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Abstract

This thesis deals with two topics in lattice field theories. In the first part we discuss

aspects of renormalization group flow and non-perturbative improvement of actions

for scalar theories regularized on a lattice. We construct a perfect action, an action

which is free of lattice artifacts, for a given theory. It is shown how a good approxi-

mation to the perfect action - referred to as classically perfect - can be constructed

based on a well-defined blocking scheme for the 0(3) non-linear o-model. We study

the O(N) non-linear r-model in the large-N limit and derive analytically its perfect

action. This action is applied to the 0(3) model on a square lattice. The Wolff cluster

algorithm is used to simulate numerically the system. We perform scaling tests and

discuss the scaling properties of the large-N inspired perfect action as opposed to the

standard and the classically perfect action.
In the second part we present a new formulation for a quantum field theory with

Abelian gauge symmetry. A Hamiltonian is constructed on a four-dimensional Eu-

clidean space-time lattice which is invariant under local transformations. The model

is formulated as a 5-dimensional path integral of discrete variables. We argue that

dimensional reduction will allow us to study the behavior of the standard compact

U(1) gauge theory in 4-d. Based on the idea of the loop-cluster algorithm for quantum

spins, we present the construction of a flux-cluster algorithm for the U(1) quantum

link model for the spin-1/2 quantization of the electric flux. It is shown how improved

estimators for Wilson loop expectation values can be defined. This is important be-

cause the Wilson loops are traditionally used to identify confining and Coulomb phases

in gauge theories. Our study indicates that the spin-1/2 U(1) quantum link model is

strongly coupled for all bare coupling values we examined.
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Chapter 1

Introduction and Outline

1.1 Introduction

Gauge symmetry is at the heart of our attempt to understand the fundamental inter-

actions we observe in Nature. The axioms of quantum field theory provide us with

the framework for a consistent description of the various particles that we observe

and constitute what we traditionally call matter and light. A few sacred principles

form the core of this framework: First, the axioms of special relativity which dictate

that we live in a four dimensional space-time continuum structured such that there is

a maximal velocity - the speed of light - and covariance of the physical laws within

it. The Lorentzian structure of space-time and the Poincare group of transformations

within it assign discrete spin and continuous mass labels to particle states.

Second, the principles of quantum mechanics which deprive us from knowing ex-

actly the whereabouts of the particles in the sense that classical mechanics allowed

us to. In fact they raise an uncertainty curtain when one tries to pinpoint the energy

and momentum of a particle in arbitrarily small space-time intervals, an uncertainty

controlled by Planck's constant. Further, they congeal particles and waves into a

quantum field, an object which displays, when properly probed, either matter or

wave behavior. Particles of the same identity become truly indistinguishable, some-

thing with profound consequences if one remembers that it is the Pauli exclusion

principle that allows an atom to be built.



Third, locality of the interactions between the various quantum fields that we

have identified is an imperative principle. Surprisingly enough, these local interaction

rules, besides respecting the relativistic invariance, are restricted in such a way that

arbitrary transformations of the quantum fields at different space-time points leave

the physical laws unaltered. This symmetry, the gauge symmetry, is the principle

which dictates the interactions.

The final ingredient in our approach is the renormalizability of the interaction

terms. In that sense, we have seen that the interaction of these quantum fields in

arbitrarily short distances - and correspondingly when they carry large momentum

- is structurally similar to the interaction at large distances. All that happens is

that the strength of the couplings between the fermions and the gauge bosons - the

spin-1 particles that carry the force - becomes dependent on the momentum scale of

the interaction.

The above principles led to the Standard Model for fundamental interactions which

has so far passed all experimental tests. It incorporates three types of gauge sym-

metry; a U(1) group which acts on the weak hypercharge assigned to the fermions

and is mediated by a gauge boson, an SU(2) group which acts on the left handed

weak isospin doublets of the fermions and is mediated by a triplet of gauge bosons,

and an SU(3) group which acts on the color charge of the quarks and is mediated

by eight gauge bosons, the gluons. The SU(2) x U(1) symmetry is spontaneously

broken at low energy and experiments indicate that this happens at an energy scale

of 250 GeV, resulting in an extremely short-ranged weak interaction between the

leptons and the quarks. The Abelian symmetry that appears at low energy is no

other than the one of electromagnetism; the exchange of photons between electrically

charged particles. It appears as a weak force which according to the renormalization

analysis becomes stronger as the charges come closer and closer. Exactly the oppo-

site behavior appears in QCD -the quark and gluon sector of the Standard Model.

There, the self-interaction of gluons, which is due to the non-Abelian character of the

gauge symmetry, antiscreens the color charge as the distance becomes smaller and

the interaction weakens. As a result, experiments done with high energy beams of



colliding particles are well understood within the framework of perturbative quantum

field theory of quarks and gluons. On the other hand, at low energies quarks and

gluons do not appear as free particles in Nature. Their interaction becomes stronger

as the energy is lowered and all we see in Nature is the nucleons and the short-lived

mesons.

An understanding of this effect, the confinement of the color charge in hadrons

has not been achieved despite the 25-year efforts on the subject. The leading proposal

for a non-perturbative understanding of QCD was developed by K. Wilson as early as

1974. The space-time continuum is replaced by a four-dimensional hypercubic lattice

which is regulating the infinities that plague continuum field theory. As will be shown

in Chapter 7, quark and gluon fields are defined naturally on the sites and the links of

the lattice. The problem becomes one of statistical mechanics. One has to generate

configurations with the weight exp(- 1-S) where S is the Euclidean action of the

configuration and measure the correlation functions of interest. Unfortunately, it

turns out that the amount of computing power that is needed in order to manipulate

large lattices and extract physical results is immense. While patient extraction of

results and anticipation of superior computers guarantee progress in lattice QCD, the

search for different approaches, less dependent on computer technology is definitely

well justified.

