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Abstract

Miscommunication in human-computer spoken language systems is unavoidable. Recog-
nition failures on the part of the system necessitate frequent correction attempts by
the user. Unfortunately and counterintuitively, users’ attempts to speak more clearly
in the face of recognition errors actually lead to decreased recognition accuracy. The
difficulty of correcting these errors, in turn, leads to user frustration and poor assess-
ments of system quality.

Most current approaches to identifying corrections rely on detecting violations
of task or belief models that are ineffective where such constraints are weak and
recognition results inaccurate or unavailable. In contrast, the approach pursued in
this thesis, in contrast, uses the acoustic contrasts between original inputs and repeat
corrections to identify corrections in a more content- and context-independent fashion.

This thesis quantifies and builds upon the observation that suprasegmental fea-
tures, such as duration, pause, and pitch, play a crucial role in distinguishing correc-
tions from other forms of input to spoken language systems. These features can also
be used to identify spoken corrections and explain reductions in recognition accuracy
for these utterances. By providing a detailed characterization of acoustic-prosodic
changes in corrections relative to original inputs in a voice-only system, this thesis
contributes to natural language processing and spoken language understanding. We
present a treatment of systematic acoustic variability in speech recognizer input as
a source of new information, to interpret the speaker’s corrective intent, rather than
simply as noise or user error. We demonstrate the application of a machine-learning
technique, decision trees, for identifying spoken corrections and achieve accuracy rates
close to human levels of performance for corrections of misrecognition errors, using
acoustic-prosodic information. This process is simple and local and depends neither
on perfect transcription of the recognition string nor complex reasoning based on
the full conversation. We further extend the conventional analysis of speaking styles
beyond a ‘read’ versus ‘conversational’ contrast to extreme clear speech, describing
divergence from phonological and durational models for words in this style.

Thesis Supervisor: Robert C. Berwick
Title: Professor of Computer Science and Engineering and Computational Linguistics
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Chapter 1

Introduction

Recognition errors are an unavoidable problem for today’s recognition- based inter-
faces. While isolated word speech recognition error rates can be as low as 5%, a
recognizer working on continuous, conversational speech input often reaches

25% error for recognition of full utterances, due to the increased complexity of
this task. These frequent recognition errors naturally necessitate frequent corrections.
The severity of these problems can be demonstrated by a simple example of an error
“spiral”, a sequence of repeated recognition errors on the part of the system and
repeated attempts to enter the same input on the part of the user, as shown below.

USER: Give me the price for AT&T.

SYSTEM: Hewlett-Packard is at 83 3/8, up 2 3/8 since yesterday.
USER: Give me the price for AT&T.

SYSTEM: Data General is at 63 1/4, up 1/3.

USER: Give me the price for AT&T.

SYSTEM: Hewlett-Packard is at 83 3/8, up 2 3/8.

USER: Give me the price for American Telephone and Telegraph.
SYSTEM: Excuse me?

These sequences are all too common in speech recognition systems and are natu-
rally a source of great frustration to users. Each of the user inputs that follows a recog-
nition error attempting the original misrecognized input is considered a correction.
Understanding how corrections differ from other inputs and how these differences can
be used to recognize such acts will form the focus of this thesis.

It has been observed [Shriberg et al., 1992], [Rudnicky and Hauptmann, 1990
that recognizer error rates are higher for corrections than for other input. This
phenomenon suggests two important possibilities: first, that this observed increase
in recognition errors results from characteristics of correction utterances which differ
from other inputs and the recognizer’s model of expected input, and secondly, that
these changes in speaking style in correction utterances contribute to the frustrating
phenomenon of error spirals, such as the one shown above.

Another important reason to more carefully examine error corrections comes from
user assessments of system quality. In a recent study [Sukkar et al., 1996] researchers
asked users to evaluate the quality of several spoken language systems. The study



revealed that, even for recognition system with low error rates, users gave very unsat-
isfactory reviews of systems where it was more difficult to recover from errors when
they did arise. These issues of decreased recognition accuracy, contribution of error
spirals, and impact on system usability strongly argue on practical grounds that we
focus our attention on a more thorough understanding of corrections of recognition
errors in spoken language systems.

In addition to these very practical arguments, it is also important to better un-
derstand the process of corrections in order to identify not only the lexical content
of the user’s input, but also the intent with which the input was made. In other
words, we would like to understand the real meaning of the utterance, at the level
of the speech act the user performed. Understanding that an utterance represents a
correction of previous input, rather than new input has direct ramifications on the
actions that should be performed by the system. Consider the following scenario as
an example. The system has just received an input that it interprets as “Delete mes-
sage two.” The user then attempts a correction, saying “Delete message EIGHT.”
An appropriate response to this input as a new input would simply be to delete the
eighth message. However, an appropriate response to this input when interpreted as
a correction would be to delete the eighth message and, in addition, reverse or offer
to reverse the deletion of message number two, in accord with the user’s corrective
intent. Thus, identifying the corrective intent of an utterance can have an important
impact on the choice of appropriate system action in response to that utterance.

1.1 Challenges

Unfortunately, identifying an utterance in human-computer dialog as a correction is
far from simple. With a full accurate transcription of both user input and system
response as shown in the initial error spiral in this chapter the user’s repeated at-
tempts at correcting the system are painfully obvious. However, the problem of error
spirals arises form the simple fact that the system often does not have an accurate
transcription of user input. Specifically, the system either misrecognizes the user’s
input, giving an erroneous transcription as seen in the first three responses in the
error spiral, or rejects the input outright, failing to obtain any adequate result from
the recognizer as occurs in the last step shown in the spiral. Thus the system does not
have any guarantee of the ability to compare successive user inputs accurately; if it
did, the need for correction would not have arisen in the first place. Many strategies
for detecting self-repairs, where the user corrects their own utterance in mid-stream
use lexical similarity between the original section of the input and the corrected com-
ponent to detect the repair action, as we will discuss in more detail in the chapter
on related work. Leaving aside for the moment the difficulty of obtaining a text
transcription in the full speech recognition environment, the simple act of repeating
a command to a spoken language system does not necessarily imply an attempted
correction. An examination of 7752 user utterances in SpeechActs, a spoken language
system, revealed that approximately 500 distinct phrases constituted almost 6700 of
the observed utterances. In other words, a mere 500 phrases accounted for 80% of



the inputs to the system. Approximately, 1000 text strings occurred only once. Many
utterances do appear many times, without necessarily involving any corrective intent.
For example, many commands in these systems involve navigation through lists of in-
formation available to the user. It is not unusual for a user to simply navigate through
the list by repeatedly entering the command “next” or “next message”. (One sub-
ject, in particular, often completed entire session with the system by simply logging
in , saying “next message” or “skip it” through all the messages, and hanging up.)
However, by far the most common strategy employed by users in making a correction
was the simple repetition of the same lexical content as the original input attempt.

If similarity of lexical content is not sufficient to identify spoken corrections, per-
haps there are specific lexical cues to the discourse function of these utterances. A
number of cue words or phrases are known to signal different discourse functions such
as topic shift, acknowledgment, or explanation. [Reichman, 1985}, [Hirschberg and
Litman, 1993]. There are even cue phrases which are associated with corrections,
such as a sentence-initial “no” or “I meant”. However, ironically, these cues were
found only rarely in transcripts of user interactions with a spoken language system.
Only seven utterances of over 7700 contained such cues; a similar number of profani-
ties were encountered. Clearly, one can not rely upon the presence of lexical cues to
signal corrections in human-computer dialog.

The preceding discussion shows that lexical information alone is not sufficient
to identify an utterance as a correction, nor would lexical usage effectively explain
the greater frequency of recognition errors observed on correction utterances. Clearly,
however, there is something distinctive about correction utterances that allows human
listeners to identify corrections, even in isolation, at almost 80% accuracy. This
identification argues that, not lexical, but suprasegmental features often signal the
corrective intent of an utterance.

The use of suprasegmental variation, such as changes in duration, pause, or pitch,
to distinguish corrections from other utterances would explain, not only how people
could identify corrections even in isolation, but also the dual problems of the diffi-
culty of recognizing correction in a common speech recognizer context as well as the
lower recognition accuracy observed on correction utterances. First, features such as
fundamental frequency (pitch) and amplitude (loudness) that are, at least anecdo-
tally, associated with spoken corrections to computers and experimentally linked with
corrections to speakers in other populations, such as the hard-of-hearing or children,
are generally stripped off or normalized away in most current speech recognition sys-
tems. Since this information is removed, it would be inaccessible for the purposes
of identifying corrections. Other common suprasegmental features, such as change
in duration or pause, would, in fact, present direct difficulties for speech recogniz-
ers. This difficulty arises because speech recognition relies upon a match between
the recognizer model and the observed input in durations, since an explicit penalty
is imposed on recognition hypotheses in which phoneme durations exceed expected
model durations.

This thesis quantifies and builds upon this observation that suprasegmental fea-
tures, such as duration, pause, and pitch, play a crucial role in distinguishing correc-
tions from other forms of input to spoken language systems and that the features can,
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Figure 1-1: Architecture of System with Correction Classifier

in addition, be used to identify spoken corrections and explain reductions in recogni-
tion accuracy. By providing a detailed characterization of acoustic-prosodic changes
in correction utterances relative to original inputs in human-computer dialog with a
proto-type fully voice-in/voice-out spoken language system, this thesis contributes to
natural language processing and spoken language understanding. We present a treat-
ment of systematic acoustic variability in speech recognizer input as a source of new
information, to interpret the speaker’s corrective intent, rather than simply as noise
to be normalized or a bad habit that the user should mend. We demonstrate the ap-
plication of a machine-learning technique, decision trees, and achieve accuracy rates
close to human levels of performance for corrections of misrecognition errors, using
acoustic-prosodic information to identify spoken corrections. This process is simple
and local and depends neither on perfect transcription of the recognition string or
complex reasoning based on the full conversation. We further extend the conventional
analysis of speaking styles beyond a read versus conversational contrast to extreme
hyper-clear speech, describing divergence from phonological and durational models
for words in hyper-clear speech.

1.2 System Design

The classifier would be incorporated into a standard spoken language system archi-
tecture as depicted above. (Figure 1-1) First, all user utterances would be passed,
in parallel, to both the base speech recognizer and a speech act (in this case, correc-
tion) classifier module. The first component of this classifier module performs simple
acoustic analysis: utterance start and end checkpointing for duration analysis, pause
detection, pitch and amplitude tracking, and speaking rate computation. These mea-
sures are then fed into the correction classifier itself. The classifier will identify the
utterance as corrective or not based on these measures. If a recognition result be-
comes available from the speech recognizer (SR) unit, the classifier can incorporate
that information as well. If the utterance is classified as non-corrective, the recog-
nition result is passed, as usual, through the remainder of the system unimpeded.
However, if the utterance is classified as a correction, two steps follow. First, this
information is sent back to the SR module to invoke any acoustic adaptation rules for
correction recognition and the utterance is reanalyzed. Second, a message is passed to



the discourse manager signaling that a correction has been detected. This discourse
manager will then intervene in the processing of the utterance.

There are a number of forms this intervention could take. First the previous
recognition string, stored in the discourse history stack, is marked as incorrect. If
available, the current and previous recognition results are lexically compared and
single points of substitution are identified. If a single field differs, the system can
prompt the user to explicitly enter that field, confirm it, or shift entry styles and ask
the user to spell the item or select it from a list, for instance. The system can, even
without testing for specific mismatch, present an explicit help message to the user,
indicating recognition trouble or simply shift to a more directive interactive style,
improving on the simple method, employed in many systems, of using longer prompts
after repeated rejections.

We can follow this process through to see how it could alleviate the problems
encountered in our example error spiral. After the system misrecognizes the first
attempt to get the price for AT&T, the user attempts a correction. The acoustic
analysis identifies an increase in utterance duration and pause duration. The classifier
recognizes this change as signaling a correction. It marks the recognition of ‘Hewlett-
Packard’ in the first input as an error and adjusts the context to remove reference to
‘H-P’ as the current company. It then performs a lexical comparison of the original
and correction recognition results, identifying the company field as suspect. The
system then shifts to directive mode, asking the user for the name of the company to
check. The user would then enter ‘AT&T’. The system could then prompt for explicit
confirmation. Detecting the corrective intent of the user thus can defuse error spirals
before the user becomes frustrated.

1.3 Preview

This thesis analyzes correction utterances in comparison to basic original inputs to
develop a more precise characterization of the acoustic- prosodic differences between
these two classes of utterances. This characterization in turn informs the design
of a classifier to distinguish utterances of these two classes and finally can suggest
modifications of speech recognizer design to improve recognition accuracy in the face
of correction-related speech adaptations.

We begin with a discussion of related research. While little work has directly
focussed on corrections, other work in discourse and dialog understanding can inform
the analysis of corrections. Corrections can be viewed as performing a specific function
in a discourse, as initiating a correction subdialog or performing a corrective speech
act. Thus we look at research into the acoustic correlates of discourse structure and of
different types of discourse relations. Here research indicates that utterance duration
and pitch range expand when a new subdialog is initiated and that in some cases
specific pitch contours may be associated with specific discourse relations. Corrections
can also be viewed as a kind of “repair” of a failure of the “other” participant in
the dialog. In this view, we examine work on other dialog repairs, specifically self-
repairs, where the speaker corrects themselves, looking at lexical and acoustic cues to
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repairs. Here we find that repetition and silence within the utterance and increases
in duration, pitch, and amplitude can identify the location of a self-repair. Finally,
we look at two purely descriptive analyses of spoken correction, in systems with only
textual feedback, where increases in utterance duration and pause length characterize
corrections.

We then set the stage for a more detailed analysis of corrections by describing
the spoken language system, SpeechActs, through which we collect the data for these
experiments. The system is a voice-only interface and thus relies exclusively on acous-
tic cues, differing from other platforms where corrections have been studied. We find
that users interacting with the system encounter an overall recognition error rate
of 25%, over more than 60 hours of recorded interactions. These errors are divided
between two-thirds rejection errors, complete recognition failures, and one-third mas-
recognition errors, where a recognition result is found but contains some mistakes.
We explore the source of these errors in greater depth, beginning with a comparison
of error rates for novice and expert users. We find that novices improve their er-
ror rates over time, largely by learning the vocabulary and constructions understood
by the system. However, even without these vocabulary related errors, novice users
still encounter more errors than experts. The almost complete elimination of out-of-
vocabulary utterances from novices’ interactions can be tied to a decrease in their
working vocabularies over time, to a set of words in which the user has high confi-
dence. We also find that although each user converges on a small working vocabulary,
there is still large variation in vocabulary between users. The presence, however, of
persistent errors, an average of almost 20% for even more experienced novice users,
illustrates the importance of properly handling errors and corrections.

Now we move on to the specific acoustic analysis of original inputs in contrast
to repeat corrections. We use a data set consisting of approximately 300 lexically
matched original-repeat utterance pairs. The “original” represents the user’s first
attempt at a given command, and the repeat correction corresponds to the first retry
after the spoken recognition error. We analyze these utterances across a range of
acoustic prosodic measures.

Broad Class Specific Measures
Duration Total utterance duration, speech duration
Pause Total and Average Pause duration

Proportion of Silence
Amplitude Average and Maximum Loudness
Pitch Maximum, Minimum, Range

Internal contour slope, final contour

We find significant differences between original inputs and repeat corrections for
measures of all types except amplitude. There are significant increases in all duration
and pause measures. Pitch minima are lower and final contours are more frequently
falling, for corrections in contrast to original inputs. Finally, for corrections of mis-
recognition errors only, utterance-internal contours are more variable, having steeper
rises and larger cumulative slopes.

11



These contrasts demonstrate a large difference between original inputs and repeat
corrections and suggest a set of features to be used in classifying utterances as originals
or corrections. We design decision tree classifiers to perform this task, exploiting
their ability to ignore irrelevant attributes and to produce readily intelligible and
interpretable classifiers. We develop a set of 38 features for this classifier incorporating
the measures found to be significant in the acoustic analysis, such as duration, pause,
and pitch. These measures are used in both absolute and normalized forms, since
the absolute values are highly variable. For instance, duration ranges from 210 to
5130 milliseconds, depending mostly of lexical content rather than original/correction
status. We take as our basic unit of analysis a single user utterance, defined as
the region between the system’s prompt tone for user input and the system’s next
response, with preceding and trailing silences clipped. We emphasize identifying
isolated individual utterances as original or corrective, but also examine the possibility
of improving classification by comparing pairs of utterances for contrasts characteristic
of corrections. We build classifiers that achieve between 65-77% accuracy, relative to
a 50% baseline, depending on the type of correction being classified and the amount of
information, full text transcription versus purely acoustic speaking rate measures. We
find absolute and normalized duration to be the most important measures, producing
the first split in all trees. For all correction types, other important features are pause
duration and proportion of silence in the utterance. For corrections of misrecognition
errors only, pitch contour and pitch minimum play an important secondary role.
When compared to a 79.4% accuracy rate for human subjects on a similar task, the
accuracy rates for classifiers fare well.

Finally, we consider the ramifications of the large differences between original in-
puts and repeat corrections for the design of adaptive speech recognizers. First we
observe that there are a number of phonological contrasts between originals and cor-
rections. These shifts are largely a natural effect of the increased duration and pause
lengths in correction utterances. The majority of these changes involve a shift to a
clearer, more careful speaking style in corrections, and away from a more conversa-
tional, casual style in original inputs. The contrasts include shifts from reduced vowels
and consonants, such as ‘schwa’ or flapped ‘t’, to unreduced, citation forms, such as
a full vowel ‘00’ in ‘to’ or a released, aspirated ‘t’. In addition we observed shifts
to what can be called a “hyper-clear” style, characterized by insertion of a vowel or
syllable, in correction utterances, as in shifting from ‘goodbye’ to ‘good-ba-aye’. All
of these changes constitute a shift away from the model of pronunciation derived from
a base lexicon with standard co-articulation modeling. When we look at durational
contrasts with a basic speech recognizer, rather than original inputs, the contrasts
are even more clear. We find that a basic durational model, derived from TIMIT ut-
terances [Chung, 1997], provides a good fit for words in non-final position in original
inputs, with an almost normal distribution centered slightly above the TIMIT mean.
Words in final position, though, begin to diverge from the model, being 0.5 standard
deviations longer than predicted. However, corrections present a very poor match
with this model, but in a systematic fashion. Durations of both final and non-final
words become longer, moving the distributions 0.25 to 0.5 standard deviations further
from the mean. We can thus see that a speech recognizer would need to take into
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account these discourse and sentence-level information sources in order to adapt to
recognizing corrections, particularly in those utterance- final words where correction
and phrase-final lengthening effects combine.

In conclusion, we discuss specific ways to incorporate this understanding of du-
rational change in corrections to build a more context- adaptive speech recognizer,
either by incorporating phonological change rules conditioned on the corrective sta-
tus of the utterance, or by modifying the durational model or scoring penalty for
corrections. We also discuss the application of a similar decision tree method to
isolate the corrected word(s) in the correction of misrecognition errors. Finally, we
explore the possibility of using the original-repeat pair adjacency information to build
a pair-based, rather than isolated correction recognizer.

1.4 QOutline

The remainder of the thesis will follow the outline below. We will begin in Chapter
2 with an examination of related research. We will demonstrate how this thesis
draws upon work in the use of intonation to identify discourse structure and discourse
function. We will also look at research into recognizing the presence and position of
self-repairs, another form of correction where the user corrects him/herself rather
than the system. We will describe the use of both lexical and acoustic-prosodic
information to solve this problem. Finally, we will discuss the small body of work
explicitly involved corrections in human-computer dialog.

Chapter 3 will present a detailed description of SpeechActs, the prototype spoken
language system used to collect the human-computer dialog data on which this thesis
is based. We will describe typical interactions with the system and the subject popu-
lation. We will then take a high-level look at error rates and error types encounter by
users and examine in more depth the differences between novice and expert users in
terms of error rates, use of out-of-vocabulary utterances, and vocabulary size and rate
of acquisition. We will explain the selection of the original input-repeat correction
pair data used extensively in acoustic analysis and classification experiments that
form the core of the thesis.

