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Abstract

SPACERAM is a SIMD architecture optimized for symbolic spatial computations imple-
mented with multiple banks of DRAM combined with an array of processing elements.
Such an architecture facilitates very high processor-memory bandwidth and hence allows
for applications requiring orders of magnitude higher processing and update rates per
DRAM than any current hardware. The array of processing elements process data coming
simultaneously from several memory blocks by applying appropriate shifting and lookup
table updates to them. Every processing element contains a permuter which makes it pos-
sible to assign data bits from any DRAM block to any functional block within the process-
ing element as specified by controller setup. The lookup table is implemented as a
common bus shared by all the processing elements. Micro-architectural analysis of such a
processing element presents various possible implementations and trade-off issues associ-
ated with them.
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Chapter 1

Introduction

A computational analog of the uniform and simultaneous structure of physical laws in
nature involves direct mapping of physical space and locality in memory organization and
application of local relations through dedicated processing elements. SPACERAM is one
such computational system which organizes symbolic spatial representations as memory
contents linked in a virtual lattice type setup with possibly multiple dimensions [1].

Cellular Automata (CA) is such a computational model that defines SPACERAM. A
CA model is a synchronous digital analog of the application of uniform and local laws in
natural world that is operating everywhere in parallel [3]. Space is represented in such a
model as cells, each of few bits in memory organized in a grid like fashion [5]. Each such
memory cell is accessed by a processor which applies local rules to its content. The rules
used by the processor are a set of uniform laws implemented as a shared lookup table. The
processor computes new state for the cell in relation to its neighboring cells using the
lookup table and updates corresponding memory. Hence, an initial arrangement of cell
states will evolve with time [4].

Based on CA principles, SPACERAM chip is a combined large memory and processing
array architecture implemented with embedded DRAM (Dynamic Random Access Mem-
ory) on an ASIC (Application Specific Integrated Circuit) [1]. The large on-chip memory
consists of several blocks of DRAM which communicate individually to the processing
elements. Several processing elements constitute an array of processor which read data
bits from DRAM blocks, process them and write them back to memory. The SPACERAM
chip also contains a multiplexer and a shifter associated with each DRAM block which
allows all the processing elements of a chip to access shifted data coming from DRAM. A
mesh I/O interface allows each processing element to exchange data bits with processing
elements of neighboring chips. That is, several chips can be connected through this inter-
face in a mesh type setup to form an array of higher dimension and increased computing
resources. The chip also has a Direct Rambus interface which provides high transfer rate
of data from on-chip memory to external larger memory. A controller block on the chip
provides control setup for all other functional blocks.

The processing method implemented by SPACERAM is SIMD (Single Instruction
Multiple Data) processing. All processing elements access data from DRAM blocks
simultaneously, apply lookup table processing to them if necessary and write them back to
corresponding memory blocks. The processing applied by every processing element is
same under SIMD processing as the term itself suggests. The address for memory access
in each DRAM block corresponding to each processing element is also same. Such SIMD
processing is attractive for SPACERAM because the architecture allows for large amounts
of data to be accessed simultaneously and processed locally before being written back to



memory. The processing element of SPACERAM hence has functionalities to carry out
SIMD processing based on shared lookup table.

The Processing Element (PE) of SPACERAM is the functional block that applies local
rules to cell states read from DRAM blocks. PE consists of a permuter which can produce
any permutation mapping of DRAM output so that data from any DRAM block can be
assigned to any of the functionalities inside PE. Since PE receives data from DRAM
blocks shifted as necessary, it allows for writing back of same data it receives as well as
apply lookup table processing on the data before providing them for write-back. The
lookup table is formed by entries from all PEs and is also shared by all of them for pro-
cessing data. Several multiplexers carry out selection processes, conditions for which are
supplied internally.

This micro-architectural analysis of PE looks at its overall setup from the point of view
of optimal implementation. Since each functional block of PE can be implemented in var-
ious ways, there are several trade-off issues involved, especially in case of permuter. Given
the technologies of DRAM and ASIC needed for SPACERAM, there are also restrictions
on silicon area and power available for PE. The analysis thus provides suitable possible
options for implementation of each block inside a PE and compares them under parame-
ters of interest.



Chapter 2

Overview of SPACERAM

The basic principle behind the SPACERAM architecture is to access a large amount of
memory and process it within a short enough period of time to achieve very high process-
ing performance [1]. The current setup has 20 blocks of memory each with a 2 Kbit row
size having an access time of 96 ns to achieve performance of 0.42 Tbit per second. Major
functional blocks necessary to achieve such high performance are as shown in Figure 2.1.

Figure 2.1: SPACERAM functional blocks

There are 20 memory blocks each containing a 2 Megabit DRAM segment plus ancil-
lary circuitry needed to supply data as required by the processing elements. Each PE
receives a bit-line from each memory block, hence making the word-line going to each PE
20 bits wide as shown. Each PE also provides two opposite directional 8 bit-lines to its
corresponding mesh I/O interface to be able to shift bits to/from its neighboring chips. A
Direct Rambus interface shown as Direct RDRAM master transfers large amount of data
to/from DRAM in relatively short period of time, thus making it possible to swap parts of



the memory in real time. The controller shown as CNTL generates all the control bits nec-
essary for carrying out functionalities of the chip. The controller also has two uni-direc-
tional serial lines available for transferring initial setup information as well as for
monitoring purposes.

2.1 Memory block

There are 20 memory blocks in a SPACERAM chip, and there are three major functional
units in every memory block - DRAM segment, a multiplexer and a shifter as shown in
Figure 2.2.

Figure 2.2: Structure of Memory block

The DRAM segment is the actual storage unit which holds cell state information
between processing. The DRAM segment of one block has a storage capacity of 2 Mega-
bits divided as 1K rows by 2K columns. To attain a row access time of 96 ns, 2K bits are
divided into 128 bit chunks to be handed to PEs in one memory cycle and written back on
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completion of processing. Hence, 16 such cycles are necessary for accessing all of one
DRAM row.

The 128 bits of memory content provided by a DRAM segment need to be provided to
corresponding PE within one memory word cycle. However, there are only 64 PEs avail-
able at a time. Therefore, 64 2-to-1 multiplexers are used to route 64 bits at a time of the
128 bits to PEs through corresponding shifters. One bit of control specifies the selection
on all 64 multiplexers. Having to multiplex the 128 bits of data coming from DRAM seg-
ment to produce two 64 bit sets also provides an indication to memory organization in
DRAM. Rather than having two 64 bit halves within the accessed 128 bit word, it is more
efficient to allow two adjacent locations to be multiplexed to same PE. This provides more
regularity to the memory block structure and hence saves area in terms of needed wiring
setup.

The shifter allows data coming from the DRAM segment through the multiplexers to
be shifted in either direction as specified by the controller. Since the shifter takes 64 bits to
be shifted to any possible position, 6 bits of control is necessary as shown in Figure 2.2.
The basic functionality of the shifter, in other words, is to rotate incoming 64 bits to a
desired sequence specified by the 6 control bits. One possible implementation for the
shifter is based on barrel shifting [1].

2.2 Processing Element (PE)

SIMD processing of SPACERAM is based on lookup table processing. A lookup table con-
sists of data bits coming from all 64 PEs. The lookup table accordingly extends among all
PEs and is used as reference table to produce output data to be sent back to the memory
block.

Every PE has a permuter element which can assign any incoming bit from memory
block to any of the functional units of a PE. The permuter being bidirectional can also
assign any of the bits generated by any functional unit within a PE to any of the outgoing
lines. Hence, a PE can access any memory location within its corresponding memory
block for any of its functional unit. Chapter 4 describes the permuter and its implementa-
tion in greater detail.

A PE also allows data to be passed on to its corresponding mesh I/O interface. Data
bits coming back from the mesh I/O interface can be the same bits provided to it by PE or
can contain new bits received from neighboring PEs on-chip or off-chip. Thus received
data bits inside PE can be passed on as is to a memory block to be written back. In that
case, no lookup table processing is applied. When lookup table processing is applied, a
multiplexer is used to select data coming from lookup table to be passed on to the memory
block.



A PE also has a serial I/O port to be used for various purposes including initial setup of
the lookup table. A one-bit port is also provided by PE to transfer control sequence from
memory block to the controller.

Chapter 3 describes PE structure in more detail.

2.3 Mesh I/O Interface

The Mesh I/O interface extends the virtual spatial coverage of the SPACERAM chip to
include several such chips. The interface provides upto 32 bit links in 6 directions totalling
192 bits. Hence, the interface provides a way of setting up an array of SPACERAM chips to
form a virtual lattice of multiple dimensions [1]. A two dimensional array of SPACERAM
chips forming a virtual lattice of common spatial coverage is shown in Figure 2.3, where
the smallest shaded squares represent unit of basic storage and processing [1].

Figure 2.3: Two dimensional virtual lattice of SPACERAM



Every PE has its corresponding mesh I/O interface and only through that interface can
it transfer bits to/from neighboring PE on-chip or off-chip. Due to continuity of spatial
coverage of the virtual lattice, a PE passing bits to an adjacent PE through the mesh I/O
interface should also receive equal number of bits from another adjacent PE through the
interface.

2.4 Direct Rambus Interface

The Direct Rambus DRAM (RDRAM) interface is a commercially available product that
can transfer data at 1.6 GByte per second in single channel setup [7]. The channel uses
high speed signals to carry all address, data and control information. Direct RDRAM runs
a two-byte wide data bus at 800 MHz to achieve the peak transfer rate of 1.6 GByte per
second. The protocol used by Direct RDRAM is said to achieve 95% efficiency for 32 byte
random transfers [7]. Figure 2.4 shows the single channel Direct RDRAM setup.

Memory
Controller

Direct Direct Direct
RDRAM O RDRAM N RDRAM

Figure 2.4: Single channel Direct RDRAM setup

The Direct RDRAM interface thus provides a large bit-pipe to the SPACERAM chip so
that it can swap parts of memory while other parts of memory are being accessed. Such
interface can also allow the on-chip memory of SPACERAM be used as a cache while a
larger, cheap memory stays off-chip. Since such off-chip bandwidth is still two orders of
magnitude less than on-chip bandwidth, applications requiring frequent off-chip access
will be off-chip memory bandwidth limited even with Direct RDRAM interface [1].

2.5 Controller block

The Controller block provides the control words necessary to set states of all other func-
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tional blocks of SPACERAM. The controller receives control bits from memory through
the PE's. Some examples of actions carried out by the controller block are address setup of
each DRAM segment, permuter setting in every PE, enable/disable of lookup table update
etc.

The controller block also has two uni-directional serial lines available for off-chip
communication. The incoming line is used to setup initial control sequence of the chip. It
can also be used to send requests to the controller to provide operational data when the
chip is processing. The outgoing line is used to transfer the operational data so requested.

