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Spin-orbit induced noncubic charge distribution in cubic ferromagnets. II. Tight-binding analysis
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The orbital moment and the noncubic charge distribution in ferromagnetic transition metals with cubic
lattice symmetry are investigated within the tight-binding model. By combining the tight-binding approxima-
tion, perturbation theory, and the Green’s function formalism for impurity scattering, approximate expressions
for both effects are derived that depend only on the spin-orbit coupling strength and the density of states of the
system without spin-orbit coupling. The basic relations between the orbital moment, the noncubic charge
distribution, and the band structure are derived from the form of these expressions and from their application
to various model band structures: We explain in this way the scaling with the spin-orbit coupling strength and
bandwidth, the typical order of magnitude, the variation as a function of the band filling, the sensitivity to band
structure details, and the role of the splitting between spin-up and spin-down states. For the noncubic charge
distribution we derive the form of the dependence on the direction of the magnetization and show how the sign
and magnitude of this anisotropy are related to the different energy distributions ofeg and t2g states. This
tight-binding analysis is finally applied to the 5d impurities in Fe. The local densities of states without
spin-orbit coupling are obtained by self-consistent augmented plane-wave calculations using a supercell
method. The special features of the 5d impurities in Fe with respect to the band structure, the orbital moment,
and the noncubic charge distribution are discussed. The general trend of the systematics is interpreted as a band
filling effect. The prevailing sign of the anisotropy is ascribed to the concentration of theeg states near the
Fermi energy. The results of the tight-binding analysis are compared with the experiment and a more rigorous
calculation.
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I. INTRODUCTION

The spin-orbit coupling~SOC! is only a small contribu-
tion to the energy of the valence electrons in transition m
als if compared with the bandwidth or the exchange inter
tion. But it plays a key role for several important phenome
in the magnetism of Fe-, Co-, or Ni-based compounds,
the magneto-optic Kerr effect, magnetic anisotropy ene
or magnetostriction. The calculation of these spin-orbit
fects from first principles and their properties in artificial
structured material have found much interest in rec
years.1–6 In this work we investigate a spin-orbit effect th
was less intensely studied in the past: the noncubic ch
distribution in ferromagnets with cubic lattice symmetry.
can be measured via the electric field gradient~EFG! at the
nuclear site and is a sensitive test for the theory of spin-o
effects in transition metals.

For a long time data were available only for a few favo
able cases. But due to recent improvements in the meas
ment technique, a more complete experimental study of
spin-orbit induced EFG~SO-EFG! has become feasible. A
first systematic investigation was performed for the 5d im-
purities in Fe, Co, and Ni. The preceding paper~part I! ~Ref.
7! gives a survey of the current experimental situation. Fo
quantitative account of the effect detailed electronic struct
calculations are necessary. Although noab initio calculations
of the SO-EFG have been reported so far, the potential
such calculations exists: For the theoretical treatment of
SOC in magnetic transition metals several advanced sche
0163-1829/2002/66~17!/174402~17!/$20.00 66 1744
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are available,8–10 and EFG’s in noncubic transition meta
can moderately well be reproduced byab initio
calculations.11–13

However, the understanding of some elementary relati
between the noncubic charge distribution, the SOC, and
band structure will also be necessary for the interpretation
the experimental and theoretical results. These relations
not directly evident from the very generally formulated equ
tions of ab initio calculations. Therefore, we present in th
work an approximate but more transparent treatment of
SOC within the tight-binding model. The results are co
pared with preliminary band structure calculations includi
SOC. Detailed electronic structure calculations, better rep
senting the impurity systems, are left for future work.

Tight-binding models were already used in the first stu
ies of the SO-EFG to explain the effect: Aiga and Itoh a
sumed a rigid shift of the partial densities of states by
SOC.14 Using this approximation the orbital moment and t
SO-EFG can be expressed in terms of the SOC strength
density of states at the Fermi energy, and the derivative
the density of states at the Fermi energy. This model w
extended by Gehring and Williams by the introduction of t
crystal potential to treat a possible dependence on the d
tion of the magnetization.15,16Because of its conceptual sim
plicity, the rigid shift of the partial densities of states is st
used today for qualitative considerations.8,17 But this model
is in several respects not realistic for transition metals,
discussed in detail in Appendix A.

Demangeat has used the tight-binding approximation
©2002 The American Physical Society02-1
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combination with realistic band structures to calculate
SO-EFG at impurities in Fe and Ni.18,19The emphasis of this
pioneering work, however, was on the attempt of a quant
tive calculation of the SO-EFG and the equations used w
not simple enough for qualitative considerations.

The expressions for the noncubic charge distribution t
are used in this work are both transparent enough to re
the essential relationships and realistic enough to t
transition-metal band structures. They are obtained by ap
ing the tight-binding approximation and the perturbati
theory to the scattering of the conduction electrons by
SOC at an impurity. The derivation of these model expr
sions is discussed in detail in Sec. II.

The final equations are, however, not as simple as th
for the rigid shift of the partial densities of states. A detail
discussion is necessary to relate the properties of the s
orbit effects to the features of the band structure. The orb
moment and the noncubic charge distribution are discus
in Secs. III and IV, respectively. The discussion of the orb
moment as an effect of first order in the SOC is includ
there because it makes the more involved discussion of
noncubic charge distribution, a second-order effect, m
transparent.

The conclusions in Secs. III and IV are not restricted t
particular system. In Sec. V a special class of systems,
5d impurities in Fe, are investigated. This is mainly mo
vated by the fact that at present most of the available exp
mental data are for these systems. In addition, their b
structure shows some peculiar features that deserve a s
rate discussion.

II. TIGHT-BINDING ANALYSIS

The band structure of the system without SOC is assum
to be already known. To investigate the consequences o
SOC the following three approximations are introduced.

The first approximation is the tight-binding model: Th
conduction electron statesc i are described as linear comb
nations of the atomiclike orbitalsf jRW located at the lattice
sitesRW :

c i5
1

AN
(
j ,RW

ai jRW f jRW . ~1!

The indexj runs over the orbitals at each lattice site and
confined to the tend orbitals of the outermostd shell. In a
homogeneous system the coefficientsai jRW depend onRW only
in the form of the phase factor exp(ikW•RW ). In the vicinity of an
impurity the amplitude may also vary. In any case, we w
not make explicit use of theai jRW . We will use instead the
local density of statesrmn(e) at the impurity siteRW 50:

rmn~e!5(
i

^fm0uc i&^c i ufn0&d~e2ei !. ~2!

The expectation value of an operatorO at the impurity site is
given by the following trace:

^O&5EeF
Tr@Or~e!#de, ~3!
17440
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whereeF is the Fermi energy.
The second approximation is to neglect the SOC in

host. This seems to be primarily justified only for hea
impurities, where the SOC is an order of magnitude lar
than in the Fe or Ni host. However, most of the availab
SO-EFG data are for the 5d impurities. Furthermore, it is
shown in Appendix B that similar equations are obtained
the pure host. Therefore, most of the conclusions are
pected to apply even if the SOC’s of host and impurity are
comparable magnitude.

The SOC represents thus an additional potentialDV(SO) at
the impurity site. This is, however, a well-known scatteri
problem. An elegant solution is provided by the Gree
function formalism20,21:

G~e!5PF E r~e8!

~e2e8!
de8G2 ipr~e!, ~4!

r~e!52~1/p!Im@G~e!#, ~5!

G~e!5G(0)~e!1G(0)~e!DV(SO)G~e!. ~6!

G(e) is the Green’s function, andP is the principal part of
the integral.G(e) andr(e) are closely related and can easi
be converted into each other via Eqs.~4! and ~5!. Equation
~6! is the Green’s function formulation of the scattering pro
lem: The Green’s functionG(e) of the system withDV(SO)

is expressed in terms ofDV(SO) and the Green’s function
G(0)(e) of the system withoutDV(SO).

Equations~4!–~6! are in principle operator equations. Be
cause of the tight-binding approximation and the localizat
of DV(SO), however,r(e), G(e), G(0)(e), DV(SO), andO
are 10310 matrices acting on the tend orbitals at the impu-
rity site. Thus Eq.~6! is a set of linear equations, which ha
to be solved for each energye.

The third approximation is to treatDV(SO) in perturbation
theory. Equation~6! is still not transparent since the un
known quantityG(e) enters both sides of the equation. Th
can be removed by expanding the Green’s function in pow
of DV(SO):

G5G(0)1G(0)DV(SO)G(0)

1G(0)DV(SO)G(0)DV(SO)G(0)1•••. ~7!

This should be a reasonable approximation as long as
SOC is considerably smaller than the bandwidth.

The next step is to find explicit expressions forr (0),
DV(SO), and Ô to substitute into Eqs.~3!, ~5!, and ~7!. We
introduce first the following notation to distinguish betwe
the two reference frames that enter our problem:x, y, andz
denote the principal axes of the cubic lattice andx8, y8, and
z8 denote an axes system where thez8 direction is parallel to
the magnetization.

