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Abstract

This thesis reports the development, validation and application of a method to simu-
late external heat addition in molecular dynamics simulations of Lennard-Jones fluids.
This simulation capability is very important for both purely theoretical and practical
applications. Here we examine one theoretical application, namely the evaporation
of clusters of liquid Argon under constant pressure.

The algorithm is based on modified equations of motion derived from Newton's
equations with the use of what is known in the literature as Gauss' least constraint
principle. The modified equations of motion satisfy the constraint of linear (in time)
energy addition to all the system molecules.

The first part of the thesis presents the validation of the heat addition algorithm:
the method is useful only if it does not adversely affect the properties of the simulated
material. The validation consists of a series of simulations of a Lennard-Jones fluid
in a two-dimensional channel bounded between two parallel (molecular) walls. The
walls are kept at constant temperature, while the fluid is externally heated using
the new simulation method. The temperature profile solution for this problem is,
according to (the exact) continuum theory, parabolic. Given the heat addition rate,
estimates for the value of the thermal conductivity can be obtained from the curvature
of the temperature profile. The estimates for the thermal conductivity are compared
to experimental data for the fluid, and simulation data based on the Newtonian

(exact) equations of motion for the same fluid. We find that the thermal conductivity
estimates obtained from our simulations are in agreement with the baseline results
utilizing the Newtonian equations of motion.

The second part of the thesis reports on the investigation of the phase change

of fluid clusters at constant pressure in real time using the heat addition algorithm.

This has not been attempted before; results exist in the literature only for quasistatic

simulations whereby the phase change behavior of a Lennard-Jones fluid is recovered
by performing a series of equilibrium simulations at varying temperatures. The re-

sults obtained through the newly proposed, developed, and validated time dependent
method are in agreeement with the results of the quasistatic simulations as linear



response theory predicts.
We conclude with the interpretation of our results using homogeneous nucleation

theory. We find that our results are consistent with homogeneous nucleation which
predicts that phase separation starts at the nanoscopic level with critical radii of
the order of a few nanometers for both evaporation and condensation. The critical
nuclei for evaporation, which are gaseous, are predictably larger than the nuclei for
condensation, which are in the liquid state. Our results are in good agreement with
experimental data.

This work can form the basis for the investigation of open problems related to
nucleation theory and nucleation kinetics, such as metastable cluster lifetimes, and
nucleation frequencies. Alternative phase change mechanisms, such as spinodal de-
composition, can also be investigated.

Thesis Supervisor: Tomas A. Arias
Title: Assistant Professor
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Chapter 1

Introduction

Thermodynamics and statistical mechanics have been very successful in explaining

and predicting the behavior of many physical systems. While thermodynamics de-

scribes systems in equilibrium, the notion of local equilibrium has allowed the ex-

tension of thermodynamic results to non-equilibrium, steady-state situations. Time

varying situations can also be reduced, according to linear response theory [10], to a

series of quasiequilibrium states; systems respond (in time) to external fields by utiliz-

ing fluctuations around their equilibrium states to move to a neighboring equilibrium

state.

Computer simulations of phase change of small statistical mechanical systems,

such as constant pressure evaporation of a Lennard-Jones fluid, have been limited, to

the author's knowledge, to series of quasistatic simulations [4, 12, 21, 23], primarily

using Monte Carlo (MC), or Molecular Dynamics (MD) techniques. We use the

term "series of quasistatic simulations" to denote series of equilibrium numerical

experiments used to map the phase diagram of a fluid. These simulations report

hysteritic effects [4, 12, 2] and the existence of metastable equilibrium states which

resemble the van der Waals equation of state behavior in the two phase region (see

Fig 1-1). This behavior has traditionally been considered [4, 13] to be an artifact of the

small number of particles in the system, which is insufficient to sample a rich enough

phase space, and consequently unable to reproduce the most probable sequence of

macrostates which would be observed in the thermodynamic limit (V -+ oo, N -+



solid

liquid

V/N

Figure 1-1: Sketch of hysteritic behavior in a P-V diagram (from [4]). The indicated
areas are equal.

oo, V/N = const.), namely that the constant pressure evaporation of a fluid takes

place at constant temperature.

We have developed a method to simulate heat addition in an MD simulation in

order to study the evaporation of a Lennard-Jones fluid in real time in an attempt to

elucidate the above issues and observations and obtain a better understanding of phase

change as a time dependent phenomenon in general. This method utilizes Gauss'

principle of least constraint to derive equations of motion that simulate constant (in

time) heat addition to the simulated particles. This principle has been widely used

in the literature to derive equations of motion that simulate systems at constant

temperature, known as the "thermostated equations of motion".

In particular, we first want to verify that our time dependent simulations would

display the same behavior as that observed in quasistatic simulations. According to



linear response theory [10], time dependent simulations should "smoothly join" the

discrete points yielded by quasistatic simulations. Second, we want to demonstrate

that metastable states, which are indeed negligible in the thermodynamic limit [13],

are inherent in any realistic description of phase change. In other words, the ther-

modynamic limit is not necessarily relevant in real world experiments or indeed MD

simulations.

Homogeneous nucleation theory states that evaporation (condensation) is initiated

by small clusters of fluid which due to spontaneous fluctuations have a small but

finite probability to be in the gaseous (liquid) state at some instant in time. If the

conditions are favorable, this small vapor bubble (liquid drop) will grow and proceed

to convert more liquid to vapor (vapor to liquid). The conditions under which these

nuclei can exist are determined by the free energy involved in their formation. Once

the nuclei attain a certain critical size they can grow. The size of these nuclei is

finite and therefore the supersaturated fluid is said to be in a metastable state. This

critical size becomes monotonically smaller with increasing supersaturation. The

rate at which nuclei are spontaneously formed is the other determining factor for the

critical supersaturation required: it is an exponentially decreasing function of their

size. The rate of spontaneous generation of nuclei is the subject of nucleation kinetics

which we will not examine here. In conclusion, phase transition will proceed when

the supersaturation is such that the rate of generation, or probability of existence,

of critical, or larger, nuclei has reached a finite value that is expected to be material

dependent.

As the supersaturation is increased and the spinodal (locus of extrema of an iso-

bar (constant pressure) in a T-S diagram) is approached, the above critical nuclei

become vanishingly small. Upon reaching the spinodal the fluid becomes unstable

to all perturbations exceeding a critical wavelength [7], and the fluid changes phase

by the process of spinodal decomposition. Spinodal decomposition is best known

in alloy solidification processes where rapid quenches are used to exploit the effects

of spinodal decomposition on the material microstructure and the resulting mechan-

ical properties. The seamless transition from homogeneous nucleation to spinodal



decomposition is the subject of current research [7].

The importance of metastable states has been recognized very long ago [9], but

experimental verification has had limited success to date [27]. It is well known that

metastable states are difficult to reproduce experimentally because of impurities and

finite size nucleation sites available in real systems. Molecular dynamics, however,

is inherently free of such disturbances and would be expected to complement the

most careful real world experiments nicely. It also provides a unique opportunity to

study this transition from homogeneous nucleation to spinodal decomposition under

"controlled experimental conditions".



Chapter 2

Molecular Dynamics

Despite the molecular nature of matter, for most hydrodynamic applications of inter-

est, the continuum description of nature successfully captures all the essential physics

while resulting in a significantly more tractable formulation. There exist, however,

situations where the continuum description is inadequate; such situations are de-

scribed in the following chapters. In this case we need to resort to the molecular

description and use the classical tools of statistical mechanics. Unfortunately statis-

tical mechanics has traditionally been limited by the intractability and complexity of

the governing equations describing the systems of interest. For fluids, the BBGKY

hierarchy of equations [14] has been tackled for very few special cases, dilute gases

being the most notable. The advent of fast and powerful computers has brought a

revolution to the molecular modelling of nature; numerical solutions of the BBGKY

equations can be obtained for more complicated cases, but more importantly, systems

can be animated at the molecular level through molecular dynamics (MD).

In the molecular dynamics presented in this thesis, systems are modelled as col-

lections of molecules that obey a set equations of motion (classical Newtonian) and

interact among themselves through intermolecular interaction potentials. MD is a

very powerful technique because, as long as the interaction potentials are specified

for the systems under investigation, no approximations or further modelling is re-

quired; all the exact physics is present and accounted. The major disadvantage is the

high computational cost associated with these computations which limits the use of



this technique to very small systems and very short timescales (of the order of ten

thousand molecules and Ins in time for a high-end workstation).

