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Abstract

We develop a methodology for the frequency of extreme rainfall intensities caused by tropical

cyclones (TCs) in coastal areas. The mean rainfall field associated with a TC with maximum

tangential wind speed Vm, radius of maximum winds R., and translation speed V, is obtained

using a physically-based model, whereas rainfall variability at both large scales (from storm to

storm) and small scales (due to rainbands and local convection) is modeled statistically.

The statistical component is estimated using precipitation radar (PR) data from the TRMM
mission. Taylor's hypothesis is used to convert spatial rainfall intensity fluctuations to temporal

fluctuations at a given location A. The combined physical-statistical model gives the distribution
of the maximum rainfall intensity at A during a period of duration D for a TC with

characteristics (Va, Rx, V,) that passes at a given distance from A.

To illustrate the use of the model for long-term rainfall risk analysis, we formulate a recurrence
model for tropical cyclones in the Gulf of Mexico that make landfall between longitudes 85o-

95°W. We then use the rainfall and recurrence models to assess the rainfall risk for New

Orleans. For return periods of 100 years or more and long averaging durations (D around 12-24

hours), tropical cyclones dominate over other rainfall event types, whereas the reverse is true for

shorter return periods or shorter averaging durations.
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Introduction

In this thesis we develop a framework to estimate extreme rainfalls from tropical cyclones at

coastal sites. Interest is in the distribution of ID,,ax: the maximum rainfall intensity at a site A

over a period D during the passage of a storm.

The distribution of rainfall extremes like ID,mx is usually displayed in the form of intensity-

duration-frequency (IDF) curves; see e.g. Chow et al. (1988) and Singh (1992). These are plots

of the rainfall intensity i as a function of the average duration D for different return period

values T, where T is defined as the reciprocal of the exceedance rate ID,, > i = 3 P[I,max > i]. I is

the annual rate at which TCs "hit" site A.

Knowledge of the distribution of ID,mx is important when one assesses flood risk in TC-

prone areas as the combination of rainfall, surges and waves (Herbert et al., 1997; Rappaport,

2000). In addition, interesting insight can be produced when comparing theoretical IDF curves

for TC rainfall at a site to empirically obtained IDF values for all rainstorms included (TCs and

non-TCs). For example, one can conclude on the range of durations D and return periods T for

which TCs dominate over other rainfall event types.

The episodic and spatially localized nature of TCs make the distribution of ID,max hard to

obtain using standard methods of probabilistic assessment of extreme rainfalls. These include

fitting a probability distribution directly to the historical annual maxima observed at the site

(e.g. Koutsoyiannis et al., 1998 for a review) or derive the maximum distribution from peak-

over-threshold (PoT) information (e.g. Madsen et al., 1997). For example, both annual

maximum TC rainfalls and annual PoT statistics at a site depend on whether in any given year

the site was "hit" by one or more TCs and therefore are highly erratic.

In this case, the assessment of risk is best done parametrically, using the effects of events

with various characteristics and the frequency with which those events occur. For tropical

cyclones, the storm characteristics of interest include the intensity, size, location, translation

speed and direction at landfall, and possibly other parameters. We list these relevant parameters

as components of a vector 0. This parametric approach has been used with tropical cyclones in

the context of wind, surge and waves (Myers, 1975; Ho and Myers, 1975; Ho et al., 1987;

Powell et al., 2005; IPET, 2006, 2008), but not rain. The objective of this thesis is to fill this

gap.



The main problem in a parametric assessment of TC rainfall risk is the evaluation of the

extreme rainfalls caused by a TC with given characteristics 0: i.e. the data on TC rainfall are

sparse and the potentially important TC parameters too many to directly infer a parametric

rainfall model from empirical observations. For example, current parametric approaches (Lonfat

et al., 2004, 2007; Tuleya et al., 2007) classify storms into three coarse categories of hurricane

intensity, use microwave imager (TMI) data from TRMM (Simpson et al. 1988) to calculate the

ensemble-average rainrate for each category as a function of distance from the TC center, and

interpolate from these results to calculate the 24-hr average rainfall accumulation from the

passage of a TC. Limitations of these approaches are: 1) the coarse and incomplete storm

parameterization: the size of the vortex Rm is only implicitly taken into account through its

dependence on Vm, while other factors (e.g. the radial wind velocity profile in the main vortex,

the surface roughness, and the storm translation velocity) are ignored and 2) the fact that they do

not account for rainfall intensifications due to rainbands and local convection.

A more complete approach is to combine physical modeling with data analysis. Here, we use

a relatively simple physical model to capture the main effects of 0 on rainfall, and statistical data

analysis to assess the storm-to-storm fluctuations due to features like rainbands and convective

cells that the physical model does not resolve.

The thesis is organized into three main chapters. Chapter 1 describes a theoretical method to

estimate the large-scale horizontal and vertical winds inside TCs (the vertical winds are largely

responsible for rain). The model is an extension of Smith's (1968) formulation and is referred to

here as the Modified Smith (MS) model. Characteristics of the TC that are explicitly considered

by the MS model are the maximum tangential wind speed Vm, the radius of maximum winds

Rmx, the parameter B that controls the shape of the radial profile of the tangential wind speed

(Holland, 1980), the storm translation velocity Vt, the surface drag coefficient CD and the

vertical diffusion coefficient K. The MS model does not resolve rainbands, local convection and

turbulent phenomena and therefore produces smooth wind fields.

Chapter 2 extends the MS model to predict TC rain. This is done under the assumption that

water vapor condensation in the main vortex converts all the upward moisture flux at the top of

the TC boundary layer to rainfall. The vertical moisture flux itself is evaluated from the vertical

winds generated by the MS model and two additional parameters: the average temperature T and

the average saturation ratio Q inside the TC boundary layer. The calculated rainfall field is not



simply proportional to the vertical winds at the top of the boundary layer produced by the MS

model. This is because (1) the trajectory of moisted air parcels has an outward slant depending

on distance from the TC center and (2) the ascending air parcels and descending rain drops are

advected into a helical motion by the cyclonic circulation; therefore a parcel of air that leaves

the TC boundary layer contributes rainfall to a range of azimuthal locations. We call this the

modified-Smith-for-rainfall (MSR) model. The MSR model should prove useful for

climatologic studies, but for hazard analysis it has the major limitation of ignoring the small-

scale rainfall fluctuations associated with rainbands and local convection.

Chapter 3 adds a stochastic fluctuation component to the MSR predictions to determine the

probability distribution of the maximum rainfall intensity at a site A during a period of duration

D, ID,,m(y,O), for a TC with characteristics 0 whose center passes at distance y from A. The

statistical component is fitted and validated using precipitation radar (PR) data from the TRMM

mission. Also, Taylor's hypothesis is used to convert spatial rainfall intensity fluctuations to

temporal fluctuations at A. To illustrate the use of the model for long-term rainfall risk analysis,

we formulate a recurrence model for tropical cyclones in the Gulf of Mexico. We then use the

rainfall and recurrence models to assess the rainfall risk for New Orleans.

Chapters 1, 2 and 3 are written in a stand-alone format and are very similar to published

(Langousis et al., 2008; Langousis and Veneziano, 2008) or submitted (Langousis and

Veneziano, 2009) papers.

Conclusions and possible future research directions are given in Chapter 4. Supplemental

material for the theoretical model in Chapter 1 and alternative methodologies for evaluating the

statistical component for the rainfall fluctuations in Chapter 3 are presented in Appendices A

and B, respectively.



1. Boundary Layer Model for Moving Tropical Cyclones

1.1 Introduction

Tropical cyclones (TCs) are a particular class of rotating low-pressure systems that develop over

tropical and subtropical waters. The systems have a warm-core, a well-organized convection, and

cyclonic surface wind circulation (Anthes, 1982; Landsea, 2000).

Empirical observations (La Seur and Hawkins, 1963; Hawkins and Rubsam, 1968; Holland,

1980; Willoughby, 1990, 1991; Vickery et al., 2000; among others) show that in the altitude

range from 2-3km to about 10km, the tangential winds are in approximate gradient balance and

the radial inflow is negligible. Based on earlier work by Schloemer (1954) and Myers (1957),

Holland (1980) used a symmetric pressure distribution to derive the tangential gradient wind Vg,,

as a function of distance R from the TC center. His result, which we refer to here as Holland's

wind profile, is

Vgr(R) = Vmax J(Rmax/R)B exp[1-(Rax/R)B] (1.1)

where V,a, Rmax, and B are TC-specific constants. The tangential velocity Vgr increases with R to

a maximum Vmax at R = Rx (usually referred to as the radius of maximum winds). For R >>

Rmax, Vgr has an approximately power-law decay with distance, with exponent -B/2. According to

Willoughby and Rahn (2004), B varies in the range [1, 2] with typical values around 1.4.

Inside the TC boundary layer (BL) (within approximately 1-2km from the surface), frictional

stresses are important and result in an inward net force that drives low-level convergence.

Consequently, the horizontal and vertical wind fields are strongly coupled and equation (1.1)

does not apply. Horizontal convergence drives the vertical winds, which are maximum at the top

of the boundary layer near the radius of maximum winds Rmax (e.g. Kepert, 2001 and Kepert and

Wang, 2001).

Since the convergence of moisture inside the BL is of major importance for the maintenance,

evolution and destructive potential of TCs (Emanuel, 1986, 1989; Renno and Ingersoll, 1996), a

number of studies (Myers and Malkin, 1961; Chow, 1971; Shapiro, 1983; Kepert, 2001) have

focused on developing theoretical models for the boundary layer of moving TCs. These models

derive the radial and tangential winds inside the boundary layer from an assumed radial profile



of the tangential wind velocity under gradient balance, for example the profile in equation (1.1),

and from suitable surface boundary conditions.

Section 1.2 reviews these BL models and their limitations. Section 1.3 describes our

proposed model by giving the governing equations (an extension of the equations of Smith,

1968) and discussing their numerical solution. In Section 1.4, we compare model results with

earlier models and with simulations using the Fifth-Generation Pennsylvania State

University/NCAR Mesoscale Model (MM5). Section 1.5 shows how the calculated winds

depend on various storm parameters. Conclusions are stated in Section 1.6.

1.2 Review of Boundary Layer Models

The focus of this review is on BL models for moving tropical cyclones, but studies of stationary

TCs that are relevant to what follows are also mentioned.

Boundary layer models differ mainly in their treatment of altitude Z and the surface boundary

conditions. In one of the earlier studies of moving TCs, Myers and Malkin (1961) used a

Lagrangian parcel trajectory approach to study the horizontal winds inside the BL. The authors

assume that the frictional drag force is proportional to the square of the wind speed with equal

tangential and radial components. Another (implicit) assumption is that the velocity of the

background flow is zero rather than equal to the translation velocity of the TC. A finding of the

study is that, when a TC in the northern (southern) hemisphere moves, the radial convergence is

maximum at the right-front (left-front) quadrant of the vortex and the location of this maximum

rotates anticyclonically as the translation velocity Vt increases.

Based on the work of Chow (1971), Shapiro (1983) approximated the boundary layer of a

moving TC by a slab of constant depth H =1km. The horizontal momentum equations are

formulated in cylindrical coordinates that translate with the vortex and then averaged in the

vertical direction. This results in a system of two partial differential equations (PDEs) that are

solved numerically for the vertically averaged tangential V(R,O) and radial U(R,O) wind velocity

as a function of radius R and the azimuth 0 relative to the direction of TC motion. Contrary to

Myers and Malkin (1961), Shapiro's (1983) formulation assumes that the frictional drag force is

parallel to the surface-relative flow and its magnitude is proportional to the square of the

composite surface-relative wind velocity. Although the two studies use different formulations for

the friction-induced convergence, they both produce maximum convergence at the right-front



quadrant of vortices in the northern hemisphere. However, in Shapiro's model the location of the

maximum does not depend on the translation velocity, whereas in Myers and Malkin's (1961)

analysis it does.

The main limitation of Shapiro's (1983) approach is that it approximates the BL as a slab of

constant depth and hence cannot resolve the variation of U and V with height. According to

Anthes (1971), this leads to overestimation of the radial and vertical velocities close to the vortex

core; see discussion of Figure 1.3 below. Another limitation of Shapiro's analysis is that the

numerical stability of the system depends on TC parameters such as the depth of the boundary

layer H, the translation velocity V,, the vertical diffusion coefficient K and the surface drag

coefficient Co. This limitation becomes important when, as for example in risk studies, one

needs to calculate the wind field under a wide variety of conditions.

A third BL model for moving tropical cyclones was proposed by Kepert (2001) (see also

refinements in Kepert, 2006b). Kepert's formulation neglects vertical advection and linearizes

the horizontal advection. This produces a system of linear PDEs that is solved analytically for the

radial, tangential and vertical wind velocities (U, V and W, respectively) as a function of R, 8,

and Z. Kepert (2001) uses a bulk formulation of the surface stresses similar to those of Rosenthal

(1962), Shapiro (1983) and Smith (1968, 2003). However, the surface boundary condition is

linearized to allow analytical integration. Linearization produces inaccurate results close to the

TC center (R < 2-3R,) where the horizontal gradient of the wind components is high, when the

vertical gradient of the horizontal wind velocity is large (this happens for large surface drag

coefficient CD; see discussion on Figure 1.2 below), for high translation velocities (V, > 5m/s),

and under inertially neutral conditions (B > 1.6-1.8). Other linearizations of the horizontal

momentum equations have been proposed by Haurwitz (1935), Rosenthal (1962), Miller (1965)

and Elliassen and Lystad (1977), but these formulations are for stationary vortices (V, = 0).

An order of magnitude analysis by Smith (1968) shows that in the near-core region the

nonlinear terms are as important as the linear ones. To include the non-linear terms, Smith

(1968) (see also refinements in Leslie and Smith, 1970 and Bode and Smith, 1975) used the

Karman and Pohlhausen momentum integral method to calculate the radial U(R,Z) and tangential

V(R,Z) wind velocities in a stationary vortex. In the momentum integral method (Schlichting,

1960), one avoids an explicit analysis of altitude Z by assuming vertical profiles for U and V that

satisfy the boundary conditions at the surface (Z= 0), and tend asymptotically to gradient



balance as Z - oo; see equation (1.3) below. Specifically, Smith (1968) used profiles of the

Ekman type, with an amplitude coefficient E and a dimensionless BL scale thickness 6 as

parameters. The horizontal momentum equations are vertically integrated to produce a system of

ordinary differential equations that are solved numerically to obtain E and 6 as a function of R.

The main limitation of Smith's (1968) model is that it does not consider storm motion. Also,

Smith's (1968) formulation is theoretically correct only for the case of no slip at the surface

boundary (i.e. for CD -+ o); see Section 1.3. In the following section, we extend Smith's (1968)

model to include storm motion and correct the formulation for the general case of stress surface

boundary conditions.

1.3 Proposed Model

In a cylindrical coordinate system (R, 0, Z) that follows the vortex motion, the boundary layer

equations are (see Smith,1968 and Kepert 2001 for a detailed derivation),

OU Vau u Vr 2-V 2 2U
U + + W + + f(Vg,- V) = K (a)aR Rae aZ R +fVZV)K (a)

av V aV aV uv a2 v
UR + + Z + +fU= K Z 2  (b) (1.2)

a(RU) av O(RW)
aR+ +  =0 (c)

where R is distance from the vortex center, 0 is azimuth relative to the direction of motion, f is

the Coriolis parameter, U, V, and W are the storm-relative radial, tangential and vertical wind

velocities, respectively, K is the vertical diffusion coefficient of the horizontal momentum, and

Vg, is the tangential wind velocity under gradient wind balance; see for example equation (1.1).

As Kepert (2001) and Smith (1968), we solve equations (1.2) for the case of a semi-infinite

domain, when gradient wind balance is satisfied asymptotically as Z -> o,

aU av
a =U =0, and V =Vgr, at Z -- oo (1.3)

The translation velocity Vt enters through the surface boundary conditions. Suppose that the

vortex is translating in the positive x-direction with constant speed V,. Using a viscous surface

stress formulation similar to Smith (1968, 2003) and Kepert (2001), the conditions to be satisfied

at the surface boundary (Z = 0) are:



K dU
U+ V, cosO = W (a)

CDVg, tZ

K BV (1.4)
V-Vt sin = CVg, Z (b)

W=0 (c)

where CD is a surface drag coefficient; see for example Rosenthal (1962), Smith (1968, 2003),

Kepert (2001), and Kepert and Wang (2001). For 1/CD = 0, equation (1.4) corresponds to no slip

conditions (U = -Vt cosO, V = V, sin0) at the surface boundary.

For R - oO, the system in equation (1.2) reduces to the classic Ekman BL equations under

geostrophic conditions (Kundu and Cohen, 2004):

a2u
flVgr-V) = K Z (a)

a2V (1.5)
fu = K az2 (b)

W= const. (c)

Denote by Rg the distance from the TC center beyond which the geostrophic model in equation

(1.5) is approximately valid; say Rg - 1000km (Smith, 1968; Kundu and Cohen, 2004). Also

denote by KM the vertical diffusion coefficient under geostrophic conditions and let Vg = Vg,(Rg)

be the gradient tangential wind for R = Rg and Zg = (KM/f) 1/2 (Zg has the meaning of vertical

length scale for the depth of the boundary layer; see below). Then one can write equation (1.2) in

dimensionless form, as

Fu v 22u ]u vgr 21 a2 u

R UJ + + W + + Vgr-V = kZ 2 (a)
i r r + Oz r

FO Ov Ov v uvl a2v
R u+ r-+ W + -+ u = k 2 (b) (1.6)

a(ru) av a(rw)+  +  = 0 (c)

and equations (1.3) and (1.4) become

ou By
- -= U = 0, and v = vg,, at z ->oo (a)

ak Ou ak v (1.7)
u+vtcosO=r , v-VtsinO= a, andw=0, atz=0 (b)

Vg, z Vgr Cz



In equations (1.6) and (1.7), Ro = Vg(Rgf) is the Rossby number and r = R/Rg, z = Z/Zg, vt =

Vt/Vg, u = U/Vg , v = V/Vg, w = (WRg)I(VgZg), Vgr, VgVg, k = K/KM, and a =KM/(CDZg Vg) are

dimensionless quantities. In his model for axi-symmetric vortices, Smith (1968) allows K to be

different from KM and to vary radially. In the present extension to moving vortices, we further

allow K to vary azimuthally.