The tend orbitals are represented by a basis set where
spin is parallel~spin up,↑) or antiparallel~spin down,↓) to
the magnetization and the angular-dependent part beh
like xy, yz, zx, x22y2, or 3z22r 2.22 Herexy, yz, andzx
are the t2g orbitals ~other notation:e, G5 , G258 ), and x2

2y2 and 3z22r 2 the eg orbitals ~other notation:g, G3 ,
2-2
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G12). The former are preferentially oriented along the@110#
directions, the latter along the@100# directions.r (0)(e) is
diagonal in this representation with only four different mat
elementsreg

↑ (e), r t2g

↑ (e), reg

↓ (e), and r t2g

↓ (e). The radial

part of the orbitals is assumed to be independent of the
ergy of the electron and the type ofd orbital. It enters only in
the form of the SOC strengthj and the averagê1/r 3&.

DV(SO) is given byjsW• lW acting on thed orbitals at the
impurity site. The matrix elements ofDV(SO) in the used
representation are given, for example, in Refs. 18 and 2

The expectation values that are investigated in this w
are ^ l z8& as a measure for the orbital moment and^ l z8

2
2 l ( l

11)/3& as a measure for the deviation of the charge dis
bution from cubic symmetry. Ford electrons the latter quan
tity is connected to thez8z8 component of the EFG by7

Vz8z85~2/7!e^1/r 3&K l z8
2

2
l ~ l 11!

3 L . ~8!

We need to consider only thez8 components, since in prac
tice only these are accessible to the experiment.

If we now combine Eqs.~3!, ~5!, and ~7!, we obtain in
lowest nonvanishing order@first-order perturbation theory fo
^ l z8& and second order for̂l z8

2
2 l ( l 11)/3&]:

^ l z8&52
1

p
ImEeF

Tr@~ l z8!G
(0)~e!~jsW• lW !G(0)~e!#de,

~9!

K l z8
2

2
l ~ l 11!

3 L 52
1

p
ImEeF

TrF S l z8
2

2
l ~ l 11!

3 DG(0)~e!

3~jsW• lW !G(0)~e!~jsW• lW !G(0)~e!Gde.~10!

If the matrix multiplications in Eq.~9! are carried out, the
following expression for the orbital moment is obtained:

^ l z8&5jEeF

(
st

(
i j

bstci j V i j
st~e!de, ~11!

V i j
st52~1/p!Im@Gi

s~e!Gj
t~e!#. ~12!

The Gi
s’s are the matrix elements ofG(0)(e). The super-

scriptss andt denote↑ or ↓ spin, the subscriptsi andj, eg or
t2g orbitals.st is summed over↑↑ and↓↓ and thebst’s are

b↑↑51, b↓↓521. ~13!

i j is summed overegt2g and t2gt2g and theci j ’s are

cet54, ctt51, ~14!

whereeg and t2g is abbreviated bye and t.
We obtain from Eq.~10! for the noncubic charge distribu

tion

K l z8
2

2
l ~ l 11!

3 L 5j2EeF

(
stu

(
i jk

bstuci jkV i jk
stu~e!de,

~15!
17440
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V i jk
stu52~1/p!Im@Gi

s~e!Gj
t~e!Gk

u~e!#. ~16!

stu is summed over↑↑↑, ↑↓↑, ↓↑↓, and↓↓↓. The respec-
tive bstu’s are

b↑↑↑51, b↑↓↑521,

b↓↑↓521, b↓↓↓51. ~17!

i jk is summed overegt2geg , egt2gt2g , t2gegt2g , and
t2gt2gt2g . The ci jk ’s depend on the direction of the magn
tization:

cete5222F~aW !, cett52F~aW !,

ctet522F~aW !, cttt52 1
2 1F~aW !, ~18!

F~aW !53~ax
2ay

21ay
2az

21az
2ax

2!. ~19!

aW is the unit vector parallel to the direction of the magne
zation.

Each Green’s functionGi
s(e) is, as defined by the righ

side of Eq.~4!, simply a linear combination of the respectiv
partial density of statesr i

s(e8) at different energiese8. Thus,
the sets of equations~11!–~14! and ~15!–~19! express the
orbital moment and the noncubic charge distribution direc
in terms ofj and the four partial densities of statesreg

↑ (e),

r t2g

↑ (e), reg

↓ (e), andr t2g

↓ (e).

The equations are used in the following sections in diff
ent ways:~i! The basic relations between orbital mome
noncubic charge distribution, and band structure are deri
from the structure of the equations. This structure mainly l
within the b andc coefficients and the definition of theV ’s.
Therefore, it is not immediately obvious from the Eq.~11! or
~15!. But it will become clear from the discussion of the
quantities in Secs. III and IV.~ii ! The equations are evaluate
for simple model densities of states to study directly t
influence of particular features of the density of states.~iii !
Applied to theeg and t2g densities of states of a particula
system the equations yield approximate results for the orb
moment and the noncubic charge distribution. The m
trends should be reproduced in this way although no co
plete agreement with more precise calculations can
expected.

The advantage of the proposed tight-binding analysis w
respect to other perturbation treatments of the SOC is
the band structure enters the equations in the form of f
partial densities of states, a comparatively transparent fo
This is a feature of the impurity problem, because the sc
tering by the localized SOC is wave vector independent
allows us to combine all states with the same energy to
local density of states. On the contrary, the band struc
enters most other perturbation treatments in the form of a
of eigenstates and eigenenergies for each wave vector.
impossible to obtain a qualitative understanding of the ba
structure in this detailed form. The equations for the impur
problem are thus easier to understand than the equation
the pure metal.

Equation~6! was already used in Ref. 15 to investiga
the orbital moment and the noncubic charge distribution. T
decisive improvement with respect to this work is that w
2-3
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transform the implicit equation forG(e) into the explicit
equation~7! by using perturbation theory. The explicit form
decisively facilitates the interpretation of the structure of
equations. Explicit equations were also derived in Ref.
but under the assumption of a Lorentzian shape of the d
sities of states. This assumption is far less realistic than
perturbation theory.

Apart from the approximations that are used in the de
vation of our model we want to mention also some mo
fundamental limitations:~i! We neglect in this work thep
electrons. However, it is well known that they can make
essential contribution to the EFG even if the electronic str
ture is dominated byd electrons, because the radial part op
andd orbitals is very different.11 Whether there is a sizablep
contribution to the SO-EFG will depend on the number op
andd electrons and on the respective radial matrix eleme
j and ^1/r 3& in the particular case.~ii ! It is now commonly
assumed that, according to Hund’s second rule, the orb
moment is enhanced by intraatomic correlations by up t
factor of 2. In recentab initio calculations these correlation
are taken into account by an additional ‘‘orbital polarizatio
~OP! term.24,25 This ‘‘OP mechanism’’ is not taken into ac
count in our work. Its importance for 4d and 5d elements
and for the noncubic charge distribution remains to be inv
tigated.

III. ORBITAL MOMENT

A. Competition between band structure and SOC

The quenching of the orbital moment in transition met
is the result of the competition between the mixing of t
states by the SOC and the splitting of the states by the b
structure:26 The conduction electron states are split into a
of bands. The energy separation is of the order of the ba
width W. The expectation value of the orbital moment wou
vanish for all eigenstates in the absence of the SOC.
SOC tends to mix the states of each spin direction into eig
states ofl z8 , but the mixing is hindered by the splitting o
the states.

The structure of the quantityV i j
st(e), the basic element on

the right side of Eq.~11!, provides a more formal descriptio
of this quenching mechamism.V i j

st(e) is the density of or-
bital moment per unit energyd^ l z8&/de at the energye due to
the mixing of i

s and j
t states by the SOC. For simplicity, w

consider first only↑ states and neglect the difference b
tween eg and t2g states. That meansreg

5r t2g
5(1/5)r t ,

wherer t is the total density ofd states. Using Eqs.~4!, ~11!,
and ~12! we can express the density of orbital moment a
function of the density of states:

~d^ l z8&/de!↑↑~e!5~2/5!jr t
↑~e!PE r t

↑~e8!

~e2e8!
de8. ~20!

The structure of this expression reflects the quenching of
orbital moment by the energy distribution of the states: T
induced moment is proportional tor(e)r(e8), the product of
the number of the involved states ate and e8. The various
matrix elements are absorbed in the prefactor 2/5. The m
ing of the states is suppressed by a factorj/(e2e8). There-
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fore, the orbital moment is of the orderj/W. The sign of the
admixtures is determined by the factor 1/(e2e8). This factor
leads to the mixing of wave function components with o
bital moment parallel to the spin from the energetically low
state to the higher state. In return, components with orb
moment antiparallel to the spin are mixed from the high
state to the lower state. In this way an orbital moment a
parallel to the spin~the energetically favored orientation! is
induced in the lower half of the band and an orbital mom
parallel to the spin in the upper half of the band. The res
ing distribution of the orbital moment in the↑ band is shown
for an idealized, almost rectangular density of states in F
1~b!.