2.1 Preliminaries

Although in the most general formulation of statistical mechanics particles interact

through quantum mechanical equations of motion, it is often the case that many

systems can be simulated to a sufficient approximation by the use of the classical

Newtonian equations of motion

1 1 dV(ij).
ri = -- ij , (2.1)

mi i ri drij

where mi is the mass of the particle, 'i is the position vector of the particle with re-

spect to the coordinate origin, rij = i - Fr, V(ij) is the potential energy of particle

i due to particle j and the sum is implied to be over all particles (N). This simplifi-

cation, which results in significantly less computationally intensive calculations, will

in general be valid when all quantum mechanical effects (both temporal and spatial)

are negligible, or can be reliably lumped in an effective interaction potential V(rFj)

and the effects of zero point motion can be ignored. This is almost always the case

for the hydrodynamic applications presented in this thesis, and as a result we will

limit ourselves to the exclusive use of the classical equations of motion.

The interaction potential used in this study is the well known [4] Lennard-Jones

potential

V(ij) = 46[(a/rij)12 - (u/rij)6]. (2.2)

This simple model was chosen for its ability to minimize the computational cost of

calculations while retaining all the essential physics under investigation. The Lennard-

Jones potential has been shown [4] to accurately reproduce the properties of noble

gases with appropriate choice of the two parameters e and a. The Lennard-Jones po-

tential can also be used in studies of water [11] (in conjunction with an electrostatic

potential), and light hydrocarbons. It provides a reasonable compromise between nu-



merical efficiency and accuracy for hydrodynamic applications where a "hard sphere"

approximation often suffices. Structural or thermodynamic properties of materials

other than noble gases are not reproduced accurately. The great computational ef-

ficiency enjoyed form the use of this potential is a result of two effects: first, the

potential has a short range and effectively decays to zero for r > 10a thus leading

naturally to the definition of an interaction sphere that contains all the particles

contributing to the force acting on a specific particle, and second, it is a pairwise

additive potential and hence the force acting on a simulated particle can be simply

calculated by adding the forces exerted to it by the other particles that are within

its interaction sphere. Because the number of molecules within a sphere of radius r

increases as n oc r 3, researchers have attempted to use interaction spheres (defined

by the interaction cut-off re) smaller than 10a. It has been shown [30] that the error

resulting form the use of cut-offs as small as 2.2c is negligible. Throughout this study

we have used a conservative value of r, = 3a.

The equations of motion are numerically integrated using Beeman's modified equa-

tions of motion [26], which is a fourth order accurate in space and third order accurate

in time predictor corrector method. It is included here for completeness: if x is any

dynamic variable (in our case r'), (P), (c) are the predicted and corrected corre-

sponding velocities, and At is the numerical integration timestep, the scheme is as

follows

1. x(t + At) = x(t) + At±(t) + +2[4.(t) -. (t - At)

2. (P)(t + t) = (t) + A[3&(t) - (t - At)]

3. 2(t + At) = F(xi(t + At), 2p ) (t + At), i = 1...N)/m

4. (c)(t + At) = i(t) + A[2 (t + 6t) + 5 (t) - I(t - At)]

5. Replace t (p ) with : (~) and goto 3. Iterate to convergence.

6. Update t from t + t. Go to 1.

Here F is the total force acting on a particle and N is the total number of particles

in the simulation.



The simulation procedure discribed above produces realizations of the microcanon-

ical ensemble, which in many cases are not good approximations to the system under

investigation. In particular, it is sometimes useful to let the volume of the system

vary and constrain the pressure of the system at an imposed pressure P thus real-

izing a constant pressure ensemble. In what follows we review the reformulation of

the equations of motion pioneered by Parinello and Rahman [22] which allows the

simulation of a system under constant pressure situations.

2.2 Constant Pressure Simulations

In the formulation of Parinello and Rahman [22, 26] the molecular dynamics sim-

ulation cell is allowed to change in size in response to the imbalance between the

imposed pressure and the internal simulation pressure. The new equations of motion

are written in the center of mass co-ordinates (1i)

mii = h-1V E V(r-ij) - miG- 1GC. (2.3)

ii

Here s'i = h-lY', h is the 3 x 3 matrix whose columns are the molecular dynamics cell

vectors, and G = hTh. Additionally the cell vectors obey the following dynamical

equation

Wi = (T - p)k (2.4)

where W is the fictitious mass parameter of the pressure reservoir in equilibrium

with the system, k = Vh T - , V is the volume of the system, p is the external stress

(tensor) applied to the system, and T is the molecular contribution to the stress

tensor defined by

T N=1 dV(r j)i . (2.5)V j>J rij

Note that the above definition (eq. (2.5)) assumes that the system has a uniform pres-

sure throughout and hence it is in pressure equilibrium. The definition and evaluation



of thermodynamic properties as a function of space in nonequilibrium situations is

obtained via the use of the assumption of local thermodynamic equilibrium discussed

in section 2.5.

2.3 Simulation Reduced Units

It is also customary to define reduced units based on the molecular model of the

material simulated [4]. In both series of simulations reported in this work the principal

material used was fluid Argon and hence unless otherwise stated, all quantities will

be expressed in reduced units using a = 3.4 A for length, m = 40 amu for mass,

c/kb = 119.8 0 K for temperature, and T = (mU2/48e) 1/2 = 3.112 x 10-13s for time.

Here a and E are the parameters of the Lennard-Jones (LJ) potential for Argon [4],

m is the mass of the Argon atom, and 7 is the characteristic time for Argon. The

integration timestep was At = 0.0327. The characteristic length a is the characteristic

(hard sphere) size of a molecule; the potential well minimum is at r = 21/6 a. The

characteristic time T corresponds to the inverse natural frequency of oscillation of an

Argon dimer.

It is sometimes customary to denote reduced quantities with the starred symbol

of their non-reduced counterparts. We do not adopt this convention but we note that

some figures we have taken from references [16, 24, 31] make use of this convention.

2.4 The Heat Addition Model

2.4.1 Gauss' Principle of Least Constraint

We briefly summarize Gauss' principle of least constraint [8] which is part of Gauss'

formulation of a mechanics more general than Newton's. In this mechanics, Newton's

equations of motion follow as a special case in which no constraints are imposed on

the system under investigation. For systems subject to a constraint G, the equations



are found by minimizing the square of the curvature

1 F
C = F- m(ri - -2 (2.6)

2 ; m2

subject to that constraint. Here Fi is the force acting on molecule i, and C is a

function of the set of accelerations r'i. This procedure guarantees that the phase

space trajectories followed, deviate minimally from the Newtonian trajectories in the

least-squares sense [8]. For holonomic constraints this principle and the least action

principle yield exactly the same results. For nonholonomic constraints, however,

Gauss' principle does not follow from a Hamiltonian and it is not equivalent to the

least action principle [8].

The minimization can be achieved by using the method of Lagrange multipli-

ers: the curvature C is a function of accelerations only, and hence we obtain the

constrained equations of motion by solving

(C- AG) = 0, (2.7)

given that we have expressed the constraint G as a function of the accelerations ri. If

we set G = 0 in eq. (2.7), we recover the Newtonian equations of motion (eq. (2.1)).

2.4.2 Heat Addition Equations of Motion

In this section we use Gauss' principle of least constraint to derive equations of mo-

tion that simulate a constant (in time) heat addition per unit particle (modeling for

example internal heat generation due to the passage of electrical current through an

electrolyte). The equations of motion for the heat addition are obtained by incorpo-

rating the following constraint

2 mz 2 ( + V(i )) = E, + NQt, (2.8)



in the Newtonian equations of motion, in the Gaussian least constraint sense explained

above. Here Q is the rate of energy addition per particle and Eo is the initial energy

(of all particles). The constraint requires that the total energy of the simulation rises

linearly in time. Differentiating once with respect to time the constraint equation

(2.8) we obtain

G(f) r= E fr - ,i - ji .fj - NQ = 0. (2.9)
2 2

To obtain the constrained equations of motion, we solve

. ETn.( - )2 - mii - .i ) - N =0, (2.10)SMi (Tn (2.10)

to obtain

Ti = --- V V(r-ij) - A(rf)r5 (2.11)

with
NQ

A(FN) = 2 (2.12)

In obtaining equation (2.10) we used the fact that equation (2.9) can be written

as

G(fj) = mtrifi - F i) - NQO= 0, (2.13)

which follows from

SEj . F; = rE, .;3 = E . . (2.14)
i j i

To obtain equation (2.12) we have substituted equation (2.11) in equation (2.9), or

equivalently, equation (2.13).

It can easily be shown [5] that in the case of small heat addition the above equa-



tions can be linearized to the following rescaling algorithm,

1
r'i = -- V V() (2.15)

mi joi

and

i i(2.16)i= -(A(r') + 1)Atr, (2.16)

which is similar to the rescaling algorithm widely used to remove heat (although

in a constant temperature formulation) from simulations. This formulation will be

useful since, as discussed later, it has better numerical solution characteristics than

the original formulation (equations (2.11) and (2.12)).