Vertical integration of equation (1.6) under boundary conditions (1.7.a) gives

Ro ru2 dz + v dz +vgr-v 2 dz +r ,gr-vdz = -kr z (a)
d o a+ f d l

0 0 0 0

1 0 v
Wo= -r rfu dz + dz (c)

0 f

where w,o is the dimensionless vertical wind velocity at Z - oo. Next we discuss how equation

(1.8) is solved under the conditions (1.7.b).

1.3.1 Momentum integral method

Similar to Smith (1968) we take the boundary layer thickness to be proportional to Zg = (KM/f)1/2

with proportionality coefficient 5. In Smith's (1968) axi-symmetric formulation 6 exhibits only

radial variation, but in the present case of moving cyclones we allow 6 to vary also azimuthally.

Define i, = Z/[Zg 6(r,O)] = z/6(r,O) and notice that the geostrophic model in equation (1.5) is

satisfied for 6 = {2; see e.g. Kundu and Cohen (2004). Following the derivations of Schlichting

(1960), Mack (1962) and Smith (1968), but allowing azimuthal dependence of u and v, the

solution of equation (1.8) can be approximated as

u(r,O,q) = E(r,O) ~(r,O,i) (a)
v(r,O,ir) = Q(r,O,q) (b)

where E(r,O) is an unknown function, usually referred to as the amplitude coefficient, and T and

9 are such that (u,v) = (T, 2) satisfy equations (1.6) and (1.7) under geostrophic conditions

(R >Rg). After some algebra one obtains



Y(r,O,q) = g(r,O,q) vt cosO+ f(r,O,q) (gr,-v, sin0) -vt cos (a)
Q(r,O,q) = g(r,O,q) (vgr-Vt sinO)- fr,O,q) vt cosO+vt sinO (b)

where

f(r,O,q) = -e-' [al(r,O) sin q + a2(r,O) cos q] (a)
g(r,9,r) =1-e-' [al(r,O) cos q + a2(r,O) sin q] (b)

The parameters al(r,O) and a2(r,O) in equation (1.11) are calculated so that (u,v) in equation (1.9)

satisfy condition (1.7.b). This gives

L 3 L 4-L1 L 6  L 3 -L 2 a2a2(r,) 2L4LL, al(r,)= L (1.12)

where

L, = grVt sinO + 1+ 2k tcosO, L 2 = vgr-Vt sin - +2ka Vt cos

Vt cosO ( 2ka
L3 = VgrVt sin + E L4 = (gr-Vt sinO) -Vt CO (1.13)

L5= (Vt sinO -vgr) v vt cosO, L6 = Vgr-Vt inO - E

The parameters aI and a2 are constants independent of r and 0 (aI = 1 and a2 = 0) only for a

stationary TC and a = 0 (i.e. CD -+ oo, no slip conditions). Hence, Smith's (1968) axi-symmetric

formulation, where al and a2 are assumed constant independent of r, is theoretically correct only

in the case of no slip conditions at the surface boundary.

By combining equations (1.8)-(1.11) and after some algebra, one obtains the following

system of differential equations in E and 6:

8E dE d6 86
Bl(r,O) r + B2(r,O) +B3(r,O) y + B4(r,O) L = -Bs(r,O) (a)

(1.14)
Cl(r,O) r + C3(r,O) a + C4(r,O) = C5(r,O) (b)

with coefficients

BI= rRo Alo, B2= 6Ro A1 2, B 3= rRoAi, B4= RoA 2

kr 2
Bs= -A 6+6Ro(rAs/Ro+A 3+A l3+A+rA ), CI=r Ro(A 12-VgrA 16)

C 3=r 2Ro(A 2-VgrA 7), C 4=rRo(A4 +A1 9-VgrAs) (1.15)

kr2

C 5= -' A 9+rRo[vgr(AI8+ rA 7+A 7-A 20)-rA7/Ro-A 15-rA14-2A 2]



Analytical expressions for the parameters A1-A20 in equation (1.15) are derived in Appendix A.

The nonlinear system in equation (1.14) can be integrated numerically to obtain E(r,O) and

((r,O). For this purpose we use a scheme that is implicit in 0 and explicit in r. Integration starts at

r =1 where we set E = 1 and 6 = F2 (these are the values under geostrophic conditions) and

moves inward using a stepwise integration procedure. At each step i in r, integration with respect

to 0 is performed simultaneously for all azimuthal locations using a central difference approach;

see e.g. Chapra and Canale (2002).

Since the parameters in equation (1.14) depend on E and 6, a first approximation to the

solution at step i is obtained by evaluating all parameters using the values of E and 6 from step i-

1. This procedure is iterated until E and ( at step i converge.

After E and ( (and hence the horizontal wind components U and V) are obtained, the vertical

wind velocity W is calculated using mass conservation, as

Z Z
1 fa(RU)

° 0

In what follows, we refer to equations (1.6) and (1.7) and their solution by the momentum

integral method as the Modified Smith (MS) model. In the next section we compare results for a

specific storm with wind estimates from the Shapiro (1983) and Kepert (2001) formulations and

with MM5 simulations, and in Section 1.5 we examine how the winds generated by the MS

model vary with a number of storm parameters.

1.4 Model Comparison

First we illustrate the results from the MS model and then compare the performance of that

model with others for stationary and moving tropical cyclones.

Figure 1.1 shows the storm-relative radial and tangential wind velocity fields U and V and the

vertical wind velocity W at elevations Z = 0, 0.5, 1 and 2km obtained using the MS model. The

tropical cyclone translates eastward in the northern hemisphere, with velocity V, = 5m/s.

Asymptotically as Z -- oo, the tangential winds satisfy Holland's profile in equation (1.1) with

parameters V,,, = 50m/s, Rmax = 40km and B = 1.6. Results are for non-slip conditions at the

surface boundary (1/CDo = 0) and constant vertical diffusion coefficient K = KM = 50m2/s. This

value of K is often quoted in the literature (e.g. Smith, 1968; Shapiro, 1983; Kepert, 2001;



Kepert, 2006b) and is close to values extracted from MM5 simulations (M. Desflots 2006,

personal communication). The Coriolis parameterf is set to 5 10-5 sec-', which corresponds to a

latitude p of 200 North.

U(mrs) V(mls) W(m/s)

-150

150

100

50

0-

-50-

-100

-150

100

0 -

-100

-200

-300
-300 -200 -100 0 100 200 300 -300 -200 -100 0

,T ," I -150

100 200 30( -150 -100 -50 0 50 100 150

Distance from storm center (km)

Figure 1.1: MS boundary layer solution for the tangential V, radial U and vertical W wind velocity fields at altitudes
Z = 0, 0.5, 1, and 2km. V and U are velocities relative to the moving vortex. The location of the maximum of U is
denoted by an x symbol. The tropical cyclone translates eastwards (to the right) with velocity V, = 5m/s. All figures
are generated under non-slip conditions at the surface boundary and using a constant vertical diffusion coefficient
K = 50m2/s. Other parameters are V,,= 50m/s, R,,= 40km and B = 1.6.



The model reproduces the conditions UIzo = -Vt cosO, Vlz-o = V, sinO, and Wlz-o = 0 at the

surface boundary; see also discussion of Figure 1.2 below. Translation of the tropical cyclone

causes intensification of the radial fluxes at the right and right-front of the vortex. Specifically,

the maximum of U (x symbol in Figure 1.1) is located at the right/right-front of motion and close

to the vortex center for Z = 500m, and moves outward while rotating clockwise as Z increases.

Intensification of V is at the left-front of the vortex, with an asymmetry that decreases as one

approaches gradient balance. Due to radial convergence at different altitudes, the vertical

velocity W increases monotonically with Z. In addition, storm translation causes W to intensify at

the right and right-front of the vortex. Similar qualitative findings on U, V and W have been

reported by Kepert (2001) and Kepert and Wang (2001).

For the same storm, Figure 1.2 compares the vertical profiles of the azimuthally averaged

radial and tangential winds generated by the MS and Kepert (2001) models. Azimuthal averaging

produces results that correspond to a stationary, and hence, axi-symmetric TC. The profiles

shown in Figure 1.2 are at radial distances R = Rm = 40km and R = 2.5Ra = 100km from the

vortex center.
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Figure 1.2: Comparison of the axi-symmetric component of the wind field from Kepert's (2001) model and the MS
model. Vertical profiles of (a) the radial wind velocity U, and (b) the tangential wind velocity V at 40km and 100km
from the vortex center. Same storm as in Figure 1.1.



As was pointed out in Section 1.2, the linearized stress formulation of Kepert (2001) is

accurate only for small drag coefficients CD. In the present case CD -- oo and Kepert's (2001)

model correctly reproduces the non-slip condition UIz=o = 0 in the radial direction (see Figure

1.2.a) but fails to reproduce the condition Vlzo = 0 in the tangential direction (Figure 1.2.b). This

inconsistency results in underestimation of the frictional stresses at the surface boundary and

hence of the radial fluxes relative to the MS formulation; see Figure 1.2.a and discussion of

Figure 1.3 below.

Kepert's (2001) model also fails to reproduce the variation of the radial wind U with R.

Observations using GPS dropsonde data (Kepert 2006a,b) show that the maximum of U

increases as one approaches the center of the TC. While the MS model is consistent with this

observation, the maximum values of U at 40 and 100km from Kepert's (2001) approach are

about the same.

In both the MS and Kepert (2001) models, the depth of the boundary layer H, defined as the

height Z where U - 0, increases with increasing R. In the MS solution, H is about 2.2km at R =

100km and about 1.5km at R = 40km, whereas the corresponding values from Kepert's (2001)

analysis are 1.5 and 0.8km. Both sets of estimates are order-of-magnitude correct, with the MS

values been closer to observations (e.g. Frank, 1977 and Kepert, 2006a).

Figures 1.3 and 1.4 compare the vertically averaged radial and tangential winds and the

vertical winds obtained using the Shapiro (1983), Kepert (2001) and MS models as well as MM5

simulations. Figure 1.3 shows the radial variation of the axi-symmetric component, whereas

Figure 1.4 includes the asymmetry due to motion through contour plots. The reasons for

vertically averaging U and V (over a depth of lkm) are to ease model comparison, since Shapiro

(1983) treats the BL as a slab of constant depth H = lkm, and to reduce the effect of vertical

fluctuations in the MM5 solution. All storm parameters are the same as in Figure 1.1, except for

the drag coefficient, which is set to 0.003. This value of CDo is close to values extracted from

MM5 simulations for oversea conditions (M. Desflots 2006, personal communication), does not

introduce significant distortions in Kepert's (2001) linear formulation, and does not cause

numerical oscillations in Shapiro's (1983) approach. Also, values of CD close to 0.003 are often

quoted in the literature for wind speeds in the range encountered in hurricanes (e.g. Large and

Pond, 1981; Powell et al., 2003; Donelan et al., 2004).
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Figure 1.3: Comparison of the Shapiro (1983), Kepert (2001) and MS boundary layer solutions with MM5

simulations for an axi-symmetric (stationary) TC. (a) Vertically averaged radial wind velocity U, (b) vertically

averaged tangential wind velocity V, and (c) vertical wind velocity W at an altitude of 1km. All figures are generated

using a constant vertical diffusion coefficient K = 50m 2/s and a surface drag coefficient CD = 0.003 and averaging is

over a depth of 1km. Other parameters are V = 50m/s, R, = 40km and B = 1.6.

In general, the MS model predictions are close to the MM5 simulations, except that in MM5

the vertical velocities are more peaked near R,, (mainly due to rainband effects, which the BL

models do not resolve) and the contour plots are more erratic due to local fluctuations. Also the

Kepert (2001) model reproduces well the vertically averaged tangential winds of MM5, but that

model severely underestimates the radial and vertical flows, especially in the near-core region.

This is due to inaccuracy of Kepert's linearization at radial distances smaller than 2-3Rm,; see

Section 1.2. For example, flight observations show that, in the vicinity of R,x,, W is in the range

0.5-3m/s or higher (Willoughby et al., 1982; Jorgensen, 1984a, b; Black et al., 2002), whereas



Kepert's (2001) estimates are around 0.1-0.4 m/s. In the far field (R > 2.5R,), Kepert's (2001)

model and MM5 produce vertical velocities that are similar and in good agreement with

observations (Jorgensen 1984a, b; Black et al. 2002).
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Figure 1.4: Comparison of results form the Kepert (2001), Shapiro (1983) and MS models with MM5 simulations

for a TC that translates eastwards (to the right) with velocity V, = 5m/s. Vertically averaged radial wind velocity U

(left column), vertically averaged tangential wind velocity V (middle column) and vertical wind velocity W at an

altitude of lkm (right column). V and U are relative to the moving vortex and averaging is over a depth of 1km. All

other parameters are the same as in Figure 1.3.



Shapiro's (1983) model has an opposite behavior in the near-core region, where it

overpredicts the radial and vertical flows by a factor of about 2. This is consistent with the

finding by Anthes (1971) for slab-layer models; see Section 1.2.

Overall, we find that the MS model produces realistic estimates of the tangential, radial and

vertical wind velocities and is numerically more stable and more accurate than the boundary

layer models of Kepert (2001) and Shapiro (1983). Next we use the MS model to study the

sensitivity of the velocity fields to various storm parameters.

1.5 Sensitivity Analysis

Figures 1.5, 1.6 and 1.7 show the sensitivity of MS model results to tropical cyclone

characteristics: the tangential wind speed under gradient balance [parameterized here in terms of

Vmax, R and B; see equation (1.1)], the vertical diffusion coefficient K, the surface drag

coefficient CD, and the translation velocity V,.

Figure 1.5 shows the sensitivity of the azimuthally averaged (axi-symmetric) velocities to

Vma, R,., B, K and CD. The base case (solid lines in Figure 1.5) corresponds to the storm used in

Figure 1.1. Sensitivity is evaluated by varying the parameters one at a time around their base-

case values. V,. affects only the amplitude of the radial profiles, whereas other parameters

affect mainly the shape of the profile (e.g. rate of decay with distance) or both. The effects on the

three velocity components are however not uniform. For example, Rx has negligible influence

on the peak value of the horizontal winds U and V, but affects significantly the peak vertical

velocity.

Figure 1.6 shows the effect of CD on the wind fields for a TC that moves eastward with

velocity VF 5m/s. Higher values of CD correspond to increased friction at the surface boundary

and stronger asymmetry of the three velocity components.

Finally, Figure 1.7 shows sensitivity to the translation velocity Vt when the other parameters

are fixed at Vmax = 50m/s, Rm = 40km, B = 1.6, K = 50m 2/s and CDo = 0.003. One sees that U and

W intensify in the NE quadrant relative to the direction of motion, whereas V intensifies to the

left of the velocity vector. The asymmetry increases with increasing V,.

Qualitatively similar sensitivity results are obtained when using Kepert's (2001) model (not

shown here). This is expected, since Kepert's (2001) model is a linearized variant of the present



MS formulation. However, Kepert's linearization has approximate validity only for large R, CD

<< 1 and small V,; see Section 1.2.
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1.6 Conclusions

We developed a simple theoretical model for the boundary layer (BL) of translating tropical

cyclones (TCs). The model estimates the tangential, radial and vertical wind fields from a given

radial profile of the tangential wind speed under geostrophic conditions [e.g. Holland's profile in

equation (1.1)] and surface stress boundary conditions.

Cy/

o~is



The model is based on Smith's (1968) formulation, which is corrected for the general case of

a stress surface boundary (see Section 1.3) and modified to account for motion-induced

asymmetries. The governing equations are solved using the momentum integral method,

resulting in a very efficient computational scheme (less than a minute to run on a conventional

computer). Contrary to the Shapiro (1983) and Kepert (2001) BL formulations, the present

modified Smith (MS) model is stable over a wide range of storm parameters and produces results

that are in good agreement with MM5 simulations and observations; see Figures 1.5, 1.6 and 1.7.

In a parametric analysis, we have examined how the symmetric wind components and

motion-induced asymmetries generated by the MS model depend on various storm

characteristics. For TCs that translate in the northern hemisphere, the vertical and storm-relative

radial wind velocity fields intensify at the right-front quadrant of the vortex, whereas the storm-

relative tangential winds intensify at the left-front of the storm. The asymmetry is higher for

faster-moving TCs. These findings are in accordance with field observations; see for example

Shapiro (1983).

As the intensity of the TC (expressed through the maximum tangential velocity at gradient

balance Vm) increases, the horizontal and vertical velocity components also increase. Larger

values of Holland's B parameter and lower values of the radius of maximum winds Rma produce

horizontal and vertical wind profiles that are more picked and concentrated closer to the TC

center.

The effect of the frictional drag coefficient Co is more complex. As CD increases, the

frictional drag force also increases resulting in lower tangential winds and higher radial

convergence (stronger vertical winds). Another effect of increasing CD is higher asymmetry of

the velocity field.



2. Theoretical Model of Rainfall in Tropical Cyclones for the
Assessment of Long-Term Risk

2.1 Introduction
Tropical cyclones (TCs) are atmospheric disturbances capable of producing extreme rainfall with

devastating social and economic impact (Landsea, 2000; Rappaport, 2000). Consequently, there

is much interest in the assessment of the rainfall hazards posed by TCs, either in real time (with

leads of hours or days) or in the long run; see e.g. Marks et al. (1998). For the latter purpose,

when interest is in the rate at which different rainfall intensity levels are exceeded, one needs to

parameterize the storms and for each set of parameters evaluate rainfall at the site or over the

region of interest as a random process in time or a random field in space-time. In principle, the

stochastic rainfall model could be directly fitted to data from historical events, but the large

number of parameters and the relative lack of historical data make an empirical model

identification and fitting approach unfeasible. Moreover, it would be difficult in such an

approach to incorporate knowledge of the physics of the phenomenon. A better approach, which

we follow here, is to formulate a physically-based rainfall model. The model should be simple

enough that it can be run under a very large set of scenario conditions; hence detailed numerical

TC models would not be suited for this purpose.