A whole DRAM row contains control information used by the controller. Hence, each
column has one such bit accessed by each PE and supplied to the controller. The entire 2K
control word so received by the controller can be applied repeatedly to subsequent row
updates or it can be different as necessary [1].



Chapter 3

Processing Element

Each of 64 processing elements (PE) receives a bit-line from each of the 20 memory
blocks. Hence, every PE has 20 bit input/output connection to the memory part of the chip.
If we perceive all of the memory blocks as one DRAM block, then there is a 40K column
spanning across all 20 DRAM segments (as each segment has column size of 2K). There-
fore, a PE will be updating part of this 40K DRAM row. The row selection for this update
by the PE's is controlled through the address generation for memory access. The method
of update is by referencing the lookup table (LUT). Which bit-line from memory needs to
be supplied to which functional unit inside the PE is determined by the permuter. An 8-bit
2-to-1 mux selects if any table lookup update is applied to 8-bit of data coming from the
mesh I/O interface. Figure 3.1 presents the PE layout.

DRAM

20

"(CNTL
permuter

8 8 1 , 1 1 1
cond

,bit 2-to-1 mux I O

8 8 next LUT CNTL
data 8 -

I* 2XLUT bus

mesh I/O interface

Figure 3.1: Functional blocks of PE



This chapter presents the functional implementation method used to represent PE units
and describes the lookup table structure in detail. Chapter 4 looks at the permuter and its
various implementation possibilities.

3.1 Functional implementation

Functional implementation emulates behavioral description of units of the PE. The Verilog
hardware description language (HDL) has been used as the medium to carry out such
implementations. As an example, the 8 bit 2-to-1 multiplexer that selects either of 8 bits
coming directly from mesh I/O interface or through the lookup table can be implemented
functionally in Verilog as follows.

module mux2in8bit(sel, out, inO, inl);

input sel;

input [7:0] inO, inl;
output [7:0] out;

assign out = sel ? inl : inO;

endmodule /* mux2in8bit */

The priority of the representation given above is to carry out the assignment of output
variable in the right order based on what the input variables are. The actual timing of
assignment is irrelevant as long as the order is maintained. The functional characteristics
of the above Verilog model is as shown in Figure 3.2.

inO

n1X

sel

out in1 in1

Figure 3.2: Functional behavior of 8 bit 2-to-1 multiplexer
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3.2 Look-up table (LUT)

The implementation of the LUT is a shared 2048 bit bus spanning across all PEs. Since
there are 64 PEs, each PE contributes 32 bits to the bus. For every access to the memory
block by a PE, one bit is provided to the LUT towards setting up its 32-bit entry on the
bus. The LUT block, as shown in Figure 3.3, collects these bits consecutively for 32 cycles
before optionally driving it to the bus. The LUT block is double buffered so that it can load
the next set of 32 bits while current 32 bits are being driven onto the bus. The lookup pro-
cedure is carried out by an 8 bit 256-to-1 multiplexer. The whole DRAM in the memory
block has an entire row equal in size to the LUT bus. Hence, all data bits for setting up of
the LUT bus come from one row of DRAM, although in 32 bit segments from each PE.

LUT output

8

8bit 256-to-1 mnux
.... \

En

LUT entry
256X8 :next

8 2LUT data

32

LUT bus

LUT input

Figure 3.3: LUT block

As shown in Figure 3.3, there are two main functional units in the LUT block - an 8 bit
256-to-1 multiplexer and a LUT entry setup block. A Verilog HDL implementation of the
multiplexer is presented in Appendix A.2. The principle behind the Verilog implementa-
tion is that a function called selection is called from the original module
mux2 56 in8bi t with the LUT bus and selection byte as calling arguments. se 1 ec-



tion selects the appropriate byte from 256 bytes as specified by the selection byte and
returns that byte to the calling module. The returned byte is then assigned to the LUT out-
put lines.

The LUT entry setup block takes in a bit per PE cycle and accumulates them for 32
consecutive cycles. Then it drives that onto the LUT bus as its LUT entry if the LUT is
changed by the controller. While the current 32 bits are being driven on the bus, the LUT
entry setup block can take in bits to prepare the next 32 bit set. In other words, the LUT
entry setup block is double buffered. There is also an enable (En) line that directs the LUT
entry setup block when to read in the bit supplied to it by the permuter of its PE. When En
is used to disable the block, the current 32 bit set is continuously being driven on the bus
while no new bits are being read for next set. This occurs until En changes to enable status
again, after which the LUT entry setup block continues exactly from the point when it was
last disabled. That is, the next bit for the set is clocked-in at the position at which the last
disabling happened. Figure 3.4 shows the functional implementation of the LUT entry
setup block.

Data
-4f --- --cw Data -

bitO biti - En bit3l

Clkk

-k - counter
En (?= 32)

LUT bus

Figure 3.4: Functional representation of LUT entry setup block

A Verilog HDL implementation of the LUT entry setup block based on the model of
Figure 3.4 is presented in Appendix A.3. The timing behavior of the implementation in
comparison to the model is shown in Figure 3.5.
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CIk

En

counterOX X 2X3X X-X3 1X o

Load

LUT entry old bo new

Figure 3.5: Functional behavior of LUT entry setup block implementation



Chapter 4

Permuter

4.1 Functionality

The permuter in every PE allows 20 bit-lines coming from the memory block to be
assigned to any functional line inside the PE. Hence, the permuter is a rearrangeable
switching network which produces a complete one-to-one mapping of bit-lines from two
separate sets depending on the control setup supplied to it. Since some of the bit-lines are
bi-directional, the permuter should be able to maintain the directionality of the line while
assigning the permutation mapping among the lines. In other words, the permutation
assignment among bit-lines of two separate sets (memory block side and internal PE side)
should maintain the direction of data transfer on the lines. The permutation requirement is
specified to the permuter by a control word supplied by the controller block external to the
PE. The size of this control word varies depending on the implementation model.

Three different implementation models of a permuter based on these functionalities
are presented here - cross bar network, multiplexer based network and Benes network.

4.2 Cross bar network

The cross bar network is a grid array network with switching element at every node.
Hence, a switching element exists for every possible assignment of bit lines coming from
two sets between which the permutation map has to be laid out.

In the case of the permuter in a PE, a cross bar network with 20 entries (each repre-
senting bit-lines coming from a memory block) in the domain set need to be mapped to
any one of possible order of 20 entries (each representing internal bit-lines of PE) in the
range set. Figure 4.1 shows such a 20 by 20 cross bar network as required for the permuter.
Since every intersection of an entry in the domain to that in the range requires a switching
element in the cross bar network, there are a total of 400 switching elements required for
such an implementation. And since one bit of control is required to individually set one
switching element, 400 control bits are also needed. With some additional hardware, 5 bits
of control per column can be used to generate the right switch settings. Hence, a total of
100 control bits are necessary.

There is a large redundancy in switching resources available in the cross bar network
at any given cycle of permutation mapping as in seen in Figure 4.1. On the bright side,
implementation of cross bar network is regular compared to other networks discussed here
which means area-wise efficiency in device level layout.



switching
element

17

18

19

0 1 2 17 18 19

Figure 4.1: 20 by 20 Cross bar network (control lines not shown)

In terms of transistor count, one of the simplest implementations includes one NMOS
pass-gate based switching element, which requires a total of 400 such transistors. A trans-
mission gate in CMOS with one NMOS and one PMOS would give better signal quality at
the expense of higher transistor count since an extra inverter is necessary per gate for such
setup.

The permutation assignment timing delay associated with a cross bar network is also
among the lowest because of its simplicity. The associated device delay is reduced since
there is only one pass-gate switching element per permutation mapping assignment in the
simplest implementation mentioned above. Bidirectionality is also easily implementable
in cross bar networks as shown.

4.3 Multiplexer based permuter

The one-to-one permutation mapping being an inherently selection mechanism to associ-
ate an entry in the domain set to an entry in the range set, a multiplexer setup can be used
for permuter implementation. A 20 entry domain-range permuter as needed for PE has one
20-to-1 multiplexer associated with every entry in the domain set. Then every entry in the
range set will be connected to all multiplexers such that they can be assigned to any of the
entries in the domain set. Each such multiplexer has a 5 bit selection input which specifies
the mapping requirement. Figure 4.2 shows such permuter.



selO

0 - muxo

1

sell9

19 mx

19

Figure 4.2: Multiplexer based 20 by 20 permuter

As is shown in Figure 4.2, each multiplexer requires 5 bit of selection input totalling
the size of control word necessary to 100 bits. From the point of view of control word size,
this implementation of permuter is one of the most efficient among those considered here.

In terms of device level implementation, a simple setup is considered which can be
optimized to reduce transistor count. To maintain bidirectionality and to match the binary
assignment of 5-bit selection word, a five transistor based pass gate has to be used per link
in the multiplexer. That is, for every "0" in the selection word, a PMOS is used and for
every "1" in the word, an NMOS is used in the link. For example, a link to be activated by
selection word "00100" will be a pass-gate chain of two PMOS, one NMOS and two
PMOS transistors in series. Therefore, one multiplexer requires 100 transistors (5 per link
X 20 links) and the permuter in all requires 2000 transistors. An optimized setup can use a
2-to-1 selection gate per two entries and hence only require 38 transistors per multiplexer.
Then total count is 760, which is still larger than in case of other networks discussed here.
The bigger cost in device level implementation of such a permuter comes from the lack of
regularity in the structure. Since a wire link has to be routed from every multiplexer to
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each entry bit-line in the range set (right side of Figure 4.2), there is greater requirement of
silicon area for the whole extended structure. There is also a larger associate redundancy
in the setup because only one link from twenty is used in each multiplexer for a given per-
mutation mapping.

Another concern in the implementation of a multiplexer based permuter is that of
assignment delay, and hence power requirement issues, associated with the structure.
Since every signal has to pass through an extended pass-gate chain, it is going to have
larger time delay. Drivers with more power can be used to overcome this delay which then
translates to more area for the drivers. Intermediate buffering is not allowed in the chain to
maintain bidirectionality. A bigger concern in terms of power requirement also comes
from charging and discharging the extended wire routing needed to connect the multiplex-
ers and bit-lines in the range set (as explained above). Given the diminishing size of tran-
sistors themselves, area and power issues are accentuated by this extended wiring
requirement more than by the larger transistor count needed for the multiplexer based per-
muter. Power concern also comes from the fact that each entry in the range set has to drive
20 bit-lines going to all the multiplexers. Hence, bigger drivers are needed to keep up with
timing requirement on these bit-lines.

4.4 Principle of Benes Network
A Benes network is a rearrangeable switching network based on 2-by-2 switching ele-
ments. It is a variation of the butterfly network consisting of two back to back butterfly
networks [6]. Classification of such networks put Benes network as a member of Clos'
type network [10]. The Benes network has been extensively studied for use in synchro-
nous data permutation and in asynchronous interprocessor communication [12].

The fundamental unit of a Benes network is a 2-by-2 switching element having two
states controlled through a one bit selection input. Figure 4.3 shows a functional model of
such a switching element and its states with respect to the control bit.

