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Abstract

Recent ecological studies in invertebrates show that the outcome of an infection is dependent on the specific pairing of
host and parasite. Such specificity contrasts the long-held view that invertebrate innate immunity depends on a broad-
spectrum recognition system. An important question is whether this specificity is due to the immune response rather than
some other interplay between host and parasite genotypes. By measuring the expression of putative bumblebee
homologues of antimicrobial peptides in response to infection by their gut trypanosome Crithidia bombi, we demonstrate
that expression differences are associated with the specific interactions.
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Introduction

A large number of ecological studies in invertebrates show that

the outcome of an infection is dependent on the interaction

between the host and pathogen genotypes, and is highly specific

[1]. Such specificity contrasts the long-held view that invertebrate

innate immunity depends on a broad-spectrum recognition

system, only capable of responding very generally to different

classes of pathogens [2]. Recent work is now changing this view, as

several novel mechanisms for the somatic diversification of

immune receptor molecules as well as genetically based polymor-

phism have been discovered in invertebrates [3]. Down syndrome

adhesion molecule (Dscam) in the mosquito, for example, is a

hypervariable receptor involved in phagocytosis where the relative

frequency of alternatively spliced transcripts might vary in relation

to the infecting pathogen. Whilst such mechanistic studies suggest

a possible basis of specificity, little work has yet been carried out to

directly test whether there is specificity in the interaction between

host immune responses and parasite types. Alternatively, specific-

ity might be due to other, non-immune responses associated with

host-parasite interactions [4]. Here, we demonstrate that the

expression of immune genes coding for important effector

molecules varies with the specific combination of host and parasite

type.

The interaction of the trypanosomal gut parasite Crithidia bombi

with its host, the bumblebee, Bombus terrestris is highly specific and

provides an excellent test case for such questions [5]. In this

system, infection success depends on which strain is infecting

which colony (representing very different genotypic backgrounds)

leading to highly specific assorting of parasite genotypes across

different hosts [6]. To address whether the invertebrate innate

immune response is specific, we directly measure the bumblebee

immune response during a specific interaction with its parasite C.

bombi. Flagellates such as Leishmania, Trypanosoma sp. and Crithidia

develop exclusively in their insect host’s gut and do not migrate

into the haemolymph. Local immune responses in the gut-

epithelium, including antimicrobial peptide (AMP) production

[7,8,9], are therefore likely to be important in controlling these

infections [10]. In the sand fly Phlebotomus duboscqi, defensin is

induced in the gut epithelia and systemically in the fat-body during

Leishmania major infection [11]. Similar AMP induction is cited in

the insect host’s immune response to Trypanosoma brucei [12] and

Crithidia sp. [13].

Based on this literature, we decided to measure the level of

AMP gene expression as a signal of potentially differential immune

responses. To identify bumblebee homologues of these target

genes, we first gathered partial expressed sequence data for the

AMPs defensin 1 and hymeoptaecin in Bombus terrestris (GenBank

accession numbers: FJ839454: Defensin and FJ839453: Hymenoptae-

cin) and primers for abaecin from Bombus ignitis (GenBank accession:

AY423049). In a first test, we confirmed that these three AMPs are

upregulated upon infection by C. bombi (see Supplementary

Material S1). Then, to test the specificity of AMP expression,

B.terrestris workers from four host lines (as defined by colony

identity) were naturally infected with one of four C.bombi isolates

and the bees’ expression levels of the three B.terrestris AMPs were

measured using qPCR.

Materials and Methods

Experiments were carried out on two commercially reared

bumblebee colonies from Koppert Biological Systems U.K. and
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two colonies from wild caught queens. All parasite isolates used

originated from wild queens collected in Spring 2008 in the

botanical gardens, University of Leicester. Experiments began

when the colonies had a minimum of thirty workers, approxi-

mately four weeks old. Between observations, colonies were fed ad

libitum with pollen (Percie du sert, France) and 50% diluted

glucose/fructose mix (Meliose – Roquette, France). Before and

during the experiments colonies were kept at 26uC and 60%

humidity in constant red light.