Chapter 4 provides a detailed characterization of the acoustic-prosodic changes in
correction utterances relative to original inputs in human-computer dialog. We exam-
ine four classes of acoustic-prosodic measures: duration, pause, pitch, and amplitude.
We explain the significant differences between original inputs and repeat corrections
for three of these classes: duration, pause, and pitch, and identify important contrasts
between corrections of rejection errors and corrections of misrecognition errors. Fi-
nally, we relate these contrasts to a continuum in speaking style from conversational
to clear.

Chapter 5 demonstrates the use of the acoustic features analyzed in the previous
chapter in the development of a machine-learning based classifier to distinguish be-
tween corrections and other inputs. We begin by explaining the choice of decision
trees as the classifier mechanism, for reasons for intelligibility and robustness to ir-
relevant attributes. We then describe in detail the feature set used to construct the
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decision tree classifiers. We present results for decision tree classifiers on different
correction types and using different types of lexical and contextual information.

Chapter 6 explains how the contrasts between original inputs and repeat correc-
tions reflect a shift away from the models expected to support the speech recognizer.
We demonstrate phonological contrasts between repeat utterances and both conver-
sational and clear speech models of pronunciation. We also highlight the contrasts
between the observed durations of correction utterances and durations predicted by a
typical speech recognizer model, providing suggestions for modifications to a speech
recognizer that would make it more effective in the face of correction-related adapta-
tions.

Chapter 7 summarizes the results from the thesis and presents several paths for
future work. We discuss accommodations in the speech recognizer to improve recog-
nition of corrections. We describe the application of acoustic features related to
corrections to the identification of the word or segment being corrected and present
some preliminary results in this area.
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Chapter 2

Related Work

Fully operational spoken language systems are a very recent development. Conse-
quently, there has been relatively little experimental analysis of users’ interactions
with such systems, much less analysis of detailed correction interactions in such sys-
tems. We draw on related work in three main areas to provide direction and com-
parison for this work on characterizing and recognizing spoken corrections. First we
consider work done in the broader area of understanding the structure of extended
narrative or dialog sequences, usually referred to as discourse. Understanding the
structure of discourse involves both identifying shifts in topic and relationships be-
tween topics and utterances within topics. Such relationships include correction,
acknowledgement, and clarification, for instance. We will focus of identifying these
structures in spoken interactions, emphasizing work on using prosodic cues, such as
duration, loudness, and pitch. Second, we discuss the body of work most closely
linked to corrections, that of automatic recognition of self-repairs. Self-repairs arise
when a speaker interrupts themself to correct all or part of the current utterance; the
later part of the utterance corrects an earlier portion. Corrections, as studied in this
thesis, arise when the speaker’s current utterance is intended to correct a perceived
misunderstanding, misrecognition, or recognition failure of the part of the other con-
versant, and thus form a natural parallel to self-repairs. Finally we will examine
the small body of work that has directly studied spoken corrections, highlighting the
different environments and tasks in which the data was collected.

2.1 Inferring Discourse Relations from Speech

2.1.1 Inferring Discourse Structure from Speech

In written text, narrative or written dialogue, good style decrees that paragraph
structure should reflect discourse and topic structure. Generally the beginning of a
paragraph coincides with the beginning of a discourse segment, and a paragraph end
marks the conclusion of a discourse segment, such as a topic or subtopic. However,
spoken narrative and dialogue lack even these basic cues to discourse structure. We
will look at two sets of features that have been shown to be correlated with dis-
course segment structure, specifically determining the location of discourse segment
boundaries.
Acoustic Measures
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The first group of markers of discourse structure are purely prosodic measures,
measures of pitch, duration, or loudness rather than based on the lexical content of
the utterance. Monologues in which a speaker gives directions from one location to
another, called direction-giving tasks, have been used extensively in several studies
of discourse structure. Such discourses are chosen because giving directios usually
involves an overall goal with clear beginning and end, as well as clearly defined sub-
goals; this clear structure contrasts with the more muddled structure of a conversation
between friends, for example. In one such study, [Davis and Hirschberg, 1988] ex-
amined direction-giving and found that pitch range was closely related to position in
a discourse segment. Specifically, these researchers found that utterances initiating
discourse segments had expanded pitch range, relative to utterances within the seg-
ment. These segment-internal utterances exhibited relatively compressed pitch range.
These contrasts were then incorporated in a text-to-speech system, that demonstrated
that expanded or contracted pitch range could lead subjects to different interpreta-
tions of the sequence of directions based on whether or not they perceived that a
new segment had begun. A group of more systematic studies of intonation related
to discourse structure were performed on a group of direction-giving monologues re-
ferred to as the Boston Directions Corpus. Studies of these monologues as reported
in [Nakatani et al., 1995] again noted an expansion in pitch range associated with
segment beginnings and compression of pitch range within segments.

Finally in a single “dialogue” question-answer system study of user utterances
in the ATIS (Air Travel Information System) corpus, a standard spoken language
systems testbed, [Swerts and Ostendorf, 1995] explored the features of topic initiating
utterances. This testbed is interesting in that, although it is a query system, user
input is in spoken English, while output was presented in textual and tabular form. In
addition to demonstrating the use of expanded pitch range in segment-initial position
utterances in this new domain and new interaction style, [Swerts and Ostendorf,
1995] observed that there was an accompanying increase in utterance duration in
segment-initial position.

These results have particular bearing on understanding the discourse role of cor-
rections in spoken dialogue. Some researchers [Swerts and Ostendorf, 1995] have
suggested that corrections are, in fact a form of segment-initial utterance. Specif-
ically, by performing a correction the user is initiating a correction subdialogue or
clarification subdialogue. This analysis would then argue that corrections should
share many acoustic features with other discourse segment initial utterances. We will
return to this question after our own analyses of corrections in the SpeechActs data
examined in this thesis.

Acoustic and Textual Cues

In addition to the completely text-independent cues to discourse segment structure
discussed above, a common textual feature identified as signaling discourse structure
is the use of cue words or cue phrases. Cue words are words that perform a discourse
function, possibly in addition to their innate semantic meaning. Common examples
of cue phrases are “now”, “OK”, “first”, etc. “Now” obviously means “at this time”,
but when used in its discourse cue sense as in “Now, what are we going to do about
this correction problem?”, it signals a shift in topic, that the following utterance
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belongs to a different segment from the preceding statements. Likewise, “OK” can
be used to signal a transition between two discourse segments. However, the problem
of determining whether a potential cue word is being used in its cue sense or in its
basic meaning remains, even when one has successfully recognized the presence of one
the words in an utterance. [Hirschberg and Litman, 1993] analyzed occurrences of
common cue words in both their cue and literal uses. They determined that the cue
use of a word could often be identified based on simple acoustic measures. Specifically,
the presence of an L* accent (a low pitch accent on a stressed syllable) on the possible
cue word and a possible following silence signaled the discourse use of the word. Thus,
in addition to general utterance acoustic characteristics, discourse segment structure
can be determined based on the presence of certain word classes, cue phrases, with a
specific intonation contour, raising the question of whether similar cues are available
for identifying spoken corrections.

2.1.2 Inferring Specific Discourse Functions from Speech

Thus far, we have considered simply determining the beginnings and endings of dis-
course segments from speech features. Now we turn to inferring specific discourse
relations. While the structural significance of corrections is somewhat unclear as to
whether or not they should be considered to be segment-initial utterances, their func-
tional, corrective, significance is both clear and of crucial importance. Clearly, some
cue phrases, such as we discussed above, can carry specific discourse functions. “First”
begins a narrative or list, “next” can continue a narrative sequence, and “however”
can introduce a contrastive view. The use of specific phrases to identify given dis-
course relations has been studied extensively in text-based discourse analysis, such as
Rhetorical Structure Theory (RST) by [Mann and Thompson, 1986] and augmented
transition network discourse theories such as those by [Reichman, 1985]. However, as
with paragraph segmentation, these cues are useful when available, but unfortunately
are much less common in casual question-answer or direction-giving spoken interac-
tions common in speech understanding domains, than in more formal written styles.
For instance, in the SpeechActs data, only seven of the several hundred correction
utterances contains a lexical cue such as “No” or “I meant.” The question posed is
thus how to identify a specific discourse function of a spoken utterance in the absence
of explicit cue phrases.

The research of [Taylor, 1995], [Taylor et al., 1996a), and the University of Ed-
inburgh has explored this problem. This research uses the HCRC Map Task Corpus,
a collections of interactions between pairs of speakers of whom one is designated the
leader and the other the follower. Their task is, given two slightly different maps, for
the leader to direct the follower to draw a map path on his or her own map which
accurately reflects the one on the leader’s map. This task was intended to elicit a lot
of negotiation, conversation, and discussion of appropriate reference terms for objects
on the maps. They define a set of game-theoretic discourse relations such as inform,
query-yn, reply-yn, query-wh, reply-wh, clarify, etc. Each utterance is labeled with
one of the functions.

Next they analyzed the pitch contour of each utterance according to the rise-
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fall-continuation model [Taylor, 1995]. This analysis assigns a pair of numbers to
each non-flat segment of the contour. The numbers correspond to the parameters for
the parabolic shape which best fits each portion of the pitch contour. The series of
contour values and the discourse relation label are used to trained a neural network
to classify new utterance contours as one of the available relation classes.

This relation information is then incorporated into the recognition process in the
following fashion. The incoming utterance is passed to the neural network classifier
and is assigned a game move label. The recognition hypotheses are now restricted
to those that can fulfill that game move. This shift of recognition focus based on
recognized discourse relation improves overall recognition accuracy.

Now, none of the game moves directly corresponds to our notion of corrections.
This mismatch is actually not surprising since explicit corrections of misrecognitions
are much less frequent in human-human dialogue such as that captured in the Map
Task data, than in human-computer interaction. In addition, [Taylor et al., 1996b]
observe that not all relations have clearly associated contours. Although there is no
specific game move associated the phenomenon, there are many instances in the Map
Task Corpus where one speaker acts to correct a misinterpretation on the part of the
other conversant. It is likely that this type of correction would have many similarities
to corrections of misrecognition errors in human-computer interaction. For instance,
one would expect to observe contrastive use of pitch accent or insertion of a preceding
silence associated with the word or phrase being corrected. The question of whether
they take on the full array of clear speech characteristics, such as durational increase,
requires further analysis, since many of the situations in which clear speech charac-
teristics come to the fore involve interactions with conversants with some perceived
deficit, as with young children, the hard-of-hearing, or computers; this is not the case
for these human-human interactions. However, this research has strong connections
to that reported in this thesis, by demonstrating that discourse relations can be iden-
tified through acoustic- prosodic information, and providing a data set for comparison
of corrections in human-human and human-computer interaction.

Another segment of the ATIS-based discourse study of [Swerts and Ostendorf,
1995] directly addressed the issue of corrections. The researchers examined a set of
correction utterances in the air travel information domain. They observed three sets
of statistically significant contrasts between original requests and corrections. These
contrasts were in the following measures: increased utterance duration (including
changes in lexical content of the correction), decreased tempo or speaking rate, and a
decreased interval of silence between the current and preceding utterance. The most
effective detector was the number of content words in common between the current
and immediately preceding user utterance. Some utterances showed insertion of a
pitch accent, stress, within an intermediate phrase or on a function word, such as
‘the’ or ‘a’; that would ordinarily not receive such accent. However, none of these
pitch accent measures or overall utterance pitch maximum or pitch range measures
reached significance. This absence of pitch contrasts was unexpected on the analysis
of corrections as fulfilling a segment-initial discourse role.
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2.2 Self-repairs

While relatively little research has been done on recognizing corrections of errors made
by other conversational participants, a substantial amount of research has looked at
recognizing self-repairs. Self-repairs are corrections within a single utterance, such as
false starts, disfluencies, and the like. Consider the following utterance, “When does
the plane for Austin leave on Mon - Tuesday?” This utterance contains a self-repair
where the speaker changed the data of departure from Monday to Tuesday, after
uttering the first syllable of the incorrect date. The goal of recognizing a self-repair is
to pass to the natural language understanding module a string which corresponds to
the corrected form of the utterance with all trace of the corrected, erroneous segment
removed. In the literature, the corrected segment is referred to as the reparandum,
and the new segment is called the repair. To accomplish this main task, it is necessary
to identify the two regions constituting the reparandum and the repair. A variety
of approaches to this problem have been proposed, and as in discourse segmentation
and function inference, they can be divided into two groups based on whether or not
the techniques rely on textual information.

2.2.1 Recognizing Self-Repairs with Text and Acoustic In-
formation

Approaches reported by [Heeman and Allen, 1994] and [Nakatani and Hirschberg,
1994] make use of lexical and acoustic features to identify the locus of self-repairs
in utterances. The lexical component of these methods involves finding matched se-
quences in the reparandum and repair, as in “Take the oranges to Albany - to Erie”
where the word to starts both reparandum and repair. The presence of filled pauses,
e.g. “umm” and “uh”, and unfilled pauses is also found to be a useful cue to the
initiation of a self-repair. The most important measures for these approaches were
the presence of word fragments. When this measure was excluded measures of pres-
ence and length of pause proved to be the best signals to the presence of self-repairs.
A lexical match within a three word window to the right and position within the
utterance were also useful. [Nakatani and Hirschberg, 1994] found, in addition, that
there were significant increases in both pitch and amplitude between the last stressed
syllable of the reparandum and the first stressed syllable of the repair. This decrease
in amplitude and cliticization or deaccenting of the word preceding the interrupt-
ing correction segment played a role in some classification in the Classification and
Regression Tree (CART) used to find the boundary between reparandum and repair.

2.2.2 Recognizing Self-Repairs with Acoustic Information Alone

While they recognize that the best results for identifying self-repairs are achieved
when textual information is used, [Shriberg et al., 1997] describe an approach that
uses only acoustic cues. They argue for this approach based on the fact that in the
context of speech recognition an accurate text transcription of the full utterance is
not necessarily available, particularly in the cases of utterances involving self-repairs
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where the presence of disfluencies can lead to misrecognitions. Their approach con-
siders each inter-word position to be a possible start of a self-repair. They then
use information about the duration, pitch, amplitude, and pauses in preceding and
following words to determine which positions are most likely to be associated with
self-repairs. The most important features for identifying self-repairs or disfluencies
were duration, distance from pause, and for certain disfluency classes, pitch, which
played a more significant role than amplitude, as measured by signal-to-noise ratio
(SNR), or gender.

These studies of self-repairs show that a form of correction, where one corrects
oneself mid-utterance, can be recognized best based on repeated phrases within an
utterance, but can still be identified with some success based on acoustic features
such as duration and amplitude. These approaches suggest several acoustic measures
to be used in identifying corrections of errors made by either conversant. However,
corrections are likely to prove more difficult to recognize both because repetition of
words between utterances, even in the absence of correction, is more likely than within
utterances and because this direct comparison of original and correction may not be
possible.

2.3 Corrections

Recent research by [Oviatt et al., 1996] has focussed on characterizing the phonetic,
acoustic, and prosodic changes that take place in spoken corrections. The data in
[Oviatt et al., 1996]'s study was collected in a simulation study where randomly
generated errors were presented to a subject who was using a speech interface to a
form-based interface where recognized input and recognition failures were signaled
visually on a WACOM graphical template. Thus there was a voice-in/tabular-visual-
output system. While [Oviatt et al., 1996] do not make any attempt to automatically
recognize these spoken corrections, they carefully analyze and characterize the spoken
corrections collected in the experiments. First they identify a cluster of phonetic
changes between otherwise lexically identical original inputs and repeat corrections.
These changes, such as shifts from flapped to released t’s reflect a change from a
more conversational to a more clear and precise speaking style in 10% of correction
utterances. They also found significant increases in total utterance duration, speech
duration, number and length of pauses, and decrease s in pitch minimum among
male speakers. However, no changes in amplitude were observed. These increases
in utterance and pause duration fit into the same contrast of a shift from a more
conversational to a more careful, clear speech style between original and correction
as the phonological changes above.

The research in this thesis is a natural and more computational extension of the
work by [Oviatt et al., 1996] in which the author participated. The prior work pro-
vided the insight of casting corrections as instances of hyperarticulation, that can be
characterized by a specific set of acoustic adaptations. That research also developed
an analysis methodology for comparing different utterance classes, in this case original
and repeat, systematically for a variety of acoustic-prosodic measures. Many similar
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measures, along with extensions to speaking rate and refinements, such as per-subject
normalization, play a primary role in the analysis in this thesis. Discussions of the
best ways to exploit the contrasts between corrective and non-corrective utterances
led to the decision to use them to build a correction classifier and adapt automatic
speech recognition.

2.3.1 Speaking Styles

Since the above work on corrections has raised the issue of treating corrections as
shifts from one speaking style to another, let us consider briefly the work of [Osten-
dorf et al., 1996] in a summer workshop held at Johns Hopkins University in 1996.
This workshop focussed on improving speech recognition rates by incorporating a
speaking mode variable into the speech recognition model. This mode variable was
intended to capture some of the systematic contrasts in phonological features that
accompany differences between read and conversational speech. These differences are
often blamed for the relatively poor accuracy rates on recognition of casual conver-
sational speech as found in the Switchboard or “call-home” corpora, where people
were recorded making free-form telephone calls to their family and friends, reaching
about 40% word error rate, versus the 5-10% word error rates achieved on read Wall
Street Journal text. For the read versus conversational contrast the designers built a
decision tree classifier that could discriminate between these classes at an error rate
of 27-34%. The classification was based most heavily on durational and speaking rate
measures. In addition, presence of a pause of length greater than 50 milliseconds and
loudness measures, in terms of signal-to-noise ratio (SNR), also played a role. Pitch
measures did not provide any significant information to the classification process.
They also found that they could significantly improve accuracy on the more diffi-
cult conversational corpus data by collecting a set of common phonological changes
and using these to modify the recognition model for words in utterances classed as
conversational by the decision tree or other method.

This work has some clear parallels with that discussed in this thesis, in that it tries
to use acoustic measures and classifiers to recognize certain speaking styles and seeks
to understand the impact of the speaking style on the recognition process. However,
we will see that the work in this thesis looks at identifying a specific set of features that
identify an important discourse role, marking corrections, which has proven difficult
even with perfect transcriptions and has proved opaque in the absence of this lexical
information. In addition, at a finer granularity, we find different features to play a role
in signaling corrections from those involved in the read-conversational speaking style
contrasts. We seek to relate these contrasts to those for other discourse functions in
the hope of better understanding the role of corrections in discourse structure as a
whole.
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Chapter 3

Data Collection: System, Subjects,
and Overall Analysis

The data used in the experiments and analyses throughout this thesis was drawn from
recordings of user interactions with the Sun Microsystems SpeechActs system during
a limited field trial. This chapter will provide an introduction to the SpeechActs
system itself, a general description of the data obtained in the field trial, a discussion
of the identification, coding, and analysis of errors encountered by system users, and
a description of the criteria by which the utterance pairs used in the acoustic analysis
and recognition experiments were selected.

3.1 SpeechActs Description

SpeechActs is a prototype spoken language system designed by Sun Microsystems
Laboratories Speech group (1993-1995), where the author spent two summers as a
student intern. SpeechActs provides a voice-only interface to a variety of common
desktop and information feed services. Specifically, it included e-mail reading and
sending, access to one’s own and other browsable calendars, weather information,
stock quotes, time zone and currency conversions, and a notification system. An
example interaction is shown below:

SpeechActs: You have 14 new messages and
47 old messages. The first new
message is from Eric Baatz
regarding “report completed.”
User: Let me hear it.
SpeechActs: “The first draft is ready for
your comments. Eric.”
User: Reply and include the current message.
SpeechActs: Preparing message to Eric Baatz.
Begin recording after the tone.
When finished, pause several seconds.
User: Eric, I'll get those to you
this afternoon.
SpeechActs: Say cancel, send, or review.
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User: Send.

SpeechActs: Message sent. What now?

User: Next message.

SpeechActs: New message two from Stuart
Adams, subject "Can we meet at
3:00 today?”

User: Switch to calendar... !