Neither simple nor sophisticated TC models can produce accurate statistical estimates of

space-time rainfall for a given set of global TC parameters. Therefore, any deterministic rainfall

model must be complemented by a statistical representation of the rainfall "residuals", defined as

the difference between observed rainfall and model prediction. For example, the model

developed here ignores the rainfall fluctuations due to rainbands and local convection. The

statistical characterization of these fluctuations (residuals) is discussed in Chapter 3.

The third and final component of a long-term TC rainfall risk analysis method is the

recurrence model, which specifies the frequency with which different TC parameter

combinations occur in the region of interest. This component has been the subject of numerous

studies, as the recurrence relation is common to the assessment of any TC-related risk, such as

wind, waves and surges; see for example Vickery and Twisdale (1995), Vickery et al. (2000),

Willoughby and Rahn (2004) and Powell et al. (2005).



In the late 1950s, R.H. Kraft (as referenced by Pfost, 2000, and Kidder et al., 2005) used

raingauge rainfall depths to estimate the maximum 24-hr rainfall accumulation due to the

passage of a TC. According to Kraft, this maximum is 100 inches (254cm) divided by the storm

translation speed in knots (lknot = 0.514m/s). Limitations of Kraft's analysis are that it does not

provide information on the spatial distribution of rainfall and does not account for TC

characteristics such as size and intensity.

Riehl and Malkus (1961), Goodyear (1968) and more recently Simpson and Riehl (1981) have

addressed some of these limitations. From the examination of 46 TCs making landfall along the

Gulf Coast of the United States, Goodyear (1968) concluded that the 48-hr maximum rainfall

depth is about 150mm and occurs 40-80km inland and 40-80km to the right of the storm. Using a

similar approach, Riehl and Malkus (1961) and Simpson and Riehl (1981) found that for

hurricane-strength cyclones rainfall intensity averages about 33mm/h within 37km from the

cyclone center and for larger distances decays almost exponentially. While these studies extend

and improve upon Kraft's rule, they too fail to resolve the dependence of rainfall on storm

characteristics.

NASA's Tropical Rainfall Measuring Mission (TRMM) (Simpson et al., 1988) produced vast

amounts of TC rainfall data, making it possible to conduct more systematic statistical analyses.

Lonfat et al. (2004) extracted 2121 tropical cyclone microwave images from the TMI TRMM

data set to find how the azimuthally averaged rainfall intensity varies with distance R from the

TC center in three storm intensity ranges: tropical storms (TSs) with maximum tangential wind

speed Vm in the range 18-33m/s; CAT12 cyclones with V,, = 34-48m/s and CAT35 cyclones

with V, > 49m/s. The study concluded that TC rainfall intensifies with increasing Vm.. and the

symmetric component of the rainfall intensity reaches its maximum at a distance from the

hurricane center close to the radius of maximum winds Rm. For larger distances, rainfall

intensity decays approximately as a power law; see their Figure 11. Due mainly to storm

translation and vertical wind shear, rainfall intensity lacks circular symmetry and varies also with

the azimuth relative to the directions of shear and motion.

Chen et al. (2006) used the same TRMM storms to further assess the dependence of rainfall

on vertical wind shear S, defined as the difference between the 200 and 850-hPa horizontal wind

velocities in the annular region between 200 and 800km from the TC center. The study

calculated the average rainfall asymmetry, defined as the ratio of the wavenumber-1 Fourier



amplitude to the azimuthal average of the rainfall intensity, for the nine combinations of the 3

intensity categories in Lonfat et al. (2004) and three shear magnitude ranges (S < 5m/s,

5 <: S < 7.5m/s, and S > 7.5m/s). Chen et al. (2006) found that, in storms in the Northern

(Southern) hemisphere with high wind shear (S> 5m/s), rainfall intensifies downshear and

downshear-left (-right) of the storm.

Parametric rainfall models have also been developed. Using the radial rainfall profiles of

Lonfat et al. (2004), Tuleya et al. (2007) suggested one such model for 24-hr rainfall totals (R-

CLIPER) based on climatological and persistence information. The model assumes that storms

are symmetric and therefore ignores vertical wind shear and storm motion. Lonfat et al. (2007)

built on the R-CLIPER algorithm to construct a parametric rainfall model (PHRaM) that includes

shear-related asymmetries according to the results of Chen et al. (2006).

Due to data limitations, R-CLIPER and PHRaM use a coarse and incomplete storm

parameterization: the effects of storm intensity and vertical wind shear are modeled by

interpolating from 3 classes of each variable, the size of the vortex Rm is only implicitly taken

into account by allowing the location of the maximum rainrate depend on the intensity of the

storm according to the results of Lonfat et al. (2004), while other factors (e.g. the radial wind

velocity profile in the main vortex, the surface roughness, and the storm translation velocity) are

ignored. Another limitation is that the Lonfat et al. (2004) profiles on which R-CLIPER and

PHRaM are based use ensemble averages of storms with significantly different Rm values.

Since rainfall intensity has a sharp peak near Rm, this averaging operation depresses the

maximum rainfall estimate. For example, for CAT35 storms Lonfat et al. (2004) find maximum

rainfall intensities around 12mm/h, which is 2.5-3 times lower than the values most often

reported in the literature; see for example Riehl and Malkus (1961), Jiang et al. (2006),

Trenberth et al. (2007) and the rainfall intensities implied by the radar reflectivities in Marks

(1985) and Kepert (2006a,b). Finally, the Lonfat et al. (2004) profiles are based on TMI rainfall

products, which are known to be biased towards low values for high rainfall intensities and

towards high values for low rainfall intensities (Viltard et al., 2006).

Here we develop a simple theoretical model of TC rainfall based on the vertical outflow of

water vapor from the TC boundary layer (BL). This water vapor flux originates from the low-

level convergence of the horizontal flow. The analysis combines a user-specified tangential wind

profile at gradient level, an Ekman-type solution for the horizontal and vertical winds inside the



boundary layer (BL), and basic thermodynamics. Evaluation of the BL winds is based on Smith's

(1968) axi-symmetric formulation, modified in Chapter 1 to account for storm motion. The

resulting models of wind and rainfall are referred to as the modified-Smith (MS) BL model and

the modified-Smith-for-rainfall (MSR) model, respectively.

The MSR model produces asymmetric rainfall fields that explicitly depend on: the maximum

tangential wind velocity at gradient level Vm, the radius of maximum winds R,, Holland's B

parameter (Holland, 1980), the surface drag coefficient CD, the storm translation velocity V,, the

vertical diffusion coefficient of the horizontal momentum K, and the average temperature T and

saturation ratio Q inside the TC boundary layer.

An important departure from previous studies is that we parameterize asymmetries in terms of

storm motion not vertical wind shear. The degree to which TC motion and shear contribute to

wind, lightning, and rainfall asymmetries has been intensely discussed in the literature; see for

example Black et al. (2002), Corbosiero and Molinari (2002, 2003), Rogers et al. (2003), Lonfat

et al. (2004) and Chen et al. (2006). Separation of the two effects through data analysis is made

difficult by the high correlation between the directions and magnitudes of motion and shear in

any given geographical region (Corbosiero and Molinari, 2003; Lonfat et al., 2004; Chen et al.,

2006). As a consequence, the calculated rainfall asymmetry is almost the same when storms are

aligned in the direction of motion or shear, except for a region-specific rotation; see e.g.

Corbosiero and Molinari (2003) and Section 2.5 below. Another consequence is that, in risk

analysis, one may equivalently use shear or motion as conditioning parameter. Since it is easier

to include motion than shear when modeling rainfall and the historical records readily provide

storm motion information (e.g. Vickery and Twisdale, 1995, and Vickery et al., 2000), we have

chosen to develop a motion-based rather than shear-based parameterization of rainfall

asymmetry.

Section 2.2 summarizes the boundary layer model developed In Chapter 1 and Section 2.3

uses the vertical fluxes from that model to estimate surface rainrates in the case of stationary (i.e.

symmetric) cyclones. Model predictions are compared to MM5 simulations and R-CLIPER

rainrate estimates. The choice of MM5 is based on the fact that this code has been successfully

used to simulate a number of TCs, including Hurricanes Bonnie (1998) (Rogers et al. 2003,

2007), Floyd (1998) (Tenerelli and Chen, 2001, Rogers et al. 2007) and Frances (2004) (Chen et

al., 2007). Section 2.4 validates the symmetric MSR predictions using precipitation radar (PR)



rainfall products from 38 TRMM frames. The PR rainfall products are less biased than the

microwave imager (TMI) data used in previous studies, especially in the core region where

rainfall intensities are high (Viltard et al., 2006). Section 2.5 extends the analysis to translating

TCs, which generate asymmetric rainfall fields, assesses the effect of motion on the spatial

variation of TC rainfall, and suggests a motion-based parameterization of rainfall asymmetry.

Section 2.6 assesses the sensitivity of the symmetric and asymmetric rainfall components to

various TC parameters and Section 2.7 summarizes the main conclusions.

2.2 Modified Smith Boundary Layer Model for Moving Tropical Cyclones

A number of studies (Myers and Malkin 1961; Shapiro 1983; Kepert 2001) have developed

theoretical boundary layer (BL) models for moving tropical cyclones. These models derive the

radial, tangential and vertical winds inside the boundary layer from an assumed radial profile of

the tangential wind velocity under gradient balance, Vg,(R), and suitable surface boundary

conditions. For example, a widely used gradient wind profile is (Holland, 1980)

Vgr(R) = Vmax (RmaxR)B exp[ 1-(Rmax/R)B] (2.1)

where V,.x, Rx, and B are TC-specific parameters. According to equation (2.1), the tangential

velocity Vgr increases radially to a maximum Vax at R = Rax and for R >> Rax decays

approximately as a power-law of distance with exponent -B/2. The shape parameter B varies in

the range [1, 2], with typical values around 1.4 (Willoughby and Rahn, 2004). Next we briefly

describe the boundary layer model developed in Chapter I and in Sections 2.3-2.5 use this model

to calculate water vapor fluxes that are responsible for rainfall.

The model in Chapter 1 corrects Smith's (1968) BL formulation for the case of stress surface

boundary conditions and accounts for storm motion. Like in Smith (1968), vertical diffusion of

the horizontal momentum is parameterized through a vertical diffusion coefficient K. The

horizontal momentum equations are written in cylindrical coordinates that move with the storm

and solved using the Karman and Pohlhausen momentum integral method. In this method, one

specifies vertical profiles for the radial U and tangential V wind velocity components, which

satisfy the boundary conditions at the surface (elevation Z= 0) and for Z -+ co tend to the

gradient winds, for example the profile in equation (2.1). The boundary conditions are modeled

using a surface stress formulation with drag coefficient CD.



For U and V, we use functions of the Ekman type with parameters E (amplitude coefficient)

and 6 (dimensionless BL scale thickness) that vary both radially and azimuthally. The horizontal

momentum equations are vertically integrated through the BL to produce a system of two partial

differential equations, which are solved numerically to obtain E and 6 as functions of radius R

and azimuth 0 relative to the direction of storm motion. Once the horizontal wind components U

and V are obtained, the vertical wind velocity W is calculated using mass conservation, as

1 (RU) V
W(R,,Z)= -R dZ+ - dZ (2.2)

0 0

For stationary cyclones (V = 0), there is no azimuthal variation of V and U and equation (2.2)

reduces to

Id z
W(R,Z)= -- dR RfUdZ (2.3)

W(R,Z) in equation (2.3) is also the symmetric component of the vertical wind speed for a storm

that translates with velocity V, # 0.

The above modified Smith (MS) scheme is computationally very efficient and stable over a

wide range of parameter values. Model predictions are close to MM5 simulations and to

observed wind speeds; see Chapter 1 for details.

2.3 Estimation of the Symmetric Component of Rainfall

Estimates of rainfall intensity are obtained assuming that, with corrections to be made later, the

surface rain rate i is proportional to the water vapor up-flux at a reference height H. Similar

approaches have been used in the past to evaluate the rainfall potential of extra-tropical storms

(Palmen, 1958), orographic precipitation (Alpert, 1986) and latent heat (Magaki and Barros,

2004), as well as to predict rainfall extremes (Abbs, 1999; Wilson and Toumi, 2005).

To verify how strongly rainfall intensity is related to the vertical velocity WH(R,O)=

W(R,O,Z=H) from equation (2.2) at different elevations H, we used MM5 simulations. Figure 2.1

shows the correlation between the two quantities using 12 frames of Hurricane Frances,

simulated at 6 hr intervals for the period Aug. 29-Sep. 01, 2004. The correlation is maximum

around 0.85 at an elevation of 2-3km, which can be taken as the reference height H. The inset of



Figure 2.1 compares the MM5 radial profiles of the simulated rainfall intensity and vertical wind

velocity at 3km elevation for the 06:00UTC Aug. 29, 2004 frame. Both profiles are normalized

to have unit maximum value. This detailed comparison shows that the correlation coefficient is

below 1 due mainly to fluctuations of the rainfall intensity caused by rainbands and other local

convective phenomena. If these fluctuations in the MM5 profiles are smoothed out, which is

what the present MSR model effectively does, the surface rainfall intensity and vertical wind

speed are in even better agreement.
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Figure 2.1: (a) Ensemble correlation function of the vertical wind velocity at different elevations and the surface

rainfall intensity from MM5 simulations of Hurricane Frances. Ensemble averaging is over 12 frames (at 6 hr

intervals) during the period Aug. 29-Sep. 01, 2004. (b) Normalized radial profiles of surface rainfall intensity and

vertical wind velocity on Aug. 29, 2004 at 06:00UTC at 3km elevation.

To complete the symmetric rainfall model one needs the proportionality constant between

rainfall intensity and vertical wind speed. From simple calculations using a lapse-rate of about 6-

7 oC/km (Rogers and Yau, 1996), one obtains that at elevations in excess of 6-8km the water

vapor mixing ratio is close to zero. Consequently, one may accurately assume that the upward

water vapor flux from the TC boundary layer equals the downward flux of rainwater. To keep

the rainfall model simple, we assume that below the reference height H the temperature T and

saturation ratio Q are constant and equal to the depth-averaged values T and Q. For cyclones

over tropical and sub-tropical waters, T ranges between 20-240 C and Q is between 75-85%; see

Gray et al. (1975), Frank (1977) and Smith (2003). Under these conditions, the symmetric

rainfall intensity isym is given by



a(I) Q WH(R) . WH(R) > 0
isym(R) = (2.4)

0 , WH(R) <O 0

where a( T) is the volume of liquid water per unit volume of saturated air after complete

condensation (see below), and WH(R) = W(R,Z=H) is the vertical wind velocity in equation (2.3)

for Z = H. The function a(T) is obtained by combining the ideal gas law with the Clausius-

Clapeyron equation. Using a liquid water density pw = 1000kgr/m 3, this gives

1.324 103  17.67 "
a(T) = - exP) (2.5)

T+273 T+243.5

where T is in oC. Notice that in downdraft regions where WH is negative, equation (2.4) sets the

rainfall intensity to zero. This means that rainfall generation is limited to regions where moist air

updrafts. However, due to the slant of the wall updrafts and the cyclonic advection, rainfall may

be nonzero also in downdraft regions. This effect is modeled below through a rainfall

redistribution scheme.

2.3.1 Correction for the sloping angle of the wall

Flight observations (e.g. Jorgensen, 1984b; Marks and Houze, 1984) show that the wall updraft

of a tropical cyclone slopes outward to altitudes Ho - 5-7km, with an angle y/o from the vertical

in the 450-600 range. The MS model in Chapter 1 assumes fixed vertical profiles of the radial and

tangential wind velocities and therefore does not account for such sloping angle. Consequently,

equation (2.4) tends to underpredict the radius of maximum rainfall.

To include radial advection of the rainwater by the wall updraft while avoiding discontinuities

in the radial distribution of rainfall, we assume that the angle of the updrafts decreases

exponentially with distance R from the storm center, as

(IR-RmI
y(R) = /o exp (- Rm (2.6)

where Rm is the location where isym and WH in equation (2.4) are maximum. The outward radial

displacement AR of the rainwater due to the sloping updrafs is then

AR = Ho tany (2.7)



Notice that estimating rainfall intensities at distance R from the cyclone center as isym(R-AR) is

technically incorrect because the model does not satisfy mass conservation. However, we have

verified that the error is very small and negligible in practice.

2.3.2 Comparison with MM5 and R-CLIPER

Figure 2.2 compares the azimuthally averaged rainfall intensities isym for Hurricane Frances

(2004) estimated by MM5, R-CLIPER (see Introduction), and the present modified-Smith-for-

rainfall (MSR) model. The MM5 and MSR curves are the ensemble averages of 12 rainfields

simulated at 6 hr intervals during the period Aug. 29-Sep. 01, 2004, using the two models.
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Figure 2.2: Comparison of the ensemble average rainrates for Hurricane Frances 2004 during the period Aug. 29-

Sep. 01, produced by the MSR, MM5 and R-CLIPER rainfall models.

The MM5 simulations where conducted at 1.67km resolution using the nested grid capability at

the University of Miami (Houze et al., 2006; 2007), whereas the MSR estimates were obtained

as follows:

1) For each frame, the parameters Vmx and Rmx in equation (2.1) were extracted from the

azimuthally averaged tangential winds simulated by MM5 at 5km elevation;

2) Holland's (1980) gradient wind profile with B =1 was used in the MS model in Chapter 1

to calculate the vertical wind profile WH(R) at elevation H = 3km;

3) Equations (2.4) and (2.5) were used to estimate how the azimuthally averaged rainfall

intensity isym varies with distance R from the TC center;

4) Finally, the results were corrected for sloping-updrafts using equations (2.6) and (2.7) and

averaged over the 12 frames.



Setting Holland's B to 1 reproduces well the MM5 rainfall fields, as well as the PR rainfall

estimates from TRMM; see Section 2.4.

