Значение предсуществующей лекарственной устойчивости, обусловленной гиперэкспрессией Р-гликопротеина, для формирования резистентности к бортезомибу

Л.А. Лалетина, Н.И. Моисеева, А.Ф. Карамышева

НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; Россия, 115478 Москва, Каширское шоссе, 24, стр. 15

Контакты: Лидия Александровна Лалетина panlidia@gmail.com

Цель исследования — изучить влияние предсуществующей лекарственной устойчивости по механизму активации ABC-транспортеров — гиперэкспрессии Р-гликопротеина (Pgp) — на пути развития резистентности к протеасомному ингибитору бортезомибу. Материалы и методы. В качестве моделей использовали культуры RPMI8226 и K562/i-S9 (с гиперэкспрессией Pgp) и их резистентные к бортезомибу сублинии RPMI8226/btz-6 и K562/i-S9vlc. Применяли методы MTT-теста, проточной цитометрии, вестерн-блоттинга и полимеразной цепной реакции в реальном времени с использованием системы Human Signal Transduction Pathway Finder.

Результаты. В клетках сублинии RPMI8226/btz-6 не изменялась экспрессия основных белков PI3K-AKT и NF-кB-сигнальных путей. Однако в клетках сублинии K562/i-S9vlc с гиперэкспрессией Pgp значительно повышалась экспрессия AKT-киназы и снижалась экспрессия белка PTEN. В клетках сублинии RPMI8226/btz-6 были найдены значительные изменения в экспрессии генов (42%), относящихся к ряду основных сигнальных путей в опухолевой клетке, а именно активация 3–4 генов в сигнальных путях, относящихся к гипоксии, оксидативному стрессу, PPAR и p53. Наибольшая активация в этих клетках обнаружена в TGFβ-сигнальном пути. В устойчивых клетках K562/i-S9vlc усилилась экспрессия только 5 генов (10%): Fas, HMOX1, CPT2, ICAM и SOCS3. Также были выделены 3 гена, экспрессия которых изменилась в обеих устойчивых сублиниях: Fas, HMOX1 и CPT2. Далее мы показали, что в сублинии RPMI8226/btz-6, наряду с изменениями экспрессии генов сигнальной трансдукции, присутствует большой пул CD138-негативных клеток, а в сублинии K562/i-S9vlc повышается количество клеток, экспрессирующих CD34, и снижает-ся количество CD13.

Заключение. Мы выявили, что в формировании устойчивости к бортезомибу в клетках с отсутствием экспрессии Pgp и в клетках с гиперэкспрессией этого белка задействованы разные сигнальные пути. Кроме этого, клеточной линии без активированных путей устойчивости необходимы более масштабные перестройки в сигнальной системе для приобретения резистентности к бортезомибу. Однако и в том и в другом случае бортезомиб приводит к изменению иммунофенотипа клеток — к появлению дедифференцированных субпопуляций.

Ключевые слова: бортезомиб, множественная миелома, *P*-гликопротеин, сигнальные пути, AKT, PTEN, NF-кB, TGFβ, иммунофенотип, CD138, CD34

Для цитирования: Лалетина Л.А., Моисеева Н.И., Карамышева А.Ф. Значение предсуществующей лекарственной устойчивости, обусловленной гиперэкспрессией *P*-гликопротеина, для формирования резистентности к бортезомибу. Успехи молекулярной он-кологии 2020;7(1):23–31.

DOI: 10.17650/2313-805X-2020-7-1-23-31

The importance of preexisting drug resistance due to overexpression of P-glycoprotein for the formation of resistance to bortezomib

L.A. Laletina, N.I. Moiseeva, A.F. Karamysheva

Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Build. 15, 24 Kashirskoe Shosse, Moscow 115478, Russia

Objective of the study. In our work we investigated the effect of pre-existing drug resistance by the mechanism of activation of ABC transporters -P-glycoprotein (Pgp) overexpression - on the development of resistance to the proteasome inhibitor bortezomib.

Materials and methods. Cultures RPMI8226 and K562/i-S9 (with Pgp overexpression) and their bortezomib-resistant sublines RPMI8226/ btz-6 and K562/i-S9vlc were used as models. The methods used were MTT test, flow cytometry, Western blot and real-time polymerase chain reaction using the Human Signal Transduction Pathway Finder system.

Results. The expression of the main PI3K-AKT and NF- κ B signaling pathways did not change in RPMI8226/btz-6 subline cells. However, AKT kinase expression was significantly increased and PTEN protein expression was reduced in K562/i-S9vlc cells with Pgp-overexpression. Significant changes in gene expression (42 %) were found in RPMI8226/btz-6 cells related to a number of main signaling pathways in the tumor cell, namely: activation of 3–4 genes in signaling pathways related to hypoxia, oxidative stress, PPAR and p53. The highest activation in these cells was found in the TGF β signaling pathway. In resistant K562/i-S9vlc cells, expression of only 5 genes (10 %) increased:

Fas, HMOX1, CPT2, ICAM, and SOCS3. Three genes were also identified that changed in both resistant sublines: Fas, HMOX1 and CPT2. Further, we showed that in the RPM18226/btz-6 subline, along with changes in the expression of signal transduction genes, there is a large pool of CD138-negative cells, and in the K562/i-S9vlc subline, the number of cells expressing CD34 increases and the number of CD13 decreases.

