those of the mobile nodes, though perhaps suffering from an addi-

tional additive broadcast delay, allowing nearby VSAs and mobile nodes to communicate

with one another.

Our fourth main contribution is a protocol for emulating the VSA layer using mobile

nodes with access to a GPS oracle and a proof that the protocol is a stabilizing VSA layer

emulation (Part II). We use a leader-based replicated state machine approach to implement

each region's VSA with mobile nodes located in that region. The proof that this protocol is

a stabilizing emulation of the VSA layer exercises the stabilizing emulation definitions, as

well as the stabilization theory. A phase-based approach to proving stabilization is used to

show that the protocol is stabilizing.

Our fifth main contribution is to use the VSA layer to provide stabilizing implemen-

tations of two main services: end-to-end routing (Chapter 14) and motion coordination

332

(Chapter 15). The end-to-end routing service is implemented in three stabilizing layers:

geocast (Chapter 12), location management (Chapter 13), and the top-level implementa-

tion of the end-to-end routing service. The stabilization of the top-level end-to-end routing

service is dependent on the stabilization of the location management service, which is in

turn dependent on the stabilization of the geocast service; we develop proof techniques to

show these stabilization results. The motion coordination algorithm is especially interest-

ing in that it demonstrates the use of the VSA layer to actively direct movement of client

nodes. Using a stabilizing emulation of the VSA layer such as the one from Part II, we

can take a stabilizing VSA layer implementation of an application (such as the end-to-end

routing application or the motion coordination application), run the stabilizing emulation

algorithm on that VSA layer implementation, and conclude that the resulting system pro-

duces behaviors that eventually look like those of the application.

To summarize, this thesis develops theories of stabilization and crash/ restart failures

for timed systems and a theory for emulation and stabilizing emulation; it introduces the

idea of a VSA programming layer; it presents a stabilizing emulation of the VSA layer;

and it presents stabilizing VSA layer implementations of an end-to-end routing service and

a motion coordination service.

16.2 Evaluation

Here we discuss several issues related to the VSA layer and its implementation in this

thesis.

The theories of stabilization and crash/ restart failures in Chapters 3 and 5 provide

simple formal foundations for reasoning about failure-prone timed systems. There is still

work to be done to further develop the stabilization theory to include other concepts, such

as snap stabilization (instantaneous fault containment) [13], from the general stabilization

literature.

Because this is a theoretical thesis where we demonstrate new theories of stabilization

and emulation, we concentrate on only a virtual layer with very strong semantics, making

it easy to use the layer to program applications. The communication between clients and

333

VSAs in neighboring regions is reliable and the clocks in the system do not drift. This is

very useful in circumstances where safety-critical applications require timely and reliable

coordination and communication, and where the devices ultimately emulating the layer

have hardware that behaves well enough to have the implementation be successful.

However, such strong semantics are not necessary for many applications. For example,

in the case of a shoe sale application where a VSA for a region relies on messages from

mobile shoppers to compile a "hot list" of stores to visit, it might not be critical for each new

sale message sent to the VSA be received or that each shopper in the region is guaranteed

to get each notification from the VSA of a store they could shop at. Such a service really

only needs to be best effort.

In addition, the hardware of the underlying mobile devices might be able to support

implementing the VSA layer described. Without reliable communication on the part of

mobile nodes within some distance of each other, we can't provide VSAs that have reliable

communication. Also, if mobile nodes have clocks that drift, we can't provide VSAs with

perfect clocks. In addition, if the RW service is inexact, we would need to take this into

account in our algorithm.

Another perhaps-too-strong feature of the VSA layer is that there is a VSA at each re-

gion of a network, and that each VSA must be able to communicate with each neighboring

VSA. In the real world, where wireless broadcast becomes less reliable as more congestion

occurs, it is possible that having VSAs be so close to one another can result in many lost

messages, leading to VSA failures. Also, it might be that not every region of a deployment

space needs a VSA. If coordination only needs to be done locally and only at areas remote

from one another, the VSA layer model described here might be overkill.