1.2 Outline

This thesis presents two approaches for a non-perturbative treatment of lattice field

theories. In part I we investigate the perfect action approach for scalar 2-d theories.

This is well motivated, given that the naive actions used in numerical simulations have

strong finite lattice spacing effects and the extraction of physical values is difficult.

This is especially true for QCD and, in fact, the quest for actions with improved

behavior has become a major frontline of research in the last years. In chapter 2 we

introduce the 2-d O(N) non-linear o-model and demonstrate some of the properties

that make it an interesting model to study.



In chapter 3 we present the lattice regularization scheme and discuss how the

notion of a perfect action arises based on a renormalization group flow study. We

then present the construction of the classically perfect action for the 0(3) spins by

Hasenfratz and Niedermayer and its amazing scaling properties.

In chapter 4 the quantum perfect action for O(N) spins in the large-N limit is

constructed. We demonstrate how this action can be applied to the 0(3) model.

Finally, we present our comparative study of the scaling properties of the naive, the

classically perfect and the large-N perfect action.

In chapter 5 we introduce the Monte Carlo method in the study of field theory.

We present the Wolff cluster algorithm for the O(N) spins, an algorithm that has

revolutionized the traditional Monte Carlo approach.

In part II we present a new class of Hamiltonian models with gauge symme-

try. This approach is motivated by the relation between classical and quantum spin

physics. In chapter 6 we present the physics of the 2-d quantum Heisenberg antiferro-

magnet (AF) and its relation with the 2-d classical 0(3) spin model. The dimensional

reduction of a system with large correlation length is the key to this correspondence.

This correspondence will be our paradigm for D-theory, the general framework using

discrete variables and dimensional reduction to represent theories with continuous

symmetry.

In chapter 7 we start with a presentation of the Wilson formulation for gauge

theories, the leading proposal for a non-perturbative understanding of QCD. We

proceed to construct the non-Abelian quantum link models, and demonstrate how a

continuous gauge symmetry can be represented exactly even if one works with discrete

variables, by properly using the existence of a Coulomb phase in 5-d non-Abelian

models. This formulation may turn out to be especially useful since theories with

discrete variables can be approached numerically with the powerful cluster algorithms.

Such algorithms have already been constructed for the quantum spin models and

proved very efficient tools for their study. We actually present a study of the Abelian

gauge theory with a cluster algorithm and it is likely that cluster algorithms can be

constructed for the non-Abelian theories also.



We start chapter 8 with a discussion of the XY model - a spin model with global

Abelian symmetry - in two dimensions. We then proceed to the 2-d quantum XY

model and show how their connections can be understood within D-theory.

Chapter 9 repeats the study for the Abelian gauge theory in 4-d. The compact

U(1) gauge theory as constructed by Wilson, can be promoted to a 4-d Hamiltonian

model with the U(1) symmetry represented exactly. We discuss features of the clas-

sical theory which based on D-Theory we would anticipate for the Abelian quantum

link model also.

Chapter 10 deals with the strong coupling limit of U(1) gauge theory. We show

that confinement occurs in the strong coupling limit of the quantum link models in

complete similarity to the Wilson theory.

In chapter 11 we show how the partition function of a quantum spin model can be

sampled efficiently with a cluster algorithm. We examine the XY model as a concrete

example. We further show that improved estimators for non-diagonal correlation

functions can be defined for the loop-cluster algorithm.

In chapter 12 it is shown how a flux-cluster algorithm can be naturally introduced

to sample the Abelian quantum link model. We further show how improved estimators

for Wilson loops can be defined for the flux-cluster algorithm. Due to the discrete

character of the variables, the evolution can be simulated in continuous time. We

discuss how a continuous time algorithm can be constructed making the sampling

more efficient from a practical point a view.

In chapter 13 we demonstrate the existence of a topological number - the winding

number - that can be defined in the finite volume Abelian spin and Abelian gauge

theory. The winding number is sensitive to the boundary conditions of the system

if there are infinite correlations in the theory. It is therefore a good probe for the

deconfinement transition of the 4-d U(1) gauge theory which can be measured very

efficiently from the flux-cluster algorithm.

Finally, in chapter 14 we present results from our numerical study of the U(1)

quantum link model. We discuss conclusions that can be drawn from measurements

of local quantities and the cluster area. We also study the effects of Higgsing the



gauge symmetry and the influence of short correlations on the cluster area. We close

with final remarks about the efficiency of the study through the existing algorithm

and future directions.



Chapter 2

The Two-Dimensional Non-Linear

a-Model

2.1 The Model in the Continuum

There are very few models in theoretical physics that have received the constant at-

tention over decades that the non-linear o-model has received. The reason for this

attention is the simplicity of the model in conjunction to the very interesting proper-

ties it possesses. Especially the model in two space-time dimensions has been estab-

lished as a classic testground for various ideas in perturbative, non-perturbative and

lattice formulations. The O(N) non-linear a-model is formulated in the (Euclidean)

continuum as an N-vector of scalar fields ex) with action

S[e] - - d2 ,. , (2.1)

and the fields constrained to take values on the N-sphere

() -). (T ) = 1. (2.2)

The scalar fields are dimensionless in two dimensions. The theory is invariant under

global O(N) rotations of the fields 6(x) -- R&(x) where R is an N x N orthogonal



matrix. The configurations that minimize the action (2.1) have a constant N-vector

*(x) throughout space-time. The classical ground state therefore breaks the O(N)

symmetry down to an O(N - 1) symmetry of rotations around the constant vector.

