brought to you by

PHYSICAL REVIEW C

VOLUME 55, NUMBER 1

JANUARY 1997

Elucidating halo structure by β decay: $\beta \gamma$ from the ¹¹Li decay

M. J. G. Borge,¹ H. Fynbo,² D. Guillemaud-Mueller,³ P. Hornshøj,² F. Humbert,⁴ B. Jonson,⁵ T. E. Leth,²

G. Martínez-Pinedo,⁶ T. Nilsson,⁵ G. Nyman,⁵ A. Poves,⁶ I. Ramos-Lerate,¹ K. Riisager,² G. Schrieder,⁴ M. Smedberg,⁵

O. Tengblad,⁷ and the ISOLDE Collaboration

¹Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain

²Institut for Fysik og Astronomi, Aarhus Universitet, DK-8000 Aarhus C, Denmark

³Institut de Physique Nucléaire, IN2P3-CNRS, F-91406 Orsay Cedex, France

⁴Institut für Kernphysik, Technische Hochschule, D-64289 Darmstadt, Germany

⁵Fysiska Institutionen, Chalmers Tekniska Högskola, S-41296 Göteborg, Sweden

⁶Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

⁷PPE Division, CERN, CH-1211 Genève 23, Switzerland

(Received 15 July 1996)

New values for the γ ray intensities following the β decay of ¹¹Li are presented. Special emphasis is put on the determination of the Gamow-Teller transition ¹¹Li \rightarrow ¹¹Be (1/2⁻, 320 keV) to the only bound excited state in ¹¹Be. We show that a shell-model calculation can simultaneously reproduce the half-life of ¹¹Li and the newly measured branching ratio to the 1/2⁻ state provided the ¹¹Li ground state wave function contains about 50% of *s*-wave neutron components. [S0556-2813(97)50301-3]

PACS number(s): 23.40.Hc, 21.10.Pc, 21.60.Cs, 23.20.Lv

This paper presents new data on γ rays following the β decay of ¹¹Li. Contrary to predictions [1], this nucleus was identified in 1966 [2] to be bound. The first spectroscopic information was obtained nine years later [3] at PS (CERN) where the mass excess, two-neutron separation, and half-life were determined. In the following nine years the β decay studies of ¹¹Li have uncovered many different decay modes: $\beta 2n$ [4], $\beta 3n$ [5], β^6 He [6], and βt [7]. All were first observed in the decay of ¹¹Li.

In 1985, Tanihata *et al.* [8] observed that the ratio of the matter-to-charge radius of ¹¹Li is abnormally large. The modeling of this nucleus as a core of ⁹Li surrounded by two distant neutrons [9] opened a new field of research: halo nuclei. This subject has become a very attractive topic in nuclear physics in the last decade (see the recent reviews in the field [10] and references therein). The halo structure, which is investigated through nuclear reaction studies, still present challenges: a good understanding of the two neutron halo wave function has not yet been achieved.

Because the weak interaction is well understood, we have decided to investigate the role played by the halo in the β decay and vice versa. We try to obtain information about the wave function of the last two neutrons from the observed β feeding to the different states in ¹¹Be. Various estimates [11–15] indicate the presence of a substantial amount of $1s_{1/2}$ components in the halo of ¹¹Li. These components play a crucial role in the β decay of ¹¹Li and may determine the branching ratio to the unique bound excited state in ¹¹Be. Since the two previously published measurements of this branching ratio gave very different values, 5.2(14)% [16] and 9.2(7)% [17], and since this transition is sensitive to the structure of the ¹¹Li ground state, we have decided to remeasure the γ spectrum following the decay of ¹¹Li.

The experiment was performed at the PSB-ISOLDE (CERN) facility. The ¹¹Li beam was produced by bombarding a 80 g/cm² Ta target with a 2.4 μ s proton beam pulse of 1 GeV energy. It was then ionized on a W surface and accelerated to 60 keV for transport and mass separation. Two different experiments were performed in order to study the $\beta\gamma$ branches of the ¹¹Li decay. In one experiment the ¹¹Li beam was stopped in an aluminum foil. A plastic scintillator to detect β particles and a HPGe detector for γ 's were situated close to the collection point, but outside the vacuum chamber. The Ge detector was background shielded by a 2-3 mm thick lead sheet. An 8 mm thick Al absorber was placed in front of the Ge detector, since backscattering of β 's in the detector gave a considerable distortion of the γ lines. Spectra of β -gated γ 's, γ singles, and time-gated (first 100 ms after the proton pulse) β 's and γ 's were recorded. An off-line analysis showed that the β efficiency was energy dependent. We repeated this part of the experiment to more reliably extract the branching ratio to the 320 keV level. The information from both experiments was used to determine the

FIG. 1. Time-gated (gate=100 ms/proton pulse) ¹¹Li γ spectrum. The time-gate enhance the contamination lines produced by Ge(n,n') reactions as seen in the energy range from 550 to 1100 keV.