Even taking the strong semantics of the VSA layer as given, the implementation of

that layer in this thesis is not optimized for any performance metric, such as the maximum

delay of a VSA broadcast, message overhead of the emulation, stabilization time, VSA

restart time, or the local computation complexity.

The implementations of the VSA layer applications in Chapters 12-15 were also not

optimized for message complexity, time complexity, or fault-tolerance. The idea of using

virtual nodes to help accomplish routing does seem to simplify the task of providing such

334

an application; however, the geocast application does not, for example, try to do anything

in the way of routing around failed VSAs. The fault-tolerance and message complexity of

the location management service could be improved by, for example, using ideas from [8]

to limit information propagation through the occasional use of forwarding pointers.

We believe that the motion coordination application of Chapter 15 presents a very inter-

esting paradigm for coordination. The implementation of the service introduces a frame-

work for interaction between mobile nodes and virtual controllers that can be useful for

other coordination applications. One example is air traffic control; in [11] VSA controllers

for sectors of airspace were responsible for issuing flight vectors to aircraft while main-

taining certain safety conditions. Another example is in [12], where a VSA is used to

implement a virtual traffic light.

16.3 Open questions and avenues for research

Considering the fact that strong semantics for the VSA layer is not always necessary and

that it is not always able to be provided, it would be interesting to consider what a weaker

semantics for the VSA layer would look like. For example, what should the semantics be

if probabilistic message loss is possible at the physical layer? What if the message delay

at the physical layer comes from some distribution, rather than being nicely bounded by

dphs,? What should the model for a VSA look like if the physical nodes only have access

to clocks that suffer some bounded drift?

How do we handle message collision at the physical layer? There is recent work [47]

that implies that collision might be something that can be worked around most of the time,

implying that a stabilizing emulation of a VSA layer might very well not need much mod-

ification to work in this environment. There are also TDMA timeslot-based approaches

that could help us prevent collisions to begin with; timeslots could be apportioned amongst

regions such that neighboring regions are on different timeslots, minimizing the chances

of collision. There is also work on handling collisions that is specifically geared towards

other virtual node layers [44].

How do we handle the case where RW is only approximate or is a service that might

335

take some time to stabilize? In the second case, where it is a service that might take time to

stabilize, the only impact on this work would be to extend the stabilization time of each of

the algorithms by the amount of time it takes for RW to stabilize. In the first case, where

RW is only approximate, if we have a bound on how inexact the location information

from RW can be, we might be able to accomodate it with the algorithm presented here;

we simply require that the broadcast range for nodes that "think" they are in some region

is such that they can reach all nodes that "think" they are in that region or a neighboring

one. However, there is a tradeoff that becomes apparent in this approach: since broadcast

range is bounded, the additional fuzziness results in the shrinking of region sizes. In the

real-world, this can result in increased message loss, due to additional congestion.

For each physical model, what are the best/ most efficient algorithms for implementing

the VSA layer under various metrics for performance?

Since power consumption is also a common concern for mobile nodes in the real-world,

it would also be interesting to consider implementations of VSAs that are power and trajec-

tory sensitive, in that physical nodes with ample power resources that are likely to remain

in a region for a longer period are more likely to take on the burden of virtual machine

emulation.

Another thing to pursue is the question of how to split up the virtual machine emulation

to lessen the burden of emulation. For example, if a database is being replicated, it might

be possible for emulators to be responsible for something less than the full database. Such

an approach can also help alleviate some privacy concerns, as no one emulator might have

access to all potentially sensitive information in a region. What would be the semantics of

a virtual layer implemented in this way?

An implementation of a version of the VSA layer with much simpler semantics was

examined in [12]; it would be interesting to examine multiple implementation algorithms

for different semantics of the VSA layer so as to both: (1) experiment with just how easy/

hard it is to implement efficient versions of some of these layers in the real world, and (2)

study the difficulty of implementing different applications on these layers with different

semantics. For the second point, it would also be useful to compare the complexity of

algorithms implemented with various VSA layers to the complexity of algorithms for the

336

same services but that do not use a VSA layer; how much overhead is being introduced by

use of the layer and how does it seem to trade off with the ease of implementing correct

algorithms?