It has been shown [8] that the equations resulting from the application of Gauss'

principle of least constraint to the case of a constant temperature simulation, indeed

reproduce the correct (canonical ensemble) dynamics in the constant temperature

(equilibrium) case. Care, however, has to be taken in nonequilibrium situations since

there has been no extension of the above result in the latter case. We expect that, since

both sets of equations (2.11) and (2.12), or (2.15) and (2.16), reduce to the Newtonian

equations of motion for A -+ 0, the model dynamics will not be significantly different

than the "correct" nonequilibrium dynamics for small A.

We remark that our model interprets heat addition as an acceleration in the

direction of the velocity 'i of the molecule. Despite the slightly artificial nature

of this interpretation, we believe that if the heat addition rate is small enough, or

equivalently, the heat addition timescale is long enough compared to the collision

timescale (7), then complete thermalization of the added energy will occur sufficiently

fast for the system to be in the "correct" nonequilibrium state at every instant in

time. This assumption is very important for the calculation of entropy S as we also

remark later. An estimate for the heat addition timescale is given by 7Q = E/Q. In

our simulations TQ - 1000T > 7-; we thus expect that the assumption of complete

thermalization is valid.



2.5 Definition of Macroscopic Properties

From a statistical mechanical point of view molecular dynamics numerically simulates

the motion of the system under consideration in a 6N-dimensional phase space. As a

result, MD simulation results are in the form of position coordinates and velocities of

the N system molecules for a large number of timesteps (duration of the simulation).

In order to convert those to the usual macroscopic thermo-hydrodynamic parameters

we need to establish a "macroscopic connection". In statistical mechanics this is

done through the use of ensembles: observables (parameters that are macroscopically

perceived, such as energy, temperature, pressure, and desity) are defined as functions

of the molecular information and evaluated at every timestep. Due to the huge

number of degrees of freedom of the molecular system, it is conceivable that a huge

number of molecular configurations will lead to the same values of observables leading

to what is usually called "loss of information". On the other hand these macroscopic

observables will fluctuate as the particles continuously change positions and momenta.

The "macroscopic connection" is made through the use of an ensemble of identical

systems such that the macroscopic quantity or parameter is defined as the average of

the observable over all the ensemble members. In the following section we describe the

extension of the equilibrium ideas to the local thermodynamic equilibrium formulation

that allows the treatment of nonequilibrium situations.

2.5.1 Local Thermodynamic Equilibrium

The concept of local thermodynamic equilibrium allows the extension of thermody-

namic equilibrium techniques to spatially nonequilibrium systems. It is the equivalent

of the quasistatic assumption for time-varying systems, and essentially assumes that

although the system is not in equilibrium it can, to a good approximation, be as-

sumed to be in equilibrium locally in space (versus time for the quasistatic case).

This assumption can be reasonable if the gradients in the system are sufficiently

small. In particular, we require that the change across a region (spatial case) due

to the nonequilibrium gradients present, be smaller than the statistical fluctuations



in this region because of its small size. For the temporal case we require that the

rate of change due to some external driving field is much smaller compared to the

characteristic equilibration frequency of the fluid, 1/7.

For the spatial case, this essentially implies that the larger the gradients, and

hence the larger the deviation from equilibrium, the smaller these regions need to

be. Trozzi et al. [34] have verified that this concept can be used to define local

macroscopic properties in MD simulations. For the gradients present in their work,

they found that regions of characteristic size a (containing 0(10) molecules) can, to a

good approximation, be assumed to be in local thermodynamic equilibrium. We will

be using the same criterion since the gradients present in our work are very similar

to the work of Trozzi et al.

In fact, we can show that in order to simulate the smallest gradients possible (in

an attempt to make the simulation as realistic as possible) we need to increase the

number of molecules by adding the extra molecules in the direction of the gradient.

The fluctuations AXE of a property X in a region of space 2 containing N molecules

scale as AXF c 1/1/N. The variation of the above property AXg along the direction

of the gradient g is given by AXg = gL where L is the linear dimension of Q in the

direction of g. We require that AXg - AXF and hence,

gNd oc N -1 /2 . (2.17)

We have substituted L with Nd where d takes different values depending on the

"mode" of addition of molecules. If molecules are added equally in all dimensions

d = 1/3; if the molecules are added in the direction of the gradient g, d = 1; finally,

if the molecules are added in the remaining directions only, d = 0. It follows that the

optimum scaling (least number of molecules for a given gradient) obtains for the case

of molecule addition in the direction of the gradient for which

N c g-2/3 . (2.18)

As an example, consider the case of a fluid in a two-dimensional channel with the



two bounding walls at different temperatures. For a given number of molecules and

fixed wall temperatures (or temperature difference), the minimum gradient that can

be simulated is obtained by maximizing the number of molecules in the transverse

channel direction, the direction normal to the two walls.

We would like to note that the smaller the local equilibrium regions the smaller

the number of particles that reside in it. Hence, although in theory an arbitrarily

small region can always be found that can be assumed to be in local equilibrium, this

is not practical for regions much smaller than the ones used in this study because of

the unreliable statistics obtained from these very small domains due to the very small

number of molecules in them, since as discussed above the directions transverse to the

gradient do not typically contain an appreciable number of molecules. Additionally,

regions smaller than the characteristic size a are not admissible on physical grounds

since this length scale sets the lower limit for the spatial region over which the concept

of a fluid exists.

2.5.2 Statistical Mechanical Properties

In this section we present the definitions of macroscopic observables such as temper-

ature and pressure in terms of microscopic properties. These definitions, are the first

step in the macroscopic connection required to recover a spatially varying thermo-

hydrodynamic field over the MD simulation domain from the molecular data. The

following definitions can be obtained through statistical mechanical analysis [15]; in

particular, the macroscopic conservation laws are obtained through an ensemble aver-

aging of the corresponding microscopic conservation laws. The identification of single

particle contributions to the macroscopic observables follows from the direct compar-

ison of the microscopic ensemble averaged equation and its continuum counterpart.

For the derivation of these relations the reader is referred to the original work of

Kirkwood and Buff [15].

Let V be the volume in which we want to define the macroscopic observable Av.



Following [29, 34] we define

1 N
Av = V f d?' Ai6(*- i)

i=1

where N is the number of

particle (i) contribution to

define for the density (pv)

for the temperature (Tv)

molecules, and Ai = Ai({fj, j}j=1,N) is the individual

the macroscopic property Av. Again following [34], we

Ai = 1, (2.20)

mi "2
Ai = (2.21)

where kB is Boltzmann's constant, for the internal energy (Ev)

Ai = j V()
2pv

for the flow velocity (v)

Ai = ri,

and for the stress tensor (Hv)

1 1 dV(r- j)

2 rij drij
(2.24)

from which the pressure can be evaluated as the trace of the stress tensor (Pv =

Tr(IIv)). Using the definitions given in the previous section, macroscopic observ-

ables can be evaluated over small regions at one instant in time for every member of

the ensemble under consideration. Any thermodynamic parameter is then obtained

from the ensemble average of this observable over all the members of the ensemble.

2.5.3 Error Estimation

Due to the small number of particles that are available in each local equilibrium

domain (bin) the statistical uncertainty associated with the property estimates is

(2.19)

(2.22)

(2.23)

A, = m(r - v)(r - Vv)



large. Under the assumption of Gaussian statistics the statistical error scales inversely

proportional to the square root of the number of samples taken. In our macroscopic

world, local equilibrium regions contain more than 1020 molecules and as a result the

fluctuations within them are imperceptible. In molecular simulations, however, the

size of a local thermodynamic equilibrium region, dictated by the the balance of the

fluctuations and the magnitude of the gradients in the simulation (eq. (2.6)), is of the

order of a few a. The fluctuations in the value of a quantity (6 XF) in such a domain are

often of the order of the value of the quantity itself (X) and hence the gradients that

can actually be resolved involve variations of O(X) over distances of a few a length-

scales. Large gradients, however, require smaller local equilibrium regions which

contain less molecules and, hence, exhibit larger fluctuations. Simulation accuracy

and resolution of physically realistic gradients are thus coupled.

Steady simulations, or simulations that are unsteady on a macroscopic timescale

which is long enough such that the problem appears to be steady at the microscale,

benefit in terms of accuracy from the use of the ergodic theorem [4] in the exchange of

time with ensemble realizations. More precisely, an ergodic system in a steady state

left to evolve in time, produces realizations that are equivalent to those obtained

by different members of the emsemble used in the formal definition of a statistical

mechanical system. Hence the ensemble averaging procedure is replaced by averag-

ing in time which is very convenient for a molecular dynamics simulation which is

inherently an integration procedure in time. The system under investigation is thus

simulated for an equilibration time that allows for initial condition effects to decay

and hydrodynamic transient effects to disappear, and its subsequent configurations

are sampled in regular time intervals (of the order of a few integration timesteps).