O 0
switch state: 0

0 0
switch state: 1

1 - <1

Figure 4.3: States (as specified by control bit) of switching element in a Benes network



N/2 entry
2 Benes Network 2

3- 3

N2 entry
Benes Network

N-2 : N-2

N-1 N-1

first level last level

Figure 4.4: Recursive structure of N-entry Benes Network (N even)

Given the two state fundamental switching element, a Benes network is inherently a
binary network with every level of network being divided into consequent base-2 struc-
tures. That is, the switching elements are connected in an order that produces a base-2
structure per level of the network necessary to fit all the entries in the permutation map set.
Figure 4.4 shows the recursive base-2 structure of an N-entry (N here assumed to be expo-
nential on 2, more on this below) Benes Network. [11] The r-dimensional network has
2r+l level and 2r nodes per level [6]. For instance, an 8 entry Benes network is 2 dimen-
sional and has 5 level of switches each with 4 switching elements. Accordingly, an N-
entry Benes network requires N/2 switches per level and (2log2N-1) levels, N being an
exponential on 2 for such cases.

A Benes Network can also work as a permuter for a structure having number of entries
that are non-exponential on 2 and even non-multiple of 2. So for permuter having even
number of inputs, the basic structure of the network looks as in Figure 4.4 with repetitive
recursion to follow to produce further levels of the network. However, the method of Fig-
ure 4.4 is not going to be sufficient to generate further network levels at some point when
the number of entries to a sub-network becomes odd, and this is guaranteed to happen in
our case. The separate setup necessary to produce such Benes network with odd number of
entries N is shown in Figure 4.5. [8]

1 _ I~ _ _ _ ___ _ ___ _ _ _ _
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N- N-1

first level last level

Figure 4.5: Benes network with odd number of entries N

The setup of Figure 4.5 with odd number of entries N is useful for optimization of
Benes network based permuter for PE and will be looked at again in section 4.7.

The number of switching elements need for any number of entries N is given by - [8]

N<log2N> - 2 <log2N> + I

where <x> is the smallest integer greater than x. The required number of switching
elements is also shown to be bounded by <log2N!> [8]. The efficiency in terms of
required resources (i.e. switches) per permuter greately increases as the number gets
closer to this boundary.

As an example of Benes network as permuter, a 8-by-8 entry permuter is presented
here and the method of setting all the switching elements is explained. As described above
under recursive generation of the network, the complete layout of the 8-by-8 permuter
looks as in Figure 4.6.
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Figure 4.6: 8-by-8 Benes network permuter with switch states (control lines not shown)

The permutation map used by the 8-by-8 permuter of Figure 4.6 is -

P= (01 2 34 5 6 7 )
S 53470126

where the top corresponds to entries of the domain set (left side on Figure 4.6) and the
bottom corresponds to entries of the range set (right side).

The basic principle behind determining the states of switching element in Benes net-
work is that, for every pair of entries going to the same switch, if one of the entry is linked
through upper sub-network then the other entry has to be routed through lower sub-net-
work. The process of setting up of switches can be started arbitrarily from one of the
entries on the domain set. In this case, entry 0 in the domain set is chosen and from the
permutation map, it can be seen that it has to be linked to entry 5 in the range set. So the
corresponding switch in first level is set to state 0, that in second level also to state 0, that
in third level to state 1, then the next switch in the link in fourth level to state 0 and finally
setting state 1 for final switch to reach entry 5. This way, a constraint has already been put
on the corresponding switch at the last level that the other entry, i.e. 4, is routed to the



lower sub-network. Therefore, the corresponding mapped entry in the domain set, i.e. 2,
also has to be routed through the lower sub-network. So a link is followed by accordingly
setting the switches in the lower sub-network to finally reach 2 in the domain set. Follow-
ing on the same logic, now the constraint is on the adjacent entry to 2, i.e. 3, so that it has
to be routed through the upper sub-network. The corresponding entry in the range set, 7, is
reached thereafter by suitably setting switches in the upper sub-network. Hence, it can be
seen that such cycles pursue until an already set switch in first level is reached during
assignment. Such completion of cycle, however, does not insure that the permutation map-
ping is completed. Pre-mature cycle completion can occur depending on nature of the map
itself. Hence, it is necessary to check to see if any switches in the first level are left unset.
If there is/are such unset switch/es, then the same procedure is started by selecting arbi-
trarily one of the unassigned entries and repeating the same method as above. Depending
on the given permutation mapping, several such cycles of assignment may be necessary to
set all the switches. Figure 4.6 shows the final state of the network with all the switches
properly set.

4.5 Benes network structure for 20-by-20 permuter

Based on the principle described in section 4.4, the 20 entry permuter necessary for the PE
is constructed by first considering a 32-by-32 Benes network. N = 32 is being considered
because of its being the next exponential on 2 after 20 such that both the implementation
of the network as well as generation of control word is greatly simplified. Therefore, ini-
tially there are 16 switches per level and 9, i.e. (21og232 -1 ) levels in the network. The
routing between switches is done in base-2 structure recursively resulting in the network
as shown in Figure 4.7.

For convenience of implementation in Verilog HDL, the switching elements of the net-
work are identified in a grid like fashion as in switch00 being the top switch of the first
level, switch80 being that of the last level, switch8fbeing the lowest switch of the last level
etc. Verilog HDL of the network is presented in Appendix A.4. It also follows the same
convention of naming the switches and their selection inputs (not shown in Figure 4.7).
The entries of the domain set (left side of Figure 4.7) are represented as aO, al, etc. and
those of the range set (right side) are represented as bO, bl, etc. in the Verilog HDL imple-
mentation. Figure 4.7 also shows several switching elements with an asterix (*) marked on
them. These switching elements are unnecessary for 20-by-20 permuter implementation
and can be marked out from the 32-by-32 Benes Network leaving a total of 112 switches.
Since the switches connected only to switches of previous level with asterix on them can
also be neglected, the second and third level as well as seventh and eighth level also have
switches with asterix on them. Verilog HDL shows instances of these asterix marked
switches but they have been commented out. However, the asterix marked switches also
need to be considered when generating control word, specially due to the fact that the con-
trol word generation method of section 4.6 generates control bits for each switch in contin-
uous order. Therefore, compatibility has to be maintained in terms of switches that are
marked out and the sequences of control bits provided to set switches of the network.
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Figure 4.7: 32-by-32 Benes Network for 20-by-20 permuter



The Verilog HDL model first defines a switch module which carries out the functional-
ity of a switching element as described in section 4.4 above. Then the model is instantiated
for every necessary switch of the network with appropriate selection input and routing
wires. The convention followed in the routing wire naming is that the first two digits after
"w" represent the originating switch and the last two digits represent the target switch. For
example, a wire going from switchl8 to switch2c is named w182c. The origin and target
flow is set to be going from left to right. Bidirectionality is maintained throughout.

4.6 Control word generation for Benes Network

Because of binary nature of Benes network and base-2 structures being considered, con-
trol word generation method is also derived from recursive division by 2 within a given
permutation map or its sub-map.

A given permutation map from a network can be described as

= xl x 2  XN

7Tr(xl) 7r(x 2 ) 7----- T(xN)

where x is an entry in the domain set and nT(x) is its corresponding entry in the range
set according to given permutation map. The objective of control word generation algo-
rithm is to derive local permutation maps for each of the sub-networks from P. The
method used is that connection sets C1 and C2 are produced by decomposing P. [8] Then
permutation set for each of the sub-networks (corresponding to P for the whole network)
is constructed. The characteristics of the elements in the sub-network sets are then used to
generate such permutation maps for the sub-networks. In case of base-2 structure, i.e.
when total number of entries are exponential on 2, the decomposition of a network into
two subnetworks involves assigning each entries of a pair to upper and lower network by
setting switches of that level in proper states. Then regrouping of all the entries assigned to
each sub-networks are done and the same procedure is started on each group again. Such
group for a sub-network, say upper network Ju then satisfies following properties in the
algorithm followed- [9]

1) 0 J
2) Jul = N/2 where J Iu is the number of elements in Ju

3) ii and j J and i # j, then i # j* and E(i) # (E(j))*.
Here, i* denotes the integer differing from i only in bit 0 of its binary representation.

In other words, it represents the other entry which is also assigned to the same switch as i.
E(i) denotes the reverse mapping of i, i.e. E(i) = r -1(i). Iterative execution of such decom-
position leads towards middle of the network and finally to an individual switch which can
then be set to satisfy its corresponding connection set.

Appendix A.5 presents C programming language implementation of the algorithm to
generate control word for 32-by-32 Benes network to be used for 20-by-20 permuter. That



is, entries 20th through 31st are self-assigned and cannot be used in the permutation map-
ping to be provided. The implementation takes an entry by entry permutation map from 0
to 19 and produces a switch state control bit setup corresponding to layout of the network
as shown in Figure 4.7. Here is an example of permutation map provided and the control
sequence generated by the C implementation.

Permutation map:
of Figure 4.7)

D[0]

D[1]

D[2]

D[3]

D[4]

D[5]

D[6]

D[7]

D[8]

= 6

= 19

= 3

= 10

= 14

= 11

= 5

= 1

= 0

D[9] = 13

(where D[i] corresponds to ith entry of domain set on the left side

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

= 2

= 18

= 15

= 7

= 4

= 8

= 12

= 16

= 9

D[19] = 17

Control sequence generated: (Refer to Figure 4.3 and 4.7 for switch state and loca-
tion)



The control word generated has been applied to the Verilog HDL implementation of
section 4.5 to verify both of their functionalities. Appendix A.6 presents Verilog HDL
model used for such purpose.

4.7 Issues and optimization of Benes Network as permuter

As seen in section 4.5 and 4.6, the size of control word for 20-by-20 permuter in 32-by-32
Benes network implementation is 112 bits. This size is relatively better compared to cross
bar network but not as good as in the case of a multiplexer based permuter. However, there
is the possibility of optimization in size of this control word in case of Benes network due
to control word generation algorithm. Since the algorithm as presented in C implementa-
tion of Appendix A.5 sets the top-most switch of first level of every network or sub-net-
work to "0", those bits in the control donot need to be included and the switches can be
permanently set to such state. The number of such switches in the given setup being 15,
the total number of control bits necessary becomes 97.

Another possibility of optimizing in terms of layout and control word size comes from
using the non-base-2 structure of Benes network as discussed in section 4.4. Figure 4.8
presents such a structure which requires only 72 switching elements. The limitation
boundary on the required number of switches, as discussed in section 4.4 is <log220!>,
which is about 61. Therefore, the structure of Figure 4.8 is a very efficient implementa-
tions of 20-by-20 permuter. The automatic generation of control word itself is, however,
more complicated in this case than that of section 4.6.