The VSA model makes the assumption of a globally known static carve-up of the de-

ployment space into non-overlapping regions. We could consider an extension to the VSA

model that allows regions to be overlapping or the region map to be dynamic. The model

and emulation implementation can be relatively easily extended to allow overlapping re-

gions; the only real change that should be needed is for emulators to run multiple copies of

the programs described in part I of the thesis, one for each region the emulator is in. On the

question of the static nature of the region map, while this makes the model predictable and

easy to work with, it is possible that over time we might want to modify the regions of the

network by splitting regions, merging them, or some combination of the two. This leads to

the question of how such changes get communicated to emulators, and what circumstances

should cause the change to occur. The RW automaton could perhaps be modified so that

it reports a region map as well as a location. However, this would also introduce addi-

tional stabilization difficulties (both in emulation and in using the virtual layer), since the

assumed global region map would no longer be something we could consider hard-wired,

meaning it is soft state that would be susceptible to corruption failure or could be started in

an arbitrary state.

Also of interest would be developing more applications for the VSA layer. The mo-

tion coordination algorithms seem particularly interesting; I mentioned the air traffic con-

trol [11] and traffic light [12] work, but there are a number of extensions and additional

applications whose implementations could benefit from use of the VSA layer. For exam-

ple, the virtual traffic light application is just one possible piece of a larger potential group

of intelligent-highway applications, in which cars will carry on-board computers with wire-

less communication capabilities. Distributed algorithms running on these systems will need

to conduct a variety of activies, including collecting data (e.g., about traffic patterns), alert-

ing cars about road hazards (e.g., accidents or arriving emergency vehicles), and providing

advice and control. For example, the distributed protocol may suggest less-congested al-

ternative routes, or may even emulate the functions of virtual traffic lights at intersections

337

having no real traffic lights.

Other applications of interest could include things like virtual storage. Because VSAs

are failure prone, the state of a VSA can be lost. A virtual storage application could provide

a means by which to back-up the data at a VSA. This would not be an additional feature

of the VSA layer, but instead an application implemented on top of the VSA layer. The

Geoquorums work [34] describes such an application for a different virtual layer model.

On the theory side, as I mentioned, many concepts in stabilization could be formalized

using the definition of stabilization for TIOA defined in this thesis. There are also other

results that may be useful; one theory in particular that would be useful to provide is a

theory of stabilizing composition [27] for TIOA that accommodates the Fail-transform

described in this thesis. Roughly, we would like to have a result saying that for comparable

TIOAs A and B and a TIOA C that is compatible with both, if the traces of Fail(A) sta-

bilize to the traces of Fail(U(B)), then the traces of Fail(AIIC) stabilize to the traces of

Fail(U(BIIC)). We would also like to have a generalization that allows us to consider mul-

tiple machines composed together within the Fail-transform (A1 IA2 .. . As, rather than

A), or a generalization that allows us to consider the traces of Fail(A) ID stabilizing to

traces of Fail(U(B))IIE and conclude that the traces of Fail(AIIC)IID stabilizes to the

traces of Fail(U(B IIC))IIE, etc. The proof of Lemma 11.23 would have been much sim-

pler if such results existed.

338

Bibliography

[1] Abraham, I., Dolev, D., and Malkhi, D., "LLS: a locality aware location service

for mobile ad hoc networks", Proceedings of the DIALM-POMC Joint Workshop on

Foundations of Mobile Computing, 2004.

[2] ACM Transactions on Sensor Networks.

[3] Ad Hoc Networks Journal, Elsevier.

[4] Akylidz, I.E., Su, W., Sankarasubramanian, Y., and Cayirci, E., "Wireless sensor net-

works: a survey", Computer Networks (Elsevier), 38(4), pp. 393-422, 2002.