The MS model in Chapter 1 requires also specification of the Coriolis parameterf, the vertical

diffusion coefficient K, and the surface drag coefficient CD. In our simulations we have set f =

4.7 10-5 sec -', which corresponds to latitude 190 North (the approximate latitude of TC Frances

during the period considered), K = 50m2/s, and CD= 0.002. Values of K near 50m 2/s are often

quoted in the literature (e.g. Smith, 1968; Shapiro, 1983; Kepert, 2001; Kepert 2006b) and are

consistent with back-calculations from MM5 simulations (Melicie Desflots, 2007, personal

communication). The value 0.002 is representative of drag coefficients extracted from oversea

MM5 simulations and to values in the literature for winds in the hurricane range (e.g. Kepert,

2001; Powell et al., 2003; Donelan et al., 2004). The vertically averaged temperature T (over a

depth of 3km) and saturation ratio Q in equation (2.4) have been set to 220C and 80%,

respectively. These values correspond to a depth-averaged mixing ratio of approximately 13gr/kg,

which is slightly lower than the ensemble average value of 15gr/Kg extracted from MM5

simulations for Hurricane Frances (Melicie Desflots, 2007, personal communication). For the

wall updraft correction in equations (2.6) and (2.7), we have assumed an outwards slope of Vio =

500 from the vertical to an altitude Ho = 6km.

The solid lines in Figure 2.2 are the profiles of isym before the correction for sloping updrafts

(thin lines) and after that correction (thick lines). The rainfall estimates from the MSR model are

close in shape and magnitude to the MM5 profiles. This is especially true after the correction for

out-sloping updrafts. Differences are mostly due to local rainfall intensifications in MM5 caused

by rainbands. By contrast, the rain rates of Lonfat et al. (2004), which form the basis of the R-

CLIPER algorithm, agree with MM5 in the far field but severely underestimate rainfall in the

near-core region. As discussed in the Introduction, reasons for the much-reduced rain rate

maximum in R-CLIPER are the smoothing effect of ensemble averaging and the bias of the TMI

rainfall retrievals used by Lonfat et al. (2004).

2.4 Validation of Symmetric MSR Predictions

Figure 2.3 compares PR and MM5 rainfall estimates with rainfall intensities generated by the

present MSR model using the procedure described in Section 2.3. Figure 2.3.a shows a

scatterplot of the ratio between the PR and MSR rainfall estimates as a function of the



normalized distance R/R. from the storm center, using a 5km x 5km grid of spatial locations

and the 38 TRMM frames in Table 2.1 (a total number of 48483 points). The number of points in

different ranges of R/R,. is shown in Table 2.2.
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Figure 2.3: Comparison of PR, MM5 and MSR point rainfall intensity estimates. (a) Scatterplot of the ratio between

PR and MSR rainfall estimates as a function of the normalized distance RIR,, from the storm center, for 38 TRMM

frames; see Table 2.1. The number of data points in different ranges of R/R, is shown in Table 2.2. (b) Scatterplot

of the ratio between MM5 and MSR rainfall estimates as a function of RIRm., for hurricane Frances 2004 during the

period Aug. 29-Sep. 01. (c) Local averages and standard deviation of the ratios in (a) using a moving window of

2000 points. (d) Same as (c) but for the ratios in (b).

The MSR estimates where generated using the Vm, Rmax and latitude information in the

extended best track record (Demuth et al., 2006; M. DeMaria, 2008; personal communication).

Figure 2.3.b shows a similar scatterplot of the ratio between the MM5 and MSR rainfall

estimates. In this case the comparison is based on the 12 simulated rainfields of Hurricane

Frances, for a total of 43919 points. All MSR simulations were performed using B = 1,

K = 50m2/s and CDo = 0.002. Both Figures 2.3.a and 2.3.b show a large dispersion, which reflects
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the significant small-scale variability of rainfall intensity due to rainbands and local convection.

Those fluctuations are not resolved by the MSR model.

Table 2.1: Storm characteristics for the PR-TRMM rainfields used in Figure 2.3. The estimates of Vmax and Rax are
obtained from the extended best track record (M. DeMaria, 2008; personal communication).

____________ U U U

Storm center
Lat. Lon.
(deg) (dea)

Vmax
(m/s)

Rm
(km)

Intensity
category

-0 21.7 -61.6 48.8 41 CAT2
23.5 -68.7 64.0 37 CAT4

23.7 -70.6 69.3 37 CAT4
12.6 -43.7 23.1 37 TS

S 15.7 -49.8 51.4 19 CAT3
17 -51.3 54.0 28 CAT3

17.9 -52.6 59.1 28 CAT4
19 -57.3 51.4 28 CAT3

21.2 -68.5 61.7 28 CAT4
8.9 -38.9 25.7 37 TS
10.7 -50.6 57.5 28 CAT4
11.2 -53.4 51.4 28 CAT3

- 12.3 -64.1 61.7 19 CAT4
12.7 -66.2 61.7 20 CAT4
17.4 -77.3 66.8 28 CAT4
17.7 -78.4 64.3 28 CAT4

25.6 -87.4 61.7 46 CAT4

S27.4 -70.6 38.6 42 CAT1
a 25.5 -69.5 41.1 37 CAT2
M 26.5 -74.3 43.7 60 CAT2

26.5 -75.6 46.3 46 CAT2
11.5 -35.3 26.7 37 TS

S 17.3 -45.5 57.8 32 CAT3
S 19.1 -47.4 64.0 32 CAT4

22.9 -48.6 54.0 28 CAT3
25.7 -49.5 48.8 28 CAT3

24.6 -85.6 51.5 56 CAT3

S 25 -86.2 56.5 50 CAT3
4 26.9 -89 75.0 38 CAT5

23.6 -87.2 51.5 20 CAT2
24.4 -88.4 56.5 20 CAT2
28.4 -91.4 54.0 20 CAT4
29 -91.9 41.1 20 CAT2

24.3 -85.9 61.7 28 CAT4
S24.9 -88 77.1 19 CAT5
u 25.4 -88.7 72.0 19 CAT5

; 26.8 -91 59.1 37 CAT4
27.4 -91.9 59.1 37 CAT4



Table 2.2.: Number of data shown in Figure 2.3.a that fall into different ranges of R/Rma,.

RiRmax No. of data
range points

0-1.5 3586
1.5-3 8772
3-4.5 11025

4.5-6 9250
6-7.5 6626

7.5-9 4027

9-10.5 2272

10.5-12 1273

12-19 1652

Figures 2.3.c and 2.3.d show the moving average and standard deviation of the ratios in Figures

2.3.a and 2.3.b, using a window of 2000 points. Except for a small region close to the core (R <

1.5R,.), the local average in Figure 2.3.c fluctuates around 1. This means that on average the

MSR model generates unbiased rainfall profiles for radial distances up to 15R,. from the TC

center. For distances R < 1.5 R,. the MSR model tends to overpredict the PR rainrates.

As noted above, the large local standard deviations in Figure 2.3.c reflect the significant

small-scale variability of TC rainfall. It is interesting that the standard deviation tends to increase

as the distance from the TC center increases. This is in accordance with the findings of other

studies (Jorgensen, 1984a; Powell, 1990, and Molinari et al., 1994) that the outer TC

environment exhibits more cellular structure and higher small-scale variability relative to the

inner region.

Figure 2.3.d shows that for radial distances up to 8R. the MSR model tends to underpredict

the MM5 rainfall intensities by about 50%, whereas for larger distances the opposite is true.

Since the MSR model displays good skills in reproducing the PR rain rates, it is possible that

these differences reflect MM5 biases. This is consistent with what other studies have found when

comparing MM5 rainfall estimates to empirical and radar observations; see e.g. Fall et al. (2007),

Juneng et al. (2007), Chen et al. (2007) and Rogers et al. (2007). The higher standard deviations

in Figure 2.3.d compared to Figure 2.3.c further suggest that MM5 may enhance local convective

activity. One should however caution that these observations are based on just one simulated

hurricane and should be validated through a more extensive comparison.



2.5 Asymmetry of the Rainfall Field
In the case of a moving TC, equation (2.4) becomes

Sa() Q WH(R,8) WH(R,O) > 0

i(R,) =R,) (2.8)
0 , WH(R,O) < 0

where the vertical wind speed WH depends on both R and 0 and is given by equation (2.2) for

Z = H. In this asymmetric case the rainfall intensities from equation (2.8) must be corrected both

radially using equations (2.6) and (2.7) and azimuthally to account for the redistribution of

rainwater due to cyclonic circulation; on the latter, see Corbosiero and Molinari (2002), Black et

al. (2002) and Rogers et al. (2003).

To keep the correction simple, we perform the azimuthal redistribution uniformly within an

angular interval [0, O+AO] where AO is given by

J = R (tf + tr) (2.9)

The angle A0 is in radians (positive clockwise in the Northern hemisphere), Vgr is the tangential

wind velocity at gradient level [equation (2.1)], tf - 30min is the time needed for rain generating

features like convective cells to develop (Weisman and Klemp, 1986; Rogers and Yau, 1996)

and tr is the time needed for a raindrop at height H to reach the ground. A rough estimate of tr

comes from assuming an average raindrop velocity of 2-3m/s and a boundary layer depth H ;

2.5-3km. This gives tr, 25min.

Next we use equations (2.8) and (2.9) for tf + tr = 60min to assess the effect of motion on the

spatial variation of TC rainfall and propose a motion-based, rather than shear-based,

parameterization of rainfall asymmetry.

2.5.1 Motion-based versus shear-based parameterization of rainfall asymmetry

MSR is a boundary layer model that generates spatial rainfall without explicitly considering

vertical shear S. Rather, rainfall asymmetries are linked to storm motion. Since most of the

rainfall originates at low altitudes relative to those that define wind shear, one may expect this to

be a suitable approach.

To verify this assertion, Figure 2.4 compares the shear-aligned rainfall asymmetry from

TRMM with the motion-aligned rainfall asymmetry from MSR. In both cases, asymmetry is



defined as

A(R,) = i(R,O)- isvm(R) (2.10)
A(R,O) = isym()(2.10)isym(R)

where i(R,O) is rainfall intensity at (R,O) and isym(R) is the azimuthal average. More specifically,

Figure 2.4.a shows the average of the rainfall asymmetries in Figure 7 of Chen et al. (2006) over

all TC-intensities and shear magnitudes after aligning the shear vector to point North. For shear

we have used the distribution in Figure 6 of the same study, whereas for TC intensity we have

used the discrete distribution in Table 1 of Lonfat et al. (2004).
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Figure 2.4: Comparison of rainfall asymmetry from TRMM and the MSR model. (a) Ensemble average of rainfall

asymmetries in Figure 7 of Chen et al. (2006) over all TC intensities and shear magnitudes. (b) Ensemble average of

rainfall asymmetries from MSR over all TC intensities and translation velocities. In (b), the TC moves in the

Northern hemisphere at an angle 750 to the west of the shear vector in (a).

Similarly, Figure 2.4.b was generated by averaging rainfall asymmetries from the MSR model

over a range of TC intensities and translation velocities. Storms are assumed to move in the

Northern hemisphere at an angle of 750 west of the shear-direction in Figure 2.4.a. This is the

average angle between shear and motion from Figures 3 and 12 of Chen et al. (2006) and is in

the range reported by Corbosiero and Molinari (2003). For storm intensity we have used the

same discrete distribution as in Figure 2.4.a, setting Vm, = 30m/s for tropical storms, V,,x =

42m/s for CAT12 and Vmax = 60m/s for CAT35 systems. The distribution of the translation

velocity was taken from Figure 11 of Chen et al. (2006). All other storm parameters have been



kept constant, with values f = 4.7 10-5 sec -', Rmax = 40km, B = 1, T= 220C, Q= 0.8, K = 50m2/s,

and CD =0.002.

One sees that the two asymmetries are very similar in both pattern and magnitude, validating

the contention that for rainfall risk one can use the MSR model with motion as the driver of

asymmetry. Differences between Figures 2.4.a and 2.4.b occur mainly far away from the core

(R > 250km), but these differences are statistically not significant and inconsequential for risk

analysis.

2.6 Sensitivity Analysis

Figures 2.5 and 2.6 show the sensitivity of the MSR model results to various tropical cyclone

characteristics: the tangential wind speed under gradient balance [parameterized by Vmax, Rmax

and B; see equation (2.1)], the vertical diffusion coefficient K, the surface drag coefficient Co,

the depth-averaged temperature T inside the BL and the translation velocity V, of the storm.

Since rainfall intensity is proportional to the depth-averaged saturation ratio Q [see equations

(2.4) and (2.8)], dependence on Q is not illustrated.

Figure 2.5 shows the sensitivity of the azimuthally averaged rainfall intensity isym to Vmax, Rmax,

B, K, CD and T. Parameters are varied one at a time around the base-case values Vm,, = 50m/s,

Rmax = 40km, B = 1, K = 50m2/s, CD = 0.002, T = 22 0C and Q = 0.8 (solid lines). The figure

shows that the maximum tangential velocity Vmax and the roughness of the surface boundary

(expressed through CD) have significant effects on rainfall intensity and that lower values of R,.

produce rain rates that are more peaked and more concentrated near the TC center.

Dependence of the azimuthally averaged rainrate isym on Vm of the type produced by the

model has been observed in TC rainfall data (Lonfat et al., 2004, Tuleya et al., 2007; see

Introduction). For example, the expressions used by the R-CLIPER parameterization (Tuleya et

al., 2007) indicate that when Vma increases from 50 to 70m/s, the maximum rainrate increases by

a factor of about 1.5. This is also what the MSR model predicts. However, to our knowledge the

effect of CD and Rmax on isym have not been isolated from data. The effect of surface roughness

can be qualitatively assessed using the finding in Trenberth et al. (2007) that low-level horizontal

wind convergence is by far the dominant factor for TC rainfall. Hence, if one considers that low-

level convergence increases with increasing surface drag (see Chapter 1), one concludes that

higher surface drag coefficients should cause TC rainfall to intensify.



The B parameter has a small effect on the peak rainfall intensity, but influences significantly

the rate at which rainfall decays with radial distance (higher values of B resulting in faster decay).

The azimuthally averaged rainfall intensity isym has small sensitivity to temperature T and the

vertical diffusion coefficient K. Consequently, setting those parameters to constant values (e.g. to

i' = 22 0C and K = 50m 2/s, as was done in Sections 2.3-2.5) does not induce large errors.
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Figure 2.5: Sensitivity of the azimuthally averaged MSR rainfall profiles. Solid lines correspond to Vm, = 50m/s,

Rmx= 40km, B = 1, CD= 0.002, K = 50m2/s, 7= 220C and Q= 0.8. Each panel shows results under perturbation of

one parameter.

Figure 2.6 shows the effect of the drag coefficient CD and translation velocity V, on rainfall

asymmetry for a TC that translates northward in the Northern hemisphere. All other parameters
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are the same as for the base case in Figure 2.5. As expected and in accordance with findings in

Lonfat et al. (2004), the asymmetry increases as Vt increases. The effect of CDo is more complex:

at the front of the storm, rainfall asymmetry is insensitive to CD, whereas at the rear-right the

rainfall asymmetry increases with decreasing CDo.
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Figure 2.6: Sensitivity of MSR rainfall asymmetry to the drag coefficient CD and the storm translation velocity V, for

a tropical cyclone that moves northward. All other parameters are the same as for the base case in Figure 2.5.

2.7 Conclusions
We have developed a simple theoretical model for the large-scale rainfall intensity field

generated by translating tropical cyclones (TCs). The model assumes that, with corrections for

sloping updrafts and azimuthal redistribution, the upward water vapor flux originated from the

boundary layer is a good predictor of rainfall intensity. Vertical moisture fluxes are calculated

Vt I I

C0=0.01
V, = 4m/s

_ __



using elementary thermodynamic principles in combination with a boundary layer model that

extends Smith's (1968) analysis to moving storms.

The proposed modified-Smith-for-rainfall (MSR) model estimates the rainfall field from a

given radial profile of the tangential wind speed at gradient level, the translation velocity Vt of

the storm, the surface drag coefficient CD, and the average temperature T and saturation ratio Q
inside the TC boundary layer. Model predictions are compared to MM5 simulations and R-

CLIPER estimates and validated through precipitation radar (PR) rainfall products from TRMM.

The MSR model displays good skills in reproducing the shape and magnitude of PR rainfall

fields. We have also verified that the asymmetries produced by storm motion are close to those

observed and often parameterized in terms of vertical wind shear. In a parametric analysis, we

have studied how the model predictions depend on various storm characteristics.

The combination of a rich parameterization and computational efficiency makes the present

model an attractive instrument for risk applications, where one must assess tropical cyclone

rainfall under many storm and environmental scenarios. For the latter purpose one needs tools

with computational times on the order of minutes. This constraint effectively rules out the use of

full-physics high-resolution numerical weather prediction models. An important limitation of the

MSR model relative to high-resolution schemes is that it does not account for local rainfall

intensifications due to rainbands and local convection. In Chapter 3 we model those

intensifications by adding a stochastic component to the MSR model predictions. Another

limitation of the MSR model is that it does not account for after-landfall conditions and therefore

is applicable only to open-water or near-water sites. Extension of the model to inland conditions

should be pursued in the future.



3. Long-Term Rainfall Risk from Tropical Cyclones in Coastal
Areas

3.1 Introduction
The quantification of long-term rainfall risk is a basic problem of stochastic hydrology (e.g.

Chow et al., 1988; Singh, 1992). Our specific interest is in the risk of extreme rainfall posed at

coastal sites by tropical cyclones (TCs). These events are relatively rare, but in combination with

wind, surge and waves, high rainfall intensities may have devastating consequences (Herbert et

al., 1997; Rappaport, 2000).

For ordinary rainfall, standard risk analysis techniques use historical annual-maximum data

(e.g. Koutsoyiannis et al., 1998) or peak-over-threshold (PoT) information (e.g. Madsen et al.,

1997). The episodic and spatially localized nature of tropical cyclones prevents one from using

these standard techniques. For example, the annual maximum and PoT rainfall statistics due to

tropical cyclones depend on whether the site is "hit" by one or more TCs in any one year and

therefore are highly erratic. For this reason, the risk is best assessed parametrically, by

combining a probabilistic model of the maximum rainfall due to a TC with given characteristics

0 = [O1,...,Or] with the rate at which those events occur. For coastal sites, the vector 0 might

include the intensity and size of the storm, the location and translational velocity at landfall, and

possibly other parameters related to atmospheric conditions, the radial profile of the tangential

winds, etc. Parametric approaches of this type have been used to assess the risk posed by tropical

cyclones for wind, surge and waves (Myers, 1975; Ho and Myers, 1975; Ho et al., 1987; Powell

et al., 2005; IPET, 2006, 2008), but not rain. Our objective is to fill this gap.