Infections
To prepare C. bombi isolates, faeces was collected from workers

of naturally infected colonies, and mixed with 50% diluted Meliose

to create a standardized dose of 500 Crithidia cells per ml of

inoculum. Previous studies had shown that such inocula, prepared

from different colonies, are genotypically different [6] and

generate specific responses in novel hosts [14]. We infected a

sample of workers from each of four bumblebee colonies

(representing different host lines) with an inoculum of faeces from

each of the four wild infected colonies (mean number of bees +/2

Standard Deviation = 5.4 +/2 0.9, 7 uninfected controls, 93 bees

in total). Bees were four days old at the time of infection. After

infection bees were kept in colony x strain groups (1–3 individuals

depending on day collected) and fed ad libitum. 24 hours or

48 hours post infection the bees were sacrificed by freezing in

liquid nitrogen. They were then stored at 280uC.

RNA extraction and cDNA synthesis
Total RNA was extracted from individual homogenised

abdomens using Tri-reagent (Sigma-Aldrich, UK). Any residual

contaminants were removed from the RNA using the RNeasy

mini kit (Qiagen, UK) and manufacturer’s RNA clean-up

protocol. To remove residual genomic DNA (gDNA), RNA

samples were treated with DNase (Sigma-Aldrich, UK). First

strand cDNA synthesis was carried out by reverse transcription of

2 mg of total RNA with M-MLV reverse transcriptase (Promega,

UK) and oligo dT23 primer (1 mg/ml) according to the manufac-

turer’s instructions.

Quantitative PCR (qPCR) analysis
After synthesis cDNA samples and controls were diluted 10 fold

with nuclease-free water. Each qPCR reaction contained 5 ml of

dilute cDNA or control, 1x SYBR Green JumpStart Taq

ReadyMix (Sigma-Aldrich, UK) and gene specific primers (final

concentration of 0.1 mM). For oligonucleotide sequences please see

table 1 below. Each sample was tested with the housekeeping gene

RPS5 [15] and all 3 AMPs. For design of primers please see

supplementary material. Two technical replicates were run per

reaction. Reactions for qPCR were prepared using the Corbett

robotics machine (Qiagen, UK) and performed on the MJ

Research Chromo 4TM (Genetic Research Instrumentation Ltd,

Essex, UK) using the following program: 95uc for 5 minutes,

followed by 42 cycles of a 30 second 95uC denaturation, 30 second

61uC annealing and 30 second 72uC extension steps.

CT values were taken at a threshold fluorescence value of 0.02.

DCT of each sample was calculated by normalising it to the lowest

CT value in the control (non-infected) samples in both house

keeping genes and AMPs (CT control - CT sample). Fold change in

expression was calculated with the 2(D2DCT) approximation

method, using the housekeeping RPS5 as the reference gene.

Replicate measurements showed that measurement error was very

small (mean 0.6%, range 0.007 to 2.31%). Using fold change

instead of absolute values should - at least partially - control for

differences in host condition that might affect the overall level of

expression of antimicrobial peptides. Furthermore, host condition

was additionally controlled as the colonies were kept in exactly the

same conditions in the same controlled environment room. They

were all fed at the same time from food prepared at the same time.

They are never outside the controlled environment. Experiments

did not begin till each colony had reached an identical size. Hence,

we assume that colony-specific differences in host condition are

very unlikely to explain our results.

Statistical analysis
Fold changes in abaecin and defensin gene expression were box-

transformed, and hymenoptaecin zero-skewness log-transformed

to fit the data to a normal distribution. Fold data for all three

AMPs was first analysed using a MANOVA, and if significant

separate ANOVAs was carried out for each AMP. All data

analyses were performed using Intercooled STATA 8.2 for

Macintosh.

Results and Discussion

Our results showed a clear main effect of host line on AMP

expression (MANOVA with the three AMPs as responses; overall

model: F 9,155.9 = 2.28, P = 0.02; Wilks’ l = 0.7405), and espe-

cially for the expression of hymenoptaecin: (ANOVA F 3,66 = 5.19;

P = 0.0028); a main effect of parasite isolate (overall MANOVA:

F 9,155.9 = 9.25, P = ,0.00001; Wilks’ l = 0.3530), especially on the

expression of abaecin (ANOVA: F 3,66 = 13.76; P = ,0.00001) and

hymenoptaecin (ANOVA F 3,66 = 4.31; P = 0.0078), as well as possible

effects of time post-infection on defensin expression (measuring gene

expression at 24 or 48 hours, overall MANOVA not significant;

defensin expression: ANOVA F 1,66 = 4.34; P = 0.041). The group in

which a bee was held during infection had no effect (MANOVA:

F 60,153 = 1.19, P = 0.2031; Wilks’ l = 0.3200). Most importantly

and in line with our hypothesis, there is a significant colony*strain

interaction effect on AMP expression (MANOVA: F 27,187.6 = 2.30,

P = 0.0006; Wilks’ l = 0.4332), and in particular for two out of three

AMPs measured, i.e. defensin (ANOVA: F 9,66 = 2.12; P = 0.0396),

hymenoptaecin (ANOVA: F 9,66 = 2.14; P = 0.0380), but not for abaecin

(ANOVA: F 9,66 = 1.6; P = 0.1328, see Figure 1). As an example of

Table 1. Primers used in qPCR.

