
Resource Allocation Problems in Stochastic Sequential Decision

MakingMaking MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

by - ---

Hariharan Lakshmanan MAR 2 6 209

Bachelor of Technology, Civil Engineering LIBRARIES

Indian Institute of Technology, Kharagpur (2001)
Master of Science, Massachusetts Institute of Technology (2004)

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

@ 2008 Massachusetts Institute of Technology. All rights reserved.

Author
Department of Civil and Environmental Engineering

September 17, 2008

Certified by
Daniela Pucci de Farias

Lecturer of Mechanical Engineering
Thesis Supervisor

Certified by
/ - David Simchi-Levi

Professor of Civil and Environmental Engineering and Engineering Systems
'n- Thesis SipPvIbr

Accepted by

Daniele Veneziano
Chairman, Departmental Committee for Graduate Students

ARCHIVES

Resource Allocation Problems in Stochastic Sequential Decision Making

by

Hariharan Lakshmanan

Submitted to the Department of Civil and Environmental Engineering
on September 17, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in the field of Information Technology

Abstract

In this thesis, we study resource allocation problems that arise in the context of stochastic sequen-

tial decision making problems. The practical utility of optimal algorithms for these problems is

limited due to their high computational and storage requirements. Also, an increasing number of

applications require a decentralized solution. We develop techniques for approximately solving
certain class of resource allocation problems that arise in the context of stochastic sequential deci-

sion making problems that are computationally efficient with a focus on decentralized algorithms
where appropriate.

The first resource allocation problem that we study is a stochastic sequential decision making

problem with multiple decision makers (agents) with two main features 1) Partial observability -
Each agent may not have complete information regarding the system 2) Limited Communication
- Each agent may not be able to communicate with all other agents at all times. We formulate

a Markov Decision Process (MDP) for this problem. The features of partial observability and

limited communication impose additional computational constraints on the exact solution of the

MDP. We propose a scheme for approximating the optimal Q function and the optimal value func-

tion associated with this MDP as a linear combination of preselected basis functions. We show
that the proposed approximation scheme leads to decentralization of the agents' decisions thereby
enabling their implementation under limited communication. We propose a linear program, ALP,

for selecting the parameters for combining the basis functions. We establish bounds relating the
approximation error due to the choice of the parameters selected by the ALP with the best possible

error given the choice of basis functions. Motivated by the need for a decentralized solution to

the ALP, which is equivalent to a resource allocation problem with separable, concave objective

function, we analyze a general class of resource allocation problems with separable concave ob-

jective functions. We propose a distributed algorithm for this class of problems when the objective

function is differentiable and establish its convergence and convergence rate properties. We de-
velop a smoothing scheme for non-differentiable objective functions and extend the algorithm for
this case. Finally, we build on these results to extend the decentralized algorithm to accommodate
non-negativity constraints on the resources. Numerical investigations on the performance of the
developed algorithm show that our algorithm is competitive with its centralized counterpart.

The second resource allocation problem that we study is the problem of optimally accepting or
rejecting arriving orders in a Make-To-Order (MTO) manufacturing firm. We model the production
facility of the MTO manufacturing firm as a queue and view the time of the production facility as
a resource that needs to be optimally allotted between current and future orders. We formulate the
Order Acceptance Problem under two arrival processes - Poisson process (OAP-P), and Bernoulli
Process (OAP-B) and formulate both problems as MDPs. We provide insights into the structure of
the optimal order acceptance policy for OAP-B under the assumption of First Come First Served
(FCFS) scheduling of accepted orders. We investigate a class of randomized order acceptance
policies for OAP-B called static policies that are practically relevant due to their ease of imple-
mentation and develop a procedure for computing the policy gradient for any static policy. Using
these results for OAP-B, we propose 4 heuristics for OAP-P. We numerically investigate the per-
formance of the proposed heuristics and compare their performance with other heuristics reported
in literature. One of our proposed heuristics, FCFS-ValueFunction outperforms other heuristics
under a variety of conditions while also being easy to implement.

Thesis Supervisor: Daniela Pucci de Farias
Title: Lecturer of Mechanical Engineering

Thesis Supervisor: David Simchi-Levi
Title: Professor of Civil and Environmental Engineering and Engineering Systems

Acknowledgments

I would like to thank my advisor Prof. Daniela Pucci de Farias for her constant support for my

research and for being a wonderful mentor. It has been a privilege working with her and learning

from her. I am thankful to my advisor Prof. David Simchi-Levi for his support and guidance

for my research. I have enjoyed the research discussions I had with him and learnt a lot from

his insightful observations. I thank my defense committee member Prof. Steven Lerman for his

valuable suggestions.

My special thanks to my roommate for 6 yrs M.N.Srinivas and office mate for 6 yrs, Sivaram.

I will always remember and cherish the many wonderful moments we have had. My thanks to

Deepak, J. Srini, Mani, Vikram, Vijay, Rags, Madhu for providing me such a wonderful atmo-

sphere at MIT. My special thanks to Rags and Jaykumar for their insightful research discussions.

I thank my friends Senthil and Mythreyi for their wonderful company and support. I thank my

friends Satish, Somu and Muthu who have been pillars of strength from my school days.

I thank my family for their unconditional support in all my endeavours.

Contents

1 Introduction

1.1 Stochastic sequential decision making

1.2 Resource allocation problem in MDPs involving multiple decision makers

1.3 Optimal Order Acceptance for a manufacturing firm

1.4 Thesis organization and Contributions

2 Multi-Agent Sequential Decision Making Problems

2.1 Introduction........

2.2 Problem description

2.3 Literature survey

2.4 Approximation architecture

2.4.1 Approximate Linear Programming

2.5 Error and Performance Analysis

2.6 Equivalence of ALP to resource allocation problem

19

. 19

. 20

. 23

. 24

. 24

. 26

. 3 1

3 Decentralized algorithm for resource allocation problems with dynamic networks of

agents

3.1 Introduction

3.2 Resource allocation problem formulation

3.3 Communication between agents

13

. 13

. 14

. 15

* 15

3.4 Decentralized Resource Allocation

3.4.1 The Differentiable Case

3.4.2 The Non-differentiable Case

3.5 Decentralized resource allocation with non-negativity constraints . .

3.6 Numerical Experiments

3.6.1 Problem with differentiable objective function

3.6.2 Decentralized optimization of linear programming problems

. 39

. 40

. 53

. 68

. 72

. 72

. 74

4 Resource Allocation Problem for Make-To-Order manufacturing firms

4.1 Introduction .

4.2 Literature review

4.3 Optimization problem statement

4.4 Discretized order acceptance problem

5 Order Acceptance Problem (Bernoulli) with First Come First Served Scheduling pol-

icy

5.1 Special case; No waiting room in the queue

5.1.1 Stationary policy description

5.1.2 Problem Formulation

5.1.3 Characterization of the optimal policy.....

5.1.4 Derivation of steady state probabilities

5.1.5 A simple algorithm for finding Optimal policy

5.2 Analysis of OAP-B with FCFS scheduling policy . . .

5.2.1 State space and state transition structure

5.2.2 Problem Formulation

5.2.3 Characterization of Optimal Policy

5.2.4 Extensions

. 94

. 9 5

. 96

. 96

. 98

.100

..100

..101

.............. .102

.............. .103

.............. .111

5.2.5 Order rejection penalty 112

5.2.6 Reward and lead time quotation 115

5.3 Expected Average Reward Per Time For An Autonomous Queue With One Order

Category 120

5.4 Static policies 128

5.4.1 Optimal static policy selection problem 129

5.5 Optimal static policy for the special case of equal processing times and lead times

for various order categories 130

5.5.1 Structure of the Optimal Static Policy 131

5.5.2 Algorithm for finding the optimal static policy 133

5.6 Optimal Static Policy for OAP-B with FCFS based scheduling policy 133

5.6.1 Gradient ascent 134

6 Heuristics and simulations

6.1 Family of discrete space problems

6.2 Heuristics based on solution to Dk . .

6.2.1 FCFS-Threshold

6.2.2 FCFS-ValueFunction.....

6.3 Static Policies

6.3.1 FCFS-Static

6.3.2 EDD-Static

6.4 Numerical experiments

6.4.1 Implementation details

6.4.2 Comparison of heuristics . . .

6.5 Comnarison of FCFS-ValueFunction f

6.6 Comparison of EDD and FCFS scheduling policies

137

.137

. .139

.............. 140

.. 141

..

. 141

.. 141

...

............ 142

.

.................. 142

...142

. 143

or various values of k 149

149

6.7 Summary 151

7 Conclusion 155

List of Figures

3-1 Comparison of convergence behavior of the decentralized and centralized algo-

rithms for various K...................................

3-2 Comparison of convergence behavior of the decentralized and centralized algo-

rithms for various n.

3-3 Comparison of convergence behavior of the decentralized and centralized algo-

rithms for various

3-4 Comparison of convergence behavior of the decentralized and centralized algo-

rithms for various n.

Comparison of EDD-based heuristics for various loads

Comparison of FCFS-based heuristics for various loads

Comparison of various EDD-based heuristics for various min

Comparison of FCFS-based heuristics for various in

Comparison of heuristics for various loads for Problem 2

Comparison of heuristics for various bmax for Problem 2

Comparison of heuristics for various smin for Problem 2

Performance of FCFS-Threshold for k = 1 and k = 5 for Problem 2

Comparison of FCFS-Threshold and FCFS-ValueFunction for various &

Comparison of FCFS-Static and EDD-ValueFunction for various & .

.145

. 146

. 147

. 148

. 149

. 150

. 151

. 152

.153

.154

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

6-10

12

Chapter 1

Introduction

Resource allocation is the art and science of allotting a limited amount of a resource among com-

peting activities to optimize chosen criteria. Resource allocation problems arise in a wide variety

of engineering and economic contexts. In this dissertation, we focus on resource allocation prob-

lems that arise in the context of stochastic sequential decision making. The computational effort

required for optimal solution of these resource allocation problems is typically prohibitive. Also,

an increasing number of applications require a decentralized solution. The focus of this disserta-

tion is on providing efficient algorithms for solving certain class of resource allocation problems

that arise in the context of stochastic sequential decision making problems, with an emphasis on

decentralized algorithms where necessary.

1.1 Stochastic sequential decision making

Stochastic sequential decision making problems involve a system which evolves under a stochastic

uncertainity as a result of the actions taken in stages by a decision maker. Markov Decision Pro-

cesses (MDP) is a standard framework for studying stochastic sequential decision making prob-

lems. The state of the system of a MDP can be described through state variables and the set of all

possible values that the state variables can take is called the state space. A decision maker typically

has a choice of many actions for each state of the system. The goal of the decision maker is to find

an optimal action for every state of the system for a chosen criteria.

Optimal algorithms are known for solving a wide variety of optimal control problems for

MDPs. However, it is impossible to practically apply these algorithms due to their large com-

putational and storage requirements. Hence it is important to develop computationally feasible

heuristics for MDPs. We now briefly discuss the MDPs considered in this thesis, the associated

resource allocation problems and the heuristics developed.

1.2 Resource allocation problem in MDPs involving multiple

decision makers

For a large class of MDPs, there exists an optimal value function that associates a value with each

state of the system that is a measure of the relative worth of that state. The optimal action to

be taken in any state can be computed once the optimal value function is known. Approximate

Dynamic Programming (ADP) refers to the collection of approximation techniques that aim to

provide good, efficient solutions to MDPs. A popular idea in ADP is to approximate the optimal

value function using approximation schemes with a few parameters and appropriately select the

parameters to construct a good approximation. A linear programming based technique called ap-

proximate linear programming (ALP) falls under the category of ADP techniques that use value

function approximation (see de Farias et al. [16]). ALP approximates the optimal value function

as a linear combination of preselected basis functions, where each basis function associates a value

to each state in the state space. It proposes a linear programming problem for selecting the weights

for combining the basis functions. The first resource allocation problem studied in this thesis arises

from an extension of ALP techniques to MDPs involving multiple decision makers. The decision

makers would be called agents henceforth. A feature of these MDPs is that each agent may need

to operate in an environment where communication with other agents is limited. It will be shown

in the next chapter that in this case the linear programming problem for choosing the weights in

ALP is equivalent to a resource allocation problem. Is is essential that this resource allocation

problem is solved in a decentralized fashion. We propose and analyze a decentralized algorithm

for a general class of resource allocation problems that includes the resource allocation equivalent

of the ALP for MDPs with multiple agents.

1.3 Optimal Order Acceptance for a manufacturing firm

The second resource allocation problem studied in this thesis arises in the context of selective

acceptance of orders to a manufacturing firm. We assume that the production capacity of the firm

is fixed and hence the production time of the firm is a resource that must be judiciously allotted

between various orders. A useful control available with the firm is to selectively accept the arriving

orders. We formulate a MDP for optimally accepting arriving orders by modeling the production

facility of the firm as a queue to which orders arrive via a known stochastic process. We study

a related class of MDPs and derive computationally efficient heuristics for the order acceptance

problem using solutions to the related problem.

1.4 Thesis organization and Contributions

We define the problem of optimal control of MDPs with multiple agents in Chapter 2. We discuss

the computational difficulties in applying algorithms for optimal solution of this problem and es-

tablish the need for heuristics for obtaining good, efficient solutions. We describe an ALP based

scheme for approximating important quantities related to the optimal solution of the MDP. We

formulate a linear programming problem for obtaining the parameters related to the approxima-

tion scheme. We establish suitable error bounds relating the approximation from our ALP based

scheme with the "best possible error" given the choice of the basis functions for the ALP. The

problem setting requires a distributed solution to the linear programming problem for selecting the

parameters of the approximation scheme. We establish the equivalence of this linear programming

problem to a resource allocation problem with a separable concave objective function. This opens

the possibility of using distributed algorithms developed for resource allocation problems for the

linear programming problem of interest.

In Chapter 3, we define a general class of resource allocation problems with separable, concave

objective functions, that includes the resource allocation equivalent of the linear programming

problem for choosing the parameters of the approximation scheme. We propose and analyze a

distributed algorithm for solution of this class of resource allocation problems by first assuming

that the objective function is differentiable. We show convergence of our algorithm to an optimal

solution and also derive convergence rate estimates. Based on this result, we develop smoothing

schemes for non-differentiable objective functions and propose a distributed algorithm for solution

of the resource allocation problem with separable, non-differentiable concave objective function.

We also extend the results to a broader class of problems that include non-negativity constraints on

the objective function.

In Chapter 4, we discuss the second resource allocation problem considered in this thesis,

namely the optimal acceptance of orders for a manufacturing facility. We model the production

facility of the firm as a queue and define the problem of optimally accepting arriving orders as a

MDP. If the arrival of the orders to the firm is modeled by a Poisson process, the set of values that

the variables representing the state of the system can take is not countable. We formulate a related

MDP for the order acceptance problem that assumes a Bernoulli process for order arrival which is

a problem with a finite state space.

In Chapter 5, we study the order acceptance problem with Bernoulli arrival process for orders.

We propose an algorithm for finding the optimal solution to a special problem where there is

no waiting room in the queue. We then establish some structural results of the optimal order

acceptance policy assuming that the accepted orders are served on a first come first served basis.

We define a class of order acceptance policies called the static policies which are easy to implement

from a practical point of view. We establish a closed form expression for the expected average

reward per time of a queue that processes only one type of order and use that expression to find the

optimal policy among the class of static policies for a special problem.

In Chapter 6, we propose heuristics to the order acceptance problem with Poisson arrival of or-

ders that makes use of the solution of an order acceptance problem with Bernoulli arrival process

for orders. We evaluate the performance of the heuristics using numerical experiments and com-

pare them to a heuristic proposed in the literature for the order acceptance problem with Poisson

arrival process for orders.

We draw relevant conclusions and discuss possibilities for future research work in Chapter 7.

The results in Chapter 2 have previously appeared in [36] (Copyright (c) 2006 IEEE. Reused

with permission. All rights reserved.). The results in Chapter 3 have previously appeared in [35]

(Copyright (c)2008 Society for Industrial and Applied Mathematics. Reused with permission. All

rights reserved.)

18

Chapter 2

Multi-Agent Sequential Decision Making

Problems

2.1 Introduction

Markov Decision Processes (MDPs) offer a standard framework for studying stochastic sequen-

tial decision making problems. MDP has been the subject of extensive research over the last few

decades and a large body of work covering various aspects of MDPs exist. A good introduction to

the theory of MDPs is provided by [5], [42], [6]. The practical application of optimal algorithms

for MDPs is limited due to the rapid growth in the computational requirements with the variables

of interest, a problem known as the curse of dimensionality. In this work we are concerned with

MDPs with multiple agents. To model a variety of practical situations, we assume that the com-

munication between the agents may be limited, a factor that could affect their ability to coordinate

in order to optimize decision making. We also assume that the agents may only have partial rather

than complete information regarding the system at any time. These assumptions introduce ad-

ditional computational difficulties in addition to the curse of dimensionality. In this chapter, we

formulate the problem of multi-agent MDP's. We provide a linear programming based approxi-

mation framework for this problem. We show an error bound that relates the error induced by our

approximation scheme with respect to the best possible error to be defined later in the chapter.

2.2 Problem description

We consider the problem of a network of agents operating in a stochastic environment, modeled

as a MDP with the following characteristics. The MDP has a finite state space S and finite action

space A". An action a = (a, ..., a.) corresponds to a vector of individual actions taken by each

of n agents. At each time stage, the system incurs a cost g(x), where x denotes the state of the

system. In the next time stage, the system transitions to state y with probability Pa(x, y). We note

that the system transition depends only on the current state and the joint action of the agents, a

property known as the Markov property.

A policy u is a mapping from S to An specifying the action that each agent should take,

conditioned on the current state of the system. We consider the problem of optimizing the expected

sum of discounted rewards, over infinite horizon:

t=0ruin E>3)°t PUx)(xt" (2.1)

simultaneously for all initial states x0 , where a E (0, 1) is a discount factor that captures time

preference and i is a set of admissible policies.

If U contains all possible mappings from states to actions, an optimal centralized control policy

to be followed by the network of agents can be found via dynamic programming [5]. It can be

shown that the problem of finding an optimal policy reduces to finding a solution to Bellman's

equation

J(B) = min g(x) + a Pa(x, Y)J(Y).

Bellman's equation has a unique solution denoted by J*, which we refer to as the optimal cost-to-

go function. Another quantity of interest is the Q-function:

Q*(x, a) = g(x) t a v Pa(X, y)J*(Yy)
y

An optimal policy u* can be derived from Q* according to

u*(x) = argmin Q*(x, a). (2.2)
a

Stochastic dynamic programming (DP) [5] offers a systematic approach for finding the optimal

centralized control policy to be followed by the network of agents. Nevertheless, application of

DP presents two significant shortcomings. First, as mentioned before, dynamic programming is

subject to the curse of dimensionality. In particular, computing and storing the optimal cost-to-go

or Q-function requires an amount of resources that is at least linear on the cardinality of the state

space. We expect that, for most problems involving networks of agents, the state of the system

will typically include local states associated with each agent, and the cardinality of the state space

will grow exponentially in the number of agents. Second, even if the cost-to-go or Q-function

can be computed and stored efficiently, determining the optimal action at each time typically in-

volves centralized operation. In particular, the optimal action is a function of the full state of the

system, which is often not observable by any single agent and can only be determined through

communication among all agents. In large networks, this may lead to prohibitive communication

requirements. For instance, in computer networks involving a large number of servers ,or in teams

of robots, or unmanned vehicles, the exchange of information that can occur within a certain period

of time is limited by constraints of physical proximity and/or bandwidth of the channels available

for communication.

While DP only generates centralized policies, finding an optimal decentralized policy directly

is significantly harder. In particular, while DP has complexity that grows polynomially on the

cardinality of the state space, finding an optimal decentralized policy is NP-hard [53]. Considering

this, we propose a general framework that can be used to simultaneously address the curse of

dimensionality and the need for decentralized control strategies.

As mentioned before, the agents are not assumed to have full information regarding the system

at any time. We model this assumption regarding the partial information availability to the agents

as follows. We assume that each agent i makes observations governed by a function hi : S H 0.

In other words, when the state of the system is x, agent i observes hi (x). We model the com-

munication between the agents at time t by an undirected graph G(t) where nodes correspond to

agents, and edges correspond to communication links. We assume that communication is symmet-

ric, so that if agent i communicates with agent j, then agent j also communicates with agent i. We

also assume that the union of the communication graphs is connected over any sufficiently large,

bounded period of time. We formalize this assumption on the communication graphs in the next

chapter.

We consider approximation architectures consisting of parametric classes of functions, which

we use to approximate the Q-function. Local approximation architectures involve functions ex-

pressed as a sum of terms, each of which depends only on local information available to a given

agent and its own action. Approximating the Q-function using a local approximation architecture

is easily shown to give rise to decentralized control policies.

Given an approximation architecture, a function in that class must be selected as a suitable

approximation to the Q-function. In this chapter, we propose and analyze a method for approxi-

mating the Q-function using a local, linear approximation architecture. Our method is based on

the linear programming approach to approximate DP, or approximate linear programming (ALP)

for short [16, 46]. We show that an error bound similar to that established for cost-to-go function

approximation can be derived when linear programming is used to approximate the Q-function.

In many applications involving teams of agents, it is essential that the solution of the Q-

function-fitting LP is obtained in a decentralized fashion. In the next chapter, we derive an in-

terpretation of the Q-function fitting LP as a problem of resource allocation among the agents

and propose decentralized algorithms for the solution of this problem. Before we describe our

approximation approach we present a survey of related work.

2.3 Literature survey

A very good introduction to approximate DP techniques based on simulation of the underlying

system can be found in [49] and [7]. The approximate DP methods described in these books are

centralized. A good survey on centralized approximation techniques for MDPs can be found in

[15]

The computation of optimal decentralized control policies is more complex than the compu-

tation of centralized control policies. Bernstein et al. [3] show that the computation of optimal

control policies for a general finite horizon MDP with multiple agents where each agent has only

an observation of the state is NEXP-complete. Goldman et al. [25] divide the problem of decentral-

ized control of MDPs into various categories and provide complexity results for these categories.

Becker et al. [44] propose optimal algorithms for a class of multi-agent MDPs where there

are local state variables corresponding to each agent and the evolution of these local state variables

depends only on the action of the corresponding agent. ALP with local approximation architectures

for decentralized control has been previously investigated in [13]. However, the approach presented

requires solution of a centralized LP to generate an approximation to the Q-function. A hierarchical

scheme for solving the ALP for factored Markov decision processes has also been proposed, but

it requires that the agents form a network of fixed topology and take asymmetric roles [27]. Other

approximate DP methods have been applied with empirical success to problems of routing and

mobility control in ad-hoc networks (e.g., see [12]). However, these methods lack the convergence,

error bounds or performance enjoyed by ALP methods.

2.4 Approximation architecture

We consider approximations to the Q-function given by linear combinations of local basis func-

tions Oi, : 0 x A F R:

Q*(x), a Zt Qij(h (x), aj.

K

ai)rij

i=1 j=1

Note that ij depends on the global state x only through the information hi(x) available to agent

i.Recall that the optimal policy u* is given by (2.2). Using

Recall that the optimal policy u* is given by (2.2). Using Q(, ., r) as an approximation for Q*,

it is natural to consider following the policy

u(x)
n nK

= argmin{ Oi,j(h(x),a)rij}
a i=1 j=1

K

= (argmin{ i,j(hi(x), ai)ri,j}) I.
a j=l

Hence each agent can make decisions 'ui(x) based only on the local information hi(x), without

having to explicitly coordinate action choices with other agents. However, we note that the scheme

still allows for coordination through appropriate choice of the state space and observation functions

hi(x).

2.4.1 Approximate Linear Programming

Before introducing the linear programming method for fitting the Q-function, we define the oper-

ator H, which maps real functions on 0 x A to real functions on 0, as

(HQj)(hi(x)) = min Qi(h (x), al).
ai

n

7.i)= ~7

The version of ALP we consider here requires that we deal with HQi(-, -, r2). Note that this

function does not always admit a compact representation. In order to circumvent this issue, we

consider approximations to HQi given by

K

j=1

Our scheme involves two forms of function approximation: on one hand, we propose approxi-

mating Q* using a local, linear approximation architecture Qji(, ", ri). On the other hand, we also

approximate HQj using a linear approximation architecture Ji(-, si).

The choice of basis functions Oi,j and Vi,j involved in the definition of Qi and Ji has central

impact on the quality of the approximations that are generated. Appropriate choices of basis func-

tions rely on problem-specific analysis and heuristics. Here, we assume that a set of basis functions

oj, O,j have been specified in advance and focus on the task of choosing the weights r,, sij.

Our analysis holds for an arbitrary choice of basis functions.

In order to find a set of weights ri,j, sij, leading to an appropriate approximation to the cost-

to-go and Q-function, we consider the linear programming approach to approximate dynamic pro-

gramming, here referred to as approximate linear programming (ALP). For the sake of simplicity,

we introduce some matrix notation. We let ri E RK, Si E ×K r WnxK and s E nxK denote

vectors (r,j)j=1,...,K, (Si,j)j=1,...,K, (ri,j)i=1,...,n,j=l, ...,K, (Si,j)i=l,...nj=l ,...K, respectively. W e also

let (Diri and Tisi indicate functions Ej Oij (hi(x), ai)ri,j and Eyj V,j (hi(x))si,j. We consider the

25

following linear programming (LP) problem for approximating the Q-function:

max C c(x, a)(iri)(hi(x), a) (2.3)
rTS

Y i

i

The objective function coefficients c(x, a) must be nonnegative and we assume without loss of

generality that they add to one. The above LP has a number of variables that corresponds to the

total number of basis functions 2nK used in the approximation scheme. The number of constraints

grows linearly in the cardinality of the state and action spaces. However, because of the relatively

small number of variables in the LP, we expect that most of the constraints will be redundant,

and exact or approximate approaches can be derived for solving it efficiently. In particular, we

expect that a constraint sampling scheme similar to that described in [17] for the case of cost-to-go

function approximation would also apply to Q-function approximation. Alternative approaches

that exploit problem-specific structure to deal with the constraints efficiently [281 could also be

applied. In the next Section, we provide a bound on the error in the Q-function approximation

generated by (2.3).

2.5 Error and Performance Analysis

An appealing feature of the ALP algorithm for cost-to-go function approximation is that it induces

an error in the cost-to-go function approximation that is proportional in a certain sense to the

smallest approximation error that can be achieved given the choice of the basis functions [16].

Specifically, if some linear combination of the basis functions is able to approximate the cost-to-go

function well, then the error in the approximation provided by ALP cannot be much larger. In this

section, we show that a similar result can be developed for the case of Q-function approximation.

In order to proceed with the analysis, we introduce some notation. For each policy u, we let

Q(x, u) = Q(x, u(x)). We also let P, : S x S [0, 1] denote the transition matrix associated

with u, i.e., P,(x, y) = P(x) (x, y) for all x and y. For all J : S - R and V : S F-+ R+, we define

VJ(x)1
flJ oo,v = max

with a similar definition for I. - Iv, V : O F -+. Moreover, for all Q : Sx A" -4 R and

V : S F- +, we let

IQ(x, a)
I Qo,v = max

We finally let

flQH11,e = Zc(x a)jQ(x,a)j.
x,a

The analysis is based on the use of Lyapunov functions, whose definition is given below. See

[16] for a detailed discussion of their significance. For all V : S h- R+, let

Ov = a max IIP,V I,,v.

Definition 2.5.1. We call V : S - W+ a Lyapunov function if 3v is less than 1.

We have the following result.

Theorem 2.5.1. Suppose that there exist Vi : 0m +, i = 1, ,n such that:

1. V (.) = -i V (hi (-)) is a Lyapunov function;

2. (jivr)(-, a) = (TivS)(") = V(.-) for some , v, and all ai E A.