The orbital moment of the system is obtained by the
tegration ofd^ l z8&/de up to the Fermi energy. The depen
dence of the orbital moment on the band filling is shown
Fig. 1~c!: Since the states with antiparallel orientation of t
orbital moment are filled up first, the orbital moment is a
ways antiparallel to the spin and the maximum momen
found for a half filled band.

The formal expression for the orbital moment as a fun
tion of the Fermi energy is obtained by integration of E
~20!:

^ l z8&
↑↑5~2/5!jEeF

deE
eF

de8
r t

↑~e!r t
↑~e8!

~e2e8!
. ~21!

This particular form is obtained by a rearrangement of
integration limits: Only unoccupied states need to be con
ered fore8, since admixtures between occupied states do
change the total orbital moment.

We will extend in the following the discussion from
band with uniform spin direction and almost rectangular d
sity of states to a realistic ferromagnetic band structure
the following steps:~i! Both spin directions are taken int

FIG. 1. Orbital moment for a smooth↑ band. ~a! Density of
states.~b! Density of orbital moments.~c! Orbital moment as a
function of the Fermi energy.W is the bandwidth.
2-4
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account.~ii ! The rectangular band is replaced by a realis
density of states.~iii ! eg andt2g states are distinguished. Fo
each of these steps the density of states and the depend
of ^ l z8& on the band filling are shown in Figs. 2 and 3, r
spectively. The partial densities of states for Fe from Re
were chosen as the example for a realistic ferromagn
band structure.

FIG. 2. Model densities of states for Fe.~a! Smooth density of
states (rd51/5r t). ~b! Realistic density of states;eg and t2g states
are not distinguished.~c! Realistic density of states;eg and t2g

states are distinguished. The densities in~b! and ~c! were taken
from Ref. 8.

FIG. 3. Orbital moment as a function of the Fermi energy for
densities of states from Fig. 2. Dashed lines in~a!: contributions
from the ↑ and the↓ band. Dashed line in~c!: orbital moment
according to Eq.~26!.
17440
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B. Competition between_ and ` band

We have just discussed the orbital moment of the↑ band,
which arises from the mixing of the↑ states. To this we have
to add the orbital moment of the↓ band, which arises from
the mixing of the↓ states. It essentially shows the sam
behavior. But the relevant densities are those of the↓ band
and it has the opposite sign since it is also antiparallel to
spin. The competition between the contributions from the↑
and↓ bands is formally described by theb coefficients in Eq.
~11!: With respect to the spin indicess,t of theV i j

st’s we can
distinguish a↑↑ and a↓↓ contribution, which are added in
the form↑↑2↓↓.

This partial cancellation between the orbital moments
the ↑ and the↓ band is important for the dependence of t
total orbital moment on the band filling. In the paramagne
state,↑ and ↓ bands are identical and the cancellation
exact. In a ‘‘simple’’ ferromagnetic band structure,↑ and↓
bands are just shifted with respect to each other by the
change splitting. The↓↓ and↑↑ terms are, as a function o
eF , accordingly also just shifted with respect to each oth
by the exchange splitting. The typical dependence of the
bital moment as the difference of both terms on the ba
filling is shown in Fig. 3~a!. This dependence is in acco
dance with Hund’s third rule: The orbital moment is paral
to the magnetization for a more than half filled band a
antiparallel for a less than half filled band.

The absence of↓↑ and↑↓ terms directly arises from the
form of Eq.~9!. The matrix elements in the trace are found
have the following form:

^ i u l z8u j &^ j ujsW lWu i &, ~22!

where i and j denote the mixed states. Sincel z8 does not
change the spin, only the following two combinations a
possible with respect to the spins of the involved states:

^↑u l z8u↑&^↑u l z8u↑&

and

2^↓u l z8u↓&^↓u l z8u↓&,

which both arise from thesz8l z8 component of the SOC. The
(s18l 281s28l 18) component of the SOC also admixes↑
and ↓ states. But this does not contribute to^ l z8& in first-
order perturbation theory.

C. Sensitivity to band structure details

Figure 3~b! shows the orbital moment if we replace th
rectangular densities of states by realistic ones. The de
dence on the band filling is still rather smooth and rema
ably similar to the case of the rectangular densities of sta
This shows that the orbital moment is rather insensitive
band structure details. It is to a large extent already de
mined by the relative positions of the↑ and ↓ band, the
position of the Fermi energy, and the ratioj/W.

A further band structure detail is the distinction betwe
the eg and t2g densities of states. Thec coefficients in Eq.
~11! describe to which extent mixings betweeneg states, be-
tweent2g states, and betweeneg and t2g states contribute to
2-5
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the orbital moment: With respect to thei j indices of the
V i j

st’s we findegt2g andt2gt2g terms, which are added in th
form 4egt2g1t2gt2g . This particular set ofc coefficients is
the result of the matrix elements of the SOC andl z8 between
the variouseg and tg orbitals.

Figure 3~c! shows the orbital moment ifeg and t2g states
are distinguished. The orbital moment is obviously on
slightly affected by this distinction. This is in accordan
with the general insensitivity to band structure details.

D. Expansion in directional cosines

We have shown above that only thesz8l z8 component of
jsW• lW contributes to the orbital moment. If we expressl z8 as
( ia i l i , whereaW is the unit vector in the direction of th
magnetization, Eq.~9! can be written in the form

^ l z8&5(
i j

di j a ia j . ~23!

The summation overi and j is over the cubic coordinatesx,
y, andz. The orbital moment is thus a polynomial of seco
order in the directional cosinesa i . All matrix elements and
details of the band structure are put into the coefficientsdi j .
The important point is that these obey the same symmetr
the system without SOC. Equation~23! provides, therefore, a
particularly transparent formulation of some well-know
symmetry properties of the orbital moment.

For example, the orbital moment in a cubic lattice is
dependent of the direction of the magnetization, because
second-order polynomial of cubic symmetry has the form

d~ax
21ay

21az
2!5d.

The isotropy of the orbital moment can thus be traced b
to the combination of the cubic lattice symmetry with t
twofold appearance of the orbital moment operator in
first-order expression for̂l z8&. In fact, the orbital momen
depends in a noncubic lattice and/or in higher-order per
bation theory in general on the direction of th
magnetization.27

At this point the question may arise how the orbital m
ment can become anisotropic in higher order when it is
first order still completely isotropic. The answer is that t
induced orbital current is actually in first order not com
pletely isotropic. It is, namely, only the expectation value
the orbital moment,̂ l z8&, that is isotropic. But the angula
distribution of the orbital current around the nucleus can
shown to depend in general already in first order on the
rection of the magnetization.

A further symmetry property is that only odd orders c
contribute to the orbital moment in the perturbation exp
sion. This follows from the inversion symmetry of the unpe
turbed system which allows nonvanishing coefficients o
in front of an even number ofa i ’s. The next term beyond
first order is thus obtained in third order and is proportio
to (j/W)3.27

E. Simplified model

Every model is a compromise between simplicity a
transparency on the one side and realism on the other
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Therefore, we offer here also a much simpler model vers
of the analysis presented above.

Motivated by the insensitivity of the orbital moment t
band structure details, these details are neglected by rep
ing the energy splitting (e2e8) in Eq. ~21! by an appropriate
averageDe. The right side of Eq.~21! is then the product of
the number of all occupied states,

No5EeF
r t~e8!de8, ~24!

the number of all unoccupied states,

Nu5E
eF

r t~e8!de8552No , ~25!

the ratioj/(De), and a numerical prefactor. If we approx
mate 1/De by

~4/W2!E
0

W/2

deE
W/2

W

de8
1

~e2e8!
,

we obtain 1/De'24/W. By applying this procedure also t
the orbital moment of the↓ band we obtain for the tota
orbital moment

^ l z8&'~8/5!~j/W!@2No
↑~52No

↑!1No
↓~52No

↓!#. ~26!

Oviously, Eq.~26! is much simpler than Eq.~11!, but also
less realistic and flexible. For example, a separation of
band in two parts, as found for the 5d impurities in Fe, is not
provided for by the parameters in Eq.~26!. Nevertheless, it
will in many cases already describe the major trend of
orbital moment.

The orbital moment according to Eq.~26! is shown as the
dashed line in Fig. 3~c!. With respect to the full expressio
~11! @solid line in Fig. 3~c!# the variation with band filling as
well as the absolute magnitude of the effect is modera
well reproduced.

Table I compares the prediction of Eq.~26! for the orbital
moments of Fe, Co, and Ni with the experiment and with
results of fully relativisticab initio calculations with and
without the OP mechanism. We find again that Eq.~26! not
only reproduces the order of magnitude, but also the m
systematic trend. Of course, there can be no close quan
tive agreement since we have used, for example,j ’s that
were calculated for the free atom. Table I also shows that
OP mechanism, which is not taken into account in t
present work, can be quite important.