The regularity of a Benes network is also a big attraction in terms of device level
implementation. In one of the simpler implementations, the basic switching element is a
four transistor (two NMOS, two PMOS) structure which makes the total transistor count
for 112 switch network of section 4.6 add to 448. This number compares very well to
those of both cross bar and multiplexer based permuter. Additional advantage in a device
level implementation also comes from being a regular structure, although extended routing
of control lines to every switch is necessary.

Because of the bidirectionality requirement, however, no buffering is permitted inside
the network and this translates to larger delay in signal assignments in Benes network
based permuter due to long chains of pass-gate switches. To keep up with this delay, more
powerful drivers may be necessary which again raises the need for silicon area. A full
CMOS transmission gate implementation can produce signals of higher quality in such
case at an additional cost of larger transistor count.



Figure 4.8: non-base-2 Benes network as 20-by-20 permuter



Chapter 5

Conclusion

The functional analysis of the Processing Element is determined mainly by the permuter
and the lookuptable bus setup. The lower level implementation of the lookup table comes
directly from its functional level description. In the case of the permuter, however, there
are several possibilities. Depending on the parameter to be optimized and restrictions to be
matched, a suitable implementation need to be selected.

The motivation for an optimized PE, and hence SPACERAM comes from looking at its
potential computing power once constructed. Applications relying on the Cellular Autom-
ata model of computing are going to run on this platform with orders of magnitude higher
performance. Large arrays of such chips can run large-scale lattice computations such as
3D lattice gas simulations of complex materials and fluids while a single chip can run
complex image processing [1]. Applications like real time image manipulation as well as
video manipulation are other possibilities. Large scale logic simulations as well as DSP-
like applications will also be well suited for such a computer [2].

Future work on other blocks of SPACERAM will provide more light on any extra con-
sideration to be given to block inside the PE or on any necessary modification to them. As
technology issues like die size and pin count restrictions are decided upon, the structure of
the PE will also become more solidified. Since there are multiple numbers of PE's on the
chip, a regular structure will remain the priority from both area and power consideration
points of view. As other issues like pipelining are considered, some of the restrictions on
timing and hence area and power, loosen to some extent. The basic structure in terms of
functionality will however remain the same and will only need to be optimized to meet the
required criteria.



Appendix

A.1: 8-bit 2-to-1 multiplexer (Verilog HDL)

module mux2in8bit(sel, out

input sel;

input [7:0] inO, inl;

output [7:0] out;

assign out = sel ? inl

endmodule /* mux2in8bit */

, inO, inl);

: inO;



A.2: 8-bit 256-to-1 multiplexer (Verilog HDL)

module mux256in8bit (sel, allin, out);

input [7:0] sel;

input [2047:0] allin;

output [7:0] out;

assign out = selection (sel, allin);

function

input
input

[7:0] selection;

[7:0] sel;

[2047:0] allin;

sel)

: selection

: selection

: selection

: selection

: selection

: selection

: selection

: selection

: selection

: selection

allin[7:0];

allin[15:8];

allin[23:16]

allin[31:24]

allin[39:32]

allin[47:40]

allin[55:48]

allin[63:56]

allin[71:64]

allin[79:72]

8'dO : selection = allin[87:80];

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

case (
8'd0
8'dl
8'd2
8'd3
8'd4
8'd5
8'd6
8'd7
8'd8
8'd9

dll

d12

d13

d14

d15

d16

d17

d18

d19

d20

d21

d22

d23

allin
allin
allin
allin
allin
allin
allin
allin
allin
allin
allin
allin
allin

[95:

[103

[111

[119

[127

[135

[143

[151

[159

[167

[175

[183

[191

88];

:96];

:104]

:112]

:120]

:128]

:136]

:144]

:152]

:160]

:168]

:176]

:184]



8'd24

8'd25

8'd26

8'd27

8'd28

8'd29

8'd30

8'd31

8'd32

8'd33

8'd34

8'd35

8'd36

8'd37

8'd38

8'd39

8'd40

8'd41

8'd42

8'd43

8'd44

8'd45

8'd46

8'd47

8'd48

8'd49

8'd50

8'd51

8'd52

8'd53

8'd54

8'd55

8'd56

8'd57

8'd58

8'd59

8'd60

8'd61

8'd62

8'd63

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

= allin[199:192]

= allin[207:200]

= allin[215:208]

= allin[223:216]

allin[231:224]

= allin[239:232]

= allin[247:240]

= allin[255:248]

= allin[263:256]

= allin[271:264]

= allin[279:272]

= allin[287:280]

= allin[295:288]

= allin[303:296]

= allin[311:304]

= allin[319:312]

= allin[327:320]

= allin[335:328]

= allin[343:336]

= allin[351:344]

= allin[359:352]

= allin[367:360]

= allin[375:368]

= allin[383:376]

= allin[391:384]

= allin[399:392]

= allin[407:400]

= allin[415:408]

= allin[423:416]

= allin[431:424]

= allin[439:432]

= allin[447:440]

= allin[455:448]

= allin[463:456]

= allin[471:464]

= allin[479:472]

= allin[487:480]

= allin[495:488]

= allin[503:496]

= allin[511:504]



8'd64

8'd65

8'd66

8'd67

8'd68

8'd69

8'd70

8'd71

8'd72

8'd73

8'd74

8'd75

8'd76

8'd77

8'd78

8'd79

8'd80

8'd81

8'd82

8'd83

8'd84

8'd85

8'd86

8'd87

8'd88

8'd89

8'd90

8'd91

8'd92

8 'd93

8'd94

8'd95

8'd96

8'd97

8'd98

8'd99

8'd100

8'd101

8'd102

8'd103

selection = allin[519:512]

selection = allin[527:520]

selection = allin[535:528]

selection = allin[543:536]

selection = allin[551:544]

selection = allin[559:552]

selection = allin[567:560]

selection = allin[575:568]

selection = allin[583:576]

selection = allin[591:584]

selection = allin[599:592]

selection = allin[607:600]

selection = allin[615:608]

selection = allin[623:616]

selection = allin[631:624]

selection = allin[639:6321

selection = allin[647:640]

selection = allin[655:648]

selection = allin[663:656]

selection = allin[671:6641

selection = allin[679:672]

selection = allin[687:680]

selection = allin[695:688]

selection = allin[703:696]

selection = allin[711:704]

selection = allin[719:712]

selection = allin[727:720]

selection = allin[735:728]

selection = allin[743:7361

selection = allin[751:744]

selection = allin[759:752]

selection = allin[767:760]

selection = allin[775:768]

selection = allin[783:776]

selection = allin[791:784]

selection = allin[799:792]

: selection = allin[807:800

: selection = allin[815:808

: selection = allin[823:816

: selection = allin[831:824



8'd104

8'd105

8'd106

8'd107

8'd108

8'd109

8'd110

8'd111

8'd112

8'd113

8'd114

8'd115

8'd116

8'd117

8'd118

8'd119

8'd120

8'd121

8'd122

8'd123

8 'd124

8'd125

8'd126

8'd127

8'd128

8'd129

8'd130

8'd131

8'd132

8'd133

8'd134

8'd135

8 'd136

8'd137

8'd138

8'd139

8'd140

8 'd141

8'd142

8'd143

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

allin[839

allin[847

allin[855

allin[863

allin[871

allin[879

allin[887

allin[895

allin[903

allin[911

allin[919

allin[927

allin[935

allin[943

allin[951:944];

allin[959:9

allin[967:9

allin[975:9

allin[983:9

allin[991:9

allin[999:9

allin[1007:

allin[1015:

allin[1023:

allin[1031:

allin[1039:

allin[1047:

allin[1055:

allin[1063:

allin[1071:

allin[1079:

allin[1087:

allin[1095:

allin[1103:

allin[1111:
allin[1119:

allin[1127:

allin[1135:

allin[1143:

allin[1151:

832]

840]

848]

856]

864]

872]

880]

888]
896]

904]

912]

920]

928]

936]

52];

60];

68];

76];

84];

92];

1000];

1008];

1016] ;

1024] ;

1032];

1040];

1048] ;

1056];

1064] ;

1072];

1080];

1088] ;

1096] ;

1104];

1112];

1120];

1128] ;

1136] ;

1144] ;



8'd144

8'd145

8'd146

8'd147

8'd148

8'd149

8'd150

8'd151

8'd152

8'd153

8'd154

8'd155

8'd156

8'd157

8'd158

8'd159

8'd160

8'd161

8'd162

8'd163

8'd164

8'd165

8'd166

8'd167

8'd168

8'd169

8'd170

8'd171

8'd172

8'd173

8'd174

8'd175

8'd176

8'd177

8'd178

8'd179

8'd180

8'd181

8'd182

8'd183

selection
selection

selection

selection

selection
selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection
selection
selection

selection

selection

selection

selection

selection

selection

selection

selection
selection
selection

selection
selection

selection

selection

selection

selection

selection

selection

allin[1255:

allin[1263:

allin[1271:

allin[1279:

allin[1287:

allin[1295:

allin[1303:

allin[1311:

allin[1319:

allin[1327:

allin[1335:

allin[1343:

allin[1351:

allin[1359:

allin[1367:

allin[1375:

allin[1383:

allin[1391:

allin[1399:

allin[1407:

allin[1415:

allin[1423:

allin[1431:

allin[1439:

allin[1447:

allin[1455:

allin[1463:

allin[1471:

1248]

1256]

1264]

1272]

1280]

1288]

1296]

1304]

1312]

1320]

1328]

1336]

1344]

1352]

1360]

1368]

1376]

1384]

1392]

1400]

1408]

1416]

1424]

1432]

1440]

1448]

1456]

1464]

allin[1159:1152]

allin[1167:1160]

allin[1175:1168]

allin[1183:1176]

allin[1191:1184]

allin[1199:1192]

allin[1207 :1200]

allin[1215:1208]

allin[1223:1216]

allin[1231:1224]

allin[1239:1232]

allin[1247 :1240]



8'd184

8'd185

8'd186

8'd187

8'd188

8'd189

8 'd190

8'd191

8'd192

8'd193

8'd194

8'd195

8'd196

8'd197

8'd198

8'd199

8'd200

8'd201

8'd202

8'd203

8'd204

8'd205

8'd206

8'd207

8 'd208

8'd209

8'd210

8 'd211

8'd212

8'd213

8'd214

8'd215

8'd216

8'd217

8'd218

8'd219

8'd220

8 'd221

8'd222

8'd223

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection

allin[1615

allin[1623

allin[1631

allin[1639

allin[1647

allin[1655

allin[1663

allin[1671

allin[1679

allin[1687

allin[1695

allin[1703

allin[1711

allin[1719

allin[1727

allin[1735

allin[1743

allin[1751

allin[1759

allin[1767

allin[1775

allin[1783

allin[1791

:1608];

:1616];

:1624];

:1632];

:1640];

:1648];

:1656];

:1664];

:1672];

:1680];

:1688];

:1696];

:1704];

:1712];

:1720];

:1728];

:1736];

:1744];

:1752];

:1760];

:1768];

:1776];