Conclusion. We found that different signaling pathways are involved in the formation of resistance to bortezomib in the absence of Pgp expression and its overexpression. In addition, a cell line without activated resistance pathways requires more extensive rearrangements in the signal system to acquire resistance to bortezomib. However, in both cases, bortezomib leads to a change in the immunophenotype of the cells – to the appearance of dedifferentiated subpopulations.

Key words: bortezomib, multiple myeloma, P-glycoprotein, signal pathways, AKT, PTEN, NF-κB, TGFβ, immunophenotype, CD138, CD34

For citation: Laletina L.A., Moiseeva N.I., Karamysheva A.F. The importance of preexisting drug resistance due to overexpression of P-glycoprotein for the formation of resistance to bortezomib. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2020;7(1):23–31. (In Russ.).

Введение

Исследование механизмов устойчивости к различным лекарственным средствам остается одним из главных направлений современной онкологии. В клинической практике часто существуют 2 ситуации: развитие резистентности к лекарственному препарату после курсов лечения и изначальная устойчивость к тому или иному веществу, т. е. предсуществующая резистентность [1]. Предсуществующая устойчивость часто связана с гиперэкспрессией ABC-транспортера P-гликопротеина (Pgp). Активация Pgp характерна как для солидных опухолей, так и для опухолей кроветворной системы, в частности для множественной миеломы (MM).

В случае ММ гиперэкспрессия Pgp может являться результатом предшествующей терапии цитостатическими препаратами: мелфаланом, доксорубицином, циклофосфамидом [2], однако сейчас они не используются в 1-й линии терапии ММ. Также экспрессия Pgp увеличивается в ответ на гипоксию, которая развивается в костном мозге, пораженном ММ [3]. Кроме этого, показано, что гиперэкспрессия Pgp наблюдается в клетках при плазмоцитоклеточной лейкемии, генерализованного варианта ММ [4]. В нашей работе мы оценивали влияние гиперэкспрессии Pgp на пути формирования устойчивости к протеасомному ингибитору бортезомибу, который входит в 1-ю линию лечения ММ.

Устойчивость к бортезомибу может быть связана и с изменением во многих сигнальных путях, таких как PI3K/AKT/PTEN/mTOR [5] и путь NF-кВ [6]. Однако эти пути по-разному функционируют в клетках, чувствительных к химиопрепаратам и уже резистентных к ним [7].

Также важным аспектом резистентности является изменение иммунофенотипа опухолевых клеток, исследование которого важно и с практической точки зрения, — определение резидуальной болезни. Клетки ММ характеризуются экспрессией CD38⁺ и специфического маркера CD138 или синдекана 1. Синдекан 1 (SDC1, CD138) — ключевая молекула адгезии клеточной поверхности, необходимой для поддержания морфологии клеток и взаимодействия с микроокружением, и его дисфункция связана с опухолевой прогрессией и ответом на химиотерапию [8].

Цель исследования — изучение влияния предсуществующей лекарственной устойчивости по механизму активации ABC-транспортеров — гиперэкспрессии Pgp — на пути развития резистентности к протеасомному ингибитору бортезомибу.

Материалы и методы

Клеточные культуры. В работе использовали клетки линии MM RPMI8226 и клетки K562/i-S9, которые были получены из линии хронического миелолейкоза человека K562 путем трансфекции геном *MDR1* (ABCB1). Клетки K562/i-S9 предоставлены Е.Б. Мечетнером (Калифорнийский университет, Ирвайн, США). Клеточные линии RPMI8226 получены из российской коллекции культур клеток позвоночных института цитологии РАН (Санкт-Петербург). Также в работе использовали полученные нами ранее сублинии, устойчивые к бортезомибу, – RPMI8226/btz-6 [9] и K562/i-S9vlc [10]. Клетки культивировали в среде RPMI-1640 с добавлением 10 % телячьей эмбриональной сыворотки (FCS; PAA, Австрия) при температуре 37 °C в атмосфере 5 % CO₂.

МТТ-тест. Подробная методика оценки цитотоксичности веществ описана в нашей предыдущей статье [9]. Вкратце, клетки рассевали в 96-луночные планшеты по 20–25 тыс. клеток в лунку и инкубировали в течение 48 ч с бортезомибом (PS-341) (Selleckchem, США) либо с доксорубицином (Sigma-Aldrich, США). Вычисляли IC₅₀ – полумаксимальную эффективную концентрацию препарата, которая вызывает гибель 50 % клеток. Уровень оптической плотности определяли с помощью спектрофотометра MultiScan FC (Thermo Scientific, США) при длине волны 492 нм.