Let

C min,s (2nQ* - Z2 irio,+ av H(z Hr bir- isVi ov+ maxi Hr - isaioo,))

Also, for all i, let V =2 - (4yi') and VQ = -7 V. Then the optimal solution i of the approximate

LP (2.3) satisfies

V1 -lCE

1 - OV

Proof Let i, A achieve the minimum in the definition of c. Let Ji = 9i&i§, Qi = -ii, J i i

and Q = Ji Qi. Let ec = maxu, g + aPuJ - Q(-, u)j ,v and E2 = maxi JHQi - ji, ,v. Let

ks - 1+E2 k- = 1+/3V2 We first show that i - k'rv, i - kSvs is a feasible solution for the

approximate LP. For simplicity, let Qi = (i(j - krv[r) = Qi - krQ , Ji = Wi(- kvs) =

Ji - ksV. For all u and x E S, we have

g (x) + a EYeS P()(r, y)J(y) = g(x) + a Es FPU() (x, y) (J(y)

> g(x) + a E,, P.()(x, y)J(y) - OvksV(x)

= g(x) + a ys P(X)(x, y)J(y) - Q(x,) + Q (x, u)

- krV(x) + (k" - 13vk)V(x)

> (-E, + k' - 3vk') V(x) + Q(x, u)

= (-1 + I+3V-- V(x) + Q(x, u)

= Q(, u).

where the first inequality follows from the definition of a Lyapunov function. It follows that the

- ksV(y))

1Q*-

first set of constraints in (2.3) are satisfied by (Ji, Q). Moreover, we have

J, = Ji- ks

= Ji - HQ + HQ G - k + kTV - k'V

= - HQj + H (Q - k'TV&Q) + k'V - k'V,

< (E2 + k - k)V + HQj

= (2 E
l +H E 2-(I

- 2) V + HQi

HQi.

The third equality follows from the fact that yQ(hi(x), aj) = V(hi(x)) for all a. Hence the

second set of constraints in (2.3) are also satisfied. We now note that the optimal solution i,

a of the approximate LP (2.3) minimizes IIQ* - Ei #r 1,c over the feasible region [13]. Let

Q = 1i 4jii. It follows that

IQ* -Q 1i,c IQ* V1,c c

S Q +1,c+ krllVQ|,c

IIV Qi,c(Q* - lo,v + k')

- v1,c - Oov e+ 1+ v2

1- OV

The third inequality follows from the fact that for a given x E S, VQ(x, a) = V(x) for all a.

(2.4)

Now note that

El max, Jg + aPJ - Q(-,u) ,,v

" maxu, Hg + aP. minu, Q(., u') - Q(., u) v,+

+maxu fP11 ZC i(Ji - HQi)I v

" max IJaP(min, Q(, u') - nin Q*(', u'))

+(Q*(-, u) - 0(-, u)) 1y + Ov Ei 1 ii - HQi Koov

< (1 + /v)Q* - Q11oov + v Ei i - HQilooy.

The theorem follows from the above inequality and inequality (2.4). O1

Theorem 2.5.1 implies that the approximation error 1 Q* - Q111,c provided by the approximate

LP is proportional to the "best error" in approximating Q* and J* using the selected approximation

architecture, and to the term Ei IIHiri - Tsilloyv + maxi IIH4)iri - TisJloo,v. The bound is

stated with respect to the objective function coefficients c and suggests that they can be used to

emphasize approximation errors over different state-action pairs. Another important aspect of the

result regards the role of Lyapunov functions. A straightforward way of ensuring existence of

a suitable Lyapunov function is to let)i,j(-) = Oi,j(-,) = 1 for some j and all i; it is easy to

verify that the constant function is a Lyapunov function. However, we note that the Lyapunov

function is used to weight errors over different state-action pairs in the constant c. It can be shown

that, in certain cases, a suitable Lyapunov function can be identified that captures structure of the

system and ensures good scalability properties of the algorithm by de-emphasizing states that are

less relevant for the decision-making process [16]. Moreover, another recent result shows that a

different formulation of ALP can be used to relax the requirement for a Lyapunov function, while

leading to similar bounds and scaling properties [18].

30

2.6 Equivalence of ALP to resource allocation problem

We have shown that the proposed approximation architecture using local basis functions has an

appealing error bound. In problems involving multiple agents it is sometimes essential that the ap-

proximate LP (2.3) is solved in a decentralized fashion considering the communication constraints

between the agents. In this section, we present a decentralized formulation for the approximate LP

(2.3) that can be interpreted as a problem of resource allocation among the agents. We propose

decentralized algorithms for a class of resource allocation problems in the next chapter which can

be applied to the approximate LP (2.3).

Consider the following coupled optimization problems:

n

maxx Zpi(Ai) (2.5)
i=1

(2.6)
s.t. ZAi(x,a) g(x),Vxa.

j2~1

where

AP(Ai) = max Z c(x, a)(iri)(hi(x), a)
x(a

y

((bjir)(hj~x) a) > (1Vjs)(hj~)),Vz a.

(2.7)

(2.8)

(2.9)

We have the following equivalence between problems (2.5) and (2.7) and the approximate LP

(2.3).

Theorem 2.6.1. 1. (A, r, s) is optimal for (2.5) and (2.7) only if (r, s) is optimal for the ap-

proximate LP (2.3).

2. (r, .) is optimal for (2.3) only if there exist a A such that (A, ., S) is optimal for (2.5) and

(2.7)

proof of]

Let f(r-, s) denote the value of the objective function for the approximate LP (2.3) for a given

(r, s). Let (A., , s) be an optimal solution for (2.5) and (2.7). It is clear that (i, s) is a feasible

solution for the approximate LP (2.3). Further, f(i, s) = /-, ti(Ai). Consider any feasible

solution (f, S) to the approximate LP (2.3). Define A such that Ai(x. a) = (Piri)(hi(x), ai) -

a E P(x, y)(Ti)(h(y)). It is clear that (A, r, s) satisfies the constraints, (2.8), (2.9) and (2.6).

Thus f(r) < = i(Ai). Therefore f(XA,,s)= i= (A) > =71 i(XA) >_ f(i,). This

establishes that (f, s) is an optimal solution to the approximate LP (2.3) proving the first part of

the theorem.

proof of2

Let (F, s) be an optimal solution to (2.3) and let A be defined such that A,(x, a) = ((~if) (hi(x), a)-

a > Pr,(x:, y)(isi)(h (y)) . It is clear that (A, r, s) satisfies the constraints, (2.8), (2.9) and (2.6).

Consider an optimal solution (A, r, s) for (2.5) and (2.7). It is clear that (r, s) is a feasible solution

for (2.3). Thus, >,I pC(Xi) > f(, s) f(s)= .i PC(Ai) establishing the optimality of

(,, , s) for (2.5) and (2.7).

Note that each LP (2.7) can be solved locally by the corresponding agent. We can think of g(')

as the total amount of resources to be assigned to each agent. Solving problem (2.5) corresponds

to finding the optimal allocation, when the utility of resources to each agent is given by p (-).

The following result gives more insight into the form of the utility functions pi(.), establishing

that (2.5) is a convex optimization problem. Another important consequence is that derivatives for

(2.5) can be computed in a decentralized way.

Theorem 2.6.2. 1. For each i, pi is a concave, piecewise linear function. Its subgradients

correspond to the optimal solutions of the dual of(2.7).

2. If V'i,(-) = (i,(-, ') = 1 for some j, then for each value of Ai the LP (2.7) has an optimal

solution, hence its dual has a nonempty, bounded feasible region.

Proof of 1: The result follows directly from LP duality theory (For example, Sections 5.2 and 5.3

of [9]) applied to (2.7). O

Proof of 2:

Consider a MDP where a cost of Ai(x, a) is incurred when the control action a is taken at state

x. Consider approximating the optimal Q function and the optimal cost-to-go function for this

problem using a linear approximation architecture using the basis functions Oi, Vi and using the

LP (2.7) for selecting the weights for combining these basis functions. Let the optimal Q function

for this problem be denoted as Q(, to indicate its dependence of Ai.

Define 7 such that i a, = 1 and r-j = 0 for all other j. Similarly define si such that s l = 1 and

-sj = 0 for all other j. Then (~i) (, ai) = (i9i)(.) = 1. Let Vi = Oisi and ViQ = ifi. It can

be verified that Vi is a Lyapunov function. For some ii, Si, let Ji = Visg and Qi = ii. Define

E1 = max, Jlg + aPJi - Qi(, u) Kz,v and E2 = IIHQ - JJ 0,v,. Let k = E kr - 1E+jv.

Following the proof of Theorem (2.5.1), it can be shown that i~ - ki, 9i - kTi, is a feasible

solution for the LP (2.7). Also, it can be shown that for any feasible solution ri, si for LP (2.7),

Oiri < Q* (see proof of Theorem 1, Cogill et al. [13]) and hence Ex,a c(x, a)(Oiri)(hi(x), a) <

x,a c(X, a)Q*I (x, a). Hence there exists an optimal solution to the LP (2.7). O

Considering problems (2.5)-(2.7) raises the possibility of applying decentralized resource al-

location schemes to the approximate LP (2.3). This is the subject of the next chapter, where we

propose decentralized algorithms for solution of a class of resource allocation problems that in-

cludes the resource allocation problem defined by (2.5) and (2.7).

34

Chapter 3

Decentralized algorithm for resource

allocation problems with dynamic networks

of agents

3.1 Introduction

We noted in Chapter 2 that for multi-agent MDPs, it is essential to solve the approximate LP (2.3)

is a decentralized fashion. We showed that the approximate LP (2.3) is equivalent to a resource

allocation problem with separable piecewise concave objective function. In this Chapter we study

a general class of resource allocation problems that includes the resource allocation equivalent

of the approximate LP. We first consider the case when the objective function is differentiable

and propose a decentralized algorithm that converges to an optimal solution. We build on this

result to provide a randomized decentralized algorithm that converges to an optimal solution of

this class of resource allocation problems with probability one when the objective function is non-

differentiable. We then extend these results to a broader class of resource allocation problems that

includes non-negativity constraints on the resources.

3.2 Resource allocation problem formulation

In this section, we formulate a class of resource allocation problems. We consider the problem of

n agents that share m common resources. Agent i has utility function fi. The optimal allocation

of resources for maximizing the average of the utilities among agents is given by the following

optimization problem:

nmaxAjEm,i=1,...,n f(A) - S
i=1

where B CE R' corresponds to the total amount of resources.

We propose decentralized, asynchronous algorithms for solution of (3.1). The first method

applies in the case where f,, = 1, ... , ri are concave and differentiable, with Lipschitz continuous

gradients. The second method applies in the case where fi, i = 1,..., n are concave but not

necessarily differentiable. We establish asymptotic convergence and convergence rates of both

algorithms under mild conditions for communications among agents.

We showed that the approximate LP (2.3) is equivalent to the resource allocation problem

defined by (2.5) and (2.7). We note that this resource allocation problem belongs to the class of

problems defined by (3.1) with f, being non-differentiable and hence the results established in the

appropriate section of this chapter apply.

We recall, that at each iteration t, we model the communication between agents by an undi-

rected graph G(t) where nodes correspond to agents, and edges correspond to communication

links. The decentralized algorithm for solving (3.1) in the case of differentiable utility functions

has a simple gradient-ascent structure. Starting with an initial feasible resource allocation, agents

trade resources with their neighbors at each iteration in proportion to the difference in gradient

for the respective utility functions. The algorithm has a natural interpretation. The local gradient

computed by each agent can be thought of as the price the agent is willing to pay for additional

resources. At each iteration, agents trade resources with their neighbors in proportion to the prices

each is willing to pay for the resources.

It can be shown that a large class of separable convex optimization problems with linear con-

straints can be transformed to equivalent resource allocation problems. The equivalence of the

approximate LP to a resource allocation problem is an example. However the functions f, in the

transformed resource allocation problem are usually not differentiable. Motivated by this setting

we consider the case where fi is no longer differentiable, but has bounded subgradients. It is shown

in this case that a randomized version of a decentralized subgradient-ascent algorithm converges

with probability one to a near-optimal solution.

The subgradient-ascent algorithm for the case of non-differentiable utility functions can be in-

terpreted as a stochastic approximation version of the gradient-ascent method for differentiable

functions, applied to a smoothed version of the problem. The particular form of smoothing de-

veloped in this Chapter is motivated by several considerations. Adequate smoothing schemes

must lead to a close approximation to the original function. Furthermore, as we build on the re-

sults for differentiable problems with Lipschitz continuous gradient, the gradient of the resulting

smooth function must satisfy the same assumption with an adequate Lipschitz constant. Finally,

another consideration in this Chapter is the computational effort involved in computing the gradi-

ent for the smoothed function. With this in mind, we propose a smooth approximation of the form

fi = E[fi(A + Zi)], where Zi are vectors of zero-mean normal random variables. We show that,

with an appropriate choice for the variance of Zi, fi is within E of f, and its gradient is Lipschitz

continuous with a Lipschitz constant on the order of O(log m/E), so that it scales gracefully on

the dimension m of variable Ai. In addition, this form of smoothing lends itself to application

of a stochastic approximation scheme for gradient ascent which, at each iteration, only requires

evaluation of a subgradient of fi at a single point Ai.

A comprehensive treatment of algorithms for various classes of resource allocation problems

can be found in [51]. The algorithms introduced and analyzed in [51] are centralized in the sense

that a central agent is assumed to have complete information about the problem and computes the

optimal solution. In [1] and [29], decentralized resource allocation problems in the context of eco-

nomics are investigated. The main difference in the approaches of [1, 29] as compared to the one

presented here is the presence of a central agent who coordinates the computations performed by

individual agents. A setting that is closer to that considered in this Chapter is presented in [47],

which introduces a completely decentralized algorithm for a resource allocation problem with

twice differentiable separable convex objective functions. The algorithm assumes a symmetric and

fixed communication graph for the agents at all iterations and performs a gradient-projection at

each iteration onto a subspace related to the communication graph. The same setting is consid-

ered in [38], which proposes a decentralized, weighted gradient algorithm for resource allocation

problems with objective functions that are twice differentiable with bounded second derivatives.

Dynamic communication graphs are considered in [32], which proposes an application-specific

decentralized gradient algorithm for the problem of file allocation in distributed computer systems.

Asynchronous gradient-descent methods are also considered in [52] for problems of unconstrained

optimization with differentiable objective.

Most of the references regarding resource allocation problems in the literature, including the

ones mentioned above, contain non-negativity constraints on the resources (i.e., they require Ai >

0, Vi), whereas in our formulation resources may be negative. In Section 3.5, we show how the

results in this Chapter can be applied to problems with non-negativity constraints.

A distributed algorithm for non-differentiable optimization is presented in [39]. It is shown

that a projected subgradient algorithm applied by each agent converges to the optimal solution.

An important difference between the work presented in [39] and the work presented here is that

the former requires that the long-run frequency of updates performed by each agent to be the

same. Smoothing schemes for non-differentiable optimization can also be found in the literature.

[40] proposes a smoothing scheme for functions fi described as the maximum of differentiable

functions. The smoothed function is within E of fi and has Lipschitz constant on the order of

0(1/), independent of the dimensions of the problem. A caveat of this approach is that computing

the gradient of the smoothed function may require multiple evaluations of subgradients of the

original function. The particular form of smoothing considered here can also be found in the

literature (see e.g. [50]); however, it does not contain results concerning the Lipschitz constant of

the resulting smoothed function, which we develop in this Chapter.

3.3 Communication between agents

In this section we formalize our model of communication between agents. At iteration t, each

agent i communicates with a set of agents denoted by Ni(t). We assume that communication is

symmetric, i.e. whenever agent i communicates with agent j, agent j also communicates with

agent i. The communication between agents at time t can be represented by an undirected graph

G(t) = (N, E(t)), where N = {1, ... , n} represents the set of agents and the edge (i, j) E E(t) if

and only if agent i communicates with agent j at time t. Let Ek,! = Uk 1t= E(t). For a decentralized

scheme to converge, the update of the variable associated with any agent must be periodically

influenced by information from every other agent. This is ensured by the following assumption.

Assumption 3.3.1. There exists a strictly increasing sequence { Tz } of natural numbers with T =

1 such that G = (N, ET,,T,+,) is connected for all z and (Tz+ - Tz) < K where r is some natural

number

3.4 Decentralized Resource Allocation

We assume that (3.1) has an optimal solution. Let A = (A1, A2, 2,.. , Ain) where Ai E ~ m for

i=Assumption 3,...,n.

Assumption 3.4.1. There exists an optimal solution A* = (A(, Ag,..., A*) to (3.1).

For the rest of this Chapter, we let f 11 denote the Euclidean norm.

3.4.1 The Differentiable Case

We now develop a decentralized algorithm for the case where f, is concave and differentiable. We

assume that the functions f, have Lipschitz continuous gradients as formalized below.

Assumption 3.4.2. There exists a constant L > 0 such that IlVfi(Ai) - Vf4(Ai)ll < LflAj -

Recall that f(A) = =f). Hencen

Recall that f(A) = >j> fi(Ai). Hence

lVf (A) - Vf(A) j 1

12 i=1Vf,(Ai)- Vf(Aj)fl2

< I L2\xj- j 2

L
II - AXll

n

The second equality follows from the fact that IIX - l = 1A - 2 Hence A is aU/

Lipschitz constant for the function f. The decentralized algorithm that we develop is based on

the following lemma, which characterizes an optimal solution to (3.1) when functions fi are all

differentiable.

Lemma 3.4.1. A feasible solution A* of (3.1) is an optimal solution if and only if Vfi(A) =

Vfj (A*) for all i, j.

Proof We first note that we can eliminate one of the variables in (3.1) to make it unconstrained.

For instance, if we let A, = B - Z' 1 Ai, (3.1) is equivalent to

minf (A) = i=
Ain

n-1

Ai)
i=1

fi (Aj) + fn (B -

This is an unconstrained concave and differentiable optimization problem, hence a solution A* is

optimal if and only if Vf(A*) = 0. Noting that

n-1

V\f(A*) (vfi (A)- Vf,(B - A))

j=1

we conclude that A* is optimal if and only if

n-1

Vf (A*) - Vf(A*) = Vf,(B - E A*) Vf,(A*),Vi, j < n
j=1

Let A' be the value of the variable associated with agent i at iteration t. We consider the

following gradient-ascent update rule for each agent i:

At+'= At + Y 1 (Vfi(A')- Vf(At)) (3.2)

jENi(t)

Here y is a common constant stepsize that all the agents use for updates. It should be noted that

to perform updates at iteration t agent i uses only the gradient information corresponding to its

neighbors Ni(t) for iteration t. Each intermediate allocation At generated by the algorithm is a

feasible solution of (3.1):

Lemma 3.4.2. Suppose A' is a feasible solution for (3.1). Then At, where Aj is defined by (3.2), is

a feasible solution to (3.1)for all t.

Proof. Suppose At is a feasible solution for (3.1). Then

At+ B 1 - (Vf ,(A')- Vf(A)A
i i i jENi(t)

B Y C (Vfi(A')- v fj(At +

= B

The second equality follows from the assumption that communication is symmetric. Thus A'+ is

a feasible solution for (3.1) and the lemma follows by induction. O

In order to analyze the convergence properties of the proposed algorithm, it is convenient to

define f(A) for any allocation A as follows:

A) -(Vf2 (Ai) - Vfj(A3))
jEN

Note that i()t) is the direction of update when the communication graph E(t) is complete. It

can be verified that)(At) is also a scaled version of the projection of V f(At) onto the subspace

n A' = B, hence it represents the centralized update direction at time t. From Lemma 3.4.1

it can be seen that a feasible solution A is optimal if and only if j1E(A)fl = 0. We now derive a

theorem establishing convergence of the algorithm based on (3.2). Under mild conditions on the

set of optimal solutions, convergence to optimality is guaranteed. We also derive an upper bound

on the rate at which the sequence { I (ATz)II} converges to zero. Recall that Tz is a sequence

of strictly increasing natural numbers such that the union of the communication graphs between

iterations Tz and Tz+1 is connected. In what follows, let)t = i(A t).

Theorem 3.4.1. Suppose that Assumptions 3.4.1 and 3.4.2 hold. With a stepsize of y = ,

1. The sequence {f(At) } is monotonically non-decreasing.

2. The sequence { IT, }II converges to 0.

3. min,=, p(lz 2) < 3Lr(f(;*)-f()) 1Vp.4 p

4. If the set of optima is bounded, the sequence {f(At)} converges to f (A*).

The proof is based on a series of lemmas. Let the direction of update at time t be vt.It can be

seen from (3.2) that

v 1~)i (Vf(A) - Vfj(A))
jEN (t)

We first show that vt is aligned to the direction of the gradient.

Lemma 3.4.3. V f (A')Tvt- = E(i,j)cE(t)

Proof We have

Vf(At)Tvt zieN

V/f(At) - Vfj(At)112.

1TV fi (A)T
n jeN f(t)-) Vf3 (A)\jENi(t)

jENVf(At) - Vfj(A)(jeNi(t)
Since communication is symmetric, for every term of the form Vfi(At)T(Vfi(At) - Vfj(A)) in

the above summation, there is a corresponding term of the form Vfj(A)T(Vfj(A.) - Vfi(A)).

Hence,

1
2Vf(At)Tvt S(vfd(AI)T (vf(A\) - Vfyj(A)) + Vf(j)T (vf3(AI)- Vf'(A:)))

(i,j)EE(t)

1 E i Vf(At) - vfj(A)12

(i,j)EE(t)

1 f,(A)T
iEN

(3.3)

We now prove a lemma that establishes a relationship between Ivtll and Vf (At)v t . We can

interpret 7yVf(At)Tvt as the approximate increase in the objective of (3.1) when using the direction

vt and a sufficiently small step size y7.

Lemma 3.4.4. IvtIl 2 < 2rnVf(A t)T vt .

Proof. Using the Cauchy-Schwarz inequality, (Z l Ci) 2 < k Ek 1c,

v 2
Ilofdx~ -

< Ni(t) V i i At

jENi(t)

Vfj(AI) 2

jENi(t)

I Zt112ll 2

At)- V fj(A)l J2

<nV f(At) - V f (A)1j2

n2
i jENi(t)

-2r IVf,(A) - Vfj(At)12
= 2n Y, i n2

(i,j)EE(t)

= 2nVf(At)T v t

The last equality comes from Lemma 3.4.3.

We now prove a lemma that establishes a relationship between 1V tl and Vf (At)T i t

Lemma 3.4.5. Ii~ft 12 = nVf(At)T t

11)t 12

II EjEN(Vfi(A') - fj()) 112

(Vfi(A')- Vfj(AI)) T (Vf~(xA) - Vf1(A'))If7(MA)- Vf,(A)l 2

=I vfi(7f) -f(\)11 2

IlVf (A) - Vfj(A) 112 + IlVfi(A) - Vf(A')112 - IVfj(A) - Vf() 112

Il(Vfi(Ai) - Vfj()) 112) llVfj(A) - 2fi(A')I12

((j,l) EN
2

,j <,(jli))

(jN (V f(A') /- V f(A'))112

(jE N)
-
((j,l) E N

2
,j <l,j,hlji)

IlVf(') - Vf,

From the last equation, we note that =t 2 = E((i,j)EN 2 ,i<j) Ci j (i n
2i To determine

ci, note that the term IlVfi(A') - Vfj(X) 2 appears with a coefficient (n - 1) in llf)112 and

(n - 1) in |1Il~112 and with a coefficient -1 in I I 112 for all (k E

(n - 1) + (n - 1) - (n - 2) = n. Therefore,

t112 =
((i,j)EN2,i<j)

((ij)EN2,i<

IIV f(A) - Vfj(A)ll2

:j)

- nVf (At)Tt

Proof We first have

1112

+2 E
((j,1)EN2, j<j)

((j,1)EN2,j<j)

=(n - 1)
jEN

Kltl 112
iEN(

iEN

() 11)

N, k i,j). Hence, cij =

Consider a decentralized direction of update vt derived from an arbitrary connected graph G =

(N, E(t)). We now compare the ratio of the approximate increase in the objective of (3.1) using vt

as the direction of update and for a sufficiently small step size y to the approximate increase in the

objective using it as the direction of update for the same step size. This ratio is given by:

(Vf(A) T v t) _ --Z(i,j)EE(t) (IVfj (A') - Vf(A) 112)(
(Vf(A') TI t) Z((i,j)EN2,i<j) (lVfj(A) - Vfi(A) 12) (3.4)

The following lemma shows that this ratio is bounded away from 0 by a factor that only depends

on the number of agents.

Lemma 3.4.6. For all connected graphs G = (N, E),

1: 1'f73(A') - Vfi(At) 112 >7 8 H 1f.f(At) - Vf (At)f112
(i,j)EE ((i,j)EN 2,i<j)

For any vector x, let (x)k denote its kth component. We recall that A' E jm forj c N and note
E(that ,j)eE IlVfj(AX)-Vf (Ai)I12 _

that ,)2<j) Ifj(,X)-Vfi(,1 2 is of the form k= blc, where bk (i,j)EE j k (Vfi(/))k) 2

andCk = ((ij)eN2 i<j) ((Vfj(A))k - (Vf(A))k) 2 . Let rk = . We show that if Ck > 0, then
Ck

r .We define r(E) = E(,J)EE(Pj-Pv)2
k . We define (i,)E2 i<j) for arbitrary values of the scalars pi, i = 1,..., n,

such that ((ij2i<)(j - pi) 2 > 0. We show that r(E) > -, which establishes that when

Ck > 0, rk > 8 . This result is based on a series of lemmas. We first establish that, for any fixed

value of pi, i = 1,..., n the worst possible value of r(E) is achieved when G corresponds to a

chain whose nodes have monotone values of pi. Then we compute the worst possible value of

r(E) with respect to possible values of pi.

We also assume that p, 5 pj for all i / j, without loss of generality; Since ((i,J)eN2,i<j)(Pj -

pi) 2 > 0 by assumption, for any set of values pi, i = 1, ... , n, we can always perturb the values to

make them strictly distinct while making r(E) in the resulting graph arbitrarily close to that in the

original problem.

Lemma 3.4.7. The graph G = (N, E) that minimizes r over all possible sets E, under the con-

straint that G is a connected graph, is a tree.

Proof Take an arbitrary graph (N, E), and suppose that it is not a tree. Then we can convert it into

a tree (N, E') by removing some edges from E. It is clear that r(E') < r(E), therefore (N, E)

cannot be optimal. LI

Lemma 3.4.8. If a certain graph (N, E) contains edges ij and jk such that pj < min(pi , Pk) or

pj > max(pi, Pk), then it does not minimize r.

Proof Consider the first situation and suppose, without loss of generality, that pj < pi < Pk. Let

E' = E\{jk} U {ik}. The difference in the numerator of r(E) and r(E') is equal to (pj - pk) 2 -

(Pi - Pk)2 which is greater than 0. Therefore (N, E) cannot be optimal. Similar analysis holds

when pj > max(pi,Pk). L-

Lemma 3.4.9. If a node j contains more than two neighbors, then it has two neighbors i and k

such that pj < min(pi, Pk) or pj > max(pi, Pk).

Proof Suppose that i, k, and I are neighbors of j. Then at least two among the three values Pi, Pk

and p, must be less than or greater than pj. El

Lemma 3.4.10. Consider the chain that links nodes 1,.. ., n in increasing order of pi. Then it

minimizes r over all possible connected graphs.