The expected error in the estimation of a parameter depends on the number of

independent samples taken. We could maximize the number of samples taken by

sampling every integration timestep. Unfortunately, as discussed above, for reasons

of numerical accuracy the integration timestep is a very small fraction (0.032) of the

characteristic timescale for the fluid (7), and hence samples that are temporally less

than 7 apart are statistically corelated: even if they are used in the sampling proce-



dure they do not contribute any new information and do not reduce the statistical

error. Based on physical grounds, we would expect that an appropriate decorelation

timescale would be T. Numerical experiments [4] show that different parameters have

different decorrelation timescales, but this physical reasoning is approximately cor-

rect. In particular, velocity which is a first moment of molecular velocities, requires

27 - 3T, whereas heat flux which is a higher moment but also involves the interatomic

forces, requires less than 7.



Chapter 3

Model Validation

In the previous chapter we showed that equations of motion can be written to simulate

uniform heat addition (in space). Before applying this technique to the evaporation

problem we would first like to validate that it has no adverse effects on the macroscopic

properties of the simulated systems. We have chosen the model problem described

below - the calculation of the temperature profile in a fluid Argon bounded by two

parallel walls in an infinite two-dimensional channel - because the exact (continuum)

solution is known for this problem and, additionally, molecular dynamics results have

been shown [29, 34] to be in good agreement with the corresponding continuum results

for this type of problem.

3.1 Description of Simulations

The dynamics of equations (2.11) and (2.12) were validated using the following

nanoscale system: three-dimensional fluid Argon in an infinite 2-dimensional channel

bounded by two parallel walls (see Fig. 3-1) heated uniformly. A two-dimensional

projection of the (three-dimensional) simulation cell is shown in Fig. 3-2

Two parallel, isothermal, fcc structured walls in the x - y plane are introduced and

serve as energy sinks. They allow the simulation to reach a steady nonequilibrium

state by effectively imposing temperature boundary conditions on the fluid Argon.

Their combined thickness (along the z-direction) is greater than the interaction po-
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tential cutoff (re) so that the fluid molecules do not see their images across the walls

as shown in the geometry sketch of Fig. 3-1. Both the fluid and the walls are modelled

by the well known Lennard-Jones potential. The wall and wall-fluid potential param-

eters are: mw = 2 mAr, EW = 5EF, aW = 0 .7Ar, 6 WF = 0.02eF, 'WF = 0.7"Ar. They

do not represent any known solid material. They were chosen as a good compromise

between the requirements of minimum number of wall molecules, a melting point that

exceeds the highest temperature encountered during the simulation, and minimum

layering of the Argon molecules close to the walls. The walls are kept at a constant

temperature by rescaling [5] their thermal velocities. This ad hoc procedure does not

affect the results of the simulation which are based on the bulk properties of the fluid.

We have neglected the fluid state close to the walls in order to ensure that no wall

effects contaminated our simulation results.

The simulation proceeds by the numerical integration of the Newtonian equations

of motion plus a constant temperature rescaling every two integration timesteps for

the wall molecules, and the integration of the constrained equations of motion (2.11,

2.12) for the fluid Argon. We will refer to this simulation prosedure as case I, because

we have repeated all of our validation simulations using also the rescaling technique

of equations (2.15, 2.16). This latter scheme, in summary, consists of the integration

of the Newtonian equations of motion (eq. (2.15)) plus a heat addition rescaling step

(eq. (2.16)) every two integration timesteps for the fluid Argon, and the integration

of the Newtonian equations of motion plus a constant temperature rescaling every

two integration timesteps for the wall molecules; we will refer to this scheme as case

II.

Tests were ran for both cases (I and II) at two fluid densities p = 0.85 (480 fluid

molecules) and i = 0.75 (416 fluid molecules) and various heating rates. The mean

temperature of the simulations depends on the heating rate, the wall temperature and

the heat exchange between the walls and the fluid. In order to keep the temperature

approximately constant, the temperature of the walls was adjusted accordingly.

In both cases (I and II) a steady state is reached after a short (10000 timesteps)

equilibration period. When steady state is reached, samples are taken for a period
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of 80000 timesteps. The temperature profile is recovered by dividing the fluid region

into 12 layers in the z-direction (normal to the walls). These layers are assumed to be

in local thermodynamic equilibrium and hence macroscopic properties can be defined

over them following the procedure explained in section 2.4. Note that in this problem

property variations are expected only in the z-direction and hence the homogeneity of

the solution in the x and y directions allows the adoption of slab-like regions that are

in local equilibrium. Values for the temperature, density and pressure are evaluated

as described in section 2.4. The statistical error in the temperature and density,

based on the number of particles in the slabs and the number of timesteps averaged

over, is estimated to be ±0.01 (in reduced units). The results obtained from the two

end layers are disgarded because of wall effects. A quadratic least squares fit to the

temperature profile gives an estimate for the thermal conductivity of the fluid. Note

that a quadratic profile is assumed because, as we show in the next section, the exact

solution to the problem at hand can be shown to be quadratic.

3.2 Exact (Continuum) Solution

In this section we derive the continuum solution for the uniformly heated Argon

fluid in the two-dimensional channel described above. The hydrodynamic (differential

form) energy balance equation can be expressed as

aT DP
pc,( + . VT) = V - (AVT) + p4 + - + q  (3.1)

where u is the fluid velocity, c, is the fluid specific heat, P is the viscous heat gener-

ation due to the fluid motion, p is the fluid viscocity, A is the thermal conductivity,

and q is the heat addition per unit volume which can vary as a function of space. In

the problem at hand there is no fluid motion and no unsteady effects and hence the

equation reduces to

V - (AVT) + q = 0. (3.2)



Additionally, q does not vary as a function of space and we assume that the tempera-

ture variation is too small to have an appreciable effect on the thermal conductivity.

We will examine the validity of this assumption in section 3.3. We also note that the

solution is homogeneous in the x and y directions, and hence the solution, given that

both walls at z = 0 and z = L are at T = To, is

1 qz 2  1 qzL 1q
T - To= + -- - z). (3.3)

2 A 2 A 2A

As we can see the exact continuum solution for the constant heat addition prob-

lem with constant thermal conductivity requires a quadratic temperature profile, the

curvature of which depends linearly on the heat addition rate and inversely to the

thermal conductivity of the material. We will use this fact in section 3.4 to obtain

estimates for the thermal conductivity of fluid Argon.

3.3 Error Estimation

The thermal conductivity of fluid Argon at the conditions of the simulation is a very

weak function of the temperature, but depends rather strongly on the fluid density.

Hence we would expect to have variations of thermal conductivity due to the variable

temperature in the solution field. In this section we show that this temperature

variation is not enough to cause a significant error in our results which assume an

effective thermal conductivity at a mean simulation temperature for the purposes of

comparing to the experimental value.

We first like to note that although the temperature dependence of thermal con-

ductivity is very small, this is not true for the thermal conductivity dependence on the

fluid density. The fluid density varies according to the equation of state p = p(P, T)

in order to keep the pressure in the fluid constant since no flow is observed, and

hence influences the results and the validity of the assumption of constant thermal

conductivity introduced in the previous section.

The thermal conductivity has been shown [29] to be fairly well corelated (in the



property region of interest) with temperature and density using the following formula:

A = 0.015 exp 0.833p) - 1) + Ae (3.4)

where
AVT

A =y (3.5)
( 1 + E10-) 

.

Pc is the critical density for Argon, and A, B, C are known constants which result in

the weak variation of thermal conductivity with temperature and hence allow us to

assume that
e = 0. (3.6)

dT

To simplify the algebraic manipulation we introduce the compressibility factor

Z = T (3.7)
pRT '

and the following first order expansion for the ratio p/Pc,

P )IT P)IT + ( )Ip(T - To) (3.8)
Pc Pc oT Pc

( IT (- )I T + (Z )(T -T o) ()IT + a(T- To), (3.9)
Pc Pc aT ZT Pc

where state o is a reference state (equilibrium state of unheated fluid), (P) p means

evaluated at constant pressure, a - -0.009K- 1, and all numerical values have been

computed from tables [1] at state o. Note that the numerical values introduced in

this section refer to the simulation case with fluid density p = 0.85. The numerical

values of the constants are slightly different for the case where p = 0.75 but cannot,

by any means, alter the conclusions of this section.

Defining b = 0.015, c = exp( po) we have

A = bc exp(a(T - To)) - b + Ae (3.10)



where a = 0.833a and our heat balance equation (eq. (3.2)) becomes

(3.11)d dT

dz (bc exp(a(T - To)) - b + Ae) z ) = -qAerp = -

Linearizing bc exp(a(T - To)) for la(T - To)I - 0.09 <K 1, solving for (T - To), and

applying the boundary conditions of section 3.2, we obtain

1 1 1
-abc(T - T0 )2 + o(T - T) = 2 qz+ -q z L
2 2 2

(3.12)

where Ao = b c - b + Ae. If we denote

1 1
-q z -- qzL x(z)2 2

(3.13)

such that the previous solution (equation (3.3)) can be written as

T - To = (z) (3.14)

(3.15)
-A± V- - 2abcx

abc

which can be linearized (for small a (maxbc < 0.02)) to

X(z) ( _ abcX(z)
T-To= (1- 2 (3.16)

Note that we have also rejected the negative solution.