IV. NONCUBIC CHARGE DISTRIBUTION

In contrast to the orbital moment, the noncubic cha
distribution arises only in second-order perturbation theo
Because of the higher order, there is no direct corresp
dence to the orbital moment and the dependence on the
structure is more complex.

The higher order can be understood in the following wa
The eigenstates of the system in the absence of the S
contain components with positive and negative orbital m
2-6
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TABLE I. Orbital moments of Fe, Co, and Ni.~mod! refers to Eq.~26!, ~SO! and~OP! refer toab initio
calculations without and with orbital polarization, and~exp! refers to the experiment. The parametersW, No

↑ ,
andNo

↓ are rough estimates.

j ~eV!a W ~eV! No
↑ No

↓ l z8
(mod) l z8

(SO)b l z8
(OP)b l z8

(exp)b

Fe 0.054 6.2 4.8 2.6 0.074 0.048 0.078 0.08
Co 0.068 5.8 5.0 3.4 0.102 0.076 0.123 0.14
Ni 0.086 5.1 5.0 4.4 0.071 0.048 0.066 0.05

aReference 28.
bReference 25.
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ments to exactly the same extent. The mixing of the state
the SOC leads to a growth of the components of one orb
moment direction. But at the same time the respective c
ponents with the opposite orbital moment diminish, in fir
order perturbation theory to exactly the same extent. Si
orbitals with opposite orbital moments have the same spa
electron distribution, the charge distribution does not cha
in first-order perturbation theory.

We neglect in the following magnetostriction as a sou
of the noncubic charge distribution. This point is discussed
Appendix C.

A. Competition between band structure and SOC

The quenching of the spin-orbit induced mixing of sta
by the band structure also dominates the physics of the n
cubic charge distribution. The structure ofV i j l

stu(e), the basic
element on the right side of Eq.~15!, provides the formal
description of this quenching.

V i j l
stu(e) is the density of noncubic charge distribution p

unit energyd^ l z8
2

2 l ( l 11)/3&/de at the energye due to the
mixing of i

s , j
t , and l

u states by the SOC. There are 1
different V i j l

stu(e)’s, according to whether↑ or ↓, eg or t2g

states are mixed. For simplicity, we again first consider o
↑ states and assumereg

(e)5r t2g
(e)5(1/5)r t

↑(e). Using
Eqs. ~4!, ~15!, and ~16!, we can then express the noncub
charge distribution in the following way as a function of th
density of states:

S dK l z8
2

2
l ~ l 11!

3 L /deD ↑↑↑
~e!

5~7/250!j2F3r t
↑~e!PE E r t

↑~e8!r t
↑~e9!

~e2e8!~e2e9!
de8de9

2p2r t
↑~e!r t

↑~e!r t
↑~e!G . ~27!

The structure of Eq.~27! reflects that the noncubic charg
distribution arises from twofold admixtures by the SOC: T
effect is proportional to the triple product of the involve
densities of statesr(e)r(e8)r(e9). It is suppressed by a
factor j2/@(e2e8)(e2e9)# and scales, therefore, wit
(j/W)2. Its distribution over the band is determined by t
sign of the factor 1/@(e2e8)(e2e9)#: For e near the ends o
the band this factor is predominantly positive. In the midd
17440
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of the band positive and negative contributions tend to can
each other and the last term in Eq.~27!, which is always
negative, dominates. With respect to the direction of
magnetization there is thus an oblate deformation of the e
tron distribution at both ends of the band and a prolate
formation in the middle of the band. Figure 4~b! shows the
distribution of the noncubic charge distribution over a re
angular band.

Figure 1~b! shows that the largest orbital moment dens
is in first-order perturbation theory induced at both ends
the band. Therefore, it is perhaps not surprising that
states with largê l z8

2 & concentrate in second-order perturb
tion theory just at the ends of the band whereas they
missing in the middle of the band.

The noncubic charge distribution of the system is giv
by the integral overd^ l z8

2
2 l ( l 11)/3&/de up to eF . The re-

sulting dependence on the band filling is shown in Fig. 4~c!:
The net deformation of the electron distribution is oblate
a less than half filled band and prolate for a more than h
filled band.

FIG. 4. Noncubic charge distribution for a smooth↑ band.~a!
Density of states.~b! Density of noncubic charge distribution.~c!
Noncubic charge distribution as a function of the Fermi energy. T
insets in~b! illustrate that the positive sign corresponds to an obl
deformation of the electron distribution, the negative sign to a p
late deformation.
2-7
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For completeness, we give here also the formal exp
sion for the noncubic charge distribution as a function of
density of states:

K l z8
2

2
l ~ l 11!

3 L ↑↑↑

5~21/250!j2F EeF
deE

eF

de8E
eF

de9
r t

↑~e!r t
↑~e8!r t

↑~e9!

~e2e8!~e2e9!

2E
eF

deEeF
de8EeF

de9
r t

↑~e!r t
↑~e8!r t

↑~e9!

~e2e8!~e2e9!
G . ~28!

It is obtained from the integral over Eq.~27! by a rearrange-
ment of the integration limits and by use of the relation

PS 1

~e2e8!~e2e9!
1

1

~e82e!~e82e9!
1

1

~e92e!~e92e8!
D

5p2d~e2e8!d~e2e9!.

Due to these manipulations, the last term on the right sid
Eq. ~27! has disappeared and the factor 1/@(e2e8)(e2e9)#
is always positive.

We will now proceed again from a band with unifor
spin direction and rectangular density of states to a real
band structure by the following steps:~i! Both spin directions
are taken into account.~ii ! A realistic density of states is
used.~iii ! eg and t2g states are distinguished. The density
states and the noncubic charge distribution as a functio
eF are shown for each of these steps in Figs. 2 and 5, res
tively.

B. Competition between_ and ` bands

The competition between↑ and↓ bands is also importan
for the noncubic charge distribution. Theb coefficients from
Eq. ~17! show in which way the↑ and the↓ states contribute
to the effect: With respect to the spin indicesstu of the
V i jk

stu’s we find four types of terms:↑↑↑, ↑↓↑, ↓↑↓, and↓↓↓
terms, according to whether three, two, one, or none of
mixed states are↑ states. These terms contribute to the to
noncubic charge distribution in the form↑↑↑2↑↓↑2↓↑↓
1↓↓↓. The ↑↑↑ and ↑↓↑ terms form the noncubic charg
distribution of the↑ band, the↓↓↓ and↓↑↓ terms the non-
cubic charge distribution of the↓ band. We note that via the
mixed terms even a full↑ band contributes to the effect.

The presence of four terms follows directly from the for
of Eq. ~10!. The matrix elements in the trace are all of t
form

^ i u l z8
2

2
l ~ l 11!

3
u j &^ j ujsW• lWuk&^kujsW• lWu i &. ~29!

With respect to the spin of the involved states thesz8l z8
component of the SOC gives rise to contributions of the fo

^↑u l z8
2

2
l ~ l 11!

3
u↑&^↑u l z8u↑&^↑u l z8u↑& ~30!
17440
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^↓u l z8
2

2
l ~ l 11!

3
u↓&^↓u l z8u↓&^↓u l z8u↓&, ~31!

whereas the (s18l 281s28l 18) component of the SOC give
rise to contributions of the form

^↑u l z8
2

2
l ~ l 11!

3
u↑&^↑u l 28u↓&^↓u l 18u↑& ~32!

or

^↓u l z8
2

2
l ~ l 11!

3
u↓&^↓u l 18u↑&^↑u l 28u↓&. ~33!

The dependence of the total noncubic charge distribu
on the band filling can be understood in the following wa
The ↑↑↑ contribution was already discussed above. T
other contributions show essentially the same behavior a
from that one, two, or three of the↑ densities of states ar
replaced by↓ densities of states. Therefore, there is a re
tively smooth transition from↑↑↑ to ↑↓↑ to ↓↑↓ to ↓↓↓.

In the paramagnetic state, the↑ and↓ bands are identica
and the various contributions cancel each other exactly.
‘‘simple’’ ferromagnet,↑ and ↓ bands are shifted with re
spect to each other by the exchange splitting. The↑↑↑, ↑↓↑,
↓↑↓, and↓↓↓ terms are in this case rather similar apart fro
a gradual shift within this series from the↑ to the ↓ band.
The summation of the terms in the form↑↑↑2↑↓↑2↓↑↓
1↓↓↓ leads to a dependence oneF that resembles the sec

FIG. 5. Noncubic charge distribution as a function of the Fer
energy for the densities of states from Fig. 2. Dashed and d
dotted lines in~a!: ↑↑↑, ↑↓↑, ↓↑↓, and ↓↓↓ terms, which are
added to the total noncubic charge distribution in the form↑↑↑
2↑↓↑2↓↑↓1↓↓↓.
2-8
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ond derivative of one of the terms. The result is that
deformation of the electron distribution changes from obl
to prolate to oblate to prolate as the band is successi
filled. The individual contributions and the total noncub
charge distribution are shown in Fig. 5~a! as a function of the
band filling.