Proof From the previous lemmas, we conclude that the optimal graph is a tree. Moreover, each

node in the optimal tree must have at most two neighbors. We conclude that the optimal graph is a

chain. From Lemma 3.4.8, the nodes in the chain are in increasing or decreasing order of pi, and

the lemma follows. El

Proof of lemma 3.4.6: Without loss of generality, suppose that pi < P2 < ... < p,. Let Ai =

47

P1 + - pi. Note that, for all j > i, pj - Pi = - 1 Ak. In view of the previous lemmas, we have,

for every connected graph (N, E):

(ij)EE(Pi _ pj2

((i j)eN2':<j) (Pi - Pj)2

S "-1 = +, P, - pj)2 -1 A

i(-)=1 =i 1 (= AkEi= En Ekn

0-> 1 A2

Zn-1 nZ'i Z (-)A/

i=1

n-1 1 2-

Ei=1 Ek 2En= j=+1 k

n--1 A2
n-1 'A2 Ek I n-k

Ek=l /k Ei=Ij=1 -1)

Z~ ~ Z- 1 Z7~cj: + k - i)
-,A A2$ (nk)(n-k) + (k - i)(n - k)

ln-1 (n-k)(nk)(n-k+1) + (n-k)(k)(k-1)
Ek=l k

-n-1 nA

n-1 A2 k(n-k)(n)
Ek=1 k 2

n-1d 2

k =1 4"k8

The second inequality follows from the Cauchy-Schwarz inequality.

We note from the definitions that if ck = 0, then bk = 0. Thus for k = 1,...,m, either

bk = Ck = 0, or rk > n. The Lemma is trivially true, if for k = 1,... , m, bk = Ck = 0. Suppose

there exist some k E (1,... , m) such that ck > 0. Let K be the set of integers from 1 to m such

r(E)

that Ck > 0 for k E K. K is not empty since it contains k.

(,J)V(Vfj(At) - Vf(At) 2)

((iJ)EN2'l<J)(I lVfj(Ai) - Vfi(AN 112)

kmK bk

>1 kcK bk

EkEK Ck

SEkK Ck

8

Let ET, be a subset of the edge set ETZ,TZ+, such that the graph (N, ET) is a tree. By assump-

tion (3.3.1), the graph (N, ETZ,T,+I) is connected and so ET, is well defined. Let the decentralized

direction of update derived using G = (N, ETZ) at time Tz be denoted by v9T. The following

lemma shows that the approximate increase in the objective in period [Tz, Tz+1] using the direc-

tion of update vt and a sufficiently small step size y is comparable to the approximate increase in

objective when the direction E,TZ is used for update at time Tz.

Lemma 3.4.11. V f(ATz)TVT < Z E+1- 1 V f(At)Trt

Proof. We have

SL2 1
IIVf(At+')- Vf(A t) 2 -7v tl2l 4n 2 Vt H2

< 22n(Vf(At)Tt) = Vf(At)Tvt
4n2 2n

The first inequality is true because of Assumption 3.4.2. The first equality is true because by

assumption that the step size 7 = - n. The second inequality follows from Lemma 3.4.4. Let t' be

the earliest time between time periods Tz and Tz+ 1 - 1 such that there is an edge (i, j) E ET for

agent i. It is clear that Tz, t' < Tz+1 - 1. Also, by definition, for 1 = Tz, Tz + 1,. .. , (t - 1),

there is no edge (i,p) E E(1). Thus Ai - ATz and Vfi(4T) = Vfi(A T). Letting wij(t) =

49

(3.5)

(V fi (A) - V fj (At)), we have

1(±Vf) - Vfj(AT z)l

_< -(IVf(A) Vfj(A Tz)jl + Vfj(AT) Vfj(A))nt

- Vf,(A)Il + Vf (A) i)

From the Cauchy-Schwarz inequality,

(t, -
(T Z Tz + 1)

n
2

SiVf(A)

< (

(

(Vf ti

SVfj(A z) 2

n 2

Iljf(A)Tz- Vf (A z)l 2

Vfj(a)12 +

t=Tz

STz+ -1

t=Tz

t" -1

t=T-

- Vf (At)- fj2

t
2

Vf(At)v t

The last inequality comes from (3.5) and from the fact that Vf (At))-Vf (At) 2 E n=1 Jf(A_+1)-Vf(_)_l2

We finally have

V f(ATz)TfjTz

(i,j)EETz

I I (TZ) 12

(
VVf(A Tz) Vfj (ATz)I

< KT f(At)Tv t +
t=Tz

Tz+-1
n-1

t=Tz

2 1 Tz+ 1 -1

2n E
t=Tz

vf)T)

Vf(A)TV)

< (Tz+ f(At) t

It is clear that Lemma 3.4.3 is valid for all decentralized directions of update v derived using2

It is clear that Lemma 3.4.3 is valid for all decentralized directions of update v derived using

1K -

12

I w 1 (TZ) 12

i< E
(i,j)CET,

vj (A"-+'

t=TzE /IVf,(t+!-
t=T,

iTZIlo~ffjxA"

some communication graph G where v, i- N(i) - (Vfi(Ai) - Vf 3 (A,)) and N(i) is the set of

neighbors of i in G. Hence Lemma 3.4.3 is valid for ir7. The equality comes from lemma 3.4.3

with v t replaced by Trz . The second inequality comes from the fact that ET- is a subset of ET,,+ 1

and from Lemma 3.4.3. The second inequality also depends on the fact that there are exactly n - 1

edges in the set ET, as G = (N, ET) is a tree. l

Proof of Theorem 3.4.1:

Proof of 1: First note that

f(A + ') f(A') > V7 f(At)Tvt - L 1vtl 2

2n

> -yVf(At) t _ 72L2nVf(At)Tv
2n

= (At)t - 1 Vf(Xt)TVt = Vf A t)Tvt (3.6)
2L 4L 4L

The first inequality comes from the descent Lemma for differentiable functions [4]. The second

inequality comes from Lemma 3.4.4. The first equality comes from the fact that y = 1. Since

Vf (At)Tvt is non-negative, the sequence {f (At)} is monotonic and non-decreasing establishing

the first part of the theorem.

Proof of 2: Since (3.1) is assumed to have an optimal solution, f (At) is bounded from above. We

conclude from the first claim that {f(At)} converges and { Vf((A)Tvt} must converge to zero.

We now have

IITTz 2 = nV f(A~)TiTz

4 3n4 (T±1
S < Vf()T K n Vf(,At)Tvt

S- 16
\ t=T

where the first equality follows from Lemma 3.4.5, the first inequality follows from Lemma 3.4.6

and Lemma 3.4.3 and the second inequality follows from Lemma 3.4.11. The last inequality and

the convergence of {Vf(At)Tvt} to zero establishes the second part of the theorem.

Proof of 3: Note that

f(A7+) _ f(A T z) >

t=Tz+1-1

4L E Vf (At2T
t=Tz

Vf (ATZ)Ui7
6LK

4
3Ln3 Vf(ATz)TvTz

4

3LUn

The first inequality comes from (3.6). The second inequality comes from Lemma 3.4.11. The third

inequality comes from Lemma 3.4.6 and Lemma 3.4.3 and the equality comes from Lemma 3.4.5.

Thus,

P

E f (ATz+) - f(A TZ)
z=1

f(AP+I)_ f(')

f (A*)- f (A')

The last inequality together with the fact that

third claim.

4 P
3Ln4K E p' 112

z=1

4 P

> 4 P Tz 2

z=1

p(minz=,...,p IJT 2)< P= 11 T 2, provesthe

Proof of4: If the set of optima of (3.1) is bounded, { A : I(A)II < C} is a bounded set for some

C > 0. We conclude that AT has a converging subsequence ATzk . Let A be the limit of ATzk. Since

Il(-) 11 is a continuous function and tIb(ATz k)fl converges to zero, we conclude that 0(A) = 0 and A

is optimal. Since f is continuous, we conclude that {f(ATzk)} converges to f(A) = f (A*). Since

{ f(At)} converges, we conclude that it must converge to f(A*). LO

3.4.2 The Non-differentiable Case

In this section we consider concave objective functions that are not required to be differentiable

at all points. We note that the resource allocation equivalent of the approximate LP presents an

instance where the objective functions are not differentiable at all points. To further motivate our

interest in such functions, consider the following optimization problem:

I n

max,,i=1,...,n gi (Xi)
i=1

s.t. Aixi < B, (3.7)
i=1

where xi e qQ, Ai E mxq i = 1,. n, B E m and gi(xi) is a concave function, i = 1,..., n.

Define fi(Ai) as the optimal value for the following optimization problem:

fi(Ai)= maxx~Eq gi(xi)

s.t. Aixi < Ai, (3.8)

With this definition of fi we see that problem (3.7) is equivalent to problem (3.1). Note that if

there are linear constraints that involve only the variables xij, j = 1, . . ., q for some i then these

constraints could be included directly in the problem defining f2. Suppose that fi(Ai) is well-

defined and finite for all Ai. It can then be shown that f2(Ai) is a concave function. Thus we

can potentially apply the decentralized algorithm developed in the previous section for finding

an optimal solution to (3.7). However, f,(Ai) is typically non-differentiable even when gi(xi)

is. Hence Theorem 3.4.1 does not immediately apply to (3.7) as it relies on the assumption that

the objective function is differentiable with Lipschitz continuous gradient. This motivates us to

consider cases where fi, i = 1,.. ., n are not necessarily differentiable at all points.

In this section, we relax Assumption 3.4.2 and consider the case where fi, i = 1,..., n are

non-differentiable. We introduce a smooth approximation for fi that is amenable to optimization

via stochastic approximations and propose a randomized version of (3.2) to solve the smoothed

problem. We show that the new scheme converges to a near-optimal solution of the original prob-

lem in a tractable number of iterations.

We assume f1, i = 1, ... , n are concave and differentiable outside a set of measure zero.

Denote by &Of,(A,) the set of subgradients of f, at A,. Let V fi(Ai) be an element chosen arbitrarily

from Ofi(Ai) for each A1. Let 1 - | 1 denote the 11 norm and recall that I denotes the Euclidean

norm. We make the following assumption:

Assumption 3.4.3. For all i and Aj, supi,, I jvIl : v E Df2 (Ai)} < L < oc.

Note that sup,Ax,{ I : v e dOf(Ai)} < L < c00, since lvil < IvIi for all v. We now consider

approximating fi by a suitable differentiable function. In particular, let

fi(Ai) = E[f(Ai + Z1)]

where each Zi = (Z)j=1,...,, is a vector of m i.i.d. normal random variables [23] with zero mean

and variance equal to

7r- log(m + 1)

where c is a parameter related to the accuracy of the approximation as will be clear from the fol-

lowing lemma. The following lemma shows that f is a concave and differentiable approximation

to fi and that its gradient Vf can be expressed in terms of V f.

Lemma 3.4.12. Let f, and fi be as given above. Then the following hold:

1. fi is concave and differentiable with gradient Vf i (A2) = E[V f(Ai + Zi)];

2. fi(Al) - f,(A) > f(A) - 2.8cL;

3. jVfj (Ai) - Vfi(Ai) ii lg(m+)L iA - Ai-

Proof of 1: For all a C [0, 11, we have

fi(aAi + (1 - a)A1) = E[fi(aAi + (1 - a)Ai + Z)]

> E[af i (Ai + Zi) + (1 - a)f,(~ -+ Zi)] = afi(A) + (1 - a)fi(Ai)

It follows that fA is concave. Since fi is non-differentiable only on a set of measure zero, we have

(Vf (Ai + Zi))3j = lim
60O

= lim
10

+ Zi + 6ej) - fi(Ai + Zi)
6

f1 (Ai + Z + 6ej) - f (A + zi)
5

with probability 1, where ej is the vector with all entries equal to zero except for the jth entry,

which is equal to one. Hence

E[fi(Ai + Zi + 6ej)] -
6

E[f(Aj + Zi)]
= E lim

6 10

= E[(Vfl(Ai + Zi))j]

Slim
f i (Ai + Zi -

=Ehm

E[f2 (Ai + Zi + 6ej)] - E[f(A, + Zi)]
= lim
so

Note that (A+zi++Z6e) L(Ai+Z) < L. Hence the exchanges between limit and expectation are

valid, by the bounded convergence theorem. It follows that f, is differentiable and its gradient is

given by

Vfi(Ai) = E[Vf/(Ai + Zj)]

lim
6To

Zi)I

fi(A + Zi + 6ej) - f (Ai + zj)
6

fi(Ai

Proof of 2. First, we have

fi(A) = E[fi(A + Zj)]

< f2 (Ai + EZi) = f(Aj),

where the inequality follows from concavity of f2 and Jensen's inequality [23].

For the lower bound on fi, we have

f.(A) = E[fi(A + Z)]

= E[f(Ai - Zj)]

> E[fi(A2) - ZVf,(Ai - Zj)]

> fi(Ai) - E[n[max Zzj]L, (3.9)

where I Zj I is the modulus function. The first inequality follows from concavity of f and the fact

that Vfi(Ai - Zi) is a subgradient of f at Ai - Zi. The second inequality follows from the fact that

V/ (A- Z)II1 < L.

We now show that E[maxj JZij] < 2.8e. Note that this inequality and (3.9) prove the claim.

We first place a bound on P(Zj I > c), for c > 0. We have

I" 1 2
2,e dz +

c 2irc
--C 1 zd/ e 2~2 dz

1 z2

S 2 2 e dzc Z -T6 d

2
1 z

2
+2zc

2e-- e2, e7 7 2~dz

C2 C

2e -2 e
(it, v'2w7

c2
< 2e- 2,

c2
2e- 2

(C
0

2 +2zc
27dz +

zc

e--- dz +
72=wu

Ic 1

727

1 z
2

+2zc

v/-27e 7 dz)
'7ru iii

z2
2dz

-~-) +2 (IZf l >c)
2

P(zijl > c) -

//2/xc

Hence

P(lZjI > c)

2

2e- 2a2

V2 c (+e
c
2

2e- vc

It follows that, for all c > 2E
-V17

P(max ZZj > c) <
3

c
2

e- 2a V'2cr
2m v/c

c2-)7r log(m+')

2e 4E2

V7 log(m + I)

2< 2(m + 1)
- Tr log(m + 1)

2e 4c2

-< i1og(m + 1)

The first inequality follows from the union bound [23]. The second inequality follows from c >

2' The last inequality follows from (-f 2 C221 < (2 4 for all c > '.7 V7

Finally,

E[max Zij]
1

ocSP(max ZjI > z)dz
0

ir log(m + 1)

2± 4c I "= + o

2c 4c

2 2+

77 +Vlog (m + 1)

< 2.8e

/og(m(+)
2c

(- 2- 7rog(m+1)

4E2 dz

1 V7 log (rn + 1)
e7

2wZ 2cZ

/ 2

2 dz

1 t2 -2

The last equality comes from the identity, -7fo ef- dt- .

Proofof3: Denote by p(-) the probability density function for Zi, i.e., the joint probability density

function for Zil,..., Zim. Then we have

vfi(A1) p(z)Vf(Ai + z)dz

p(z - Ai)Vfi(z)dz

P(max IZjj > z)dz +-
J f P(max IZ I > z)dz

J26 J

2e
= ,

It follows that

IWV(Ai) - Vf(Ali)l -~(p(z - A2) - p(z - Ai))V f(z)dz

< L pm (z - Aj) - p(z - A)Vfi(z) dz

< L p(z - Aj) - p(z - A) Idz

Since p(.) is the joint distribution of m i.i.d., zero-mean Gaussian random variables, p(z) is strictly

decreasing on |z|. Hence

J1zem lz- >II<z- III

J{zE m: llZ - Al>lz<-i ll}

2 ZEm:llzll<IIZ-(Xi-I),ll
-2jz3m:lz<z-(Xi-A)

(z - A) - p(z, - Ai)) dz +

(p(z - Xi) - p(z - Aj)) dz

(p(z - Aj) - p(z - j)) dz

p(z)dz - 2jZEp: Zli > IIz-(Ai-A2) II p(z)dz
Ji e m I-A-s

= 2P(l|ZjZ < IZ - (xA - Ax)l|) - 2P(IIZj I > jIIZ - (Ai - Aj)I)

- 2P(2ZT(i - Ai) < fAi - Ail12) - 2P(2ZT (i - Ai) < - jXi - Ai 112)

= 2P(-0.511Ai - Aill < V < 0.511jA - Aill), (3.11)

where

V=
11A - ,ill

It is easy to verify that V is normal with zero mean and variance equal to o- =
V/r log(m+1)

follows that

P(-0.511 - AiI < V < 0.5 IA - Aill)
1

-I; j -2ill

/log(m + 1) -
2c A - A |

(3.10)

m p(z
- Aj) - p(z - Ai)ldz

(3.12)

}

The claim follows from (3.10), (3.11) and (3.12). ED

Bearing in mind the previous lemma, we consider the problem of maximizing

max f(A) = -fi(A) (3.13)
i=1

s.t. Z-Ai=B
i= 1

Since fi is differentiable with Lipschitz continuous gradient, Theorem 3.4.1 ensures that the update

rule (3.2) leads to convergence. However, note that computing the gradient of fA requires evaluating

the expected value Vfi(Ai) = E[Vfi(Ai+Zj)], which is in general computationally expensive. Due

to the special form of the smoothing scheme and, in particular, the fact that Vf, is expressed as the

expected value of the subgradient of fi, we consider instead of (3.2) a stochastic approximation

version of the update. In particular, we let

A t+ = At + (Vfi(At + Z) - Vf (A + Z)), (3.14)
jENi (t)

where Zit, t = 1,2,... is a sequence of i.i.d. vectors with the same distribution as Zi.

For each A, let i(A) be given by

i9(A) i l (V f(Ai) - Vfj(Aj))
jEN

Let t = i'(At) and note that it corresponds to the expected direction of update, when the commu-

nication graph is complete. From Lemma 3.4.1, it is clear that a feasible solution A is optimal for

(3.13) if and only if 11i(A)lI = 0. Furthermore, from Lemma 3.4.12, if A is optimal for (3.13), then

it is also near-optimal for (3.1). The following theorem establishes that, if all agents apply (3.14),

then II II converges to zero.

We make the following assumption on the stepsizes 't:

60

Assumption 3.4.4. The stepsizes 7t satisfy yt = t, where 0 < /t+l < /Ot < lVt,
(2L)og(m+1))

Et = oc and Et 2 < 00.

Theorem 3.4.2. Suppose that Assumptions 3.4.3 and 3.4.4 hold. Then with probability 1:

1. The sequence { IIiZ I } converges to 0.

2. min,=,...,p E[jIITZ 1121 <
4 L og() [3f(*f()+2.8(L)+ -t= pP) 4L, 1

4 p+z 0z
-z=2 z

3. If the set of optima of(3.1) is bounded, then limtoo f (t) > f(A*) - 2.8EL.

The proof has the same structure as the proof of Theorem 3.4.1. Let the expected direction of

update at time t be vt:
1

jn i(t)
jcN, (t)

- Vif(A))

Let bt be the random variable denoting the difference between the actual and expected directions

of update:

6jN= t)
jENi (t)

1 +
I(% f ,(A t + Z) - Vf(A + Z)) -vV 3 3 1JIJ- ~

Let Jt be the sigma-algebra [23] generated by Z[, i = 1,... , 7n, = 1,... , t. We have the

following result about 6t.

Lemma 3.4.13. For all t, E[6tltl1] = 0 and E[lt2 lt-1 < 8nL2, with probability 1.

Proof E[6b51Ft_j] = 0 follows from Vfi(Ai) = E[Vfi(A + Zt)] for all i. Moreover,

E[f j12 j _] E E

SjEN(t)

E N 2(t)

Vf(A + Zf) - Vfi (A) - Vf(A' + Z) + Vf,(A)

(V f(A + z:) - VfA()) - EjENi(t)

2

VFt-i

- V(A)) 12

< 8L 2

,Vp

Ni(t)2 E[|Vfi(/ + Z) - Vfi()4) l 2 Ft-] ± jeN,(t) E[Il Vf(A' + Zj) - Vfj()H) 2lt

(f (At + Zj

The last inequality follows from NVi(t) < n and

lVfj(A + Zj) - Vfi(A,) Il < IlVfy(A + Z)ll + Iljf,(A)\l < 2L

S E[j6|2 jFt1t_ < 8nL 2

The following results follow immediately from Lemmas 3.4.3-3.4.6 applied with /f replacing

fi for all i:

Vf(At)TVt
1

(ij)EE(t)
(ij) EE(t)

1v 4 2 < 2nVf(At)T Vt

lte' = 2 of()Tfi 2 Vf (t)T

Z1 f'7f(At) - Vfj(Axj)
(i,j)EE

VE : (N, E) is connected.

jVfj(At) - Vfj(i\)fl 2

12 > 8
- r3 E

((ij)GN2,i<j)

Let ET, be a subset of the edge set ET,,Tz+, such that the graph (N, E) is a tree. By As-

sumption 3.3.1, the graph (N, ET,,+,) is connected and so ET is well defined. As before, let the

decentralized direction of update derived using G = (N, ETZ) be denoted by iTz. The following

result is the counterpart of Lemma 3.4.11.

Lemma 3.4.14. Let L =

1 [(1 + 2L(t,)E[Vf (At)v t fT-1] + 8L2L2].Vf (AT)-)T - z +1"

Finally,

(3.15)

(3.16)

(3.17)

(3.18)

IVjj(x A)- V j(A') 11

E [t 1 i2 -1]

From the Cauchy-Schwarz inequality,

(IIE[VkiAz Vf(A' jT FTZ

t=t -1

+ E lE[Vf() - V (A)
t=T

S-
n2

E[Vi(T)- Vf(Tz) 12 1' T2
T z - 1] - E[Vf(A +) - V)12)

t=Tz

Vf~k~Tz) j 2~y]
< E[Vf(At

) - L2 t=T,+ -l

2 t=T

The last inequality follows from the fact that |IVf(At+l) - Vf(At)112 = I -Ek=l

Vfk()112 - jVfj(A+ 1) - V 2(A')12 and from (3.19). We finally have

Vf(AT)T Tz (Ij) (T)11 2

(i,j)EETz

- Vf(AT)I2 Tzl1]

(i,j)EET,

7t2 (E[2nV f(A)TvtFT,_l] + 8nL
2 t=Tz+l-1

n
2 =

t=TZ

t=Tz+ -1

S[(1 + 2LE2)E[Vf(A') T vt z_1] + 8L2Lt
t=Tz

In the last inequality, we have used the fact that

E[|IV f7(Atz) V2 (AT) -1
E

(ij) E ET,

t=Tz+l-1

t=Tz (ij)EETz,ty =t

- Vf(AT)1121T 1

t=Tz+l-1

- C E[Vj(A') zfl-
t=T

Tz-1])

-yt2(E[2nVf(At)Tvt FTz_] + 8nL2)

I k(At+') -

(ti - Tz + 1)
n2n

2)

E[V f(At')

1wi Z(T) 112

E[jjVj(A'iT)

(t

Proof We have

E[I Vf (At+l) - Vf (At) ! 2 it-1] < E[jlt(vt + 6')I2Ft-_]
2 (+ E[

n2

L 72

It follows from Lemma 3.4.12 that L, is a Lipschitz constant for the functions fi, i = 1,... , n.

Hence L is a Lipschitz constant for f and the first inequality follows from this. The second

inequality follows from (3.16) and Lemma 3.4.13.

Let t, be the earliest time between the time periods Tz and T,+1 - 1 such that there is an

edge (i,j) E ET, for agent i. It is clear that Tz < t < Tz+1 - 1. Also, by definition, for

STzz + 1,..., (ti - 1), there is no edge (i,p) E E(1). Thus i z Tz and Vf(A T)

Vf (ATz). Let wij(t) = '(Vf 2 (At) V fj(A)). Then

(IV](A'iTZ) Vf3 (A))I!

1 ti< -(!IE[Vf 2 (A) - Vfj(AJz)IFTzl]! + IL j \ V ATz))TT I+ [- 1 I)

t=ti -1
1 .

1

t=T,

(3.19)

L
> f(At) + 3tVfi(A) T 'l - - E[I'yt(v't + 6t) 2 Ft-1]2n

f= (A') + tVf(At)T~ - ItVt1i
2n

LE

- E[l1-t t 2 1t_]2n

Sf(At) + (yt - Le7t)V f(At)Tvt - 4LEL2y2 (3.20)

The first inequality comes from the descent lemma for differentiable functions [4]. The equality

follows from E[51.t] = 0, from Lemma 3.4.13. The second inequality follows from Lemma

3.4.13 and (3.16).

Note that Vf (A,)Tvt > 0. This and Assumption 3.4.4 imply that the second term in (3.20) is

also greater than or equal to zero. Moreover,

S 4LEL2 2t < oc
t

Since f is bounded from above, we conclude by the supermartingale convergence theorem [23] that

f(At) converges with probability 1. Moreover, Et (t - L,7t)Vf(A)Tvt < oc with probability 1,

and since Et -yt = oc, we conclude that Vf (At)T t converges to zero with probability 1. Note that

E[VjfQ) T Vt_ - Vf(At)Tvt,

with probability 1 and we conclude that E[Vf (At) T vt It- 1] also converges to zero with probability

1.

Proof of theorem 3.4.2: Proof of 1: We first have

E[f (At+ 1)_]

We now have

I T 212

4- (AT'8 Z)TfT,n
< 8V f (A7)

8

n4

[(1 + 2L-?)E[Vf(At)T v t -] + 8L2L YI

4 t=T, +11

< - E-81
t=T,

1.5E[Vf(A)TvT, _ 1 + 2L23I1

The equality follows from (3.17). The first inequality follows from (3.18) and (3.15). The second

inequality follows from Lemma 3.4.14. The third inequality follows from Assumption 3.4.4 on the

stepsizes yt. We conclude that v ,Tz converges to zero with probability 1.

Proof of 2: From (3.20), we have

Vf(At)TVt
F'r/~-l1\a-1 AT r)

124] ~AY' IJVt-i1 t 4EL 7~/ - f(K)

-yt(l - Ljyt)

2(E[f(At+ 1))t- 1] - i(A t)) + (L2)

(3.22)

In the second inequality we have used t < 1 , from Assumption 3.4.4.

Combining (3.21) and (3.22), we have

1 (3E
8-

t=Tz

[f(A t+) - f(A')] + (-Io)

4 t=Tz+-1

< 8 , [3E[f(At+1) - f(At)] + 3L2 2 L 2

(3.21)

+ 2L /32 1

(3.23)

T+I

t=T,

The last inequality follows from Assumption 3.4.4 on the stepsizes. It follows that

P

zE-y- E1[H T z 112]
Z=1

t=TP+l-1 - f 2-

n4 tr 4L 2 3t

< K V- (A) f (A + E L
t=1

t4 [l t= p4 2/3t
-- t l ,

where A denotes an optimal solution of (3.13). From Lemma 3.4.12, we have f (A') _ f(A') -

2.8cL. We also have f(A) < f(A) < f(A*). It follows that

mmin E[IIjiT z 2] <
z=,...,p

4nLL og(m±1) 3(f(A*) - f(A 1) + 2.8EL) + Et=lnp 4L/ j,

4 E'P+2 0Vp

Proof of 3: Since f > f > f - 2.8cL, if (3.1) has a bounded set of optima, so does (3.13). Recall

from the proof of the first claim that f(At) converges with probability 1. Using the same argument

as in the proof of the fourth claim of Theorem 3.4.1, we conclude that f(At) converges to f(A)

with probability 1. We conclude that

lim supf(At) >
t--oo

^

f(A*)

f(A*) - 2.8EL

The first inequality follows from f(A') > f (A) for all t, from Lemma 3.4.12. The second inequal-

ity follows from optimality of A. The third inequality follows from Lemma 3.4.12. LO

It is worth noting some aspects of Theorem 3.4.2. Unlike in the differentiable case, we can-

not guarantee monotonic increase in the objective function values. Hence the rate of convergence

of the sequence {E[i3TZ 11]} to zero does not have as far-reaching implications as its counterpart

in Theorem 3.4.1. Nevertheless, Theorem 3.4.2 ensures convergence to a near-optimal solution

with probability 1. Another substantial difference is on the assumption on stepsizes and the cor-

responding effect on convergence rates. It is easy to see that convergence is ensured if 3t = 1t,

for 0.5 < q < 1. The resulting theoretical rate of convergence is clearly dependent on q; When
: , > f +' -d_ and so

0.5 < q <1,~1 is a decreasing function for x > 1. Hence for k > 1 > 1 d and so

kc 1 fcl 1 dx = (c+1)1--1 Thus the number of iterations needed for E[T 121 < E is

polynomial in the problem parameters. Similarly, when q = 1, 1 is just - and is a decreasing func-

tion as well for x > 1. Hence for k > 1, 1y < jk+1 'dx and so Ec 1 1+ f dx = log(c)+1

and so the number of iterations needed for E[I1i)Z 12] < E is exponential in the problem parameters.