Проточная цитофлуометрия. Экспрессию белков оценивали методом прямой иммунофлуоресценции с использованием моноклональных антител PE-CD38 (Merc Millipore, CША), FITC-CD13 (Elabscience, CША), APC-CD138, FITC-CD34 (Sony Biotechnology, США), APC-CD19, PE-CD20 (BD Biosciences, США) на проточном цитометре BD FACSCanto II (BD Biosciences, США) с программным обеспечением DiVa. Суспензию

25

нефиксированных клеток (500 тыс. клеток на 1 точку) инкубировали в 100 мкл PBS (натрий-фосфатном буфере) с добавлением антител в соотношении, указанном в протоколе производителя, в течение 40 мин в темноте при комнатной температуре. Затем дважды отмывали в PBS. В качестве маркера жизнеспособности клеток использовали пропидий йодид (PI).

Оценка экспрессии генов различных сигнальных путей с помощью полимеразной цепной реакции в реальном времени (ПЦР-РВ). Тотальную РНК выделяли из клеток pearentrom RNA PureZol (Bio-Rad, CША) по протоколу производителя. Качество РНК проверяли с помощью электрофореза в 1 % агарозном геле, содержащем 0,01 % бромистого этидия. Обратную транскрипцию проводили с помощью ревертазы M-MLV (Thermo Fisher Scientific, США). Для анализа экспрессионной активности генов сигнальных путей использовали систему Human Signal Transduction Pathway Finder RT2Profiler PCR Array (Qiagen, США), в которую входят 84 пары праймеров к таргетным генам для сигнальных путей, а также 5 генов домашнего хозяйства. ПЦР-РВ проводили с интеркалирующим флуоресцентным агентом Eva Green (Синтол, Россия). ПЦР-РВ ставили в амплификаторе компании Bio-Rad (США). Шаги амплификации: 95 °C - 5:00 мин, 92 °C - 00:10 мин, 60 °C – 00:20 мин, кривая плавления (Melt-кривая) с 72 до 95°С. Проводили 2 независимых эксперимента. Оценку результатов ПЦР-РВ осуществляли методом ΔΔСt (разница циклов амплификации исследуемого гена и контрольного гена).

Вестерн-блоттинг. Получение клеточных лизатов, разделение белков в геле и перенос на мембрану проводили согласно описанным ранее методам [9]. Для равномерного нанесения белка в каждой пробе определяли концентрацию общего белка по методу Бредфорда [11], в лунки наносили по 50 нг белковых лизатов. Мембраны инкубировали со специфическими моноклональными антителами в соответствии с протоколом производителя в течение ночи при температуре 4 °С. Далее мембраны инкубировали со вторыми антителами, конъюгированными с пероксидазой (Jachson ImmunoResearch, США), в разведении 1:10000 в течение 1 ч и затем проявляли с помощью ЕСС-реагента (Thermo Fisher, США). Съемку проводили на приборе для люминесцентного анализа ImageQuantLas 4000 (США). При необходимости количественную оценку содержания белка осуществляли методом денситометрии с помощью программы ImageJ. Антитела, использованные в работе: AKT Antibody Rabbit mAb #9272, NF-κB p65 (D14E12) XP[®] Rabbit mAb #8242, Phospho-NF-κB p65 (Ser536) (93H1) Rabbit mAb #3033, PTEN (138G6) Rabbit mAb #9559 (Cell Signaling Technology, Нидерланды), β-Actin Antibody (C4) HRPsc-47778 HRP (Santa Cruz Biotechnology, CIIIA).

Статистический анализ. Опыты ставили в 2–3 повторах, данные представлены как M \pm SD. Статистический анализ данных проводили с помощью парамет-

рического t-теста. Статистически значимой разница считалась при p < 0.05.

Результаты

Оценка устойчивости в парах клеточных линий. В работе мы исследовали значение гиперэкспрессии Рgp на пути развития устойчивости клеток к протеасомному ингибитору бортезомибу. Работа велась на 2 клеточных линиях: K562/i-S9, гиперэкспрессирующей Pgp, и RPMI8226, в которой Pgp не экспрессируется, а также на 2 полученных сублиниях, резистентных к бортезомибу: K562/i-S9vlc и RPMI8226/btz-6.