$\overline{E_{\gamma}}$ (keV)	Energy Levels (keV) $E_i \rightarrow E_f$ (Ref. [29])	$ \begin{array}{c} I_{\gamma} \% \\ \text{This work} \qquad \text{Ref. [16]} \qquad \text{Ref. [17]} \end{array} $		
219	$6179.3 \rightarrow 5959.9$ in ¹⁰ Be	0.55 (10)	0.95 (35)	-
320	$320.0 \rightarrow 0.0$ in ¹¹ Be	6.3 (6)	5.2 (14)	9.2 (7)
2590	5958.3→3368.0 in ¹⁰ Be	8.0 (12)	3.5 (10)	-
2811	6179.3→3368.0 in ¹⁰ Be	0.8 (2)	1.6 (7)	-
3368	$3368.0 \rightarrow 0.0$ in ^{10}Be	29 (3)	21 (6)	35 (3)

TABLE I. γ intensities from the β decay of ¹¹Li.

relative intensities of the γ emissions following the decay.

In the second experiment the ¹¹Li beam traversed a 1000 μ m thick 300 mm² annular Si detector and was then stopped in a 2 mm Al plate. An HPGe was placed outside the chamber behind a 10.6 mm thick Al flange. β particles, γ rays, and corresponding time information were recorded in coincidences as well as in singles.

In both experiments a commercially available calibrated mixed source was used for efficiency determination. A ⁵⁶Co source was used to obtain a more precise determination of the efficiency at high energies. A ¹⁰⁶Ru source was used to calibrate the β - γ coincidence efficiency. Calibration spectra recorded in "self-gate" mode yielded the efficiency of the coincidence setup at different energies. Furthermore, the ratio $N_{\beta\gamma}/N_{\gamma}=0.14(1)$ from different γ transitions following the ¹¹Li decay is in good agreement with the calculated geometrical solid angle of 15% for the surface barrier β detector. This demonstrates that the intrinsic efficiency of the β detector was approximately constant at 100% over the full-energy range of interest.

The intensity ratio between the 320 keV γ line and the 2125 keV γ line (following the ¹¹Be β decay) showed that ¹¹Be was directly produced and ionized. This amounted to 7.3(18)% of the A = 11 beam. Up to 10% contamination of the alkali-earth elements is not unusual when this type of target-ion source unit is used. The branching ratio for the feeding from the ¹¹Li(3/2⁻) ground state to the 320 keV excited level (1/2⁻) in ¹¹Be is found by normalizing with the known total ¹¹Be 2125 γ -ray intensity ratio of 0.355(18) [18]. Our result, b(320) = 6.3(6)%,¹ together with a Q_{β} value of 20.62(3) MeV [19] and a $T_{1/2}$ of 8.35(14) ms (weighted averaged of the values given in Ref. [21] and Ref. [20]) gives a log *ft* equal to 5.73.

Figure 1 shows the γ spectrum and Table I lists the energies and intensities of the main γ rays following the ¹¹Li decay. The intensities presented in this table are weighted averages of the values obtained with the two described setups. The assignment of the 2590 keV γ transition followed Ref. [20]. The results of Détraz *et al.* [16] are in reasonable agreement with our present values, except for the 2590 keV γ line. This is a very broad peak as seen in Fig. 1 and it has a very different shape than the 3368 keV γ line. The shape of these γ lines is determined by the Doppler broadening produced by the recoiling of the excited ¹⁰Be nuclei populated in βn emission. From the shape of the peak of these γ lines, we can deduce the recoil energy of the excited ¹⁰Be nuclei and consequently the levels in ¹¹Be from which the neutron was emitted. This method constitutes an interesting tool in the study of β n emission and the GT strength of the ¹¹Li β decay (Ref. [21,22]).

The new value for the branching ratio to the 320 keV state in ¹¹Be modifies the P_{in} values for i=1,2,3. The ratios $P_{2n}/P_{1n}=0.048(5)$ and $P_{3n}/P_{1n}=0.022(2)$ are taken from Ref. [5,17], respectively. If we neglect the contribution of the decay to the ground state of ¹¹Be as well as that of the βt [7] and βd [21] branches (in the order of 10⁻⁴), we find

$$1 - b(320) = P_{1n} + P_{2n} + P_{3n}, \qquad (1)$$

which gives the following new values for the different P_{in} branches:

$$P_{1n} = 87.6(8)\%$$
,
 $P_{2n} = 4.2(4)\%$,
 $P_{3n} = 1.9(2)\%$.