[5] Ando, H., Oasa, Y., Suzuki, I., and Yamashita, M., "Distributed memoryless point

convergence algorithm for mobile robots with limited visibility", IEEE Transactions

on Robotics and Automation, 15(5):818-828, 1999.

[6] Arora, A., Demirbas, M., Lynch, N., and Nolte, T., "A Hierarchy-based Fault-local

Stabilizing Algorithm for Tracking in Sensor Networks", 8th International Confer-

ence on Principles of Distributed Systems (OPODIS), 2004.

[7] Awerbuch, B. and Peleg, D., "Sparse partitions (extended abstract)", IEEE Sympo-

sium on Foundations of Computer Science, 1990.

[8] Awerbuch, B. and Peleg, D., "Online tracking of mobile users", Journal of the

Association for Computing Machinery, 42, 1995.

[9] Beal, J., "Persistent nodes for reliable memory in geographically local networks",

Tech Report AIM-2003-11, MIT, 2003.

339

[10] BLONDEL, V., HENDRICKX, J., OLSHEVSKY, A., AND TSITSIKLIS, J. 2005. Con-

vergence in multiagent coordination consensus and flocking. In Proceedings of the

Joint forty-fourth IEEE Conference on Decision and Control and European Control

Conference. 2996-3000.

[11] BROWN, M. D. 2007. Air traffic control using virtual stationary automata. M.S.

thesis, Massachusetts Institute of Technology.

[12] Brown, M., Gilbert, S., Lynch, N., Newport, C., Nolte, T., and Spindel, M. The

Virtual Node Layer: A Programming Abstraction for Wireless Sensor Networks. In

International Workshop on Wireless Sensor Network Architecture, April 2007.

[13] Bui, A., Datta, A., Petit, F., and Villain, V. State-optimal snap-stabilizing PIF in tree

networks. In Proceedings of the Fourth Workshop on Self-Stabilizing Systems, June

1999.

[14] Camp, T. and Liu, Y., "An adaptive mesh-based protocol for geocast routing", Journal

of Parallel and Distributed Computing: Special Issue on Mobile Ad-hoc Networking

and Computing, pp. 196-213, 2002.

[15] CHANDY, K. M., MITRA, S., AND PILOTTO, C. 2008. Convergence verification:

From shared memory to partially synchronous systems. In In proceedings of Formal

Modeling and Analysis of Timed Systems (FORMATS'08). LNCS, vol. 5215. Springer

Verlag, 217-231.

[16] Chockler, G., Demirbas, M., Gilbert, S., Newport, C., and Nolte, T., "Consensus and

Collision Detectors in Wireless Ad Hoc Networks", Proceedings of the 24th Annual

ACM Symposium on Principles of Distributed Computing (PODC), 2005.

[17] Chockler, G., Demirbas, M., Gilbert, S., Newport, C., and Nolte, T., "Consensus and

Collision Detectors in Wireless Ad Hoc Networks", Distributed Computing, June,

2008.

[18] CHOCKLER, G., GILBERT, S., AND LYNCH, N. 2008. Virtual infrastructure for

collision-prone wireless networks. In Proceedings of PODC. To appear.

340

[19] CLAVASKI, S., CHAVES, M., DAY, R., NAG, P., WILLIAMS, A., AND ZHANG, W.

2003. Vehicle networks: achieving regular formation. In Proceedings of the American

control Conference.

[20] Cooper, M., comment, http: //www. arraycomm. com/news/pr_detail . htm?id=104,

1973.

[21] Cortes, J., Martinez, S., Karatas, T., and Bullo, F., "Coverage control for mobile

sensing networks", IEEE Transactions on Robotics and Automation, 20(2):243-255,

2004.

[22] D FAGO, X. AND KONAGAYA, A. 2002. Circle formation for oblivious anonymous

mobile robots with no common sense of orientation. In Proc. 2nd Int'l Workshop on

Principles of Mobile Computing (POMC'02). ACM, Toulouse, France, 97-104.

[23] D FAGO, X. AND SOUISSI, S. 2008. Non-uniform circle formation algorithm

for oblivious mobile robots with convergence toward uniformity. Theor. Comput.