Ранее мы продемонстрировали, что в клетках сублинии RPMI8226/btz-6 устойчивость к бортезомибу повышается в 2 раза и при этом появляется перекрестная устойчивость к доксорубицину, не связаная с Pgp, так как мы показали полное отсутствие экспрессии этого белка на поверхности клеток данной сублинии [9]. Для сублинии K562/i-S9vlc были характерны 10-кратная устойчивость к бортезомибу и повышение количества Pgp [10], и на 1-м этапе мы исследовали, появилась ли у резистентных к бортезомибу клеток K562/i-S9vlc дополнительная устойчивость и к доксорубицину (табл. 1). Сублиния клеток K562/i-S9vlc устойчивость к доксорубицину не приобрела (p > 0,05).

Таблица 1. Оценка чувствительности клеточных культур к бортезомибу и доксорубицину

Table 1. Evaluation of sensitivity of cell lines to bortezomib and doxorubicin

Препарат Agent	IC ₅₀ IC ₅₀		Индекс устойчивости	D
	K562/i-S9	K562/i-S9vlc	index	-
Бортезо- миб, нМ Bortezomib, nM	18,9 ± 9,1	$208,4\pm58,8$	11	0,002
Доксоруби- цин, мкМ Doxorubicin, mcM	3,8±0,6	5,3 ± 2,3	1,4	>0,05

Оценка изменения количества основных белков АКТ- и NF-кВ-сигнальных путей в парах родительских и устойчивых сублиний. Ранее мы показали, что в устойчивых к бортезомибу клетках K562/i-S9vlc увеличение экспрессии Pgp может регулироваться за счет повышения активности АКТ-киназы [10], поэтому следующей нашей задачей стало исследование влияния бортезомиба на изменение основных белков АКТи NF-кВ-сигнальных путей, связанных с апоптозом и пролиферацией в устойчивых к нему сублиниях. Мы показали, что экспрессия всех исследованных нами белков, таких как АКТ, PTEN, NF-кВ, Phospho-NF-кВ, не меняется в устойчивых к бортезомибу клетках сублинии RPMI8226/btz-6 и остается такой же, как и в клетках линии RPMI8226 (рис. 1).

Рис. 1. Экспрессия белков АКТ, РТЕN, NF-кВ, Phospho-NF-кВ в паре чувствительных и устойчивых к бортезомибу клеточных линий RPMI8226, RPMI8226/btz-6 и K562/i-S9, K562/i-S9vlc

Fig. 1. The expression of proteins AKT, PTEN, NF-κB, Phospho-NF-κB in a pair of sensitive and bortezomib-resistant cell lines RPM18226, RPM18226/btz-6 and K562/i-S9, K562/i-S9vlc

Рис. 2. Денситометрия сигналов АКТ-киназы и РТЕN в паре K562/i-S9 и K562/i-S9vlc

Fig. 2. Densitometry of AKT kinase and PTEN signals in a pair K562/i-S9 and K562/i-S9vlc cells

Однако в клетках сублинии K562/i-S9vlc мы наблюдали значительное повышение количества AKT-киназы и небольшое снижение экспрессии белка PTEN по сравнению с клетками линии K562/i-S9. Количество белков NF-кВ и Phospho-NF-кВ оставалось равным в паре родительских и устойчивых линий K562/i-S9 и K562/i-S9vlc (рис. 2).

Сравнение активации экспрессии генов различных сигнальных путей в парах клеточных линий, устойчивых к бортезомибу. Для оценки активности генов, относящихся к ряду основных сигнальных путей в опухолевой клетке, использовали набор для ПЦР-РВ RT2 Profiler PCR Array Human Signal Transduction Pathway Finder. В анализ вошли гены, для которых стандартное отклонение по Δ Ct в 2 опытах не превышало 1,5; был единственный и выраженный пик при анализе Melt-кривых, а уровень изменения генов был в 10 и более раз больше/меньше относительно чувствительных клеток.

В паре RPMI8226/RPMI8226/btz-6 были выявлены более сильные изменения в экспрессии генов: из 57 попавших в анализ генов в RPMI8226/btz-6 увеличилась экспрессия 24 (42 %) генов, при этом экспрессия большинства генов в этой сублинии выросла в 30 раз и более. В сублинии RPMI8226/btz-6 мы выявили активацию 2 генов - CCL5 и BIRC3, связанных с NF-кВ-сигнальной системой, и 3-4 генов в сигнальных путях, относящихся к гипоксии, оксидативному стрессу, PPAR и p53 (рис. 3). Наибольшие изменения произошли в TGFβ-сигнальном пути: в клетках RPMI8226/btz-6 свою экспрессию увеличили 6 из 8 генов (рис. 4). В паре RPMI8226/RPMI8226/btz-6 не произошло значимых изменений в генах, относящихся к сигнальным путям JAK/STAT, WNT, Notch, Hedgehog.

В устойчивых клетках K562/i-S9vlc усилилась экспрессия только 5 (10%) из 47 генов: *Fas*, *HMOX1*, *CPT2*, *ICAM* и *SOCS3*, экспрессия этих генов в сублинии K562/i-S9vlc была повышена в 10–20 раз по сравнению с родительскими клетками K562/i-S9. Мы выделили 3 гена, которые изменились в обеих устойчивых сублиниях: *Fas* (Fas (TNF receptor superfamily, member 6)), *HMOX1* (Heme oxygenase (decycling) 1) и *CPT2* (Carnitine palmitoyltransferase 2).