Based on standard knowledge on the spontaneous breaking of continuous symmetries,

we would expect a number of massless particles - the Goldstone bosons - in the the-

ory. Their number equals the number of generators of the coset group O(N)/IO(N- 1)

which is N(N - 1)/2 - (N - 1)(N - 2)/2 = N - 1. We would therefore expect that

(2.1) is a theory of Goldstone bosons and this is indeed true for more than two di-

mensions. As we will explain in a while, quantum mechanics changes this picture in

two dimensions. The model can be quantized through the path integral

Z =JDe(F() - 1) exp (- S[e) (2.3)

with the dimensionless coupling constant g. Based on Wilson's renormalization group

ideas Polyakov argued [1] that the model is asymptotically free, i.e. the coupling g

is getting smaller as the momentum scale is getting larger. The constraint (2.2)

is responsible for a non-trivial interaction between the fields. One way to see the

interaction is to solve the constraint for one of the fields and replace it in the action

(2.1). Let us name the first N - 1 fields 7i(z) and the N-th field o-(x) and solve the

constraint

o(x) = /1 - 2 (X) . (2.4)

Replacing o in the action we get the form of the theory for the N - 1 unconstrained

fields

S[] = d2 ) 2  (2.5)S[ 1-r 2 J2J 1 rd ir+ 1

For weakly fluctuating fields I7i <K 1 the dominant interaction is a four-point vertex.

For general configurations an expansion of the denominator in (2.5) generates an

infinite series of even-point vertices. Since the fields are dimensionless, the model is

perturbatively renormalizable. A detailed perturbative study can be found in [2]. In

particular, we mention that although in this form the theory seems to retain only



an O(N - 1) symmetry, the correlation functions of the model respect the full O(N)

symmetry. To one-loop order of perturbation theory the 3-function that governs the

running of the coupling with the momentum scale is given by [2]

d N-2
(g) - d n g(A) = 27r (2.6)

We therefore meet the first interesting property of the model, the asymptotic freedom,

which is also a main feature of non-Abelian gauge theories. Notice that for N = 2

the f-function vanishes. This should not surprise us since the 0(2) action is easily

seen to be the free theory of a massless angular variable.

Integrating equation (2.6) in the small g regime where it is valid, we get the scaling

of the mass scale with the coupling

M = Aexp [- ( 2)] .  (2.7)
(N - 2)g

We see that although we started with an action which has no dimensionfull parameters

in it and therefore no scale, still a mass scale appears already in one-loop perturbation

theory. This is the effect of dimensional transmutation, the appearance of a mass scale

A which breaks the classical scale invariance of the model, typically denoted as A S in

the modified minimal subtraction scheme. This effect also appears in pure Yang-Mills

theory which is classically a scale invariant theory.

The third interesting property of the model in 2-d is the effect of dynamical mass

generation. This is based on the Coleman-Mermin-Wagner theorem [3] which states

that there is no continuous symmetry breaking in two-dimensions and therefore no

two-dimensional Goldstone boson. The theorem is based on an examination of the

infrared properties of the 'would-be' Goldstone bosons which turn out to be strong

enough in 2-d so that the continuous symmetry does not break. Instead, the parti-

cles get a mass whose evaluation requires non-perturbative methods. An equivalent

statement in the language of statistical mechanics is that the theory cannot get or-

dered in 2-d and the correlation length - which is the inverse of the particle mass

- is kept finite at all couplings. The dynamical generation of mass also appears in



the Yang-Mills theory. In that case there is Coleman-Mermin-Wagner theorem, but

instead the color confinement is responsible for the non-perturbative generation of

massive states, the glueballs.

A special property of the 0(3) model is the existence of instantons [4]. Instantons

are solutions to the Euclidean classical equations of motion with finite action and

characterized by a topological charge. Their existence is due to topological reasons,

in particular these configurations are approaching a constant at infinity so that their

action remains finite. This requires the existence of smooth mappings with non-trivial

homotopy from the compactified 2-d space-time which is a sphere, to the internal

0(3) space which is also a sphere. In mathematical terminology these maps have

"integer second homotopy group" 112(S 2) = 7. Since II2(SN) is trivial for N > 2

we understand the uniqueness of instantons in the 0(3) case. The Yang-Mills theory

in 4-d also possesses instantons and their role in the non-perturbative mechanism of

confinement is under continuous investigation.

All these properties shared between Yang-Mills theory and the 0(3) model make

it a unique testground for the phenomena of Nature's strong interactions. Non-

perturbative results have become available through analytical techniques in the O(N)

models. It has been shown [5] that the models possess an infinite set of conserved

quantities. Based on the existence of these infinitely many charges the exact construc-

tion of the S-matrix of the theory was also possible [6]. Furthermore, the authors of

[7], using the thermodynamic Bethe's ansatz and the exact S-matrix, managed to

connect the mass-gap of the theory to the AHs- scale through the exact formula

81/(N-2) 1 (2.8)m e r(1 + 1/(N - 2)) s

Finally, the model admits 1/N expansion for large N [8] which goes beyond the

ordinary perturbative expansions and at infinite N provides an equation for the mass-

gap of the theory (section 1.3).



2.2 The Lattice Regularization

Formulating a field theory in the continuum is going to introduce infinities in every

physical quantity due to the infinite number of degrees of freedom. One way out

is to regularize the perturbative expansion of the theory in Feynman diagrams by

cutting-off the number of momentum modes. The diverging parts are then isolated

and the physical quantities are renormalized to momentum-scale dependent finite

values. A non-perturbative regularization of field theories is the lattice regularization

which replaces space-time with (in most cases) a hypercubic lattice of spacing a. The

scalar fields, for example the N-vector fields E, of the O(N) models are defined on

the sites x of the lattice. In order to describe the theory on the lattice we need

some regularized definition of the derivatives. A first approximation is to use the

nearest-neighbor difference 9, E --- (E+, - E.,)/a and write a lattice action

1 Ex - Ex
S[E] = - = ( - E. E'x) . (2.9)

2 . 2

The path integral expressions for the model become ordinary integrations over the

field space defined on each site. For example, we can write

Z = Jd X6( - 1) exp ( S[] (2.10)

and design methods (chapter 5) to simulate this path integral. The finite lattice

spacing a introduces a momentum cut-off to the modes of the theory. A plane wave on

the lattice becomes exp(ipna) with n = (ni, n 2 ) 2 72 and therefore the momentum

is taking values in the first Brillouin zone B =] - r/a, r/a]2 . The lattice field is

represented in momentum space

-- (x d )2 pE I: = (2)2 E(p) exp(ipx) (2.11)



with inverse Fourier transform

E(p) = a2  ,na exp(-ipna). (2.12)

nE7Z2

The Dirac 8-function 8(x - y) in configuration space becomes the Kronecker-8 on the

lattice

n, = a 22 exp (ip(n - m)a) (2.13)

while the 5-function in momentum space becomes periodically identified in the first