Two significant features distinguish SpeechActs from other spoken language sys-
tems. First, since it was designed primarily for use over the telephone to provide
ubiquitous access, it is a voice-only system. With the exception of password entry
and escape sequences which use DTMF input, all user input is spoken, and all out-
put is through synthesized speech; there are no visual displays for feedback. Speech
recognition is performed by BBN’s Hark speaker-independent continuous speech rec-
ognizer, and synthesis is performed by Centigram’s TruVoice text-to-speech system.
Locally developed natural language processing and interpretation engines feed the
speech recognition results to the appropriate speech application interfaces for each
backend system. The restriction to a single, audio modality requires that the user
give all necessary information to the system through speech, and allows our analysis
to focus exclusively on those speech cues of lexical, phonetic, and acoustic-prosodic
form which the spoken modality provides.

Secondly, SpeechActs was designed to provide a “conversational” interface. A
conversational interface can best be understood by what it is not. It is not a fixed
command language, it is not a form-based input structure, and it does not have rigid
vocabulary or syntax. Instead, a conversational interfaces hopes to provide both ease
of use for novice users and efficiency for more experienced users by allowing them
to use language which comes naturally for each individual. In addition, it is easy to
combine commands or criteria for requests into a single command for more confident
and experienced users (e.g. read the third urgent message) or to simply step through
the information with a sequence of simple commands for novice users (e.g. “Go to
urgent messages”,” Next”,” Next”,” Next”). All new users are provided with a wallet-
sized information card with examples of common commands for each application,
but, as we will demonstrate later in this chapter, users each rapidly develop their
own distinct style and vocabulary.

3.2 Data Collection and Coding

Now that we have provided a general overview of the SpeechActs system, let us turn
to a more detailed description of the data collection process. As discussed above,
SpeechActs was deployed for a limited field trial over an analog telephone connec-
tion, so that it could be accessed from home, office, hotel, or even a busy, noisy
airport terminal. All interactions were recorded automatically during the course of
the conversation. All speech, both user input and system synthesized responses were
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digitized and stored at 8kHz sampling rate in 8-bit mu-law encoding on a single chan-
nel, compatible with native system hardware and the limitations of analog telephone
lines. In addition to the stored audio, speech recognizer results, natural language
analysis results, and the text of all system responses was recorded and time stamped.

Next, all user utterances were textually transcribed by a paid transcriber. Each
transcription of user input was paired with the speech recognizer output for that
utterance. Each of these pairs was assigned one of four accuracy codes:

e Correct: Recognition and Action Correct

User Said: Read message one

System Heard: Read message one

e Error minor: Recognition not verbatim; action correct
User Said: Go to the next message

System Heard: Go to UH next message

e Misrecognition: Recognition not verbatim; action incorrect
User Said: Next
System Heard: Fax

e Rejection: No recognition; no action
User Said: Read message one

System Heard: nothing

The use of the “Correct” code should be evident. The “error minor” code assign-
ments generally resulted from a misrecognition of a non-content word (e.g. wrong
tense of an auxiliary verb, incorrect article, insertion of “um” or “uh”) for which the
robust parsing of the natural language component could compensate. The “misrecog-
nition” and “rejection” codes were assigned in those cases where a user could identify
a failure in the interaction. Utterances coded either as Misrecognition or Rejection
could also receive an additional tag, OOV. This tag indicates that either words not in
the recognizer’s vocabulary or constructions not in the systems’s grammar were used
in the utterances. For simplicity, however, we refer to all these cases as OOV. Two
examples appear below:

e Unknown Word: Rejection
User Said: Abracadabracadabra
System Heard: nothing

e Unknown Construction:Misrecognition
User Said: Go to message five eight six
System Heard: Go to message fifty six

Grammar knows: Go to message five hundred eighty six
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In total, there were 7529 recorded user utterances from the field trial. Of these.
4865 were correctly recognized by the speech recognition pass, and 702 contained
minor recognition errors, but still resulted in the desired action. There were 1961
complete recognition failures: 1250 of which were rejection errors and 706 of which
were substitution misrecognition errors. The remaining errors were due to system
crashes or parsing errors. In other words, almost two-thirds of recognition failures
were rejections, about twice the number of misrecognitions. 2 Overall, this results in
a 25% error rate.

We also observe, like [Shriberg et al., 1992], that there is a higher probability of a
recognition error following an error than following a correct recognition. Specifically,
the probability of an error after a correct recognition is approximately 18% whereas
after a recognition failure it rises to 44%, more than 2.75 times as likely. This contrast
is evident in the presence of, often lengthy, error spirals in which multiple errors follow
a single initiating error. This contrast in recognition accuracy between original and
correction utterances motivates the contrastive analysis which follows and efforts to
characterize the changes which mark corrections.

3.3 Longitudinal Change, OOV errors, and novice-
expert contrasts

The subjects participating in the field trial included fourteen individuals drawn from
the Sun Microsystems sales, marketing and technical staff with no previous experience
with spoken language systems, four members of the SpeechActs development staft,
and a group of one-time guest users who called in to try out the system. There were
three female and fifteen male regular system users. The users engaged in at least ten
phone conversations with the system. The distribution of users allows us to examine
the development of novice users’ interaction style, in terms of vocabulary choice and
number of out-of-vocabulary (OOV) utterances. In addition, we can contrast the
different recognition accuracy rates and vocabulary distributions of expert and novice
users.

3.4 Vocabulary Changes

We have observed that interactions with the SpeechActs system resulted in a 25%
error rate. We would like to understand how these errors are distributed across users.
Since we have as subjects both expert developers and novice users just learning how
to use the system, we can compare error rates for these two groups. How important
are the errors and error rates we have observed? If all of the errors are produced by
very early novice users, one might choose to ignore the issue of errors as only a passing
problem. However, if errors persist, it is particularly important to understand how

2Curiously, this ratio of rejection errors to misrecognition errors is reversed from that most often
reported in spoken language systems. The relatively high rate of rejection errors may be attributed
to the noisy telephone environments in which this system was most often used.
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errors arise and how to handle corrections. We will find that novice users improve their
ability to interact with the system over time, but still encounter many more errors
than expert users. We will explore the factors that contribute to this improvement by
focusing on the most glaring, if expected, difference between new and expert users:
the use of words and constructions that are outside the system’s vocabulary. We will
look at the change, fortunately decreasing, in OOV utterances by novice users over
time. We will examine how the reductions in unknown utterances are expressed in
terms of the working vocabulary size of these users.

novice users show significant decreases in vocabulary size and rate of introduction
of new words. Developers and one-time users demonstrate no such changes. Finally
we observe that in spite of the small final vocabulary sizes reached by users, fewer
than 50% of words are shared between any two users. While the vocabulary of any one
user is quite small, a much larger vocabulary is needed cope with variation between
users.

3.4.1 Error and OOV Rates

Let us begin with the question of which users are making the errors that give rise to
an overall 25% error rate. We compute overall average error rates for each subject,
novice and expert. Figure 3-1 displays the distribution of overall average error rates
for all subjects, with novice users and developers plotted separately. Next we compute
the overall rate of out-of-vocabulary utterances for each subject in the two groups,
shown in Figure 3-2 A comparison of novice users with system developers indicates a
significantly higher rate of overall recognition (24.86% vs 10.75%) and OOV (7.39%
vs 0.76%) errors for novices than for system developers.

The next important question to address is whether these error rates, especially
the higher novice user error rates, change over time, and if so, how and how much. To
track these longitudinal changes, or changes over time, we recompute the error and
OOV rates from above in terms of number of errors per hundred utterances for the
first, second, and third set of one hundred utterances, and so on. For each time point,
or group of 100 utterances, we present a box-and-whisker plot showing the range of
error rates for all novice users (Figure 3-3), all expert users (Figure 3-4), and all
single shot “guest users” (Figure 3-5).

We can see that neither the expert users nor the single shot users show any
particular change in error rate over time. However, novices show a distinct decrease
in errors from the first hundred utterances to the second hundred to a relatively stable
and lower error rate. We can quantify this contrast by comparing number of errors in
the first hundred utterances to the average number of errors per hundred utterances
for the later interactions. (Figure 3-6) This contrast is a significant decrease by t-
test, one-tailed. (t= 2.07, df = 22, p < 0.05) , showing that novice users make fewer
errors over time, but still at a much higher rate than expert users.

This observation comes as no surprise; however, we would like to know which
features of novice vs. developer interaction account for this contrast. Specifically, to
what degree do out-of-vocabulary utterances or speech acoustics differentially affect
the error rates of these two subject groups? Can all contrasts be related to limited
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Figure 3-1: Distribution of average error rates for novice (light grey line) and expert
users (dark grey line): Developers produce recognition error rates between 3% and

16% (10.75% on average), while novice users experience much higher error rates,

between 12% and 43% (24.86% on average).
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Figure 3-2: Distribution of average OOV rates for novice (light grey line) and expert
users (dark grey line): Expert users rarely produce out-of-vocabulary utterances,
accounting for between 0 and 2% of utterances (0.76% on average). Novice users in
contrast use utterances not understood by the system in 3 - 18% of utterances (7.39%

on average.
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Figure 3-3: Novice Users: Errors per hundred utterances: Over time, novice users
encounter fewer recognizer errors with most of the improvement taking place over the
first 300 inputs to the system.
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Figure 3-4: Expert Users: Errors per hundred utterances: Over time, expert users
remain relatively constant in the number of recognizer errors they incur.
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JFigure 3-5: Single Shot Users: Errors per hundred utterances: Unsurprisingly, single
shot guest users of the system also show no improvement in recognition accuracy.
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Figure 3-6: Novice Users: Errors per hundred utterances: First hundred versus Av-
erage: More concisely, we contrast the number of recognizer errors encountered by
novice users in their first hundred interactions with the average number of per hun-
dred utterances in later interactions. There is a significant decrease in error rate over

time for these users.

31

Average Per Hundred
Remaining Utterances




20f e ]
!
| +
o 19F I 1
>
Q
O
w 10} ) e §
o \ /
+ | / ;
T/ A
- SN
ot L 1

1st Two Hundred Average Per Two Hundred
Utterances Remaining Utterances

Figure 3-7: Decrease in out-of-vocabulary utterances over time: Again, for clarity
we contrast the number of out-of-vocabulary errors by novice users in their first 200
utteranceds with the average number of such errors in later interactions. Here too we
find a significant decrease in the number of illegal utterances by novice users as they
gain experience with the system.

knowledge of the system’s vocabulary? Experts, naturally, exhibit very few instances
of out-of-vocabulary utterances. Here we consider the change in rate of OOV’s in
novice user utterances over time and contrast it with that of the guest user class.
There is a significant decrease in OOV’s over time for longer term users, in con-
trast with an almost constant OOV rate for single-shot users. Specifically there is
a significant (T-test, two-tailed, t = 2.3, df = 32, p < 0.05) decrease the number of
OO0OVs between the first 200 utterances and all subsequent interactions. Figure 3-7
demonstrates this drop in number of out-of-vocabulary utterances. ANOVA shows
a significant effect of number of interactions. (F(1,32) = 5.171, p < 0.03) This is
clearly a desirable trend, indicating the new users’ increasing familiarity with the
limited vocabulary understood by the system.

However, by comparing error rates in the first hundred utterances to the average
of subsequent hundred utterance sets, we see that when these figures are computed
without the errors contributed by OOV-related errors, the decrease in error rates with
time is not significant. (F(1,22)= 0.7246) (Figure 3-8) The decrease in OOV errors
is thus the primary contributor to the perceived improvement in recognition rate over
time. In addition, even with all OOV errors removed the error rates of novices are
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Figure 3-8: Novice Users: Error Rates for non-OOV errors: Here we exclude errors
due to out-of-vocabulary inputs to compare novice error rates over time. While the
average number of errors does decrease between the first hundred utterances and the
average for later interactions, this decrease is not significant. Most of novice user
improvement in recognition is due to increased knowledge of system vocabulary.

still much higher than those of expert users (18.25% versus 10.25%), indicating that
expert use of a spoken language system requires more than just the knowledge of the
utterances understood by the system. This knowledge is acquired fairly rapidly as
we see by the drop in OOV rates, but the knowledge of proper speaking style is more
difficult. (Figure 3-9)

3.4.2 Vocabulary Size and Rate of New Word Introduction

The next question to address is how to account for this decrease in OOVs. Does
the user simply replace unknown word instances with known words? Does the user’s
working vocabulary increase, decrease or stay the same? Here we will use two mea-
sures to try to clarify the process of OOV reduction: number of words in working
vocabulary (defined as number of discrete words per hundred words spoken) and
rate of introduction of new words into the working vocabulary (again in words per
hundred). Unsurprisingly, the rate of new word introduction undergoes a significant
decrease over time - for all except the guest user category - and, like OOVs, drops
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Figure 3-9: Distribution of Error Rates Excluding OOVs: novice users (light grey
line) versus expert users (dark grey line): When errors due to out-of-vocabulary
utterances are ignored, almost one-half of novice users achieve similar error rates to
experts. However, the average error rate for developers at 10.25% is still much lower
than that for novice users at 18.25%.
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Figure 3-10: Distinct new words per hundred words: Initially, novice users introduce
large numbers of new words into their vocabulary. However, this rate levels oft over
time, particularly after the first 600 words. This decrease in introduction of new
words is a significant trend.

dramatically after the first 200-300 words. This trend is displayed in Figure 3-10.

Analysis of variance of number of new words to point in time is highly significant.
(F(17,306) = 59.27, p < 0.001)

The trend for the working vocabulary is quite interesting and somewhat unex-
pected. Again, paralleling the decrease in word introduction, there is a significant
decrease in vocabulary size over time. Specifically, there is a significant decrease in
the number of unique words per hundred between the first 200-300 words and all
later interactions. (F(1,18) = 8.738, , p < 0.01) Figure 3-11, Figure 3-12Curiously,
the novice users each seem to converge on a fairly small vocabulary of 30-40 unique
words per hundred. Specifically, novice users, after working with the system for an
extended period of time, converge on a working vocabulary of an average of 35 dis-
tinct words per hundred, in a strong contrast to the 50 distinct words per hundred of
the developer set.

From these analyses, we can see that the decrease in out-of-vocabulary utterances
arises from a narrowing of the users’ working vocabulary to a fairly small set of words
in which the user has high confidence.
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Figure 3-11: Distinct words per 200: allsubjects: Over time, not only does the number
of new words decrease, but the actual size of the user’s working vocabulary decreases.

3.4.3 Vocabulary Overlap

What ramifications does this use of a small working vocabulary have for conversational
speech user interface design? Is it simply irrelevant since only a small set of words
is needed by any user? An analysis of cross-user vocabulary will help to answer
these questions. Here we tabulated the percentage of words shared between any
pair of users and the percentage of a user’s vocabulary which overlaps with any
other’s. We see that, for any pair of users, between 18 - 57% of vocabulary is held
in common, with an average of 21% of the union of the two vocabularies falling
in the intersection. Table 3-13 This translates to each user sharing approximately
50% of their words with any other given user. Table 3-14 This relatively small
proportion of overlap between users attests to the value of the conversational interface.
While the users individually do not have large vocabularies, the choice of words
across users is highly varied. This supports the notion of a flexible vocabulary that
allows users to gravitate toward lexical usages which come naturally, and supports
wide cross-user utility. It is difficult to determine the exact criteria by which users
select their final vocabulary. It was suggested that the users might be choosing
those words that are not misrecognized by the system; in other words, the users are
being trained to a certain set of usages by their success with the system. However, in
examining the data, we observe that users persist in employing words and expressions
that are often misrecognized by the system. In fact, most of the words in a user’s
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Figure 3-12: Novice Users: Distinct words per 200: first 200 versus remainder: More
concisely, we see that the size of a novice user’s working vocabulary, the number
of unique words per hundred uttered, decreases significantly between the earliest
interactions and later speech.
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Subjects

Subjects 1 2 3 4 5 6 7 8 9

1 1.00 0.30 044 048 041 048 0.30 037 041
2 0.21 1.00 0.53 0.34 026 0.34 034 042 0.37
3 0.19 0.32 1.00 0.22 024 0.27 021 032 024
4 0.33 0.33 0.36 1.00 026 036 036 0.28 0.33
5 0.42 0.38 0.58 0.38 1.00 0.31 031 0.35 0.31
6 0.41 0.41 0.53 0.44 0.25 1.00 0.38 0.38 0.44
7 0.33 054 0.54 0.58 0.33 050 1.00 0.33 0.46
8 0.33 0.53 0.67 037 030 040 0.27 1.00 040
9 0.37 047 050 043 027 047 037 040 1.00

i ﬂ(Vocab(sub]z),Vocab(sub]y))H
||V ocab(subjz)||

Figure 3-13: Vocabulary Overlap Ratio:

Subjects

Subjects 1 2 3 4 ) 6 7 8 9

1 1.00 0.14 0.15 025 0.26 0.28 0.19 021 0.24
2 0.14 1.00 0.25 0.20 0.19 0.23 027 0.31 0.26
3 0.15 0.25 1.00 0.16 0.20 0.22 0.18 0.27 0.19
4 0.25 0.20 0.16 1.00 0.18 0.25 0.29 0.19 0.23
5 0.26 0.19 0.20 0.18 1.00 0.16 0.19 0.19 0.17
6 0.28 023 022 0.25 0.16 1.00 0.27 0.24 0.29
7 0.19 027 0.18 0.29 0.19 027 1.00 0.17 0.26
8 0.21 0.31 027 0.19 0.19 024 0.17 1.00 0.25
9 0.24 026 0.19 023 0.17 029 026 0.25 1.00

Il ()(Vocab{subyz).Vocab(subgy))|l
I U(Vocab(subjz),Vocab(sub]y))ﬂ

Figure 3-14: Vocabulary Overlap Ratio 2:

working set have been misrecognized by the system at some time in their interactions.
Specifically, for novice users, we find that between 80 and 94% of their working
vocabulary was misrecognized during their interactions. For expert users, with more
varied vocabulary and lower misrecognition rates, about 57% of a speaker’s working
vocabulary on average had been misrecognized by the system. Clearly, the process of
vocabulary convergence is much more complex than a simple trigger process, where
a recognition failure causes the user to discard the vocabulary item.

3.5 Pair Data Selection

The remainder of this thesis focusses on characterizing and recognizing correction
utterances in contrast other inputs. In order to provide a minimal clear contrast,
following Oviatt et al, we consider lexically matched original input-repeat correction
pairs. Specifically, we select pairs of user utterances which precede and follow a system
recognition failure. The first user utterance, the original input, is a first attempt to
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input a command or piece of information. The second utterance in the pair, the repeat
correction, is the utterance immediately following the system response indicating a
recognition error, either a rejection or an inappropriate response. which attempts to
reinput the same command as the original. We choose only lexically matched pairs,
user utterance pairs with the same word sequence in both original input and repeat
correction. This constraint allows us to limit variation in acoustic measures due
only to lexical or grammatical differences. The data set for subsequent analyses and
experiments consists of 303 pairs of user utterances, of which 88 pairs are associated
with corrections of substitution misrecognition errors and 215 are tied to corrections
of rejection errors.
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Chapter 4

Acoustic Analysis

In the previous chapter we described in detail the environment in which the human-
computer spoken correction data was collected. We explained the selection of 303
original input-repeat correction pairs, of which 88 were corrections of misrecognition
errors (hereafter, CME’s) and 215 were corrections of rejection errors (CRE’s). In
this chapter we will describe a group of acoustic analyses performed on these groups
of utterance pairs. Specifically, we analyze these utterances under four broad classes
of acoustic-prosodic features: duration, pause, fundamental frequency (f0), and am-
plitude. These measures draw from much of the literature discussed in chapter 2,
but are based most heavily on those in [Oviatt et al., 1996] and [Ostendorf et al.,
1996]. We will demonstrate significant differences between original input and repeat
correction utterances in duration, pause, and fundamental frequency.

4.1 Duration

Duration has long been known to play an important role in a wide variety of speech
phenomena. Ends of phrases and utterances are characterized by phrase-final length-
ening [Allen et al., 1987]'. Final positions in lists are denoted by increased du-
ration. 't Hart et al., 1990] Stressed and accented syllables are longer than those
that are destressed or unstressed. [Nooteboom, 1997]% Discourse segment- initial ut-
terances also exhibit increases in duration relative to segment-internal utterances.
[Swerts and Ostendorf, 1995] We will show that it also plays a significant role in
spoken corrections.