Влияние бортезомиба на иммунофенотип устойчивых к нему сублиний клеток гемопоэтического ряда. По результатам нашей предыдущей работы мы выдвинули гипотезу о том, что бортезомиб, возможно, способствует отбору определенных популяций клеток с измененным иммунофенотипом.

Клетки MM характеризуются иммунофенотипом CD38⁺/CD138⁺, однако есть данные, что CD138-негативная субпопуляция, вероятно, может быть стволовоклеточной опухолевой популяцией для MM. Поэтому в этой части работы в паре родительских и устойчивых линий MM RPMI8226 и RPMI8226/btz-6 мы сравнили количество поверхностных антигенов CD38 и CD138, а также CD19, CD20, относящихся к маркерам ранней дифференцировки для плазматических клеток.

Мы не обнаружили значительных изменений в количестве CD19 (p > 0,05) и CD20 (p > 0,05) между родительскими и устойчивыми линиями MM RPMI8226 и RPMI8226/btz-6, их значения оказались низкими и варьировали на уровне погрешности. Также в этой сублинии не наблюдалось изменений в экспрессии белка CD38 (p > 0,05) на поверхности клеток в сравнении с родительской линией. Однако мы наблюдали

Рис. 3. Гены сигнальных путей, экспрессия которых возросла более чем в 10 раз в сублинии RPMI8226/btz-6 по сравнению с RPMI8226 Fig. 3. Genes of signaling pathways, the expression of which increased by more than 10 times in the subline RPMI8226/btz-6 compared with RPMI8226

Phc. 4. Изменение экспрессии генов TGFβ-сигнального пути в устойчивой к бортезомибу сублинии RPM18226/btz-6 по сравнению с линией RPM18226 Fig. 4. Change in gene expression of the TGFβ signaling pathway in the bortezomib-resistant subline RPM18226/btz-6 compared to RPM18226

снижение на 35 % (p = 0,01) количества антигена CD138 в сублинии RPMI8226/btz-6. Таким образом, мы показали наличие большого пула CD138-негативных клеток в сублиниях MM, устойчивых к бортезомибу. Результаты представлены в табл. 2 и на рис. 5. Далее на паре родительских и устойчивых линий хронического миелолейкоза K562/i-S9 и K562/i-S9vlc было проведено сравнение количества антигена CD13, являющегося маркером дифференцировки бластных клеток и маркера стволовых клеток CD34. В сублинии

Таблица 2. Экспрессия белков на поверхности клеток родительских и устойчивых к бортезомибу сублиний (проточная цитофлуометрия), %

Table 2. Expression of proteins on the cell surface of parent and resistant to bortezomib subline (flow cytometry), %

Маркер Marker	RPMI8226	RPMI8226/btz-6	р
CD38	$90,5\pm2,4$	$92,4 \pm 5,1$	>0,05
CD138	$88,1\pm4,4$	$53,2\pm4,1$	0,01
CD19	$0,2\pm0,1$	$0,5 \pm 0,3$	>0,05
CD20	$0,3\pm0,1$	$0,2\pm0,1$	>0,05
	K562/i-S9	K562/i-S9vlc	
CD34	$0,8\pm0,3$	$6,0 \pm 1,5$	0,03
CD13	$9,9\pm1,8$	$3,4 \pm 0,6$	0,02
CD38	$0,3\pm0,1$	$0,3\pm0,1$	>0,05

Обсуждение

Проведен сравнительный анализ пар родительских и устойчивых к бортезомибу сублиний, в одной из которых исходно гиперэкспрессирован Pgp. Мы показали, что в клетках с исходно невысоким уровнем экспрессии ABC-транспортеров, которые приобрели устойчивость к бортезомибу, существенно иначе активируются сигнальные системы, чем в клетках с изначальной гиперэкспрессией Pgp.

Ранее мы показали, что в клетках сублинии К562/i-S9vlc повышено количество фосфорилированной формы АКТ-киназы [10]. Сигнальный каскад PI3K/AKT/PTEN/mTOR играет одну из ключевых ролей в клетке. Однако он часто бывает нарушен при опухолевой трансформации. Показано, что активация сигнального пути PI3K/AKT в опухолевых клетках может регулировать устойчивость опухолевых клеток к действию химиотерапевтических препаратов [5]. PTEN является одним из немногих негативных регуляторов PI3K/AKT-сигнального пути, что делает его антионкогеном [1, 12]. Однако мы нашли работу, в которой показано, что гиперэкспрессия PTEN влияет на чувствительность опухолевых клеток с гиперэкспрессией Рдр к действию лекарств и эта чувствительность может как повышаться, так и понижаться [13]. Наши данные свидетельствуют о том, что в клетках сублинии RPMI8226/btz-6 PI3K/AKT-сигнальный путь не задействован в формировании устойчивости к бортезомибу. Однако на основании данных нашей предыдущей работы [10] и результатов, полученных в этом исследовании, мы полагаем, что бортезомиб