Sci. 396, 1-3, 97-112.

[24] Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N., and Yao, Y., "Energy-

Efficient Data Management for Sensor-Networks: A Work-In-Progress

Report", 2nd IEEE Upstate New York Workshop on Sensor Networks,

comlab. ecs. syr/edu/workshop, 2003.

[25] Demirbas, M., Arora, A., and Gouda, M., "A pursuer-evader game for sensor net-

works", Symposium on Self-Stabilizing Systems (SSS), 2003.

[26] Dijkstra, E.W., "Self stabilizing systems in spite of distributed control", Communica-

tions of the ACM, 1974.

[27] Dolev, S., Self-Stabilization, MIT Press, 2000.

[28] Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Nolte, T., "Brief announcement:

Virtual stationary automata for mobile networks", Proceedings of the 24th Annual

ACM Symposium on Principles of Distributed Computing (PODC), 2005.

341

[29] Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., and Nolte, T., "Timed virtual stationary

automata for mobile networks", TR MIT-LCS-TR-979a, 2005.

[30] DOLEV, S., GILBERT, S., LAHIANI, L., LYNCH, N., AND NOLTE, T. 2005a. Virtual

stationary automata for mobile networks. In Proceedings of OPODIS.

[31] Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., and Welch, J., "Virtual

Mobile Nodes for Mobile Ad Hoc Networks", International Conference on Principles

of Distributed Computing (DISC), 2004.

[32] Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J., "GeoQuorums: Imple-

menting Atomic Memory in Ad Hoc Networks", 17th International Conference on

Principles of Distributed Computing (DISC), Springer-Verlag LNCS:2848, pp. 306-

320, 2003.

[33] DOLEV, S., GILBERT, S., LYNCH, N., SHVARTSMAN, A., AND WELCH, J. 2003.

Geoquorums: Implementing atomic memory in ad hoc networks. In Distributed algo-

rithms, F. E. Fich, Ed. Lecture Notes in Computer Science, vol. 2848/2003. 306-320.

[34] DOLEV, S., GILBERT, S., LYNCH, N. A., SHVARTSMAN, A. A., AND WELCH,

J. 2005. Geoquorums: Implementing atomic memory in mobile ad hoc networks.

Distributed Computing.

[35] Dolev, S., Herman, T., and Lahiani, L., "Polygonal Broadcast, Secret Maturity and

the Firing Sensors", Third International Conference on Fun with Algorithms (FUN),

pp. 41-52, May 2004. Also to appear in Ad Hoc Networks Journal, Elseiver.

[36] Dolev, S., Israeli, A., and Moran, S., "Self-Stabilization of Dynamic Systems Assum-

ing only Read/Write Atomicity", Proceeding of the ACM Symposium on the Princi-

ples of Distributed Computing (PODC 90), pp. 103-117. Also in Distributed Comput-

ing 7(1): 3-16 (1993).

[37] Dolev, S., Lahiani, L., Lynch, N., and Nolte, T., "Self-stabilizing Mobile Node Loca-

tion Management and Message Routing", 7th Self-stabilizing Systems (SSS), 2005.

342

[38] Dolev, S., Pradhan, D.K., and Welch, J.L., "Modified Tree Structure for Location

Management in Mobile Environments", Computer Communications, Special issue on

mobile computing, Vol. 19, No. 4, pp. 335-345, April 1996. Also INFOCOM 1995,

Vol. 2, pp. 530-537, 1995.

[39] Dolev, S. and Welch, J.L.,"Crash Resilient Communication in Dynamic Networks",

IEEE Transactions on Computers, Vol. 46, No. 1, pp.14-26, January 1997.

[40] EFRIMA, A. AND PELEG, D. 2007. Distributed models and algorithms for mo-

bile robot systems. In SOFSEM (1). Lecture Notes in Computer Science, vol. 4362.

Springer, Harrachov, Czech Republic, 70-87.