:1784];

allin[1479:1472];

allin[1487:1480];

allin[1495:1488];

allin[1503:1496];

allin[1511:1504];

allin[1519:1512];

allin[1527:1520];

allin[1535:1528];

allin[1543:1536];

allin[1551:1544];

allin[1559:1552];

allin[1567:1560];

allin[1575:1568];

allin[1583:1576];

allin[1591:1584];

allin[1599:1592];

allin[1607:1600];



8'd224 : selection = allin[1799:1792];

8'd225

8'd226

8'd227

8'd228

8'd229

8'd230

8'd231

8'd232

8'd233

8'd234

8'd235

8'd236

8'd237

8'd238

8'd239

8'd240

8'd241

8'd242

8'd243

8'd244

8'd245

8'd246

8'd247

8'd248

8'd249

8'd250

8'd251

8'd252

8'd253

8'd254

8'd255

endcase /*

endfunction

selection

selection

selection

selection

selection

selection

selection

selection

selection

selection
selection

selection

selection

selection

selection

selection
selection

selection
selection

selection
selection

selection

selection

selection

selection

selection
selection
selection

selection
selection

selection

sel */

allin[1807

allin[1815

allin[1823

allin[1831

allin[1839

allin[1847

allin[1855

allin[1863

allin[1871

1800]

1808]

1816]

1824]

1832]

1840]

1848]

1856]

1864]

= allin[1879:1872];

= allin[1887:1880];

= allin[1895:1888];

= allin[1903:1896];

= allin[1911:1904];

= allin[1919:1912];

= allin[1927:1920];

= allin[1935:1928];

= allin[1943:1936];

= allin[1951:1944];

= allin[1959:1952];

= allin[1967:1960];

= allin[1975:1968];

= allin[1983:1976];

= allin[1991:1984];

= allin[1999:1992];

= allin[2007:2000];

= allin[2015:2008];

= allin[2023:2016];

= allin[2031:2024];

= allin[2039:2032];

= allin[2047:2040];

endmodule /* mux256in8bit */



A.3: LUT entry setup block (Verilog HDL)

module lutbyte (data, en, clk, lutbyte);
input data, en, clk;

output [31:0] lutbyte;

reg [31:0] lutbyte;

reg bitO, bitl, bit2, bit3, bit4, bit5,
bit6, bit7, bit8, bit9, bitlO, bit1l,
bitl2, bitl3, bitl4, bitl5, bitl6, bitl7,
bitl8, bitl9, bit20, bit21, bit22, bit23,
bit24, bit25, bit26, bit27, bit28, bit29,
bit30, bit31;

reg [4:0] count;

initial

count = 5'blllll;

always @ (posedge clk)

begin

if (en == 1)

begin

{bitO, bitl, bit2, bit3, bit4, bit5, bit6, bit7,
bit8, bit9, bitl0O, bitll, bitl2, bitl3, bitl4, bitl5,
bitl6, bitl7, bitl8, bitl9, bit20, bit21, bit22, bit23,
bit24, bit25, bit26, bit27, bit28, bit29, bit30, bit31}
= {data, bitO, bitl, bit2, bit3, bit4, bit5, bit6,
bit7, bit8, bit9, bitlO, bitll, bitl2, bitl3, bitl4,
bitl5, bitl6, bitl7, bitl8, bitl9, bit20, bit21, bit22,
bit23, bit24, bit25, bit26, bit27, bit28, bit29,
bit30};

count = count + 1;

if (count == 5'blllll)

lutbyte = {bit31, bit30, bit29, bit28, bit27, bit26,
bit25, bit24, bit23, bit22, bit21, bit20, bitl9, bitl8,
bitl7, bitl6, bitl5, bitl4, bitl3, bitl2, bitll, bitlO,
bit9, bit8, bit7, bit6, bit5, bit4, bit3, bit2, bitl,
bitO};

end

end

endmodule



A.4: 32-by-32 Benes network for 20-by-20 permuter
(Verilog HDL)

module switch (select, inoutO, inoutl, outinO, outinl);

input select;

inout inoutO, inoutl, outinO, outinl;

tranifO swO (inoutO, outinO, select);

tranifO swl (inoutl, outinl, select);

tranifl sw2 (inoutO, outinl, select);

tranifl sw3 (inoutl, outin0, select);

endmodule /* switch */

module perm20by20 (aO, al, a2, a3, a4, a5, a6, a7, a8, a9,

alO, all, a12, a13, a14, a15, a16, a17, a18, a19,

bO, bl, b2, b3, b4, b5, b6, b7, b8, b9,

blO, bll, b12, b13, b14, b15, b16, b17, b18, b19,

selO00, selOl,
sel08, sel09,

// break

sellO, selll,

sell8, sell9,

sel20, sel21,
se124, se125,

se128, se129,
sel2c, sel2d,
sel30, sel31,

se138, se139,

sel3a, sel3b,

sel40, sel41,
se148, se149,

sel4a, sel4b,

sel50, sel5l,
se158, se159,

sel5a, sel5b,

sel60, sel61,

se164, se165,

sel02, sel03, sel04, sel05, sel06, sel07,

sell2, sell3, sell4, // break

sella, sellb, sellc, // break

se122, // break

se126, // break

sel2a, // break

sel2e, // break

se132, se133, se134, se135, se136, se137,

sel3c, sel3d, sel3e, sel3f,

se142, se143, se144, se145, se146, se147,

sel4c, sel4d, sel4e, sel4f,

se152, se153, se154, se155, se156, se157,

sel5c, sel5d, sel5e, sel5f,

se162, // break

se166, // break



se168, se169, sel6a, // break

sel6c, sel6d, sel6e, // break

sel70, sel71, se172, se173, se174, // break

se178, se179, sel7a, sel7b, sel7c, // break

sel80, sel81, se182, se183, se184, se185, se186, se187,

se188, se189

// break

inout

aO, al, a2, a3, a4, a5, a6, a7, a8, a9,

alO, all, a12, a13, a14, al5, a16, a17, a18, a19,

bO, bl, b2, b3, b4, b5, b6, b7, b8, b9,

blO, bll, b12, b13, b14, b15, b16, b17, b18, b19;

input

selO00, selOl, sel02, sel03, sel04, sel05, sel06,

sel07, sel08, sel09,

// break

sellO, selll, sell2, sell3, sell4, // break

sell8, sell9, sella, sellb, sellc, // break

sel20, sel21, se122, // break

se124, se125, se126, // break

se128, se129, sel2a, // break

sel2c, sel2d, sel2e, // break

sel30, sel31, se132, se133, se134, se135, se136,
se137, se138, se139,

sel3a, sel3b, sel3c, sel3d, sel3e, sel3f,

sel40, sel41, se142, se143, se144, se145, se146,
se147, se148, se149,

sel4a, sel4b, sel4c, sel4d, sel4e, sel4f,

sel50, sel5l, se152, se153, se154, se155, se156,
se157, se158, se159,

sel5a, sel5b, sel5c, sel5d, sel5e, sel5f,

sel60, sel61, se162, // break

se164, se165, se166, // break

se168, se169, sel6a, // break

sel6c, sel6d, sel6e, // break

sel70, sel71, se172, se173, se174, // break

se178, se179, sel7a, sel7b, sel7c, // break



sel80, sel81, se182, se183, se184, se185, se186,

se187, se188, se189;

// break

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

aO,

a2,
a4,
a6,
a8,
alO

a12
al

al
al

al,

a3,

a5,

a7,

a9,

all

a13

wOO10,
wOllO,

w0211,

w0311,

w0412,

w0512

, w0613

swO 0

swOl 1

sw02

sw03

sw04

swO 5

sw06

sw07

sw08

sw09

(selO0,

(selOl,

(sel02,

(sel03,

(sel04,

(sel05,

(sel06,

(sel07,

(sel08,

(sel09,

a (sel0a

b (selO0

c (selOc

d (selOd
e (selO
f (selOf

(sellO,
(selll,

(sell2,

(sell3,

(sell4,

5 (sell-
6 (sellE
7 (sell'

r0110,

r0311,

0512,

r0713,

r0914,

wOblE

wOdlE

w0fl7

wO0018);

w0118);

w0219);

w0319);

wO41a);

, w051a)

, wO61b)

w071b);

w081c);

w091c);

wOald)

wObld)

wOcle)

wOdle)

w0elf)

, wflf)

w1020,

w1120,

w1221,

w1321,

w1422,

, w1522

, w1623

1, w1723

w1024) ;

w1124);

w1225);

w1325);

w1426);

w1526)

w1627)

w1727)

switch swl8 (sell8, w0018, w0118, w1828, w182c);

switch swl9 (sell9, w0219, w0319, w1928, w192c);

switch swla (sella, w041a, w051a, wla29, wla2d);

switch swlb (sellb, w061b, w071b, wlb29, wlb2d);

switch swlc (sellc, w081c, w091c, wlc2a, wlc2e);

switch swld (selld, wOald, wObld, wld2a, wld2e)

switch swle (selle, wOcle, wOdle, wle2b, wle2f)

switch swlf (sellf, w0elf, wOflf, wlf2b, wlf2f)

switch sw20 (sel20, w1020, w1120, w2030, w2032);

4, al5, w0713,

6, a17, w0814,

8, a19, w0914,

a20, a21, wOal5

a22, a23, wObl5

a24, a25, wOcl6

a26, a27, wOdl6

a28, a29, wOel7

a30, a31, wOfl7

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

wOO10, w

w0211, w

w0412, w

w0613, w

w0814, w

, wOal5,

, wOcl6,

7, wOel7,

swO

swO

swO

swO

swO

swO

swl O

swll 1

swl2

swl3

swl4

swl

swl

swl



switch sw21 (sel21, w1221, w1321, w2130, w2132);

switch sw22 (se122, w1422, w1522, w2231, w2233);

// switch sw23 (se123, w1623, w1723, w2331, w2333);

switch sw24 (se124,

switch sw25 (se125,

switch sw26 (se126,

// switch sw27 (sel2

switch sw28 (se128,

switch sw29 (se129,

switch sw2a (sel2a,

// switch sw2b (sel2

switch sw2c (sel2c,

switch sw2d (sel2d,

switch sw2e (sel2e,

// switch sw2f (sel2

switch sw30

switch sw31

switch sw32

switch sw33

switch sw34

switch sw35

switch sw36

switch sw37

switch sw38

switch sw39

switch sw3a

switch sw3b

switch sw3c

switch sw3d

switch sw3e

switch sw3f

switch sw40

switch sw41

switch sw42

switch sw43

switch sw44

switch sw45

switch sw46

(sel30,

(sel31,

(se132,

(se133,

(se134,

(se135,

(se136,

(se137,

(se138,

(se139,

(sel3a,

(sel3b,

(sel3c,

(sel3d,

(sel3e,

(sel3f,

(sel40,

(sel41,

(se142,

(se143,

(se144,

(se145,

(se146,

w1024,

w1225,

w1426,

7, w162

w1828,

wla29,

wlc2a,

b, wle2

w182c,

wla2d,

wlc2e,

f, wle2

w2030,

w2231,

w2032,

w2233,

w2434,

w2635,

w2436,

w2637,

w2838,

w2a39,

w283a,

w2a3b,

w2c3c,

w2e3d,

w2c3e,

w2e3f,

w3040,

w3041,

w3242,

w3243,

w3444,

w3445,

w3646,

w1124,

w1325,

w1526,

7, w172

w1928,

wlb29,

wld2a,

b, wlf2

w192c,

wlb2d,

wld2e,

f, wlf2

w2130,

w2331,

w2132,

w2333,

w2534,

w2735,

w2536,

w2737,

w2938,

w2b39,

w293a,

w2b3b,

w2d3c,

w2f3d,

w2d3e,

w2 f3 f,

w3140,

w3141,

w3342,

w3343,

w3544,

w3545,

w3746,

w2434, w2436);

w2534, w2536);

w2635, w2637);