Рис. 5. Определение экспрессии белка CD138: а – популяция клеток RPMI8226, окрашенных антителами к белку CD138, – 88, 1 %; б – популяция клеток RPMI8226/btz-6, окрашенных антителами к белку CD138, – 53, 2 % (p = 0,01)

Fig. 5. Determination of CD138 protein expression: a - RPMI8226 cell population stained with antibodies to CD138 is 88.1 %; 6 - RPMI8226/btz-6 cell population stained with antibodies to CD138 is 53.2 % (p = 0.01)

участвует в активации этого сигнального пути в сублинии K562/i-S9vlc, при этом в этих клетках наблюдается снижение экспрессии белка PTEN. Мы предполагаем, что под воздействием бортезомиба в этой сублинии отбираются устойчивые к нему клоны со сниженной экспрессией PTEN, что, в свою очередь, может приводить к повышению активности PI3K/AKT-сигнального пути. Мы нашли несколько работ, в которых показано, что бортезомиб способствует повышению экспрессии PTEN. В одной из них бортезомиб повышает уровень PTEN в клетках рака молочной железы SKBR3, устойчивых к трастузумабу [14], однако мы не обнаружили работ, в которых бортезомиб оказывает влияние на снижение экспрессии этого белка.

Другой сигнальный путь – NF-кВ, изменения в активности которого мы сравнивали в парах родительских и устойчивых к бортезомибу сублиний, важен для пролиферации и выживания не только нормальных лимфоидных клеток, но и для В-клеточных опухолей, включая ММ. Ингибирующее действие бортезомиба на путь NF-кВ изначально было основной причиной его использования в протоколах лечения онкологических больных [6, 7]. Однако есть работы,

2020

VCNEXM MOJEKVJAPHOŇ OHKOJOĽMM / ADVANCES IN MOLECULAR ONCOLOGY 1

Рис. 6. Определение экспрессии белка CD34 и CD13: a - популяция клеток K562/i-S9, окрашенных антителами к белку CD34, - 1,0 %; 6 - популяция клеток K562/i-S9vlc, окрашенных антителами к белку CD34, - 7,5 % (p = 0,03); в - популяция клеток K562/i-S9, окрашенных антителами к белку CD13, - 9,9 %; z - популяция клеток K562/i-S9vlc, окрашенных антителами к белку CD13, - 3,4 % (p = 0,02) **Fig. 6.** Determination of protein expression of CD34 and CD13: a - K562/i-S9 cell population stained with antibodies to CD34 is 1.0 %; 6 - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.9 %; z - K562/i-S9vlc cell population stained with antibodies to CD13 is 9.4 % (p = 0.02)

в которых показано, что бортезомиб может также вызывать активацию канонического пути NF-кВ [15]. В нашей работе мы не обнаружили существенных изменений в экспрессии этого белка и его фосфорилированной формы в обеих парах родительских и устойчивых к бортезомибу сублиний.

Мы выявили значимую активацию генов, относящихся к TGFβ-сигнальному пути, в клетках сублинии RPMI8226/btz-6, а также генов, связанных с ответом на гипоксию и оксидативный стресс. В случае MM TGFβ-сигнальный путь активно изучается в связи с участием в механизмах остеолитических поражений костей [16]. Было показано, что опухолеассоциированные фибробласты от больных MM, резистентных к бортезомибу, протектируют клетки RPMI8226 от апоптоза, запускаемого бортезомибом, за счет продуцирования IL-6, IL-8, IGF-1 и TGFβ [17]. В другой статье также была показана связь адаптации к гипоксии клеток MM через активацию TGFβ/Smad-пути с приобретением некоторых характеристик стволовых клеток [18].

В следующей части нашей работы мы подробно сравнивали иммунофенотип чувствительных и устойчивых к бортезомибу сублиний. Существует мнение о том, что CD138-негативные клетки миеломы могут оказаться миеломоинициирующими. W. Matsui и соавт. впервые описали CD138-негативную популяцию как популяцию с большим клоногенным потенциалом, чем CD138-позитивные клетки миеломы [19, 20]. Однако есть работы, в которых эти данные не подтвердились, авторы не обнаружили различий между CD138-негативной и позитивной субпопуляциями MM [21]. Из данных литературы известно, что в клетках линии миеломы человека RPMI8226 есть минорная популяция клеток, не экспрессирующих CD138 [20]. Также есть сведения о том, что популяция CD138-негативных клеток, в отличие от CD138⁺, экспрессирует антигены CD19 и CD20, характерные для зрелых В-клеток [22]. В нашем исследовании мы показали, что бортезомиб способствует отбору CD138-негативной популяции клеток в сублинии RPMI8226/btz-6, не экспрессирующих антигены CD19 и CD20. Действительно ли это отбор CD138-негативной популяции, это вопрос, который нам предстоит выяснить, так как известно, что бортезомиб способствует «отрезанию» CD138 с поверхности клеток [23, 24].