We can now check whether the variable thermal conductivity introduces significant

differences in the solution. We will use the fact that in our simulations

(T - To) max =
X(z = L/2)

)

will be of the order of 0.08, and subsequently calculate the percentage change in this

we have

(3.17)



maximum value which is given by eq. (3.16) as

abcX(z = L/2)
- -1%. (3.18)

As we can see, the change is negligible and hence our assumption of negligible effect

of the thermal conductivity variation on the solution is valid.

3.4 Results

Fig. 3-3 shows one example of the temperature profile obtained in our simulations.

The solid line represents the least-squares fit to the data from the ten inner slabs, from

which the thermal conductivity is estimated. As explained in section 2.4, the variation

due to the temperature gradient in this layer is smaller than the statistical variation

in this region of space expected from ensemble theory. Due to the homogeneity of the

solution in both the longitudinal direction (x) and the direction into the paper (y),

these regions have the shape of slabs of thickness 1.8a.

Table 3.1 reports the estimates for the thermal conductivity A obtained from the

curvature of the temperature profile at the operating conditions indicated. Agreement

with experimental data is good. The thermal conductivity estimates are well within

the rather strict estimation of the expected error in the simulation (10%). Simulations

on similar systems have shown [29] that MD simulations using Newton's equations (eq.

(2.1)) give estimates for the thermal conductivity in agreement with the experimental

data in [1], but also exhibit relatively large uncertainties. We can also observe that

the thermal conductivity estimate for case II tends to be higher than for case I. This,

however, is not always true and the variation is well within the estimated error. We

thus conclude that no systematic deviation exists.

The previous tests have shown that the equations of motion introduced in section

2.3 can be used to simulate constant heat addition to a fluid without adversely af-

fecting its statistical mechanical properties. Further confirmation of this result comes

from the constant pressure evaporation simulations described now.
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Figure 3-3: Temperature as a function of transverse direction (z) for case I, Q =
2.5 x 10 , p = 0.855. The solid line shows a least squares fit to the data from the

ten inner slabs. Walls at z = 39, +39. Dimensions in A. The layers close to the walls

(at z = -33, +33) are disgarded because of wall effects.



p T A Ae Case E

0.745 1.04 0.71 0.77 I 3.125 x 10- 3

0.745 1.04 0.83 0.77 II 3.125 x 10- 3

0.74 1.16 0.78 0.77 I 4.6875 x 10-3

0.74 1.16 0.86 0.77 II 4.6875 x 10- 3

0.74 1.28 0.74 0.77 I 6.25 x 10- 3

0.74 1.28 0.74 0.77 II 6.25 x 10- 3

0.855 0.78 0.95 0.99 I 2.5 x 10-3

0.855 0.78 1.02 0.99 II 2.5 x 10- 3

0.855 0.83 1.08 0.99 I 3.125 x 10-3

0.855 0.83 1.05 0.99 II 3.125 x 10- 3

0.845 0.96 1.00 0.97 I 4.6875 x 10-3

0.845 0.96 1.03 0.97 II 4.6875 x 10-3

Table 3.1: Comparison between simulation and experiment for the thermal conduc-

tivity. p (±0.01) and T (±0.01) are mean simulation density and temperature; A

(±0.1) is simulation thermal conductivity from least squares temperature profile; Ae

(±0.05) is experimental value of conductivity at (p, T). The sources of error for Ae

are the error in P, T and the error in the fitting formula for the experimental data.
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Chapter 4

Constant Pressure Evaporation

Simulations

In this chapter we present simulations of the evaporation of fluid Argon clusters at

constant pressure. The heat addition method has been validated in the previous

chapter and we thus expect that the dynamics observed will not be contaminated by

adverse effects resulting from the constrained equations of motion. We will addition-

ally compare our results with already existing results for the equilibrium phase change

properties of fluid Argon, both from experiments and numerical simulations. To the

author's knowledge, this is the first time-dependent simulation of phase change using

MD. Previous work has been limited to "mapping" the phase diagram through qua-

sistatic simulations, which therefore implicitly assumed that time-dependent simula-

tions sample a path through the phase diagram that consists of the (quasi-)equilibrium

results obtained through equilibrium simulations.

4.1 The Evaporation Simulations

We first describe the baseline calculation of this section: all simulation parameter

values can be assumed to be as defined in this baseline, unless otherwise specified.

A cluster of 480 Argon atoms is thermally equilibrated at constant pressure (P =

0.07e/U3 ) and zero heat addition (A = 0) for a period of 320 T. The simulation



box is initially cubic with side A = 8.95a (p = 0.67a -3 ) and fully periodic. The

"fictitious" mass parameter of the pressure reservoir (W) is set to 2.5m. (We have

verified that the results of our simulations do not change significantly if we decrease

W by an order of magnitude. Increasing W slows the response of the system and

produces large pressure variations around the desired value. For this reason results

for W = 25m were considered unreliable.)

After the equilibration period, the exact equations of heat addition (2.11) and

(2.12) are integrated to simulate heating of the fluid at the same constant pressure

with Q = 3.125 x 10-3E/(mT). Thermodynamic properties as a function of time

are defined as averages of the corresponding appropriate microscopic quantities (as

defined for example in [29]) over intervals of 167. We also present some results

obtained using equations (2.15) and (2.16) during the heat addition phase, but it is

implied that unless otherwise stated, the results shown will be from the integration

of equations (2.11) and (2.12).

Finally the evaluation of macroscopic properties (energy E, temperature T, pres-

sure P, and density p) follows from the usual definitions for statistical mechanical

systems introduced in section 2.4. All extensive properties (energy E, heat addition

rate Q, entropy S, and Gibbs free energy G) will be given in specific (per unit mass)

reduced units.

4.2 Results

Fig. 4-1 shows the temperature, and density of the fluid as a function of time after

the initiation of heating. We will use Fig. 4-1 to define points A, B, C, D, F, H, and I

which we will refer to in the rest of the paper. Point A denotes the start of the heat

addition; B signifies the point at which the temperature first reaches the saturation

temperature (for the simulation pressure) as given by equilibrium simulations [2]; C

denotes the local maximum temperature overshoot; at D the temperature is again

equal to the saturation temperature after reaching the maximum at C; F denotes the

local minimum temperature following C; H denotes the point at which the temper-
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Figure 4-1: Temperature and density of the fluid as a function of time after initiation

of heating. The saturation temperature (Tat) was obtained by a Maxwell construction

discussed later, which is in agreement with data from [18].



ature reaches the saturation temperature after the conversion of all liquid to gas; I

denotes the end of the simulation.

Fig. 4-2 verifies that the system indeed goes through a liquid-vapor coexistence

phase by showing the instantaneous positions for the molecules comprising the system

at the times corresponding to points C, D, F, and H. We have also verified that the

temperature is reasonably uniform within and between the two phases, to ensure that

the above observed behavior is not due to some thermal instability accosiated with

the heating mechanism.

Fig. 4-3 shows the numerical integration results for the entropy S and the Gibbs

free energy G = E - TS + PV as a function of temperature. S is evaluated by

numerical integration of

z dQ = d(E +PV)(4.1)
SZ = SA + T SA+ T (4.1)

along the system path starting from A; here Z is any point on the system path. Since

the integration does not need to be evaluated from both phases, the initial entropy

and, as a result, the Gibbs free energy datum can be set arbitrarily. The entropy

is set equal to zero at A (start of heating). The entropy of the fluid for simulations

at a different pressure (introduced later) is determined consistently with the datum

defined above, by using data from [1] to find the difference in entropy between the

initial states of the various simulations at the different (constant) pressures. Note

that this integration assumes that the deviation from equilibrium is negligible, or

alternatively that the heat added to the system is thermalized in a timescale smaller

that the heat addition timescale, as discussed in section 2.

The results of Fig. 4-3 are consistent with the findings of other researchers [4, 12, 2].

Although the results reported in these studies exhibit van der Waals type loops in the

P - V diagram (constant temperature simulations), it is well known [3, 19] that the

van der Waals equation produces loops in both the P - V and T - S diagrams with

the characteristic feature observed in Fig. 4-3 of the Gibbs free energy (G) "crossing

back on itself" under both constant temperature and constant pressure projections.
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Figure 4-4: Temperature histories for evaporation heating (solid line) and condensa-
tion cooling (dashed line). At "I" heat input changes direction and heat is removed

from the system. Time increases from right to left for dashed line.