7, w2735, w2737);

w2838, w283a);

w2938, w293a);

w2a39, w2a3b);

b, w2b39, w2b3b);

w2c3c, w2c3e);

w2d3c, w2d3e);

w2e3d, w2e3f);

f, w2f3d, w2f3f);

w3040,

w3140,

w3242,

w3342,

w3444,

w3544,

w3646,

w3746,

w3848,

w3948,

w3a4a,

w3b4a,

w3c4c,

w3d4c,

w3e4e,

w3f4e,

w4050,

w4150,

w4252,

w4352,

w4454,

w4554,

w4656,

w3041);

w3141);

w3243);

w3343) ;

w3445) ;

w3545) ;

w3647) ;

w3747);

w3849);

w3949) ;

w3a4b) ;

w3b4b);

w3c4d);

w3d4d);

w3e4f);

w3f4f);

w4051);

w4151);

w4253) ;

w4353) ;

w4455) ;

w4555) ;

w4657) ;



switch sw47 (se147, w3647, w3747, w4756, w4757);

switch sw48 (se148, w3848, w3948, w4858, w4859);

switch sw49 (se149, w3849, w3949, w4958, w4959);

switch sw4a (sel4a, w3a4a, w3b4a, w4a5a, w4a5b);

switch sw4b (sel4b, w3a4b, w3b4b, w4b5a, w4b5b);

switch sw4c (sel4c, w3c4c, w3d4c, w4c5c, w4c5d);

switch sw4d (sel4d, w3c4d, w3d4d, w4d5c, w4d5d);

switch sw4e (sel4e, w3e4e, w3f4e, w4e5e, w4e5f);

switch sw4f (sel4f, w3e4f, w3f4f, w4f5e, w4f5f);

switch sw50 (sel50, w4050, w4150, w5060, w5061);

switch sw51l (sel5l, w4051, w4151, w5162, w5163);

switch sw52 (se152, w4252, w4352, w5260, w5261);

switch sw53 (se153, w4253, w4353, w5362, w5363);

switch sw54 (se154, w4454, w4554, w5464, w5465);

switch sw55 (se155, w4455, w4555, w5566, w5567);

switch sw56 (se156, w4656, w4756, w5664, w5665);

switch sw57 (se157, w4657, w4757, w5766, w5767);

switch sw58 (se158, w4858, w4958, w5868, w5869);

switch sw59 (se159, w4859, w4959, w596a, w596b);

switch sw5a (sel5a, w4a5a, w4b5a, w5a68, w5a69) ;

switch sw5b (sel5b, w4a5b, w4b5b, w5b6a, w5b6b);

switch sw5c (sel5c, w4c5c, w4d5c, w5c6c, w5c6d);

switch sw5d (sel5d, w4c5d, w4d5d, w5d6e, w5d6f);

switch sw5e (sel5e, w4e5e, w4f5e, w5e6c, w5e6d);

switch sw5f (sel5f, w4e5f, w4f5f, w5f6e, w5f6f);

switch sw60 (sel60, w5060, w5260, w6070, w6071);

switch sw61 (sel61, w5061, w5261, w6172, w6173);

switch sw62 (se162, w5162, w5362, w6274, w6275);

// switch sw63 (se163, w5163, w5363, w6376, w6377);

switch sw64 (se164, w5464, w5664, w6470, w6471);

switch sw65 (se165, w5465, w5665, w6572, w6573);

switch sw66 (se166, w5566, w5766, w6674, w6675);

// switch sw67 (se167, w5567, w5767, w6776, w6777);

switch sw68 (se168, w5868, w5a68, w6878, w6879);

switch sw69 (se169, w5869, w5a69, w697a, w697b);

switch sw6a (sel6a, w596a, w5b6a, w6a7c, w6a7d);

// switch sw6b (sel6b, w596b, w5b6b, w6b7e, w6b7f);

switch sw6c (sel6c, w5c6c, w5e6c, w6c78, w6c79);



switch sw6d (sel6d, w5c6d, w5e6d, w6d7a, w6d7b);

switch sw6e (sel6e, w5d6e, w5f6e, w6e7c, w6e7d);

// switch sw6f (sel6f, w5d6f, w5f6f, w6f7e, w6f7f);

switch sw70 (sel70, w6070, w6470, w7080, w7081);

switch sw71 (sel71, w6071, w6471, w7182, w7183);

switch sw72 (se172, w6172, w6572, w7284, w7285);

switch sw73 (se173, w6173, w6573, w7386, w7387);

switch sw74 (se174, w6274, w6674, w7488, w7489);

// switch sw75 (se175, w6275, w6675, w758a, w758b);

// switch sw76 (se176, w6376, w6776, w768c, w768d);

// switch sw77 (se177, w6377, w6777, w778e, w778f);

switch sw78 (se178, w6878, w6c78, w7880, w7881);

switch sw79 (se179, w6879, w6c79, w7982, w7983);

switch sw7a (sel7a, w697a, w6d7a, w7a84, w7a85);

switch sw7b (sel7b, w697b, w6d7b, w7b86, w7b87);

switch sw7c (sel7c, w6a7c, w6e7c, w7c88, w7c89);

// switch sw7d (sel7d, w6a7d, w6e7d, w7d8a, w7d8b);

// switch sw7e (sel7e, w6b7e, w6f7e, w7e8c, w7e8d);

// switch sw7f (sel7f, w6b7f, w6f7f, w7f8e, w7f8f);

switch sw80 (sel80, w7080, w7880, bO, bl);

switch sw81 (sel81, w7081, w7881, b2, b3);

switch sw82 (se182, w7182, w7982, b4, b5);

switch sw83 (se183, w7183, w7983, b6, b7);

switch sw84 (se184, w7284, w7a84, b8, b9);

switch sw85 (se185, w7285, w7a85, b10, bll);

switch sw86 (se186, w7386, w7b86, b12, b13);

switch sw87 (se187, w7387, w7b87, b14, b15);

switch sw88 (se188, w7488, w7c88, b16, b17);

switch sw89 (se189, w7489, w7c89, b18, b19);

// switch sw8a (sel8a, w758a, w7d8a, b20, b21);

// switch sw8b (sel8b, w758b, w7d8b, b22, b23);

// switch sw8c (sel8c, w768c, w7e8c, b24, b25);

// switch sw8d (sel8d, w768d, w7e8d, b26, b27);

// switch sw8e (sel8e, w778e, w7f8e, b28, b29);

// switch sw8f (sel8f, w778f, w7f8f, b30, b31);

endmodule /* perm20by20 */



A.5: Control word generator for 32-by-32 Benes net-
work (C)

#include <stdio.h>

#define N 32

#define x 9

#define y 16

typedef struct entry

{

/* number of i/o */

int used; /* keeps track of used entries

on decomposition */

int entry;
int group;

} map;

map pmap[N];

int cw[y] [x];

/* permutation map entries */

/* P1 or P2 group assignment */

/* i/o permutation map */

/* permutation map array */

/* control word array */

main()

{
int n, m;
int i, cnt;

int llim, ulim;

/*

pmap[0].entry = 5;

pmap[l].entry = 3;

pmap[2].entry = 4;
pmap[3].entry = 7;
pmap[4] .entry = 0;
pmap[5] .entry = 1;
pmap[6].entry = 2;
pmap[7].entry = 6;
*/

printf("** Permutation entries to satisfy all require-
ments **\n");

for (cnt=0; cnt<20; cnt++)

entries to be used */

{

/* only top 20 of 32



printf("D[%d]

scanf("%d", &pmap[cnt].entry);

pmap[cnt] .used = 0;

pmap[cnt].group = 0;

for (cnt=20; cnt<N; cnt++) /* rest self mapping */

pmap[cnt].entry = c

pmap[cnt].used = 0;

pmap[cnt] .group = 0

for (m=0; m<y; m++)

{
for (n=0; n<x; n++)

cw[m] [n] - 5; /* just for test since each entry to be

actively set */
}

for (i=0; i<N; i++)

{
printf(" %d %d %d\n",

pmap[i].group);

pmap[i] .used, pmap[i].entry,

n = log(N); /* finding log base 2

printf("n = %d\n", n);

for (m=0; m<n; m++)

{
llim = 0;

i = N / pow(2, m);

printf("i = %d\n", i);
ulim = i;
for (cnt=0; cnt < pow(2, m); cnt++)

decompose (11im, ulim, m);

regroup (llim, ulim);

nt;

of N */

= ", cnt);

;



llim = ulim;
ulim = ulim + i;

printf("--------\n");

for (i=0; i<N; i++)

{
printf(" %d %d %d\n",

pmap[i].group);

pmap[i] .used, pmap[i].entry,

printf("####### FINAL SWITCH SETUP ###########\n\n");

for (m=O; m<y; m++)

{
for (n=0; n<x; n++)

printf("%d ", cw[m] [n]);

printf("\n");

}

return 0;

decompose (int llim, int ulim, int n)

/* decompose permutation array

and set switches

int cnt;

int u, v;

int i;

int p, q;

for (cnt=llim; cnt<ulim;

while (pmap[cnt].used ==

v = cnt / 2;

u = x - n - 1;

if (u != n)

{
printf(" v = %d, n = %d\n",

cnt++)

v, n);



= (cnt+2) % 2;

printf("pmap[%d] .entry = %d\n",
pmap[cnt].entry);

v = (11im + pmap[cnt].entry) / 2;

printf("v = %d, u = %d\n", v, u);

cw[v] [u] = (pmap[cnt].entry + 2)

pmap[cnt] .entry = pmap[cnt] .entry

pmap[cnt].used = 1;

pmap[cnt].group = 0;

i = llim;

% 2;

/ 2;

while ((pmap[i].used ==
pmap[i] .entry) /2 != v))

1) I ((llim +

pmap[i] .used = 1;

pmap[i] .group = 1

pmap[i].entry = pmap[i].entry /

if ((i + 2) % 2 == 0)

cnt = i + 1;
else

cnt = i - 1;

for (p=0; p<y; p++)