CD13 является маркером миелоидной дифференцировки клеток. Исходно в клетках K562 достаточно низкий уровень экспрессии этого белка – около 9 % [25], и показано, что его повышение в клетках линии K562 свидетельствует о сдвиге дифференцировки в миеломоноцитарном направлении [26]. В наших исследованиях мы обнаружили, что в сублинии K562/i-S9vlc снижается количество CD13 на поверхности клеток, при этом возрастает количество CD34 и отсутствует CD38. Мы полагаем, что такое изменение иммунофенотипа может быть связано с отбором менее дифференцированных клонов.

Заключение

Мы выявили, что в формировании устойчивости к бортезомибу в случае отсутствия экспрессии Pgp и его гиперэкспрессии задействованы разные сигнальные пути. Кроме этого, клеточной линии без активированных путей устойчивости необходимы более масштабные перестройки в сигнальной системе для приобретения резистентности к бортезомибу. Однако и в том и в другом случае бортезомиб приводит к изменению иммунофенотипа клеток — к увеличению минорных популяций менее дифференцированных клеток.

Ρ Т V Ρ A / R E S Л Т E A F F C E

- Ставровская А.А., Стромская Т.П. Транспортные белки семейства ABC и множественная лекарственная устойчивость опухолевых клеток. Биохимия 2008;73(5):735–50. [Stavrovskaya A.A., Stromskaya T.P. Transporters of ABC protein superfamily and multidrug resistance of tumor cells. Biokhimiya = Biochemistry 2008;73(5):735–50. (In Russ.)].
- Robak P., Drozdz I., Szemraj J. et al. Drug resistance in multiple myeloma. Cancer Treat Rev 2018;70;199–208. DOI: 10.1016/J.CTRV.2018.09.001.
- Muz B., Kusdono H.D., Azab F. et al. Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance. Leuk Lymphoma 2017;58(12):2916–25. DOI: 10.1080/10428194.2017.1319052.
- Besse A., Stolze S.C., Rasche L. et al. Carfilzomib resistance due to ABCB1/ MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia 2018;32(2):391–401. DOI: 10.1038/leu.2017.212.
- McCubrey J.A., Steelman L.S., Abrams S.L. et al. Roles of the RAF/ MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 2006;46:249–79. DOI: 10.1016/j.advenzreg.2006.01.004.
- 6. Traenckner E.B., Wilk S., Baeuerle P.A. A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 1994;13(22):5433–41.

- Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000;18:621–63. DOI: 10.1146/annurev.immunol.18.1.621.
- Akl M.R., Nagpal P., Ayoub N.M. et al. Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine. Oncotarget 2015;6(30):28693–715. DOI: 10.18632/oncotarget.4981.
- 9. Лалетина Л.А., Моисеева Н.И., Климова Д.А., Ставровская А.А. Роль АВС-транспортеров в формировании лекарственной устойчивости к бортезомибу при множественной миеломе. Успехи молекулярной онкологии 2019;6(1):49–55. DOI: 10.17650/2313-805X-2019-6-1-49-56. [Laletina L.A., Moiseeva N.I., Klimova D.A., Stavrovskaya A.A. The role of ABC transporters in drug resistance to bortezomib in multiple myeloma. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2019;6(1):49–55. (In Russ.)].
- Панищева Л.А., Какпакова Е.С., Рыбалкина Е.Ю., Ставровская А.А. Влияние протеасомного ингибитора бортезомиба на экспрессию генов множественной лекарственной устойчивости и активность киназы. Биохимия 2011;76(9):1238–47. [Panishcheva L.A., Kakpakova E.S., Rybalkina E.Yu., Stavrovskaya A.A. Effect of the proteasome inhibitor bortezomib on gene expression of multidrug resistance and kinase activity. Biokhimiya = Biochemistry 2011;76(9):1238–47. (In Russ.)].

- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding. Anal Biochem 1976;72(2):248–54.
 DOI: 10.1006/abio.1976.9999.
- Копнин Б.П. Энциклопедия клинической онкологии. М.: РЛС-Пресс, 2004. С. 34–53. [Kopnin B.P. Encyclopedia of clinical oncology. Moscow: RLS-Press, 2004. Pp. 34–53. (In Russ.)].
- Щербакова Е.А., Стромская Т.П., Рыбалкина Е.Ю., Ставровская А.А. Влияние повышения активности гена/ белка опухолевого супрессора РТЕN на чувствительность малигнизированных клеток к химиотерапевтическим препаратам. Биологические мембраны 2007;24:143–50. [Scherbakova E.A., Stromskaya T.P., Rybalkina E.Yu., Stavrovskaya A.A. Influence of human tumor suppressor PTEN on the sensitivity of malignant cells to anticancer drugs. Biologicheskie membrany = Biological Membranes 2007;24:143–50. (In Russ.)].
- Fujita T., Doihara H., Washio K. et al. Proteasome inhibitor bortezomib increases PTEN expression and enhances trastuzumab-induced growth inhibition in trastuzumab-resistant cells. Anticancer Drugs 2006;17(4): 455–62. DOI: 10.1097/ 01.cad.0000198910.90819.06.
- Hideshima T., Ikeda H., Chauhan D. et al. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 2009;114(5):1046–52. DOI: 10.1182/blood-2009-01-199604.
- Matsumoto T., Abe M. TGF-β-related mechanisms of bone destruction in multiple myeloma. Bone

2011;48(1):129–34. DOI: 10.1016/j.bone.2010.05.036.

- Frassanito M., De Veirman K., Desantis V. et al. Halting pro-survival autophagy by TGFβ inhibition in bone marrow fibroblasts overcomes bortezomib resistance in multiple myeloma patients. Leukemia 2016;30:640–8. DOI: 10.1038/leu.2015.289.
- Nakagawa Y., Ashihara E., Yao H. Multiple myeloma cells adapted to longexposure of hypoxia exhibit stem cell characters with TGF-β/Smad pathway activation. Biochem Biophys Res Commun 2018;496(2):490–6. DOI: 10.1016/j.bbrc.2018.01.034.
- Matsui W., Wang Q., Barber J.P. et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008;68(1):190–7. DOI: 10.1158/0008-5472.CAN-07-3096.

- Matsui W., Huff C.A., Wang Q. et al. Characterization of clonogenic multiple myeloma cells. Blood 2004;103(6):2332–6. DOI: 10.1182/blood-2003-09-3064.
- Palumbo A., Avet-Loiseau H., Oliva S. et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol 2015;33(26):2863–9. DOI: 10.1200/JCO.2015.61.2267.
- Reghunathan R., Bi C., Liu S.C. et al. Clonogenic multiple myeloma cells have shared stemness signature associated with patient survival. Oncotarget 2013;4(8):1230–40. DOI: 10.18632/oncotarget.1145.
- 23. Ramania V.C., Sanderson R.D. Chemotherapy stimulates syndecan-1 shedding: a potentially negative effect

of treatment that may promote tumor relapse. Matrix Biol 2014;35:215–22. DOI: 10.1016/j.matbio.2013.10.005.

- 24. Bandari S.K., Purushothaman A., Ramani V.C. et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol 2018;(65):104–18. DOI: 10.1016/j.matbio.2017.09.001.
- Inoue T., Swain A., Nakanishi Y., Sugiyama D. Multicolor analysis of cell surface marker of human. Anticancer Res 2014;34(8):4539–50.
- Kamano H., Ohnishi H., Tanaka T. et al. Effects of the antisense v-myb' expression on K562 human leukemia cell proliferation and differentiation. Leuk Res 1990;14(10):831–9. DOI: 10.1016/0145-2126(90)90171-5.

Благодарность. Авторы выражают большую признательность Т.И. Фетисову, к.б.н. А.М. Щербакову и к.фарм.н. М.А. Барышниковой за помощь в подготовке статьи.

Acknowledgment. Authors express special thanks to T.I. Fetisov, A.M. Shcherbakov, Ph. D. and M.A. Baryshnikova, Ph. D. for valuable advice during the preparation of the article.

Вклад авторов

Л.А. Лалетина, Н.И. Моисеева: разработка дизайна исследования, получение данных для анализа, анализ полученных данных, обзор публикаций по теме статьи, написание текста рукописи; А.Ф. Карамышева: обзор публикаций по теме статьи.

Authors' contributions

L.A. Laletina, N.I. Moiseeva: developing the research design, obtaining data for analysis, analysis of the obtained data, reviewing of publications of the article's theme, article writing;

A.F. Karamysheva: reviewing of publications of the article's theme.

ORCID abtopob/ORCID of authors

Л.А. Лалетина/L.A. Laletina: https://orcid.org/0000-0002-8839-5881 H.И. Моисеева/N.I. Moiseeva: https://orcid.org/0000-0001-6697-7154 A.Ф. Карамышева/A.F. Karamysheva: https://orcid.org/0000-0003-2587-1761

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest. The authors declare no conflict of interest.

Финансирование. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант мол_а №18-315-00075).

Financing. The study was performed with the support of the Russian Foundation for Basic Research (grant мол_a No. 18-315-00075).