For the majority of these analyses, the following technique was used to obtain ut-
terance duration measures. A two-step semi-automatic process was required. First,
the waveform and the corresponding utterance that had been segmented from the full
conversational log were sent to a forced alignment procedure. The procedure used
the Oregon Graduate Institute Center for Spoken Language Understanding (CSLU)
CSLUsh tools [Colton, 1995] to produce a word-level forced alignment at a ten
millisecond scale. A second pass over the automatic alignment was performed by
a trained analyst. This pass was required to correct for any errors in the original
alignment procedure; these errors arose from a variety of factors: background or

'Phrase-final lengthening is a phenomenon in which phoneme durations become elongated at the
end of an utterance.
2The first syllable in ‘teacher’ is stressed; the second syllable is unstressed.
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non-speech noise in the recording, pronunciation mismatched between the aligner
dictionary and the spoken utterance, etc. The corrections focussed on three classes
on position within the utterance: initial onset of speech, final speech position, and the
boundaries of sentence-internal pauses. The goal was to delimit the total duration of
the speech in a user turn, rather than to adjust all alignments. We took a conserva-
tive approach, only changing an alignment position if there was a better destination
position available. From the alignments it was possible to automatically compute
the following measures: total utterance duration, total speech duration, total pause
duration, total number of pauses, and average length of pause.

4.1.1 Total Utterance Duration

The first measure we will consider is total utterance duration. Simply put, the total
utterance duration is the length in milliseconds from the onset of the user speech
in the utterance to the final speech position. Overall, utterances ranged in duration
from 210 milliseconds to 5180 milliseconds. An example of an original-repeat pair
with increase in total utterance duration appears in Figure 4-1. Analysis of Variance
on duration and position (original vs. repeat) (Figure 4-2 yields F(1,604) = 5.521.
(With log-transformed data, ANOVA yields F(1,604) = 6.435.) results yielded T-
test two-tailed (t = 1.97, df = 604, p < 0.05) also indicates a significant increase
in total utterance duration from original to correction utterances. Specifically, the
mean length of an utterance is 864.1188 milliseconds for original input utterances and
969.0264 milliseconds for repeat correction utterances. This increases corresponds to
a 12.15% increase in total utterance duration.

4.1.2 Total Speech Duration

Total speech duration calculates the difference between total utterance duration and
total pause duration. This measures tries to capture the contribution of the speech
segment, rather than an increases in number or length of pause, to the increase in
total utterance duration, In other words, are users simply pausing more, lengthening
phoneme, or increasing both pause and phoneme length. An example of an original-
repeat correction pair in which speech duration increases with no corresponding in-
crease in pause number or duration appears in Figure 4-4. Again analysis of variance
for duration and position yields F(1,604) = 4.52 (Figure 4-3). (With log-transformed
data the ANOVA yields F(1,604) = 5.908.) T-test two-tailed (t = 2.17, df = 604, p
< 0.05) indicates an increase in speech duration from original to repeat inputs. This
value corresponds to an average increase of 9.5%.

4.2 Pause

Pauses, the presence of unfilled silence regions within utterances, can play a sig-
nificant role in discourse and utterance-level prosody. In discourse-neutral speech,
pauses generally appear at intermediate and intonational phrase boundaries, which
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Figure 4-1: Original (top) - Repeat (bottom) pair with increase in total duration,
pause duration, and speech duration
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Figure 4-2: Original vs. Repeat Total utterance duration: There is an average 12.5%
increase in total utterance duration between original inputs and repeat corrections.

often coincide with syntactic phrase or sentence boundaries. [Pierrehumbert, 1990],
[Bachenko and Fitzpatrick, 1991] Speech systems commonly rely on extended peri-
ods of silence, one second or more in length, to identify the end of the user’s turn.
[Yankelovich et al., 1995] While this method is arguably not a good way to detect turn
transitions, it is, however, quite effective. The presence of lengthy pauses was found
to be a strong cue to the start of a self-repair or other disfluency.® [Nakatani and
Hirschberg, 1994], [Heeman and Allen, 1994], [Shriberg et al., 1997] Pauses exceeding
50 milliseconds in length also proved useful in discriminating among speaking styles.
[Ostendorf et al., 1996]

Here, as noted in the discussion of duration measures, we coded the beginning and
ending positions of all pauses in the original-repeat pair data. Silences were coded as
pauses only if they exceeded 20 milliseconds in duration. In addition, we excluded
all pauses prior to unvoiced plosives (k,t,p) and affricates (e.g. ch).* This choice was
made due to the need to arbitrarily place the starting position of the unvoiced closure
for phonemes of these classes, making it impossible to accurately determine the length
or even existence of a preceding pause. For each utterance, we then computed the

3A disfluency is a disruption in normal speech. There are many types: pauses, ‘filled pauses’,
where the speaker inserts ‘um’ or ‘uh’, or repetition, as in ‘read the the message’.

4These phonemes are just a subset of the consonants where the vocal chords do not vibrate at
the beginning of the sound. Since speech analysis tools depend heavily on this information, it is
hard to identify the start of these sounds precisely.
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Figure 4-3: Original vs. Repeat Total speech duration: There is average 9.5% increase
in speech duration, utterance duration excluding silence between original inputs and
repeat corrections.
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Figure 4-4: Original (top) vs. Repeat (bottom) pair with increase in speech duration
only
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Figure 4-5: Original vs. Repeat Total Pause Duration: There is an average 59%
increase in total pause duration between original inputs and repeat corrections.

length of each pause, the total number of pauses, and total pause duration. Figure
4-6 below illustrates an increase in pause number and duration with little increase in
speech duration.

For all pause duration comparisons we considered only those utterances with at
least one pause. Analysis of variance for pause duration of original versus repeat
correction inputs gives F(1,132) = 5.097. (Figure 4-5 (With log-transformed data,
ANOVA results in F(1,132) = 15.94 ). T-test, two-tailed, also yields significant re-
sults (t = 2.2, df = 132, p < 0.05) indicating an strong increase in pause duration.
Specifically, within utterance silence regions increase from an average of 104.1791
milliseconds for original input utterances to an average of 165.0597 milliseconds, cor-
responding to an average increase of 59% in total pause duration.

Total utterance duration was tied to increase in pause duration. To measure
these changes we computed the ratio of pause duration to total utterance duration
for both original and repeat utterances where pauses occurred. We then performed
analysis of variance on these ratio measures finding F(1,132) = 5.2. (Figure 4-7)(With
log-transformed data, ANOVA produced F(1,132) = 5.815). T-test two-tailed also
yielded significant results (t = 2.28, df = 132, p < 0.025) showing an increase in
the proportion of silence to total utterance duration. From an average of 7.28% in
original utterances, the proportion of silence increases to 10.56%, corresponding to
an increase of 46% in the proportion of silence in an utterance.

We computed a final composite measure of speaking rate in number of syllables
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Figure 4-6: Original (top) - Repeat (bottom) pair with increase in pause duration:
Note the insertion of silence between “Jay” and “Littlepage” with no additional in-
crease in word durations.
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Figure 4-7: Original vs. Repeat: Ratio of Pause to Utterance Length: The proportion
of silence in an utterance, relative to speech, increases an average of 46% from original
inputs to repeat corrections. Both speech and silence duration increase in correction
utterances, but silence increases more, proportionately.
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Figure 4-8: Original vs. Repeat Speaking Rate: Corresponding to the increases we
have observed in speech and pause duration, we find that speaking rate, measured
in syllables per second, decreases significantly (20%) from original inputs to repeat
corrections.

per second and normalized by utterance duration. ® Again looking at original and
repeat correction utterances, we performed analysis of variance yielding F(1,604) =
16.95. T-test two-tailed (t = 3.6, df = 604, p < 0.001) demonstrates a significant
decrease in speaking rate from original to repeat. The average speaking rate for
original utterances was 0.0807 dropping to 0.0651 for repeat utterances, a decrease of
19.3%. (Figure 4-8)

4.3 Fundamental Frequency

Fundamental frequency (f0), pitch, presents a knottier problem than duration or
pause, largely because, unlike the two preceding measures, pitch is not a simple
scalar quantity.® Thus we must consider not only values but also rate and direction
of change. Pitch plays an undeniable role in spoken language understanding. In addi-
tion to tone languages like Chinese, where pitch is part of the lexical identity of each
word, pitch still plays a vital role in tune languages like English. Final rising or falling

SMeasuring speaking rate in phonemes or syllables per second is a standard approach in speech
systems, compensating for differences in content of the utterances that make measures like number
of sentences per second unreliable.

5The most common instance of pitch contrast is between male and female speakers. Men generally
have lower pitched voices, while women have higher voices.
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contours can distinguish lexically and syntactically unmarked questions, declaratives,
and commands. The degree of use of these contours also distinguishes conversational
from read speech. [Daly and Zue, 1996] Pitch accents 7 and contours are used to
distinguish given and new information [Terken, 1997] and indicate focussed infor-
mation, As noted earlier, expanded pitch range has been associated with discourse
segment-initial utterances. [Swerts and Ostendorf, 1995], [Nakatani et al., 1995]

The basic coding of fundamental frequency is straight-forward. We used the
ESPS/Waves+ signal processing package to compute the fO for samples every 10
milliseconds throughout the utterance, taking only values where the Waves+ voicing
detection reported positively. In addition, we excluded all points where RMS energy
was less than 300, to avoid syllable onset and offset distortions.® Finally, we removed
all erroneously doubled and halved pitch values that resulted from tracker error or
from regions of extreme glottalization. ® From these values, we computed maximum
and minimum pitch values for each word and for the utterance as a whole. In addi-
tion, we noted the contour, rise, fall, or complex, of each word and the final position
in the utterance in particular.

Now given that some of the subjects were female although a majority were male, it
was necessary to normalize the absolute pitch values with respect to speaker. Thus for
each subject we computed a pitch mean and standard deviation. From this base we
compute a normalized set of pitch measures; these normalized values were computed

pitchval - subjectpitchmean

as:
subjectpitchstddev

for each of pitch maximum and minimum. Normalized pitch range was computed
by

pitchmax - pitchmin
e ———- This measure, like kurtosis, measures the length of the
subjectpitchstddev
tails of the distribution of pitches. It allows us to identify compressed or expanded
pitch ranges, the latter being identified with discouse function.

Finally, a last group of pitch measures was designed to capture a quantitative
measure of the pitch contour. We derive a piecewise linear slope measure, computed
by connecting the pitch maxima and minima of each word , dividing by the time
between each peak. Results for these measures are shown in the following sections.

"Pitch accent is a particularly high or low pitch on the stressed syllable of a word; it usually
appears on the main word of a phrase.

8Pitch tracking is only really accurate for vowels, where the waveform is approximately sinusoidal.
The algorithms try to detect this voicing, but boundaries can pose problems.

9This phenomenon often occurs at the end of utterances. It results from a drop in lung pressure
and relaxation of the vocal folds. These changes result in long individual glottal pulses perceived in
the waveform. Importantly, these changes result in highly variable and abnormally low FO measures,
as low as 3-50 Hz, much lower than the base speaking pitch for any speaker.
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Figure 4-9: Original vs Repeat: Final Word Pitch Minimum: After normalizing
for pitch differences between speakers, particularly male and female contrasts, we
can identify a significant decrease in the lowest pitch of the final word in correction
utterances in contrast to original inputs.

4.3.1 Scalar Pitch Measures

We found no significant differences between original inputs and repeat corrections for
pitch maximum or pitch range (normalized or not normalized). However, we did find
significant decreases in pitch minimum, both global to the sentence and for the last
word in the sentence, when pitch was normalized and reported in terms of number
of standard deviations from a per-speaker mean. Analysis of variance demonstrated
a significant effect of position (original versus repeat) on pitch minimum for words
in final position. (F(1,604) = 3.963) T-test showed a significant decrease in pitch
minimum. (One-tailed, t = 1.98, df = 604, p < 0.025)

Unsurprisingly, similar, even clearer, results also hold for overall utterance min-
imum. Specifically, ANOVA yields a significant effect of original versus repeat cor-
rection position on global normalized pitch minimum. (F(1,604) = 5.205) T-test,
two-tailed, again show significant decrease in global pitch minimum. (t = 2.27, df =
604, p < 0.025)

4.3.2 Pitch Contour Measures

Now we shift from static, scalar measures of pitch extrema to measures of pitch
movement over time in terms of pitch contour. The first measure we analyze in this
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Figure 4-10: Original vs Repeat: Global Utterance Pitch Minimum: When we exam-
ine the lowest pitch for the full utterance, again after normalizing for inter-speaker
variation, we find that the lowest pitch reached by speakers in correction utterances
is significantly lower than that in original inputs.
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section is a qualitative measure of the direction of the final contour of the utterance.
This measure was coded as “Rise”, “Fall”, or “Other”, where the contour was either
complex or indeterminate. We found that for original inputs 70% exhibited a final
falling contour, 18% a final rise, and 12.5% a complex or flat contour. We noted a
marked contrast with repeat corrections where 77.6% of final contours were falling,
12.5% were rising, and 10.7% took on other contours. Almost one third of the rising
contours change to falling contours, a very substantial shift. *°

The final group of pitch measures are slope measures, rate of change of pitch over
time, positive figures being rises and negative being falls. Now we have already dealt
with the final contours in the immediately preceding analysis, so for these contour
analyses, we exclude the final contour segments. This exclusion is also argued for on
the grounds of pitch analysis. The final pitch segment corresponds to the boundary
tone of the intonational phrase for the utterance. ! Excluding the boundary tone
allows us to examine the sentence-internal pitch and phrase accents without, possibly
confounding, interference from boundary tone. While no pitch slope measures reached
significance for original-repeat pairs in general, we find interesting effects when we
treat the two classes of corrections, corrections of rejection errors and corrections of
misrecognition errors, separately.

First we compare steepest slope rise for corrections of misrecognition errors for
original inputs to that for repeat corrections. T-test, one-tailed, shows a significant
increase in slope of the steepest rise (t= 1.73, df = 124, p < 0.05).

Likewise, there is a significant effect of original versus repeat position for sum of
steepest rise and steepest fall slopes, though no effect for fall slope reached signifi-
cance. (F(1,174) = 3.98) T-test, one-tailed, shows significant increases in the sum of
slopes measure as well. (t = 1.98, df = 174, p < 0.025)

Next we consider corrections of rejection errors. Now none of the slope measures
reached significance for this class of corrections alone. However, we also performed
comparisons of corrections between the two classes. Here we find significant increases
for slope rises (t-test, two-tailed, t=2.7, df = 302, p < 0.01) and slope sums (t-
test, one-tailed, t=1.69, df = 302, p < 0.05) from corrections of rejection errors to
corrections of misrecognition errors. An example of an increase in pitch accenting
appears below. (Figure 4-12)

4.4 Amplitude

The amplitude or loudness of speech is associated with several important speech
features. Increased amplitude, like pitch, is a characteristic of stressed syllables

10Some speakers take on idiosyncratic pitch contours in corrections. One subject consistently
shifted to final rising contours, directly opposite to the overall group behavior. Another shifted to a
rise on the first word of the utterance before continuing to a final fall. In general, we did not observe
a shift to a ‘list’ style of speaking with a rise-fall on each lexical item associated with corrections.
It did arise spontaneously in password entry, a digit sequence, and name entry for some speakers.

UBoundary tone is a specialized term that can be understood simply as the final pitch contour of
the utterance.
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Figure 4-11: Original vs Repeat: Sum of Steepest Slopes: Misrecognitions: In order
to capture a quantitative measure of the presence and magnitude of contrastive use
of pitch accent, we compute a piecewise slope of the pitch track for the utterance.
An utterance with strong pitch accent should have steep rises and falls, so we sum
the slopes of the steepest rise and steepest fall in the utterance. Comparing this
measure for original inputs and repeat corrections of misrecognition errors only, we
find a significant increase in this measure of pitch variability for corrections.
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Figure 4-12: Original (top) - Repeat (bottom) pair: last word (Paul) changes from
falling contour to high accent +fall: Unlike previous comparisons, this figure displays
three lines for each utterance: the waveform (top), pitch track (middle), and test
alignment (bottom). The important contrast is in the pitch track for the last word
(Paul) in the two utterances. In the top (original) case, the pitch track is mostly level
to a final falling contour, or low boundary tone. In the bottom utterance (repeat),
there is a rise on the last word to a high pitch followed by a final fall to a low boundary
tone, showing an increase in pitch accentuation from the original input.
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and accented words, contrasting with the amplitude of surrounding words or syl-
lables, Increases in amplitude have been linked to signaling self-repairs [Nakatani
and Hirschberg, 1994]. A signal-to-noise ratio measure has also been used in experi-
ments in disfluencies, self-repairs, and speaking style, and has been shown to be useful
in detecting these phenomena. [Shriberg et al., 1997]. [Ostendorf et al., 1996

In measuring amplitude in the following experiments, we used two measures com-
puted by the ESPS/Waves+ signal processing system: log raw power and RMS
energy.'? A quick verification pass was made by a trained analyst to exclude any
values contributed by background or non-speech noise in the recording. Next, auto-
matic procedures computed several derived amplitude measures, For log raw power
measures, maximum and average amplitude values were computed for all utterance
regions above 30dB, to avoid lowering the amplitude measure because of silence re-
gions. For RMS energy measures, values from all voiced regions (again relying on
the ESPS/Waves+ voicing detector) were used to compute average values, while the
maximum value was smoothed across the three highest RMS energy values. The same
methods were used to compute maximum and average amplitude values for each word
region.

As with pitch, amplitude is highly variable across subjects and interactions. We
again computed a per-subject normalization term based on the mean and standard
deviation of each amplitude measure. With these terms we also compute derived

amplitude - subjectampmean

amplitude measures:
subjectampstddev
Although amplitude is, anecdotally, one of the features commonly associated with
corrections, we found that none of the amplitude measures, normalized or not, reached
significance.

4.5 Discussion

We have examined a variety of acoustic-prosodic measures contrasting original input
and repeat correction utterances. These measures fall into four broad categories: du-
ration, pause, pitch, and amplitude. We found significant differences between original
and repeat utterances for all classes of measure, except amplitude. The discussion
below will present a unified account of these changes.

4.5.1 Duration and Pause: Conversational-to-(Hyper)Clear
Speech

Duration and pause measures will be considered together. We found significant in-
creases in total utterance duration, total speech duration, total pause duration, speak-
ing rate in syllables per second, length per pause, and proportion of silence in utter-
ances between original inputs and repeat corrections. In correction utterances, users

12Tn speech, one often uses log measures to approximate the perceived increase in loudness of
sound.

26



speak more slowly both by increasing the duration of phonemes within the utterance
and by inserting or lengthening silence regions within the utterance. These changes fit
smoothly into an analysis of corrections as shifting from more conversational, casual
speech to more clear or careful speech along the continuum.

These contrasts are very similar to those in [Oviatt et al., 1996], even to the
extent that they reflect the same percentage increase in total utterance duration and
total speech duration. The changes also echo those reported in [Ostendorf et al.,
1996] for contrasts between conversational and read speech; although precise figures
for durational and pause change are not reported, they find increases in phoneme
duration, presence of pause, and decrease in speaking rate to be correlates of more
formal or read speech in contrast to conversational speech.

This increase in duration seems to be the most robust clear speech attribute. Other
types of speech associated with clear style, such as speech to the hearing-impaired
or speech to children (motherese)!?  exhibit increases in duration. On one hand,
speech to children is often associated with higher pitch and expanded pitch range,
while speech to the hearing-impaired lacks those pitch features but is associated with
significant increases in loudness, [Fernald et al., 1989], [Picheny et al., 1986] We
have noted distinctive pitch phenomena associated with corrections as well which are
not shared by other clear speech styles. Speaking rate thus stands out as the most
consistent clear speech feature.