From the experimental half-life, $T_{1/2}$ =8.35(14) ms, and branching ratio, BR(1/2⁻)=6.3(6)%, we can extract the "experimental" value of the reduced Gamow-Teller transition probability to the 320 keV level in ¹¹Be from,

$$B(\text{GT}) = \frac{6146(6)(\text{Ref.}[23])}{ft},$$
 (2)

and

$$B(\text{GT}) = \left(\frac{g_A}{g_V}\right)^2 \langle \boldsymbol{\sigma} \boldsymbol{\tau} \rangle^2, \quad \langle \boldsymbol{\sigma} \boldsymbol{\tau} \rangle = \frac{\langle f || \sum_k \boldsymbol{\sigma}^k \boldsymbol{t}_{\pm}^k || i \rangle}{\sqrt{2J_i + 1}}, \quad (3)$$

giving B(GT) = 0.011.

A shell-model calculation assuming a core of ⁴He and valence particles in the *p* shell with the interaction of Ref. [24] gives the following predictions: B(GT)=0.216 and $T_{1/2}=1.45$ ms (using the bare GT operator) or, B(GT)=0.149 and $T_{1/2}=2.10$ ms (using the quenching factor 0.83 as in Ref. [25]).

In order to explain these very large discrepancies, we shall proceed in a way similar to that of Suzuki and Otsuka in Ref. [14], trying to understand not only the B(GT) value, as they did, but also the half-life. Indeed, we shall use the new experimental value of the branching ratio.

¹We cannot explain the discrepancy with the value of Ref. [17] since too few experimental details were given there.

Interaction	g_A	$1s_{1/2}$ neutron shell occupancy	% of closed <i>p</i> shell	Overlap $\langle 0p_{3/2}^{\pi} 0p_{1/2}^{\nu} angle$	B(GT)	$T_{1/2}$ ms
WBT/LKS	1.05	1.21	11	1.00	0.011	8.3
WBT/LKS	1.05	1.06	21	0.84	0.011	8.2
WBT/LKS	1.15	1.15	15	0.84	0.010	7.6
MK	1.15	0.74	20	0.84	0.012	11.7
				EXP	0.011	8.35

TABLE II. The half-life of ¹¹Li and the B(GT) value to the 320 keV level of ¹¹Be for different percentages of closed p shell.

We start by assuming that the *p*-shell description is adequate. Therefore, the neutron halo in ¹¹Li will be produced by the neutron $0p_{1/2}$ orbit and there will be a mismatch with the proton p orbits in ¹¹Be. Hence, the GT transition probability will be reduced. It is extremely difficult to get a reliable estimate of the overlap between these orbits. To generate the radial wave functions, we have used a Woods-Saxon well, with parameters taken from Ref. [26], except for a=0.57 fm. The resulting $0p_{1/2}$ neutron orbit in ¹¹Li has $\langle r^2 \rangle^{1/2} = 5.0$ fm while the proton p orbits in ¹¹Be have $\langle r^2 \rangle^{1/2} = 2.6$ fm. The overlap between them is 0.84. With these values of the overlaps and the renormalized value $g_A = 0.83g_A(\text{bare}) = 1.05$ we obtain: B(GT) = 0.070 and $T_{1/2}$ =3.4 ms; still very far from the experimental results. Agreement could only be obtained for unrealistic values of the overlaps (smaller than 0.6).

We are thus led to go beyond a pure *p*-shell description, i.e., we have to allow for *sd* components in the description of ¹¹Li and ¹¹Be. We have made unrestricted shell-model calculations in the space spanned by the orbits $0p_{3/2}$, $0p_{1/2}$, $0d_{5/2}$, and $1s_{1/2}$, using an effective interaction that consists of the *p*-shell part of the WBT interaction [24], and the LKS interaction [27] for the *sd* shell and the cross shell matrix eleents (WBT/LKS). The resulting ¹¹Li wave function has the following structure in the valence space,

$$\Phi = \alpha [(0p_{3/2})^{\pi}, (0p_{3/2})^{4\nu}, (0p_{1/2})^{2\nu}] + \beta [(0p_{3/2})^{\pi}, (0p_{3/2}, 0p_{1/2})^{n_1\nu} (1s_{1/2}, 0d_{5/2})^{n_2\nu}]$$
(4)

(ν neutron, π proton, $n_1 + n_2 = 6$).