{
for (q=0; q<x; q++)

printf("%d ", cw[p] [q]);

printf("\n");

}

for (i=0; i<N; i++)

{
printf(" %d %d %d\n",

pmap[i].group);

pmap[i].used, pmap[i].entry,

cnt,

cw[v] [n]



printf("========\n");

*/return
return 0;

regroup
and P2 */

(int llim, int ulim) /* re-group entries

map temp[(ulim-llim)/2];

int c, d, e;

int i;

d = 0;

e = llim;
c<ulim; c++)

if (pmap[c].group == 1)

{
temp[d] .entry = pmap[c] .entry;
temp[d] .group = pmap[c] .group;

temp[d] .used = 1;

d++;

}
else

{
pmap[e] .entry = pmap[c] .entry;

pmap[e] .group = pmap[c] .group;

/* unnecessary

pmap[c] .used =

C = U

while (e < ulim)

pmap[e] .entry =

pmap[e].group =

temp[c] .entry;

temp [c] .group;

c++;

in P1

for (c=llim;



I/*
for (i=O; i<N; i++)

{
printf("* %d %d %d\n", pmap[i] .used, pmap[i] .entry,

pmap[i] .group);

}

*/
return 0;

log (int num) /* assuming num is power of 2 */

int p = 0;

while (num > 1)

{
num = num / 2;

return p;

pow (int g, /* g raised to power h */

int f = 1;

while (h > 0)

{
f = f*g;

return f;

int h)



A.6: Verification of functionality of permuter and con-
trol word generator (Verilog HDL)

module test20by2Operm;

wire io0, iol, io2, io3, io4, io5, io6, io7, io8, io9,

iol0, ioll,

iol2, iol3, iol4, iol5, iol6, iol7, iol8, io19;

wire oi0O, oil, oi2, oi3, oi4, oi5, oi6, oi7, oi8, oi9,

oil, oill,

oil2, oil3, oil4, oil5, oil6, oil7, oil8, oil9;

reg cO, cl, c2, c3, c4, c5, c6, c7, c8, c9, cl0, cll,

c12, c13,

c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24,

c25, c26,

c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37,

c38, c39,

c40, c41, c42, c43, c44, c45, c46, c47, c48, c49, c50,

c51, c52,

c53, c54, c55, c56, c57, c58, c59, c60, c61, c62, c63,

c64, c65,

c66, c67, c68, c69, c70, c71, c72, c73, c74, c75, c76,

c77, c78,

c79, c80, c81, c82, c83, c84, c85, c86, c87, c88, c89,

c90, c91,

c92, c93, c94, c95, c96, c97, c98, c99, cl00, cl01,

c102, c103,

c104, c105, c106, c107, c108, c109, cll0, clll;

initial

begin

/* control bit setup for a0..al9 mapped to bl9..b0 as

derived from control word generator of Appendix A.5 */

cO = 0;

cl = 0;

c2 = 0;

c3 = 0;

c4 = 0;

c5 = 0;

c6 = 0;

c7 = 0;



c8 = 0;

c9 = 0;

c10 = 0;

cll = 0;

c12 = 0;

c13 = 0;

c14 = 0;

c15 = 0;

c16 = 0;

c17 = 0;

c18 = 0;

c19 = 0;

c20 = 0;

c21 = 0;

c22 = 0;

c23 = 0;

c24 = 0;

c25 = 0;

c26 = 0;

c27 = 0;

c28 = 0;

c29 = 0;

c30 = 0;

c31 = 0;

c32 = 0;

c33 = 0;

c34 = 0;

c35 = 0;

c36 = 0;

c37 = 0;

c38 = 0;

c39 = 0;

c40 = 0;

60



c41

c42

c43

c44

c45

c46

c47

c48

c49

c50

c51

c52

c53

c54

c55

c56

c57

c58

c59

c60

c61

c62

c63

c64

c65

c66

c67

c68

c69

c70

c71

c72

c73

c74

c75

c76

c77

c78

0;

0;

0;

0;
0;

0;

0;

1;

0;

0;

0;

1;

0;

0;

0;

1;

0;

0;

0;

1;

0;

0;

0;

0;

0;

1;

0;

0;

0;

1;

0;

0;

0;

1;

0;

0;

0;

1;



c79 = 0;

c80 = 0;

c81 = 0;

c82 = 0;

c83 = 0;

c84 = 0;

c85 = 0;

c86 = 0;

c87 = 0;

c88 = 0;

c89 = 0;

c90 = 0;

c91 = 0;

c92 = 1;

c93 = 1;

c94 = 1;

c95 = 1;

c96 = 1;

c97 = 1;

c98 = 1;

c99 = 1;

cl10 = 1;

cll0 = 1;

c102 = 1;

c103 = 1;

c104 = 1;

c105 = 1;

c106 = 1;

c107 = 1;

c108 = 1;

c109 = 1;

c110 = 1;

cl11 = 1;



end

initial

begin

$monitor("io =
%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b\noi =
%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b%b\n", ioO,

iol, io2, io3, io4, io5, io6, io7, io8, io9, iolO, ioll,
iol2,

iol3, iol4, io15, iol6, iol7, iol8, iol9,

oiO, oil, oi2, oi3, oi4, oi5, oi6, oi7, oi8, oi9, oilO,
oill, oil2,

oil3, oil4, oil5, oil6, oil7, oil8, oil9);

#5000 $stop;

end

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

io0

iol

io2

io3

io4

io5

io6

io7

io8

io9

oi0

oil

oi2

oi3

oi4

oi5

oi6

oi7

oi8

oi9

// half setup for a's= 1;

= 1;

= 1;

= 1;

= 1;

= 1;

= 1;

= 1;

= 1;

= 1;

= 0;

= 0;

= 0;

= 0;

= 0;

= 0;

= 0;

= 0;

= 0;

= 0;

// other half setup for b's

perm2Oby2 0
io8, io9,

pO (ioO, iol, io2, io3, io4, io5, io6, io7,



iolO, ioll, iol2, iol3, iol4, iol5, iol6, iol7, iol8,
io19,

oiO, oil, oi2, oi3, oi4, oi5, oi6, oi7, oi8, oi9,
oilO, oill,

oil2, oil3, oil4, oil5, oil6, oil7, oil8, oil9,

cO, cl, c2, c3, c4, c5, c6, c7, c8, c9, clO, cll, c12,

c13, c14,

c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25,

c26, c27,

c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38,

c39, c40,

c41, c42, c43, c44, c45, c46, c47, c48, c49, c50, c51,

c52, c53,

c54, c55, c56, c57, c58, c59, c60, c61, c62, c63, c64,

c65, c66,

c67, c68, c69, c70, c71, c72, c73, c74, c75, c76, c77,

c78, c79,

c80, c81, c82, c83, c84, c85, c86, c87, c88, c89, c90,

c91, c92,

c93, c94, c95, c96, c97, c98, c99, cl00, clOl, c102,

c103, c104,

c105, c106, c107, c108, c109, c110, clll);

endmodule /* test20by2Operm */

module switch (select, inoutO, inoutl, outinO, outinl);

input select;

inout inoutO, inoutl, outinO, outinl;

tranifO swO (inoutO, outin0, select);

tranifO swl (inoutl, outinl, select);

tranifl sw2 (inoutO, outinl, select);

tranifl sw3 (inoutl, outin0, select);

endmodule /* switch */

module perm20by20 (aO, al, a2, a3, a4, a5, a6, a7, a8, a9,

alO, all, a12, a13, a14, a15, a16, a17, a18, a19,

bO, bl, b2, b3, b4, b5, b6, b7, b8, b9,

blO, bll, b12, b13, b14, b15, b16, b17, b18, b19,



sel00, selOl, sel02, sel03, sel04, sel05, sel06, sel07,

sel08, sel09,

// break (omission of switch for optimization)

sellO, selll,

sell8, sell9,

sel20, sel21,

se124, se125,

se128, se129,

sel2c, sel2d,
sel30, sel31,

se138, se139,
sel3a, sel3b,

sel40, sel41,
se148, se149,

sel4a, sel4b,

sel50, sel5l,
se158, se159,

sel5a, sel5b,
sel60, sel61,
se164, se165,

se168, se169,

sel6c, sel6d,

sel70, sel71,

se178, se179,

sel80, sel81,
se188, se189

// break

sell2,

sella,

se122,

se126,

sel2a,

sel2e,

se132,

sel3c,

se142,

sel4c,

se152,

sel5c,

se162,

se166,

sel6a,

sel6e,

se172,

sel7a,

se182,

sell3, sell4, // break

sellb, sellc, // break

// break

// break

// break

// break

se133, se134, se135, se136, se137,

sel3d, sel3e,

se143, se144,

sel4d, sel4e,

se153, se154,

sel3f,

se145, se146, se147,

sel4f,

se155, se156, se157,

sel5d, sel5e, sel5f,

// break

// break

// break

// break

se173, se174, // break

sel7b, sel7c, // break

se183, se184, se185, se186, se187,

inout

aO, al, a2, a3, a4, a5, a6, a7, a8, a9,

alO, all, a12, a13, a14, a15, a16, a17, a18, a19,

bO, bl, b2, b3, b4, b5, b6, b7, b8, b9,

blO, bll, b12, b13, b14, bl5, b16, b17, b18, b19;

input

selO00, selOl, sel02, sel03, sel04, sel05, sel06,
sel07, sel08, sel09,

// break

sellO, selll, sell2, sell3, sell4, // break

sell8, sell9, sella, sellb, sellc, // break



sel20, sel21,

se124, se125,

se128, se129,

sel2c, sel2d,

sel30, sel31,
se137, se138, se139,

sel3a, sel3b,

sel40, sel41,
se147, se148, se149,

sel4a, sel4b,

sel50, sel5l,
se157, se158, se159,

sel5a, sel5b,

sel60, sel61,

se164, se165,

se168, se169,

sel6c, sel6d,

sel70, sel71,

se178, se179,

sel80, sel81,
se187, se188, se189;

// break

se122,

se126,

sel2a,

sel2e,

se132,

sel3c,

se142,

sel4c,

se152,

sel5c,

se162,

se166,

sel6a,

sel6e,

se172,

sel7a,

se182,

// break

// break

// break

// break

se133, se134, se135, se136,

sel3d,

se143,

sel4d,

se153,

sel3e,

se144,

sel4e,

se154,

sel3f

se145

sel4f

se155

se146,

se156,

sel5d, sel5e, sel5f,

// break

// break

// break

// break

se173, se174

sel7b, sel7c

se183, se184

// break

// break

se185, se186,

(sel00,

(sel01,

(sel02,
(sel03,

(sel04,

(sel05,
(sel06,
(sel07,

(sel08,

(sel09,

w0010,
w0110,

w0211,

w0311,

w0412,

, w0512

, w0613

, w0713

w0814

, w0914

wO0018);

w0118);

w0219);

w0319);

w041a);