One contrast with the [Oviatt et al., 1996] analysis is that, while there is a signifi-
cant increase in pause duration in both sets of data, that observed for the SpeechActs
data is not as that observed in other work. Presence or absence of a 50 millisecond
pause is not a deciding contrast between original and repeat correction as it is for
the classes studied by [Ostendorf et al., 1996]."* A likely reason for this observed
contrast is the length of the utterances in the current study. In the SpeechActs data
overall, the average length of an utterance is between two and three words, and the
average analyzed utterance duration is under two seconds. For the SpeechActs data,
none of the analyzed utterances exceeded 10 words, while the data in [Oviatt et al.,
1996] includes sixteen-digit strings representing credit card numbers. Systems which
predict pause location and prosodic phrasing typically use a combination of syntactic
phrase structure and number of words or syllables in determining pause placement.
Thus pauses are not distributed uniformly over utterances, but are unlikely to appear
at all in very brief utterances. The sentences in the SpeechActs data are short enough
to discourage pausing, creating this contrast in pause lengths.

4.5.2 Pitch: Accent, Contour, and Contrast

While we also found significant differences in several pitch measures between original
inputs and repeat corrections, these contrasts, unlike those for duration and pause,

I3Motherese refers to characteristic speech of caretakers to children. It is found in many languages,
though more for females than males, and involves expanded pitch range, higher pitch, and longer
duration.

l4Presence of a larger pause duration (70ms) or larger proportion of silence does play a secondary
role in classifying rejection errors with only acoustic information.
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do not fit smoothly into an analysis of corrections as a uniform transition from a
more conversational to a more clear speaking style. We will divide this section into
discussion of pitch changes that are consistent across correction classes and pitch
changes that differ significantly depending on the type of correction being performed.

One trend we find that holds for original-repeat pairs throughout the SpeechActs
data is that of a decrease in subject-normalized pitch minimum. In other words, the
lowest fundamental frequency reached in an utterance is lower for repeat corrections
that for original inputs. Two possible explanations lend themselves to the cause of
this drop in pitch minimum; this drop holds for the sentence overall and for the final
word in the sentence. One explanation is the phenomenon of systematic downstepping
of pitch and amplitude throughout the sentence. This downstepping when combined
with the durational increases reported earlier could lead to larger downstep effects
and thus lower pitch minima.

The other possible explanation is linked to the other systematically observed trend,
for final pitch contours to shift from rising or complex to falling contours. This flip in
final pitch contour to a low final boundary tone would increase th number of falling
pitch regions and thus lower the minimum pitch achieved in many utterances.

Interestingly, compared to other related work examined earlier in this thesis, only
one study found similar phenomena, the most closely related study by [Oviatt et al.,
1996). Studies of self-repairs generally found point-to-point increases in pitch. Stud-
ies of discourse structure and intonation generally found increases in pitch or pitch
range rather than decreases. Nor did the read/conversational contrasted speech in
[Ostendorf et al., 1996] show any effects of pitch. Only one study by [Daly and Zue,
1996] makes note of differences in rising pitch contours in yes/no questions in read
versus spontaneous speech. Daly observes that conversational speech exhibits more
rising contours in yes/no questions, where theory generally predicts there should be
a final rising contour, than does read speech. However, the rising contours in original
inputs in the SpeechActs interactions do not appear to be related to yes/no questions.
In fact, the SpeechActs system functionality does not enable any literal yes/no ques-
tions; most legal utterances are information-seeking questions or commands. Instead,
since these utterances should canonically have falling intonation, we can view these
changes as shifts from a casual or tentative style to something closer to citation form.

It has been suggested that corrections are, de facto, segment-initial utterances
since their use initiates a clarification subdialog. [Swerts and Ostendorf, 1995], citeG-
H However, we find little prosodic evidence to support this analysis. The most salient
feature of discourse segment-initial utterances, as identified by many researchers in-
cluding [Swerts and Ostendorf, 1995, [Nakatani and Hirschberg, 1994], citeG-H, is a
significant increase in pitch range, often linked with an increase in pitch height. In our
analysis of corrections, on the other hand, we find no significant expansion in overall
pitch range or increase in pitch height; conversely, we find overall decreases in pitch
minimum for these utterances. This contrast argues that, at least for this simple type
of correction interaction, corrections do not have the same status as segment-initial
utterances.

The final set of pitch contrasts we found involved a contrast between original
inputs and repeat corrections of misrecognition errors, also in contrast to corrections of
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rejection errors. Here we observe that there is greater pitch movement corresponding
to steeper rises and steeper falls for corrections of misrecognition errors than for
original inputs or repeat corrections of other types. These contrasts indicate the
presence of stronger or new contrastive pitch accents. This specific use of contrastive
accent would not be expected to appear in general contrasts between original inputs
and repeat corrections or read and conversational speech. It would not necessarily
be a part of intonational marking of discourse structure, except in cases of parallel
contrastive structures. [Prevost, 1996] This type of accentuation would be most likely
to appear in self-repairs where we observe pitch increases between reparandum and
repair. This increase in pitch activity appears to be tied to accenting, rather than to
any overall contour and would thus be difficult for [Taylor, 1995] to detect.
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Chapter 5

Decision Tree Classification

The analyses in the previous chapter provided evidence of significant differences be-
tween original input and repeat correction utterances, surfacing in a number of dif-
ferent acoustic-prosodic features. Specifically, correction utterances were shown to
be significantly longer in total utterance, total speech, and total pause duration than
original inputs. In addition, correction utterances exhibited significant decreases in
pitch minimum. In this chapter we design decision tree classifiers to distinguish be-
tween original inputs and repeat corrections for corrections of rejection errors and
corrections of misrecognition errors. Such a classifier would be incorporated in a spo-
ken language system help defuse error spirals, by identifying corrections and initiating
repair interactions.

5.1 Decision Trees: Motivation

In order to correctly interpret the utterance and also, if necessary, to invoke a spe-
cialized recognizer to handle the adaptations involved in a correction utterance, our
initial goal is to be able to distinguish between original inputs and repeat corrections.
For this classification task we have a variety of duration, pause, pitch, and amplitude
features at our disposal. From our prior statistical analysis of these acoustic-prosodic
features, we can presume that some, probably duration and pitch, will be more useful
than others, such as amplitude. Still, it is not possible to be certain which features
will be most effective, and it would be most informative to be able to determine by
inspection of the most successful classifier, exactly which features or sets of features
contributed to this success.

Decision trees provide a machine learning technique that can fulfill these require-
ments. First, decision trees can ignore irrelevant attributes. In nearest neighbor
classification techniques, for example, each training and, later, testing instance can
be viewed as a labeled point in a high dimensional space, where each feature value
corresponds to a dimension in the space. Thus, all features carry equal weight in
the classification process, and the inclusion of irrelevant features can cause otherwise
similar instances to become widely separated in the classification space. In contrast,
decision trees make selective use of the most relevant attributes and can therefore
ignore irrelevant attributes. They achieve this behavior in the following way. The
decision tree consists of several layers of branching nodes. Each of the branches cor-
responds to a split on a feature value, e.g. greater than or less than for a continuous
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real-valued feature or one branch per possible value for an enumerated feature. At
each stage the best split is chosen, where the split creates the lowest total entropy of
the branches after the split. The aim is to create the purest possible clusters from
the split. All possible assignments for all possible features are evaluated. Thus, a
feature is only used for a branch decision if it yields subtrees with the lowest possible
entropy at that point. While such a greedy heuristic may be misled, it will not select
features which lead to highly heterogeneous branches. It must always select the test
at any point that gives the greatest improvement in homogeneity. Finally, the leaf
nodes receive a classifier label. To label a new unseen instance, one simply traverses
the tree taking the branch dictated by the associated test at each point, giving it
the same label as the other instances sharing its leaf node. For instance, a trivial
possible classifier for corrections could label leaves as original or correction. Suppose
that the root node tested whether the duration was greater than that of the previous
utterance. A second test on both branches might be whether the utterance was louder
than the previous utterance. Thus one might expect the following path through the
tree: if the utterance is longer than the previous input and if the utterance is louder
than the previous input, the utterance is a correction.

This methodology also gives rise to the other desirable feature of decision trees:
perspicuous classification. By writing down each branch test for each path from root
to leaf, one creates an easily intelligible set of if-then rules which describe the classi-
fication process. This intelligibility allows the designer to determine which features
play the most important roles in the classification process. In contrast, techniques
like nearest neighbor classification or neural networks are often very difficult to in-
terpret. Nearest neighbor simply defines a collection of regions in the feature space
within which a classification applies, giving an indivisible set of feature values or
value ranges associated with that classification. Neural networks when trained pro-
duce a set of weights on different inter-node connections. With the exception of very
low weights, near zero, and very high weights, little can be determined about which
features and values play a role the classification output by the network.

So, in order to obtain classifiers that are relatively robust to irrelevant attributes
and that could easily be interpreted, we chose to build decision trees to distinguish
between original inputs and repeat corrections. However, there are several other
machine learning methods that could be applied to this task in future work, and that
have desirable characteristics. For instance, decision trees define rectangular decision
boundaries that may not be the best fit to the data attributes; they also treat all
features independently. Bayesian techniques or mixture-of-experts approaches would
allow different decision region shapes and could more effectively model independence
and interdependence among features.

5.2 Classifier Features

Even though decision tree classifiers are fairly robust to irrelevant attributes, we still
prefer to use features that are more likely to allow us to distinguish between original
inputs and repeat corrections. Thus, we select features based on those that proved,
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under statistical analysis, to exhibit significant differences between originals and re-
peat corrections. Therefore, we use duration, pause, pitch, and amplitude features.
We will now describe, in detail, the features used in the decision tree classifiers and
explain the basic analysis measures required to effectively use those decision trees.

5.2.1 Duration-related Features

In the acoustic analysis chapter, we noted the importance for pitch and amplitude
measures of per-subject normalization. For duration, such normalization was not
particularly important since there were systematic increases in duration. However,
utterances range in duration from anywhere between 210 and 5180 milliseconds; this
contrast depends primarily on the lexical content of the utterance. This variability
makes original-repeat distinction based on absolute utterance length unlikely. As a
result, in addition to using the absolute utterance duration, we experimented with a
variety of normalization measures. One normalization measure referred to as expected
utterance length is an average original duration calculated for each utterance text.
This normalizing term was used in three different measures:

total utterance length
lenvexp
average utterance length
total utterance length - average utterance length
lenvexpvowel -
average utterance length
total utterance length - average utterance length
lenvexpsyll
number of syllables in utterance

A rate of speech measure was also calculated from the number of syllables in
the utterance divided by the square of the total utterance duration in seconds. This
measure is a variant of the standard “syllable per second” speaking rate measure used
in speech research; the second division by duration is motivated by the observation
by [Ostendorf et al., 1996] that such a repeated division improved performance in a
similar classification task. Another set of normalized duration measures are based on
a duration measure DDUR described in [Ostendorf et al., 1996]. These measures are
based on the following equation:

actuallength(w) averagelength(w)
ZwEwordS - - where
total utterance duration total utterance duration
actuallength(w) is the observed duration of word w and averagelength(w) is the
mean length of the word w, calculated as the sum of the mean lengths of its constituent
phonemes. We produced three features based on this measure: ddur2pos , the sum of
all instances where actuallength(w) exceeds averagelength(w), ddur2neg, the sum
of all instances where averagelength(w) exceeds actuallength(w), and ddur2diff,
sum of the absolute values of all differences. These measures try to capture a fine-
grained assessment of the divergence between the observed utterance durations and
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the durations predicted by the model. One expects there to be significant increases
in duration, but they might not be uniformly distributed among words. For instance,
a stressed word might undergo a large increase in duration while function words such
as ‘the’ change very little.

A third set of duration measures tries to capture the idea that a correction could
alter the length of words throughout the utterance, decreasing the proportion of the
utterance duration accounted for by the longest word and increasing the proportion
of the utterance duration accounted for by the shortest word. Specifically, we have

duration of longest word

maxprop
total utterance duration

duration of shortest word

minprop
total utterance duration

In general, the best normalizations make use of the duration for a specific utterance
text. Speaking rate measures whether based on observed syllables per second or
acoustically determined phoneme or syllable rate, while not reaching the accuracy of
the best text-based measures, perform fairly consistently. All of these measures aim at
capturing the increased duration observed in repeat correction utterances in contrast
to original inputs; they they simply perform this task and account for differences
related to utterance content in different ways.

5.2.2 Pause Features

Pause duration also exhibited a significant difference between original and repeat cor-
rection in earlier acoustic analyses. This contrast also suggests that pause features
could prove useful in building automatic classifiers for these speech acts, such as seen
in speaking style discrimination [Ostendorf et al., 1996] and self-repair identifica-
tion. [Nakatani and Hirschberg, 1994], [Shriberg et al., 1997]. A set of four measures
were used to capture pause contrasts between original inputs and repeat corrections.
One simple measure, pausedur, corresponds to the total pause duration. Another
total pause duration

measure, lenperpause, is the average pause duration,
number of pauses
Pausenumperwd computes the total pause duration divided by the total number of
words in the utterance. A final measure, pausevtotal, captures the proportion of
total pause duration
the utterance which is silence, .The first two mea-
total utterance duration
sures provide absolute pause measures, while the last two normalize the pause length
relative to different utterance length measures.
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5.2.3 Pitch Measures

We used a battery of pitch measures for classifier design, in order to capture the
different types of features, absolute extreme pitch value and measures of pitch slope
and contour. As noted in the acoustic analysis, absolute measures of pitch are highly
variable, particularly based on gender and subject. Therefore, numeric pitch values
are presented in terms of subject-based standard deviation from a subject-based mean.
Approximately half the measures relate to numeric pitch values, while the other half
are measures of pitch slope or contour.

The numeric pitch values are measures of pitch maxima, pitch minima, and pitch
range. Three measures are global pitch maximum, global pitch minimum, and global
pitch range, calculated across voiced regions over the full length of the utterance.
Two other measures are pitch maximum and pitch minimum for the last word in the
utterance. These measures are based on those used in [Nakatani and Hirschberg,
1994], [Oviatt et al., 1996], and [Swerts and Ostendorf, 1995]. These pitch extreme
values capture pitch range expansion and height. They thus are linked to discourse
structure, such segment beginnings, and it has been suggested that corrections fulfill
such a role. They are also linked with certain clear speech styles such as motherese.!
All of these measures are expressed absolute terms, in Hz.

There are six contour and slope-based pitch measures. One measure is pitchdir,
the shape of the final pitch contour of the utterance; these values are either “Rise”

(globalpitchmax - globalpitchmin)
or “Fall’. Pitchslope is computed as -
total utterance duration
Firstslope measures the contour of the first word in the utterance; this term is
(firstpitchmax-firstpitchmin)
- . The other three pitch measures are measures

first word duration

of the peak-to-peak slope of the pitch contour, computed in piecewise linear fash-
ion from consecutive pitch extrema. These measures are maxslope, the value of the
steepest slope rise, minslope, the value of the steepest falling slope segment, and
slopesum, the sum of the magnitudes of the steepest rise and steepest fall in the
utterance. These measures of pitch slope were found to reflect significant differences
between original inputs and repeat corrections for corrections of misrecognition er-
rors. These slope measures aim to capture pitch accent behavior, such as contrastive
accent, an expected component of corrections of misrecognitions.

5.2.4 Amplitude Measures

The amplitude measures used in the classifier essentially parallel the pitch measures.
Again, to compensate for very high inter-speaker variability, we normalized ampli-
tude measures based on a per-speaker mean amplitude, in addition to using absolute

"Motherese refers to characteristic speech of caretakers to children. It is found in many languages,
though more for females than males, and involves expanded pitch range, higher pitch, and longer
duration.
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measures for these values. The base measures can be computed from either of the
two amplitude measures described in the acoustic analysis chapter: log raw power
and RMS energy. A group of six amplitude measures are computed.

Three measures are used to determine overall utterance amplitude. First we com-
pute the utterance mean and maximum amplitude. We also compute the maximum
amplitude of the last word in the utterance; this measure is a proxy for the sustained
amplitude of the utterance. Next we compute three additional measures to try to
capture the amplitude variability of the given utterance. Ampdev is the standard de-
viation of the amplitude for the given utterance. Ampdiff calculates the difference in
amplitude from the beginning to the end of the utterance, specifically the difference
in amplitude of the first and last words of the utterance. Finally, ampdelta repre-
sents the difference of the amplitude of the last word in the utterance to the mean
amplitude of the utterance as a whole. These contrast measures consider whether
the utterances follow common trends of catathesis®, or systematic downstepping in
pitch and amplitude from left to right through the utterance, or whether the greater
articulatory effort found in clear speech or corrective utterances could override such
a trend. Simply put, we hypothesized that in the more careful speech of corrective
utterances users would make an effort to speak more consistently loudly, particularly
in cases of corrections of rejection errors.

5.2.5 Feature Summary

Feature Class Feature Names
Duration Uttdur, Lenvexp, Lenvexpvowel, Lenvexpsyll
Syllrate, Ddur2pos, Ddur2neg, Ddur2dift
Minpos, Maxpos, Mrate

Pause Pausedur, Lenperpause, Pausevlen
Pitch Pitchmax, Pitchmin, Pitchrange
Pitchlastmin, Pitchlastmax, Pitchslope, Firstslope
Pitchdir, Maxslope, Minslope, Slopesum

Amplitude Ampmax, Ampmean, Amplast
Ampdev, Ampdiff, Ampdelta
General SubjectID

5.3 Classifier Experiments & Results

Given the basic feature set described in the preceding section, we examined the use of
decision tree classifiers for identifying original inputs in contrast to repeat corrections.
We will contrast results based on the availability of different types of information to
the classifier and results for different error correction types, corrections of rejection
errors and corrections of misrecognition errors, since we observed in the acoustic

2This trend of decreasing pitch and loudness through the utterance is a result of decreasing lung
pressure as one lets out one’s breath in speech.
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analysis presented in Chapter 3 that different correction types pattern differently for
pitch features.

5.3.1 General Methodology

Each of the decision tree experiments presented below followed the same basic ap-
proach. The training and test sets were divided evenly between original inputs and
repeat corrections; this division established a 50% baseline for recognition since sim-
ply guessing either classification for all cases would correctly classifying 50% of the
instances. The leaves of the decision tree were labeled as either O(riginal) or R(epeat
correction).

To avoid overfitting the training data, we evaluated the classifiers through 7-way
cross-validation, operating in the following manner. We divided the data into seven
segments, training on 6/7’s of the data and testing on the remaining 1/7. The test
set is drawn randomly according to the same distribution as the full data set. We
then cycle through the segments so that every instance appears in the test set once.
We report the results as the average of the accuracy rates over each of the test sets.

5.3.2 Recognizing Corrections: All Types

We begin by using decision tree classifiers to recognize corrections of all types in
contrasted against original inputs. This classifier achieved 65% accuracy: in other
words, a 35% error rate, in cross-validation tests for unseen data. The training set
error for the same trees averaged 17%, or 83% accuracy. This rate falls between the
classifier chance baseline of 50%, and a 79.4% baseline for human performance on a
task where listeners were given utterances in isolation and asked to identify whether
or not they thought a correction was taking place. [Rudnicky and Hauptmann, 1990]
The best classifiers are all based on durational measures, specifically a combination of
some form of normalized duration, absolute duration, and pause measures. A typical
successful tree with 20-30 nodes required for a sensible split appears below. In all
cases the first split in the classifier tree was based on a measure of normalized dura-
tion. This result is robust for several normalized duration measures. Specifically, we
get similar results for lenvexpvowel, duration normalized based on average expected
original input length for a given input text, as described the feature section above.
We also get similar results for speaking rate computed as either syllables per second,
number of syllables * 1000

normalized per-subject, and from a pure acoustic
total utterance duration

measure called mrate, that automatically estimates the number of phonemes per sec-

ond based on the number of spectral peaks per time period, developed by [Mirgafiori

et al., 1995] at Berkeley.?