As is often observed in stochastic approximation methods, the impact of the choice of step sizes

on the speed of convergence of the algorithm is also verified in the numerical experiments.

3.5 Decentralized resource allocation with non-negativity con-

straints

In this Section, we use the results developed for (3.1) to solve the following resource allocation

problem with non-negativity constraints

maxAim,i=1...,n f(A)= fi(Ai)
i=1

s.t. Ai = BI
i=1

Ai > 0, i = 1,..., n (3.24)

We assume that f, is concave and differentiable outside a set of measure zero. Also let assumption

3.4.3 hold for f.

We now define g2(Ai) as follows,

g(Ai) = fi(A2)+ I Lg min(Aij, 0)
j=1

where L9 > 2L. The following lemma shows that the function g(A) satisfies the assumption

3.4.3 necessary for applying the stochastic approximation version of the gradient-descent algorithm

developed in Section 3.4.2.

Lemma 3.5.1. Under assumption 3.4.3for f,

1. For all i, gi (Ai) is concave and differentiable outside a set of measure zero.

2. For all i and Ai, supi,, { vjI1 : v E iOg(Ai)} < Lm < oc where L, = L + mLg.

Proof of 1: Let hj (Aj) = L 9 min(Aij , 0). It is clear that hj is a piecewise linear function. Recall

that
gi (Aj) - fi(A1) + Z hj(Aj)

j=1

The concavity of gi follows from the concavity of f and the functions hj, j = 1,... , m.

The points of non-differentiability of f, form a set of measure zero. The other points of non-

differentiability of gi are points Aj, where Aij = 0 for some j. These points form a set of measure

zero. Thus gi is differentiable outside a set of measure zero.

Proof of 2:

Let ej be the vector whose j'th component is 1 and other components are 0. It is clear that

for Ai with Aj 7 0, hj is differentiable and Vhj(A2) = Lge j if Aij < 0 and Vhy(A2) = 0 if

Aij > 0 where 0 is the m dimensional zero vector. For Ai with Aij = 0, hj (Aj) consists of

vectors of the form Lej where 0 < L < L. Thus for all j, sup {llljl : v c Dhj(Ai)} = Lg.

It is known from the theory of convex functions that if u = = u where uj, j=1,..., k are

convex functions , then Du(x) = y 1, uj(). Thus, if supx{liv1 : v E uj (x)} < Lj, then

supx{I 1 : v B u(x)} < E.=l L. By assumption, supA.{v(: v E &f (A)} < L. Hence

supA{ I vi : 9 i(Ai)} < L + Ei L9 = L + mLg.

It can be noted from definition of gi that if A 2> 0, then g(Ai) = f,(A2). The term Lg min(Aij, 0)

in the above definition can be thought of as a penalty for negative Ayj. This term ensures that solv-

ing (3.1) with g has a non-negative optimal solution and is equivalent to solving (3.24) with f.

Lemma 3.5.2. The set of optimal solutions for (3.1) with g as the objective function is the same as

the set of optimal solutions to (3.24) with f as the objective function.

Proof Without loss of generality assume that B > 0. Consider some optimal solution A* for

(3.24) with f as the objective function and note that A* > 0. Suppose there exists some feasible

solution A to (3.1) with Aij < 0 for some i, . We show that g(A) < g(A*). This implies that

solving (3.24) with g as the objective function is equivalent to solving (3.1) with g as the objective

function. Since g(A) = f(A) when A > 0, solving (3.24) with g is equivalent to solving (3.24) with

f. Thus the set of optimal solutions for (3.1) with g and for (3.24) with f are the same proving the

lemma.

Consider the following problem,

maXA ,p..., n g(A) n gp(Ap)
p=l

n

st. EAp = B,
p=l

AP > -plp = 1. ,n (3.25)

It can be seen that A* and A are feasible solutions to (3.25). We now show that A cannot be an

optimal solution to (3.25). Since B > 0, there exists some k such that Akj > 0. Define A so that it

differs from A only in the ij and kj components as follows

Aij = ij+ 6

Ak Akj -

where we choose a 6 > 0 such that Akj > 0 and Aij < 0. It is clear that A is a feasible solution

to (3.25). We now have:

m

gi(A7) - fi(Ai)±Zh(Ai)
l=1

The inequality comes from the concavity of gi and from the definition of A. Similarly

gk(k) = fk(Ak)+Zhl(Ak)
/=1

> gk(Ak) - 6 (Vfk(Ak))j

Hence

gi(A) + gk(Ak) > g()+ k(k) + 6 (Lg + (Vfi()) - (Vfk(Ak))9)

Since L9 > 2L, we can conclude from the above that g(A) > g(A) and hence A cannot be an

optimal solution to (3.25).

It can be seen from the definition of (3.25) that its feasible set is bounded. Since g is continuous

and since the feasible set of (3.25) is bounded and closed it has at least one optimal solution. The

above argument establishes the non-optimality of any feasible solution for (3.25) with at least one

non-negative component. Since g(A) = f(A) when A > 0, solving (3.25) with g is equivalent

to solving (3.24) with f and hence A* is an optimal solution for (3.25). Hence g(A) < g(A) <

g(A*). F]

Since the set of feasible solutions of (3.24) is bounded and closed and since f is assumed to be

continuous, there exists an optimal solution to (3.24). Lemma (3.5.2) ensures that any algorithm

that finds an optimal solution to (3. 1) with g as the objective function also yields an optimal solution

to (3.24) with f as the objective function.

Lemma 3.5.1 shows that we can apply the stochastic approximation version of the gradient-

descent algorithm for (3.1) with g as the objective function. Hence an optimal solution for (3.24)

with f as the objective function can be found by applying the stochastic approximation version of

the gradient-descent algorithm developed in Section 3.4.2 for (3.1) with g as the objective function.

It should be pointed out that the Lipschitz constant of the smoothed problem and consequently the

convergence rate is now of the order O(" -) as compared to O() for the results of Section

3.4.2.

3.6 Numerical Experiments

In this section, we present results of numerical experiments which illustrate the performance of the

algorithms presented in the previous sections. We compare the proposed algorithms to centralized

algorithms that use direction fi(A) as the direction of update. Recall that i(A) is the direction of

update if the current resource allocation is A and the communication graph is complete. Recall also

that when fi is differentiable, i(A) is the projection of Vf onto the subspace AX = B. Thus

the centralized algorithm reduces to the classic gradient descent method of non-linear optimization

in this case. We define pt = (-) x 100 where ft is the objective function value after t iterations

and f* is the objective function value of the optimal solution and investigate how pt converges to

hundred in the centralized and decentralized algorithms.

3.6.1 Problem with differentiable objective function

We first consider a problem studied in [38], which is an instance of (3.1) with

f i) - ai(-) +log(1 +eb (-d'2))),= ,...n

The second derivative f," is given by

ebi (xi-di)

fi (x) =-(ai (1 b e i ((bi(i-d)) 2

It can be verified that f/ (xi) has a lower bound -(ai + b), i = 1,... , n. It can be shown that

if a one-dimensional function is differentiable and its gradient is bounded by some constant, then

the function is Lipschitz continuous with the same constant. Since f1 is twice differentiable and f'

is bounded, it follows that f is Lipschitz continuous with constant (a + b 2), if we assume that

ai > 0. It follows that f' is Lipschitz continuous with constant L where L = maxi (a + -b).

Thus f satisfies Assumption 3.4.2.

We choose problem instances with 20 agents and as in [38], the coefficients aj, bi, c, and di are

generated randomly with uniform distributions on [0, 2], [-2, 2], [-10, 10] and [-10, 10] respec-

tively. Recall that for our algorithm to converge, the union of communication graphs should be con-

nected periodically. For a chosen K, we let the edges (i, i + 1), i = 1,..., n- 1 be part of the com-

munication graph E(t) for some arbitrarily chosen t such that mmr < t < (m + 1) , m = 0, 1,...

This ensures that G = (N, Em+l1,m(+l1)+1) is connected (Recall that Ek,l = U~=k 1 E(t)). We let

every other edge (i, j) with j # i + 1 be a part of at the most one communication graph between

iterations mr + 1 and (m + 1), with a probability ep. The parameter ep controls the density of

the graph, G = (N, Em~+1,m(s+±)+1). The step size is chosen to be -L with L as defined above.

Figure 3-1 shows the convergence behavior of the algorithm for various values of the parameter K

with ep = 0.1 . pt in the figure represents the average of pt for 10 randomly chosen problems. It

can be seen from the figure that the performance of the decentralized algorithm is comparable to

the centralized algorithm for r = 1 even though the communication graph is not dense (ep = 0.1).

Figure 3-2 shows a comparison of the convergence behavior of the algorithms for problems

with varying number of agents. We fix r = 1 in these problems and ep = 0.1. The other parameters

are chosen as described above. We notice from the Figure 3-2 that the scaling of the performance

of decentralized algorithms with increasing number of agents is much better than O(n 4) promised

by Theorem 3.4.1.

0 50 100 150
Iteration Number

= 100
100

80

60 /

40 /

20 -- - Decentralized algorithm

-Centralized algorithm

0 5000 10000
Iteration Number

K= 10

- - -Decentralized algorithm
- Centralized algorithm

0 500 1000
Iteration Number

1500

15000

Figure 3-1: Comparison of convergence behavior of the decentralized and centralized algorithms
for various '.

3.6.2 Decentralized optimization of linear programming problems

We now consider decentralized solution of linear programming problems using the randomized

version of the decentralized subgradient-descent algorithm developed in this Chapter. We note that

the approximate LP is an example of a linear programming problem that requires a decentralized

n=20

0 --

0

0-?

0 - -- Decentralized algorithm
-Centralized algorithm

0 100 200
Iteration Number

1

?0
30

n= 200

00 ---1-

80 ,'

60 /

40

20 - -- Decentralized algorithm
-Centralized algorithm

0

0 100 200
Iteration Number

300

Figure 3-2: Comparison of convergence behavior of the decentralized and centralized algorithms
for various n.

solution. Consider the following linear programming problem

ni

i=1
n

maxx,,i=1, .. ,n

s.t.

where Ci, xi E Rq , Ai E R mXq i = 1... , n, B

class of problems identified by (3.7). Recall that

of the following optimization problem

maxx.Eq

s.t.

LAix < B (3.26)
i=1

E Jm. It can be seen that (3.26) belongs to the

for a given Ai E ?m, f,(Ai) is the optimal value

CT xi

Aixi < Ai (3.27)

Suppose the dual feasible sets defined by Si = {viATvu = Ci, vi> 0} are non-empty and

bounded. It is known from linear programming theory that fi(Ai) = ninp=1,...,p ATV,, where

ip, are the extreme points of the polyhedra defined by Si. Hence fi(A2) is non-differentiable and

concave. Further vi is a subgradient of f,(Ai) at Ai if and only if it is an optimal solution to the

dual problem [9]. Thus if Si is bounded, it can be seen that Assumption 3.4.3 is satisfied and the

10

8

6
-a-

4

2

U

convergence analysis of Section 3.4.2 holds.

Let the columns of Ai be denoted as aij, = 1,...,q. Also let Ci = [C],j = 1,...,q.

Suppose the column aik > 0 and Cik > 0 for some k such that 1 < k < q and suppose Si is

non-empty. The corresponding dual constraint is aikTVi = Cik showing that Si is bounded. For

the experiments we choose ail = 1, i = 1,..., n where 1 is a vector of ones of the appropriate

size. We also choose Cil - 200, i = 1,... , n. The rest of the constraint matrix and the cost vector

are chosen arbitrarily while ensuring that S, is non-empty.

Although the theoretical results require randomization of the direction of update, it was ob-

served that both the decentralized and the centralized versions of the algorithm converge without

the required randomization. Unlike the decentralized algorithm for the differentiable case, there is

flexibility in choosing stepsizes. It was observed in the experiments that the practical performance

of both the centralized and the decentralized algorithm with or without the randomization of the

direction of update depends dramatically on the choice of stepsizes. We present the results of the

experiments where the direction of update was not randomized as it provides better insight into

convergence behavior of the algorithm. It was observed that convergence was obtained in this case

so long as EC 7t = oc and t 72 < oc. We choose stepsizes of the form yt o(t) Qtt -- 2Lvtogm+1

where L is the common Lipschitz constant of the functions fi, i = 1,..., n. Since C 1 = 200 and

ail = 1 for all i, it can be verified from the dual constraint ailTvi = Cil, that L = Cil = 200. 1 t

was chosen to be of the form l+(t)to.51. Thus O(t) and w(t) control the rate at which 7t goes to 0.

We chose w(t) as monotonically non-decreasing function bounded above and O(t) as a monotoni-

cally non-increasing function bounded below. This ensures Et "yt = oc and Et 't2 < oc. For our

experiments, we chose w(0) = 0 and w(zK + j) = w(zI) for z = 0, 1,... and j = 1, 2,..., - 1

and w((z + 1)ir) = min{w(z,) + r, , ,,}. For all the experiments we chose r,, = 0.0001 and

Wmax = 0.1. We also chose O(t + 1) = max{0(t) - ro, 0rin}. For these experiments, we chose

0(0) = 30 and min, = 3 and ro = 0.1. We ensured that the union of the communication graphs are

connected periodically in the same manner as described in Section 3.6.1. For these experiments,

we choose ep = 0.5. Figure 3-3 presents a comparison of the performance of the decentralized

algorithm with the centralized algorithm for varying K. In the figures, n represents the number of

agents, q the number of variables per agent and m represents the number of constraints.

n=4,m=100,q=5,K = 1

0 200 400 600
Iteration Number

n=4,m=100,q=5,K = 10

800 1000 2000
Iteration Number

n=4,m=100,q=5,K = 100
10

8

6

4

2

0 1 2 3
Iteration Number

4 5

x 104

Figure 3-3: Comparison of convergence behavior of the decentralized and centralized algorithms
for various K.

Figure 3-4 presents a comparison of the performance of the decentralized algorithm with the

centralized algorithm for varying n. All parameters except 0(0) were chosen as described previ-

ously. 0(0) was chosen to be 50 for the experiments of Figure 3-4. It can be observed that the

performance of the decentralized algorithm scales well with increasing n. The numerical experi-

ments suggest that K has a greater effect on the practical performance of the algorithm than n.

0 ,'

0

0

0 - Centralized algorithm
---Decentralized algorithm j

n=7,m=200,q=5,K=1

- - Decentralized algorithm
-Centralized algorithm

500 1000 1500 2000
Iteration Number

100-

80

60

n0

n=4,m=200,q=5,K=1

2500 3000 0

n = 10, m = 200, q = 5, K = 1

4000
Iteration Number

400 600 800
Iteration Number

8000

Figure 3-4: Comparison of convergence behavior of the decentralized and centralized algorithms
for various n.

1000 1200
III

Chapter 4

Resource Allocation Problem for

Make-To-Order manufacturing firms

4.1 Introduction

The rest of the thesis focuses on a resource allocation problem encountered by firms operating

in a Make-To-Order (MTO) manufacturing setting. Such firms do not maintain an inventory of

finished products. Production starts only after an order has been placed. MTO manufacturing

reduces inventory costs and allows customization of products. In many situations, the firm may

be able to realize higher profit by reserving its production time for anticipated future orders with

higher profit margins by rejecting an arriving order with lower profit margin. In this work, we view

the production time of a MTO manufacturing firm as a resource that needs to be optimally allocated

between both currently realized orders as well as future orders. Our focus is to gain insights on the

order acceptance policy that a MTO manufacturing firm should adopt.

The current research is motivated by MTO manufacturing firms with fixed production capacity

where demand during certain periods may exceed the production capacity. Production time of

the firm is thus a scarce resource. A useful control for maximizing the profit of the firm in this

case is to dynamically reject orders with unfavorable terms. The relevant terms of the order may

include its processing time, reward, lead time. We study the use of order acceptance as a control

for maximizing the profit of the MTO manufacturing firm using simple models for the arrival of

orders to the firm. The process we envision involves the stochastic arrival of orders with certain

terms which the firm has to either accept or reject. We assume in our basic model that the only

control available to the firm is to accept or reject an arriving order. In reality, order acceptance is

usually an interactive process with the terms of the order being negotiated between the firm and

its customer. As pointed out by Gallien et al. [24], the analysis of the order acceptance problem

would provide useful insights for quoting price, lead time for customers. As an example of how

this can be done, we extend the results using our basic model to a problem of quoting lead time and

reward to arriving orders. In some cases, rejecting an order may not be an option. For example, it

may not be feasible to reject orders from certain customers with whom the firm seeks a long term

business relationship. Carr et al. [11] accommodate a category of customers whose orders cannot

be rejected. It is easy to extend the basic model that we study to accommodate such situations and

we show later that some of the results that we establish for the basic model are valid for models that

include such special categories of customers. In the next two chapters we study an optimization

problem that focuses on selective order acceptance for a firm operating in a purely MTO setting.

In this chapter we formulate the order acceptance problem and discuss related work.

4.2 Literature review

The resource allocation problem of order selection in MTO firms can also be viewed as a rev-

enue management problem. Research on revenue management in MTO firms and Make-To-Stock

(MTS) firms can be categorized on the basis of the controls used namely price quotation, lead time

quotation, order acceptance.

Duenyas et al. [21] consider the problem of quoting optimal lead times. They assume that

once a lead time is quoted the customer accepts the order with a certain known probability that

decreases with increasing quoted lead time. They find a closed form expression for optimal lead

time quote for a GI/GI/oo system and characterize the optimal policy for a GI/GI/1 system

under the assumption that the scheduling policy for accepted orders is First Come First Served

(FCFS).

Duran [22] extends the work of Duenyas et al. [21] by considering a model of customer arrival

which depends on the past performance of the firm in meeting the deadline. This dependence is in

addition to the penalties for missing the deadlines for individual orders. He derives the optimal lead

time for a GI/M/oo case. He shows that the model considered in his work avoids unethical lead

time quotes where unachievable lead times are quoted if the revenue from an order is sufficiently

large. He also considers the case of a single server and characterizes the optimal policy for this

case and analyzes the impact of the modeling assumption that order arrivals are dependent on the

past performance of the firm.

Duenyas [20] considers the problem of quoting optimal lead times for a single product facility

with multiple customer classes who have different preferences regarding lead times and rewards.

He characterizes the optimal solution for lead time quotation when the scheduling policy for ac-

cepted orders is FCFS. He shows that the optimal sequencing policy for accepted orders is EDD

and proposes a heuristic for quoting lead times based on a solution of the problem with FCFS

scheduling policy.

Kapuscinski et al. [33] consider a discrete time finite horizon problem of quoting optimal lead

times for a production facility with two class of customers who have different lead time preferences

under the assumption that all demands are accepted. They characterize the optimal policy and use

the characterization to derive heuristics which performs considerably better than other commonly

used heuristics in their simulations.

Ray et al. [43] consider the problem of finding an optimal static lead time and the capacity

for the production facility subject to a constraint on the level of service, when the arrival rate of

customers as well as the reward from an order depend on the lead time quoted. Their system

consists of only one type of order and all orders are given the same lead time quote. They show

that under some conditions the profit from their model can be significantly different from a model

which assumes that reward per order is an independent decision variable.

Some of the other works that consider the control of quoting lead time for revenue management

are [54], [30], [41].

Carr et al. [I I] focus on the problem of optimal order acceptance and scheduling for a produc-

tion facility that makes one type of product to stock (maintains an inventory of the product) while

manufacturing another product type to order. They model the production facility as a two product

MI/M/1 queue and characterize the optimal scheduling and order acceptance policy.

The basic order acceptance problem formulated in this chapter is the same as the order accep-

tance problem studied by Gallien et al. [24] who characterize the optimal policy for this problem

by showing the existence of a Bellman optimality equation for this problem and an associated

differential value function. They also establish an upper bound on the optimal expected reward

for this problem in terms of the problem parameters and also show that the policy of accepting

all feasible orders is the optimal policy for this problem if the arrival rates for the various order

categories are sufficiently low. They develop heuristics for the problem and compare its perfor-

mance with other commonly used policies. We develop new heuristics for this problem that are

computationally inexpensive and are easily extendable to related problems.

Kniker et al. [34] focus on an order acceptance problem in which at the most one order arrives

at regularly spaced discrete times. The arrival process for orders is Bernoulli and the orders have

strict due dates. They show that using a FCFS scheduling policy and solving for an optimal order

acceptance policy provides a good improvement in profits over the policy of accepting all feasible

orders. DeFregger et al. [19] provide heuristics for this problem. We obtain insights on the

optimal policy for this problem by characterizing its structure.

Some of the other works that investigate order acceptance for revenue management are [31],

4.3 Optimization problem statement

The Order Acceptance Problem (OAP) for MTO manufacturing firms formulated in this section is

very similar to the problem (1) considered by Gallien et al. [24].

We model the production facility of the MTO firm as a server that services arriving orders.

At any time only one order can be serviced and the other accepted orders wait in an associated

queue. We assume that there are three characteristics of an order that are relevant for the decision

making process, namely the reward, the processing time and the lead time. The reward for an

order is the revenue to the firm from the order minus the production cost and other operating costs

associated with completing the order. The processing time for an order is the time required to

complete the order if the production facility is completely dedicated for this order. We assume that

this processing time is deterministic and is known at the arrival of the order. We define the lead

time for an order as the time from the arrival of the order before which it has to be completed if

accepted. For example, if the lead time of an order is 5 time units and the order arrives at some

time t, then the order has to be completed by time t + 5 if accepted. We call the time by which an

order is due as its due date or its deadline. We assume that the quoted lead times are reliable in the

sense that it is feasible to accept an order only if there exists a schedule for executing the order by

its deadline while honoring the deadlines for all previously accepted orders.

We categorize the orders based on their reward, processing time and lead time. We assume that

there are a n order categories with {I , , Ii } denoting the reward, processing time and the lead

time for an order belonging to order category i { 1, 2,..., n}. The scheduling of accepted orders

is preemptive and there are no costs involved with setting up orders or resuming orders. We model

the arrival of orders for order category i as a Poisson process with rate A2 . We assume that the

arrival process for the different order categories are independent.

Before we formally describe the optimization problem of interest we wish to comment on the

assumptions of the model. The assumption that the processing times are deterministic is not very

common in typical queuing systems. However in a manufacturing context, it is reasonable to expect

that if the production system is stable the processing time is nearly deterministic. Reliability of the

quoted lead time is important in the context of securing business relationships. Since we assume

that the processing time of orders is deterministic, it is possible to guarantee the reliability of the

due dates by rejecting orders that cannot be completed by their due date.

There are two different decision making problems involved here. Once an order arrives the firm

has to decide whether to accept the order or reject it. In the basic model in this section we assume

that the firm has the option to reject an arriving order without incurring any penalty. Besides the

decision on accepting arriving orders, the firm also has to make decisions regarding scheduling al-

ready accepted orders at every point in time. Note that these decisions are inter related. Gallien et

al. [24] showed that scheduling the accepted orders by their earliest due dates (henceforth denoted

as the EDD based scheduling policy) is an optimal scheduling policy. With the assumption of

EDD based scheduling policy for accepted orders, decision making (regarding order acceptance)

happens only at discrete times and hence they pose a discrete time dynamic programming problem

for maximizing the expected average reward per arriving order. In this work, we study the First

Come First Served (FCFS) scheduling of accepted orders to construct a computationally feasible

approximation to the optimal order acceptance policy. Hence we formulate an optimization prob-

lem that allows for a broad class of order scheduling policies such that for every order scheduling

policy in this class, a discrete time dynamic programming problem can be formulated for finding

the optimal order acceptance policy.

We now formally describe the Order Acceptance Problem. We refer to this problem as OAP-P

to highlight the Poisson process assumed for order arrival. At any time t, the state of the queue

can be described by xq(t) = { (u, vi), (ul, vi, . . , (u (t) t
the queue. For convenience we have also included the order))being where there are z(t) orders in

the queue. For convenience we have also included the order being serviced as part of the queue.

For order k = 1..., z(t), (ut, v) represents the remaining processing time for the kt h order and

the time left before the kth order is due. The orders in the queue are numbered in the order of their

time of arrival. For example, for integers kl < k2 < z(t), the order corresponding to ki has arrived

at an earlier time than the order corresponding to k2. The state of the system at t can be represented

by x(t) = (xq(t), j(t)) where j(t) is the category of the order arriving at time t. In case there is no

order arrival at time t, we let j(t) = 0. Let Xq represent the set of all states of the queue and let X

be the set of all the states of the system.

The result of Gallien et al. [24] shows the existence of an optimal order scheduling policy (EDD

based scheduling policy) that does not depend on the optimal order acceptance policy. We consider

stationary order acceptance policies that depend only on the state of the system and stationary

order selection policies that depend only on the state of the queue. Let the arrival of an order or

completion of an order in the queue be an event. We further require that order scheduling policies

that we consider process a fixed order between events. Let U represent the class of stationary order

scheduling policies where a stationary order scheduling policy processes a fixed order between

events and uses only the state of the queue for making order scheduling decisions. A policy u E U

works as follows; If an order arrival event happens, the arriving order is accepted or rejected based

on a stationary order acceptance policy which depends only on the state of the system. Once an

arriving order is accepted or rejected, an order based on the state of the queue is selected and is

processed till another event happens. Similarly, once an order completion event happens, another

order is selected based on the state of the queue and is processed till another event happens. We note

that the EDD based scheduling policy belongs to this class of scheduling policies. Another policy

that belongs to the class U is the FCFS based scheduling policy. A stationary order scheduling

policy u E U, can be represented as a mapping from the state of the queue to an integer between

1 and the number of orders in the queue. Let L(x q) be the function that maps a queue state to the

number of orders in the queue. For a given state of the queue zq, let the set B(Xq) represent the set

{1,..., L(x q)} if L(x q) > 0 and let B(Xq) represent the set {0} if L(zX) = 0. The stationary order

scheduling policy can be formally defined as u : X' H- B. where we use 0 to denote the order

scheduling action when there is no order in the queue. All the decisions regarding order acceptance

and order scheduling happen only at the events and we now focus on a discrete time optimization

problem formulation.

It is clear that given an order scheduling policy u E U, the feasibility of an arriving order can

be determined. For a given state x and an order scheduling policy a, we let Au(x) denote the

feasible action set with respect to order acceptance. AU(x) = {0, 1} if the accepting the arriving

order is feasible at state x given the order scheduling policy u and Au(x) = {0} otherwise where

0 represents the action of rejecting the arriving order and 1 represents the action of accepting the

arriving order. We let xk = (Xfq, k) denote the state of the system at the time of the k'th order

arrival before the order acceptance decision is taken and let ak denote the action taken regarding

acceptance of the k'th order. A given stationary order scheduling policy u E U completely defines

the state dynamics. Gallien et al. [24] describe the state dynamics for the EDD based scheduling

policy for accepted orders.

As another example, we describe the state dynamics if the FCFS based scheduling policy is

used for accepted orders. Under the FCFS scheduling policy, the order scheduled for processing

at any point of time in the queue is the order that has been in the queue for the longest time.