Brillouin zone

6p(p) = exp(-ipna) . (2.14)
(27r) 2 nE2 Z

It is very common to set the lattice spacing to 1 and restore it at the end using

dimensionality arguments. Using the tools above, we can deduce the form of the

action in momentum space

S[E] = (1-E-.! +4) - E- (2E- E+A - -E_) (2.15)
2,=d=1,2 x,4=1,2

i d (p) " [2 - exp(-ip,) - exp(ip,)] E(-p)
2 1B (27)2 A=1,2

1 d2 '
= ( 2 p )2d(p). - 4sin (p,/2)E(-p)

2 JB (27r)2  
A=1,2

1 d2p

2 JB ( 2 ) 2

Forgetting the constraint for a moment, we learn that the massless free field with the

standard nearest-neighbor coupling has the lattice propagator AsT(P)

Asr(P) = p -p) = - sin2(p,a/2)] (2.16)
S=1,2 a

The dispersion relation of the free particle with spatial momentum pl is then extracted

from the poles of the propagator with the identification (p1, p2) - (pl, iE(pi)) as

sinh2(E(pi)a/2) = sin2(pla/2) (2.17)



which agrees with the continuum result E(pl) = plI only for small momenta 1pI <

r/a. We see that our naive discretization of the action has already introduced severe

deviations from the continuum physics. The premise is that if we manage to make

a infinitesimally small, our results will converge to the continuum results. This is in

fact the main strategy in lattice field theory. We introduce the lattice and inevitably

break the Poincar6 symmetry down to the symmetries of the hypercubic lattice. We

nevertheless try to keep the other symmetries intact. We are going to show in chapter

7 how the gauge symmetry can be represented exactly on the lattice. The main effort

is to extrapolate results which are collected on finite lattices to the continuum. For

example, if we want to measure the mass m of a particle, we measure its two-point

function at zero spatial momentum and extract the mass from the exponential decay

with the distance (more in section 4.1). The continuum limit is reached by tuning

the bare coupling g such that ma - 0. The physical mass m is held fixed in this

limit as the spacing a - 0.

One should note the similarity of the lattice formulation of the Euclidean field

theory with the statistical physics approach which studies the behavior of a large

number of degrees of freedom defined on a physical crystal lattice. In the second

case though, the spacing a is physical and is not removed. In statistical mechanics

language, the Euclidean action becomes the classical Hamilton function of the system.

For example, the action (2.9) becomes the Hamilton function of the classical O(N)

Heisenberg ferromagnet giving the energy associated with the configuration [E] of

classical spins on the crystal lattice. The lattice path integral (2.10) becomes the

partition function of the spin system with the bare coupling g identified with the

physical temperature T of the system. The weight of each path exp(-S[E]/g), which

accounts for the contribution of quantum fluctuations, becomes the Boltzmann weight

of thermal fluctuations. One of the goals of the statistical physics study of the crystal

lattice is to explain the long-range properties of the system. One generally models the

complicated realistic interactions with a simpler theory and looks for the critical range

of parameters that can explain the long-range properties of the model. Therefore

one looks for a universal behavior of the model at long distances which requires



that the correlation length of some physical quantities becomes very large. The

correlation length ( is generally identified as the inverse mass of a particle in the

field-theoretic picture. The criticality that one looks here therefore requires taking

/a -+ oo while keeping the crystal spacing a finite. This approach is therefore very

similar to Euclidean field theory although the interpretation of the limit is different.

With the above translation between field theory and statistical physics language

it is common to apply the terminology from both fields to a lattice system.

2.3 Mass-gap at Large N

It might appear surprising at first, but the O(N) model actually simplifies very much

when the number of components N goes to infinity. The partition function for the

nearest-neighbor lattice action is

Z dE, (E 1) exp - - + . (2.18)

The constraint can be replaced by the integration over the auxiliary field A (the

coupling g is introduced for later convenience)

Z = dE, dA, exp 1 . + . (2.19)
X ( 9 xf=1,2 29 X

Going to momentum space, we obtain

Z= DEDA exp !J p (p) - T(p)E(-p) (2.20)
J = 2g B (27r) 2

i d2p (2q ) 2
+ d d2q (p) .E(-p - q)A(q) - /d2 q(q)p(q)l2gIB (27r)2J(27r)2 2g J B J

We can now understand that the leading contribution to the path integral at large

N comes from an expansion around the zero momentum mode of the auxiliary field

A(q) - Ao(27r) 2 p(q). This is because the zero mode makes the action N times a

Gaussian term for each of the N components. At large N therefore, this behavior



is going to dominate the path integral. A zero momentum mode for the auxiliary

field corresponds to a constant field AA, = A0 over all space-time. Notice that the zero

mode effectively acts as a mass term for the scalars m 2 = -iA 0 . In this limit, the

partition function can be approximated by the saddle point and the integration over

the N-vector can be performed trivially

Z = DE dAo exp - 2g (2r)2 (p) -( 3 sT() - iAo)E(-p)] - -AoV

S dAo Det [ s - iAo]- exp(- AoV) (2.21)

/ o %dAo exp TrIn[ sr - io] - AoV),

where V is the space-time volume of the system. An effective potential for the zero

mode can be defined (with the momentum trace Tr -> V/(27r) 2 fB d2p)

exp (-Veff(Ao)V) = exp - V2J ( In [sT(p) -iAo] - AoV2g (2.22)

Since the first term of the effective potential is proportional to N, in order for the

saddle point approximation to be valid, the second term should also be proportional

to N and therefore the coupling must behave such that gN is fixed with gN = 0(1).