The main problem for rainfall is to evaluate the extreme precipitation intensities caused by a

TC with given characteristics 0. The historical data are too sparse and the potentially important

TC parameters are too many to infer such extreme rainfalls from empirical observations alone.

For example, current empirical approaches (Lonfat et al., 2004, 2007; Tuleya et al., 2007)

classify storms into three coarse intensity categories and use microwave imager (TMI) data from

TRMM (Simpson et al. 1988) to calculate the ensemble-average rainrate for each category as a

function of distance from the TC center.

The alternative we pursue here is to use a physical model to assess the dependence of the

mean rainfall field on 0 and statistical analysis to quantify the fluctuations of rainfall intensity



around this mean field. The physical model is that developed in Chapters 1 and 2. In Chapter 1

we proposed a theoretical method to estimate the large-scale horizontal and vertical winds inside

TCs (the vertical winds are largely responsible for rain). The model is an extension of Smith's

(1968) formulation and is referred to here as the Modified Smith (MS) model. Characteristics of

the TC that are explicitly considered by the model are the maximum tangential wind speed Vmx,

the radius of maximum winds Rma, the parameter B that controls the shape of the radial profile

of the tangential wind speed (Holland, 1980), the storm translation velocity V,, the surface drag

coefficient CD, and the vertical diffusion coefficient K. When V, = 0, the wind field is symmetric

around the storm center, whereas when the TC translates in the Northern (Southern) hemisphere

the field is asymmetric, with stronger horizontal and vertical winds right-front (left-front) of the

storm. The model does not resolve rainbands, local convection and turbulent phenomena and

therefore produces smooth wind fields.

In Chapter 2 we extended the MS model to predict TC rain, assuming that the upward

moisture flux at the top of the TC boundary layer is all converted into rainfall. The vertical

moisture flux is evaluated from the vertical winds generated by the MS model and two additional

parameters: the average temperature T and average saturation ratio Q inside the TC boundary

layer. We call this the modified-Smith-for-rainfall (MSR) model. The MSR model should prove

useful for climatologic studies, but for hazard analysis it has the limitation of ignoring the inter-

storm and intra-storm variations of rainfall intensity. These variations are highly significant for

the assessment of risk. For example, Lonfat et al. (2004) found that, also within a given TC

strength category, the average of the positive rainfall intensity inside annular regions of 10km

width may deviate from the median value by more than one order of magnitude.

Our main objectives are: (1) Extend the MSR model to obtain the probability distribution of

the maximum rainfall intensity in a time interval of given duration D at a fixed geographical

location during the passage of a tropical cyclone with given characteristics 0 and (2) Combine

this maximum rainfall model with a TC recurrence model to quantify rainfall risk in the form of

intensity-duration-frequency (IDF) curves. For the first objective, we consider a site A at some

distance y to the right (y < 0) or left (y > 0) of the TC center, as shown in Figure 3.1. As the

storm passes, the rainfall intensity at A fluctuates as a random process I(t). Our interest is in

ID(t), the moving average of I(t) for an averaging duration D, and more specifically in the

distribution of ID,,x(y,O), the maximum of ID(t) during the storm.



Figure 3.1: Schematic representation of a moving storm. Point O translates with the storm at speed V,. Point A is the

geographical location of interest.

Section 3.2 presents our general approach to calculate the distribution of ID,,max(y,O). This

distribution is obtained in Section 3.3 and validated in Section 3.4. Section 3.4 also shows how

the distribution depends on various storm characteristics, the normalized distance y/R,n from the

center of the storm, and the averaging duration D. Section 3.5 uses the model of ID,,ma(y,0) and a

recurrence relation for hurricanes in the Gulf of Mexico to obtain IDF curves for New Orleans

and compares these curves with published IDF values for all rainstorms (TCs and non-TCs)

combined. Conclusions are stated in Section 3.6.

3.2 Framework for the Estimation of Extreme TC Rainfall

Our first objective is to relate the distribution of the maximum rainfall intensity ID,ma,(y,O) to the

smooth rainfall intensities produced by the MSR model in Chapter 2. The storm parameters are 0

= [Vma, Rax, Vt]. The analysis uses a Cartesian reference frame (x,y), translated and rotated such

that the center of the storm O moves to the right along the x axis; see Figure 3.1. In this

reference, the ordinate y of A is also the closest (signed) distance of A from the storm center.

To estimate this relationship, we use precipitation radar (PR) data from the TRMM mission

(Simpson et al. 1988; Kummerow et al., 1998; Lee et al., 2002). These data are in the form of

swaths about 200km wide with a spatial resolution of approximately 5 km and have been

validated against ground-based radar and rain gauge measurements (Bolen and Chandrasekar,

2000; Liao et al., 2001; Wolff et al., 2005). Due to their long inter-frame time (about 12 hours),

the PR snapshots cannot be interpolated to produce the rainfall intensities in continuous time that

are needed to estimate rainfall maxima. A common way to overcome this limitation is to use

Taylor's frozen turbulence hypothesis (Taylor, 1921, 1938). Under this hypothesis, the temporal



variability of rainfall at a fixed location A is statistically the same as the variability that results

from translating the frozen-in-time rainfield over A with the storm velocity V,. For example,

Vicente et al. (1998), Scofield and Kuligowski (2003), Kidder et al. (2005) and Ferraro et al.

(2005) used Taylor's hypothesis to obtain rainfall totals at fixed locations from satellite and radar

rainfall snapshots.

It follows from Taylor's hypothesis that ID,max(y,O) has the same distribution as I,m,.(y,O), the

maximum of the rainfall intensity averaged in a spatial window of length I along cross-section C

in Figure 3.1, for 1 = DV,. As an example, Figure 3.2 shows moving-average rainfall intensities

from Hurricane Katrina (2005) along a cross-section at distance y = 100km from the storm

center, for averaging lengths I = 6km (dashed line) and 1 = 24 km (solid line). The cross-section

extends over L = 384 kilometers and is symmetrical relative to the storm center.
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Figure 3.2: Rainfall intensities from Hurricane Katrina (Aug. 28, 2005, at 03:00UTC; TRMM frame 44361) along a

cross-section C at distance y = 100km from the storm center, for spatial averaging scales 1= 6 and 24 km. The

maximum values ll, are indicated by circles. IL is the average value for the entire cross-section and IL,MSR is the

estimate of IL produced by the MSR model.

The intensity labeled IL in Figure 3.2 is the average PR rainrate in L, whereas IL,MSR is the

estimate of that average rainrate produced by the MSR model. These average intensities play an

important role in our analysis. For any given (y,0) combination, IL,MSR is a deterministic quantity,

whereas IL is regarded as a random variable with different values for different tropical cyclones.

We model this storm-to-storm variability by expressing IL(y,0) as

L(y,O) = IL,MSR(y,O) flL(y,O) (3.1)



where /fL is a random variable.

Figure 3.2 also shows significant amplification of the rainfall intensity when one considers the

maximum over lengths 1 < L. One may express the maximum in 1, I,max, as

I,max (y,O) = IL,MSR(Y,O) i,maWx(Y,) = IL,MSR(Y,O) L(y,0) Ymax(y,O) (3.2)

where the total factor relative to IL,MSR, fl,,max, is the product of fL in equation (3.1) and a random

amplification factor Yl,max for the change of scale from L to 1. The next section uses PR/TRMM

data from 8 tropical cyclones (a total of 38 frames) to derive the distributions of PL and ', max. The

selected frames (see Table 3.1) cover a wide range of TC intensities, from tropical storms to

CAT5 systems, under pre-landfall conditions. This makes our model best suited for use in coastal

areas. Due to the limited lateral coverage of the PR instrument, an additional requirement for

selecting the frames was to cover regions close to the hurricane core (with radial distance less

than 300km from the storm center), as these are the regions that are most critical for rainfall.

3.3 Distribution of PL and 4.max

Equation (3.2) relates the maximum rainfall intensity in I to the average intensity in L produced

by the MSR model using two random correction factors: a factor fL to obtain the average rainfall

in L, and a factor yl,max to obtain the maximum average intensity at a smaller scale 1. Sections

3.3.1 and 3.3.2 obtain the distribution of these factors using the rainfall information in Table 3.1

and MSR model simulations.

3.3.1 Distribution of fL

The factor fPL is given by

Ir(y,0)
flL(y,) I(,O) (3.3)

IL,MSR(YO)

Its distribution generally depends on the distance y from the TC center and the vector 0 = [Vmax,

Rmax Vt] of storm characteristics, but as we show next, a simple parameterization in terms of the

normalized distance y' = ly/R,,xl and the large-scale MSR rainfall intensity IL,MSR suffices. Of

course, IL,MSR is itself a function of 0.



Table 3.1: Characteristics of the PR/TRMM rain frames used in the analysis. The direction of storm translation is

relative to the East and is positive counter-clockwise. The
track record (M. DeMaria, 2008; personal communication).

estimates of V,x and R,,, are from the extended best

Storm center
Lat. Lon.
(dep (deg)

.3 .3 1 ~ 1
Storm
speed
(m/s)

storm
direction

(deg)

V(s)
(mIS)

R(k)
(km)

TRMM
frame

number

Storm
intensity

S 21.7 -61.6 4.9 143 48.8 41 10290 CAT2

I 23.5 -68.7 4.8 169 64.0 37 10317 CAT4

23.7 -70.6 5.8 171 69.3 37 10321 CAT4

12.6 -43.7 10.9 158 23.1 37 38646 TS

S15.7 -49.8 5.4 139 51.4 19 38667 CAT3

S 17 -51.3 5.3 139 54.0 28 38677 CAT3

17.9 -52.6 4.3 144 59.1 28 38682 CAT4

19 -57.3 4.9 180 51.4 28 38708 CAT3

21.2 -68.5 6.1 162 61.7 28 38739 CAT4

8.9 -38.9 7.6 184 25.7 37 38789 TS

10.7 -50.6 12.2 185 57.5 28 38814 CAT4

11.2 -53.4 8.1 173 51.4 28 38820 CAT3

12.3 -64.1 8.3 166 61.7 19 38845 CAT4

12.7 -66.2 7.3 164 61.7 20 38851 CAT4

17.4 -77.3 4.1 194 66.8 28 38892 CAT4

17.7 -78.4 4.4 153 64.3 28 38897 CAT4

25.6 -87.4 5.5 112 61.7 46 38954 CAT4

27.4 -70.6 5.5 0 38.6 42 39045 CAT1

25.5 -69.5 1.1 207 41.1 37 39079 CAT2

q 26.5 -74.3 7.4 173 43.7 60 39106 CAT2

26.5 -75.6 6.5 180 46.3 46 39110 CAT2

11.5 -35.3 7.1 176 26.7 37 38987 TS

X 17.3 -45.5 2.0 166 57.8 32 39033 CAT3

" 19.1 -47.4 5.9 121 64.0 32 39048 CAT4

M 22.9 -48.6 8.2 112 54.0 28 39059 CAT3

25.7 -49.5 6.8 117 48.8 28 39063 CAT3

S 24.6 -85.6 2.1 153 51.5 56 44357 CAT3

" 25 -86.2 3.5 146 56.5 50 44361 CAT3

4 26.9 -89 5.5 135 75.0 38 44373 CAT5

23.6 -87.2 9.0 162 51.5 20 27826 CAT2

24.4 -88.4 6.2 141 56.5 20 27830 CAT2

28.4 -91.4 10.1 117 54.0 20 27842 CAT4

29 -91.9 5.4 124 41.1 20 27845 CAT2

24.3 -85.9 5.7 189 61.7 28 44743 CAT4

24.9 -88 3.9 166 77.1 19 44754 CAT5

25.4 -88.7 4.3 153 72.0 19 44758 CAT5

26.8 -91 5.5 135 59.1 37 44770 CAT4

27.4 -91.9 4.8 143 59.1 37 44773 CAT4

Figure 3.3 shows statistics of /8L as a function of y' and IL,MSR for the TRMM frames in Table

3.1. The MSR intensities IL,MSR where obtained using the values of Vm, Rm, and V, in the



extended best track record (M. DeMaria, 2008; personal communication; Demuth et al., 2006).

In addition, the MSR model requires the vertical diffusion coefficient K, the surface drag

coefficient CD, the vertically averaged temperature T and saturation ratio Q inside the boundary

layer (BL), Holland's B parameter for the profile of gradient winds, the sloping angle yqo and

height Ho of the wall updraft, and the temporal scale tr for azimuthal re-distribution of rainfall by

the cyclonic circulation; see Chapter 2 for details. In our simulations we have set K = 50m2/s, CD

= 0.002, T7= 220C, Q = 0.8, B = 1, y0o = 500, Ho = 6km and t, = 60min. In Chapter 2 we

recommend these settings as representative of tropical cyclones in the North Atlantic and as

values that reproduce well the TRMM/PR rainfall fields in an ensemble-average sense.

Figures 3.3.a and 3.3.b show smooth contour plots of the log-mean mlng and log-standard

deviation oin. of fL as a function of the normalized distance y'= ly/Raxl and the rainfall intensity

IL,MSR for the 38 frames in Table 3.1. For each frame, a regular spacing Ay = 10km was

maintained between adjacent transects, producing a total of 789 points; see Figure 3.3.a. In all

cases, averaging is over segments of length L = 384km, symmetric relative to the storm center.

This value of L encompasses more than 95% of the total rainfall volume along each transect; see

for example Figure 3.2. Smooth estimates of the mean value and variance of InfL were obtained

using an isotropic Gaussian kernel with standard deviation 0.5 in the [ln(IL,MSR), ln(y')]-plane.

Hence, if g(x) denotes this kernel, local estimates of mlnfl(xo) and lnflL(xo0) around a given point

xo = [ln(IL,MsR), ln(y')] are given by

SInfL(Xi) g(xi-x0) [InL(Xi)- mlnflL(Xi)] 2 g(Xi-X0)

mnfl,(x0) = , 21n,(XO) = (3.4)

g(xi-xo) g(xi-xo)

where xi is the generic [ln(IL,MSR), ln(y')] combination for which a value of PL is available. To use

values of IL at locations close to the center of the storm where ln(y') diverges, 59 points with

lyl < 0.5Ra where moved to y = 0.5R,.,.
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Figure 3.3: (a,b) Mean value and standard deviation of Infl as a function of the model rainfall intensity IL,MSR and

the normalized distance y'= lylR,,al from the TC center using 789 cross-sections of the 38 frames in Table 3.1. The

contour plots are obtained using a smoothing Gaussian kernel with standard deviation 0.5. The dashed lines delimit

the region of high data density along the direction of the gradient of alnfL (white arrow). (c) Plots of mlnlL and alniL

as a function of w = ln(y') - 0.4 1n(,ILMSR) along cross-section A. (d) Comparison between the standard normal density

and the empirical PDF of In(flL), normalized to have zero mean and unit variance.

The overall mean value of flL is 1.02, indicating that on average the MSR model produces

unbiased large-scale estimates of the PR rainrates. The dashed lines in Figure 3.3.b delimit the

region of high data density and are generally oriented along the gradient of an,. Figure 3.3.c

shows plots of mlnL and OlnL as a function of the transformed variable co = ln(y') - 0.4 1n(I, MsR)

along the dashed-dotted line in Figure 3.3.b. The log-mean mn6L is approximately constant and

equal to -0.5, whereas anflL increases as the normalized distance y' increases or the large-scale

mean rainfall intensity IL,MSR decreases. This higher log variability in regions of lower intensity is



expected due to the more episodic nature of rainfall in those regions. This is also in qualitative

agreement with the findings of Lonfat et al. (2004) and Molinari et al. (1994). The solid lines in

Figure 3.3.c are least-squares fits for the mean and standard deviation of InflL. For y close to zero,

the fitted standard deviation becomes very small or negative. To avoid this inconsistency, we

have imposed a lower bound of 0.5 to the fitted standard deviation.

To investigate the distribution type, we standardize the empirical values of InPfL by removing

the parametrically fitted mean -0.5 and dividing by the parametrically fitted standard deviation

0.25co + 0.87. Figure 3.3.d shows a histogram of these normalized quantities and suggests that

InflL has near-normal distribution. To check for possible lack of fit and possible dependence of

InfL on other parameters, we generated histograms of the type in Figure 3.3.d separately for

different ranges of y, y', ILSR, Rm and V~; see Figures 3.4 - 3.6.
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Figure 3.4: Comparison between a standard normal density (solid lines) and histograms of the normalized quantities
in Figure 3.3.d when classified into two categories of positive and negative distances y from the center of the storm.
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Figure 3.5: Comparison between a standard normal density (solid lines) and histograms of the quantities in Figure

3.3.d when classified into three equally sized bins of the normalized distance y' = ly/R~l (left column) and the

theoretical large-scale rainfall intensity ILMSR (right column).



As none of these analyses reveals significant dependence, we use the fits in Figure 3.3.c and

model InflL as a normal variable with parameters

m,(o) = -0.5

aGL(o) = max{0.5, 0.25(0 + 0.87) (3.5)

where co = ln(y') - 0.4 ln(.,MsR).
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Figure 3.6: Same as Figure 3.5 but for different ranges of the radius of maximum winds R,, (left column) and the
intensity V of the storm (right column).