We believe that the quasistatic simulations, in agreement with linear response theory,

were sampling the time dependent path of the system recovered by our simulations.

To verify this assertion, we use ten equispaced (in time) states on the temperature

history of Fig. 4-1 as initial states of simulations with zero heat addition: the fluid is

left to evolve for 960T using the Newtonian equations of motion (equation (2.11) with

A = 0). The state of the fluid remains invariant during this period of time indicating

that (i) the state is not a result of the constrained equations of motion and, (ii) the

states between B and H are indeed (metastable) equilibrium states on the path of the

liquid-vapor phase transition such as the ones sampled by previous quasiequilibrium

simulations.

We also present simulations of cooling (Q = -3.125 x 10-3e/(mT)) of the resulting

vapor phase (state I). The cooling curve (dashed line in Fig. 4-4) is superposed on

the heating curve (solid line in the same Figure), for comparison purposes; as a

result, time for the cooling curve increases from right to left. The reversible behavior

observed reinforces the belief that the observed T - S diagrams contain a dynamical

signature of phase change. We would like to note that the integration of equations

(2.11) and (2.12) displays very slow convergence characteristics for the case of heat

removal (( < 0) and as a result we use the rescaling procedure (eqs (2.15) and (2.16))

for the heat removal simulations. To verify that the two methods are equivalent we

have compared the results of the two methods. Fig. 4-5 shows that the results of the

two integration methods are indistinguishable to within the statistical uncertainty

(+0.03 in temperature) of our simulations, so that the comparison of Fig. 4-4 is valid.

The saturation temperature, Tsat, is defined by point O on the G - T diagram of

Fig. 4-3, or equivalently, by a "Maxwell construction" [3] on the T - S diagram of the

same Figure. The value obtained (Tsat = 1.18) is close to the value cited in [23] (1.19)

for MC simulations with a cut-off of 2.5a, the full Lennard-Jones prediction (1.19)

of Powles [23], and the (more accurate) MC predictions (1.18) of Lotfi et al. [18].

The saturated liquid density (0.59a- 3 ), and saturated gas density (0.08a- 3 ), compare

very well with the corresponding predictions of Powles [23] which are 0.59a - 3 and

0.12a - 3 respectively, and the predictions of Lotfi et al. [18] which are 0.59a -3 and
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Figure 4-7: Temperature history for different number of molecules (n). n=480 for the

solid line, n=1920 for the dashed line.

0.09U -3, respectively.

Further evidence that the observed behavior is not related to the heating rate but

is a reflection of the path characteristic of phase change in G - T space is offered

in Fig. 4-6. The G - T diagrams for different heating rates are identical; time is

reduced to the role of a parameter along the path. In the next chapter we show

that for homogeneous nucleation the effect of the heating rate is very small and

hence, can be neglected for the range of heating rates presented here. Our results

are also independent of the number of molecules in the system: the results for 960,



1920, 3840 molecules are all indistinguishable from the results of Fig. 4-1 within the

temperature uncertainty of our simulations (+0.03). This is demonstrated in Fig. 4-7

for simulations with 480, and 1920 molecules. The cases with 960 and 3840 molecules

have been omitted for clarity.



Chapter 5

Phase Change Dynamics

Metastable states are encountered in many situations of practical interest; one exam-

ple is the design of steam turbines where the nucleation of small droplets results in the

rapid erosion of the turbine blades and hence rapid loss of efficiency and, ultimately,

failure. Materials properties can be greatly affected by their microstructure which,

among other things, is influenced by their quench history.

The existense of metastable and unstable states is predicted by various equations

of state, resulting both from curve fits of experimental data [17] and theoretical

considerations [27, 16]. Skripov [27] argues that in the thermodynamic limit we obtain

the most probable macrostate which, however, neglects metastable states induced by

surface effects. It has been shown [27] that by considering the surface contributions

of the statistical integrals in the thermodynamic limit of a one-dimensional system,

the one-dimensional van der Waals equation can be derived.

The theoretical stability considerations for the distinction between metastable

and unstable states are summarized in [27, 16]; metastable states are enclosed by

the two phase boundary and the spinodal line, whereas unstable states are the ones

enclosed by the spinodal and the density axis in Fig. 5-1. Note that the liquid spinodal

corresponds to the locus of points corresponding to point C in Fig. 4-1 as pressure

varies, and the vapor spinodal to point F of the same Figure.

Metastable states lead to phase separation by nucleation and growth, whereas un-

stable states lead to phase separation by spinodal decomposition. In the metastable



region finite perturbations (nucleation sites) are required to initiate the phase sepa-

ration. The deeper the penetration into the metastable region the smaller the size of

the required (critical) sites. Inhomogeneities such as walls and cracks in them, macro-

molecules, or ionized molecules, usually provide sites for the phase change initiation.

Depending on the size of these inhomogeneities a certain degree of penetration into

the metastable region is required. Thus a fluid upon heating (say), will enter the

metastable region and follow the path required by the heating rate imposed until the

penetration depth (superheat) is such that the largest nucleation sites are equal to the

above critical size. In the next section we outline the classical derivation for the criti-

cal size of nucleation sites as a function of the penetration into the metastable region.

In the absense of all inhomogeneities the fluid has to rely on statistical fluctuations

to generate the required nucleation sites (homogeneous nucleation). The probability

of existence of such sites decreases exponentially with their size.

The spinodal represents the boundary between the metastable and the unstable

region, or in other words, the spinodal demarkates homogeneous nucleation from spin-

odal decomposition. Hence the maximum penetration into the metastable region for

which nucleation is still expected to occur coincides with the spinodal, or strictly,

a point inside the metastable region and infinitessimally away form the spinodal.

For this reason spinodal points are usually identified with homogeneous nucleation.

Homogeneous nucleation thus corresponds to the smallest spontaneously created nu-

cleation site; larger sites would cause phase separation at smaller penetrations, but

are statistically much less likely to occur and in practice never do.

The size of the critical honogeneous nucleation site is a function of the material

properties. The same is true of the location of the spinodals and the critical wave-

lengths characterizing spinodal decomposition. One of the unresolved problems to

date [7], is the exact process of transition from homogeneous nucleation to spinodal

decomposition.

Experimental verification of homogeneous nucleation has been limited to the

demonstration of existence of metastable states through both direct experiments and

fitted equations of state, and the identification of the liquid spinodal with the ho-
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mogeneous nucleation limit [17]. The identification of the vapor spinodal with the

homogeneous nucleation limit has escaped experimental verification, to the author's

knowledge, to date [17]. Because of the impurities and finite size nucleation sites

available in real systems, metastable states are difficult to reproduce experimentally;

furthermore, no states between the vapor and the liquid spinodal have been experi-

mentally observed.

Our objective is to verify the homogeneous nucleation and stability theory calcu-

lations. We will use our maximum supersaturation data (spinodal points C and F) to

calculate the critical radii for the homogeneous nucleation limit and show that those

are consistent with the length scales and time scales of our simulation. We will also

compare the data on the location of the spinodal from our calculation to the results

of [16].

5.1 Introduction to Homogeneous Nucleation

We first consider the evaporation case. As the liquid is heated beyond the satura-

tion line (superheated) it becomes energetically favorable for the phase separation to

proceed. Vapor bubbles (small clusters of molecules at the vapor density) are formed

and collapse continuously such that a steady state of vapor bubble distribution (ex-

ponentially decaying in the bubble size) is sustained. At this steady state, the rate of

formation of bubbles containing n molecules from growth and collapse of bubbles of

n - 1 and n + 1 molecules respectively, is balanced by their rate of destruction [28].

Thus the rate of generation of bubbles is uniform accross the size distribution. It is

called the nucleation rate J, and is given by [28]

log J(T, P) = a{1 - e[-(T-To)G/a]}. (5.1)

Note that this expession is an approximate curve fit to the various theories that

predict nucleation rates, and that a and G are constants that depend on the pressure;



To is the temperature for which

log J(To, P) = 0. (5.2)

The reader is referred to [27, 28] for more details on the origin of this relation. We

can see that the nucleation rate is an exponentially increasing funtion of the super-

saturation (T - Tat(P)) where P is the pressure of the system.

For phase separation to occur one of the vapor bubbles must grow. The con-

ditions for growth are presented through the following mechanical equilibrium and

thermodynamic equilibrium arguments. Alternative arguments (to the mechanical

equilibrium) based on energy considerations can be found in [19].

Mechanical equilibrium between a vapor bubble of radius R and the surrounding

liquid requires that the pressure inside the bubble Pb be higher than the ambient

pressure of the liquid P such that

Pb Pl 27 (5.3)
R

where y is the interfacial tension. This equation is known as the Laplace equation.