Suppose the state of the queue is xq = { (Ul, vI), (U2, V2),..., (z, vz)} and let the FCFS scheduling

policy be applied on the orders in the queue for a time period of 7. If 7 > ul, then let k be the

integer such that - 1 ui < T, otherwise let k = 0. The state of the queue after T units of

time is {(u1, Tv),. .., (u,v)} where z = z - k with a1 = +1 - (T -), = +i for

i = 2,...,z - k and vi = vk+i - 7 for i = 1,..., Z - k. We use the notation of Gallien et al.

[24] to let x U jk denote the state of the queue immediately after the k'th order has been accepted.

Let (xq)(7-) denote the state of the queue starting with state xq and applying the FCFS scheduling

86

policy for a time period of 7. The state dynamics is as follows

Xk+1 - ((U jk)(T),jk+1), if an = 1

Xk+ 1 - ((X4)(T), jkl), if a, = 0

where T is an exponential random variable with mean 1 and jk+1 is a discrete random variable

such that P(jk+ = 3 = for = 1 n.

A stationary order scheduling policy u E Zb induces a probability measure

Pu(Blrk,ak) = pu(Xk+l C BX k,ak)

associated with a a algebra on X, given a state Xk and an order acceptance action ak. Please see

Ritt et al. [45] for the relevant mathematical framework. The subscript in the probability measure

indicates its dependence on the order scheduling policy u. For a given order scheduling policy, we

define a stationary order acceptance policy as : X - Au. If the state of the system is x, then

under a stationary order acceptance policy 4, the action taken is V(x). For a given order scheduling

policy u, an order acceptance policy V and an initial state x, we define

E(N =)

J(u,' , x) = lim inf - =) (4.1)
N-oo N+I 1

as the expected average reward per order where gu(n) is the reward for the n'th order under

the order scheduling policy u and order acceptance policy ¢. For a given order scheduling policy

u, let P(u) denote the class of stationary order acceptance policies. We define

J*(x) = max max J(u, 0, x) (4.2)
uEU ~PeI(u)

as the optimal expected average reward starting from state x. We seek an order scheduling policy

u* and an order acceptance policy L;* such that

J*() = J(u*, *,) (4.3)

for all states x E X.

We note that the state space for this problem is not countable. In the next section we define a

related discrete time discrete state space problem which can be considered as a both as a different

modeling approach for the order acceptance problem as well as an approximation to OAP-P (4.3).

4.4 Discretized order acceptance problem

We now describe an order acceptance problem that uses a different model for order arrival. The

set up for this problem is identical to the order acceptance problem described in section (4.3)

except that the order arrival process is Bernoulli. In this model orders can arrive only at regularly

spaced discrete times indexed by t = 0, 1, At each time, at the most one order can arrive with

probability A. Given that an order has arrived it belongs to the order category i for i E {1, 2, .. , n}

with probability j. We denote the reward, the processing time and the lead time for an order

category i by ri, pi and li respectively. We assume that pi and 1, are integers for all order categories

i. We assume that order scheduling decisions are taken only at times t = 0, 1,... and only one

order can be scheduled for processing during a time period. Thus this model is discrete time

with all the events and decisions happening at times t = 0, 1, For convenience, we define

A0 = 1 - , 1 A2, the probability that there is no order arrival during a time period.

We let xt = {(u,)), (t, . .. , (t) Vt(t)), jt} represent the state of the system at time

t, where there are z(t) orders in the queue. For orders k = 1,...,z(t), (u, vt) represents the

remaining processing time for the kth order and the time left before the kth order is due. jt is a

discrete random variable that represents the category of the order that has arrived at time t. We let

88

jt = 0 denote the non-arrival of an order at time t. jt = i with a probability Ai for i = 0, 1,..., n.

The random variables jt are independent and identically distributed. Let 1 = maxi{1 ,...n,,} 4. We

first observe that the number of orders in the queue at any point of time is finite. To see this, we

first note that for k = 1,..., z(t), u > 1 since only one order is processed during any one time

period and by assumption, the processing times for all order categories are integers. We also note

that Ez ut < maxkC{1,...,z(t)}vk < 1 because of the assumption that the due dates are reliable.

Hence z(t) < 1. It is clear in the light of the above discussion that the state space is finite.

At each time t = 0, 1 ..., the decisions to be made at the beginning of the time period are

* If there is an order arrival, then decide whether to accept or reject the order

* Decide the order to be scheduled for processing during the period

We can represent the decision at time t by an ordered pair (a, at). We let a' = 1 indicate the

acceptance of an order and a' = 0 represent the rejection of an order. We let at denote the order

that has been scheduled for processing for processing for time t. We let a = 0 in case there is no order scheduled

for processing. We note that there is a choice regarding accepting an order only if it is feasible

to accept the order while accommodating the deadlines of all accepted orders. Further, there is a

choice regarding selecting a specific order for processing during a time period only if it is feasible

to complete all accepted orders by their deadlines after processing the selected order for the time

period.

We now specify the state transition probabilities for this problem. Let the state of the system at

thebeginning oftimetbe { ,), (u , v), .. , (4z(t), (t)), jt} and let at = (0, k) be the control

applied with k E {1,..., z(t)}. That is, the arriving order is rejected and the pending order k is

scheduled for processing for the time period. If u4 > 1, the system transitions to the state y =

{ (zu, v+lt+, (U l, t4'l), . (u1t+1) Vt+l)) jt+1} with probability Ajt+l for = 0, ... , n1where (t 2 1) 2 z(t+l)' z(t+l)
where z(t+1) z(t), = u for= 1,...,k-1, k+1,...z(t) and u = ut- 1 and v

vt - 1 for 1 - I. z(t + 1). In words, the remaining work for all the orders expect the k'th order

remain the same while the remaining work for the kth order decreases by 1. The time left before

the order is due reduces by 1 for all orders to reflect the passage of a unit of time from t to t + 1.

If ui. = 1, then the order is complete at time t + 1 and is removed from the queue and the system

transitions to state {(Ut4l t+l) (u ,+1 , (ut+ 1t+l I Vt+l ,jt+1} with probability Ajt for

+l = 0,...,n where z(t + 1) = z(t)- 1, U 1 = i' for 1 = 1,..., k - 1 and ut+1 = u+1 for

1= k,...,z(t+1) andvt+1 = V-1 for I= 1,..., k-landvt+l = ;+ 1- 1 forl= k,...,z(t+l).

If the arriving order is accepted and scheduled for processing and if pjt > 1 then the system

transitions to the state {(u t+1)(1), . . ., (Ut1+ t1+L)) tj 1} with probability + t+ t+

for j+ = O,...,n where z(t +1) = z(t) + 1, ut+l = forl= 1...,z(t+1)-landu t+ -

pj - 1 and vf = v - I for 1 = 1..., z(t + 1) - 1 and vt+) = lit - 1. If the arriving order is

accepted and scheduled for processing and if pjt = 1, then the order is completed during the time

period and the system transitions to the state {(uz+, v Itl+), (u+ ,2t+l) ,(Ut+1 '1z(t+1))t+l}

with probability Ajt+i for jt+1 = 0, ... , n where z(t + 1) = z(t), u 1 = uF for 1= 1,..., z(t + 1)

and u + = v - 1 for 1 = 1,... ,z(t + 1). The state transition probabilities for the case when the

arriving order is accepted and an order k that is different from the arriving order is scheduled for

processing can be given in a similar fashion.

We model the problem of maximizing the expected average reward per time as an infinite

horizon average cost MDP. Note that we consider scheduling and order acceptance jointly in this

problem. For a stationary order scheduling and order acceptance policy pt, let J, be defined as

follows.

J,(x) = lim.inf E g(t) o = x (4.4)
T-oo T

t=l1

where g, (xt) is the reward obtained at time t by following the policy p and xt is the state of the

system at time t.

The optimization problem of interest is to find a policy p* such that

(4.5)

for all states x.

We refer to the order acceptance problem described in this section as OAP-B to highlight

the Bernoulli arrival process used for modeling order arrivals. In this work we view OAP-B as an

approximation to OAP-P with an appropriate choice of the parameter values. In particular we study

OAP-B with the idea of constructing approximations to the optimal policy for OAP-P. Finding the

optimal policy for OAP-B is computationally challenging due to the size of the state space. In

the next chapter we assume that the FCFS based scheduling policy is used for accepted orders

which considerably reduces the size of the state space. We present results for OAP-B under this

assumption.

J,- (x) = max, J,(x)

92

Chapter 5

Order Acceptance Problem (Bernoulli) with

First Come First Served Scheduling policy

In this chapter we study OAP-B (4.5) in detail under the assumption of FCFS based scheduling of

accepted orders. The use of FCFS based scheduling policy for accepted orders ensures fair access

to the production facility for all the customers. In some cases it is a common practice to cite a

common lead time for all orders [21]. In case all orders are quoted a common lead time, the FCFS

scheduling policy for accepted orders is the same as EDD based scheduling of accepted orders.

The reward for a FCFS scheduling policy does not changes even if there are costs associated with

interrupting and resuming orders. Also, while this assumption renders the resulting policy sub-

optimal for OAP-B (4.5) except under special circumstances, it greatly reduces the state space of

the underlying problem.

In this chapter we establish some structural results for the OAP-B under FCFS scheduling of

accepted orders. We also investigate a special class of policies called the static policies that are easy

to implement from a practical point of view. A quantity of interest that will play an important role

in our analysis is the time needed to finish already accepted but uncompleted orders which we refer

to as the remaining work. We recall from Chapter 4 that the state of the system at time t for OAP-B

can be represented by xt= {(u, vt), (uz, () , vt) (t)) t } where there are z(t) orders in

the queue at time t. For order k = 1,..., z(t), (ut, vI) represents the remaining processing time

for the k'th order and the time left before the k'tlh order is due. jt is a discrete random variable that

represents the category of the order that has arrived at time t. We define the remaining work at this

time as Ez_(u'. We establish later in this Chapter that under the assumption of FCFS scheduling

of accepted orders, the feasibility of an order is completely determined by the remaining work at

that time. We also establish in this chapter that in general there exists an optimal order acceptance

policy that rejects an order if the remaining work at the time of order arrival is above a threshold

that depends on the order category. We start our analysis by considering a special case of the

problem OAP-B (4.5) that admits an easy computation of the optimal policy.

5.1 Special case; No waiting room in the queue

Recall that we model the production facility of the firm as a queue to which orders arrive via

a Bernoulli process. We assume that the orders can be divided into n categories based on their

reward, processing time and lead time. In the following, let C be the set {1, 2,. .., n} and let C

be the set {0, 1, 2, ... , n} . We let ri, pi, 1i denote the reward, processing time and lead time for

order category i and we let AX denote the arrival rate of order category i for i E C. We define

A0 = 1 - En Ai. At each time t = 0, 1,..., at the most one order can arrive with probability

A i=l Aj. Given that an order has arrived it belongs to the order category i for i E {1, 2,..., n}

with probability 2. In this section, we consider the order acceptance problem when there is no

waiting room in the queue and the processing of an accepted order has to begin immediately and

must be processed to completion before another order could be accepted. In other words 1i = pi

for all order categories i E C. Thus FCFS is the only scheduling policy for this problem and we

need to compute only the optimal order acceptance policy for this problem.

We denote by w't,the remaining work at time t. If no order is being processed at time t, then

wt = 0. Let j" denote the category of an arriving order at time t. We let jt = 0 if there is no order

arrival at time t. For simplicity we also let j = 0 when w' > 0 , since the arriving order would

be rejected regardless of its category since there is no waiting room in the queue. The state of the

system at time t for this problem can be modeled by xt = (wt t, jit) where it denotes the type of

the order being processed at time t. If no order is being processed, then i = 0. Storing the type of

the order being processed as part of the state information is not necessary. However it simplifies

the computation of the associated steady state probabilities as we will see. We let S denote the

state space for this problem. The system has a choice of accepting an arriving order only when no

order is being processed. Thus the system has a choice regarding accepting or rejecting an arriving

order only for states (0, j, 0) where j E C. We let A(x) denote the set of actions available when

the state of the system is z. A(x) = {0, 1} if accepting the arriving order is feasible at state x and

A(x) = {0} otherwise where 0 represents the action of rejecting the arriving order and 1 represents

the action of accepting the arriving order.

We now describe the state transition structure for this problem. Consider the state xt = (0, j, 0).

If the control action is to accept the order then the system deterministically transitions to the state

zt+1 = (P3 - 1, 0,j). This is because, the order arrives at time t and at time t + 1 the order has

already been processed for a unit of time and so the remaining work at time t + 1, wt+1 = P - 1.

If we reject the order at state xt = (0, j, 0), then the system transitions to the state (0, j, 0) with a

probability Aj for j E C. If the system is in the state (m, 0, i) it deterministically transitions to the

state (m - 1, 0, i) for pi - 1 > m > 1. This is because for pi - 1 > m > 1 all arriving orders

are rejected and by our notational choice, jt = 0 when wt > 0. From the state (1, 0, i), the system

transitions to the state (0, j, 0) with a probability Aj for j E C.

5.1.1 Stationary policy description

A stationary policy is a function that associates with each state of the system a feasible action.

From the problem definition, it is clear that at time t, there is a choice regarding order acceptance

only when there is an order arrival at that time and w' = 0. Thus we can describe every stationary

policy p for this problem by a set of order categories that the policy accepts on arrival when no

order is being processed. For example, the policy that accepts all feasible orders can be described

by the set {1, 2,..., n}.

5.1.2 Problem Formulation

For the stationary policy p, we define the expected average reward per time J,(x) starting from

state x as follows

J,(x) liminf -E gI(xt)|xo = x (5.1)
T->oo T

where g,,(xt) is the reward obtained at time t by following the policy P and xt is the state of the

system at time t.

The optimization problem of interest is to find a policy p* such that

J,.(x) = max,ZJ.(x) (5.2)

for all states x.

5.1.3 Characterization of the optimal policy

A recurrent class for a finite state Markov chain is a set of states such that for any pair of states in

the set, the probability of eventually reaching one state from the other is one (see Bertsekas and

Tsitsiklis [8]). Every Markov chain has at least one recurrent class [8]. Let P(xt = xzo = y)

denote the probability that for a stationary Markov chain, xt = 2 given that xo = y. We first

formalize an observation regarding general finite state stationary Markov chains

Proposition 5.1.1. Consider a finite state stationary Markov chain. If there exists a state 7 such

that for every state y there exists some t, with P (xzt = I ix0 = y) > 0, then the Markov chain has

96

a single recurrent class.

Proof We know that every finite state Markov Chain has at least one recurrent class [8]. Consider

a recurrent class M. By the assumption in the proposition, for any state y E M, there exists some

t, with P(xty = aIxo = y) > 0. Hence t belongs to the recurrent class M. Since this is true for

all recurrent classes, i belongs to all recurrent classes showing that the Markov chain has a single

recurrent class.

Every stationary policy for a MDP induces a stationary Markov chain. A stationary policy is

unichain if the Markov chain induced by it has only one recurrent class [5]. We claim that every

stationary policy for the OAP-B (5.2) with no waiting room in the queue is unichain. To see this,

consider a stationary policy p. As explained before, p is described by the set of order categories

that are accepted. Let P,(xt = (Xo = y) be the probability that xt = 2 given that xo = under

the policy p. For any stationary policy p, it can be verified that i E C, P,(x, = (0, 0, 0) zo =

(m, 0, i)) = Ao for pi - 1 > m > 1. Also, for j E p, P (xpj = (0, 0, 0) Xo = (0, j, 0)) = A0 and

for j (/i, P,, (x = (0, 0, 0) Ixo = (0, j, 0)) = Ao. Hence the state (0, 0, 0) satisfies the assumption

of proposition 5.1.1 for the Markov chain induced by the stationary policy p and hence has a single

recurrence class.

Thus condition (1) of proposition 4.2.6 of [5] is satisfied and therefore the optimal expected

average reward per time is the same starting from all states. Also, there exists a solution to the

Bellman's equation for this problem. Let J* denote the common optimal expected average reward

per time. J* satisfies the following Bellman equation for this problem:

J* + h(O,O, O) = ZAh(O, j, 0), (5.3)
j=0

J*+h(0, i, 0) rnaxri + h(pi- 1,0, i), Ah(O,j,O)}, iEC (5.4)
j=0

J*+h(m, 0, i) = h(m - 1,O,i, 0, > m > 1 iEC (5.5)

J*+h(1, 0, i) = Ajh(O,j,O), iEC (5.6)
j=0

where the vector h is an associated optimal differential value function. Consider some i E C. From

equations (5.5) and (5.6), it can be seen that h(pi - 1, O i) = -o Ajh(O, j, 0) - (pi 1)J*. Hence,

'n n

max{ri + h(pi - 1, 0, i), Ajh(0j,0)} = max {ri + Ajh(O j,O)- (pi- 1) J*, Ajh(0,j,O)}
j=0 j=o0 j=0

= max{r - (pi - 1)J*, 0}

If r > (py - 1)J*, then accepting the order is an optimal control action at state (0, j, 0).

Therefore the policy p* defined by the set {j : ~ > J*; jE C} is an optimal stationary policy.

We have shown that there exists an optimal stationary policy that has a threshold structure, that

is, it accepts all feasible orders with a ratio of r above a certain threshold. We now provide

an expression for the expected average reward per time of any stationary policy which when used

together with this structural result provides a simple algorithm for finding an optimal stationary

policy for this problem.

5.1.4 Derivation of steady state probabilities

A Markov chain with a single recurrent class is said to be periodic if the states of the recurrent class

can be grouped into k disjoint subsets S, .2.. , Sk with k > 1 such that if the system is in a state

x E Si, it can only transition to states in the set Sj+1 for 1 < i < k - 1 and if the system is in a state

98

: E Sk, it can only transition to states in the set S1. A Markov chain with a single recurrent class

that is not periodic is said to be aperiodic. We observe that a Markov chain with a single recurrent

class consisting of at least one state with a non-zero one step transition probability from that state

to itself cannot be periodic. For any stationary policy p, the associated recurrence class S consists

of the state (0, 0, 0) as shown in Section (5.1.3). Also, 'P,,(xl = (0, 0, 0) xo = (0, 0 0)) = Ao > 0

and hence the Markov chain associated with any stationary policy p is aperiodic. It is known that

an aperiodic Markov chain with a single recurrent class has a unique set of associated steady state

probabilities [8]. We now derive the steady state probabilities for this problem and use them to find

an expression for the expected average reward per time for a stationary policy. Let O,(x) denote

the steady state probability of the state x under the stationary policy p. The balance equation for

the steady state probability for the state (pi, 0, i) for some i E p is,

0, (p 1, i) = 0,(0, i, 0) (5.7)

Forpi - 1 > m > 1,

O, (m - 1, 0, i) O= ,(m, 0, i) (5.8)

From equations (5.7) and (5.8), we conclude that that for i E p and m = pi - 1,..., 1

, (m, 0, i) = 0,(0, i, 0) (5.9)

Also, for all i E C,

0,(0, i, 0) = A0,(1, 0, j) + AxO,(0, j, 0)

= O(0,1,J 0) (5.10)
J

The last equality follows from (5.9). Equations (5.9), (5.10) and the normalizing equation that sum

of the steady state probabilities over all the states must be 1 provide a set of linear equations that

define the steady state probabilities. It can be verified that for all i,

Ai
o(0,i,o0) =

As noted before, the expected average reward per time starting at state x, defined by J,(x) =

limT,, E [E T gi, (xt) o = x exists and is the same for all states x. Let J,, denote the com-

mon expected average reward per time obtained by following the policy p. Using the steady state

probabilities derived for this problem, J, can be expressed by the following equation.

1 pJ (5.11)
1 - +j(Ep Aj + Ejcp Ajpj

5.1.5 A simple algorithm for finding Optimal policy

We assume, without loss of generality that 1 > 2 > Tn . From the characterization

of the optimal policy in section (5.1.3), there exists some i* such that the stationary policy described

by the set { 1,... , i* } is an optimal policy. Let the expected average reward per time for all initial

states of the stationary policy defined by the set {1,...,i} be JI. From equation (5.11), it can

be seen that J . Thus the optimal expected average reward per time J* =

maxi=l,.. .,, J' and the stationary policy {1,..., i*} is optimal where i* = argmax Ji
i=l,...,n

5.2 Analysis of OAP-B with FCFS scheduling policy

The assumption that FCFS is the scheduling policy for accepted orders hugely reduces the state

space, as it is only necessary to keep track of remaining work at any time. It is not necessary to store

the exact arrival times and the due dates of the orders in the queue. In this section we formulate

100

the problem OAP-B under the assumption that FCFS is the scheduling policy for accepted orders.

The formulation is identical to the problem formulated by Kniker et al. [34]. Using numerical

simulations, they show the benefits of using the optimal policy for this problem over the policy

of accepting all feasible orders. However they do not provide any characterization of the optimal

policy for this problem. Similar to our approach in (5.1), we show that there exists a solution to

the Bellman equation for this problem and gain some insights on the structure of the optimal order

acceptance policy through an analysis of the Bellman equation.

5.2.1 State space and state transition structure

We recall the set up for OAP-B (4.5). We assume that the orders can be grouped into n categories

based on reward, lead time and processing time and we let ri, pi, li denote the reward, processing

time and lead time for order category i. We assume that at the most one order can arrive at any time

with a probability A = - Ai and given that an order has arrived, it belongs to order category i

with probability L. Let wt be the remaining work at time t. Let jt denote the type of the arriving

order at time t. We let jt = 0 to denote the non-arrival of an order at time t. As before, let C be

the set {1, 2,... , n} and C be the set {0, 1,... , n} and let A0 = 1 - E J Aj. For convenience,

we make the assumption that pi > 2 for i E C and that A0 > 0. This does not represent any

loss of generality for the purpose of using an appropriately defined problem of type OAP-B for

approximating a given problem of type OAP-P as we will see in Chapter 6.

We claim that the feasibility of an arriving order at time t can be decided with the knowledge of

w'. To see this note that since the scheduling policy for accepted orders is FCFS, an arriving order

belonging to category i E C at time t would be scheduled for processing between times t + wt

and t + wt + pi if accepted. Hence it is feasible to accept an order arriving at time t if and only

if wt + p, < li. Under the FCFS scheduling policy for accepted orders, we model the state of the

system at time t as xt = (wt, jt). For convenience, we define 1 = maxiEc I4. For those states where

it is feasible to accept an arriving order, there is a choice regarding accepting or rejecting the order.

101

For all other states the arriving order is rejected. We let S be the set of all the states that the system

can be in.

We now describe the state transition structure. Suppose the state of the system is (w, i), i E C

and it is feasible to accept the order. If the order is accepted, the system transitions to the state

(w + Pi - 1, j) with a probability A for j E C. Suppose the state of the system is (w, i) , i E C.

If the order is rejected then the system transitions to the state (w - 1, j) with a probability Aj if

w > 0. If w = 0 then the system transitions to the state (0, j) with a probability A for j C.

5.2.2 Problem Formulation

Let A(x) denote the feasible action set with respect to order acceptance. A(x) = {0, 1} if the

accepting the arriving order is feasible at state x and A(x) = {0} otherwise where 0 represents the

action of rejecting the arriving order and 1 represents the action of accepting the arriving order. We

define a stationary order acceptance policy as a mapping from the set of states to the set of feasible

actions,/z : S A. For a given stationary policy p, we define

(x) = liminf E [g(xt)xo = x (5.12)
T--oo T

t=1

where g,(xt) is the reward obtained at time t by following the policy p and xt is the state of

the system at time t.

The optimization problem of interest is to find a policy p* such that

J,.(x) = maz,,J,(z) (5.13)

for all states x.

102

5.2.3 Characterization of Optimal Policy

Consider a stationary policy p. We first note that P,(xz = (0, 0) zo = (w, 0)) > (Ao)a' > 0

for I - 1 > w > 0. We also note that for any state x = (w, i) such that p(x) = 1, P,(xl=

(w + pi - 1, 0) 1o = (w, i)) = Ao > 0. Therefore, for any state x = (w, i) such that pu(x) = 1,

PP(Xw+Pj = (0, 0) xo = (w,i)) > 0. For a state x = (w, i) with w > 0, such that p(x) = 0,

PP(X = (w - 1, 0)1xo = (w, i))= A0 > 0 and hence P,(x = (0, 0)1xo = (w,i)) > 0. Finally,

we note that for a state x = (0, i) such that pt(x) 0, P,(xl = (0, 0) o = (0, i))= A0o > 0. Thus

the state (0, 0) satisfies the assumption of Proposition 5.1.1 and we conclude that the Markov chain

induced by any stationary policy has a single recurrence class. Thus condition (1) of proposition

4.2.6 of [5] is satisfied and the optimal expected average reward per time is the same starting

from all states. Also there exists a solution to the Bellman's equation for this problem. Since,

P,(zx1 = (0, O)zxo = (0, 0)) = A0 > 0 and the state (0, 0) belongs to the only recurrence class,

we note that the Markov chain induced by any stationary policy is also aperiodic. Let J* denote

the common optimal expected average reward per time. We now establish some properties of the

optimal policy.

Lemma 5.2.1. Consider an order category i with reward i- and processing time pr. If > J*,p --

then it is optimal to accept an order of category i whenever feasible.

Proof Consider some state (w, i) where w > 1. If an order of category i is feasible at state (w, i),

the optimality equation for the state (w, i) can be written as

n n

J* + h(w,i) = max{ri + Ah(w + pi - 1,j), Ah(w - 1,j)} (5.14)
j=0 j=0

where h is an optimal differential value function that satisfies the Bellman equation. Otherwise the

103

optimality equation for the state (w, i) is given by

n

J* + h(w i) = Ajh(w - 1j) (5.15)
j=0

For convenience, we define h(w) = -~I, Ajh(w, j) for all w. From (5.14) and (5.15), we have

that,

J* + h(w, i) > h(w - 1) Vw > 1, Vi EC (5.16)

Multiplying by Ai on both sides and summing over i E C,

A A*(J + h(w, i)) > E hh(w - 1)
i=O i=O

Since E 0=o Ai = 1, it follows that

J* + h(w) > h(w - 1) (5.17)

Consider some state (w, i) with w > 1 where accepting an order of category i is feasible. By

repeated application of (5.17), it can be seen that

h(w+p- - 1)> h(w -1) pJ*

If > p J*, then from the above equation ry + h(w + p - 1) > h(w - 1) and from (5.14) it

is clear that it is optimal to accept an order of type i whenever w > 1 and the order is feasible.

When w = 0, the optimality equation for a feasible order of type i is given by

J* + h(0, i) = max{- + h(p - 1), h(O)}

104

By repeated application of (5.17), it can be seen that

h(pi - 1) > h(O) - (p - 1)J*

Hence, if ir > p-J* > (pi - 1)J*, it is optimal to accept an order of type i at the state (0, i).

Thus, if r- > piJ*, it is optimal to accept an order of type i whenever it is feasible. O

Lemma (5.2.1) suggests that when the rewards grow proportionately with the processing time,

then for the OAP-B with FCFS as the scheduling policy for accepted orders, it is optimal to accept

all feasible orders. We establish this result in the following proposition

Proposition 5.2.1. Suppose ri = bpi for i E C where b is some constant. Then it is optimal to

accept all feasible orders

Proof Let J* be the optimal expected average reward per time starting from all initial states.

Consider a situation where instead of being paid immediately, a reward of " is paid per unit time
Pi

while an order of category i is processed. The expected average reward per time under any policy

with this scheme of payment is the same as the system where all the reward is paid as soon as

an order is accepted. Hence, J* < maxi=1,2,...{,n{}. Therefore under the assumptions of the

proposition, J* < b. The proposition follows from Lemma 5.2.1 E

We now establish one of the main results of this Chapter. The result provides insight into the

structure of the optimal policy.

Theorem 5.2.1.