3.3.2 Distribution of 7o,

Next we consider the amplification factor ylt in equation (3.2). The distribution of this factor

can be found by a variety of methods, from the direct use of data on yl,max from the frames in

Table 3.1 to theoretical analysis of the maximum of the moving-average processes It(x)

illustrated in Figure 3.2. In Appendix B we compare several such approaches and find similar

results. Here we follow the empirical approach, which is the simpler and more transparent

method. We start by calculating the empirical ratio

YI,x I , IL (3.6)IL

where IL is the average PR rainrate along a cross section C of fixed length L = 384km and ,11,x is

the maximum rainfall intensity when the same cross section is continuously scanned using an

averaging window of length 1; see Figures 3.1 and 3.2 and Section 3.2. Ideally, the cross section



C should be in the direction of the storm motion, but since the TRMM swaths are not always

aligned with that direction, we calculate the factor yl,ma using cross-sections parallel to the swath

track. Hence, the resulting factor yt,mx does not depend on the orientation of C relative to the

storm motion. We verified that yl,ma is insensitive to this orientation by dividing the swaths into

two groups: those that are generally aligned with the storm trajectory and those that are not. The

distribution of yt,mx is similar in the two cases.

We also studied the dependence of the distribution of yt,, on Rmax. Dependence is expected

because smaller values of Rma produce more picked radial rainfall profiles and hence higher

rainfall maxima. Figure 3.7 shows histograms of yl,ax as a function of the scale of spatial

averaging I when classified into three equally sized bins of the radius of maximum winds Rmax.

One sees that for small spatial scales (1 < 12km) the mean value and standard deviation of yl,max,

increase somewhat with decreasing Rm,, whereas at larger spatial scales the increase is modest.

Based on these results, we ignore the dependence of y,max on Rma and use a simple

parameterization in terms of the averaging length I and the large-scale average intensity IL. The

latter quantity depends significantly on both the storm intensity Vmax and the distance y from the

storm center; see Chapter 2.

Figure 3.8 shows log-log plots of E[y1,,ma,] and Var[yl,max] against I after classifying the 789

cross-sections in Figure 3.3.a into 12 equally-sized IL bins. As expected, Var[y,,x] increases

with decreasing spatial scale 1. A less obvious finding is that the variability of Yt,max increases as

the large-scale intensity IL decreases. Considering that lower values of IL are generally found at

larger distances y from the storm center, Figure 3.8 shows that the outer TC environment exhibits

higher (multiplicative) variability relative to the inner region. The higher variability inside low-IL

regions is due for the most part to an increase in the dry area fraction (see Appendix B) and has

been noted also in other studies (Molinari et al., 1994; Lonfat et al., 2004). This feature is also

commonly observed in extra-tropical rainfall (e.g. Over and Gupta, 1996; Deidda et al., 2006;

Veneziano et al., 2006a; Gebremichael et al., 2006).
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lnE[y,,,ax] = al lnl+ a2 (a)

lnVar[yl,,,] = a3 (lnl)2+ a4 ln + a5 (b)
(3.7)

where 1 < L is in km and al-a5 are parameters. Figure 3.9 shows how the parameters al-a5 in

equation (3.7) vary with the large-scale rainfall intensity IL. The solid lines in Figure 3.9 are

smooth least-squares estimates of ai (i=1,...5). Use of the smooth estimates reproduces well the

empirical moments of yax; see solid lines in Figure 3.8.
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Figure 3.9: Dependence of the parameters a1-a5 in equation (3.7) on IL. The solid lines are least squares fits.

The amplification factor yt, has values between 1 and Li. The lower bound corresponds to a

uniform distribution of rainfall inside L, whereas the upper bound is attained when all the rainfall

in L is concentrated in a single 1 interval. We model yl,, using a beta distribution with moments

in equation (3.7). One may write this cumulative distribution as

F,()= E L ) 1 (3.8)

where Fx is the beta distribution in [0,1] with parameters

E[Yt7ax]-I Var[ymaxE[XJ = ELY-1 , Var[X]= (L/1-,)2 (3.9)

Figure 3.10 compares the empirical distribution of tma at spatial scales 1 = 96 and 6km for

different large-scale average intensities IL with theoretical distributions from equations (3.8) and

(3.9). The moments E[yt,,,] and Var[yt,,,,] in equation (3.9) are calculated using equation (3.7)

with parameters al-a5 in Figure 3.9. Equally good fits are obtained for other window sizes 1; see

Appendix B.

Parameters in Ea. (3.7.a) Parameters in Eo. (3.7.11)
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Figure 3.8.

3.4 Validation of Maximum Rainfall Model and Sensitivity Analysis

For a tropical cyclone with parameters 0 = [V,,., Rax, Vt] and a given distance y from the storm

center, one may use equation (3.2) and the distributions of fiL and yl,,ax in Section 3.3 to obtain

the distribution of the maximum rainfall intensity I,1 ax as

i

1

0 20 40 60

04

IL = 7.7-10mm/h

U

0



P[I,max(y,O) < i] = j fily,O(U) F y,,maiL=u(i/u) du (3.10)
0

where ftly,O is the probability density function of IL = IL,MSR/L given (y,O) and F7,,-ll is the

cumulative distribution function of yI,,,n given IL. To assess the validity of the theoretical

probabilities generated by equation (3.10), we compare them with in-sample observed relative

frequencies, as follows. For each of the 789 transects extracted from the PR data in Table 3.1,

1. We calculate the maximum intensity I,m over segments of different length 1;

2. We use (Vm.a, R, , V) from Table 3.1 and the distance y of the transect from the TC

center to obtain model estimates of the large-scale mean rainfall intensity IL,MSR(y,O) for

L= 384km. All other MSR model parameters are fixed to the values in Section 3.3.1.

3. We use equation (3.10) and the parametric expressions in equations (3.5) and (3.7) and

Figure 3.9 to find the distribution of I,max and the probability P with which the observed

value from step (1) is not exceeded.

If the model is correct, the probabilities P from step (3) should have uniform distribution

between 0 and 1. Figure 3.11 shows histograms of P for different 1. The fact that the histograms

differ little from a uniform density validates the model in the sense that calculated exceedance

probabilities are close to observed relative frequencies.

The distribution of l,max in equation (3.10) depends critically on the amplification factor l, max

in equation (3.2). Figure 3.12 shows how the distribution of fma depends on 1, V,,, and

y'= lyR,alI. The effect of the translation velocity V, is modest and is not displayed. Also, for

given V,, and y' = ly/Rma., ft,max is insensitive to Rax. The dispersion of 8,,., increases as 1

decreases. It also increases for smaller Vax and larger y'. The latter effects are related to the

increased spatial variability of the rainfall intensity in regions of lower average precipitation.
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Figure 3.11: Histogram of the non-exceedance probability P in equation (3.10) for different spatial scales 1. Each
histogram is based on a sample of size 789.

3.5 Long-term Rainfall Risk for New Orleans

To assess rainfall risk at a given location A, one must find the rate 16.>i of tropical cyclones

for which ID,,,,,x, the maximum rainfall intensity at A for a given averaging duration D, exceeds

different threshold levels i. This rate is given by
----- ~1--------------------

S 0=2 0.4 0.6 P[0.8 1 0 0.2 i] fy,(y,) dydO (3.11)

an (y,O)

where 3.11: His the rate of TCs in the region, P[o,,,,0) > i] is the probability that, for a storm with

characteristics 0, on at distancsample of size y from the storm center exceeds i, and fy789 is the joint density

of (y,0). The joint density fy,0 and the rate A are region-specific and define the TC recurrence
model. Under Taylor's hypothesis, P[kD,,,(y,0) > i] is obtained by setting New=DV in equation

(3.10).
To exemplify, we use equation (3.11) and a recurrence model for an appropriate coastal

region of the Gulf of Mexico to oainfall intensity-duration-frequency (IaDF) relationships for New

region of the Gulf of Mexico to obtain intensity-duration-frequency (IDF) relationships for New



Orleans. We select this location because: 1) the site is close to the coast; hence our pre-landfall

model should produce accurate results, 2) a number of studies have developed TC recurrence

models for the Louisiana coast, and 3) one can compare the TC rainfall results with available

IDF curves from continuous rainfall records in the region.
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Figure 3.12: Comparison of the PDF of = I.maJ/IL,MSR for different Va,,, y' = ly/Rmaxl, and 1.

3.5.1 TC recurrence model for the northern Gulf of Mexico

We start by specifying the distribution of the distance y between the center of the storm and the

city of New Orleans (point A), which is located at approximately (90°W, 300N). Then we



consider the distribution of 0 = [V,,, Rax, V,]. The joint model for Vm and Rax is specified

through the distribution of the maximum pressure deficit APmax and the conditional distributions

of [VaxlAP,ax] and [R,.lAP, ]. Finally we specify the TC rate A. To keep the model simple, we

approximate the coastline by a line segment with constant latitude 30oN and longitudinal range

850-95'W (- 960km), centered at A.

Let z be the location (positive eastward) of landfall relative to A. Assuming a straight storm

path, the closest distance of the storm center from the site is

y = - z cos(a) (3.12)

where a is the azimuth of the storm track at landfall, positive clockwise. The distribution of y

can be obtained numerically from equation (3.12) and the distributions of a and z, assumed here

to be independent. For z we use a uniform distribution in the interval [850 W, 950 W]. The

distribution of the angle a in the region is usually found to be normal or the mixture of two

normal distributions, one for easterly storms and the other for westerly storms (Vickery and

Twisdale, 1995; IPET, 2006, 2008). Here we model a using a single normal distribution with

mean value ma = -5.40 and standard deviation U = 34.90. This distribution was obtained by IPET

(2006) using NOAA's HURDAT data set (Jarvinen et al., 1984) and found to describe well

storms with central pressure deficit AP, > 34mb that make landfall in the longitudinal range

850-950W.

Several studies (Holland, 1980; Atkinson and Holiday, 1977; Willoughby and Rahn, 2004)

have used theoretical arguments and pressure-wind observations to relate V.ax to APax. The

relationships are typically of the power-law type

Vax = c (AP,,ax) (3.13)

where c and g are positive constants. Using flight level data from 23 hurricane seasons,

Willoughby and Rahn (2004) found c = 4.8 and g = 0.559 for Vx in m/s and APax in mb. Based

on these and other findings of Willoughby and Rahn (2004), we model [Vax IAPx] as a

lognormal variable with mean value 4.8(APax)0.559 and coefficient of variation 0.15.

Empirical evidence (Vickery and Twisdale, 1995; Vickery et al., 2000; Willoughby and Rahn,

2004; Powell et al., 2005; IPET, 2008) and theoretical arguments (Shen, 2006) show that Rm,

increases when the hurricane intensity AP,,,x decreases or the latitude (p increases. Here we



assume that (InRmx IAPm,) has the normal distribution proposed by Vickery et al. (2000), which

for the region of New Orleans ((p - 300N) has parameters

mlnR,,,JUp = 3.962 - 0.00567APmax

flnRmaxUlPmx = 0.313

where Rmax is in km and APmax is in mb.

The translational speed V, has weak dependence on the intensity of the TC (Chen et al., 2006;

IPET, 2008) and is usually modeled as a lognormal variable with mean value around 6m/s and

standard deviation around 2.5m/s; see Vickery and Twisdale (1995), Vickery et al. (2000), and

Chen et al. (2006). The former two studies report a slight dependence of Vt on the approach

angle a. To keep the TC recurrence model simple, we use for Vt a lognormal distribution with

the above mean value and standard deviation and assume that Vt and a are independent.

Different studies have concluded that the pressure deficit APmax has lognormal, Weibull or

Gumbel distribution. The Weibull distribution gives better fits when all tropical cyclones are

considered, whereas the lognormal distribution is more appropriate for storms in the hurricane

intensity range; see Vickery and Twisdale (1995), Chouinard et al. (1997) and IPET (2006). The

Gumbel distribution has been suggested by IPET (2008) for storms in the CAT35 range (APmax>

58mb). While the Gumbel distribution is appropriate for the analysis of surges, winds and waves

(for which the long-term risk is dominated by intense storms), significant rainfall is contributed

by less intense slow-moving systems; see Section 3.5.2 below. For this reason we model APmax

using the lognormal distribution suggested by IPET (2006). This study shows that for TCs with

APmax > 34mb that made landfall in the longitudinal range 850-950 W, APmx is accurately

described by a shifted lognormal distribution with shift parameter 18mb, log-mean 3.15 and log-

standard deviation 0.68.

Finally, we set 2 = 0.57 events/yr, which is the rate found by IPET (2006) for TCs with

APmax > 34mb making landfall between 850-950W along the Gulf of Mexico coast.

3.5.2 IDF curves for TC-rainfall and comparison with other storms

Next we use equation (3.11) with the recurrence model in Section 3.5.1 to estimate the intensity-

duration-frequency (IDF) curves for New Orleans associated with tropical cyclones. The model

explicitly accounts for variability in y, Vax, Rx and Vt. All other input parameters to the MSR

model are fixed to the values used in Sections 3.3 and 3.4. The joint density of {y, Vmax, Rma, Vtr



for a TC that makes landfall between longitudes 850-950W, fy,o, is obtained by first calculating

the joint density conditional on the pressure deficit AP,ax under the assumption that the variables

y, [Vmax IPmax], [Rmax IAPmax] and V, are independent and then averaging the conditional density

with respect to AP,ax.

Figure 3.13.a shows the calculated IDF curves as plots of rainfall intensity i against duration

D for different return periods T.
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Figure 3.13: Theoretical IDF curves for New Orleans obtained from equation (3.11). (a) Maximum rainfall intensity
i as a function of averaging duration D for different return periods T. (b) Comparison of the IDF values in (a) for
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For durations below about 12 hours, the decay of i with D follows a power law DD where 7D

0.55. This exponent is slightly smaller than the values around 0.6-0.7 that are typical of extra-

tropical rainfall (because the rainfall intensities associated with long durations in TCs tend to be

high relative to extra-tropical events); see for example Langousis et al. (2007). For longer

averaging durations, the exponent yo rapidly increases and is effectively 1 for D > 24 hours; see

dashed lines in Figure 3.13.a. The reason is that the passage of a hurricane usually lasts less than

24 hours; hence for D > 24 the total rainfall depth is approximately constant and the average

rainfall intensity depends on D like D-1.

Figure 3.13.b shows the same results as plots of T against i for different averaging durations

D. The curves are compared with values from TP-40 (Hersfield, 1961); Babak et al. (1991) and

Singh and Zhang (2007) for return periods T= 5, 10, 25, 50 and 100yr. The latter values refer to

generic rainfall in the New Orleans area and therefore include both TC and non-TC events. The

rainfall values reported in TP-40 cover the whole duration range from 0.5-24hrs, whereas Babak

et al. (1991) and Singh and Zhang (2007) give rainfall values only for D = 6, 12 and 24hr. It is

clear from Figure 3.13.b that for T > 100yr also the dependence of the rainfall intensity on T is of

the power-law type, say TYT with YT Z 0.32. This exponent is higher than the values around 0.20-

0.25 that are typical of ordinary rainfall (Langousis et al., 2007; Veneziano et al., 2006b). The

higher exponent in tropical cyclones is related to the large dispersion of the amplification factor

fitax (see example plots in Figure 3.12).

Another feature of the TC curves in Figure 3.13.b is the lower asymptote at T = 1/2 = 1.75yr.

This lower bound is a consequence of the fact that the return period of any TC-induced rainfall

intensity cannot be lower than the return period of the TCs themselves. The effect of this lower

bound is that for short return periods, say T < 10yr, the precipitation intensities from tropical

cyclones are far below those from ordinary rainfall (frontal events, mesoscale convective

systems etc.), for which the recurrence rate is much higher. By contrast, for long durations (D >

12hr) and long return periods (T = 100yr), the calculated TC intensities are close to the empirical

intensities, indicating that tropical cyclones have a dominant effect on those extreme values.

Given that the TC curves in Figure 3.13.b are flatter than those for overall rain, it is expected that

tropical cyclones become even more dominant for longer return periods. For short durations (e.g.

D on the order of lhr), the contribution of tropical rainfall to the risk is negligible, irrespective of

the return period.



It is also of interest to determine which tropical cyclones contribute the most to rainfalls in

excess of the IDF values i(D,T). Such TCs might for example be used as scenario events when

designing for return period T. The main parameters to be considered are 0 = [Vma, R, , V,] and

the distance y to the cyclone center. Their modal (most likely) values are obtained by

maximizing the conditional probability density of (y,0) given ID,x > i(D,T). This conditional

density is given by

fy,OID,T (y,0) oc fy,(y,0) P[ID,max(y,O) > i(D,T)] (3.15)

Figure 3.14 shows the modal values of Vma, Rn and Vt for different D and T. The most likely

distance y always satisfies y Rmax. This makes sense because R,,x is the distance at which the

MSR model predicts maximum large-scale rainfall intensities.

Figure 3.14.a shows that the mode of Vma increases when either D or T increase. This makes

physical sense since for any given D, higher rainfall intensities require more intense storms, and

for any given T, intense precipitation over longer durations is associated with more intense

systems. Figure 3.14.b shows that the mode of Vt decreases as T increases, meaning that more

intense rainfall is generally produced by slower-moving systems. For durations smaller than 12

hours, the modal value of Vt is insensitive to D, whereas for longer durations V, decreases faster

with T. This faster decay is related to the fact that, for durations D on the order of one day or

longer, extremely high rainfall intensities are produced by storms that take a time close to D to

pass over the site. Therefore, for T large the translation speed V, tends to be inversely

proportional to D. Finally, Figure 3.14.c shows that the mode of Rmax decreases when either D or

T increase. This makes sense, since more intense storms tend to have smaller values of Rma.; see

Section 3.5.1.
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obtained using a physically-based ("MSR") model (Chapter 2), whereas rainfall variability at

both large scales (from storm to storm) and small scales (due to rainbands and local convection

within a single storm) is modeled statistically. The statistical component of the model is

estimated using 38 precipitation radar (PR) frames from the TRMM mission; see Table 3.1.

These frames cover a wide range of TC intensities V,, and vortex sizes R,ax. To make the model

easier to use in risk analysis, we developed approximate analytical expressions for the statistical

parameters. We use Taylor's hypothesis to convert spatial rainfall intensity fluctuations to

temporal fluctuations as the storm passes over a given geographical location A. The combined

physical-statistical model predicts the maximum rainfall intensity at A during a period of

duration D for a TC with characteristics (V,,ax, R,,, Vt) whose center passes at distance y from

A. To illustrate the use of the model for long-term rainfall risk analysis, we formulated a

recurrence model for tropical cyclones in the Gulf of Mexico that make landfall between

longitudes 85°-950W and used the rainfall and recurrence models to assess the rainfall risk for

New Orleans. Our main findings are as follows.