Thermodynamic equilibrium requires that, for the two phases to coexist at the bubble

boundary, the temperature of the vapor inside the bubble (which is equal to the

temperature of the simulation) be the saturation temperature at the pressure inside

the bubble, or

T = Tsat(Pb). (5.4)

Since the saturation temperature is monotonically increasing for increasing pressure

we see that the higher the supersaturation (T - Tsat(P)), and hence the temperature

T, the smaller the radius (R = R,) that satisfies equations (5.3) and (5.4).

In summary, as a fluid is superheated it remains in the metastable state until its

temperature increases to a value such that the critical radius corresponding to that

state becomes as small as the nucleation sites available. If no external nucleation sites

are available the temperature will reach the spinodal value and the fluid will change



phase by homogeneous nucleation. If insufficient time is allowed for the bubbles

to nucleate the liquid will cross into the unstable region and phase separation will

proceed by spinodal decomposition.

The case for liquid drops forming in a supercooled gas is exactly analogous. In this

case, however, energetic arguments [9] show that a liquid drop has a vapor pressure

P, given by
P 2y

In( PV ) = 2 (5.5)
Poo Rp kT

where p, is the liquid drop density, k is Boltzmann's constant, and Poo is the thermo-

dynamic limit saturation pressure for the system temperature, that is Poo = Psat(T).

This equation is known as the Kelvin equation. Mechanical equilibrium requires that

the vapor pressure of the drop has to be equal to the pressure of the ambient vapor

(P). The pressure of the liquid inside the drop is P 0 and the thermodynamic equi-

librium requires that the supercooling temperature equal T = Tsat(Poo). All system

properties are evaluated at T.

Experimental results [27] for liquid superheating report critical bubble sizes of the

order of 70A with average droplet lifetimes of the order of seconds for materials such

as n-pentane, and benzene. Argon experiments indicate that critical bubbles of the

order of 35A can be achieved. We expect that MD simulations would predict smaller

(or at most equal) critical radii due to the intrinsic purity, homogeneity and lack of

external disturbances in such simulations.

5.2 Simulations and Data Analysis

We perform simulations as described in chapter 4 for different values of the simulation

pressure (Fig. 5-2). Our objective is to investigate the ability of nucleation theory to

explain the behavior discussed in chapter 4. Using the values of maximum superheat

(point C) we attempt to extract estimates of the critical radii of gas bubbles required

for homogeneous nucleation to commence. In other words, we will use Tc to find the

pressure in the critical bubbles Pb by using Tc = Tsat(Pb). This will subsequently

yield Re, the critical bubble radius, through equation (5.3).
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Figure 5-2: Temperature as a function of entropy for the three different pressures

(in e/a3). The initial entropy for all three simulations is determined as explained in

chapter 4.

Similarly, using the maximum subcooling required (point F) we estimate the crit-

ical radius of liquid embrya required for condensation to occur. We estimate Po

from TF through the thermodynamic equilibrium requirement TF = Tsat(Poo). The

identification of P, = P in equation (5.5) allows for the solution for the critical radius

Rc.

5.2.1 Thermodynamics of Small Clusters

Experimental results and preliminary calculations indicate that the critical clusters

(bubbles and drops) are of molecular dimensions. For this reason we need to account



for the dependence of the thermodynamics of these clusters on their size, since both

the Laplace and the Kelvin equation have been derived with the use of continuum

concepts whose validity is questionable at the molecular scale.

The properties of nanodroplet systems (liquid drop surrounded by vapor) have

been investigated by various authors [31, 24, 35] but the results are by no means

exhaustive. It has been verified through simulation [31, 35, 25] that Laplace's equation

can be used to describe the pressure differential across the interface of a very small

droplet with the following refinements imposed by the small size of the drop. First,

the droplet radius (R) is identified with the radius of tension of the droplet (R,), and

second, - is interpreted as the interfacial tension for a curved interface and is properly

evaluated at the large curvature of these small droplets. The Tolman equation [32]

7 = 'oo(1 + 5)-1 (5.6)

was found [31, 35] to adequately describe the variation of the surface tension for a

curved surface (y) with the radius of tension of the droplet, given the value of the

surface tension for a planar interface ('y). The radius of tension (R,) of the droplet

is related to the radius of the equimolar surface of the droplet (Re) by

6 = Re - R > 0. (5.7)

The radius of the equimolar surface (Re) is the best measure of the size of the droplet

and the number of molecules it contains. It can be visualized with the aid of a

hypothetical liquid drop-vapor system that has the same number of molecules as

the real system. The equimolar surface is the boundary of a hypothetical liquid drop

whithin which the density is constant and equal to the central (limiting) density of the

real drop. On the vapor side of the boundary, the density decreases discontinuously

to a constant value equal to the vapor density at infinity, or sufficiently far from the

drop, in the real system [4].

Simulation results for 6 reveal some uncertainty as to what its exact value is.

Matters are complicated by the apparent dependence of 6 on the cut-off radius and



the simulation temperature. The value of 0.8a adopted here follows the work in [31]

and [25] and falls between the extreme values of 0.5a and 2a reported in [24] and [35]

respectively.

Thompson et al. [31] find that the Kelvin equation is not usefull in describing

nanodroplet phenomena. This conclusion is based on their results (reproduced here in

Fig. 5-3) that indicate that the limiting form of the Kelvin equation (without the Tol-

man correction and the introduction of the radius of tension) is in better agreement

with their MD results (circles) than the fully corrected results (solid line). Addition-

ally, Powles et al. [24] suggest the use of the Kelvin equation without including the

Tolman correction to the surface tension. This is again based on their results (re-

produced here in Fig. 5-4) which show that the introduction of a Tolman correction

makes agreement between theory and simulation worse. Following the above obser-

vations we decided not to use the Tolman equation as a correction for the effects of

curvature on the surface tension (for both evaporation and condensation) of the two

phases, and hence interpret R as the equimolar radius (Re) and not the radius of

surface of tension (R,).

For the evaporation case, we remark that the Tolman equation has been derived

and validated only for liquid drops surrounded by vapor, and as such it cannot be used

for the case of a vapor bubble surrounded by a superheated liquid. Additionally, the

vapor bubble radii shown in the results section are large enough that, even if a Tolman

type equation would be valid, assuming that 6 = 0.8, the correction introduced would

be of the order of 10%. This error was considered reasonable given the significant

statistical error inherent in [31, 24, 35, 25].

In the condensation case, the resulting liquid radii are significantly smaller and as

remarked by Tolman [32], Thompson et al. [31], and Powles et al. [24], the validity

of this equation is at least questionable for such small droplets. Most importantly,

as shown above, the simulation results of Thompson et al. show that the uncor-

rected Kelvin equation (not subjected to a Tolman correction) can be used to relate

the equimolar radius and the vapor pressure of the simulated droplets. In a simi-

lar fashion, Powles et al. [24] show that the inclusion of a Tolman correction to the
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Figure 5-4: Simulation results from [24] for T = 0.69 and p = 0.84. The dashed line

shows the introduction of a Tolman correction which results in worse agreement.
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Kelvin equation makes the agreement between their simulation results and the Kelvin

equation significantly worse.

Some additional uncertainty is also introduced in our calculations by the estima-

tion of the value of yoo as a function of temperature owing to its sensitivity to the

cut-off radius used in simulations. We use the experimental data for the full Lennard-

Jones potential in [33] which are expected to slightly overpredict the values of 7oy,

but are preferred over the simulation results in [6], for two reasons: first, our simula-

tion cut-off is longer (and hence closer to the full Lennard-Jones potential) than the

one used in the above simulations, and second, our potential is not shifted such that

V(re) = 0 [6]. We estimate the combined error in our estimation of the critical radii

for both evaporation and condensation to be +15%.

5.2.2 Heating Rate Effect

In this section we want to show that the heating rate has a negligible effect on the

temperature history recovered by our simulations (Fig. 4-1). In homogeneous nucle-

ation, phase separation proceeds when a certain number of nucleation sites of order

1 (in the statistical sense) is present. Hence, when a system enters the metastable

region the history of the path taken has to be considered because of the continuous

nucleation "attempts" that take place while the system is in any metastable state.

More specifically, if we denote the (given) number of nucleation sites required for

nucleation N, we require that

N= o Jdt (5.8)

where t is the time required to nucleation. We substitute for J from equation (5.1)

to obtain
= T 10 a{1 - e[-(T - To)G/a]} dT (59)

10o (5.9)

Note that we have replaced the time integration with integration over temperature

by assuming a known temperature change rate (T). We will assume that (T) is a

constant and proportional to the heating rate Q. This assumption is justified due to

the very sensitive exponential term that will dominate the contribution to this integral



and make any contribution from the slowly varying (T) term totally negligible. The

limits of the integration are now the temperature at which nucleation will take place

T, and To, below which nucleation rates are negligible (eq. (5.2)).