3In more general terms, the acoustic speaking rate measure uses the contrast between vowels,
with fairly sinusoidal waveforms, and consonants, characterized by noisy waveforms to determine
the number of phonemes.
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In addition to these duration measures, pause measures also played an important,
though secondary role in the general recognition of corrections. Average pause du-
ration, or length per pause, greater than 70 milliseconds led to a classification of an
utterance as a repeat correction in several classifiers. Likewise, the pausevlen mea-
sure of the proportion of an utterance composed of silence, also led to classification
as a repeat correction when pause constituted more than 6% of the utterance (66%
accuracy). These measures became important in decision trees in which only acoustic
or syllable rate measure were available.
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5.3.3 Recognizing Corrections: Misrecognitions Only

We next consider separating original inputs from corrections of misrecognition errors
only. We observed, in the course of acoustic analysis, that in pitch slope and accent
measures, corrections of misrecognition errors patterned differently from corrections
of other error types. The best classifiers for these corrections achieved 77.2% accu-
racy, or a 22.8% error rate. The training set error rate for the same trees averaged
between 10% and 15%. These classifiers relied upon durational and pitch measures,
specifically measures of absolute and normalized duration, pitch minimum, and pitch
slope. In all cases, the first split in the tree was based on some measure of normalized
duration. The use of pitch information improved the overall classification accuracy
approximately 6%. The normalized duration measure used for the best result was
lenvexpvowel, as discussed in the preceding section, normalizing total utterance du-
ration based on the an average expected original input length for given text. * Using
per-subject normalized syllable rate and mrate acoustic measures of speaking rate
degrade performance to approximately 65%.

In all cases, the use of an absolute measure of pitch minimum and pitch slope
measures, including steepest fall and sum of slopes. improved classifier performance
over duration measures alone. The importance of these pitch measures in the classifi-
cation of misrecognition errors contrasts strongly with their general negative impact
on classification of other correction types. An example tree is shown below:

5.3.4 Recognizing Original-Repeat Pairs

Intuitively, an important factor in recognizing that a correction is taking place is
the juxtaposition of the original input to the repeat correction. For instance, the
contrastive use of accent observed in corrections of some misrecognitions involved
using a different pitch accent type or increasing the amplitude of the existing pitch
accent. Other obvious contrasts arise in durational and pitch change. Base speaking
rate and base speaking pitch vary significantly across individuals. For instance, in
the case of pitch, a low pitch minimum for a female speaker would look like a high
pitch maximum for a male speaker. Some of the contrasts can be compensated for by
per-subject normalization as we showed earlier in the case of pitch, but substantial
variability remains. These contrasts can best be captured by treating the original-
repeat identification process as the identification of the pair, as opposed to identifying
the original or correction in isolation. One can view this approach as parallel to the
identification of self-repairs, where one identifies the transition from the reparandum
to the repair. [Nakatani and Hirschberg, 1994], [Shriberg et al., 1997

In this section we make a preliminary test of the possibility of using this pairwise
information to identify original (position 1)- repeat (position 2) pairs, in contrast to

4The average original utterance duration for utterance text was computed from instances in the
aligned data set. The number of instances available was thus relatively small, ranging from 1-20
instances per utterance text. Alternative estimates of original utterance duration can be computed
from phoneme or word duration models, adjusted for position in word and utterance as in [Chung,
1997] or from a larger labeled corpus.
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Figure 5-1: Original-Repeat Pairwise Classifier: Classified as Correction or Basic

“flipped” pairs, where the repeat is treated as occurring in position 1 or preceding the
original (position 2). Here we substituted the difference of the features of the utterance
in position 1 minus the features of the utterance in position 2 of the pair for the feature
values themselves. We then performed a similar decision tree training and testing
process to that in the previous experiments. For this admittedly simplified test,
we achieved approximately 80% accuracy, over all error correction types. Increases
in duration measures from original (position 1) to repeat (position 2) are the most
important features and constitute the first split in the decision trees. An example
appears below. 5-1

While this test of pair-based classification is overly simple, it suggests how to
improve correction identification by using the contrasts between specific members of
a hypothesized original-repeat correction pair. A more extensive test suite including
examples of observed lexically matched original-original pairs to test against original-
repeat or “flipped” pairs.
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5.4 Discussion

We have seen that repeat corrections can be distinguished from original inputs at an
accuracy of between 65-77%, depending on the type of error being corrected and the
type of information available. While durational information plays the most important
role in identifying all error correction types, the secondary information that yields
improved results depends upon the type of error being corrected. When corrections
of rejection errors are included in the classification task, pause measures, both average
and proportion of utterance, play a role. When only corrections of misrecognitions
are tested, pitch-related measures, such as slope and pitch minimum play important,
though secondary roles. We also find that it is necessary to require a minimum number
of nodes, usually between 8 and 20, for a sensible test in the course of building the
decision tree. This constraint raises the error rate on training data from about 4% on
fine-grained tests, requiring only 2 nodes per test, to the observed 10-17%. However,
this constraint avoids overfitting which otherwise arises and can reduce accuracy on
unseen data to chance levels, by limiting splits to subtrees classifying larger numbers
of instances. While there are strong statistical trends to increased duration and
pause, for example, the combination of some uncertainty, per-subject variability, and
not strictly rectangular decision regions requires the implementation of constraints to
avoid overfitting.

To put these results in a clearer perspective, let us consider an experiment re-
ported by [Rudnicky and Hauptmann, 1990]. In this experiment, original input
utterances and correction utterances of misrecognition errors from test interactions
with a command-and-control task testbed with voice input and text output, were pre-
sented to experimental volunteer subjects who were asked to identify each utterance
as a correction or not. These subjects correctly classified these utterances in 79.4%
of cases, establishing a baseline for human performance on this task. Thus the range
of accuracy reported for the decision trees, between 65-77%, represents a significant
step toward human levels of performance, even where pure acoustic-prosodic mea-
sures were used. However, these classifiers are far from perfect, and since the task is
non-trivial even for human users, we must consider how to make use of this limited
but useful information. The most conservative approach to using this information
would be to shift the style of interaction with the system. In other words, when the
system suspects a correction is taking place, it can explicitly prompt the user for
confirmation of its recognized utterance string. In general, experienced users prefer
a less directive style, but [Oviatt et al., 1994] have found that many users prefer
a more restricted style, especially when recognizer error rates are high or they are
unfamiliar with the system. Another way of using this information about the possi-
bility of a correction taking place is to deploy a recognizer specialized for correction
utterances to attempt to revise or verify the recognized utterance. One could, for
instance, compare confidence scores for the different recognizer results, and select the
one with higher confidence. A detailed analysis of the differences between observed
durations and phonological realizations in correction utterances and those in a typical
speech recognizer model will be presented in the next chapter.

Since we expected recognition of corrections to be easier with more contextual
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information, specifically when the corrections can be directly contrasted with the cor-
responding original input in context, paralleling the recognition of self-repairs based
on comparing the reparandum and the repair, we performed a preliminary investiga-
tion of pairwise original-repeat identification. Even in this simplified experiment we
found improved rates of recognition of original-repeat pairs, suggesting that pairwise
methods for identifying corrections may be a profitable avenue to explore.
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Chapter 6

Implications for Speech Recognizer
Design

6.1 Motivation

We observed in the initial discussion of the collected data that there was a large dispar-
ity between the probability of a recognition error occurring after a correct recognition
and the probability of an error following a failed recognition, This contrast leads to
the phenomenon of error “spirals”, in which multiple successive recognition errors
arise. These error spirals are particularly frustrating for users; user evaluations of
spoken language systems have been shown to be closely tied to the ease or difficulty
of correcting recognition errors. In a study of correction strategies in which extended
error spirals were simulated [Oviatt et al., 1996], the designers of the study found
it necessary to scale back the maximum spiral depth (number of successive failures)
to six, from an original depth of ten, when even pilot subjects became so frustrated
that they refused to complete the tasks.

USER: Give me the price for AT&T.

SYSTEM: Hewlett-Packard is at 83 3/8, up 2 3/8 since yesterday.
USER: Give me the price for AT&T.

SYSTEM: Data General is at 63 1/4, up 1/3.

USER: Give me the price for AT&T.

SYSTEM: Hewlett-Packard is at 83 3/8, up 2 3/8.

USER: Give me the price for American Telephone and Telegraph.
SYSTEM: Excuse me?

In the SpeechActs field trial, error spirals proved to be a common problem for
users. One subject encountered a sequence of 15 consecutive recognition failures, to
each of which he responded with another attempt at the same utterance, showing
remarkable persistence. In fact more errors occurred within the spirals than in first
repeat correction position. Clearly, the adaptations that users employ to correct
recognition errors in many cases seem to yield the opposite result.

As we observed in the previous chapter, these adaptations can be used to identify
the corrective force of these utterances, which could not be recognized solely by lexical
marking or repetition of lexical content. Clearly these changes provide useful and
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necessary information to properly interpret the user’s intent in uttering the sentence.
We argue that it is, in fact undesirable to train users to avoid these adaptations; it is
also difficult to do so. Users are often opaque to system directions; a classic example is
the oft-reported difficulty of eliciting a simple “yes” or “no” response from a user, even
when the user is explicitly prompted to do so. However, just as we note the utility
of these cues for interpreting the corrective force of the utterance, we must recognize
the severe negative impact that they have on speech recognizer performance. We
will demonstrate that the systematic adaptations of users in the face of recognition
errors that have been detailed in the preceding chapters have specific implications
for the design of speech recognizers that will be more robust to the types of changes
characteristic of correction utterances.

6.2 Duration-related Changes

In the analysis and classifier chapters, we noted three classes of systematic changes
between original input and repeat correction utterances. There were (1) significant
increases in duration, (2) increases in pause measures, and (3) significant decreases
in utterance-wide normalized pitch minimum. Most contemporary speech recognizers
strip out and normalize for changes in pitch and amplitude; thus pitch and amplitude
effects are less likely to have a direct impact on recognizer performance, though pitch
features do prove useful in identifying correction utterances. Thus, in this discussion,
we will focus on effects of duration and pause changes that can impact recognition
accuracy by causing the actual pronunciation of correction utterances to diverge from
the speaking models underlying the recognizer.

6.2.1 Phonetic and Phonological Changes

One of the basic components of a speech recognizer is a lexicon, mapping from an
underlying word or letter sequence to one or more possible pronunciations. In con-
junction with a grammar, this lexicon constrains possible word sequences to those that
the recognizer can identify as legal utterances. There is a constant tension in speech
recognizer design between creating the most tightly constrained language model to
improve recognition accuracy of those utterances covered by the model and creating a
broader-coverage language model to allow a wider range of utterances to be accepted
but increasing the perplexity of the model and the possibility of misrecognitions.

In addition to examining the suprasegmental features of pitch, duration, pause,
and amplitude discussed in preceding chapters, we also examined phonological con-
trasts between original inputs and repeat corrections. We found that more than a
third of the original-repeat pairs exhibited some form of phonological contrast, to
various extents. For subsequent discussions we will divide these changes into two
classes: one class deals with changes along what may be called a conversational-to-
clear-speech continuum, as discussed in [Oviatt et al., 1996], and another class deals
with syllabic or phonemic insertions.

In the first class of phonological changes, we found contrasts between the classic
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dictionary or citation form of pronunciation of the utterance, usually in the repeat
correction, and a reduced, casual, or conversational articulation most often in the
original input. Some examples illustrate these contrasts. Consider, for instance, the
utterance “Switch to calendar.” The preposition ‘to’ is a common function word, and
this class of words is usually unstressed or destressed and surfaces with a reduced
vowel as ‘tschwa’, even though the citation form is ‘too’. Similar reductions are found
with a variety of function words, e.g. ‘the’ which usually appears as ‘th schwa’ or ‘a’
as ‘schwa’. Throughout the data set of original-repeat pairs we find more than 20
instances of a shift from reduced vowels, surfacing as ‘schwa’s in the original input
utterances, to unreduced and occasionally stressed vowels in the repeat correction
utterances.

These reduced-unreduced contrasts are not limited to vowel instances; a similar
phenomenon takes place with released and aspirated consonants. For instance, ‘t’
in the word ‘twenty’ can fall anywhere along a continuum from essentially elided
(unreleased) ‘tweny’ to flapped ‘twendy’ to the released and aspirated of citation
form ‘twenty’. These contrasts are also frequent in SpeechActs data, as in ‘nex’ in an
original input becoming ‘next’ in a repeat correction, or the frequent elision of the ‘d’
in goodbye, most often in original inputs.

In the contrasts discussed above we observed a shift from a reduced, conversational
form in the original input to an unreduced, clear speech form in the repeat correction
utterance. In this section, we discuss contrasts involving a shift from either citation or
reduced form to an instance of syllabic or phonemic insertion. These instances arise
in cases of extreme lengthening often accompanied by oscillation in pitch, similar to
a calling pitch contour [Nakatani and Hirschberg, 1994]. A typical example would be
the word ‘goodbye’ that surfaces as ‘goodba-aye’. Approximately 24 instances of this
type of insertion occurred in the data between original inputs and repeat corrections.

6.2.2 Durational Modeling

The conversational-to-clear speech contrasts and insertion processes discussed above
are all phonetic and phonological changes which derive from a slower, more deliberate
speaking style. In this section we will discuss how the increases in duration and pause
described in the acoustic analysis chapter play out in terms of differences between
observed utterances durations and speech recognizer model mean durations. We will
demonstrate large, systematic differences between observed and predicted durations.
This disparity is a cause for concern in speech recognition. In scoring a recognition
hypothesis , two measures play significant roles: the score of the frame feature vector
as a match to the model feature vector of the speech segment, and a timing score
penalty assessed on phonemes that are too long or too short in the Viterbi decoding
stage. In other words, recognition hypotheses will be penalized based on the amount
the observed duration exceeds the expected duration. We will show that such a
mismatch arises for a majority of the words in correction utterances and greater than
two-thirds of the words in final position in correction utterances, where correction
and phrase-final lengthening effects combine.

We obtained mean durations and standard deviations for a variety of phonemes
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[Chung, 1997]. For each word in the SpeechActs data set we computed a mean and
long, mean + standarddeviation measures of predicted duration by summing the
corresponding means or long durations for each phoneme in the word. These mean
and long word duration measures were then compared to the observed word durations
in each of the original input and repeat correction utterances in the data set. We then
reported the number of words exceeding the predicted mean and long durations and
the average difference between the observed and predicted durations. ! In addition,
we computed the measures separately for words in utterance-final position, where,
due to phrase final lengthening and the predominance of content words, we expected
durational changes to be at their clearest. We present the durational shifts in original
and repeat utterance as shifts from model duration in terms of number of standard
deviations from the mean.

The first figure below presents histograms for all words, with the originals in dark
grey and the corrections in light grey. Each point on the x-axis is one-half standard
deviation, ranging from 1 standard deviation below the mean to 5 standard deviations
above the mean. The first figure corresponds to utterances for all correction types.
Note, there are very few instances of words less than the mean and also none less than
a standard deviation below the mean. There is a large peak for the durations just
slightly above the mean, corresponding to values between the mean and one-fourth
standard deviation above the mean. The remainder of the words, approximately one-
half for all correction types, exceed the mean by at least a standard deviation. The
mean value for words in original inputs is 1.0987 standard deviations above the model
mean; the median is at 0.8678. In contrast, for correction utterances, the observed
mean rises to 1.353 standard deviations above the mean; with the median value at
1.0750. This shift represents a significant increase in durations. (t =3.6, df = 1398,
p < 0.0005).

The above figures raise the following question: what is the source of this difference
from the model durations? It is clearly exacerbated for the repeat corrections, but it
is also very much present for words in original inputs as well. Is it simply that the
TIMIT durations are a terrible match for conversational, SpeechActs utterances? Or
is there a more general explanation for the problem?

To answer these questions, we further divide the word duration data into two new
groups: words in last position in an utterance and all other words. We saw before
in the analysis of pitch contour the need to separate out utterance-final contours
from other pitch accenting in the utterance in order to properly understand pitch
phenomena. In addition, phonology argues that phrase- and utterance- final regions
undergo a process referred to as phrase-final lengthening, which increases durations
in words preceding phrase boundaries. In fact, one of the goals of [Chung, 1997] was
to identify meta-features, such as phrase finality which might change the expected
duration of phonemes.

First we look at histograms contrasting shifts from the mean duration for original
inputs and repeat corrections for words in non-final position. Graphs for words from

IThe durations of a small number of words with initial unvoiced stops may have been affected
by the conservative approach to marking initial closure, used for pause scoring.
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Figure 6-2: Overlapping Histograms: All Correction Types: Non-Final Words Origi-
nal (dark grey) vs Corrections (light grey) Durations Distribution

all correction types (Figure 6-2) and corrections of misrecognitions only (Figure 6-3)
are shown below. These figures contrast strongly with the distributions for all words.
Instead, the distribution has a single large peak and two fairly narrow tails. In fact,
these durations appear to be in closer agreement with the model, aside from having
a slightly higher average duration with most durations falling between the mean and
one-quarter of a standard deviation above the mean. The observed means for original
inputs in non-final position are 0.7894 and 0.5520, and medians at 0.6404 and 0.43483,
for all correction types and corrections of misrecognitions only, respectively, closer
to the expected duration model. Secondly, we should note the difference between
the distribution for words in original inputs and for words in repeat corrections, for
non-final positions. The positions of the highest and second highest peaks reverse,
placing the largest peak for correction utterances at approximately one-half standard
deviation above the mean. Quantitatively the contrast between original and repeat
inputs is even more apparent. The means rise from 0.7894 to 1.0556 for corrections
of all types, and from 0.5520 to 0.7565 for corrections of misrecognition errors. These
increases reach significance for corrections of all types (T-test: two-tailed, t= 3.3, df
= 792, p < 0.005), and approach significance for corrections of misrecognition errors
(T-test, two-tailed: t = 1.65, df = 204, p = 0.0518).

Now we examine only those words in utterance-final position, again displaying
overlapping histograms for the distribution of durations for original inputs and re-
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peat corrections. Again we observe strong contrasts with the preceding figures. As
suggested by phonological theory and [Chung, 1997]’s analysis, there is a significant
increase in duration of words in final position relative to a general mean duration.
Instead of a large peak less than one-quarter of a standard deviation above the mean,
the largest peak for original inputs has shifted to between one-half and three-quarters
of a standard deviation above the mean, depending on the error type. Not only is
there a shift for the original inputs, but the words drawn from the repeat corrections
shift even further.

Shifting to a more quantitative analysis, we find that the mean value for words in
final position in original utterances is double the value for words in non-final positions.
A similar relationship holds for repeat corrections, with corrections of misrecognition
errors experiencing a greater increase.

Correction Type Repeat? Non-final Final

All Types Original 0.7894 1.5039
All Types Repeat 1.0556 1.7446
Misrecognitions ~ Original 0.5520 1.1358
Misrecognitions  Repeat 0.7565 1.514

All of these contrasts between words in final and non-final positions are highly
significant. (T-test: two-tailed, p < 0.001) These two groups should thus be viewed
as coming from different distributions. The largest portion of the durational con-
trast between original inputs and repeat corrections arises from further increases in
duration to the already lengthened words in phrase-final position.

The first graph below (Figure 6-4) illustrates the distributions for utterance-
final word durations for corrections of all error types. The second graph (Figure
6-5) illustrates the analogous distribution for corrections of misrecognitions errors
alone. We observe not only an overall rightward shift in the distributions for all
repeat corrections in contrast to original inputs, but also a difference between the two
groups of corrections. While the highest peak for corrections of all types decreases in
amplitude with more 66% of words exceeding the mean by more than one standard
deviation, the change for corrections of misrecognition errors is even more dramatic.
The position of the highest peak actually increases by one-quarter of a standard
deviation moving the distribution closer to a normal distribution (kurtosis = 3.0883,
skewness = 0.4759, the lowest such measures for all distributions), centered now at one
standard deviation above the expected mean. Both of these increases from original to
repeat correction are shown to be significant. (T-test: two-tailed, t = 2.07, df = 604,
p < 0.02 for corrections of all types and t = 2.73, df = 174, p < 0.005 for corrections
of misrecognitions only).