The maximum rainfall IImax in a spatial interval of length I depends on 1, the distance y from

the center of the TC, and the intensity Vax and size Rm of the vortex. We expressed Ii,,x as the

product of the large-scale (L z 400 km) average rainfall intensity produced by the MSR model,

IL,MSR, and an amplification factor tmax that includes both storm-to-storm variability and spatial

fluctuations of rainfall intensity within a storm. The distribution of fi,ax depends of course on 1,

but in addition depends significantly on the large-scale intensity IL,MSR and the normalized

distance from the storm center, y' = ly/R,mI. Specifically, the dispersion of tmax increases as I

and IL,MSR decrease or y' = ly/R,,l increases. These trends with IL,MSR and y' are linked to the fact

that lower intensity storms and larger distances y' are associated with higher dry area fractions,

more intermittent rainfall, and therefore an increased dispersion of the rainfall maxima.

Application of the model to TC rainfall risk for New Orleans has produced interesting insight

into the importance of tropical cyclones relative to other rainfall-producing events. For short

return periods T, the TC intensities are significantly below those from other storms, which have a

much higher rate of occurrence. However, as the return period T increases, the TC estimates for

long averaging durations (D around 12-24 hours) approach the values found from continuous

rainfall records. This means that for long return periods, the long-duration TC rainfalls tend to

dominate. In New Orleans, this happens for T around 100 years.



To determine how the most likely TC scenario varies with the averaging duration D and the

return period T, we calculated the joint distribution of { V,.,, R,n, V,, y} conditioned on

exceeding the T-yr rainfall intensity for duration D. Then we plotted the modal values of Vma,

Rm,, and Vt against D and T; see Figure 3.14 (for y, the modal value is always close to Rax). The

modal value of Vmx increases when D or T increase, whereas the opposite is true for Rax. The

mode of the translation velocity Vt is insensitive to D for D < 24hr, but decreases with increasing

T and with increasing D for D > 24hr.



4. Conclusions

In this thesis we combined data analysis and physical modeling to develop a methodology for

the frequency of extreme rainfall intensities caused by tropical cyclones (TCs) in coastal areas.

The mean rainfall field associated with a TC with maximum tangential wind speed Vax, radius

of maximum winds Rm, and translation speed Vt is obtained using a physically-based model

(Chapters 1 and 2), whereas rainfall variability at both large scales (from storm to storm) and

small scales (due to rainbands and local convection) is modeled statistically (Chapter 3).

The theoretical model of TC rainfall is based on the assumption that the vertical outflow of

water vapor from the TC boundary layer (BL) is all converted into rainfall. This water vapor

flux originates from the low-level convergence of the horizontal flow. Evaluation of the BL

winds is based on Smith's (1968) axi-symmetric formulation, modified in Chapter 1 to account

for storm motion. The resulting models of wind and rainfall are referred to as the modified-

Smith (MS) BL model and the modified-Smith-for-rainfall (MSR) model, respectively. Our

main findings from Chapters 1-3 are outlined below.

MS model for evaluation of the boundary layer winds

The MS scheme estimates the horizontal and vertical wind velocity fields inside the BL from a

few TC characteristics: the maximum tangential wind speed Vm, the radius of maximum winds

Rmax, and Holland's B parameter, in addition to the storm translation velocity V,, the surface drag

coefficient CD, and the vertical diffusion coefficient of the horizontal momentum K. The scheme

is computationally very efficient and is stable also for large B values and fast-moving storms.

Model results were compared to those from other studies (Shapiro 1983; Kepert 2001) and

validated using the Fifth-Generation Pennsylvania State University/NCAR Mesoscale Model

(MM5).

We find that Kepert's (2001) BL model significantly underestimates the radial and vertical

fluxes, whereas Shapiro's (1983) slab-layer formulation produces radial and vertical winds that

are a factor of about 2 higher than those produced by MM5. The velocity fields generated by the

present model are consistent with MM5 and with tropical cyclone observations.

In a sensitivity analysis we used the MS model to study how the symmetric and asymmetric

components of the wind field vary with the storm parameters mentioned above. In accordance

with observations, we find that larger values of B and lower values of Rax produce horizontal



and vertical wind profiles that are more picked near the radius of maximum winds. We also find

that, when cyclones in the Northern (Southern) hemisphere move, the vertical and storm-relative

radial winds intensify at the right-front (left-front) quadrant of the vortex, whereas the storm-

relative tangential winds are more intense in the left-front (right-front) region. The asymmetry is

higher for faster moving TCs and for higher surface drag coefficients CD.

MSR model for evaluation of the mean rainfall field in TCs

The MSR model calculates the upward moisture flux that converts into rainfall from the vertical

winds generated by the MS model and two additional parameters: the average temperature T and

average saturation ratio Q inside the TC boundary layer. The rainfall field generated by the

MSR model is not simply proportional to the vertical wind field at the top of the boundary layer

produced by the MS model. This is because (1) the trajectory of moisted air parcels has an

outward slant depending on distance from the TC center and (2) the ascending air parcels and

descending rain drops are advected into a helical motion by the cyclonic circulation; therefore a

parcel of air that leaves the TC boundary layer contributes rainfall to a range of azimuthal

locations. The azimuthal redistribution is important only for radially asymmetric flows; i.e.

when V, : 0. The relation between vertical winds and surface rainfall has been verified through

MM5 simulations. The MSR model accurately reproduces the rainrate estimates extracted from

the precipitation radar (PR) data of the TRMM mission.

In a sensitivity analysis we found that the temperature T, the saturation ratio Q and the

vertical diffusion coefficient K have small effect on the calculated rainfall intensities.

Consequently, setting those parameters to constant values (e.g. to T = 220C, Q = 0.8 and

K = 50m2/s, as was done in Sections 2.3-2.5) does not induce large errors. By contrast, the

maximum tangential velocity Vm and the roughness of the surface boundary (expressed

through CD) have significant effects on rainfall intensity. The latter increases when either Vmx or

CD increase. Lower values of Rax produce rain rates that are more picked and more

concentrated near the TC center. The B parameter has a small effect on the peak rainfall

intensity, but influences the rate at which rainfall decays with radial distance (higher values of B

result in faster decay).

For a TC that moves in the Northern (Southern) hemisphere the effect of the translation

velocity V, is to intensify rainfall at the right (left) and right-front (left-front) of the storm.



Larger asymmetries are associated with higher velocities Vt. These findings are in accordance

with empirical observations (Lonfat et al., 2004). The effect of CDo is more complex: at the front

of the storm, rainfall asymmetry is insensitive to CD, whereas at the rear-right (rear-left) the

rainfall asymmetry increases with decreasing CD.

An important departure from previous studies is that we parameterize rainfall asymmetries

in TCs in terms of storm motion not vertical wind shear; see Chapter 2. We have used MSR

model simulations and empirical data on rainfall asymmetry (Chen et al., 2006) to verify that

the asymmetries produced by storm motion are close to those observed and often parameterized

in terms of vertical wind shear; see Section 2.5. Since, in risk analysis, one may equivalently use

shear or motion as conditioning parameter and, in addition, it is easier to include motion than

shear when modeling rainfall (see Section 3.5), we have chosen to develop a motion-based

rather than shear-based parameterization of rainfall asymmetry.

Stochastic fluctuation component and an application to rainfall risk for New Orleans

The MSR model should prove useful for climatologic studies, but for hazard analysis it has the

major limitation of ignoring the small-scale rainfall variations associated with rainbands and

local convection. These variations have an important effect on the distribution of ID,ma: the

maximum of the average rainfall intensity over duration D at location A during the passage of a

storm. We obtained the distribution of ID,max by adding a stochastic component to the MSR

model predictions.

The combined physical-statistical model predicts the maximum rainfall intensity at A during

a period of duration D for a TC with characteristics (V,,,, Rx, Vt) whose center passes at

distance y from A (the other parameters of the MSR model are set to K = 50m2/s, CD = 0.002, T

= 220C, Q = 0.8 and B = 1). To illustrate the use of the model for long-term rainfall risk

analysis, we formulated a recurrence model for tropical cyclones in the Gulf of Mexico. We

then used the rainfall and recurrence models to assess the rainfall risk for New Orleans and

compared our results with empirical IDF estimates for all rainstorms (TCs and non-TCs) in the

region.

We found that for short return periods T, the TC intensities are significantly below those

from other storms, which have a much higher rate of occurrence. However, as the return period

T increases, the TC estimates for long averaging durations (D around 12-24 hours) approach the



values found from continuous rainfall records. This means that for long return periods, the long-

duration TC rainfalls tend to dominate. In New Orleans, this happens for T around 100 years.

We also determined how the most likely TC scenario varies with the averaging duration D

and the return period T. We did so by plotting the modal values of V,,, R'm, and Vt

conditioned on exceeding the T-yr rainfall intensity for duration D (for y, the modal value is

always close to Rmax, the location where the MSR model predicts maximum large-scale rainfall

intensities). These modal values can for example be used as scenario events when designing for

return period T.

The mode of Vt decreases as T increases. This means that more intense rainfall is generally

produced by slower-moving systems. For durations smaller than 12 hours, the modal value of Vt

is insensitive to D, whereas for longer durations Vt decreases faster with T. This faster decay is

related to the fact that, for durations D on the order of one day or longer, extremely high rainfall

intensities are produced by storms that take a time close to D to pass over the site.

The modal value of Rmax decreases when D or T increase, whereas the opposite is true for

Vmax. Both findings make sense since intense storms tend to have smaller values of Rma (see

Section 3.5.1) and for any given D, higher rainfall intensities require more intense storms, and

for any given T, intense precipitation over longer durations is associated with more intense

systems.

Future research directions

A rich parameterization and high computational efficiency make the proposed model attractive

for rainfall risk applications in TC-prone areas, where one must assess tropical cyclone rainfall

under many storm and environmental scenarios. This requirement effectively rules out the use of

full-physics high-resolution numerical weather prediction models.

Although computationally efficient, the current version of the model requires numerical

calculation of the large-scale rainfall intensity IL,MSR in equation (3.2) using the MS and MSR

models. In Section 3.4 we found that when Vm and y' = ly/R,max are kept fixed, the sensitivity of

IL,MSR to both Vt and Rm, is low. Hence, one could significantly reduce the computational

effort and make the model more user-friendly by parameterizing IL,MSR in terms of Vm, and y'.

This parameterization would be worth pursuing.

A limitation of the current framework is that it does not account for post-landfall conditions

and therefore is applicable only to open-water or coastal sites. When extending the model to



inland locations, one should investigate whether the statistics of the small scale rainfall

variations in Chapter 3 remain valid over land. Based on findings of other studies on the effects

of orography on the spatial variability of extra-tropical rainfall (Pathirana and Herath, 2002;

Badas et al., 2005; Deidda et al., 2006), we anticipate that for sites not very far inland the

statistical model for the rainfall fluctuations would not change. In this case, one can use a

correction factor to multiply the theoretical IL,MSR rainrates to account for the effects of

topography at inland locations. For example, Lonfat et al. (2007) use a simple formulation

where this factor is proportional to the product of surface winds and the gradient of ground

elevation.

It is possible to extend the current framework to deal with short term rainfall prediction. For

this purpose one needs to start with real-time information on the storm and use some type of a

TC-track model to calculate the distribution of the location y and the characteristics 0 of the

storm at landfall. The joint distribution of (y,O) can be used as a short-term recurrence model in

equation 3.11 (for X =1) to assess rainfall risk at the site. In this case one should check the

accuracy of the rainfall estimates produced by the suggested model relative to those calculated

by simple translation and possibly intensification/deintensification of real-time radar rainfall

estimates over the site. The latter method is usually referred to as tropical rainfall potential

(TRaP) technique (e.g. Kidder et al., 2005). We anticipate that for leads shorter than a day the

TRaP technique should produce more accurate rainfall estimates.

Another possible research direction is to extend the current framework to maximum TC

wind speeds. For example, one could use the MS model to predict the mean wind field in a TC

with given characteristics 0 and analysis of surface wind observations to evaluate statistically

the wind gust factor.
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Appendix A: Analytical Expressions for the Parameters in Equation
(1.15)

Let I= ff 2 dl, I2=f( -g 2) dr, 13=f(1-g) d g, 4=ffg dr, I= ff d 16=f (g2-g) d 
0 0 0 0 0 0

and 17=f (1-g)2 d)r
0

where f and g are the functions given in equation (1.11). Then

= a2-al, = a-a2,t--10 ' 91 0r/,

1 2 a2+3a2
11= -(al2 +2ala2+3a2), 12= (al+a2) - (3ai2+2ala2+a22)

a+a2 2 2 a+a 2
13= 2 14= 8(a 2 +4ala2+a2 2)- 22 2

al+a2
=- 2 '

1 2 2 a1 a2

16= (3a 2+2ala2+a2 - 2
=8 2

1 2 2
I7= (3ai +2ala2+a2

where al and a2 are calculated from equation (1.12). Under equation (A. 1), the parameters A1-A20

in equation (1.15) are given by

A 1=E2 [Vt 2 COS2 17 +(Vt sinO-vgr)2 1 +(I5-4)(vt2 sin20-2VtVgr cos0)]

A 2= E[(vt2 cos2 0+vtvgr sinO)Is+ (2 t,2 sin20-vtvgr COS0)II+ (Vgr2-2VtVgr sinO-v2 cos20)I4+

v,Vgr 16 COS0 -2 17 Vt 2 sin20]

A 3= -Vt 2 11COS2 + Vt2 I5 sin20 +( 2 vtvgr cos0- vt2 sin20)I4- t2 I7sin20+ Vgr 212+ 2 VtVgr 6 sinO

A 4 = vt2 ICOS2 -Vt2 15 sin20 +(vt2 sin20-2vtVgr cos)14+ Vt2 l7 sin2 0- 2VtVgr16 sinO

A 5 = Vt lCOSO +(Vgr-Vt sin0) 13

A6 = v t csOi s 1 o+(Vgrt sinO) - , il 1r=0

A 7 = E[(Vgr-vt sinO) 15-vt I3cosO], A 8 = -vt cosO 15+vtI3sinO

A9 = -Vt cos0 l =
aq ?7=(

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)+(Vgr-Vt sin9) I9=o
aq 17=o



A lo =2E[vt2 I7COS20+I (VgrVt sinO)2+(Vt2 sin20-2VtVgr cos0)(I5-I4)]

Ai = E vt2 Cos 2 6 -2I(vt sin-vgr)

(vt2 sin20-2VtVgr cosO) -r )

r + (Vgr-t sin0)2 -2v,(I5 -I4) 8r COS6 +

(A.11)

A 12 = (t 2 COs 2 0+VtVgr, sin)Is+ (V2 v2 sin2 0-VtVgr cosO)ll+(vgr-2vtvg,sinOvt2 cos20)I4+

VtVgrI6COSO -/2 Vt2 17sin28 (A.12)

A 13= (-22 sin20+vtvgr cost)l5+(Vt2 COS2 +tvVgr sin) ( +I)+ (V2 t2 Sin2l-vtvgr cos)

814 816
+(2vt2 sin20-2vtvgr cos)4+ (Vgr2-2vtgrSinO-vt2 cos20) -v tgrl6 Sin+ VtVgrCOSO

plrvv ao C9 0l in+ ~,~s

- v 2 17 cos20 -2 vt2 sin20 C97

80
(A.13)

A14= 4Vt sin0 15 Or + (Vt2 COs2+VtVgrsinrVt o r I cos+ (2 vt2 sin20-vtgr COSO)

+2 14(Vgr-Vt sin) Vr +16Vt COS r8 +(Vgr -2VtVgrsinO-v cos20) N +

816 2 817
tvgr cos6-r -/2 sin20 ar

A 15= -vt2 1, sin2+ vt2 cos2 l - 2v2 15 COs20- Vt2 sin20 + (2vt2cos20+2vvgr sinO)I4+

214 2 2 017 86
(vt 2sin20-2 VtVgr COSO) ~+Vt 17sin20+ Vt sin20 -2VtVgrI6 cos0 -2VtVgr sinO 6

A 1 6= (Vgr'Vt sinO)I5-vt J 3cosO

A17 =  5 +(Vgr-Vt Sin) -Vt COO
1 v r sr s ar

8s 813
A1 8= vtI5 sin- vt cosO 5+ Vt I3COSO + Vt sin6To+ a6

(A.10)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
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A1 9= Vgr216, A 20

= Vgr "o

In equations (A.2)-(A.19), the derivatives a and a for j = 1,..,700 can be calculated analytically

using the chain rule

8al
where s is either r or 0 and asas

aa2and s can be analytically derived from equations (1.12) and
as

(1.13).

(A.19)

as aal s + (a 2 s '
(A.20)



Appendix B: Alternative Methods to Calculate the Distribution of
the Amplification Factor 1l,max

In Section 3.3.2 we used data on yl,,~x to fit a theoretical distribution model for the amplification

factor. Alternatively, one can evaluate the distribution of l7,mtx by studying the maximum of the

moving average process h(x) illustrated in Figure 3.2.

Here we develop two alternative approaches for the distribution of yl,max starting from the ratio

yl, defined as

71 I, 1 < L (B. 1)

where It is obtained by continuously averaging the PR rainrate along a cross section C (see

Figure 3.1) using a window of length I and IL = Il=L.

The distribution of y,max is calculated from the distribution of y' under the assumption of

independence and then corrected for dependence and continuous sampling; see Sections B.1 and

B.2. Since we calculate the distribution of the maximum amplification factor yt,,,m starting from a

marginal distribution (i.e. the distribution of y1), we refer to those approaches as the "marginal

approaches". The approach in Section 3.3.2 is referred to as the "maxima approach". Section B.3

compares results on the total amplification factor t,m~,, in equation (3.2), as well as calculated

IDF values for New Orleans using the three approaches for ylt,rx.