Gene Forward primer Sequence Reverse primer sequence Tm forward/reverse Annealing temperature

Bombus RPS5 59-TCGTCGTAACGAGAAACATCC-3959 59-GAGAAGATTCCACGCGTATTGG-39 67/66.5uC 60–62uC

Abaecin 59-ATGAAGGCAGTAATGTTTATTTTC-39 59-GGAAAGGTTGGAAACGGTTTAGAT-39 59/65.8uC 60–62uC

Defensin 59-AACTGTCTCAGCATGGGCAAAG-39 59-AGAGATCCTTGAGTTGGTCTTGC-39 67.5/65.7uC 60–62uC

Hymenoptaecin 59-CCTTGTTATCGATGGAAAGAAACC-3- 59-GTTGATGATAATCGACGTCCAAGG-39 67.2/65.3uC 60–62uC

doi:10.1371/journal.pone.0007621.t001

Specific Immune Expression
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Figure 1. Relative expression of the antimicrobial peptides. Expression levels of (A) hymenoptaecin (values zero skew log transformed as: ln
(fold change in hymenoptaecin expression – 0.1952191) normalised to a noninfected control), (B) abaecin (box-cox transformed: Fold
change21.0302212/20.0302212, normalised to a noninfected control) and (C) defensin (box-cox transformed: Fold change20.955746/0.044254,
normalised to a noninfected control) across four B.terrestris colonies (host lines) in response to four different Crithidia isolates (see in-graph legend).
Points represent the means and error bars represent the standard errors.
doi:10.1371/journal.pone.0007621.g001

Specific Immune Expression
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this interaction, host line 4 shows similar levels of hymenoptaecin

expression in response to infection by both strain I and III, whereas

in host line 3 strain I induces much higher hymenoptaecin expression

compared to strain III. Hence, the expression of important AMPs

varies depending on who is infected by whom. This provides the first

experimental evidence that active immune responses are associated

with the highly specific interactions observed in ecological studies

with invertebrates that have used life-history traits such as survival

or fecundity to represent immunity [16], and that these interactions

are not solely an artefact of uncontrolled factors [4].

Each of the three AMPs showed similar patterns of expression

for each host-parasite pairing (Figure 1). This is to be expected as

all three are thought to be controlled by the Imd pathway [17]

although this may be more complicated [18]. What we have

discovered is specificity in the expression of effectors during the

immune response. Further work is required to elucidate the

mechanistic basis of this specificity which could be the result of

particular receptors, regulatory pathways or a combination of

these [5] such as is the case with mechanisms based on Dscam and

fibrinogen-related proteins (FREPs), two highly variable protein

recognition receptors that bind pathogen-bound epitopes highly

specifically and associate with immune tissues [19,20,21].

All tested animals became infected, but for practical reasons, it

was not possible to simultaneously measure infection intensity and

the levels gene expression, as the animal was sampled relatively

shortly after infection. Hence, the current study could not show a

direct correlation between infection intensity and expression of

anti-microbial peptides. However, variation in infection intensity

has been observed so universally that it must be taken as given. In

fact, the main aim of this study was to test whether, similar to the

observation of specific interactions in infection intensities, also

variation in the levels of gene expression would show a significant

host-parasite interaction term.

Our study now provides evidence that the ecologically

important phenomenon of specific host-parasite interactions does

indeed have a parallel in the expression profiles of anti-microbial

peptides that similarly vary with different host-parasite combina-

tions. We conclude that the general observation of host-parasite

specificity in this system has a immunological basis, especially with

the differential expression of anti-microbial peptides, which are

known effector molecules against trypanosome infections in the gut

[7]. Our study emphasises the importance of using natural host-

parasite systems when researching specificity of the invertebrate

immune defence. Approaching studies of immunity by integration

of molecular knowledge into natural host-parasite systems can only

serve to enrich our understanding of the higher capabilities and

regulation of invertebrate innate immunity.

Supporting Information

Supplementary Material S1

Found at: doi:10.1371/journal.pone.0007621.s001 (0.05 MB

DOC)
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