The saddle point value for A0 can now be computed from a direct minimization of

the effective potential

dV_(__) N dp 1 1dVVff (Ao) + -V = 0 . (2.23)
dAo 2 1B (2r)2 PST(P) - iAo 2g

This equation is real and therefore accepts only a positive imaginary solution A0 =

im2 . Notice that a negative imaginary A0 would create a pole and therefore give an

imaginary contribution to the equation. Therefore the zero mode of the constraint

that survives the large N limit is indeed responsible for a mass generation. We finally

arrive at the gap equation, which determines the non-perturbative mass-gap of the



theory in the large N limit

f d 1 _ 1 (2.24)(2.24)
(27) 2 PST(P) + m 2  gN

We should note that there is nothing special in this derivation about the use of the

standard action couplings. The gap equation is valid for any two-spin couplings with

Fourier transform p(p).

Having the gap equation (2.24), we can also demonstrate the asymptotic freedom

of the model at large N. Consider a small lattice cut-off a which corresponds to a

large momentum cut-off A 7r/a. The standard action for relatively small momenta

becomes fsT(P) " p2 and therefore we can perform the momentum integration up to

the cut-off

A pdp 1 1 1 (2.25)
2w (2)2 p2 + 2 , -p2 n( m 2 ) .4(2.25)

We therefore arrive to the cut-off dependent coupling

1 N
- - - ln(A/m) (2.26)g(A) 27

and renormalization can be performed by a redefinition of the coupling at an arbitrary

scale M through
1 1 N
1 = + N In(A/M) . (2.27)

g(A) g(M) 27

The large N -function which describes the running of the coupling with the scales

is (A is now an intermediate scale)

d d 1 N3(g) - d g(A) = -2 A d N 2 (2.28)
(g) =d In M g()= -g2() d in M g(A) 27r

M M

and indeed agrees with the large N limit of the exact result.

The asymptotic scaling of the mass-gap at large N, based on the one-loop 3-



function and therefore valid for small gN is

m - M exp 2 . (2.29)

It can be shown [8] that the non-zero modes of the auxiliary field introduce interac-

tions between the bosons at leading order 1/N. A systematic expansion is possible

to higher orders of 1/N with diagrams that describe interactions between the scalars

and the auxiliary field. In this expansion, higher order contributions to the mass-gap

and correlation functions can also be derived [9].



Chapter 3

The Classically Perfect Action for

0(3) Spins

3.1 Seeking Improvement

The classical O(N) ferromagnet with nearest-neighbor coupling is not the only lat-

tice regularized action for the continuum non-linear O(N) model. In fact, there is

an infinite number of lattice actions that can be constructed by adding spin-spin in-

teractions at distances longer than a lattice spacing or with more complicated terms

including more than two-spin interactions. As long as these terms obey the O(N)

symmetry of the model and basic requirements like 2-d lattice rotational and transla-

tional invariance, positivity under reflections, hermiticity and locality, they should all

represent the same universal continuum physics. Locality in that context means that

the spin interaction strength should decrease with the distance at least exponentially.

The naive continuum limit a -- 0 should be the same for all these actions but their

behavior at finite a is definitely not universal. Simulating any of these actions at a

finite lattice spacing a is going to give results contaminated by the finite lattice cut-

off. Therefore it is reasonable to ask if, among all the lattice actions that represent

the same universal physics, there exist some for which the lattice artifacts for a fixed

lattice spacing are smaller.

The idea of looking for these improved actions is not new. Symanzik originally



started a program [10] based on power counting, of adding new operators to the action

with coefficients such as to cancel O(g2na2 ) artifacts in the correlation functions. This

program can be consistently implemented order by order in perturbation theory, but

in a computationally difficult way. The program has also been extended to a non-

perturbative numerical approach [11, 17] that can eliminate completely the O(a2 )

artifacts from a bosonic action. (For fermionic actions the lattice artifacts appear at

O(a) and therefore the application of the program in QCD leads to a non-perturbative

O(a) improvement). Actions constructed perturbatively are expected to improve

deep in the continuum limit, but the application on realistic lattices with moderate

correlation lengths is not guaranteed to show any improvement.

Let us demonstrate a tree-level O(a2 ) improvement for the O(N) spins. Symanzik

introduces a next-to-nearest neighbor spin-spin coupling

1 4 -. 1 _- I
Ssym = E -EX E+ - 12 E+24 (3.1)

g eP=1,2

In momentum space the action is

S = 2 (2 r2 E(k) L(k)E(-k) (3.2)

with the inverse spin propagator

A (k) = - 4sin - 4sin2 (k,a) (3.3)=1,2 12

= 16 t kl a) 2 
-1(,a 4 - k ( k Ia) - 1(ka) 4  + O(k6 a 4 )

= k + O(k6 a4).
[=1,2

We therefore see how tuning the coefficients of the two operators in the action has

led to the tree-level elimination of O(a 2) errors.

A different strategy for improving the lattice action is based on Wilson's renormal-

ization group (RG) theory [12, 13]. In fact, Wilson's RG theory predicts that there

exist so-called perfect actions which are free of any lattice artifact at any finite value



of the correlation length. A simulation on a coarse lattice with a perfect action would

therefore produce the exact results of the continuum theory. Let us see how this is

possible. Consider for example the space of lattice actions for the O(N) model. This

is an infinite-dimensional space consisting of the coupling constants g, cl, c2,..., coo

which parameterize all the possible types of multi-spin interactions. Any point in this

space should respect besides the O(N) symmetry, 2-d lattice rotational and transla-

tional invariance, hermiticity and locality. In general the correlation length is finite

in this space but there exists a hypersurface of couplings with the correlation length

being infinite for any theory defined on it. This is called the critical surface. The fact

that this is a hypersurface and not a set of isolated points can be understood since

for any action with infinite correlation length marginal operators exist at least in the

neighborhood of that point. An infinitesimal RG transformation step can be designed

by adding these operators to the action with proper weights so that the correlation

length remains infinite. Following Wilson, in this way we can construct hypersurfaces

of fixed correlation length in this space for any value of the correlation length.