B.1 Marginal Approach Using a Modified-beta Distribution Model

We start by calculating the empirical moments of the ratio y' in equation (B.1) using the frames

in Table 3.1.

Figure B.1 shows plots of lnE[( ) q] against Inl for q =0, 1, 2, 3, for the same categories of the

large-scale intensity IL as in Figure 3.8. One sees that the variability of the rainfall field,

expressed here through InE[(y1)q] for q >1, increases with decreasing spatial scale I and large-

scale rainfall intensity IL. This is in accordance to what we found in Section 3.3.2 when we

studied the moments of the amplification factor yl,m,. An additional observation one makes from

Figure B.1 is that an important contributor to the increased variability at low IL regions is the

intermittency of the rainfall process.
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Figure B. 1: Plots of InE[(yl) ] against Inl for q =0, 1, 2, 3, for the same categories of IL as in Figure 3.8. The markers
indicate empirical moment values, whereas the solid lines correspond to the parametric fits in equation (B.2). The
solid dashed lines correspond to the theoretical third moments calculated from the distribution in equation (B.9); see
text for details.
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The latter is expressed through the probability Po= l-E[(yt) ] that an interval of size 1 is dry. One

sees that Po increases with decreasing IL. Since lower values of IL are associated with larger

distances y from the storm center, one concludes that the outer TC environment is more lacunar

and exhibits more cellular structure and higher small-scale variability relative to the inner region.

This is in accordance with the findings of other studies on the spatial variability of TC rainfall;

see e.g. Molinari et al. (1994) and Lonfat et al. (2004).

For each intensity category IL, we use the method of least squares to fit linear expressions to

the logs of the 0th, I' and 2nd initial moments of y71:

InE[(y 1)"I 1 l ' q (B.2)

where 1 is in km and bq and cq (q = 0, 1, 2) are parameters. The intercept of the log-linear

expressions is equation (B.2), Cq, is set to 220km for q = 0 and to 384km for q = 1 and 2. The

former value of c, is the average of the 0h moment intercepts from all IL categories, whereas the

latter corresponds to the maximum scale L used in the analysis.

Figure B.2 shows how the parameters bq (q = 0, 1, 2) in equation (B.2) vary with the large-

scale intensity IL. The solid lines in Figure B.2 are smooth least-squares estimates of bq (q = 0, I,

2).

0.6

0.4

0.2 P0 = 0.298 (IL)0

-0.2 
b

0 

0

-0.2 b = 0

b2 = -0.516 (IL) 241

-O.6

-0.8
0 5 10 15

IL (mm/h)

Figure B.2: Plots of the parameters bo-b2 in equation (B.2) against IL. Solid lines are smooth least-squares estimates.



B.1.1 Distribution of yl

The distribution of yl has unit mean (see Figure B.1), it is bounded between 0 and L/ and has

concentrated masses at zero: P[yl = 0] =Po =1- E[(yl)] and at L/: P[yt = L/]. yj = 0 corresponds to

the case of no rainfall inside an interval of size 1, whereas 71 = L/ to the case when all rainfall

volume is concentrated inside one 1 interval. By assuming independence between different 1

intervals, one obtains an estimate of the probability mass at L/1: P[yj = Ill] =(Po)u -''. In this case,

the mean value m, and variance oc2 of the conditional variable (7tly, 0O, L/) are calculated to be:

Po -(L/- 1)(Po)ut-l
m= + -Po -(Po) -1

2 E[( )2]- +(Mc 1)2-PO c2 -(L/1-mc) 2 (Po)I -  (B.3)
ac = 1-Po -(Po)"L-1

where Po and E[(yl)2] can be obtained from equation (B.2) and the parametric expressions in

Figure B.2, as functions of the spatial scale I and the large-scale rainfall intensity IL.

We approximate the conditional distribution of (ylyl 0, L/) by using a beta distribution. In

this case the cumulative distribution function (CDF) of yl is given by

Po ,7=0

F,(y) = Po +(l-Po-Po u t-1)F , 0<y < L/1 (B.4)

1 , y72L

where Fx is a standard beta distribution in [0,1] with mean value mx = mc 1IL and variance UX2

(oc 1/L)2.

Figure B.3 compares the empirical CDF of y at different spatial scales 1 with those obtained

theoretically by fitting the distribution model in equation (B.4) to the Oth, 1st and 2nd initial

moments obtained from equation (B.2). Comparison is done for the lowest (IL= 0-0.8mm/h) and

highest (L >10mm/h) intensity categories in Figure B. 1.

The distribution model in equation (B.4) produces good analytical fits to the empirical

distribution of y. Equally good fits have been obtained for all other intensity categories and

spatial scales 1. This is evident from Figure B.1, where we show the theoretical third moment of

the distribution in equation (B.4) (thick dashed lines) when fitted to the Oth, 1st and 2 nd initial

moments obtained from equation (B.2). The fact that the theoretical and empirical 3rd initial



moments are close shows that the distribution in equation (B.4) produces good analytical fits to

the distribution of yt.
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Figure B.3: Comparison between the empirical and theoretical CDFs of the ratios yl at different spatial scales 1.
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B.1.2 Distribution of ymax

With corrections to be made latter, we approximate yt,max in equation (3.6) by

Yl,max,ind, the maximum of LII independent copies of yl. In this case

FY ,jnd( y ) = [F(y)]"' , y 0 (B.5)

Yl,max,ind is biased relative to Yt,max in two respects. The first is that, by definition [equation (B.1)],

the variables yl,i for i = 1, ..., L/ are dependent and average to 1:

J1 _ 1 = 1 (B.6)
i=1 i= 1

The second source of bias is that ,,ax in equation (3.6) is the maximum amplification factor

obtained by continuously scanning each cross section of length L using an averaging window of

size 1, whereas equation (B.5) considers non-overlapping intervals.

To quantify the two sources of bias, Figures B.4 and B.5 show the empirical distribution of

yl,max at spatial scale l =192km obtained: as the maximum of two non-overlapping intervals of

size 1=192km (Figure B.4), and by continuously scanning each cross section of length L =384km

using an averaging window of size 1=192km (Figure B.5). Results are shown for the 12 intensity

categories in Figure B.1.

The dotted lines in Figures B.4 and B.5 denote the theoretical PDF of Yl,max,ind under

independence [equation (B.5)], whereas the solid blue lines show the exact PDF of the maximum

of two dependent random variables YU2 with marginal distribution given by equation (B.4) that

satisfy yu2(l) + yu2( 2 ) = 2. For the latter, one obtains

0 , z <1
Fmax{y 2(), u2(2)}(Z) = 2FU2 (Z)- Z >1 (B.7)

One sees that Yl,max,ind fails to reproduce the distribution of yl,max in both cases of non-overlaping

intervals (Figure B.4) and continuous sampling (Figure B.5). Note in particular that the effect of

dependence causes the distribution of yl,max to have a lower bound at 1 (this corresponds to a

uniform rainfall inside L), whereas Yl,max,ind is bounded at 0. The exact theoretical distribution in

equation (B.7) resembles well the empirical distribution yl,mx for the case of non-overlaping

intervals (see Figure B.4), but underestimates the maxima under continuous sampling (see Figure

B.5).
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To correct the distribution of Yl,max,ind for the effects of dependence and continuous sampling,

we use a linear transformation to rescale the CDF in equation (B.5) so it is bounded between 1

and LI/. Specifically we take

Yl,max,corrl+ 1 1l,max,ind (B.8)

The distribution of l,max,co,rr is given by

Fy,x,corr(Y) 1 y i , y 1 and l < L (B.9)
F,(y) , y 20 and I = L

For y >>1 and L/ large (say >10) the models in equations (B.5) and (B.9) produce similar results.

The dashed lines in Figure B.5 show the probability density function of Yt,max,corr calculated

from equation (B.9) for the case of I =192km, whereas the solid black lines show the distribution

of yi,max using the maxima approach with a beta distribution model described in Section 3.3.2.

Figures B.6 -B.8 make similar comparisons for 1=96, 48 and 6km. One sees that the theoretical

model of equation (B.9) reproduces well the empirical PDF of yl,max for different spatial scales I

and large-scale average intensities IL and produces results close to those obtained using the

maxima approach in Section 3.3.2.

Figure B.9 compares theoretically calculated exceedance probabilities of rainfall maxima at

different spatial scales I to observed relative frequencies. It was generated using the procedure in

Section 3.4 with Y,,max calculated from equations (B.9) and (B.4) and the parametric expressions

in equation (B.2) and Figure B.2. The fact that all histograms are nearly uniform validates the

model in the sense that observed relative frequencies are close to theoretically calculated

probabilities.
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B.2 A Simpler Marginal Approach Using a Modified-lognormal Distribution
Model

Figure B.1 shows that, for all categories of the large-scale intensity IL, the moments of y1 vary

with scale 1 in an approximately log-linear way. This observation allows one to simplify the

marginal model developed in Section B.1 using concepts from the theory of multifractal

cascades. To do so, we employ standard probability techniques with a minimum of multifractal

formalism. This makes the approach more transparent than using multifractal concepts like

dressed and bare densities, singularities and their fractal dimensions; although the latter tools are

more elegant and general. For more details on multifractal measures and models, the reader is

referred to Schertzer and Lovejoy (1987), Gupta and Waymire (1993), Lovejoy and Schertzer

(1995), Veneziano and Langousis (2005a,b, 2009), Langousis and Veneziano (2007) and

Langousis et al. (2007).

Define random variable St such that

101



E[(Sli)']= (B. 10)

Up to a maximum scale L (in our case L=384km), the moments of St vary with I in a log-linear

way with slope K(q) that depends on the moment order q.

In what follows we model St using a modified lognormal (LN) distribution with unit mean. In

particular, St has a probability mass Po at 0: P[SI= 0] =Po= 1-(L/l)-cb and (Sil St >0) has

lognormal distribution with log-mean muv = (Cb-CLN) In(L/l) and log-variance a~w = 2Cwr In(L/l)

where Cb and CLN are parameters. Cb controls the lacunarity of the rainfall field (i.e. duration of

wet and dry periods), whereas CLN controls the amplitude of the fluctuations when it rains. In this

case the log-log slope of the moments, K(q), is given by

K(q) = Cb(q- )+CLN (q2 -q) (B.11)

We call this distribution of St a modified lognormal (LN) distribution with cumulative

distribution function (CDF)

C lns-mLN
Po +(-Po) -) , s >0

Fs(s) = (B.12)

Po ,s=0

where J is the standard normal CDF. The distribution in equation (B.12) has been extensively

used in the past for developing scaling representations of rainfall using the notion of

multiplicative cascades; see e.g. Over and Gupta (1996); Schmitt et al. (1998); Langousis and

Veneziano (2007), Langousis et al. (2007) and Veneziano et al. (2007).

An important difference between the distribution of Si in equation (B.12) and that of '7 in

equation (B.4) is that the former does not have an upper bound, whereas the latter is upper

bounded at L/. In the multifractal literature this difference is referred to as the effect of

"dressing" (see e.g. Schertzer and Lovejoy, 1987; Veneziano and Furcolo, 2003; Langousis and

Veneziano, 2007), which is an alternative way of saying that random variable yl accounts for

rainfall variability at scales smaller than 1 whereas St does not. Since random variable St does not

have an upper bound, one expects equation (B. 12) to produce better fits to the empirical ratios y7

as the resolution LI/ increases; see also discussion on Figures B.5 - B.8 below.

We allow the parameters Cb and CLN of the modified lognormal distribution in equation

(B.12) to depend on the large-scale rainfall intensity IL. In particular, for each intensity category
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IL in Figure B.1, we use the method of least squares to fit equation (B. 10) to the 2nd and 3?d initial

moments of yl. The obtained slopes K(2) and K(3) and equation (B.11) are then used to calculate

the parameters Cb and Cmv:

K(3)-2K(2)
Cb = 3K(2)-K(3) , CL = 2 (B.13)

We select to fit the 2 nd and 3 d" empirical moments for two reasons. The first reason is that a

number of studies (Veneziano et al., 2006b, 2007; Langousis and Veneziano, 2007; Langousis et

al., 2007) have shown that when modeling extremes of point rainfall, it is important to focus on

moment orders larger than 2. The other reason is that the empirical moments of order larger than

3.5-4 tend to underestimate the true moments due to sample limitations (Ossiander and Waymire,

2000, 2002; Veneziano et al., 2006b). Note, however, that similar findings on the variation of Cb

and CLN with IL (see below) where obtained also when fitting the 0t and 2 nd moments of the

empirical data.

Figure B.10 shows how the parameters of the modified lognormal model vary with the large-

scale rainfall intensity IL. The solid lines are smooth least-squares estimates. Cb decreases

exponentially with IL. This is in accordance with the observed increase of the fraction of dry

regions with increasing distance from the center of the storm; see Section B.I. Cm is

approximately constant equal to 0.08. Values of CLm around 0.1 have also been reported by

studies on extra-tropical rainfall; see e.g. Langousis and Veneziano (2007) and Veneziano et al.

(2007).
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Pigure B.10: Plots of the parameters Cb and (C against IL. The solid lines are least-squares fits.
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B.2.1 Distribution of Ylm

From equation (B.12) one can derive the CDF of 71,max,ind, the maximum of L/ independent

copies of St. One obtains

[Po +(1- Po) In-rnv y >0
FyI,maxnd(7) = LN(B.14)

PouL  , y =O

where mLN = (Cb-Cuw) ln(L/l) and aLN2 = 2CW ln(L/l) can be obtained from Figure B.10 as

functions of Ia.

As discussed in the previous section, Y1,max,ind is biased relative to Yl,max by the assumption that

maximum rainfall occurs in one of the non-overlapping intervals of size 1. In the case considered

here, the maxima distribution in equation (B.14) is obtained from a modified lognormal marginal

distribution, for which the classical way to eliminate this source of bias is to multiply 1,max,ind by

a continuity correction factor 6-~ 1.13-1.15; see Hershfield (1961), Weiss (1964), Young and

McEnroe (2003) and Veneziano et al. (2007). After corrected for continuity, equation (B.14)

becomes

rP0 +(l P n(y'6)-m Ii y[Po +(1- Po). ' >0

F71,.xorr (7) = I (B.15)

PoLp , y =0

The dashed dotted lines in Figures B.5 - B.8 show the probability density function of Y,max,corr

calculated from equation (B.15) for 1= 192, 96, 48 and 6km. One sees that the probability model

in equation (B.15) produces results close to those obtained from equation (B.9) only for spatial

scales 1 <48km or, equivalently, resolutions L/1 4. This makes sense since the variable yl,max,corr

in equation (B.15) does not include dependencies between rainfall amounts inside different I

intervals and, in addition, it does not account for rainfall variability at scales smaller than 1. The

first source of bias causes the distribution in equation (B.15) to have a lower bound at zero,

whereas the second source of bias results in a distribution that does not have an upper bound.

Note that the distribution model in equation (B.9) accounts for these two effects and, hence, it is

bounded in the range [1, L/]. For high resolutions L/i (say L/ >4) the models in equations (B.9)

and (B.15) should produce similar results; see Figures B.7 and B.8.
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Similar to Figure B.9, Figure B.11 compares theoretically calculated exceedance probabilities

of rainfall maxima to observed relative frequencies. Here y,,.ax is calculated from equation (B. 15)

and the parametric expressions in Figure B.10. One sees that for spatial scales 1 > 24km the

modified log-normal model for yt,,,x performs slightly worse relative to the modified beta model

in Section B.1 (see Figure B.9) and the maxima approach with a beta distribution in Section

3.3.2; see Figure 3.11. This reduced performance of the model is due to the two sources of bias

discussed above.

l= 6km uniform
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1= 96km

0.4 0.6 0.8 1

S 2

0
r

*------- ----- 7tt------
0.2 0.4 0.6 0.8 1 0

P

0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1
P

Figure B.11: Histogram of the non-exceedance probability P in equation (3.10) for different spatial scales 1. y,,x is

calculated from equation (B.15) and the parametric expressions in Figure B.10. Each histogram is based on a sample

of size 789.

B.3 Results from Different Approaches
Similar to Figure 3.12, Figure B.12 shows how the distribution of the total amplification factor

,Amax, =1,maJILusR depends on 1, V,,, and y' = ly/R,,l. Results are shown for the three approaches

developed in Sections 3.3.2, B.1 and B.2 to evaluate the distribution of the amplification factor

y. One sees that the maxima approach using a beta distribution (MB, dashed dotted lines), the

marginal approach using a modified beta distribution (MMB, solid lines) and the marginal
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approach using a modified lognormal distribution (MML, dashed lines) produce similar results.

Small differences can be noted, but this is due to the fact that the approaches are different and

not derived one from another. However, these differences are small and negligible for practical

applications; see Figure B.13 below.
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Figure B.12: Comparison of the theoretical probability density functions (PDFs) of the total amplification factor
,,ax = I, max/ILMSR using the maxima approach with a beta distribution [MB (Section 3.3.2), dashed dotted lines], the

marginal approach with a modified beta distribution [MMB (Section B.1), solid lines] and the marginal approach
with a modified lognormal distribution [MML (Section B.2), dashed lines]. Results are shown for two different
length scales 1=10, 50km, different storm intensities V,,a= 30, 45 and 60m/s and different normalized distances y' =
ly/Rmaxl from the center of the storm: y '=1 (thin lines) and y' =5 (thick lines).
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Figure B.13 shows calculated IDF curves for New Orleans as plots of rainfall intensity i

against return period T for different durations D. Results are shown for the three different

approaches to evaluate the distribution of the amplification factor y,mx. All other model

components (i.e. recurrence model and distribution of ilL) are the same as those used in Section

3.5. One sees that the IDF curves produced by the three approaches are similar.
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......- MB

101 102
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Figure B.13: Theoretical IDF curves for the region New Orleans obtained from equation (3.11) for A = 0.57
events/yr using the maxima approach with a beta distribution [MB (Section 3.3.2), dashed dotted lines], the marginal
approach with a modified beta distribution [MMB (Section B.1), solid lines] and the marginal approach with a
modified lognormal distribution [MML (Section B.2), dashed lines]. Results are shown for averaging durations D =
0.5, 1, 6, 12 and 24 hours.
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