Suppose it is optimal to accept an order of category i at state (Co, i). Then it is also optimal to

accept an order of type i at all states (w, i) with w < w.

Proof The proof for this theorem is based on the following lemma

105

Lemma 5.2.2. Let h be an optimal differential value function for the problem (5.13). For V =

0, 1, .. 1 - 1, let h(w) = jo jh(w,j).

1. For 0O < w < I - 1, h(w) - h(w + 1) > h(w - 1) - h(w).

2. ForO < w < l- 1, h(w - 1) - h(w) >0

Proof Recall that 1 = maxiEl, 2,...,n 1i. Let the order categories be numbered such that pi < ... <

p,. An arriving order belonging to category i is feasible if and only if the remaining work w at

the time of order arrival satisfies w + pi < ij. Therefore any order arriving with the remaining

processing time w such that 1 - Pi + 1 < w < 1 - 1 is infeasible. Note that the maximum value of

remaining work at the beginning of any time period is 1 - 1. Thus for 1 - pi + 1 < w < 1 - 1 and

i E C the Bellman's equation is

J* + h(w, i) = h(w - 1) (5.18)

For w, such that 1 - pi + 1 < w < 1 - 1, multiplying the above equation by Ai and summing

over i E C, we get h(w - 1) = h(w) + J*. Since p, > 2 by assumption, h(1 - 2) - h(l - 1) =

h(1 - 3) - h(l - 2) and thus the lemma is true for w = 1 - 2. We prove the lemma by induction.

Assume that h(w) - h(w + 1) > h(w - 1) - h(w) for 1 - 1 > w > iv + 1 where iv > 0. Under

this assumption, we show h(Zi,) - h(wL + 1) > h(wCv - 1) - h(wf). This completes the proof of the

first part of the lemma.

For 0 < w < 1 - 2, let J, represent the set of order categories such that it is optimal to accept

an order of category j E J, at states (w + 1, j) and (w, j). Let I represent the set of order

categories such that it is optimal to reject an order of category i E I, at states (w + 1, i) and (w, i).

Let the set IC,, represent the set of order categories such that it is optimal to accept an order of

category k E IC, at state (w + 1, k) and it is optimal to reject an order of category k E /C, at state

(w, k). Let M, represent the set of order categories such that it is optimal to accept an order of

106

category m E MZ at state (w, m) but is optimal to reject an order of category m E Mw at state

(w + 1, m). Let A ,, = iE, Ai and let Aj,, Aklc,, AM,, be defined similarly. Az, > 0 since the

order category 0 E 1, for all w and AX > 0. From the optimality equations (5.14) and (5.15) for

an order category j E J, U KD, we have

J* + h(f, + 1,j) = r + h(iv + pj)

For an order category i CE - U M

J* + h(J + 1, i) = h(f)

Hence,

z Ai(J*+h(w+l1,i)) =
iEI7,UM

E A (rA j
"i E j UlC7,

Aih(f)
iZAuM

From their definitions, the intersection of any pair of the sets I, J-b, l/C, and M is empty. Further

every order category belongs to one of the sets -i,, ,, KIC, M,D. Hence Az, + Aji + Ac + AM =-

1. This, together with equation (5.19) yields the following relation.

J* + h(zi + 1) = AIzh(w) + AM.,h(w) + E Aj (r + h(C + pj)) + Ak (k + h(zV + Pk))
jie ke K,

(5.20)

Using similar arguments,

J*+h(wC) = Az,7h(wv-1)+Ahch(-l1)+ A (rj + h(i + pj - 1))+ E A.m (rm + h(+ pm - 1))

(5.21)

Subtracting (5.20) from (5.21),

107

E Xj(J*+h(wv+1,j))+UC
(5.19)

= Az, (h(z -1) -h(&)) +)

f+ Ak, (h(- 1) - (k + h(+pk))) +
kEIC, jEJ

Aj (h(aCv + pj - 1) - h(& +±pj))

> (A-z + AM,) (h(, - 1) - h(f)) + A (h() -h(, + 1))

+ Ak (h (C - 1) - (rk + h(+ Pk - 1)) + h P(, + Pk - 1) - h(Cv + Pk))

> (v + AM) (h(1 1) - h(i)) + (Ax,, + A ,) (h(u,) - h(C + 1))

The first inequality comes from the fact that by definition, for m E AM,-, r,n + h(+ pm - 1) 2

h(i- 1) and the assumption that h(L')-h(-ti+1) < h(i +1)-h (+2) < ... < h(l-2)-h(l-1).

The second inequality comes from the fact that for k E ICc, h(fi - 1) > rk + h(f + Pk - 1) and

also from the assumption that h(i) - h(+ 1) < h +1) - h(+2) < .. < h(l- 2)- h(l- 1).

From (5.22),

(1 - A~, - A;c) (h(,) - h(t + 1)) > (Az, + AM,) (h(w - 1) - ())

Hence h(t,) - h(i + 1) > h(?i - 1) - h(z,) since A-T, + AM, + Agj + Ac,, = 1 and Az, > 0.

This proves the first part of the lemma.

Arguments similar to those used for establishing (5.20) and (5.21) yield:

- Ao1 h(O) + AMoh(0) + Aj (rj + h(p)) + Ak (Tk h (Pk))
jE 'Jo

(5.23)
kECo

SAzh(O) + Acoh(O) + 3 Aj (rj + h(py - 1))
j 'Jo

+ E
mEMo

Am (rm + h(pm - 1))

108

(5.22)

J* + h(1)

J* + h(O)

(5.24)

h(?) - h(+ 1) Am (rm + h (f + pm - 1) - h(f))

Subtracting (5.23) from (5.24) and repeating the arguments used in the proof of the first part of

the lemma,

(1 - AJo - XAo) (h(0) - h(1)) > (AXo + AMo) (h(0) - /(0)) = 0

The above inequality together with the facts that Azo + AMo + AJo + Aco = 1 and Azo > 0,

imply h(0) - h(1) > 0. From the first part of the lemma, for any 1 < w < 1 - 1, we have,

h(0)-h(1) < h(1)-h(2) < ..- < h(w - 1)- h(w). This, along with the fact that h(0)- h(1) > 0,

proves the second part of the lemma. O

Consider a state (tC9, i) with J > 1 such that it is optimal to accept an order of category i. From

the Bellman equation for the state (JV, i),

J* + h(f, z) = r- + h(+ p- - 1) > h(fv - 1) (5.25)

Suppose v > 1. Then,

+ h(C + p - 2) = + h(+ - 1) + (h(+ p - 2) - h(+ i- 1))

> h(- - 1 + w - 2) -h(z@-1))

= h(- 2)

The inequality is due to Lemma (5.2.2) and equation (5.25). Accepting an order of category z at

state (wCv - 1, i) is optimal if - + h(6 + j - 2) > h(w - 2). Therefore it is optimal to accept an

order of category i at state ('J - 1, i) if it is optimal to accept an order at state (w, i) for C > 1.

Thus if it is optimal to accept an order of category i at state (C, i), then it is also optimal to accept

an order from category i at states (w, i) where 1 < w < w.

To complete the proof of the theorem we only have to show that it is optimal to accept an order

109

of category i at state (0, i) if it is optimal to accept an order of category i at some state (', 1) where

fv > 1. Since it is optimal to accept an order of category i at state (ai, Z), it is feasible to accept an

order of category i at state (1, i).

n + h(p - 1) = ; + h(p) + h(p, - 1)- h(l-)

> h(0) + h (p- - 1)- h (p-)

> h(0)

The inequality follows from r- + h(p-) > h(O) since it is optimal to accept an order of category i

at state (1, i). The second inequality comes from the second part of Lemma (5.2.2). Thus if it is

optimal to accept an order of category i at state (f, i), it is optimal to accept orders from category

i for all states (w, i), with 0 < w < Jz. This completes the proof of the theorem []

Theorem (5.2.1) establishes the existence of thresholds w1 , w2,..., w, such that it is optimal

to reject an order of category i at states (w, i) where wi < w < I - 1 for i E C. It is reasonable to

expect that the reward for an order increases with the processing time needed for it. However the

growth in the reward may be less than linear with respect to the processing time needed. In such

cases, the following proposition provides further insight into the structure of the optimal policy.

Proposition 5.2.2. Suppose 1 > " > .> where pl < P2 ' < Pn,. If it is optimal to

accept an order of category k at state (f, k), it is also optimal to accept allfeasible orders at state

(w, k) where 1 < k < k.

Proof. Suppose w! > 0. Consider some k such that 1 < k < k such that it is feasible to accept an

110

order of category k. We have,

h(fv - 1) - h(Th + pk - 1) = h(- 1) - h(+pk- 1) + h(+ pk-1)-h(p -)

> h(Q - 1) - h(Z, + pk - 1) + (pk - pk) (h(f' + Pk - 1) - h(C + Pk))

-1) - h(fv +pk

- P ((h(. - 1) - h(C + pk - 1))

Pk

The first and the second inequalities come from Lemma (5.2.2). Since it is optimal to accept an

order of category k at state (C, k), from the optimality condition for the state (, k), we have,

rk + h(& + pk - 1) > h(f - 1) which can be restated as, 1 > h(-1l)-h(+pk-). Thus,Pk- Pk

h(z - 1) - h(Z + Pk - 1)rk > r > h(- 1) - h(f+pk - 1)

Pk pk pk

The last inequality comes from (5.26). Hence rk + h(dv + Pk - 1) 2 h(& - 1) establishing the

optimality of accepting an order of category k at state (d, k).

Suppose v =- 0. Since pA < p, Pk > and hence
-pk-1 - pk-1

ek Tk Pk > P

Pk pk Pkp-1 -1i -1 -

Thus rk > h(O)-h(pk 1) establishing the
Pk1- Pk-1

rk
p-1 -

h() - h(p - 1) >
pk - 1 -

h(0) - h(pk- 1)
Pk - 1

optimality of accepting an order of category k at (0, k)

5.2.4 Extensions

We established the structure of the optimal policy for problem (5.13). We now show that a similar

structure exists for the optimal policy for two other closely related problems.

111

-
1)

(5.26)

5.2.5 Order rejection penalty

We now consider an order acceptance problem with Bernoulli arrival process where there is a

category dependent penalty for rejecting an arriving order. We refer to this problem as (OAP-B-

RP). In this case for every order category i E C, there is an additional parameter, the rejection

penalty denoted by ci. This quantifies the loss to the firm due to the rejection of an order from that

category. We assume that the FCFS based scheduling policy is used for accepted orders. Since

this additional parameter affects only the reward structure for the problem, the state space and the

transition structure remain the same as in Section 5.2. While Lemma 5.2.1 need not hold for this

problem, Theorem 5.2.1 holds for this problem. As before, we let the order category 0 denote the

situation when no order has arrived during a time period.

Theorem 5.2.2.

Let ci be the loss due to the rejection of an order of category i for i C C and let co = 0. Suppose

it is optimal to accept an order of category i at state (W, i). Then it is also optimal to accept an

order of category i at all states (w, i) with w < w.

Proof The proof is similar to the proof of Theorem 5.2.1. We refer to the proof of Theorem

5.2.1 frequently to avoid the repetition of arguments. Lemma 5.2.2 holds for this problem and

we state and prove it for completeness. As before, 1 = maxjEc{lj} and for w = 0, 1,... , - 1,

h(w) ZE=>Xj(w,).

Lemma 5.2.3. Let h be an optimal differential value function for OAP-B-RP with FCFS based

scheduling of accepted orders.

1. For 0O < w < I - 1, h(w) - h(w + 1) > h(w - 1) - h(w).

2. ForO < w < l- 1, h(w -1) - h(w) > O0

112

Proof The proof is similar to the proof of Lemma 5.2.2. We arrange the order categories so that

pi < ... < P,. For 1 - p1 + 1 < w < 1 - 1, the Bellman's equation for the state (w, i) is

(5.27)

Thus, h(w- 1) = h(w) +J*+ E o ic for -pl + 1 < w < I- 1. Sincepl > 2

by assumption, h(- 2) - h(1 - 1) = h(1 - 3) - h(l - 2) and thus the lemma is true for w =

1 - 2. We now assume that the lemma is true for 1 - 2 > w > w + 1 where w' > 0. That is,

h(w) - h(w + 1) > h(w - 1) - h(w) for 1 - 2 > w > vw + 1. We show that the lemma is true for

zw, that is, h(d) - h(D + 1) > h(w - 1) - h(f). This would complete the proof for the first part

of the lemma.

For w, such that 0 < w < 1 - 2, we define the sets 1, Jw, IC,, MAw and the quantities,

AZ,,Aj, lc., AM,, as in the proof of Lemma 5.2.2. The optimality equation for state (,C + 1, j)

with j E j U C,

J* + h(+ 1,j) rj) + h(, + pj)

The optimality equation for state (1w + 1, i) with i C 7l, U Mc

J* + h(+ 1, i) = h(z) - ci

Using arguments similar to the proof of Lemma 5.2.2, we obtain the following relations

- A-zh(f) + A/,\h(W-) - Aic - E Amcm

iEI,, mEM

+ E Aj (rj + h(+ p3)) + Ak (Tk +h(+pk))

S4 k EIC,-

= A h(-) + Ac h(C - 1) - Aici - AkCkf
iE IkeIC,-

E Aj (r + h(7 + pj - 1)) +
jc J,

(5.28)

5 Am (rm + h(f + pm - 1)X5.29)
mE M

113

J* + h(i + 1)

J* + h(i)

J* + h(w, i) = h(w - 1) - ci

Subtracting (5.28) from (5.29) and using arguments similar to those used in the derivation of

equation (5.22) in the proof of Lemma 5.2.2 establishes the following relation

h(w) - h(fl + 1) > (A_, + AM,) (h(7 - 1) - h()) + (Ac, + Aj) (h(v) - h(, + 1)) (5.30)

Rearrangement of (5.30) together with the fact that A, > 0 proves the first part of the lemma.

Let 1 0, Jo, /Co, Mo be defined as in the proof of Lemma 5.2.2. Using arguments similar to

those used in the proof of the first part of the Lemma, it can be established that

J* + h(1) - A1 h(0) + AMoh(O) - E - rAcm
iElo mEMo

+ > A3 (Tr + h(pj)) +
jEJo kEKCo

Aoh() + Alcoh(0) -
iElo

+ E Aj (rj + h(pj - 1)) +
j EJo

Ak (Tk + h(k))

Aic - Akck
kE/Co

SAm (rm + h(m - 1))

mEMo

Subtracting (5.31) from (5.32) and repeating the arguments used in the proof of the first part of

the lemma,

(1 - Ajo - Ako) (h(h)) (A1 + AM0) (h(O) - h(0))

Using the above equation and the fact that Azo + AMo + AJo + Alco = 1 and Azo > 0, we conclude

that h(O) - h(1) > 0. From the first part of the lemma for 1 < w < 1 - 1, we have, h(0) - h(1) <

h(1) - h(2) < ... < h(w - 1) - h(w). Together with the fact that h(0) - h(1) > 0, this proves

the second part of the lemma. O

114

J* + -(0)

(5.31)

(5.32)

Consider some state ('', i), such that it is optimal to accept an order of category i at the state.

If ' > 0, from the optimality equation for this state, we have

ri + h(D + pI- 1) > h(f - 1) - c- (5.33)

If iv = 0, the optimality equation for this state yields the relation,

ri + h(p- - 1) 2 h(0) - c- (5.34)

Using arguments similar to the proof of Theorem 5.2.1 following the proof of Lemma (5.2.2)

together with equations (5.33) and (5.34) proves the theorem.

5.2.6 Reward and lead time quotation

In this section, we consider a problem where the decision to be made each time is to reliably quote a

reward, lead time pair for arriving orders. We assume that the orders arrive via a Bernoulli process

similar to problem OAP-B and we also assume that each arriving order can be belong to one of n

categories. As before we let C denote the set {1, ... , n} and we let C denote the set {0, 1, ... , n}.

Associated with order category i, i E C is a deterministic processing time pi and a set of ordered

pairs, A = {(r,),.. .., (r, I)}. Every element of the set Ai consists of a reward , lead time

pair which when quoted would be accepted by the customer. For an order category i, i E C, there

are ki such acceptable reward, lead time pairs. We assume that the firm can effectively reject an

arriving order of category i, i E C by quoting an appropriate reward, lead time pair that does not

belong to A., We assume without loss of generality that I) < 12 < ... < Iki for i E C. We also

assume that r 1 > r2 > --. > r. In words, this assumption means that for a particular order

category the reward to the firm from an order decreases with increasing lead time. Once an order

arrives, the firm has to decide whether to accept the order and if so the reward, lead time pair to

115

be quoted. We make the simplification that accepted orders are scheduled on a FCFS basis and

we establish a structural result on the optimal policy reward, lead time quotation policy under this

assumption.

The state of the system at time t, under FCFS scheduling of accepted orders can be represented

by xt = (wt, t) where wt is the remaining work at time t and jt is the category of the order

arriving at time t. Consider some state x --= (w, i). We observe that the set of feasible reward, lead

time pairs at state x is { (r[-, I); + pi < l; 1 T< < k}. We represent the set of feasible reward,

lead time pairs at state x = (w, i) by Ax = {7; w + pi < L }. Let I denote the highest lead time

that can be feasibly quoted for any order category. That is, I = maxiec(l~k).

We now describe the state transition structure for this problem. Suppose the state of the system

is (w, i), i E C and a reward, lead time pair of (rmu, l') E Ai is quoted. The system transitions to

the state (w + pi - 1, j) with a probability Aj for j E C. Suppose the state of the system is (w, i) ,

i E C. If the order is rejected then the system transitions to the state (w - 1, j) with a probability

Aj for j E C if w # 0. If w = 0, then the system transitions to the state (0, j) with a probability A,

for j E C.

It can be verified that the state (0, 0) satisfies the assumption in the proposition 5.1.1 and so

there is a single recurrent class for the Markov chain induced by any stationary policy. Thus

condition (1) of proposition 4.2.6 of [8] is satisfied and there exists a solution to the Bellman

equation for this problem. We now state the version of theorem 5.2.1 for this problem.

Theorem 5.2.3. 1. Suppose it is optimal to accept an order of category i at state (w, i). Then

it is optimal to quote the reward, lead time pair with the smallest feasible lead time.

2. Suppose it is optimal to accept an order of category i at state (w,). Then it is also optimal

to accept an order of category i at all states (w, i) with w < f,.

proof of 1

116

Suppose fz > 0. The optimality equation at state t = (t, i) is,

J* + h(w,i) = max{maxjA,{r - + h(C + pi - 1)}, h(- 1)} (5.35)

where h is an optimal differenal differential value function for this problem and h(w) = Enl Ayh(w, j)

and J* is the optimal expected average reward per time as usual. In the following, we define i, as

the index of the reward, lead time pair for order category i that has the smallest feasible lead time

when the remaining work is w. Hence w + pi < l if and only if ki > T > iw. Suppose it is optimal

to accept an order of category i at state (V, i), then maxTeA{ (+ h(+ P - 1) } > h(w - 1).

The reward, lead time pair that attains the maximum in maxTA, {r7 + h(w + pi - 1)} is i- since

rT < r" for all T E As due to the assumption that the reward decreases with increasing lead time.

The proof is similar when C, = 0.

proof of 2

The proof of the second part of the theorem is very similar to the proof of theorem 5.2.1. We

refer to the proof of theorem 5.2.1 frequently to avoid the repetition of arguments. Lemma 5.2.2

holds for this problem as well and we state and prove it for completeness.

Lemma 5.2.4. 1. ForO < w < l-1, h(w) - h(w + 1) > h(w - 1) - h(w).

2. ForO < w < 1- 1, h(w -1) - h(w) > O0

Proof As in the proof of Lemma 5.2.2 we arrange the order categories so that pi < ... < p,. For

1 - Pl + 1 < w < 1 - 1, the Bellman's equation for the state (w, i) is

J* + h(w, i) = h(w - 1) (5.36)

Thus, h(w - 1) = h(w) + J* for 1 - 1 > w > I - pi + 1. Since p1 > 2 by assumption,

h(l - 2) - h(l - 1) = h(l - 3) - h(l - 2) and thus the lemma is true for w = I - 2. We now

117

assume that the lemma is true for 1 - 2 > w 2 z + 1 where 't' > 0. Under this assumption, we

show that the lemma is true for ii which would complete the proof of the first part of the lemma.

For a given w such that 0 < w < I - 2, we define the sets 1, , ,,,, Mw and Az,t , ,,

Am,, as in the proof of Lemma 5.2.2. We have already shown in the first part of the theorem that

if it is optimal to accept an order of category i at state (w, i), then (rk, 1~") is the quoted reward,

lead time pair. Therefore, optimality equation for state (J, + 1, j) withj E J- tU KIC, is

J* + h(C + 1, j) = r>j + h(wv + pj)

The optimality equation for state (f + 1, i) with i cE I U .Mh4

J* + h(f + 1, i) = h(Cv)

Using arguments similar to the proof of Lemma 5.2.2, we obtain the following relation

J* + h(+ 1)

PJ+ h C)

(fv) + Am,, h (dv) + A r ji,+ + h (CV+ Pj)

c x rk.-k + h (iV*,
kEC1SA(- I) + AMIh(- 1) +) (iJ (rj + h(1 +pj - 1))Z Ak (rj"1h liJ±pk)

(5.38)SAm (rMal + h(i +z p - 1))
mECA, M

A consequence of the first part of the theorem and the assumption that the quoted reward

decreases with increasing lead time is that rQ+1 < r q for q E C. Subtracting (5.37) from (5.38)

and using arguments similar to those used in the derivation of equation (5.22) in the proof of

Lemma 5.2.2 and also using the fact r ' < rj ", j E J, and rk<'* < r w, k E C, establishes the

118

(5.37)

following relation

h(z7) - h(ft7 + 1) > (AZ f + AM) (h(u - 1) - h(fi)) + (A1 + A,,) (h(fb) - h(ib + 1)) (5.39)

Rearrangement of (5.39)and using the fact that Az, > 0, proves the first part of the lemma.

Using arguments similar to those used in the proof of the first part of the lemma, it can be

established that

= Aoh(O) + AMoh(0) +
jejo

j (r1l + h(pj)) + kECo Ak (r 1 + h(pk)) (5.40)

= Aoh(O) + A 0coh(0) + E j (ro + h(pj - 1)) +
jC Jo

E
mEMo

(5.41)

Subtracting (5.40) from (5.41) and repeating the arguments used in the proof of the first part of the

lemma,

(1 - Ao0 - Alco) (h(O) - h(1)) > (Azo + AMo) (h(O) - h(O))

Using the above equation and the fact that AXO+AMo+ Aj+Akco = 1 and Azo > 0, h(0) -h(1) > 0.

From the first part of the lemma for any 1 < w < 1 - 1, we have, h(0) - h(1) < h(1) - h(2) <

.. < h(w - 1) - h(w). Together with the fact that h(0) - h(1) > 0, this proves the second part

of the lemma.

It can be seen that the arguments in the proof of theorem 5.2.1 following the proof of Lemma

5.2.2 can be used together with the fact r '+1 < r" for 0 < 1 - p - 1 and jCC to prove the

theorem.

119

J* + h(1)

J* + h(0)

Am (ro + h(Pm - 1))

5.3 Expected Average Reward Per Time For An Autonomous

Queue With One Order Category

In Section (5.2), we established structural results for OAP-B with FCFS scheduling policy for

accepted orders. In this section we consider a MTO manufacturing firm where the orders belong to

only one category. In this case every feasible order is accepted and hence the associated queuing

system can be considered autonomous with no control. We derive an expression for the expected

average reward per time for this system. From this expression we also obtain the steady state

probability for the rejection of an order. This probability is referred to as the blocking probability

in communications literature. Besides being an interesting queuing system in its own right, the

technique we use to derive the expression for the expected average reward per time for this system

is also useful in solving a related optimization problem as we will show in the next Section.

Brun et al. [10] obtain blocking probabilities for M/D/1/k queues. Gravey et al. [26] present

closed form expressions for the steady state probabilities for remaining work for a Geo/D/1/k

system. Linwong et al. [37] present an approximation scheme for computing the buffer size for

a given blocking probability for a Geo/D/1/k system under some restrictive assumptions on the

arrival rates. The setting we consider is similar to those considered by Gravey et al. [26] and

Linwong et al. [37]. However, we have no restrictions on the arrival rate. Also, since the lead

time for the only order category can be an arbitrary integer, the queuing system that we consider

is a more general version of the Geo/D/1/k queue. Indeed when the lead time is a integral multiple

of the processing time, we have a Geo/D/1/k queue.

We recall that arrival of orders takes place at regularly spaced discrete times and follows a

Bernoulli arrival process. We let jt = 1 denote the arrival of an order at time t and we let jt = 0

denote the non-arrival of an order at time t. We let (wt, jr) denote the state of the system at

time t with w being the remaining work. Let I denote the lead time of the only order category

and p denote the deterministic processing time for executing the order. Also let r denote the

120

reward obtained from accepting an order. We let A denote the arrival rate of the orders. Since

the autonomous queue is a special case of the more general problem formulated in the previous

section, the results from the previous section hold and in particular, the expected average reward

per time is the same for all initial states. We denote this common expected average reward per time

by J. It is clear that the remaining work w only takes values between 0 and 1 - 1 included. For

states with remaining work w such that 1 - 1 > w > 1 - p + 1 all orders are rejected since they

cannot be delivered by their due date. Hence the Bellman equation for I - 1 > w > 1 - p + 1 and

for i = 0, 1 is,

J + h(w, i) = h(w - 1)

where h is a differential value function that satisfies the Bellman equation and for k = 0,..., I - 1,

h(k) = Ah(k, 1) + (1 - A)h(k, 0). For w, where 1 - 1 > w > 1 - p + 1, multiplying the above

equation by A and 1 - A for i = 0, 1 respectively and summing, we get

J + h(w) = h(w - 1) (5.42)

All orders arriving at states with 0 < w < 1 - p are accepted since they are feasible. Hence the

Bellman equation for w = 1 - p and i = 1, 0 are given by,

J + h(- p, 1) = r + h(l- 1)

and

J + h(l - p, 0) = h(l - p- 1)

respectively.

Multiplying the above equations by A and (1 - A) respectively and summing up, we get

J + h(l - p) = (1 - A)h(1 - p - 1) + A(r + h(l - 1))

121

Since J = (1 - A)J + AJ and h(l - p) = (1 - A)h(l - p) + Ah(l - p), we can rewrite the above

equation as follows,

= (1-A)J+A(J+h(1-p))-A(r+h(l- 1))

- (1 - A)J - A(r + h(l - 1) - h(l - p) - J)

S(1 -A)J-A(r-pJ)

The last equality follows from (5.42). Hence,

A(r -p J)
h(l - p - 1) - h(l - p) -- J - (pJ)

1-A (5.43)

Starting similarly from the Bellman equation and rearranging we have for all 1 < w < 1 - p,

A(r + h(w + p- 1) - h(w) - J)
h(U) - 1) - h(w) = J - (5.44)1-A

Define a function f such that h (w- 1) - h(w) = J- f(l- w) for w = 1,..., /- i. Equations (5.42)

and (5.43) together imply that f(k) = 0 for k = 1,... ,p - 1 and f(p) = '(r-pj). Substituting the

definition for f in (5.44), we have for 1 < w < 1 - p,

f(1- w) =
A(r - J + h(w + p - 1) - h(w))

1-A
A(r - J + EP-i1 (h(w + m) - h(w + m - 1))

1-A
p --1

S(r - pJ + J:IP1 f(l - w - 72))

1-A
A(r - pJ) A (Eml1 f (l - w - m))

1-A 1-A

122

(5.45)

(1 - A)(h(l - p- 1)- h(1- p))

=

For 1 < w < 1 - p - 1, the above recursive equation can be simplified as follows,

f (1- w) -- - -+
1-A 1-A

A(r - pJ) A(:pm= f(l - w - 1 - m)) A(f(l
= + +

I-A 1-A

- w - 1) - f(- w -wp))
1-A

A(f(I- w- 1) - f(1- w- p))
= f(1-w-1)+ 1-X

+ -- (1 - w -
1- A)

A
1) f(1 - w -p)

1-A

The third equation comes from (5.45). Rewriting the last equation above using a different index,

we have, for k= p+ 1,...,I - 1

1 - A)f(k- 1) A
- f (k - p)
1-A

We now derive an expression for f(k) in terms of another function g that depends only on A, k

and p. For convenience let As -

Proposition 5.3.1. For k = 1,2,...,1 - 1, f(k) = g(k)As(r - pJ), where g(k) = 0 for k =

1, . . . ,p - 1 and g(p) = 1 and g(k) = (1 + As)g(k - 1) - Ag (k - p) for all k > p.