We can introduce a RG transformation step anywhere on the critical surface.

Consider the blocking procedure of scale factor 2 which amounts to collecting the

four spins that live at the centers of a 2 x 2 block of a lattice with spacing a and

replacing them by the blocked spin. This process defines a new action on a lattice

with spacing 2a. Rescaling the spacing, we end up with a new action at spacing

a and a correlation length = (/2. Applying the RG step n times decorrelates

the system fast, leading to () = (/2". On the other hand, actions defined on the

critical surface with ( = oo will stay on the critical surface after the blocking step.

The RG transformation defines therefore a RG flow on the critical surface. Repeated

applications of the RG transformation step may lead to a fixed point (FP) action on

the critical surface which generally depends on the RG transformation. Now, consider

applying the RG step to an action in the neighborhood of the FP action, near the

critical surface but not on it. Repeated blocking steps will induce a flow away from

the critical surface to ever decreasing correlation length actions. Starting the blocking

steps even closer to the critical surface, the flow will stay closer to the critical surface



and approach the FP more closely before turning away to small correlation lengths.

Approaching the FP closer and closer, these flows are eventually going to define a

unique line of actions coming out of the FP and extending to any finite value of the

correlation length. This line of actions is the renormalized trajectory (RT). The actions

defined on the RT are the perfect actions. The reason is that any action on the RT,

even at very small correlation length, is connected to the infinitesimal neighborhood

of the FP by infinitely many steps of the RG transformation. Small distances in

the perfect action therefore correspond to very large distances near the FP before

the transformation. The infinitesimal neighborhood of the FP is the continuum limit

and actions there do not have cut-off effects. Since the partition function for the

perfect action at small correlation length is equal to the partition function at the FP,

measurements of the spectrum performed with the degrees of freedom of the perfect

action will give the same result with the FP action measurements performed with the

fields before the transformation. We therefore understand that we can use the perfect

action at a small correlation length on a coarse lattice and still get results free of any

lattice artifacts.

C 2 ,....

RT

FP-/ -------------- -- FP action

g=0 g

Figure 3-1: RG flow of the couplings in the O(N) non-linear cr-model. The FP action

applied to finite correlation length runs close to the renormalized trajectory near the

critical surface g = 0.

We finally note that the RT depends on the RG transformation that is chosen.



There are therefore families of perfect actions at a given finite correlation length pa-

rameterized by the RG transformation parameters. This is an important observation

when one actually looks for a perfect action since the proper RG transformation can

make the action as short-ranged as possible.

3.2 The Classically Perfect Action

Wilson's ideas establish that perfect actions exist but they do not indicate how to

locate one. In chapter 5 we are going to construct the perfect action for a free mas-

sive scalar and show how the same is possible for free fermions and gauge bosons.

Hasenfratz and Niedermayer [14] developed a program for locating the FP action for

asymptotically free theories and used it at finite correlation lengths as an approxi-

mation to the perfect action. As a prelude to QCD they performed the program for

the non-linear o-model and found that the FP action was free of lattice artifacts even

at very small correlation lengths. The FP action for the 0(3) model is defined on

the critical surface where g = 0. They considered the configuration of spins E, on a

square lattice and defined the RG transformation T(E', E) which is a blocking trans-

formation with scale factor 2. They divided the lattice in 2 x 2 blocks and associated

a blocked spin with unit magnitude E' which is a certain average of the original

four spins with the center of the block XB. The blocked action is therefore given by

1 # 1 'I.
exp -si'E]) = Hf dE, (E - 1) exp ( S[E] + T(E', )) (3.4)

where both actions S[E] and S'[E'] should have the naive continuum limit with the

coupling scaled out. The RG transformation should leave the partition function

unchanged

dEz BS(E -1) exp i S'[I = p d, (- S[] , (3.5)
. B B _9X2: )ep _



and this restricts the kernel T(E', E)

dE , 5j(E2 - 1)l dE (1- 1) exp ) 1.

Hasenfratz and Niedermayer considered the kernel

/dE, 6(E

E

- 1)exp { -

- In YN (

where P is a parameter and YN a Bessel function chosen to satisfy (3.6) due to the

property

JdES6( 2 - 1) exp(E -E') = const . YN(E'l). (3.8)

Specifically, it is easy to see that Y3(x) - sinh(x)/x. Taking P -+ oo the transforma-

tion (3.7) goes to a 6-function blocking

EExE91B */ IZ
xB B EJ1EB

(3.9)

At large P we write P = [n + O(g)] with i a free parameter and the transformation

(3.7) becomes

dE8(E, -

zB L

1) exp - s[E]

.E
a:E=B

Near the FP, the coupling g goes to zero and therefore it scales asymptotically. Using

the one-loop p-function for the RG transformation with scale factor 2 we get 1 _

exp (-

(3.6)

1
S[E]

9

+ E P'Z

XB

P

(3.7)

Ez

exp (-
1
g/[ 'I]E' = II (3.10)

IEB

SI[E I)

, I



- (1/27r) In 2 and therefore for small g (3.10) becomes a saddle point problem

S'[E'] = min S[E] - E~i.,B E -I E ] . (3.11)

E}MB 
zMB zEB

The FP of the transformation can now be determined from the equation

SFP[E'] = min SFP [E] - [E ' " - E, -I Ec  x . (3.12)

{E} B EB zEzB

This is a non-trivial problem which requires the numerical determination of the con-

figuration on the fine lattice [F] which minimizes the functional in (3.12) for any

configuration [E'] on the coarse lattice. It is therefore an inverse blocking problem.