We can predict from Fig. 5~a! already the sign of the
SO-EFG in pure Fe. It should be positive since thed band is
somewhat more than half filled. For Ni, where thed band is
almost completely filled, we expect a negative SO-EFG.

C. Sensitivity to band structure details

Figure 5~b! shows the noncubic charge distribution for
realistic density of states. The comparison with Fig. 5~a!
shows the extent of the sensitivity to band structure deta
The basic pattern in the dependence on the band filling w
the three sign changes remains essentially preserved.
some additional structure is also introduced. The amoun
this fine structure corresponds roughly to the amount of
structure in the density of states.

An essential question for the comparison between b
structure calculations and experiment is how accurate
description of the band structure must be. Our results sug
that the reproduction of the main features in the density
states allows already a moderately precise prediction of
noncubic charge distribution. This should be well within t
scope of modernab initio calculations.

Compared to the orbital moment, the sensitivity to ba
structure details is much larger. This is due to the sec
order of the effect: The admixtures are weighted by 1/@(e
2e8)(e2e9)# instead of 1/(e2e8) and the cancellation be
tween the↑↑↑, ↑↓↑, ↓↑↓, and↓↓↓ terms is more complex
than between the↑↑ and↓↓ terms in the case of the orbita
moment. Both features increase the importance of the b
in the immediate vicinity of the Fermi energy and increa
thus the sensitivity to details in this region.

D. Anisotropy

The anisotropy of spin-orbit effects in transition me
ferromagnets is due to the following mechanism26,27: The
partial densities of states depend on the orientation of
orbitals relative to the lattice. For example, in the case
cubic symmetry, theeg and t2g orbitals of thed band have
different densities of states. The matrix elements of thesz8l z8
and (s18l 281s28l 18) components of the SOC depend, o
the other hand, on the orientation of the orbitals relative
the direction of the magnetization. Therefore, a rotation
the magnetization in the laboratory frame changes the de
ties of states in the reference frame of the magnetizat
whereas the matrix elements of the SOC remain per de
tion unchanged. This will in general change the magnitude
the spin-orbit effect.

Some conclusions can be drawn at this point:~i! The
mechanism is quite general. The anisotropy of spin-orbit
fects is accordingly rather the rule and the isotropy of^ l z8& in
cubic symmetry is the exception, as follows also from t
discussion in Sec. III D.~ii ! The nonspherical symmetry o
the band structure that causes the anisotropy comes from
17440
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lattice symmetry and not from the SOC. The anisotropy
cordingly depends in lowest order only on the band struct
and not on the SOC strength.~iii ! In view of the distinct
differences in the partial densities of states in realistic ba
structures, large anisotropies can in principle be expec
However, the sensitivity of the particular spin-orbit effect o
band structure details plays also a role.

For a more detailed account of the anisotropy we need
know which orbitals contribute to which extent for whic
direction of the magnetization. Thec coefficients in Eq.~15!
provide this information: With respect to thei jk indices of
theV i jk

stu’s we findegt2geg , egt2gt2g , t2gegt2g , andt2gt2gt2g

terms, which are weighted by thec coefficients from Eq.
~18!. The order ofeg and t2g in i jk plays a role when com-
bined with the order of↑ and↓ in the spin indicesstu.

Equation~18! shows that allc coefficients are the sum o
an isotropic term and a term proportional toF(aW ). The form
of the anisotropy is thus given byF(aW ), independent of the
band structure.F(aW ) equals 0, 3/4, and 1 forM i@100#,
M i@110#, and M i@111#, respectively, and varies rathe
smoothly between these major directions. The complete
pendence on the direction of the magnetization can thus
described by two parameters. This suggest an alternative
sentation of thec coefficients: Instead of specifying an iso
tropic and anisotropic part we can also specify the coe
cients for the two extreme casesM i@100# andM i@111#. The
c coefficients are given in this form in Table II.

The c coefficients from Eq.~18! or Table II are the exac
answer to the question to which extent theeg and t2g states
contribute for different directions of the magnetization.
less precise but much simpler answer can be deduced
Table II: If one goes fromM i@100# to M i@111#, 2(egt2geg)
is replaced by 2(egt2gt2g), 2(t2gegt2g) by (t2gegt2g)
1(t2gt2gt2g), and 21/2(t2gt2gt2g) is left unchanged. To a
large part this is the replacement of oneeg density of states
out of a triple product of densities by at2g density of states.
Based on this observation, we propose the following ru
Both eg andt2g orbitals are important for all directions of th
magnetization, but theeg orbitals are somewhat more impo
tant for M i@100# and thet2g orbitals somewhat more fo
M i@111#.

This interpretation of thec coefficients allows us now to
investigate the relation between anisotropy and band st
ture in more detail.

First, we discuss some limiting cases, which were d
cussed already in Ref. 15. These are rather unrealistic,
we want to show that thec coefficients from Table II give the
same results as the previous work:~i! For reg

5r t2g
all an-

isotropic terms vanish and the noncubic charge distributio
isotropic.~ii ! If only eg states are important, there is no no

TABLE II. The ci jk coefficients from Eq.~15! for M i@100# and
M i@111#. eg is abbreviated bye and t2g by t.

cete cett ctet cttt

M i@100# 2 0 2 21/2
M i@111# 0 2 1 1/2
2-9



t
y
is

ly
e
b
i
o

be

b
-

s.
th

-

i-
a

m

b
h

e

o
on
ar

s
en

r-

bu
-
t

y-
s

the

o-

the
of

om
ot

t the
der
l to

s-
n-
tion

es-

e

.

g-
e

ple

Of
tion

eaks
the

f
to

hy-

G. SEEWALD, E. ZECH, AND H. HAAS PHYSICAL REVIEW B66, 174402 ~2002!
cubic charge distribution at all, sinceeg orbitals alone are no
mixed by the SOC.~iii ! If only t2g states are important, onl
the t2gt2gt2g term does not vanish. The noncubic charge d
tribution is in this case forM i@100# and M i@111# only
21/7 and 1/7 as large as in the casereg

5r t2g
.

Figure 5~c! shows the@100# and @111# noncubic charge
distributions for realistic partial densities of states—name
those of Fig. 2~c!. The variation of the anisotropy with th
band filling illustrates the range of anisotropies that can
expected for realistic band structures: Any anisotropy is
principle possible, from no anisotropy to opposite signs
the noncubic charge distribution forM i@100# andM i@111#.
However, in the majority of cases the anisotropy will
larger than 10%, but will not lead to a sign change.

The main trends in the anisotropy will in many cases
explained by the simple rule that theeg states are more im
portant forM i@100# and thet2g states forM i@111#. The Fe
band structure@Figs. 2~c! and 5~c!# offers two examples:~i!
At the bottom of the band (e525•••23 eV), thet2g band
is, with respect to theeg band, shifted to higher energie
Accordingly, in this energy region the dependence of
@111# noncubic charge distribution oneF differs from the
respective dependence of the@100# noncubic charge distribu
tion mainly by a shift to higher energies.~ii ! In the region
e523•••12 eV theeg band is concentrated in one prom
nent density of states peak. This leads locally to a sm
effectiveeg bandwidth and thus to a large contribution fro
the eg band. Accordingly, the@100# noncubic charge distri-
bution in this energy region is in most cases considera
larger than the@111# noncubic charge distribution, althoug
the form of the dependence oneF is similar forM i@100# and
M i@111#.

E. Expansion in directional cosines

The expansion of the right side of Eq.~10! in a polyno-
mial of the a i ’s leads to the following expression for th
noncubic charge distribution:

K l z8
2

2
l ~ l 11!

3 L 5 (
i jmn

di jmna ia jaman1(
i j

di j8 a ia j .

~34!

The noncubic charge distribution is thus a polynomial
fourth order in the directional cosines of the magnetizati
All details of the matrix elements and the band structure
put into the coefficientsdi jmn anddi j8 . The important point is
again that these coefficients obey the same symmetry a
system without SOC. This allows a particularly transpar
formulation of some symmetry properties.

Equation~34! is derived in the same way as its counte
part for the orbital moment, Eq.~23!. The only complication
is that there are now not only terms like Eqs.~30! and ~31!
that arise from the longitudinal component of the SOC
also terms like Eqs.~32! and ~33! that arise from the trans
verse component of the SOC. The longitudinal componen
proportional to( ia i l i and thus automatically leads to a pol
nomial in thea i ’s. However, it can be shown that the term
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from the transverse component can also be brought into
form of a polynomial in thea i ’s.

The form of the anisotropy directly follows from Eq.~34!,
since any fourth-order polynomial with cubic symmetric c
efficients must have the form

d(0)1d(2)~ax
2ay

21ay
2az

21az
2ax

2!.

This form of the anisotropy is thus the consequence of
fourfold appearance of the orbital moment operator and
the cubic lattice symmetry.

The order of the effect can also be deduced directly fr
Eq. ~34!: Only the coefficients of even-order terms do n
vanish in an expansion like Eq.~34! because of the inversion
symmetry of the system. This has the consequence tha
lowest-order term is of second order. The next-higher-or
terms are of fourth, sixth, . . . order and are proportiona
(j/W)4, (j/W)6, . . . .