In order to explore the influence of the sd components in both the half-life of ¹¹Li and the branching ratio to the 320 keV state in ¹¹Be, we have varied the energy gap between the p and the sd shells—and, consequently, the percentage of closed p shell—until the best possible agreement with experiment is achieved. This has been done for different values of the overlap and for different values of g_A . We have also made calculations using the interaction of Millener and Kurath (MK) [28]. This interaction tends to give a lesser occupancy of the $1s_{1/2}$ neutron shell, in favor of the $0d_{5/2}$ neutron shell, but their predictions are still compatible with those of the WBT/LKS interaction. The results are shown in Table II. The percentage of configurations with two neutrons in the $1s_{1/2}$ neutron orbit is around 40% for the different WBT/LKS cases and 30% for MK. It is evident that the β decay data demand a small percentage of closed (neutron) p shell in the ground state of ¹¹Li correlated with a large occupancy of the $1s_{1/2}$ neutron orbit. The occupation numbers of the neutron orbits are on average 3.5, 1.0, 1.0, and 0.5 for the $0p_{3/2}$, $0p_{1/2}$, $1s_{1/2}$, and $0d_{5/2}$, respectively. Therefore, in this picture the halo is dominantly ($\approx 50\%$) s wave. Notice that this qualitative conclusion pertains to any of the entries of Table II. Our results do not contradict those of Ref. [14], but we predict more sd mixing than they do, partly due to the new value of the branching ratio.

In conclusion, we have remeasured the γ activity from the ¹¹Li decay giving special attention to the determination of the GT strength to the 320 keV state in ¹¹Be due to the relevance of this transition in the study of the 2*n* halo wave function of ¹¹Li. Our calculation shows that a substantial *s*-wave neutron component ($\approx 50\%$) is needed in order to bring theory and experiment into agreement for the half-life and for the branching ratio of the decay of ¹¹Li to the first excited state of ¹¹Be.

Financial support for this study from the Spanish CICyT (Contract AEN94-0833-C02-02) and DGICyT (Contract PB93-263) and Bundesministerium für Forschung und Technologie (contract No. 06DA665I) is gratefully acknowledged.

- [1] G. T. Garvey and I. Kelson, Phys. Rev. Lett. 16, 197 (1966).
- [2] A. M. Poskanzer et al., Phys. Rev. Lett. 17, 1271 (1966).
- [3] C. Thibault et al., Phys. Rev. C 12, 644 (1975).
- [4] R. E. Azuma et al., Phys. Rev. Lett. 43, 1652 (1979).
- [5] R. E. Azuma et al., Phys. Lett. 96B, 31 (1980).
- [6] M. Langevin et al., Nucl. Phys. A366, 449 (1981).
- [7] M. Langevin et al., Phys. Lett. 146B, 176 (1984).

- [8] I. Tanihata *et al.*, Phys. Rev. Lett. 55, 2676 (1985); Phys. Lett. 160B, 380 (1985).
- [9] P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987).
- [10] P. G. Hansen, A. S. Jensen, and B. Jonson, Annu. Rev. Nucl. Part. Sci. 45, 591 (1995); I. Tanihata, J. Phys. G 22, 157 (1996).
- [11] F. C. Barker and G. T. Hickey, J. Phys. G 3, L23 (1977).

- [12] J. M. G. Gómez, C. Prieto, and A. Poves, Phys. Lett. B 295, 1 (1992).
- [13] I. J. Thompson and M. V. Zhukov, Phys. Rev. C 49, 9104 (1994).
- [14] T. Suzuki and T. Otsuka, Phys. Rev. C 50, R555 (1994).
- [15] M. Zinser et al., Phys. Rev. Lett. 75, 1719 (1995).
- [16] C. Détraz et al., J. Phys. (France) 41, L459 (1980).
- [17] T. Björnstad et al., Nucl. Phys. A359, 1 (1981).
- [18] D. J. Millener et al., Phys. Rev. C 26, 1167 (1982).
- [19] G. Audi and A. H. Wapstra, Nucl. Phys. A595, 409 (1995).
- [20] F. Ajzenberg-Selove, Nucl. Phys. A506, 1 (1990).
- [21] I. Mukha et al., Phys. Lett. B 367, 65 (1996).
- [22] M. J. G. Borge et al. (in preparation).
- [23] I. S. Towner and J. C. Hardy, in The Nucleus as a Laboratory

for Studying Simmetries and Fundamental Interactions, edited by E. M. Henley and W. C. Haxton (World Scientific, Singapore, 1995).

- [24] E. R. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).
- [25] W. T. Chou, E. K. Warburton, and B. A. Brown, Phys. Rev. C 47, 163 (1993).
- [26] A. Bohr and B. R. Mottelson, *Nuclear Structure* (Benjamin, New York, 1969), Vol. I.
- [27] S. Kahana, H. C. Lee, and C. K. Scott, Phys. Rev. 180, 956 (1969).
- [28] D. J. Millener and D. Kurath, Nucl. Phys. A255, 315 (1975).
- [29] F. Ajzenberg-Selove, Nucl. Phys. A490, 1 (1988).