, w051a)

, w061b)

, w071b)

, w081c)

, w091c)

// switch sw0a (selOa, a20,

optimization

// switch swOb (selOb, a22,
control bits

// switch swOc (selOc, a24,

// switch swOd (selOd, a26,

// switch sw0e (sel0e, a28,

// switch swOf (selOf, a30,

a21, wOal5, wOald);

a23, wObl5, wObld);

a25

a27

a29

a31

wOcl6,

wOdl6,

wOel7,

wOfl7,

wOcle)
wOdle)

w0elf)

w0flf)

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

swO00

swO01

sw02

sw03

sw04

sw05

swO 6

sw07

swO 8

sw09

al,
a3,
a5,

a7,
a9,
all
a13
a15
a17
a19

aO,
a2,
a4,
a6,
a8,
alO,
a12,
a14,
a16,

a18,
for

on



switch swlO (sellO, wOO10, w0110, w1020, w1024);

switch swll (selll, w0211, w0311, w1120, w1124);

switch swl2 (sell2, w0412, w0512, w1221, w1225);

switch swl3 (sell3, w0613, w0713, w1321, w1325);

switch swl4 (sell4, w0814, w0914, w1422, w1426);

switch swl5 (sell5, wOal5, wObl5, w1522, w1526)

switch swl6 (sell6, wOcl6, wOdl6, w1623, w1627)

switch swl7 (sell7, wOel7, wOfl7, w1723, w1727)

switch swl8 (sell8, w0018, w0118, w1828, w182c);

switch swl9 (sell9, w0219, w0319, w1928, w192c);

switch swla (sella, w041a, w051a, wla29, wla2d);

switch swlb (sellb, w061b, w071b, wlb29, wlb2d);

switch swlc (sellc, w081c, w091c, wlc2a, wlc2e);

switch swld (selld, wOald, wObld, wld2a, wld2e)

switch swle (selle, wOcle, wOdle, wle2b, wle2f)

switch swlf (sellf, w0elf, wOflf, wlf2b, wlf2f)

switch sw20 (sel20, w1020, w1120, w2030,

switch sw21 (sel21, w1221, w1321, w2130,

switch sw22 (se122, w1422, w1522, w2231,

// switch sw23 (se123, w1623, w1723, w233

switch sw24 (se124, w1024, w1124, w2434,

switch sw25 (se125, w1225, w1325, w2534,

switch sw26 (se126, w1426, w1526, w2635,

// switch sw27 (se127, w1627, w1727, w273

switch sw28 (se128, w1828, w1928, w2838,

switch sw29 (se129, wla29, wlb29, w2938,

switch sw2a (sel2a, wlc2a, wld2a, w2a39,

// switch sw2b (sel2b, wle2b, wlf2b, w2b3

switch sw2c (sel2c, w182c, w192c, w2c3c,

switch sw2d (sel2d, wla2d, wlb2d, w2d3c,

switch sw2e (sel2e, wlc2e, wld2e, w2e3d,

w2032)

w2132)

w2233)

1, w233

w2436)

w2536)

w2637)

5, w273

w283a)

w293a)

w2a3b)

9, w2b3

w2c3e)

w2 d3 e)

w2e3f)

3);

7);

b);

// switch sw2f (sel2f, wle2f, wlf2f, w2f3d, w2f3f);

switch

switch

switch

switch

sw30O

sw31

sw3 2

sw3 3

(sel30,

(sel31,

(se132,

(se133,

w203 0,

w2231,

w2032,

w2233,

w2130,

w2331,

w2132,

w2333,

w3040,

w3140,

w3242,

w3342,

w3041)

w3141)

w3243)

w3343)



switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

switch

sw3 4

sw3 5
sw3 6

sw3 7

sw3 8

sw39

sw3 a

sw3b

sw3 c

sw3 d

sw3 e

sw3 f

sw4 0

sw4 1

sw4 2

sw4 3

sw4 4

sw45

sw4 6

sw4 7

sw4 8

sw4 9

sw4a

sw4b

sw4c

sw4d

sw4 e

sw4 f

sw5 0

sw5 1

sw5 2

sw5 3

sw5 4

sw5 5

sw5 6

sw5 7

sw5 8

sw5 9

(se134,

(se135,

(se136,

(se137,

(se138,

(se139,

(sel3a,

(sel3b,

(sel3c,

(sel3d,

(sel3e,

(sel3f,

(sel40,

(sel41,

(se142,

(se143,

(se144,

(se145,

(se146,

(se147,

(se148,

(se149,

(sel4a,

(sel4b,

(sel4c,

(sel4d,

(sel4e,

(sel4f,

(sel50,

(sel51,

(se152,

(se153,

(se154,

(se155,

(se156,

(se157,

(se158,

(se159,

w2434,

w2635,

w2436,

w2637,

w2838,

w2a39,

w283a,

w2a3b,

w2c3c,

w2e3d,

w2c3e,

w2e3f,

w304 0,

w3041,

w3242,

w3243,

w3444,

w3445,

w3646,

w3647,

w3848,

w3849,

w3a4a,

w3a4b,

w3c4c,

w3c4d,

w3e4e,

w3e4f,

w4050,

w4051,

w4252,

w4253,

w4454,

w4455,

w4656,

w4657,

w4858,

w4859,

w2534,

w2735,

w2536,

w2737,

w2938,

w2b39,

w293a,

w2b3b,

w2d3c,

w2 f3d,

w2 d3 e,

w2f3f,

w3140,

w3141,

w3342,

w3343,

w3544,

w3545,

w3746,

w3747,

w3948,

w3949,

w3b4a,

w3b4b,

w3d4c,

w3d4d,

w3f4e,

w3f4f,

w4150,

w4151,

w4352,

w4353,

w4554,

w4555,

w4756,

w4757,

w4958,

w4959,

w3444,

w3544,

w3646,

w3746,

w3848,

w3948,

w3a4a,

w3b4a,

w3c4c,

w3d4c,

w3e4e,

w3f4e,

w4050,

w4150,

w4252,

w4352,

w4454,

w4554,

w4656,

w4756,

w4858,

w4958,

w4a5a,

w4b5a,

w4c5c,

w4d5c,

w4e5e,

w4f5e,

w5060,

w5162,

w5260,

w5362,

w5464,

w5566,

w5664,

w5766,

w5868,

w596a,

w3445);

w3545);

w3647);

w3747);

w3849);

w3949) ;

w3a4b);

w3b4b) ;

w3c4d) ;

w3d4d) ;

w3e4f) ;

w3f4f) ;

w4051);

w4151);

w4253);

w4353);

w4455);

w4555);

w4657);

w4757);

w4859);

w4959);

w4a5b);

w4b5b);

w4c5d);

w4d5d);

w4e5f);

w4f5f);

w5061);

w5163);

w5261) ;

w5363) ;

w5465);

w5567);

w5665);

w5767);

w5869);

w596b);



switch sw5a (sel5a, w4a5a, w4b5a, w5a68, w5a69);

switch sw5b (sel5b, w4a5b, w4b5b, w5b6a, w5b6b);

switch sw5c (sel5c, w4c5c, w4d5c, w5c6c, w5c6d);

switch sw5d (sel5d, w4c5d, w4d5d, w5d6e, w5d6f);

switch sw5e (sel5e, w4e5e, w4f5e, w5e6c, w5e6d);

switch sw5f (sel5f, w4e5f, w4f5f, w5f6e, w5f6f);

switch sw60 (sel60, w5060, w5260, w6070, w6071);

switch sw61 (sel61, w5061, w5261, w6172, w6173);

switch sw62 (se162, w5162, w5362, w6274, w6275);

// switch sw63 (se163, w5163, w5363, w6376, w6377);

switch sw64 (se164, w5464, w5664, w6470, w6471);

switch sw65 (se165, w5465, w5665, w6572, w6573);

switch sw66 (se166, w5566, w5766, w6674, w6675);

// switch sw67 (se167, w5567, w5767, w6776, w6777);

switch sw68 (se168, w5868, w5a68, w6878, w6879);

switch sw69 (se169, w5869, w5a69, w697a, w697b);

switch sw6a (sel6a, w596a, w5b6a, w6a7c, w6a7d);

// switch sw6b (sel6b, w596b, w5b6b, w6b7e, w6b7f);

switch sw6c (sel6c, w5c6c, w5e6c, w6c78, w6c79);

switch sw6d (sel6d, w5c6d, w5e6d, w6d7a, w6d7b);

switch sw6e (sel6e, w5d6e, w5f6e, w6e7c, w6e7d);

// switch sw6f (sel6f, w5d6f, w5f6f, w6f7e, w6f7f);

switch sw70 (sel70, w6070, w6470, w7080, w7081);

switch sw71 (sel71, w6071, w6471, w7182, w7183);

switch sw72 (se172, w6172, w6572, w7284, w7285);

switch sw73 (se173, w6173, w6573, w7386, w7387);

switch sw74 (se174, w6274, w6674, w7488, w7489);

// switch sw75 (se175, w6275, w6675, w758a, w758b);

// switch sw76 (se176, w6376, w6776, w768c, w768d);

// switch sw77 (se177, w6377, w6777, w778e, w778f);

switch sw78 (se178, w6878, w6c78, w7880, w7881);

switch sw79 (se179, w6879, w6c79, w7982, w7983);

switch sw7a (sel7a, w697a, w6d7a, w7a84, w7a85);

switch sw7b (sel7b, w697b, w6d7b, w7b86, w7b87);

switch sw7c (sel7c, w6a7c, w6e7c, w7c88, w7c89);

// switch sw7d (sel7d, w6a7d, w6e7d, w7d8a, w7d8b);

// switch sw7e (sel7e, w6b7e, w6f7e, w7e8c, w7e8d);

// switch sw7f (sel7f, w6b7f, w6f7f, w7f8e, w7f8f);



switch sw80 (sel80, w7080, w7880, bO, bl);

switch sw81 (sel81, w7081, w7881, b2, b3);

switch sw82 (se182, w7182, w7982, b4, b5);

switch sw83 (se183, w7183, w7983, b6, b7);

switch sw84 (se184, w7284, w7a84, b8, b9);

switch sw85 (se185, w7285, w7a85, blO, bll);

switch sw86 (se186, w7386, w7b86, b12, b13);

switch sw87 (se187, w7387, w7b87, b14, b15);

switch sw88 (se188, w7488, w7c88, b16, b17);

switch sw89 (se189, w7489, w7c89, b18, b19);

// switch sw8a (sel8a, w758a, w7d8a, b20, b21);

// switch sw8b (sel8b, w758b, w7d8b, b22, b23);

// switch sw8c (sel8c, w768c, w7e8c, b24, b25);

// switch sw8d (sel8d, w768d, w7e8d, b26, b27);

// switch sw8e (sel8e, w778e, w7f8e, b28, b29);

// switch sw8f (sel8f, w778f, w7f8f, b30, b31);

endmodule /* perm20by20 */
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