F. Simplified model

The orbital moment is expressed in Eq.~26! by No
↑ , No

↓ ,
j, andW. We have tried to derive a similarly simple expre
sion for the noncubic charge distribution. No simple relatio
ship was found, however, which takes the strong cancella
between the↑↑↑, ↑↓↑, ↓↑↓, and ↓↓↓ contributions ad-
equately into account. Therefore, we derive here only an
timate for the↑↑↑ contribution.

The energy splittings in Eq.~28! are replaced by an ‘‘ap-
propriate’’ averageDe. All details of the density of states ar
neglected in this way. 1/(De)2 is approximated by

~2/W!3E
0

W/2

deE
W/2

W

de8E
W/2

W

de9
1

~e2e8!~e2e9!
.

This gives 1/(De)2'10.5/W2. Using this estimate and Eqs
~24! and ~25!, we obtain from Eq.~28!

K l z8
2

2
l ~ l 11!

3 L ↑↑↑
'0.88~j/W!2No

↑Nu
↑~Nu

↑2No
↑!. ~35!

The relation~35! is used here to estimate the typical ma
nitude of the effect. The maximum and minimum of th
productNoNu(No2Nu) are 112.0 and212.0. The noncu-
bic charge distribution should, therefore, range in princi
between about110 and210 (j/W)2. This is in accordance
with the model calculations in Figs. 4 and 5, for example.
course, other factors also play a role. The strong cancella
between the↑↑↑, ↑↓↑, ↓↑↓, and ↓↓↓ contributions, for
example, tends to reduce the effect. On the other hand, p
in the density of states will enhance the effect, since
effective bandwidth becomes smaller near the peaks.

V. 5d IMPURITIES IN Fe

A. Local band structure

Variousab initio calculations of the electronic structure o
the 5d impurities in Fe have been performed in the past
investigate the local moments, the orbital moments, the
perfine fields, and the nuclear spin–lattice relaxation.17,29
2-10
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However, no calculation of the SO-EFG’s has been repor
In order to have the densities of states necessary for
tight-binding analysis outlined above, we have calculated
local band structure of the 5d impurities in Fe from Ta to Au
within the full-potential linearized augmented plane-wa
~FPLAPW! method using the wien97 code.30

The impurity problem was approximated by constructi
a supercell with seven Fe and one impurity atom (XFe7 cell!.
This rather small supercell was chosen to reduce the num
cal effort. It should allow us to reproduce the main featu
in the systematics, but it presents certainly a severe appr
mation for quantitative purposes. Therefore, the respec
set of local band structures should be viewed only as a r
istic model for the actual band structures of the 5d impurities
in Fe.

Relativistic effects were taken into account within the s
lar relativistic approximation. The density functional wi
generalized-gradient corrections from Ref. 31 was used.
radiusRMT of the atomic spheres was relatively large:RMT
52.2 a.u. for Fe andRMT52.4 a.u. for the impurity. All cal-
culations were performed withkmaxRMT58 and a rather
coarse mesh of 20k points in the irreducible wedge of th
Brillouin zone. The unit cell dimensions were determin
self-consistently from the calculated total energies. Thus
effect of the lattice relaxation around the impurity could
approximately incorporated.

The eg and t2g densities were extracted from the wa
functions within the impurity sphere. Since thed wave func-
tions extend beyondRMT , they were normalized to twoeg
and threet2g states per impurity and spin direction in th
total d band. This procedure is somewhat arbitrary since
upper end of thed band is not uniquely defined.

Figure 6 illustrates the variation of the band structure w
the impurity. It shows theeg and t2g densities of states fo
ReFe, IrFe, and AuFe. The locald band has a characteris

FIG. 6. Partial densities of states for ReFe, IrFe, and AuFe.
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tic basic pattern that remains preserved throughout thed
series: The densities of states concentrate at both ends o
band. This leads to a distinct separation of the band into
upper and a lower part. The spin-down band lies alwa
above the spin-up band. This is remarkable since the sig
the local moment changes from negative for Re to posit
for Ir and Au.

This pattern arises from the adjustment to the host b
structure and was already found in a similar form for thed
impurities in Co and Ni~Refs. 32 and 33!: The 4d and 5d
orbitals are more extended than the 3d orbitals of the host.
Therefore, the bonding and antibonding states tend to
shifted out of the host band and concentrate at both end
the band. Furthermore, the exchange integral is smaller a
4d and 5d impurities than in the host. Therefore, the loc
magnetism is suppressed at the impurity and the relative
sition of the spin up and the spin down band is mainly d
termined by the host band structure.

A common basic pattern is also found for the differen
between theeg and t2g densities of states: Theeg states are
concentrated in the upper part of the band in one promin
density of states peak, whereas thet2g density is distinctly
less peaked in this energy region. This feature is alre
present in the pure Fe host@see Fig. 2~c!#.

But there are also some distinct changes in the local b
structure as the atomic number of the impurity increases.
main trends are the following:~i! The center of the band
shifts downwards or, in other words, the Fermi energy mo
upwards within the common band structure pattern. T
band filling is, however, only in part responsible for the i
crease in the electron number.~ii ! The lower part of thed
band becomes narrower and its amplitude increases a
expense of the amplitude of the upper part. An important p
of the increase in the electron number is due to this effe
~iii ! For the light 5d impurities up to Re the amplitude of th
lower part of the↑ band is smaller than the amplitude of th
corresponding part of the↓ band. This effect is responsibl
for the negative local moment in these systems.

B. Orbital moment

To demonstrate that our calculations give realistic res
with regard to the magnetism of the investigated systems,
calculated local spin and orbital moments are compared
Fig. 7 with previous results from circular magnetic x-ra
dicroism ~CMXD! measurements and fully relativistic spin
polarized Korringa-Kohn-Rostocker ~SP-KKR!
calculations.34,35 The systematic trend that was found in th
previous studies is approximately reproduced by our ca
lations.

The FPLAPW moments in Fig. 7 are the spin and orbi
moments of thed electrons in the impurity sphere, howeve
in order to take the extension of the wave functions beyo
RMT into account, multiplied by the same factor by which t
number ofd states~occupied and unoccupied! in the sphere
is reduced with respect to the nominal number of 10.
obtain the orbital moment, the SOC was introduced in a s
ond variational step36 as a potential of the form
2-11
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1

2 S \

mcD
21

r

]V

]r

within the atomic spheres. The FPLAPW calculation w
brought to convergence with this additional potential, a
^ l z8& was extracted from the wave functions within th
sphere.

The deviations between the curves in Fig. 7 are at pre
difficult to interpret: The small supercell used in our calc
lations is certainly a severe approximation. In the SPR-K
work the modification of the electronic structure on t
neighboring host atoms was not taken into account. Fina
the CMXD results were obtained by an unjustified version
the CMXD sum rules. Therefore, a thorough reexaminat
of the magnetism of these systems seems to be worthw
Moreover, the average moment in the Wigner-Seitz sph
which was calculated in the SP-KKR calculations, will
general not be identical to the average moment in the im
rity sphere of the FPLAPW calculation or the average m
ment in the vicinity of the nucleus, which is probed by t
CMXD measurements.

To investigate the origin of the systematic trend of t
orbital moment, the tight-binding analysis was applied.
the upper part of Fig. 8 the orbital moments that were
tained by the application of Eq.~11! to the densities of state
are compared with the orbital moments from the FPLAP
calculation.j was taken from Ref. 28. Since both approach
are based on the same band structure, the deviations bet
the two calculations can be directly attributed to the simp
fied treatment of the SOC and the band structure in the ti
binding analysis. It turns out that not only the systema
trend but also the magnitude of the effect is rather well

FIG. 7. Spin and orbital moment of the 5d impurities in Fe. The
results of our FPLAPW calculations are compared with the res
from CMXD measurements~Exp.! and fully relativistic SP-KKR
calculations. The CMXD and SP-KKR results are taken fro
Ref. 35.
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produced by the tight-binding analysis. The latter result
remarkable since we have used, for example,j ’s that were
calculated for the free atom.

Figure 9 shows the orbital moment as a function of t
band filling for ReFe, IrFe, and AuFe. To generalize the
discussion, the orbital moment is given in units ofj/W,
whereW55.5 eV is the bandwidth of the Fe host.

ts

FIG. 8. Direct comparison between tight-binding analysis a
ab initio calculation. The orbital moments~top! and noncubic
charge distributions~bottom! of the 5d impurities in Fe were either
calculated within the FPLAPW approach~FPLAPW! or the density
of states from the FPLAPW calculation was used as input for
tight-binding analysis~Tight B.!.