The action SFp/g is perfect only at the fixed point g = 0. Due to asymptotic

freedom, the line of actions SFp/g is running close to the RT for small g but, in

general, will diverge from the RT at moderate correlation lengths. It is shown in [14]

that the action SFp defines a perfect classical theory on the lattice. The statement

is that if a configuration [ '] satisfies the FP classical equations of motion, then the

configuration [F] on the fine lattice determined by inverse blocking satisfies the FP

classical equations. Furthermore, both configurations have the same value of the

action. This immediately implies that in the 0(3) model, which has instantons, the

FP action can describe arbitrarily large instantons perfectly, i.e. without any cut-

off effects. The instantons are configurations that satisfy the classical equations of

motion. They have an action proportional to their topological charge and a radius

that can take any value for a given topological charge. An instanton on the lattice

with radius p and topological charge 1 (which means action value 47r) can be inversely

blocked to a finer lattice where it appears as an instanton of size 2p with the same

action and therefore topological charge. Iterating this step we understand now that

the FP action allows the existence of 0(3) instantons at any scale.



In order to solve the equation (3.12) one has to decide on a reasonable parame-

terization of the FP action such that a solution to the problem (3.12) is practically

feasible. Hasenfratz and Niedermayer truncated the parameterization to two-spin,

three-spin and four-spin terms

SFP [E] = 1 p (r)(1 - E - ,) (3.13)

X1, 42 E3, 4
Xl ,X2 X3 ,-4

where r is a lattice vector and c(x, x 2, X 3 , X 4) determines the strength of the three-

spin and four-spin interactions. A three-spin interaction term has xl = x3 while a

four-spin term has x 1, x2, X3, x4 all different. An approximate determination of the

couplings in (3.13) is possible if we assume a configuration {J'} on the coarse lattice

which does not fluctuate much around the N-th axis. Then the configuration {J}

on the fine lattice which solves (3.12) also fluctuates weakly around the N-th axis.

Keeping quadratic and quartic order terms of the fluctuating fields in (3.12) leads

to equations which determine p(r) and c(X1, X2, 3 , 4 ). It is interesting that these

equations are independent of N for N > 3 and their solutions determine a FP action

valid in this limit for any non-Abelian O(N) spin-model. The Abelian case N = 2

leads to different equations which therefore provide a FP action for weakly fluctuating

XY model fields. It is not surprising also that in this limit the two-spin interaction

p(r) for the N - 1 fluctuation fields coincides with the FP interaction for free massless

scalars derived in [4] and which in momentum space is

1 2 sin 2(q/2) 1 (3.14)
p1(() = +l (3.14)

2Z
2 (q + 27r1) 2  1 (q/2 + 7rlI) 2 3 3

The configuration space couplings are determined from

p(r) = f(q) exp(iqr) (3.15)

and it turns out that they decrease exponentially fast with the distance r for any choice



Table 3.1: The couplings of the spin-spin interaction terms at distance r = (rl,r 2 )
for the optimal choice of the RG transformation with n = 2. In this convention, for

the standard action the only non-vanishing entry in this list would be psT(1, 0) = -1.

of the RG parameter r. We call actions with this property local. It turns out that

the choice r = 2 makes the action (3.14) as short-ranged as possible, with a decay

rate p(r) , exp(-3.44jrl). The inverse spin propagator should have the property

fp(q) - q2 for small q. This requires that in configuration space E, p(r)r2 = -4. The

symmetries of the model require that p(ri, r 2 ) = p(r 2,r) = p(-ri, r 2) = (ri, -r2).

Using these couplings as a first approximation, the equation (3.12) was solved in

[14] for 0(3) spins using a numerical multigrid procedure. Repetitive inverse blocking

steps on smooth and rough configurations led to an accurate determination of the

FP action parameterized with a set of 24 two-spin, three-spin and four-spin couplings

(figure 3-2). It was noticed that although small, the three-spin and four-spin couplings

are important for rough configurations.

3.3 A Scaling Test

Extrapolating quantities computed on a lattice with finite spacing to the continuum

is a fundamental problem in lattice simulations. The results are always contaminated

by lattice artifacts and it is desirable to have a well-defined method to estimate the

dependence of physical quantities on the lattice spacing. Liischer, Weisz and Wolff [15]

r p(r) r p(r)

(1,0) -0.61802 (4,1) 7.064 -10 - 7

(1,1) -0.19033 (4,2) 1.327. 10- 6

(2,0) -1.998 10- 3  (4,3) -7.953 10- 7

(2,1) -6.793 . 10- 4  (4,4) 6.895 10-8

(2,2) 1.625 . 10- 3  (5,0) -8.831 10-8

(3,0) -1.173. 10- 4  (5,1) 3.457 10-8

(3,1) 1.942 10- 5  (5,2) 3.491 10-8

(3,2) 5.232 10- 5  (5,3) -3.349 10-8

(3,3) -1.226 10-5 (5,4) 8.408 -10 -

(4,0) -2.632. 10-6 (5,5) -1.657 - 10-10
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Figure 3-2: Parameterization and

for the 0(3) non-linear o-model.