After some algebra we obtain

T e[n(a In 10) - (T - To)]
= 10 e-e a dT (5.10)

which after the transformation

y = In(aln 10) - G(T - To) (5.11)
a

can be written as

NT = 10a e- ey dy. (5.12)
G in(a In io)

By using the transformation

z = -ey  (5.13)

we convert the integrand to the following integrable form:

NT = a 10 e dz. (5.14)
G J(aln1O) z

The result in terms of the variable y is finally

NT = 10 - ey 2  - + ... (5.15)
G 2 x 2! 3 x 3!

n(a In 10)

The above expression is evaluated at y = In(a In 10) = 4.41 and at y which corresponds

to the nucleation temperature. This temperature is expected to be close to the

homogeneous nucleation point for which y = y = -4.6. For this range of values no

limiting approximation to equation (5.15) can be obtained, and hence we will proceed

to show that the effect of the heating rate is negligible by examining the properties

of this expression when y is close to the homogeneous nucleation point.



More specifically, let us assume that we have two heating rates T1 and T2 > T1.

From equation (5.15) we obtain

a e2Y d3Y
N(T2- Tl) = 1OaAy 1 - ey + + ... (5.16)

where we have assumed that the change in the nucleation temperature (in y-coordinates)

Ay = Y2-Y1 is very small, and hence all changes in terms involving y can be linearized

at y = y. This assumption leads to

N(T 2 - T 1) = 10aAy e-e(5.17)

which can also be obtained by the linearization of equation (5.12) at y = y. Using

the numerical values of G and a for Argon, and N - 1 in the above equation, we see

that for the heating rates characteristic of our work (T ~ 1010sec- 1 )

I yI ' 10 - 14, (5.18)

which translates to changes in nucleation temperature of the order of ATI , 10- 12.

We therefore conclude that the assumption of small Ay is indeed valid thus justifying

the use linearization of equation (5.15) around y = y, and that the heating rate

changes have a very small effect on the temperature at which nucleation occurs.

5.3 Results and Discussion

Table 5.1 shows the results for the critical size (Re) of vapor bubble required for

evaporation of liquid Argon at the various simulation pressures (P) indicated. The

coexistence data were obtained from Lotfi et al. [18]. Table 5.2 gives the critical size

(Re) of liquid droplets required for condensation to occur. As can be seen from both

tables, the critical sizes are in both cases very small-of the order of a few molecular

diameters, as predicted by experiments with various substances including Argon [28].

The critical radii for the condensation are significantly lower than the ones found



Table 5.1: Evaporation

P = P (e/Ua) T = Tsat(Pv) Pv(e/ 3) R (o)

0.07 1.27 0.108 5.8

0.047 1.23 0.092 5.9

0.035 1.22 0.088 5.3

Table 5.2: Condensation

P = P(e/a 3 ) Tsat(Poo) = TF Poo(6/U3 ) R (a)

0.07 1.14 0.058 3.6

0.047 0.99 0.028 3.2

0.035 0.89 0.009 1.7

for evaporation, which is expected because of the higher density of the liquid drops

compared to the vapor bubbles. This supports the view that generation of critical

embrya is kinetically limited by the number of molecules that can spontaneously come

together and form a critical nucleus with a positive rate of growth [20]. The average

ratio of the critical radii kRc - 1.8 (from tables I and II) predicts a density ratio

kP cc (kR )3 = 5.8 which is in good agreement with the density ratio between the

metastable liquid at F and metastable vapor at C (PF/PC = 3.4).

Our simulations predict critical radii for evaporation in the range 18 < Rc < 22A,

which is in good qualitative agreement with experimental data [28] that report critical

bubble radii of the order of - 34 A and nucleation rates of the order of 1030 m-3s - 1 for

the same pressure. The latter data have been obtained under experimental conditions

and thus do not necessarily represent the homogeneous nucleation limit. Indeed

our simulations have achieved higher supersaturations; using the classical nucleation

theory equation (5.1) and also Argon critical properties Pc = 0.126e/u 3, and T, =

1.31, to calculate the values of constants a and G in equation (5.1), we find that

for P = 0.07e/a 3 a nucleation temperature T = 1.27 requires a nucleation rate of



Table 5.3: Vapor and liquid spinodals

the order of 1036m-3s - 1 . Note again that the smaller critical nuclei imply higher

penetration into the metastable region and higher nucleation rates. This is consistent

with the size and timescales of our simulation: the volume of the simulation cell for the

baseline simulation at point C is - 5 x 10- 26m 3 , and the timescale of heat addition is ~

10-1 0 s. Therefore nucleation is plausible for nucleation rates that are strictly greater

than - 2 x 1035m-3s - 1 and is, therefore, possible in our simulations. Simulations

with one order of magnitude more molecules (3840) would require nucleation rates

greater than - 2 x 1034m- 3s - 1 . We have performed such calculations and obtained

identical results which indicates that the nucleation rate observed in our simulations

was not a result of the limitations imposed on it through the simulation procedure.

Table 5.3 shows the comparison between theoretical results [16] for the location of

the liquid and vapor spinodal on a T - p diagram from (Fig. 5-1), and our simulation

results. The second column gives the simulation result for the density as a function

of the temperature and the third column gives the results of [16] at the same temper-

ature. The spinodal branch (vapor-liquid) is indicated in the fourth column. The

agreement is very good showing that we have recovered correctly the dynamics of the

metastable system all the way to the spinodal.

Unfortunately, the timescales of our simulations are too short to allow a care-

ful examination of the exact mechanism responsible for the phase domain growth.

Although this is a subject of considerable interest, its simulation requires comput-

T psp(a- 3 ) (Simulation) pap (a- 3) (Theory) Description

1.27 0.45 0.46 Liquid

1.14 0.14 0.15 Vapor

1.23 0.48 0.48 Liquid

0.99 0.12 0.12 Vapor

1.22 0.48 0.49 Liquid

0.89 0.08 0.10 Vapor



ing resources that are a few orders of magnitude away from what was available for

the purposes of this study. Although our simulations are consistent with the initial

homogeneous nucleation charactristics, it is conceivable that further phase domain

growth is contaminated by the small simulation cell size or indeed taken over by spin-

odal decomposition; in particular, if the nucleation kinetics are sluggish such that

significant penetration beyond the spinodal occurs with no phase change, spinodal

decomposition is expected to take over as the dominant phase change process [7].

Recognizing the dynamics of phase change through molecular dynamics is an issue

that remains unresolved. Although Abraham and his co-workers [16] claim to have

captured the dynamics of spinodal decomposition by MD, more recent studies [11]

claim that no phase separation has been observed in similar simulations. Further

work is clearly required for the complete resolution of the extremely important topic

of the dynamics of phase change.
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Chapter 6

Summary and Future Work

We have developed a technique for simulating external heat addition in molecular

dynamics simulations. The formulation requires the energy of the molecules to in-

crease linearly in time. This is achieved by incorporating the above constraint into

the equations of motion of the molecules through Gauss' principle of least constraint.

Uniformly heated fluid Argon in a two-dimensional infinite (periodic) channel was

used to validate the technique. The simulation results were compared to the exact

(continuum) solution and estimates for the fluid thermal conductivity were obtained.

The results are in very good agreement with previous simulations using the Newtonian

equations of motion and hence, the simulation method is believed to not affect the

macroscopic properties of the simulated materials.

We subsequently model the constant pressure evaporation of liquid Argon in real

time. The results are in good agreement with previous simulations of the equilibrium

phase change properties of a Lennard-Jones model for fluid Argon. The saturation

temperatures and densities as a function of the simulation pressure compare favorably

with published results of both MD and Monte Carlo simulation techniques. Our

results are also independent of the number of molecules in the system and the heating

rate applied.

Our results are also consistent with the linear response theory interpretation of

quasistatic simulations of phase change performed by other researchers: the time

dependent path of the system in the two phase region contains the states accessed



by quasistatic simulations. The existence of metastable equilibrium states in the two

phase region, predicted both by experimental data and theoretical considerations of

nucleation theory, and more generally, the role of surface effects on phase transition,

is thus verified.

Evaporation and condensation of Argon at different constant pressures is used

to locate the vapor and liquid spinodal. Comparison with theoretical calculations

shows very good agreement. Homogeneous nucleation theory was used to analyze

the spinodal points, which represent the limiting states for which phase change takes

place by nucleation and growth. Further penetration into the unstable region results

in phase change by spinodal decomposition. The critical sizes for nuclei found in this

work is - 3a for critical liquid drops (condensation), and - 6a for critical vapor

bubbles (evaporation), consistent with experimental data and the length-scales of the

simulation. The nucleation rates required for the critical radii reported above are also

consistent with the simulation time-scales.

Future work should include the investigation of the growth of phase domains that

was impossible in this study due to the very short time-scales of our simulation. Such

work will address questions regarding the exact mechanism of phase change very

close to the spinodal. Finally the effect of impurities and heterogeneous nucleation

are topics of both practical and theoretical significance.
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