FIG. 9. Orbital moment as a function of the Fermi energy
ReFe, IrFe, and AuFe.
2-12
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Figure 9 reveals that the variation of the orbital mome
with the band filling also shows a common pattern throu
out the 5d series. It can be traced back to the common p
tern in the band structure: Figure 3~a! has shown the orbita
moment as a function ofeF for a simple ferromagnetic ban
structure. Due to the separation of the 5d band into two
parts, this function is now found for each of the two pa
and thus appears 2 times in series. With increasing ato
number the Fermi energy moves successively upwa
within this pattern, in accordance with the respective upw
move within the common band structure pattern. The gen
trend of the systematics can thus be described as a
filling effect. The orientation of the local spin moment see
to play only a minor role.

This interpretation of the systematics of the orbital m
ment as a band filling effect is schematically shown in F
10. No scales are given on the axes since only the b
pattern of the dependence oneF remains preserved through
out the 5d series. The widths and amplitudes of the vario
parts of this dependence vary considerably. Compariso
Figs. 6 and 9 shows that in this respect similar trends can
observed for the density of states and orbital moment.

C. Noncubic charge distribution

To calculate the SO-EFG within the FPLAPW metho
the SOC was introduced as an additional potential as in
case of the orbital moment, and the expectation va
^(1/r 3)@ l z8

2
2 l ( l 11)/3#& was evaluated for thed electrons

within the atomic spheres. Alternatively, the noncubic cha
distribution was calculated by applying Eq.~15! to the den-
sities of states obtained without SOC, andj and^r 23& were
taken from Ref. 28.

FIG. 10. 5d impurities in Fe: schematic view of the commo
pattern in the density of states~top! and the orbital moment as
function ofeF ~bottom!. The lower part of the band is largely omi
ted. The position ofeF for the various 5d impurities is marked by
the dashed lines and solid circles.
17440
t
-
t-

ic
s

d
al
nd
s

-
.
ic

s
of
be

,
e
e

e

An interesting detail of the FPLAPW calculations wa
that the SO-EFG’s after the convergence of the calcula
with SOC were between 17% and 25% smaller than the S
EFG’s that were obtained by adding the SOC only in t
final calculation of the wave functions without further iter
tion steps. In contrast, the convergence of the band struc
after the introduction of the SOC had almost no influence
the orbital moment. This shows that the SOC leaves the b
structure essentially unchanged and the observed redu
of the SO-EFG can be interpreted as a shielding effect wit
the valence electron shell that corresponds to the concep
the atomic Sternheimer shielding factorR.37

The SO-EFG’s of the FPLAPW calculations and the tig
binding analysis are compared in the bottom part of Fig.
Again, the tight-binding analysis reproduces not only t
systematic trend but also the magnitude of the effect rem
ably well, despite the various approximations such as
perturbation treatment of the SOC, the use of densities
states instead of the complete band structure, the us
atomic constants forj and ^r 23&, and the neglect of the
shielding effect.

Since FPLAPW calculations were performed only f
M i@100#, we compare in Fig. 11 the experimental numbe
with the results of the tight-binding analysis. The comparis
reveals similarities in the overall behavior of the effect — f
example, in the strong variation of the SO-EFG with t
impurity or the tendency for the@100# SO-EFG to be larger
than the@111# SO-EFG — but also large deviations for th
individual systems. We interpret this in the following wa
The calculated band structures are not accurate enoug
reproduce the SO-EFG for a given impurity. The bet
agreement with the experiment in the case of the orbital m
ment is due to the smaller sensitivity of that quantity to ba
structure details. However, the calculations should be rea
tic enough to correctly reproduce the basic relations betw
the noncubic charge distribution and the band structure. W
the calculations overestimate the magnitude of the effect i
present not clear.

To obtain insight into the origin of the main systema
trends, the dependence on the band filling was studied

FIG. 11. Noncubic charge distribution of the 5d impurities in
Fe. The results of our model calculations~open symbols! are com-
pared with the experiment~solid symbols!.
2-13



ub

o
rg

5
o
iti
ith
ti
t-
on
he
o
on
en
se

e

nd
e
y
5
ic
s
po
w
en

de-
tially
the
f
the
in-

.3
the
-
-
or

rbit
be
the
OC
e
a

ore
he

ws
to

ther
be
ef-

and

a

rm

n
i-

G. SEEWALD, E. ZECH, AND H. HAAS PHYSICAL REVIEW B66, 174402 ~2002!
more detail. Figure 12 shows the dependence of the nonc
charge distribution on the band filling for ReFe, IrFe, and
AuFe. ^ l z8

2
2 l ( l 11)/3& is given in units of (j/W)2. In all

casesW55.5 eV was assumed.
Again, we find a common pattern in the dependence

the band filling and an upward move of the Fermi ene
within this pattern: The noncubic charge distribution as
function of eF has been shown in Fig. 5~a! for a simple
ferromagnetic band structure. Due to the separation of thed
band into two parts, this function is now found for each
the two parts and thus appears 2 times in series. The pos
of the Fermi energy within this pattern moves upwards w
increasing atomic number, in accordance with the respec
upward move ofeF within the common band structure pa
tern. Figure 13 schematically shows the calculated positi
of the Fermi energy within this band filling scheme for t
various 5d impurities in Fe. Since the calculations fail t
reproduce the experimental SO-EFG’s, the actual positi
of the Fermi energy within the scheme must be differ
from the ones shown in Fig. 13. However, the scheme it
should be essentially correct.

There is also a common trend in the anisotropy: The@100#
noncubic charge distribution is usually larger than the@111#
noncubic charge distribution, although the form of the d
pendence oneF is rather similar forM i@100# andM i@111#.
We found this effect already in Sec. IV D for pure Fe a
explained it as a consequence of the concentration of theg
states in the upper part of thed band into one strong densit
of states peak. This concentration is also found for alld
impurities and seems thus to be a property of the bcc latt

The band filling scheme in Fig. 13 explains the gro
features of the systematics. But other factors are also im
tant for the actual magnitude of the effect: Figure 12 sho
for example, that it is only the basic pattern of the dep

FIG. 12. Noncubic charge distribution as a function of the Fe
energy for ReFe, IrFe, and AuFe.
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dence oneF that remains preserved throughout the 5d series.
The widths and amplitudes of the various parts of this
pendence vary considerably. The trends are here essen
the same as for the density of states. The reduction of
upper part of thed band with increasing atomic number o
the impurity, for example, leads to a rapid decrease of
SO-EFG magnitude for impurities above Ir. The strong
crease of the prefactorj2^1/r 3& within the 5d series due to
the contraction of the 5d shell is also important. According
to Ref. 28, this factor rises from Ta to Au from 0.33 to 5
~eV! 2/(aB)3. This contributes to the marked decrease of
SO-EFG for the light 5d impurities below Re. The fine struc
ture in the dependence oneF that is introduced by the sen
sitivity to band structure details may also play a role f
some systems.

VI. SUMMARY

The band structure plays a decisive role for the spin-o
induced noncubic charge distribution. Therefore, it would
desirable to understand this role in more detail. However,
sophisticated treatment of the band structure and the S
within ab initio calculations, although necessary for th
quantitative description, is in general too involved to allow
qualitative understanding. We propose in this work a m
transparent but still realistic treatment of the SOC within t
tight-binding approximation.

The comparison with more quantitative treatments sho
that the proposed tight-binding analysis is realistic enough
reproduce at least qualitatively the systematics. On the o
hand, the structure of the resulting equations proves to
transparent enough to explain the basic properties of the
fect in terms of the interaction between the SOC and b
structure.

Even if the band structure deviates significantly from

i

FIG. 13. 5d impurities in Fe: schematic view of the commo
pattern in the density of states~top! and the noncubic charge distr
bution as a function ofeF ~bottom!. The positions ofeF are the
same as in Fig. 10.
2-14
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simple exchange-split ferromagnet, the main features of
orbital moment and the noncubic charge distribution may
obtained by the analysis of the band structure calcula
without SOC. This was demonstrated for the 5d impurities in
Fe.

APPENDIX A: RIGID SHIFT MODEL

The SOC was treated in the first papers on the SO-E
within a model that will be referred to in the following as th
rigid shift ~RS! model. It was so far the only available mod
for the SO-EFG and it is attractively simple. The more co
plete tight-binding analysis allows us now to investiga
whether the RS model is able to reproduce the esse
physics.

For a detailed derivation and discussion of the RS mo
we refer to the original papers.14–16We will repeat here only
the main points. The basic idea is that the partial density
states of the orbital with orbital and spin magnetic quant
numbersml andms is rigidly shifted by the SOC byjmlms .
Assuming that in the absence of the SOC the partial dens
of states are independent ofml , the following expressions
for the orbital moment and the noncubic charge distribut
can be derived in the limit of smallj ’s ~Ref. 16!:

^ l z8&5j@r↓~eF!2r↑~eF!#, ~A1!

K l z8
2

2
l ~ l 11!

3 L 5j2~7/20!@r8↑~eF!1r8↓~eF!#. ~A2!

r↑(e) is here the total density of↑ states andr8↑(e)
5dr↑(e)/de its derivative.