Proof The proof of the proposition is by induction on k. From the definition of g and f and (5.43),

the validity of the proposition is clear for k = 1, .. ., p.

f(p + 1) = (1 + As)f(p) - Asf (1)

= (1 + A)A (r - pJ)

= g(p+1)As(r - pJ)

where the first equality follows from equation (5.46). The last equality follows from the fact that

by definition, g(p + 1) = (1 + A,)g(p) - Ag(1) = (1 + A,). This proves the proposition for

123

f(k) = 1 + (5.46)

A(r-pJ) A (f(1- w - p) - f(I - w - p) + EP-11_ f(I- w - m))

(I

k = p + 1. Suppose the proposition is true for 1,..., k - 1 where k - 1 > p

f(k) = (1 + As)f(k - 1) - Af (k - p)

= (1 + A)g(k - 1)As(r - pJ) - Asg(k - p)As(r - pJ)

= ((1 + As)g(k - 1) - Ag(k - p)) As(r - pJ)

= g(k)A(r - pJ)

The first equation is just (5.46) expressed using A~. The second equality comes from assump-

tion that the proposition is valid for k - 1 and k - p and the last equality comes from the definition

of g(k) for k > p. OI

The following proposition gives a closed form expression for the function g.

Proposition 5.3.2. Let g(k) = O for k = 1,...,p - 1, g(p) = 1 and for k > p, g(k) = (1 +

A,)g(k - 1) - Asg(k - p). Then g(k) is given by the following expression

g(k)= (1
j=1

_1)j-1 (k - p + j
j-1

- 1)Ai '(1 + A)k - j p

Proof The proof of the proposition is by induction on k. From the definition of g we see that

g(p + 1) = (1 + A8)g(p) - A,g(1)

= (1 + As)

The last equality comes from the fact that g(p) = 1 and g(1) = 0 by definition. This is the same

as the expression for g(p + 1) in the proposition and thus the proposition is true for k = p + 1.

124

Suppose that the proposition is valid for k = 1,..., v where v > p + 1. Then by definition,

= (1 + A1)g(v) - Ag(v + 1 - p)

L/J

j=1 j-

- 1AsP (- 1 -p-jp+j- 1 A)v

j=1

LVi
S(v - j p + j

=(1)i-1 (v J 1
j=1

LV+ i_+

j=1

LVJ

= (1 + A)v+'-P + Z(-1
j=2

LV+1-P+1

-
j=2

- P-jp + j - 1 +-p-p

(v - jp +j- . -1(1 - ,)V+-JP

j(1 + A)

(1)j-2 v + 1 - j p + j -- 2 2) I + s)v+ l- j

(1 + A)v+I--1 v - j + As)+I-p
j=2

L+-j+v+I-jp j-2
+ E (-1) V+ jP+j-2 /j-l(1 +-As) v + l - j p

j=2
2) (5.47)

The second equation comes from the assumption that the proposition is true for k = v and k =

v - p. The fourth equality is just the third equality rewritten using a different summation index for

the second summation. Suppose v + 1 is not a multiple of p. Then [J = [v+- PJ + 1 = [v Lp p p

125

g(v + 1)

Equation (5.47) can be written as

L'J
S(1 -" As) v l-p + E (_1)j1

j=2 ((V- j1 +l i - (

S.-i I T
- p1 + s)v+-j

j -2 - j A1)) ±

- (1 + As)v + -" E(
j=2

1)J-1 (v + 1-jp+j-

j-1
1)A-1 (1 + As) v+ l-jp

V+,v+
- , (-1)J

j=1

1-jp+j-
j-1

The second equality comes from the fact that (ck1) + (-1) = (). This proves the proposition for

the case when v + 1 is not a multiple of p. Suppose v + 1 is a multiple of p. Then [EJ = LVlPi =P . p

[+ '] - 1. In this case (5.47)p - can be written as

LP+,]-1
+ ()

-= (1 + As)v+ - p

+(_1) L- -

= (1 + AXs) v+" l-p

j-1jpl

j-1) 1 k

Iv /1 v+ v1 - 2) v+:
vl- v+lpv+lJ v+

[v+ 2 As

+

j+1

j=2

(1 (V

p -2
Iv+l] -

P I±1I11

= (1 + As) "+i-p +

+ 1 - jp+ j -
j-1

+ 1 -jp +j -
j-1

j -2
)A,-'(1 + A,)v + '-jp

(1 -+ A) v+ -l p

SA-1 (1 + As) v+ 1- j p

1) <-1(1 + As)Vl-jp

[j-1 [L i 1-+ AS

+1- jp+j-

j-1
A-1 (1 + A)Vl-jP

The second equality comes from the identity (-11) + (j)The second equality comes from the identity (Ckl) + (G-1) = (') and from the fact thatk-\jcluIV11LI/I~ IQ

v + 1 = []p, since v + 1 is a multiple of p. This completes the proof of the proposition.p

126

g(v + 1)

1s -1(1 + As) v+ ' - jp

g(v + 1)

p

_+ (_1) [- -

I. P
(-1)- V

j=2-

Starting with the Bellman equation for w = 0 and rearranging like (5.44) and defining f(1) =

(1 + As)f(1 - 1) - As f(1 - p), we have,

h(O) - h(O) = J- f(1)

J = f(1) (5.48)

Using (5.48) and proposition (5.3.1), we have

J g= (1)As(r - pJ)

Gathering terms involving J in the above equation, we obtain the following expression for J

g(1), r
1 + g(l)Ap

g(l)Ar
(5.49)

1 - A + g(1)Ap

It is worthwhile examining the above expression. We note that Ar is the expected average

reward per time in the case that all arriving orders are accepted. The term _A1)p can be inter-

preted as the steady state fraction of the orders that are accepted. We make this interpretation con-

crete as follows. Let O(w, i) be the stationary steady state probabilities associated with state (w, i)

and let O(w) = O(w, 1) +O(w, 0). In words, O(w) can be interpreted as the long term fraction of the

time that the system spends in states with remaining work w. We note that J = (E 1-P O(j))Ar.

Comparing this expression with 5.49, we see that (P 0(j)) = g(l) Thus g(l) is
Ej=O 1-A+g(l)Ap" 1-A+g(l)Ap

the fraction of the time that the systems spends in states where an arriving order is feasible. Since

an arriving order is always accepted, this is also the steady state fraction of the orders that are

accepted.

We note that for a given set of parameters A, 1 and p, J is a linear function of r. In other words,

127

J is a constant. Also for a given set of parameters p, I and r, J is an increasing function of A as

one would expect. However 2 is not linear.

5.4 Static policies

As noted before, the size of the state space for OAP-B (Problem 4.5) renders the use of dynamic

programming algorithms like value iteration and policy iteration impractical. In this section we

consider approximations to the optimal policy for OAP-B from a special class of policies called

the static policies. We define a static policy as a vector of probabilities, with one element for

each order category such that every feasible order belonging to that category is accepted with the

corresponding probability. In this section we consider the problem of finding the optimal policy

among the class of static policies. We first develop a simple algorithm for finding the optimal static

policy for OAP-B for the special case when the lead time and the processing time is the same for

all the order categories. We then study the problem of finding the optimal static policy for OAP-B

with the assumption that the accepted orders are scheduled using a FCFS based scheduling policy.

Static policies are appealing because of their inherent simplicity in implementation. Finding the

optimal static policy has been investigated in areas like admission control to queues (see Stidham

[48]), allocation of customers to servers (see Combe et al. [14]). In a make-to-order manufacturing

context, Gallien et al. [24] investigate the performance of a class of static policies that accept

any feasible order if and only if it belongs to a policy specific subset of the order categories.

From limited computational studies, they find the performance of the optimal policy of this class

competitive with more complicated heuristics. The static policies we consider are randomized

policies and include the class of static policies investigated by Gallien et al. [24]. We now

formally define the optimal static policy selection problem.

128

5.4.1 Optimal static policy selection problem

We define a static policy p via a vector F, = {,.. , 7} of probabilities which specifies the

probabilities with which an arriving feasible order belonging to category i is accepted for i E C.

Consider a queuing system following the static policy p. Every feasible order belonging to order

category i is accepted with a probability 7 regardless of the history of the arrival process and

control actions taken before. The expected average reward per time using a static policy p is equal

to the expected average reward per time from accepting all feasible orders with an arrival rate of

Aji' for the order category i. Thus choosing the optimal static policy is equivalent to choosing

the optimal arrival rates yi,..., y, for the various order categories. We note that a static policy

is a special randomized stationary policy. Using arguments similar to those presented in Section

(5.2.3), it can be established that under any stationary randomized policy there is a single recurrent

class and hence the expected average reward per time is the same starting from all states. Let

J(yl,... ,y) be the expected average reward per time corresponding to accepting all feasible

orders where the arrival rates are yl,..., yn. We would like to choose a static policy that has the

best expected average reward per time. This can be posed formally as the following optimization

problem

maxy, J., , i (5, Yn)

s.t

0 <yj i < , iC (5.50)

129

5.5 Optimal static policy for the special case of equal process-

ing times and lead times for various order categories

In this section we consider the problem of finding the optimal static policy for the class of order

acceptance problems where there are multiple order categories that are differentiated only with

respect to their reward. This would be the case when a firm offers essentially the same product to

various customer categories for different prices. We let ri denote the reward per order of category

i. We let p denote the deterministic processing time needed for any order regardless of the order

category . We also let 1 denote the common lead time for all order categories. Let y, ... , y

denote the arrival rates for the order categories 1,. .. , n. respectively. We first obtain an expression

for J(yl, ... , y,) which as defined in (5.4.1) is the expected average reward per time for the policy

of accepting all feasible orders with arrival rates (Yi, . . ., y,). As before, let jt denote the category

of the order arriving at time t with jt = 0 indicating the non arrival of an order at that time. Let

(wt, jt) denote the state of the system at time t. Starting from the Bellman's equation for state

(w, i) for 1 - 1 > w > 1 - p + 1 and for i E C and using similar arguments as in section (5.3)

we see that (5.42) holds good for the class of problems under consideration in this section as well

with h(w) = --U0 yih(w, i). Using arguments similar to those used to derive (5.43) and (5.44) of

Section 5.3, we can derive the following equations

h(1 - p - 1) - h(l - p) = J - (r pJ) (5.51)
1 - Ei1 Yi

n1 Yi(i + h(w + p 1) - h(w) - J)h(w - 1) - h(w) = J - i1 y(r + h(+ p 1) (w) (5.52)1 - nY

We now define f such that h(w - 1) - h(w) = J - f(1 - w) for w = 1,...,I- 1. Starting

130

with (5.52) and simplifying as in section 5.3, we have for 1 < w < 1 - p,

C n (ri -J
f(l -) 1j(

l- Z +yi

n p- 1 f(l - w -))

1- ZI Yi

For 1 < w < 1 - p - 1, the above recursive equation can be simplified to,

+ f(1
= Yi

(5.53)

Rewriting the last equation above using a different index, we have, for k = p + 1, ... , 1 - 1

f(k) = (1 i= Yi f (k - p)1 - Ei= Yi

Starting with the Bellman equation for w = 0 and rearranging like (5.52) and defining f(1) =

1 ") f(1 -
i=1 Yi

1)- _(f(l - p), we have,
E-)-2 = (1

h(O) - h(O) = J- f(l)

J = f(1) (5.56)

Using proposition 5.3.2 with As -= Y and (5.56), we establish the following expression
1for J(y, , y

for J(yl, . .. , Yn)

J(1) Ii=1 yiri
, . .. , 1 - E, yi g(1)p Enl, yi

(5.57)

5.5.1 Structure of the Optimal Static Policy

We now state a property of the optimal static policy for OAP-B with equal processing times and

lead times for all order categories. We later exploit this property to formulate an algorithm for

finding the optimal static policy.

131

(5.54)

(5.55)

-i- Yi) f(l- W - p)-- W -1) -- 1 -E i=l Yi

+ 1 Yi
I -ye

Lemma 5.5.1. There exists a set of arrival rates y, . . . , y* that is an optimal solution to (5.50)

such that yi = Ai for i < v and y = 0 for i > v for some v E {2 ... , n}

Proof The feasible set of the optimization problem (5.50) is closed and bounded. From the ex-

pression for J(yl,..., y,) given by (5.57) it is clear that J(yl,..., y,) is a continuous function

for all feasible y = (yl,...y,,) and hence there exists an optimal solution to (5.50). Consider

an optimal solution y = (y1,... ,,) to (5.50) and let J(yl, . . . ,) = J. Consider the following

optimization problem.

maxy,,.,,, J(y , . . . y)

s.t

0 <yi A,ieC

yE = (5.58)
i= 1 i=1

We observe that for a given I and p, the function g depends only on C i=y. Since Ei= yi

is the same for all feasible solutions (y', . . ., y,) of (5.58) it is clear from (5.57) that the objective

function of (5.58) is linear. Assume without loss of generality that rl > r 2 > - > r,. Given

the nature of the constraints, it is clear that there is an optimal solution y* = (y, ... , y) to

(5.58) that has the form y* = A., for i = 1,...,v - 1, y* = 1 mi - , y = 0

for some v E {2,..., n}. Note that y* has the form specified in the proposition and the proof

of the proposition would be complete if we show that y* is an optimal solution to (5.50). Let

J(y*,..., y*) = J *. It is clear that any feasible solution to (5.58) is a feasible solution to (5.50).

Hence y* is a feasible solution to (5.50) and so J* < J. It can be verified that y is a feasible

solution to (5.58) and so J* > J, since y* is an optimal solution to (5.58). Hence J* = J and so

y* is an optimal solution to (5.50).

132

5.5.2 Algorithm for finding the optimal static policy

From the characterization of the optimal static policy in the above section, it is clear that if v in

Lemma (5.5.1) is known then (5.50) reduces to a one-dimensional optimization problem. Let yV be

the optimal solution to (5.50) with the additional constraints yi = A1, ... , yv-, = Av-1 and yv+l =

Y,+2 =,.. . , Yn = 0 for v = 2,..., n. It is clear from Lemma (5.5.1) that argmax J(yV) is
yV E{y 2 ,...,yn}

an optimal solution to (5.50). Thus finding the optimal static stationary policy is equivalent to

solving n one dimensional problems. We now formally state the algorithm for finding the optimal

static policy. We assume the existence of an algorithm that finds the global maximum of an one-

dimensional optimization problem with a bounded feasible region.

1. v = 2;

2. y= argmax J(A1,...,A, 1iy, 0,...,0); yV = (Al,...,/ v-1, 0,...,0);

3. v=v +1;

4. if v = n return argmax J(y') otherwise goto 2
y'iE{y 2 ,...,yn}

5.6 Optimal Static Policy for OAP-B with FCFS based schedul-

ing policy

In this section we assume a FCFS based scheduling policy for accepted orders for OAP-B (Problem

4.5) and investigate the problem of finding an optimal static policy under this assumption. We note

that even if we are to find the optimal static policy under the assumption of FCFS based scheduling

of accepted orders, we cannot expect the average reward from such a policy to be higher than

the expected average reward for an optimal order acceptance policy based on FCFS scheduling of

accepted orders. However, it is still worth investigating finding the optimal static order acceptance

policy under a FCFS based scheduling policy because it is particularly simple to execute. Further,

133

Gallien et al. [24] report that the computational performance of the optimal static policy for OAP-

P (Problem 4.3) is comparable to more sophisticated heuristics. Gallien et al. [24] relied on

simulations for finding the optimal static policy for OAP-P and this approach is not scalable for

problems with a large number of order categories. We show in Chapter 6 that an appropriately

defined problem of type OAP-B can be used to approximate the problem OAP-P and hence any

static policy defined for the problem OAP-B can be used appropriately for problem OAP-P. The

approach we take is to find the gradient of J(yi,... , y,) for problem (5.50) and use gradient based

techniques for continuous optimization to find a local maxima in the space of static policies.

5.6.1 Gradient ascent

In this section we investigate finding the gradient of the expected average reward per time with

respect to the arrival rates for OAP-B with FCFS based scheduling of accepted orders. For a given

set of arrival rates (yi,..., y) we seek, aJ(y"". . . , i E C. Since the arrival rates equivalently"yi

define a static policy, the gradient VJ = (&JY ') . .. , ...)) iS also the policy gradient.

Without loss of generality we assume that 11 = maxzicli. We define Ak to be the set of order

categories which are feasible when the remaining work is k and Bk to be the set of order categories

such that k - pi + 1 > 0 for i E Bk when the remaining work is k. Using arguments similar to

Section (5.2.3) it can be established that the Markov chain induced by any stationary policy has a

single recurrent class and is aperiodic and hence there exist a unique set of stationary probabilities

associated with any randomized stationary policy. A static policy is a randomized stationary policy

and hence has a unique set of associated probabilities. We note that J(yl,. .. , y,) can be defined

by the following equation

134

S.t

o(k)

0(0)

11-1

0(k)=
k=O

n li -Pi

i=1 j=0

- (1- yi)(k + 1)+ yi(k - pi +1),k = 1-2,...,1
iEAk+1 iEBk

- (1-)()+(-- yi)i)(O) + yi(1 - pi)
iEA1 iEAo iEBo

= 1 (5.59)

Here O(k) is the steady state probability that the remaining work in the system is k for k =

0, 1,...,11 - 1.

The above equations show the relationship of J(yl, ... , yn) to a given set of arrival rates when

all feasible orders are accepted. To get the partial derivative of J(yl,. .. , y,) with respect to one of

the arrival rates, we only have to differentiate the above set of equations with respect to that arrival

rate. For example, J(yl"...,-") is given by

135

s.t

00(k)

dy'

00(0)
Oyi

n ii -pi I-p

Z r = Z 00(j) +,
i=1 j=0 j=()

= (1- yi) (k+ 1) -I' (k+ 1)
icAk+l

+ Y -- (k - 1) + IBkO(k - pi +
iEBk

(1- y) I0(1) + (1

00(1 pi) IAo(1 -pl)

+ 0Bo YiiEBo

1),k = 11 - 2,...,1

0(0)
y) -Io (0)

(5.60)

In the above equations, Ifk is an indicator variable defined to be 1 if 1 E Ak and is defined to be

0 if 1 ' Ak. Similarly Bk = 1 if 1 E Bk and is defined to be 0 if I Bk. If (5.59) can be written as

AO = b, where A, 0 and b are appropriate matrices, we note from the definition of (5.60) that it can

be written as AO = b where b is an appropriate vector. We have shown that there exists a unique

set of steady state probabilities and hence A is invertible. Hence there exist a unique solution to

equation (5.60). Thus finding "'")... involves solving a set of linear equations. Hence finding

the gradient of J(yl,..., y,) involves solving n linear equations each with 11 variables.

Since the gradient of the objective function of (5.50) can be obtained for a given vector of arrival

rates as shown above, we can use any of the gradient based techniques for continuous optimization

which guarantee convergence to a stationary point. It should be noted that the vector of arrival

rates to which any gradient based technique converges need not be an optimal solution to (5.50).

136

1-1=0 (k)
k=0

Chapter 6

Heuristics and simulations

In this chapter we describe heuristics for OAP-P (Problem 4.3) based on the results in Chapter 5.

We then evaluate these heuristics using numerical simulations.

6.1 Family of discrete space problems

We note that OAP-P is a discrete time general state space problem. Our approach is to approximate

this problem by a discrete time discrete state space problem, OAP-B (Problem 4.5) with appropri-

ately chosen parameters. Given a problem of type OAP-P , we describe a family of problems D k ,

k = 1, 2,... of type OAP-B each of which can be considered an approximation to OAP-P at a

different scale.

Let AX, fi, pi and 1- represent the arrival rate, reward, processing time and the lead time respec-

tively for an order belonging to category i E { 1,..., n} for a given problem of type OAP-P. We

let A = E- , X, and we define the set C = {1, ... , r} as before. For a given k E {1, 2,... } we let

the problem Dk have n order categories as well with A, r', pk and l' representing the arrival rate,

reward, processing time and the lead time respectively for an order belonging to category i E C.

We define Ak = -, Ak. Thus Ak is the arrival rate for the combined order arrival process for

137

problem Dk. We let rk = i, p f = kpi, l = k-i and Ak = 1 - e-. We also let A = "Ak. This

completely specifies all the parameters for problem Dk.

We now present an interpretation of the arrival process and the parameters for the problem

Dk in terms of the Poisson arrival process and the parameters of the problem (Problem 4.3). A

particular realization of the order arrivals for the problem OAP-P can be represented by an infinite

sequence whose elements are ordered pairs representing the time of arrival and the order category

respectively of order arrivals. For example, the sequence corresponding to a specific realization of

order arrivals may begin as follows {(1.2, 1), (2.1, 2), (2.3, 1), (3.2, 3), (3.8, 1),... }. For a given

natural number k, consider a random process (k constructed out of the Poisson arrival process

for problem OAP-P by retaining only the first order arriving in the half open interval [m-, L) for

rn E { 1, 2, ... } and pushing the time of the arrival of the order to the beginning of the interval. For

example with k = 2, the realization of order arrivals in the process (k corresponding to the order ar-

rival sequence for the Poisson process given above begins as follows {(1, 1), (2, 2), (3, 3), (3.5, 1)}.

By construction (k is a discrete time process and the probability of an order arrival at times '-1

form E {1, 2,... } is equal to the probability that at least one order arrives in an interval [-l , ~)

in the original process and is equal to 1 - e k. Given that an order has arrived at time - in the

(k process, the probability that the order belongs to category i E C is . Further, the probability

of an order arrival at time 1 is independent of the order arrivals at other times and hence (k is

a Bernoulli process. From the definition of the parameters for problem Dk, it can be seen that (k

is the order arrival process for the problem Dk. The processing times and the lead times for vari-

ous order categories for problem Dk are just the corresponding parameters for the original OAP-P

expressed in time units of i. Hence we can interpret Dk as a discrete space approximation to the

original problem at time scale -. It can be seen that the process Ck converges to the original Poisson

process as k -+ oc, and hence it can be expected that Dk approximates the original problem more

accurately with increasing k.

138

6.2 Heuristics based on solution to Dk

In this section we describe two heuristics, which are based on a complete solution to the OAP-B,

Dk using usual dynamic programming methods under the additional assumption of FCFS based

scheduling of accepted orders. The state at time t for problem Dk with FCFS based scheduling of

accepted orders is (wt, Jt) (see Section 5.2) where wt is the remaining work at time t and jt is the

category of the order arrival at time t. The remaining work for problem Dk takes a value between

0 and Ik - 1 where 1 = maxiec 1i and there are n + 1 states for a particular value of remaining

work. Thus, for a given k, the size of the state space for the problem Dk under the assumption

of FCFS based scheduling of accepted orders is (n + 1)(lk). In both the heuristics a value k is

chosen so that the resulting problem Dk can be completely solved under the assumption of FCFS

based scheduling of accepted orders and an optimal differential value function for the associated

bellman equation is obtained. Let hk : Sk i-4 R denote an optimal differential value function for

the problem D k under the assumption of FCFS based scheduling of accepted orders. and let Sk

denote the state space of problem Dk with FCFS based scheduling of accepted orders.

We recall from Chapter 4 that the queue for OAP-P (4.3) can be described at time t, by xq(t) =

{(')..., (4 (t) (t))} where there are z(t) orders in the queue at time t and for order a =

1,... z(t), (ua, vt) represent the remaining processing time for the ath order and the time left

before the at h order is due respectively. We assume in this section that (4, vI) are expressed in

units of g. The state of the system at time t is given by x(t) = {(xq(t), j(t))}, where j(t) is

the category of the order arriving at time t. We also recall that Xq is the set of all states that the

queue can be in and X is the state space for the system. We let w(xq(t)) = z t, represent the

remaining work for a given state xq(t) of the queue.

We now describe an order acceptance policy for the original problem, for a given stationary

order scheduling policy 0 using the optimal differential value function hk. For i = 0,..., n, we

define the function hk as follows

139

-k k(w,) ,w=O,..., k_

(lk, i) = h(k -1,i)

We let the order acceptance policy pt be defined as

n n

t(X) 1, if r, -Z +< i h([)iJj) + Ajk(>) (6.1)
j=0 j=0

k() = 0, otherwise (6.2)

for states x = (x, i) E X where accepting an order is feasible given the scheduling policy

0. Here, the action 1 represents accepting the arriving order and action 0 represents reject-

ing the arriving order. An interpretation of the above equation is that we are using the term

h=oA ([w(xq)],) - 0 \hk(lw(Xq) + pk, j) as an approximation to expected loss in

profit due to the acceptance of an order of category i at state x. Thus, for every stationary schedul-

ing policy q, the optimal differential value function for the problem Dk with FCFS based schedul-

ing of accepted orders can be used to generate an order acceptance policy.

6.2.1 FCFS-Threshold

The heuristic FCFS-Threshold uses order acceptance policy generated using hk and equations

(6.1) and (6.2) together with FCFS based scheduling policy for accepted orders. Let r represent

the policy of FCFS based scheduling of accepted orders. The FCFS-Threshold order acceptance

policy can be written using the notation established above as pp. From Lemma (5.2.2) and the

equations (6.1) and (6.2), it can be seen that the FCFS-Threshold heuristic has order category

dependent thresholds, (w1, ... , wn) such that it is optimal to reject an order from category i if

140

w(x q) > wi. Thus, an implementation of the FCFS-Threshold requires only the storage of the

thresholds (wl, . . ., w,).

6.2.2 FCFS-ValueFunction

The heuristic FCFS-ValueFunction uses order acceptance policy generated using hk and equations

(6.1) and (6.2) together with EDD based scheduling policy for accepted orders. Let b denote the

policy of EDD based scheduling of accepted orders. The FCFS-ValueFunction order acceptance

heuristic is given by ,p. From Lemma (5.2.2) and the equations (6.1) and (6.2), it can be seen that

the FCFS-ValueFunction heuristic has order category dependent thresholds, (wl,... , w,) such

that it is optimal to reject an order from category i if w(x q) > wi. Thus the implementation of

FCFS-ValueFunction also requires only the storage of the thresholds (wl, .. -, w,). However, these

thresholds could be different from the thresholds corresponding to the FCFS-Threshold heuristic.

Since the heuristics FCFS-Threshold and FCFS-ValueFunction differ only in the policy used

for scheduling accepted orders, FCFS-ValueFunction can be expected to perform better than FCFS-

Threshold. However, it may be noted that the performance of FCFS-Threshold remains the same

in the presence of costs for resuming orders where as the performance of FCFS-ValueFunction

would decrease in the presence of costs for resuming orders. Hence it is interesting to numerically

compute the performance loss due to FCFS scheduling of accepted orders.

6.3 Static Policies

6.3.1 FCFS-Static

FCFS-Static heuristic constructs an approximation to the optimal policy from the class of static

policies. We choose a k such that it is possible to numerically solve for the set of stationary

probabilities associated with any static policy for the problem Dk under the assumption of FCFS

141

based Scheduling of accepted orders. As mentioned in Section (5.6.1), we can follow a gradient

ascent approach to obtain a local maxima in the space of static policies. FCFS-Static uses the

static policy corresponding to the local maxima as the order acceptance policy and FCFS based

scheduling of accepted orders.