[41] FAX, J. AND MURRAY, R. 2004. Information flow and cooperative control of vehicle

formations. IEEE Transactions on Automatic Control 49, 1465-1476.

[42] FLOCCHINI, P., PRENCIPE, G., SANTORO, N., AND WIDMAYER, P. 2001. Pattern

formation by autonomous robots without chirality. In SIROCCO. 147-162.

[43] Gazi, V., and Passino, K.M., "Stability analysis of swarms", IEEE Transactions on

Automatic Control, 48(4):692-697, 2003.

[44] Gilbert, S., "Virtual Infrastructure for Wireless Ad Hoc Networks", Thesis, MIT,

2007.

[45] Gilbert, S., Lynch, N., Mitra, S., and Nolte, T. "Self-Stabilizing Mobile Robot For-

mations with Virtual Nodes", International Symposium on Stabilization, Safety, and

Security of Distributed Systems, To appear: November 2008.

[46] Goldenberg, D.K., Lin, J., and Morse, A.S., "Towards mobility as a network control

primitive", MobiHoc '04: Proceedings of the 5th ACM international symposium on

Mobile ad hoc networking and computing, pages 163-174. ACM Press, 2004.

[47] Gollakota, S. and Katabi, D., "ZigZag Decoding: Combating Hidden Terminals in

Wireless Networks", ACM SIGCOMM, 2008.

343

[48] Haas, Z.J. and Liang, B., "Ad Hoc Mobility Management With Uniform Quorum

Systems", IEEE/ACM Trans. on Networking, Vol. 7, No. 2, p. 228-240, April 1999.

[49] Herlihy, M.P. and Tirthapura, S., "Self-stabilizing distributed queueing", Proceedings

of 15th International Symposium on Distributed Computing, pages 209-219, October

2001.

[50] HERMAN, T. 1996. Self-stabilization bibliography: Access guide. Theoretical Com-

puter Science.

[51] Hubaux, J.P., Le Boudec, J.Y., Giordano, S., and Hamdi, M., "The Terminodes

Project: Towards Mobile Ad-Hoc WAN", Proceedings ofMOMUC, 1999.

[52] IEEE Pervasive Computing: Mobile and Ubiquitous Systems.

[53] IEEE Transactions on Mobile Computing.

[54] Imielinski, T. and Badrinath, B.R., "Mobile wireless computing: challenges in data

management", Communications of the ACM, Vol. 37, Issue 10, pp. 18-28, October

1994.

[55] Jadbabaie, A., Lin, J., and Morse, A.S., "Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules", IEEE Transactions on Automatic

Control, 48(6):988-1001, 2003.

[56] Johnson, D., Maltz, D., and Broch, J., "DSR: The Dynamic Source Routing Protocol

for Multi-Hop Wireless Ad Hoc Networks", chapter 5, pp.139-172, Addison-Wesley,

2001.

[57] Karp, B. and Kung, H. T., "GPSR: Greedy Perimeter Stateless Routing for Wire-

less Networks", Proceedings of the 6th Annual International Conference on Mobile

Computing and Networking, pp. 243-254, SCM Press, 2000.

[58] Kaynar, D., Lynch, N., Segala, R., and Vaandrager, F., The Theory of Timed I/O

Automata. Morgan Claypool, 2006.

344

[59] Kuhn, F., Wattenhofer, R., Zhang, Y., and Zollinger, A., "Geometric Ad-Hoc Rout-

ing: Of Theory and Practice", Proceedings of the 22nd Annual ACM Symposium on

Principles of Distributed Computing (PODC), 2003.

[60] Kuhn, F., Wattenhofer, R., and Zollinger, A., "Asymptotically Optimal Geometric

Mobile Ad-Hoc routing", Proceedings of the 6th International Workshop on Discrete

Algorithms and Methods for Mobile Computing and Communications (Dial-M), pp.

24-33, ACM Press, 2002.

[61] Lamport, L., "Time, clocks, and the ordering of events in a distributed system", Com-

munications of the ACM, 1978.