This model was extended by the inclusion of the crys
potential that splits the energy of theeg and t2g orbitals.15,16

In the extended version the tend orbitals are first diagonal
ized with respect to the exchange splitting, the crystal pot
tial, and the SOC. Then, in the spirit of the rigid shift of th
densities of states, the partial densities of states are assu
to have all the same shape and are centered on the respe
eigenenergies.

The main difference to the tight-binding analysis is th
the SOC shifts the energy of the states instead of mixing
states. This makes the final equations much simpler. Bu
ignores an essential part of the physics, since in reality
states are mixed rather than shifted in energy. This lead
several even qualitatively wrong predictions that dem
strate the inadequacy of the RS model.

~i! According to the RS model, only the density of stat
at the Fermi energy is important. Since the density of sta
is a strongly varying function, this would lead to a larg
sensitivity to band structure details. Actually, however, t
SOC mixes states from above and below the Fermi ene
Therefore, the whole band is important, and the sensitivity
band structure details is much weaker than implied by E
~A1! and ~A2!. A prominent example is the orbital mome
of Fe: Due to the marked dip in the spin-down density
states just at the Fermi energy@see Fig. 2~c!#, Eq. ~A1! pre-
dicts a negative orbital moment. But in accordance with
~26!, the orbital moment of Fe is positive.
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~ii ! In the RS model, the mixing of↑ and↓ states by the
SOC is strongly suppressed by their exchange splitti
which is usually much larger than the SOC. The↑↓↑ and
↓↑↓ contributions to the noncubic charge distribution, f
example, should accordingly be of minor importance. T
fault of the RS model is here that the broadening of the sta
into bands is completely ignored when the mixing of t
states by the SOC is considered. Actually, the large ove
between↑ and ↓ bands leads to an equally strong mixin
between the bands as within the bands. The↑↓↑ and ↓↑↓
contributions are, therefore, as important as the↑↑↑ and↓↓↓
contributions.

~iii ! In the RS model, the partialeg and t2g densities of
states are simply shifted with respect to each other by
crystal potential. But in reality, theeg and t2g bands can
differ in many other ways. The RS model is, therefore,
general inadequate to describe the anisotropy of the nonc
charge distribution for realistic systems.

~iv! The anisotropy of the noncubic charge distributi
arises in the RS model from the suppression of the mixing
t2g and eg states by the crystal field splittingVc of these
states. Accordingly, it should decisively depend on the ra
Vc /j. Again, the fault of the RS model is that the broadeni
of the states into bands is completely ignored for the mix
of the states. Actually, thet2g andeg bands largely overlap
The mixing betweent2g andeg states is, therefore, even fo
arbitrarily smallj ’s, about as strong as the mixing betwe
the t2g states, and the anisotropy depends primarily only
the different form of theeg and t2g bands and not onj.

APPENDIX B: LOCALIZED AND HOMOGENEOUS
SPIN-ORBIT COUPLING

We have assumed in Sec. II that the SOC is localized
the site of the impurity. This should be a good approximat
for heavy impurities where the SOC is much larger than
the host. To see what happens if the SOC at the impurity
in the host are of the same order of magnitude, we will n
investigate the opposite extreme, the pure ferromagn
metal, where the SOC strength is the same on all lattice s
First-order nondegenerate perturbation theory gives in
case the following expression for the orbital moment27:

^ l z8&5E d3k

VB
(

i
eikW,eF

(
j

ejkW.eF

^f ikWu l z8uf jkW&^f jkWujsW• lWuf ikW&
eikW2ejkW

1
^f ikWujsW• lWuf jkW&^f jkWu l z8uf ikW&

eikW2ejkW
. ~B1!

f ikW andeikW are the tight-binding orbitals and the energies
the eigenstates in the absence of the SOC.kW is the wave
vector, i the band index.VB is the volume of the Brillouin
zone. We neglect here points in the Brillouin zone with hi
symmetry, where in general someeikW ’s are degenerate an
nondegenerate perturbation theory is not applicable.

The orbital moment at a heavy impurity can be expres
in a similar form: If the Green’s functions in Eq.~9! are
expressed in terms of the eigenstates by using Eqs.~2! and
~4!, we obtain
2-15
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^ l z8&5E VB
(

i
eikW,eF

E VB
(

j
ejkW8.eF

eikW2ejkW8

1
eikW2ejkW8

. ~B2!
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We conclude that the equations for the pure metal~homo-
geneous SOC! and for a heavy impurity~localized SOC!
have essentially the same structure. The difference is tha
the pure metal only states with the same wave vector
mixed, whereas the localized SOC mixes all states irresp
tive of their wave vectors. If in Eq.~B1! uf jkW&^f jkWu is re-
placed by its average over allf jkW8’s of the same energy, on
obtains Eq.~B2!.

The use of Eq.~11! for the pure metal is thus equivalent
the averaging over all states of the same energy and
neglect of the symmetry points in the Brillouin zone. On
explicit calculations can clarify to which extent this is a go
approximation. But from the similar structure of the equ
tions one can expect that most of the conclusions in
work still hold even if the SOC’s at the impurity and host a
of the same order of magnitude.

In any case, the averaging over all states of the sa
energy is a necessary simplification to obtain a transpa
model, since it allows us to combine all states of the sa
energy into the density of states. It would be impossible
keep the overview over the complete set of eigenstates
eigenenergies. Thus, Eq.~11! will perhaps work for the 3d
and 4d impurities not as well as for the 5d impurities, but it
is the best we can do if we do not want to make use of
full band structure.

Similar conclusions can also be drawn for the noncu
charge distribution.

APPENDIX C: NONCUBIC CHARGE DISTRIBUTION
AND MAGNETOSTRICTION

There is no doubt that the magnetostriction contributes
the noncubic charge distribution and the noncubic cha
distribution to the magnetostriction. In transition meta
however, for both effects other mechanisms are thought t
more important.~For the rare earths the noncubicf shell is
indeed thought to be the main source of t
magnetostriction.38! In the absence ofab initio calculations
we have to restrict ourselves to order of magnitude estima

The magnetostriction causes in Fe, Co, and Ni rela
length changesdl/ l along the direction of the magnetizatio
of the order of 531025.39 To get an idea of the EFG
strengths that we have to expect from such a small lat
distortion we refer to the EFG’s in hexagonal metals. T
typical EFG strength per 1022 deviation of thec/a ratio
from the ideal ratio 1.633 is of the order of 231016 V/cm2

for 3d and 4d elements and of the order of 231017 V/cm2

for 5d elements.40 If we take into account that, at least in
point charge model,Vzz/(dl/ l ) in a cubic metal is only abou
a third of Vzz/(c/a21.633) in hexagonal metals,41 we ex-
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pect magnetostriction-induced EFG’s of the order of
31013 V/cm2 for the 3d and 4d impurities and of the order
of 331014 V/cm2 for the 5d impurities. In contrast, the re
spective SO-EFG’s are of the order of 1015 V/cm2 and
1016 V/cm2.7 Thus, the magnetostriction seems to be not
important contribution to the noncubic charge distributio
This conclusion was already drawn in Ref. 15.

The noncubic charge distribution represents also a qu
rupole momentQ of the valence electron shell. Its energy
the presence of an EFGV is given by

Eq5~1/4!Qz8z8Vz8z8 , ~C1!

where we have assumed axial symmetry along the direc
z8 of the magnetization. There is no EFG in cubic latti
symmetry, but due toEq , the energy of the system would b
lowered if there is one. This will distort the lattice until th
gain in Eq , which is linear in the distortion, is compensate
for by the loss in elastic energy, which is quadratic in t
distortion.

We assume in Eq.~C1! a pure electrostatic interactio
between the noncubic charge distribution and the lattice
tortion because we want to obtain in a simple way an or
of magnitude estimate. Of course, the real nature of this
teraction is more complex. For simplicity, we assume a
that Q, V, the lattice distortion, and the magnetoelastic co
pling constant are isotropic and axially symmetric with r
spect to the direction of the magnetization.

The quadrupole moment of thed shell can be estimated a

Qz8z85~1/3!e^r 2&K l z8
2

2
l ~ l 11!

3 L . ~C2!

The EFG connected with a relative length changedl/ l is
estimated within a point charge model by41

Vz8z8'21.5
Ze

a3
~dl/ l !. ~C3!

Z is the effective point charge anda the cubic lattice con-
stant. Combining Eqs.~C1! and ~C3! we obtain a magneto
elastic energy of the formEq5B(dl/ l ). AssumingZ51, a
52.86 Å, a spin-orbit induced̂ l z8

2
2 l ( l 11)/3& of 0.9

31023,7 and^r 2&50.5 Å2,28 we obtain for the magnetoelas
tic coupling constantB520.030 meV/atom.

The actual magnetoelastic coupling constant for
M i@100#, is B1520.25 meV/atom,39 an order of magnitude
larger. Thus, the noncubic charge distribution seems to be
the dominant source of the magnetostriction. However,
view of the crude nature of our estimates, this point wou
deserve a more exact study.
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