This more detailed analysis of distribution of word durations in original inputs and
repeat corrections allows us to construct a more unified picture of durational change.
Basic duration models hold fairly well for pre-final words in original inputs, and show
an increase to between one-fourth and one-half standard deviation above the mean
in repeat corrections. In contrast, utterance-final words are very poorly described by
these models. In all utterances the final words are subject to the effects of phrase-final
lengthening, causing them to deviate from the models which suffice for other positions
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within the utterance. In addition, the effects of corrective adaptations, in turn, inter-
act with and are amplified by the effects of phrase final lengthening. These combined
effects cause words in utterance- final position of repeat corrections to deviate most
dramatically from models of duration that do not take these effects into account. We
see that these changes are most evident in corrections of misrecognition errors where
a contrast with basic speaking style is most needed to inform the listener of correc-
tive intent, in the absence of cues available for corrections of rejection errors where
the system itself is aware of the recognition failure. Finally, the dramatic changes to
utterance-final duration under the dual effects of phrase-final lengthening and correc-
tive adaptation indicate the need for a durational model for speech recognition that
can take this meta-information, such as position in utterance and discourse function,
into account and further provide a starting point for the implementation of such a
model.

6.3 Summary

The changes in speech and pause duration that we observed in acoustic analysis reflect
not only a contrast between original inputs and repeat corrections but a shift away
from the models underlying a speech recognizer. Phonological changes from reduced
to citation form, following a conversational- to-clear speech continuum and further
from citation to hyper-clear form through vowel and syllabic insertion move counter
to the painstakingly modeled co-articulation effects of conversational speech and to
a basic lexical model. In addition we observe a very skewed distribution of word
durations, that in the change from original to repeat correction moves even further
from the basic predicted phoneme durations.
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Chapter 7

Conclusions and Future Work

Speech recognition error are a persistent and unavoidable problem for contemporary
spoken language systems, often resulting in a 25% utterance error rate, causing one
utterance in four to result in a recognition failure. These frequent errors are a source of
frustration for users, creating a significant hurdle for the widespread acceptance of this
technology. A vivid example of the problem caused by recognition errors, combined
with a decrease in recognition accuracy for correction utterances, is the phenomenon
known as an error spiral, seen below, in which the user repeatedly encounters errors
while attempting the same command.

USER: Give me the price for AT&T.

SYSTEM: Hewlett-Packard is at 83 3/8, up 2 3/8 since yesterday.
USER: Give me the price for AT&T.

SYSTEM: Data General is at 63 1/4, up 1/3.

USER: Give me the price for AT&T.

SYSTEM: Hewlett-Packard is at 83 3/8, up 2 3/8.

USER: Give me the price for American Telephone and Telegraph.
SYSTEM: Excuse me?

This problem motivated the work in this thesis to identify the reason for this
increase in recognition errors in correction situations and to attempt to defuse error
spirals by identifying the presence of a correction, even when the system believes
that successful recognition has occurred. Realizing that accurate recognition results
may not be available and that, in any case, the interaction style and often limited
vocabulary chosen by users of spoken language systems leads to many non- corrective
repetitions, we have concentrated on the use of acoustic-prosodic features, measures
of duration, pitch and loudness what are generally ignored in current spoken language
systems, in correction utterances.

We have analyzed repeat corrections in contrast to original inputs in the con-
text of a speech-only conversational telephone interface, SpeechActs developed at
Sun Microsystems Laboratories. By providing a detailed characterization of acoustic-
prosodic changes in correction utterances relative to original inputs in human-computer
dialog, this thesis contributes to natural language processing and spoken language
understanding. We present a treatment of systematic acoustic variability in speech
recognizer input as a source of new information, to interpret the speaker’s correc-
tive intent, rather than simply as noise to be normalized or a bad habit that the
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user should mend. We demonstrate the application of a machine-learning technique,
decision trees and achieve accuracy rates close to human levels of performance for
corrections of misrecognition errors, using acoustic-prosodic information to identify
spoken corrections. This process is simple and local and depends neither on perfect
transcription of the recognition string or complex reasoning based on the full conver-
sation. We further extend the conventional analysis of speaking styles beyond a read
versus conversational contrast to extreme hyper-clear speech, describing divergence
from phonological and durational models for words in hyper-clear speech.

By analyzing acoustic-prosodic features of more than 300 pairs of original inputs
and their repeat corrections, matched on subject and lexical content, we find signifi-
cant differences between corrections and other inputs. Specifically, we find significant
differences in durational measures, such as total utterance duration, total speech du-
ration, and total pause duration. We also find an overall drop in pitch minimum
along with an increase in the number of falling final intonation contours. All of these
changes can be viewed as shifting from a more conversational or casual style to a more
precise, careful, and clear speaking style. However, there are differences between clear
corrective speech to computers and other clear speech environments. Increases in du-
ration and pausing are the most consistent changes; while for some populations, there
may be increases in loudness (the hard-of-hearing) or increases in pitch range (chil-
dren in motherese! or even decreases in pitch as we see with computers. This study
adds to our understanding of clear speech adaptations.

For one type of corrections, corrections of misrecognition errors, we also find an
increase in pitch variability and accenting within the utterance, contrasting both with
original utterances and with corrections of rejection errors. We trace these changes
to a contrastive use of pitch accent marking the word or phrase where the computer’s
recognition error substituted an incorrect word. This adaptation fits well with current
theory about marking new information with pitch accent, but is a change essentially
orthogonal to the general conversational versus clear speech contrast of other acoustic
adaptations seen in corrections.

We next demonstrate that these significant acoustic-prosodic differences between
original inputs and repeat corrections can be used to develop a classifier to identify
correction utterances. Using features derived from absolute and normalized forms
of the contrasting measures, we train decision tree classifiers to identify corrections.
We exploit the technique’s robustness to irrelevant attributes and easy interpretation.
These classifiers achieve accuracy rates between 65-77%), depending of the type of cor-
rection and the amount of information available. The best results are for corrections
of substitution misrecognition errors, when a full text transcription is available; how-
ever, the methods still achieve 65% accuracy, over a 50% chance baseline and relative
to 79.4% human performance level, when given only acoustic information. It is par-
ticularly heartening that the best results are for corrections of misrecognition errors,
since the system, in these cases, would otherwise believe that no misrecognition had

IMotherese is a common term for the speech of care-givers to very young children. A specific
speaking style characterized by expanded pitch range, increased duration, and higher average has
been observed across several languages, though predominantly for female speakers.
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occurred.

Finally, we look at the implications of corrective adaptations for speech recognizer
design. We find that corrections are often characterized by phonological changes that
shift from a more casual style, using reduced vowels and consonants, to a more clear,
citation style, where the fully articulated forms are used. These changes parallel the
conversational-to-clear speech shift noted for durational measures. In some correc-
tions, insertion of a vowel or syllable extends these shifts to a “hyper”-clear speaking
style, in which more sounds occur than in the dictionary form. All of these changes
diverge from the basic speech recognizer model in which conversational co-articulation
effects are painstakingly modeled. Duration of corrections also diverges from a base
speech recognizer duration model. Utterance-internal words in original utterances
make a good match for a phoneme duration model based on TIMIT utterances, as
in [Chung, 1997]. Sentence-internal words in repeat corrections show a systematic
increase from this base model, and 75% of words in final position, where correction
adaptations and phrase-final lengthening effects combine, are more than one standard
deviation longer than the mean duration predicted by the model. Clearly, a speech
recognizer model needs to adapt to discourse features such as corrective intent in
addition to sentence-level effects such as phrase-final lengthening.

Clearly the analysis in this thesis has not completed our understanding of cor-
rections, for recognition or modeling. The current data set, 300 original-repeat pairs
of which two-thirds are corrections of rejection errors and one-third corrections of
misrecognition errors, is still quite small. Several issues must be explored in greater
depth. One important question involves variability across subjects. For example,
while the overall trend was toward significant increases in duration, one subject con-
sistently decreased the duration of his correction utterances relative to original inputs.
In the area of pitch, while most subjects changed any rising contours in originals to
falling contours in repeats, one subject displayed the opposite trend, switching all
contours to final rises in corrections. Perhaps the most important feature of correc-
tion is the contrast with respect to original input. It may be most effective for data
sets with more per-subject data to parameterize original-repeat correction modeling
for each variable measure, such as pitch contour “change to fall” or “change to rise”,
and then set these parameters on a per-subject basis as the user becomes familiar
with the system.

Another form of variability in corrections that we have not explored is whether
the contrasts that we encountered for lexically matched corrections, increases dura-
tion and pause, decreased pitch minimum, hold similarly for corrections with different
lexical content, as in “play message eight” (original) and “read number eight” (cor-
rection). The general trends of a shift to a more clear speaking style suggest that
similar adaptations will occur, but the question should be answered explicitly.

Another natural extension to this work would examine the adaptations for correc-
tions later in the error spiral. We hope that earlier detection will limit the number
and depth of error spirals, but they will not be eliminated. [Oviatt et al., 1998]
presents some descriptive analysis of within-spiral corrections, indicating a decrease
in variability. This analysis may suggest whether corrections deeper in the error spi-
ral should be identified with respect to the preceding input attempt of with respect
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to a general model of “original” and “repeat”. These straightforward extensions will
provide a more thorough understanding of spoken corrections and will expand our
ability to detect corrections, improve our ability to detect discourse relations and im-
prove error recovery in spoken language systems. In the following sections we consider
future work that would lay the groundwork for a more complete system for speech
recognition error recovery.

7.1 Pairwise Identification of Corrections

[Rudnicky and Hauptmann, 1990]’s experiment in which listeners identified utter-
ances as corrective or not for utterances from human-computer dialogs established
a baseline performance of 79.4% for identifying corrections in isolation. However,
corrections in human-computer dialog are not made in isolation; in particular, the
original, likely preceding, input is available for comparison in a spoken language sys-
tem, without violating our goal of a local classifier. It seems that the inclusion of this
narrow contextual information in the classification process can only help to improve
the identification of correction utterances. Instead of comparing the utterance to be
classified to a generic model of an original utterance, as is otherwise accomplished
using normalized duration, speaking rate, and pitch measures, one could compare the
possible correction to the hypothesized original of the pair. Such a direct comparison
would likely improve over per-subject normalization of the measures. The simplified
test of this pairwise approach reported earlier improved over the best isolated utter-
ance classification results. A crucial requirement for such experiments would be a
more extensive paired database, drawn, for instance, from all adjacent inputs in a
human-computer dialog corpus. Such a data set would need to include examples of
sequential, lexically matched non-corrective input, as well as lexically different cor-
rection and non-correction pairs, in addition to the type of data examined in this
thesis.

7.2 Future Work: Building a System

7.2.1 Introduction

The core work of this thesis demonstrates that there are significant differences between
original inputs and corrections. The differences in addition represent a divergence
from underlying speech recognizer models, leading to the counterintuitive worsening
of recognition accuracy when the user tries to speak more clearly. Furthermore, we
can use these contrasts to train a classifier to distinguish corrections from other inputs.
The natural practical extension of this research is to incorporate such a classifier in
a spoken language system to detect and repair human-computer miscommunication.
The decision tree classifier discussed in the thesis performs identifies that an error
has occurred by the user’s attempt to correct it. We propose two components to
participate in the repair of the error: one, a context-sensitive speech recognizer that
can compensate for speaker adaptations in correction utterances, and, two, a strategy
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for error repair interactions between the system and the user that will help prevent
error spirals and, in particular, the user’s feeling that the system is not responsive to
his efforts to make corrections.

7.2.2 Recognition: Practical Issues

The key first step in our model is to identify an utterance as being a correction.
Once we make this determination, we can determine whether to deploy an adap-
tive recognizer, attempt to find a specific corrected word or phrase, and pursue a
repair subdialog. Could we avoid this separate step by using the comparison of re-
sults from two recognizers, one adapted for corrections and one basic, to make this
determination implicitly? It is probable that we can not. First, it is generally im-
practical to compare the scores of outputs from different speech recognizers; scores
are ranked internally, relative to each other, not with respect to some absolute mea-
sure of quality. Secondly, such a design choice would limit the types of information
available to the classification process. Specifically, speech recognizers normalize away
the pitch variability that proved useful in identifying misrecognitions. Furthermore,
we could not smoothly incorporate pairwise comparisons of utterance sequences as
‘original-repeat’, discussed earlier as a possible improvement over the difficult task
of identifying corrections purely in isolation, into such a model, since the difference
between utterances is important to the pairwise approach.

A decision tree classifier that uses acoustic-prosodic features, as described earlier,
should be realizable within the framework, time, and resource constraints of a typical
spoken language system. First, the time-consuming process of training and tuning the
decision tree classifier can be done off-line. A developer must first collect a training
corpus of at least 300 original-repeat correction pairs, either from a live system or
through a “Wizard-of-Oz” style experiment. They must digitize, label, and transcribe
the corpus. The acoustic analysis tools are widely available, including pitch tracking,
silence detection, speaking rate measurement, and forced alignment, as is decision
tree software. A confidence measure for the classifier would be useful; a weighted
pessimistic estimate of the error rate for a given branch, based on the training set
error and similar to that used for tree pruning, would be a good candidate. When we
discuss error repair dialogs, we will see that a confidence measure would be useful in
determining how aggressive the correction strategy should be.

In the context of the typical operation of a spoken language system, this approach
should still be feasible. Many of the acoustic analyses are already performed as part
of the speech recognition process, as is the case for silence detection and even pitch
tracking in recognizers for tone languages like Chinese. The decision trees themselves
are compact, with between 7 and 37 nodes, and thus relatively fast as well. Ap-
proaches that combine acoustic-prosodic measures and machine-learning classifiers in
conjunction with speech recognition systems have been successfully deployed by [Os-
tendorf et al., 1996](to distinguish read, conversational, and fast speech) and [Taylor
et al., 1996b](to identify speech act type and constrain recognizer domain), providing
empirical evidence for the practicality of this approach.

Isolating the Correction
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Once we have identified an utterance as corrective, we can attempt to more care-
fully isolate the site of the misrecognition. Identifying an utterance a correction of a
misrecognition error is very useful, since it provides information to the system about
how to interpret the utterance in accord with the user’s intent, in part by creating
uncertainty about the preceding action that necessitated the correction. However, it
would be even more useful to be able to identify what part of the previous action was
in error, to help facilitate the repair.

Corrections of misrecognitions can be further divided into groups based on how
much and what part of the utterance was misrecognized. The amount of assistance
the system can provide depends how much was wrong in the misrecognition. On one
extreme of these subclasses are what have been referred to as “off-the-wall” errors
[Oviatt et al., 1996], in which the action of the system has no apparent connection
to what the user actually said. An example of such an “off-the-wall” misrecognition
would be the following:

USER SAID: Undo that.
SYSTEM HEARD: Goodbye.
SYSTEM SAID: Do you want to hang up?

Here the entire utterance is misrecognized, and there is little more information
available about how to effect the repair than if the utterance has simply been rejected.

Other misrecognitions are more limited in scope, and can provide more assistance
in a repair strategy. Consider, for example, the following sequence:

USER SAID: How much is fifty dollars there?
SYSTEM HEARD: How much is fifteen dollars there?
SYSTEM SAID: Fifteen US Dollars is 30 German marks.

Here only the number “fifty” is mistaken for “fifteen.” Knowing what porting of
the utterance is being corrected would allow a system to be much more helpful to
the user in correcting the misrecognition. It could compare the recognition results
for the original and correction, if available, in the suspect region to note whether
the same error had occurred. It could also tailor prompts to elicit the problematic
piece of information, and shift to a more directive style while giving feedback on the
more stable part of the recognized utterance. In the above case, such help might take
the following form: “SYSTEM SAID: Enter the amount of US dollars to convert to
German marks.”

As a first step toward this more helpful type of system, we could begin by isolating
the point of misrecognition in utterances where the error is localized to a single word,
as in the “fifty” / “fifteen” confusion described above. We believe that these relatively
discrete errors would be easiest to identify, since they are restricted to a single word
rather than a phrase or several separated words in the utterance. These points of
contrast are, moreover, the classic location for the use of contrastive pitch accent,

90



that should have the acoustic correlates of pitch movement, increases in duration,
possible increases in amplitude, and possibly preceding pause ( [Stifelman, 1993]).

We performed a simple experiment to test the plausibility of this approach. We
selected a data set composed of all corrections for which there was a single isolat-
able error being corrected. We then labeled each word as basic or corrected. We
used word-level variants of the features used in the earlier decision tree classifiers,
augmented with word position information and adjacent word pitch, amplitude, and
pause information. There were 28 isolatable correction words, and using a decision
tree classifier, we identified 26 of the 28 correction words with 2 false alarms. The first
split in the tree was on whether or not the word being classified was in utterance-final
position. This approach thus seems quite promising, although the data set is far too
small for the results to be viewed as other than preliminary.

7.2.3 Recovery: Improving Recognition

Having identified the utterance as corrective, we have performed the detection part
of our task, and now we must turn to the process of recovering from the error. We
will show that isolating the site of misrecognition as described above can play a key
role in this activity. First, however, we look at improving recognition accuracy on
corrections and then we will explore repair dialog strategies.

We observed in our data, as noted by other researchers [Shriberg et al., 1992],
that users experienced more recognition errors on corrections that other inputs. Our
acoustic analyses of correction utterances demonstrated divergences from base rec-
ognizer models of conversational speech in both phonology and duration. Thus we
propose a method to adapt the speech recognizer to perform better on the hyper-
articulate speech that often characterizes corrections. One might consider simply
augmenting the training data in a single speech recognizer with instances of correc-
tion utterances as well as original inputs. Unfortunately, while simple, this approach
is impractical since it would simply over-generalize the recognizer, probably worsen-
ing overall recognition rates. The problem with such an approach is that it misses
two important points: first, that this speaking style is not just a random variation,
but occurs in specific speech acts, and further that the variation is systematic. There
is a clear trend to increases in duration and clear speech phonology, nd these ef-
fects can extend throughout the utterance, rather than just as phoneme by phoneme
changes. Furthermore, a two-part approach adapting both the phonological and du-
rational models in concert is necessary. Adapting phonology alone would not improve
recognition in those cases of large durational increase but no explicit lexical change;
changes in phonology contribute to and amplify durational changes, but do not alone
account for all variability. [Oviatt et al., 1996] Adapting the durational model alone
fails as well; durational models are based on phonemic identity and, in addition, com-
mon phonological changes are not uniformly distributed across phonemes or words,
but, for instance, occur more frequently in function words. Only by modifying both
the phonological model through the lexicon and the durational model can we hope to
accurately model and recognize speech in correction utterances.

To compensate for phonological changes explicitly, we propose a set of phonologi-
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cal rules that can be used to transform the lexicon for correction adaptations. These
rules map from expected recognizer phonological realizations to those which actually
surface in corrections. They can also incorporate some phoneme context or word type
constraints, and could be augmented with a probability, indicating the likelihood of
this form as opposed to the conversational. For example, a possible rule would be
“schwa ==> full vowel, in function words” and would cover cases such as “t”’ ==>
“to”. One would not want to just add the results of the transformations as alternate
pronunciations to the lexicon for all utterances, not just corrections, because it would
weaken the model by increasing perplexity in the general case and thereby worsen
recognition accuracy. A similar technique of using phonological rules conditioned on a
speaking style has been used by [Ostendorf et al., 1996] to improve recognition accu-
racy in very fast or casual speech. We can derive these rules by generalizing from our
observed phonological adaptations and also from general rules about co-articulation,
since many of the correction-related changes reverse those of co-articulation.

To compensate for overall durational changes, we must modify the recognizer
where durational information comes into play. As noted earlier, duration plays its
main role in a speech recognizer at the Viterbi decoding stage. At this stage, the
system attempts to select the recognition string with the best match score for the
observed acoustic sequence. A recognition hypothesis is penalized whenever its con-
stituent phonemes are shorter or longer than allowed by the durational model. There
are thus two points at which a system designer can affect the use of durational in-
formation: explicitly in the phoneme duration model and in the penalty for duration
mismatch.

Let us begin with the latter as it is the simplest. One could just decrease the
amount of penalty assessed for phonemes that are too long. Naturally, the penalty
should not be decreased too much; with no penalty for over-long phonemes, the
recognizer could prefer a single phoneme with the best acoustic match to a sequence of
phonemes. However, this approach by itself is not optimal, as it does not capture the
systematic character and magnitude of durational increase. It also does compensate
for the effects of position on duration, since the durational penalty is independent of
location, using only the difference between the observed and expected durations.