[62] Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., and Morris, R., "A Scalable Loca-

tion Service for Geographic Ad Hoc Routing", Proceedings of Mobicom, 2000.

[63] Lin, J., Morse, A.S., and Anderson, B., "Multi-agent rendezvous problem", 42nd

IEEE Conference on Decision and Control, 2003.

[64] Lok, C., "Instant Networks: Just Add Software", Technology Review, June, 2005.

[65] Lynch, N., Distributed Algorithms, Morgan Kaufman, 1996.

[66] Lynch, N., Mitra, S., and Nolte, T., "Motion coordination using virtual nodes", IEEE

Conference on Decision and Control, 2005.

[67] Lynch, N., Segala, R., and Vaandrager, F., "Hybrid I/O automata", Information and

Computation, 185(1): 105-157, August 2003.

[68] Malkhi, D., Reiter, M., and Wright, R., "Probabilistic Quorum Systems", Proceed-

ing of the 16th Annual ACM Symposium on the Principles of Distributed Computing

(PODC 97), pp. 267-273, Santa Barbara, CA, August 1997.

[69] Martinez, S., Cortes, J., and Bullo, F., "On robust rendezvous for mobile autonomous

agents", IFAC World Congress, Prague, Czech Republic, 2005.

[70] Merritt, M., Modugno, F., and Tuttle, M., "Time constrained automata", 2nd Inter-

national Conference on Concurrency Theory (CONCUR), 1991.

345

[71] Mittal, V., Demirbas, M., and Arora, A., "Loci: Local clustering in large scale

wireless networks", TR OSU-CISRC-2/03-TRO7, 2003.

[72] Nath, B. and Niculescu, D., "Routing on a curve", ACM SIGCOMM Computer

Communication Review, 2003.

[73] Navas, J.C. and Imielinski, T., "Geocast- geographic addressing and routing", Pro-

ceedings of the 3rd MobiCom, 1997.

[74] Neogi, N., "Designing Trustworthy Networked Systems: A Case Study of the Na-

tional Airspace System", International System Safety Conference, Ottawa, Canada,

August 3-11, 2003.

[75] NOLTE, T. AND LYNCH, N. A. 2007a. Self-stabilization and virtual node layer em-

ulations. In Proceedings of SSS. 394-408.

[76] NOLTE, T. AND LYNCH, N. A. 2007b. A virtual node-based tracking algorithm for

mobile networks. In ICDCS.

[77] OLFATI-SABER, R., FAX, J., AND MURRAY, R. 2007. Consensus and cooperation in

networked multi-agent systems. Proceedings of the IEEE 95, 1 (January), 215-233.

[78] Park, V. and Corson, M., A highly adaptive distributed routing algorithm for mobile

wireless networks. IEEE Infocom, April 1997.

[79] Perkins, C. and Royer, E., Ad hoc on-demand distance vector routing. 2nd IEEE

Workshop on Mobile Computing Systems and Applications, February 1999.

[80] PRENCIPE, G. 2000. Achievable patterns by an even number of autonomous mobile

robots. Tech. Rep. TR-00-11. 17.

[81] PRENCIPE, G. 2001. Corda: Distributed coordination of a set of autonomous mobile

robots. In ERSADS. 185-190.

[82] Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., and Shenker, S.,

"GHT: A Geographic Hash Table for Data-Centric Storage", First ACM International

Workshop on Wireless Sensor Networks and Applications (WSNA), 2002.

346

[83] Suzuki, I. and Yamashita, M., "Distributed autonomous mobile robots: Formation of

geometric patterns", SIAM Journal of computing, 28(4): 1347-1363, 1999.

[84] Talbot, D., "Airborne Networks", Technology Review, May, 2005.

[85] Talbot, D., "The Ascent of the Robotic Attack Jet", Technology Review, March, 2005.

[86] TinyOS Community Forum, http: //www. tinyos .net.

[87] Vasek, T., "World Changing Ideas: Germany", Technology Review, April, 2005.

[88] Weisman, R., "MIT seeks computing revolution", Boston Globe, 2005.

347