6.3.2 EDD-Static

The EDD-Static heuristic uses the same stationary order acceptance probabilities as FCFS-Static

but uses a EDD-based scheduling policy for accepted orders.

6.4 Numerical experiments

In this section, we describe the numerical experiments done to evaluate the performance of the pro-

posed heuristics. We first describe the implementation details of the heuristics in Section (6.4.1).

We then describe the numerical experiments conducted to compare the performance of various

heuristics in section (6.4.2). In Section (6.5), we compare the performance of FCFS-Threshold

heuristic for various values of k. Finally, in Section (6.6), we describe numerical experiments de-

signed to investigate the sub-optimality of using the FCFS based scheduling policy for accepted

orders.

6.4.1 Implementation details

For all the experiments we used relative value iteration algorithm [5] for obtaining hk. We used

800 iterations of this algorithm starting with a vector of zeros of appropriate size for all problems.

The number of iterations was sufficient for all the problems investigated in this work. In general,

for all the problems investigated, the performance of the heuristics developed in this chapter did

not vary much for different values of k. We fix k = 3 in all the subsequent experiments except

142

for those in Section (6.5) where we compare the performance of FCFS-Threshold for two different

values of k.

For the FCFS-Static heuristic, we used a gradient ascent algorithm for finding the local maxima

in the space of static policies. Formally, let y(m) = (y1(m),. . . , yn(m)) be the vector of arrival

rates after m iterations of the algorithm. Let VJ(y(m)) be the gradient of the expected average

reward per time and let I.11 represent the Euclidean norm. We note that if IIVJ(y(m))|I = 0, then

the algorithm has reached a stationary point and it stops. Otherwise, we define the next iterate

through the following equation. For j = 1, ... n

a(m) 8J(y(m)) I}b3(m + 1) = min{yj(m) + , V(n)) J(y(m))
| VJ(y(m)) |yj(m)

yj(m+l1) = max{by(m+1),0}

An interpretation for the above equation is that the algorithm takes a step of a(m) in the direc-

tion of the normalized gradient VJ(y(m)) and projects the resulting point back into the feasible

region. In our experiments we used step size of the form a(m) = a with a = 0.1, b = 0.1.

This choice of step size results in E =1, a(m) = oc and ,=1 a(m)2 < oc. It was observed that

the convergence was rapid and to the same solution regardless of the starting point y(l). We used

1000 iterations of the gradient ascent algorithm for all the problems.

6.4.2 Comparison of heuristics

For the simulation results presented in this section, the methodology adopted is similar to the

methodology of Gallien et al. [24]. In this section, we define 1i - pi = si as the slack time for an

order category i and ai = as its profit rate. Similar to Gallien et al, we define load as E-= 1 Aipi.

Thus the load is an indicator of the demand for the services of a MTO manufacturing firm. A

simulation consists of a warm up period of 50 order arrivals and then a data collection period of

143

200 order arrivals. For each simulation, the average reward per simulation for a heuristic is the

cumulative reward for the heuristic for the simulation divided by the simulation time at the 2 0 0 th

order arrival. We conduct 30 such simulation runs and the results reported are the average over

these 30 simulation runs of the average reward per simulation.

We compare the performance of the heuristics described in this Chapter with the policy of

accepting all feasible orders and using an EDD based scheduling policy for accepted orders. Fol-

lowing Gallien et al., we call this heuristic as the myopic heuristic. Where appropriate, we also

compare the performance of the heuristics developed in this Chapter with the Fluid heuristic de-

veloped by Gallien et al.

Problem 1

We present a comparison of the performance of the heuristics FCFS-Threshold, FCFS-ValueFunction,

FCFS-Static, EDD-Static and the myopic policy for the problem studied by Gallien et al. [24]. We

describe the problem again here for convenience. The processing time of an order belongs to

the set {1, 2,..., 10}. The slack time of an order belongs to the set {5, 10} and the profit rate

for an order belongs to the set {0.7, 1.0}. We define order categories with the triple of process-

ing time, slack time and profit rate taking every possible combination of values from the sets

{1, 2,..., 10} and {5, 10} and {0.7, 1.0}. Thus there are 40 order categories. The arrival rates for

the order categories are defined so that P(pi = p) c<x , P ((i = 5, dc = 0. 7) pi = p) = 0.125,

P ((§i = 10, 9, = 0.7) [i = p) = 0.375, P ((,si = 5, &i = 1) i = p) = 0.375, P ((§i = 10, Oi = 1)U, = p) =

0.125 for all p E {1,..., 10}. Together with a specific value for load, the above equations define a

unique set of arrival rates.

Figure (6-1) compares the performance of the heuristics based on EDD-based scheduling of

accepted orders namely FCFS-ValueFunction and EDD-Static with the myopic policy for various

loads. The FCFS-ValueFunction performs well over all loads. For low loads, the myopic policy is

near optimal and the gain in performance by using the FCFS-ValueFunction heuristic is not much.

144

However, for higher loads, FCFS-ValueFunction heuristic significantly outperforms the myopic

heuristic. For intermediate and high loads, the EDD-Static significantly outperforms the myopic

policy.

1I0
......

0.9 -

0.7-

CU 0.6 -

Figure 6 C iEDD-Static

0 ,e... v myopic
0 FCFS-ValueFunction

0.4
0.5 1 1.5 2 2.5

Load

Figure 6-1: Comparison of EDD-based heuristics for various loads

Figure (6-2) compares the performance of the heuristics based on FCFS scheduling of accepted

orders namely FCFS-Threshold and FCFS-Static with the myopic policy for various loads. It is

interesting to note that the performance of these heuristics is very close to the performance of their

counterparts based on EDD-based scheduling of accepted orders. Thus the loss of optimality by

using the FCFS based scheduling policy is limited for this problem. We investigate the loss of

optimality of using the FCFS based scheduling policy for accepted orders in more detail in a later

section.

We now study the effect of varying the profit rates. We define order categories with the triple

of processing time, slack time and profit rate taking every possible combination of values from the

sets {1,2,...,10} and {5, 10} and {&in, 1.0}. The arrival rates for the order categories are as

defined before with the load set at 1.5. Figure (6-3) compares the performance of the heuristics

FCFS-ValueFunction and EDD-Static with the myopic policy for various values of min,. The

145

0.9

0 .8 ,

0.7

0.o6-

+. myopic
0.5- -.' ,A FCFS-Static

.. 13- FCFS-Threshold

0.
0.5 1 15 2 2.5

Load

Figure 6-2: Comparison of FCFS-based heuristics for various loads

FCFS-ValueFunction heuristic significantly outperforms the myopic policy for low values of d-i.

while its performance is the same as that of the myopic policy for higher values of ui. The

EDD-Static policy also outperforms the myopic policy at low values of cmin.

Figure (6-4) compares the performance of the heuristics that use FCFS based scheduling of

accepted orders namely, FCFS-Threshold and FCFS-Static with the myopic policy. Again, their

performance is close to the performance of their counterparts based on EDD-based scheduling of

accepted orders.

Problem 2

For the next set of experiments, we let the processing time of an order belong to the set { 1, 2, ... , 8}.

The slack time of an order belongs to the set {12, 16}. We define order categories with the process-

ing time, slack time pair taking every possible combination of values from the sets {1, 2,..., 8}

and { 12, 16}. Thus there are 16 order categories. For convenience, let Pmax = maxj fPj and let

P,mi = minj pj. For an order category i with processing time pi and slack time 9i, we fix &, as

146

0.95

E
0.9

S0 85

0.
.... + myopic

O FCFS-ValueFunction
0.7 .. 4 EDD-Static

0. I I

0.5 0.6 0.7 0.8 0.9
0

mi n

Figure 6-3: Comparison of various EDD-based heuristics for various Umin

follows,

i = 2 - a Pi Pin
Pmax - P1min

The parameter , captures the discount that the firm may offer to orders that require longer

processing time. We let r, = 0.5. We assume that all customers prefer shorter lead times and b is

a parameter that models the discount offered to the customers for accepting higher lead times. We

let Oi = 0 if g = 12 and we let Oi = 0.3 if 9i = 16.

We first study the performance of the heuristics for various loads. We let Ai = al, for pi =

1, 2, 3, 4 and Ai = a2, for pi = 5, 6, 7, 8. We let a, = 2a2. Together with the definition of load,

this provides a unique set of arrival rates for a given load. We compare the performance of FCFS-

Threshold, FCFS-ValueFunction, the myopic policy and the Fluid heuristic. Figure (6-5) shows

the performance of the heuristics with varying load. The FCFS-ValueFunction and the FCFS-

Threshold heuristics outperform the Fluid heuristic at higher loads. The performance gap between

the FCFS-ValueFunction and the FCFS-Threshold heuristics is small for this problem as well.

We let a,,x = maxi Oi. We study the effect of the parameter /max on the performance of the

heuristics. The parameter Oi models the value that the customers place for a given lead time. We

147

0.95-

S0.9-

0.85- A

0.8-

.', FCFS-Threshold

0.75 ... myopic
..... FCFS-Static

0.
0.5 0.6 0.7 0.8 0.9

Figure 6-4: Comparison of FCFS-based heuristics for various -min

let = 0 if s = 12 and 4~ - ,,,ax for 9i = 16. For these experiments, the load is fixed at

1.5 and the parameterK -- 0. The value of I is set to 0 so that the variation in the profit rates

of different orders is solely due to the discount offered for accepting higher lead times. All the

other parameters are chosen as before. Figure (6-6) shows the performance of the heuristics for

various ,,,ax. The performance of the FCFS-ValueFunction, FCFS-Threshold and Fluid heuristics

is nearly the same for this problem. For a high value of ,m,, the performance of these heuristics

is significantly better than the performance of the myopic policy.

In the last set of experiments for this problem, we study the effect of varying slack time on the

performance of the heuristics. We define order categories with a processing time, slack time pair

taking every possible combination of values from the sets { 1, 2,.. .. 8} and {min, 4 + min}. We

fix the load at 1.5 and we choose , = 0.5 and we let $i = 0 if §j = §min and we let 4/ = 0.3 if

Si = ,minj + 4. Figure (6-7) presents a comparison of the heuristics for various smin. The FCFS-

ValueFunction outperforms the Fluid heuristic for all values of si. The Fluid heuristic under

performs particularly at low values of -min. This is explained by the fact that the Fluid heuristic

is based on a deterministic fluid approximation of arriving orders and this approximation is less

148

1.7 .

1.6 -

1 .5 C ". "".. ' ?. (.: ' " ' ' '

E
1.4

1.3 -

1.2-

(D+... myopic
Fluid

0.9 - ,. I' FCFS-Threshold
S0O FCFS-ValueFunction

0.8i '

0.7
0.5 1 1.5 2 2.5

Load

Figure 6-5: Comparison of heuristics for various loads for Problem 2

accurate for low values of gmin

6.5 Comparison of FCFS-ValueFunction for various values of

We reported in Section (6.4.1) that for the problems investigated in this Chapter, the performance

of the heuristics did not change considerably for various values of k. We consider the problem

described in Section (6.4.2). Figure (6-8) shows the effect of the parameter k on the performance

of the FCFS-Threshold heuristic for k = 1 and k = 5. It can be seen that the performance of the

FCFS-Threshold heuristic is hardly distinguishable for these two values of k.

6.6 Comparison of EDD and FCFS scheduling policies

We recall that FCFS-ValueFunction uses the EDD based scheduling policy for accepted orders

while the FCFS-Threshold uses a FCFS based scheduling policy for accepted orders. However

149

1; ..

C :~::1:

Fluid
O FCFS-ValueFunction

.. o- FCFS-Threshold

"'+ myopic

1.8

S17

S1.6

1.5

14

1.3
0..2

Figure 6-6: Comparison of heuristics for various ,ma for Problem 2

they are based on the same function hk, and thus the difference in their performance is an indicator

of degree of the sub-optimality of the FCFS scheduling policy. Let a - maxi'i If = 1, thenmini 1i

the lead time is the same for all order categories. We note that if the lead time is the same for

all order categories, the FCFS scheduling policy for the accepted orders coincides with the EDD

based scheduling policy and hence the FCFS-Threshold and the FCFS-ValueFunction heuristics

are the same. It can be expected that the divergence of the EDD based scheduling policy with

FCFS scheduling policy increases with increasing a.

For the experiments of this section, we define order categories with a processing time, lead

time pair taking every possible combination of values from the sets {5, 6,..., 14} and {20, 206}.

For an order category i with processing time pi and lead time ji, we fix 0i as follows,

Pi - Pmin

Prnax - Pmin

Parameters a and Or have a similar interpretation like in Section (6.4.2). We let r = 0.5 and

150

"'

0.3 04 0.5 0.6 0.7 0.8 0.9

Qmax

1.65

1.6

1.55 -

1 .5
4 6. 0 0 .

1.45

a)

< 1.35 , ,e, Fluid
F 0- FCFS-ValueFunction

1.3 ." myopic
- 13, FCFS-Threshold

1.25
4 6 8 10 12

Figure 6-7: Comparison of heuristics for various Smin for Problem 2

i = 0 if 1i = 20 and Oi = 0.3 if 1, = 20d. Figure (6-9) compares the performance of the heuristics

FCFS-Threshold and FCFS-ValueFunction for various values of a. Figure (6-10) compares the

performance of the heuristics FCFS-Static and EDD-Static for various values of a. The figures

show the benefit of using EDD-based scheduling of accepted orders for large values of &.

6.7 Summary

The FCFS-ValueFunction heuristic exhibits the best performance in the experiments performed

among all the heuristics considered. The Fluid heuristic under performs the FCFS-ValueFunction

heuristic when the ratio of the lead time of the orders to their processing times is low and becomes

competitive with the FCFS-ValueFunction heuristic when this ratio is high. Another interesting

feature of the experiments is that for a variety of situations, the performance of the heuristics that

use FCFS based scheduling of accepted orders is close to the performance of their counterparts

that use EDD based scheduling of accepted orders. This is useful since the performance of the

FCFS scheduling policy for accepted orders does not change in the presence of resumption costs

151

1.8

1.6 -.E

1.42

< /

0.8

0.5 1 1.5 2 2.5
Load

Figure 6-8: Performance of FCFS-Threshold for k = 1 and k = 5 for Problem 2

for orders. The performance gap between FCFS-ValueFunction and FCFS-Threshold increases

with i, where 6 - max, ii
mini li

Gallien et al. [24] had noted that the optimal static policy performs well in comparison with the

Fluid heuristic from limited computational experiments. They identified an optimal static policy

using numerical simulations of all possible static policies. We adopt a broader definition of static

policies and the proposed heuristics FCFS-Static and EDD-Static are computationally feasible

approximations to the optimal static policy. They significantly outperform the myopic policy at

intermediate and high loads. However they do not perform as well as the FCFS-ValueFunction

heuristic under some conditions.

The heuristics developed in this chapter are computationally convenient to implement. For a

chosen k, the FCFS-ValueFunction and FCFS-Threshold heuristics require only the storage of the

n order category thresholds besides the state information. To make a decision once an order arrives,

the FCFS-ValueFunction and FCFS-Threshold heuristic perform just one comparison. The Fluid

heuristic does not have any storage requirement besides the state information. However it involves

the solution of 2 linear programming problems each time an order arrives. Hence the simulation of

152

LI I 1 --

1.68

1.66-
+ myopic
SFCFS-ValueFunction

a 1,64 1 FCFS-Threshold

- 1.62-

S1.58

1 .56- ,

1.54 .

1.52 . . .
1 1.2 1.4 1.6 1 8 2 2.2 2.4 2.6 2.8 3

a

Figure 6-9: Comparison of FCFS-Threshold and FCFS-ValueFunction for various 6,

the performance of Fluid heuristics takes much more time than the simulation of the performance

of the FCFS-ValueFunction and the FCFS-Threshold heuristics. The time taken to simulate the

performance of the heuristics could be an important consideration if the simulation needs to be

conducted over a range of parameters.

The heuristics developed in this chapter can be extended to other related problems. For exam-

ple, suppose the production facility of the MTO manufacturing firm can be modeled as a queue with

m identical parallel servers and suppose an arriving order can be scheduled in any of the m servers.

There exists a natural counterpart of the heuristics FCFS-Threshold, FCFS-ValueFunction, FCFS-

Static and EDD-Static for these problems. Extension and evaluation of the heuristics developed in

this Chapter to related problems is an interesting topic for future research.

153

1.66

1.(

1i

1.

64 -+- myopic
A EDD-Static

62- FCFS-Static
62 A

.6 ,

58-

56

5i9 -6--- - - - - - -I-

r9

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Figure 6-10: Comparison of FCFS-Static and EDD-ValueFunction for various &

154

Chapter 7

Conclusion

Optimal control of MDPs is computationally challenging due to the curse of dimensionality. Prob-

lems involving multiple agents involve the additional challenge of dealing with limited commu-

nication among the agents. The results presented in Chapters 2 and 3 address these issues. The

proposed approximation architecture directly leads to decentralized decision making while still

allowing coordination. The error bound relating the choice of parameters for the linear approxi-

mation architecture to the "best error" offers guarantees on the performance of our approximation

scheme. It should be noted that such guarantees are typically not available for ADP algorithms.

The approximation scheme described in Chapter 2 is an extension of the ALP proposed by de

Farias et al [16] and hence inherits its features. Specifically, through the choice of state-relevant

weights and the Lyapunov function, the proposed scheme provides ways for the user of the ap-

proximation scheme to emphasize various regions of the state space as appropriate. Please see de

Farias et al [16] for further discussion on the role of the state relevance weights and the Lyapunov

functions. Further the equivalence of the linear programming problem for choosing the parameters

of the linear approximation architecture to a standard class of resource allocation problems raises

interesting possibilities for application of algorithms developed for resource allocation problems

to the decentralized solution of the linear programming problem.

155

The decentralized algorithm for the class of resource allocation problems described in Chap-

ter 3 addresses the issue of limited communication between the agents. A large class of convex

optimization problems with linear constraints are equivalent to the resource allocation problem de-

scribed in Chapter 3 and hence the decentralized algorithm of Chapter 3 is an optimal decentralized

algorithm for a large class of convex optimization problems.

For the general state space MDP OAP-P (4.3) formulated in Chapter 4, we study a related finite

state space problem MDP OAP-B (Problem 4.5) as an approximation. This technique of using a

discrete state space approximation at various scales to a general state space problem can be ex-

tended to other problems involving general state spaces and Poisson arrival process.The problem

OAP-B also suffers from the curse of dimensionality. We address this problem by considering

FCFS scheduling of accepted orders. We characterize the optimal order acceptance policy for the

problem OAP-B with FCFS Scheduling of accepted orders. A consequence of this characteriza-

tion is that the heuristics FCFS-ValueFunction and FCFS-Threshold developed for OAP-P have

very light storage and computational requirements. The heuristic FCFS-ValueFunction exhibits

very good performance in the numerical simulations under various conditions. The performance

of FCFS-Threshold is close to the performance of the FCFS-ValueFunction heuristics in many sit-

uations, suggesting that the performance loss by using FCFS scheduling of accepted orders may

be minimal for the problem OAP-P. The heuristics developed are easily extendable for related

problems.

The research presented in this thesis presents many possibilities for future research. We men-

tion some of them below

* The selection of basis functions for approximation architecture has not been addressed in

this thesis. This important topic is only beginning to get attention and is a rich topic for

future research.

* The production facility of the MTO manufacturing firm is modeled as a single server in this

156

work. A more realistic model would consider parallel servers where an arriving order can

be scheduled in any of the servers. Extension of the results obtained in this work to such a

model would be very useful.

* We formulated a model for quoting a reward, lead time pair for an arriving order and char-

acterized the optimal policy for this problem under the assumption of FCFS scheduling of

accepted orders. It would be useful to formulate heuristics similar to those presented in this

thesis for this problem and evaluate their performance.

* The heuristic FCFS-Value function uses the value function derived using the assumption of

FCFS scheduling of accepted orders. This can be considered as a limited form of value func-

tion approximation for the problem (4.5). It would be interesting to consider additional basis

functions and use ALP techniques for deriving potentially better value function approxima-

tions for (4.5).

157

158

Bibliography

[1] K. Arrow and F.Hahn. General Competitive Analysis. Holden Day, San Francisco, 1971.

[2] M. Barut and V. Sridharan. Revenue management in order-driven production systems. Deci-

sion Sciences, 36(2):287-316, 2005.

[3] D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized control
of markov decision processes. Mathematics of Operations Research, 27(4):819-840, 2002.

[4] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

[5] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific,
Belmont, MA, second edition, 2001.

[6] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific,
Belmont, MA, second edition, 2001.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Bel-
mont, MA, 1996.

[8] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to Probability. Athena Scientific, Belmont,
MA, 2002.

[9] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
Belmont, MA, 1997.

[10] 0. Brun and J. Garcia. Analytical Solution of Finite Capacity M/D/1 Queues. Journal of
Applied Probability, 37(4): 1092-1098, 2000.

[11] S. Carr and I. Duenyas. Optimal admission control and sequencing in a make-to-stock/make-
to-order production system. Operations Research, 48(5):709-720, 2000.

[12] Y-H Chang, T. Ho, and L. Kaelbling. A reinforcement learning approach to mobilized ad-hoc
networks. In International Conference on Autonomic Computing, 2004.

[13] R. Cogill, M. Rotkowitz, B. Van Roy, and S. Lall. An approximate dynamic programming
approach to decentralized control of stochastic systems. In Proceedings of the Allerton Con-
ference on Communication, Control, and Computing, pages 1040-1049, 2004.

159

[14] M.B. Combe and O.J. Boxma. Optimization of static traffic allocation policies. Theoretical
Computer Science, 125:17-43, 1994.

[15] D . P. de Farias. The Linear Programming Approach to Approximate Dynamic Programming:
Theory and Application. PhD thesis, Stanford University, Palo Alto, CA, 2002.

[16] D. P. de Farias and B. Van Roy. The linear programming approach to approximate dynamic
programming. Operations Research, 51(6):850-865, 2003.

[17] D.P. de Farias and B. Van Roy. On constraint sampling in the linear programming approach to
approximate dynamic programming. Mathematics of Operations Research, 29(3):462-478,
2004.

[18] D.P. de Farias and B. Van Roy. A cost-shaping LP for average-cost approximate dynamic
programming with performance guarantees. Mathematics of Operations research, 31(3):597-
620, 2006.

[19] F. Defregger and H. Kuhn. Revenue Management in Manufacturing. In Operations Research
Proceedings 2003, pages 17-22, Berlin, 2004. Springer.

[20] I. Duenyas. Single Facility Due Date Setting with Multiple Customer Classes. Management
Science, 41(4):608-619, 1995.

[21] I. Duenyas and W. J. Hopp. Quoting Customer Lead Times. Management Science, 41:43-57,
1995.

[22] S. Duran. Optimizing demand management in stochastic systems to improve flexibility and
performance. PhD thesis, Georgia Institute of Technology, Atlanta, Georgia, 2007.

[23] R. Durrett. Probability: Theory and Examples. Duxbury Press, Belmont, CA, 1995.

[24] J. Gallien, Y.L. Tallec, and T.Shoenmeyr. A model for make-to-order revenue management.
Working paper. Massachusetts Institute of Technology, Cambridge, MA, 2004.

[25] C. V. Goldman and S Zilberstein. Decentralized control of cooperative systems: Catego-
rization and complexity analysis. Journal of Artificial Intelligence Research, 22:143-174,
2004.

[26] A. Gravey, J. Louvion, and P. Boyer. On the Geo/D/1 and Geo/D/1/n Queues. Performance
Evalution, 11:117-125, 1990.

[27] C. Guestrin and G. Gordon. Distributed planning in hierarchical factored MDPs. In Eigh-
teenth Conference on Uncertainty in Artificial Intelligence, pages 197-206, 2002.

[28] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms for fac-
tored MDPs. Journal of Artificial Intelligence Research, 19:399-468, 2003.

[29] G. M. Heal. Planning without prices. The Review of Economic Studies, 63:343-362, 1969.

160

[30] W.J. Hopp and M. R. Sturgis. A simple, robust, leadtime-quoting policy. Manufacturing and

Service Operations Management, 3(4):321-336, 2001.

[31] A. Jalora. Order Acceptance And Scheduling at a Make-To-Order System using Revevenue

Management. PhD thesis, Texas A&M University, 2006.

[32] J.Kurose and R.Simha. A microeconomic approach to optimal resource allocation computer
systems. IEEE Transactions on Computers, 38, 1989.

[33] R. Kapuscinski and S. Tayur. Reliable due-date setting in a capacitated mto system with two
customer classes. Operations Research, 55:56-74, 2007.

[34] T.S Kniker and M.H. Burman. Applications of revenue management to manufacturing. In
Third Aegean International Conference on Design and Analysis of Manufacturing Systems,
pages 299-308, 2001.

[35] H. Lakshmanan and D. P. de Farias. Decentralized resource allocation in dynamic networks
of agents. SIAM Journal on Optimization, 19:911-940, 2008.

[36] H. Lakshmanan and D.P. De Farias. Decentralized approximate dynamic programming for
dynamic networks of agents. In American Control Conference, 2006.

[37] P. Linwong, A. Fujii, and Y. Nemoto. Buffer-Size Approximation for the Geo/D/I/K Queue.
LNCS, 2094:845-853, 2001.

[38] L.Xiao and S.Boyd. Optimal scaling of a gradient method for distributed resource allocation.
Journal of Optimization Theory and Applications, 129(3):469-488, 2006.

[39] A. Nedic and D. P. Bertsekas. Incremental subgradient methods for nondifferentiable opti-
mization. SIAM J. on Optimization, 12:109-138, 2001.

[40] Yu. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127-152, 2005.

[41] plambeck E.L. Optimal leadtime differentiation via diffusion approximations. Operations
Research, 52(2):213-228, 2004.

[42] M. L. Puterman. Markov Decision Processes. John Wiley & Sons, 1994.

[43] S. Ray and E.M. Jewkes. Customer lead time management when both demand and price are
lead time sensitive. European Journal of Operational Research, 153(3):769-781, 2004.

[44] R.Becker, S. Zilberstein, V.Lesser, and C.V. Goldman. Solving transition independent decen-
tralized markov decision processes. Journal ofArtificial Intelligence Research, 22, 2004.

[45] R. L Ritt and L.I. Sennott. Optimal Stationary Policies in General State Space Markov De-
cision Chains with Finite Action Sets. Mathematics of Operations Research, 17(4):901-909,
1992.

161

[46] P. Schwetzer and A. Seidmann. Generalized polynomial approximations in Markovian deci-
sion processes. Journal of Mathematical Analysis and Applications, 110:568-582, 1985.

[47] L. Servi, Y.C. Ho, and R. Sunri. A class of center-free resource allocation algorithms. Large
Scale Systems, 1:51-62, 1980.

[48] S. Stidham. Optimal control of admission to a queueing system. IEEE Transactions on
Automatic Control, pages 705-713, 1985.

[49] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

[50] T.-S. Tang and M.A. Styblinsky. Yield optimization for nondifferentiable density functions
using convolution techniques. IEEE Transactions on Computer-Aided Design, 7(10), 1988.

[51] T.Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic approaches. MIT press,
Cambridge, Massachusetts, 1988.

[52] J.N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD thesis,
MIT, 1984.

[53] J.N. Tsitsiklis and M. Athans. On the complexity of decentralized decision making and
detection problems. IEEE Transactions on Automatic Control, 30(5):440-446, 1985.

[54] B. Watanapa and A. Techanitisawad. Simultaneous price and due date settings for multiple
customer classes. European Journal of Operational Research, 166:351-368, 2005.

162