A better approach would provide a more precise formulation of durational change.
It should capture, at least, the two types of contrast observed: increase in duration
from original to correction, and larger duration in final versus non-final word posi-
tion. One could simply try to build a durational model explicitly from scratch from
correction examples. However, sparseness of data could prove a problem, and, per-
haps more importantly, such an approach could not take advantage of the systematic
nature of these durational increases. [Chung, 1997] describes a hierarchical model of
phoneme duration, based on word and sub-word units. Such a model can take into
account effects of word, phrase, and utterance position on phonemes and has been
shown to reduce durational variances and provide a more accurate model. A natural
extension to this approach is to extend the hierarchy beyond the sentence level to
incorporate effects of discourse structure and relation, such as corrections. As a first
step toward such a model, we propose a duration model for corrections that modifies
the hierarchy as a whole according to the systematic increases found in duration of ap-
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proximately one-fourth standard deviation for non-final words and one-half for words
in final position. A hierarchical model would also provide some predictive power for
determining the relative changes for the different phonemes within the word, based,
for instance, on phoneme type and syllable or affix status. This model can obviously
be augmented or tuned by adjusting the global duration penalty and would provide
the basis for a general context-adaptive recognizer.

7.2.4 Repair Interaction Strategies

Improving recognition accuracy on corrections to levels closer to those for original
inputs through use of a specially adapted recognizer should decrease the frequency
and length of error spirals. However, we would like to perform better and respond to
the user’s corrective intent. For instance, there are cases, such as out-of-vocabulary
utterances, where even the best adaptive recognizer will still fail. Even when the
correction is successfully classified and recognized, we may still wish to verify the
user’s input in order to block the possibility of further error spirals or if the correction
requires that we retract a previous action.

We describe a group of repair interaction strategies that differ primarily in how
aggressively they act to perform a repair and correspond to the system’s confidence
in its course of action. Specifically, we consider three levels of repair interaction: 1)
confirmation, 2) elicitation, and 3) retraction. Confirmation is the policy of least
intervention and least cost. In a confirmation strategy the system asks the user to
verify the recognition result. An example from the currency exchange interaction
would be:

USER SAID: How much is fifty dollars there?

SYSTEM HEARD: How much is fifteen dollars there?

SYSTEM SAID: Fifteen US Dollars is 30 German marks.

USER SAID: How much is fifty dollars there?

SYSTEM HEARD: How much is fifteen dollars there?

CLASSIFIED AS: Correction

SYSTEM SAID: Do you want the price of fifteen US Dollars in German marks?

Confirmation is a good strategy when the confidence for the classifier is low. If the
user utterance was not a correction, it adds only one unnecessary query and response;
if the user utterance was a correction, it provides additional confidence for the system
in pursuing the repair at a higher level of intervention if necessary. The confirmation
stage is clearly unnecessary if the correction itself caused a rejection error; there is
no input to verify and no question that an error has occurred.

If there is higher confidence that the user has made a correction, either because
of a better score from the classifier, the user said “no” at the confirmation stage,
signaling that the assumed correction was itself misrecognized, or a rejection error
has occurred, the system can move to the next level of intervention, elicitation. This
level corresponds to a shift to a more directive interaction style or, in other words,
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to greater system initiative. At this stage, the system can take a variety of different
steps to elicit from the user enough information to perform the correct action. If the
system has identified a misrecognition and isolated the site of the error, as described
earlier, the system can prompt for that information explicitly.

USER SAID: How much is fifty dollars there?

SYSTEM HEARD: How much is fifteen dollars there?

SYSTEM SAID:  Fifteen US Dollars is 30 German marks.

USER SAID: How much is fifty dollars there?

SYSTEM HEARD: How much is fifteen dollars there?

CLASSIFIED AS: Correction, site: fifteen

SYSTEM SAID:  How many dollars do you want in marks? Speak or type.

Depending on the type of information being elicited, the system could ask the user
to select an item from a list, user a telephone keypad to spell a name or type a digit,
or even simply to spell the input aloud. These options try to exploit the difference
in perplexity and confusability for different modalities in conjunction with a user
tendency to mode-switch after a failed correction [Oviatt et al., 1996] to improve
chances of correctly recognizing the input. Other strategies for identifying the point
of misrecognition are also available, including:

e Lexical comparison

Comparison of the inputs before and after the suspected error, for instance,
for a single word difference.

e Task constraints

Asking for an source location for travel, when all other information is already
known.

e Belief constraints

Identifying a direct conflict between recognized input and internal belief.

Even when almost no information is available from the input, as in the case of a
rejection error, the system can elicit information based on the context, either with
a context-sensitive help message with example utterances or an explicit prompt for
each field needed for a command in the current application context.

Finally, if the system has very high confidence that a correction has occurred,
either from the classifier or confirmation requests, the system can pursue the most
aggressive correction strategy, retraction. In this case the system must undo the
previous action and any state change associated with it, unless that state is implicit
in the correction.

USER SAID: How much is fifty dollars there?
SYSTEM HEARD: How much is fifteen dollars there?
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SYSTEM SAID:  Fifteen US Dollars is 30 German marks.

USER SAID: How much is fifty dollars there?

SYSTEM HEARD: How much is fifteen dollars there?

CLASSIFIED AS: Correction, site: fifteen

SYSTEM SAID: How many dollars do you want in marks? Speak or type.
SYSTEM BLOCKSfifteen.

Thus, depending on classifier confidence or explicit user confirmation, the system
can intervene to varying degree to facilitate error repair and recovery. These strategies
range from confirmation requests at the most tentative end of the spectrum to retrac-
tion of the previous action at the other. An intermediate level, elicitation, allows the
system to exploit a wide range of information from acoustic and lexical cues to task
and belief constraints to guide the user to an effective input in a system-initiative
style, such as [Oviatt et al., 1994} has found that users prefer in many circumstances
when error rates are high or the user is uncertain. These strategies all pursue the
goal of minimizing the depth of error spirals and providing feedback to the user that
the system is cooperating to repair any errors that occur, while remaining sensitive
to the possibility of correction classification error.

7.2.5 Correction Detection and Error Recovery

The work in this thesis combined with the future work outlined above forms the basis
for a system for recovery from speech recognition errors. By providing a detailed char-
acterization of the differences between corrections of recognition errors and original
inputs, we allow the development of decision tree classifiers to detect correction ut-
terances. The ability to detect corrections actually allows one to detect the presence
of misrecognition errors by recognizing the user’s response to a system error, where
the system would otherwise be unaware of its mistake. Based on this knowledge that
an error have occurred, the system can now shift to error recovery. It can utilize a
speech recognizer that adapts to the speaking style employed in spoken corrections,
rather than allowing the divergence between basic speech recognizer duration and
phonological models and correction utterances to lead the system into a deepening
error spiral. It can further use the technique described in future work for isolating
the word being corrected to focus system help on eliciting that important piece of
new information from the user. Even if a single error site cannot be identified, the
recognition of a correction can move the system into a more structured interaction
[Oviatt et al., 1994] to guide the user through error recovery or signal that system
help should be offered to the user. All these components can be brought together
to build a system to facilitate error detection and recovery, focusing on one of users’
most significant sources of dissatisfaction with spoken language systems, the difficulty
of correcting errors.
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Appendix A
C4.5

This section describes in more detail C4.5, the specific decision tree building algorithm
used to train and test the classifiers discussed in this thesis. We discuss the choices
of entropy measures used to select tree splits, pruning criteria, and construction of
rules from trees. We also discuss the impact on feature design and decision tree
parameterization of the specific form of the data for recognizing spoken corrections.

Let us begin with a statement of the basic decision tree building algorithm un-
derlying any implementation. The algorithm begins with a set T of labelled training
instances and a set of classes C1, C2, ..Cn to which these cases are to be assigned.
The technique then recursively proceeds as follows:

e Case 1: All of the instances in T belong to a single class Ci.

The decision tree for T is a leaf, and it labels instances as class Ci.

e Case 2: There are no cases in T.

The decision tree for T is a leaf node. It labels instances as some class Ci,
according to some heuristic.

e Case 3: The instances in T represent members of different classes.

The decision tree is a branching subtree. The new branches should trend
toward sets of instances that are more homogeneous. The goal is reached in
the following fashion. A test, T1, is chosen that divides T into one or more
mutually exclusive subsets, S1, S2,..,.Sn. Testl is a test on a single attribute or
feature. For a discrete feature, this corresponds to producing one subset per
possible attribute value assignment. For a continuous feature, this corresponds
to selecting a dividing points in the range of values and creating subsets for
V1 < F1 and V1 >= F1. The best test Testl is the test producing the best
score of improved homogeneity, with different algorithms using different scoring
metrics. The new subtree is rooted at Testl, and the branches correspond to
each possible outcome of the test. Each new subset of T, S1, S2,...,5n associated
with each outcome is treated recursively as T.

The approach described above is clearly a recursive divide-and-conquer algorithm.
In addition the selection of a best test at each branching node implies a greedy
algorithm. Since exploring all possible decision trees to find the most accurate and
most compact, therefore the most predictive, is NP-complete, it makes sense to choose
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a greedy approach and then try to select the best heuristic for choosing the dividing
test at each stage.

A.1 Specifying the algorithm

Let us begin by stating the specific choices made in C4.5 for the underspecified por-
tions of the algorithm above.

A.1.1 Case 2: T with no instances.

When T is empty, in other words, when a branch created by a test has no instances in
the training set, the system must still predict a label for unseen instances that fall in
this branch. Here the simple heuristic of labelling the branch with the most frequent
class is chosen.

A.1.2 Finding a splitting point

For continuous-valued features, it is necessary to find a value at which to divide the
feature values into two discrete subsets for branch tests. This step is particularly
relevant for the classification of original and repeat correction utterances since the
vast majority of our features are continuous-valued. We describe briefly how tests
are proposed for such features. The system proposes a test splitting the continuous-
valued attribute into two sections at the midpoints between each ordered pair of
values for this attribute encountered in the training set. In other words, if there are n
instances in T, there are at most n-1 possible positions for the split to be made. This
approach is standard for most decision tree algorithms. C4.5 includes the restriction
that the threshold value be the attribute value closest to, but not actually exceeding
this midpoint, ensuring that the threshold value actually appears in the data set.

A.1.3 Measuring Homogeneity

Like many other decision tree implementations, C4.5 uses as information theoretic
measur to assess the best test. These methods are generally more effective than those,
such as those used in CSL1, where simple rubrics such as choosing the test that yields
a pure branch are used. Such an approach would be extremely sensitive to noise. The
information theoretic measure on which the splitting criterion is basd for many de-
cision tree algorithms is entropy, a measure of the amount of information needed to
freq(Cj,S) freq(C;j,S)
encoded the class of a case. Entropy(s) = — Zle — log —
5] |5
ID3 introduced an extension of the entropy measure to determine the split that im-
proved classification the most. This measure, called the gawn criterion is the differ-
ence in entropy between the full set of instances at the root of the proposed sub-
tree and the weighted sum of the entropies of the subsets produced by the test.
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15
", —— Entropy(Si) . This criterion, however, is biased toward tests with
|S
large numbelrs of outcomes. In particular, it would strongly prefer classification based
on a unique identifier, since it produces subsets with 0 entropy , over any more pre-
dictive division. This bias is clearly undesirable. C4.5 compensates for this trend by
normalizing with respect to the number of subdivisions, calculating an information
|5l |51
measure for the split as, —>; —— log —— . This normalized gain ratio
5| 5]
criterion is the measure to be maximized by the chosen splitting test. This measure
has generally been found to be advantageous over the unnormalized form, and com-
parisons of splitting criteria [Mingers, 1989] indicate that it produces compact trees.
In the case of our analyses, all but one of our features is either continuous or binary-
valued; so the bias in the gain criterion is less important. Nevertheless, [Quinlan,
1988] notes that it is still experimentally advantageous to use the gain ration criterion
in the case of binary tests.

A.2 Pruning

When the decision tree algorithm runs to completion, it will subdivide the data until
no test yields an improvement or even until leaves classify only single nodes. Such
behavior can lead to overfitting, degrading predictive power by making classifications
based on few example instances. One step to limit such overfitting provided by C4.5
is pruning of the initially produced decision tree. While it might be more efficient
to simply halt the tree division process before overfitting becomes a problem, as
Breiman et al note, it is very difficult to design such criteria. Pruning , in general,
simply replaces a subtree with a leaf or one branch of the subtree. The question is
how to select a subtree to be pruned, preferably in such a way as to decrease the
predicted error rate on new unseen cases. One could compute this predictive error
rate by testing on some held out cases, as in “cost-complexity pruning” (Breiman
et al) which selects nodes for pruning based on an MDL-like approach combining a
measure of the complexity of the subtree and the training error rate, weighted based
on the results on the unseen cases. An alternative method also using a held-out set
is “reduced error pruning” (Quinlan 2), that directly computes the error rates on the
unseen cases. However, in our constrained data situation, we use the method in C4.5
that computes a pessimistic estimate of the predictive error rate based on the observed
error rate and measures of statistical confidence. This pessimistic error estimate treats
the training error, X errors in N instances classified. as a probability of error, X/N.
C4.5 then sets the predicted probability of error to an upper limit, for some confidence
level, found for the (upper) confidence limit of the binomial distribution, Ucf(X,N).
The number of errors is then estimated as N * Ucf(X,N). Starting at the leaves, we
can then propagate this estimated error up the tree by equating the error of a subtree
with the sum of the estimated errors of its children. Now, one can traverse the tree,
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compare the number of estimated errors for the subtrees to the estimated error of
replacing them by a leaf or branch, and make the replacement where predicted error
is reduced. This approach invariably increases training set error but creates a more
compacted tree, possibly with better predictive power. In our experiments, pruning
reduced tree size from the unpruned tree, with no reduction in accuracy on test cases
and some small increases.

A.3 Trees to Rules

One other function available in C4.5 that proves useful for our classification of original
inputs and repeat corrections is the facility to translate from trees to rules. Rules
can be easier to read than possibly large decision trees and may also illuminate some
avenues for generalization. At the most direct level, rules can be written to summarize
the tree by setting the antecedent of the rule to the conjunction of all tests on the
path from the root to a given leaf. The consequent of the rule is simply the leaf
label. C4.5 then attempts to simplify and generalize rules by deleting one or more
conditions from the antecedent. The test for removing an antecedent uses a metric
similar to the pessimistic error estimate used in the tree pruning procedure. One can
build a contingency table describing the effects of deleting a condition from a rule
that labels instances as some class C.

Class C | Not C
Satisfies candidate condition Y1 E1l
Does not satisfy candidate condition Y2 E2

The pessimistic error estimate for the original rule is computed as Ucf(E1,Y1+E1)
and that for the new rule would be Ucf(E14+E2, E1+E2+Y1+Y2). If the error rate
estimate for the new, simpler rule is no worse than that for the original. the new rule
is retained. To remove multiple antecedents, C4.5 takes a greedy approach, always
deleting the condition leading to the lowest error estimate. Next the system pursues
an MDL approach to find the best set of rules to cover each class by trading off
number of rules against the number of classification errors for that rule set. When
these options are too numerous to test each case, a simulated annealing approach is
used to explore the space of subsets, accepting any rule that decreases the length of
encoding and those that increases the encoding only with some probability. The class
whose rules cause the fewest false positives orders its rules before those causing more.
The default class is chosen as the majority class for those instances not covered by
any rule.

A.4 Issues in recognizing corrections

There are two important interactions between the functionality of decision tree clas-
sifiers, and C4.5 in specific, and the task of identifying spoken corrections. The first
issue is that of the general shape of the decision regions defined by the classifier. Since
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decision trees split instance sets through a sequence of tests on single attributes, they
define hyper-rectangular decision regions. Now in the statistical analysis of acoustic
features, we observed significant proportional increases in measures such as duration
and pause, with large overlap in absolute ranges of values. This difference suggests
the use of normalized or proportional measures, such as speaking rate or speaking
rate divided by total duration or pause a proportion of total duration. In our exper-
iments, these normalized measures proved useful, improving over absolute duration
measures that were most useful only for the shortest utterances.

In addition, while the trends for increase in duration, pause, and pitch variabil-
ity and decrease in pitch minimum are highly significant, they are not absolutely
uniform. Some users buck the trends and as [Oviatt et al., 1996] observe, in high
error rate conditions adaptations become less marked over time. As a result, some of
the features of corrections take on a probabilistic character. This variability suggests
that fine-grained fitting will lead to overfitting. While pruning provides some help in
relieving this problem, C4.5 provides an additional mechanism for limiting this type
of overfitting. Specifically, the system allows the user to restrict the granularity of
classification by requiring a minimum number of instances to be tested for splitting
a decision node. In our experiments we achieve our best classification results when
we restrict our tests to require a minimum of either cases for smaller data sets (176
instances) and a minimum of 10-20 cases for larger data sets (606 instances).

Adjusting features to make them more compatible with the rectangular decision re-
gions defined by decision trees and limiting overfitting by constraining test size where
noise, variability, or imperfect rectangularity interfere, improve the performance of
decision tree classification for identifying spoken corrections.
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Appendix B

Statistical Tests

This appendix describes common statistical tests used in the analysis sections of this
thesis. It is simply intended as refresher for anyone whose statistics has gotten a bit
rusty.

B.1 Analysis of Variance

Analysis of Variance (ANOVA) is a statistical hypothesis testing procedure. It is
used to measure differences between population means to determine whether they
differ. ANOVA can be used to compare two or more population means in one or
more independent variables. In these respects, it is more general than the t-test
discussed later in this appendix.

Analysis of variance works by comparing the variation within populations to the
variance between populations. Differences are relevant when they are greater between
than within populations. One first computes the variance between groups, or treat-
ments, as the mean squared error between groups, or M.S,. Then one computes the
variance within groups, or mean squared error, M S,,. Finally one compares these

MS,
two measures by computing the F-ratio, that is simply This computation is
MS,
often presented as an ANOVA Table as below:
Source Sum-of-Squares DF MS F
B SSy MS,
Group SSy, = Zle (Y, —Y)? k-1 MS, = -
k-1 MS,,
B SSw
Error  $S, =Y, 505 (Y, —Y,)? Nk MS, =
N-k

Total LS (Y, T
The null hypothesis, that the variances within and between groups is the same,
leads to an F-ratio of 1. Since variance is always positive, F-ratio is always positive.
The critical value of the F-ratio distribution depends on the number of degrees of
freedom for the numerator and denominator. The number of degrees of freedom
between groups, numerator, is 1 less than the number of columns (k). The number of
degrees of freedom with groups is the number of observations (N) minus the number
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of groups (k), or N - k. If the F-ratio exceeds the critical value for these degrees
of freedom for some significance level (p), the null hypothesis is rejected and the
populations are determined to be significantly different.

B.2 T-test

The most common form of test compares the means of two sample populations, with
possibly different subjects and different numbers of subjects, in a commom experi-
mental design. It assumes that the populations have normal distributions and similar
variances. ! There are two forms of hypothesis that can be tested about these means:

e Non-directional (or two-tailed).

The means of the populations are diferent, if the null hypothesis can be
rejected.

e Directional (or one-tailed).

The mean of one population is greater than that of the other, if the null
hypothesis can be rejected. The direction of the test is chosen by parameter
setting.

Two-tailed tests are generally the most common.

To compare two populations, one computes a test statistic (t) of the following
general form:

sample statistic - population statistic
t = The sample statistic com-
estimated standard error
putes the difference between the sample means (3; —¥,), while the population statis-
tic computes the difference between the population means (i, — 7i5). The estimated
standard error is often calculated using the combined (pooled) errors for the two
populations.? This error measure is computed as follows:
Sum-of-squares-errorl - Sum-of-squares-error2

dfl + df2

, where dfl 4+ df2 = (n; -1) 4+ (ny -1). Finally the estimated standard error is
computed as \/s2/ny + s2/ny.

The resulting t-value is then compared to the associated critical value for the
Student’s t-distribution for some significance level, usually p j 0.05 and the number
of degrees of freedom. If the t-statistic exceeds that critical value, the null hypothesis
can be rejected at level p.

1 An alternative version of the test removes the latter assumption.
2This calculation differs when the variances are believed to be different.
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