L -0.00772 0.04970

couplings of the numerically determined FP action

The form of the action is in [14], eq.(12').

developed a method to compute the running coupling in asymptotically free theories

through a finite-size scaling analysis that can be applied to moderate size lattices. In

asymptotically free theories like Yang-Mills and the non-linear a-model the continuum

limit is reached when the dimensionless coupling g approaches zero. This is a high

energy region and the running of the coupling (and other physical quantities) can be

computed reliably from one or two-loop perturbation theory. The question that arises

is how the perturbative regime results are connected to the low energy regime that

is usually studied in the numerical simulations on finite lattices. The authors of [15]

studied the 2-d 0(3) non-linear o-model as a prototype. They consider the system on

a lattice with finite spatial extent L and infinite Euclidean time extent T. In practice

they used T -~ 2L and applied open boundary conditions to the time direction in

order to make it effectively infinite. Periodic boundary conditions are applied to the

S

0-

S---

Type Coupling Type CouplingType Coupling



finite spatial direction. They defined the dimensionless running coupling

9(L) = m(L)L (3.16)

where m(L) is the mass-gap of the system and which is easily extracted from the spin-

spin correlation function. It was shown in [16] that the one-loop f-function for this

coupling coincides with the one-loop f-function for the coupling in the MS scheme

and therefore the coupling (6.8) is running to asymptotic freedom. The perturbatively

known f-function determines the running of 9(L) with infinitesimal changes of L for

small values of L where perturbation theory is a good approximation. Therefore

connection with the values of the coupling at large volumes is not possible. In order

to overcome this problem, the authors of [15] considered the step scaling function

o-(s, u) which describes what happens to the coupling when L is scaled by a factor s

such as s = 2 for example. Thus they defined

g(sL) = o (s, (L)) . (3.17)

The idea is that if the scaling function ao(s, u) is known for a certain s and a range of

coupling values u, the running of the coupling can be constructed from the sequence

un = g(sL) = a(s, u_1) . (3.18)

Starting from a small volume, and iterating n times we can compute the coupling

at a large volume snL where the finite-volume effects on the mass-gap are negligible.

The important thing to realize is that this extrapolation over orders of magnitude of

L from the perturbative to the non-perturbative regime can be achieved with values

of the scaling function a(s, u) computed on small or moderate size lattices. This

program was applied in [15] for s = 2. The authors considered pairs of lattices from

(5 x oo, 10 x oo) up to (16 x oo, 32 x oo). They fixed the bare coupling 1/g such that a

desired value for g(L) was obtained. Then they doubled the spatial extent L keeping

1/g fixed and measured the new coupling g(2L). In this way they collected points of



the scaling function o-(2, u) for various finite-spacing lattices and extrapolated reliably

to the continuum value of o(2, u). These data constitute therefore a measure of the

finite lattice spacing artifacts for the mass-gap of the theory.

Having the step-scaling function values, the iterative procedure (3.18) can be

carried through. With the values o(2, u) at hand, g is tuned so that g(L) = u is

obtained. Then we learn that at this g, g(2L) = u' = o(2, u). If the continuum

limit of o(2, u') is also known, the value g(4L) = u(2, u') now becomes available. In

this way, a reliable extrapolation to the infinite volume limit of the mass-gap was

obtained in [15]. The finite spacing errors are shown to be small and under control.

This method of non-perturbative renormalization of physical scales has been applied

to QCD during the last years [17, 18, 19, 20] especially studying the running of the

strong coupling and the running quark masses.

The study of the 0(3) running coupling in [15] was performed using the standard

nearest-neighbor action and the lattice artifacts on the mass-gap are shown in figure

3 for the particular selection g(L) = 1.0595. This scaling test is a classic test that

any candidate improved action should undergo.

Hasenfratz and Niedermayer applied this scaling test to the FP action which was

numerically determined from the multigrid procedure for the 0(3) spins. They put

the system on a periodic square lattice of finite spatial extent L. They chose a time

extent at least six times larger that the correlation length ((L) l1/m(L) so that

it can be effectively considered infinite. They simulated the action at L = 5a and

tuned g so that p(L) = 1.0595. Then they measured g(2L) and amazingly found

no lattice artifacts for the mass-gap. They report that even on smaller lattices no

lattice artifacts appear. These are lattices with g r 1 and very moderate correlation

lengths. It appears therefore that the line of classically perfect actions SFP/g runs

very closely to the full RT even down to small correlation lengths. In principle this

is an unexpected result that lacks explanation. Further tests that were performed

using the FP action verified the perfection in all aspects studied. In particular, they

showed that the rotational symmetry of the two-point function was perfectly restored

[14]. They also observed perfect topology, i.e. the existence of 0(3) instantons at all
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Figure 3-3: Cut-off dependence of m(2L)2L for fixed value of m(L)L=1.0595 for
the standard action (circles) and the FP action (triangles). The values of L/a are
indicated in the plot. The square is the extrapolated continuum value of a fit with a
second order polynomial in (a/L) 2 . No cut-off artifacts are seen with the FP action.

scales [21, 22]. We finally note that despite the multispin couplings, the Wolff cluster

algorithm [23] can be generalized [24] to include these couplings in a way shown in

chapter 5 and therefore the FP action is simulated very efficiently.



Chapter 4

The Large N Quantum Perfect

Action for O(N) Spins

The complete elimination of cut-off effects with the FP action even at very small val-

ues of the correlation length is in principle unexpected and needs to be understood.

It is not obvious why an action which is expected to be perfect only in the classical

limit works so well for the full quantum theory of the 0(3) spins. In contrast to the

classically perfect action, in this chapter we will attempt to locate a quantum perfect

action which is an action on the RT. One approach will be to study the problem at

large N. At large N the model simplifies substantially becoming basically a saddle

point problem, while maintaining at the same time its central non-perturbative fea-

tures. As we demonstrated in chapter 2, at large N the model becomes a free theory

of N bosons with a non-perturbatively generated mass, determined from the mass-gap

equation. The interaction appears only as an 1/N correction in the model.

The large N limit seems like a good starting point for capturing the 0(3) physics.

Since there is no interaction at large N, we expect that a computation of the RT

might be possible. Our strategy [25] will therefore be to try to construct the RT

at large N and check if the quantum perfect action located on the RT at large N

provides an improved behavior for the 0(3) system at small correlation lengths.



4.1 Quantum Perfect Action for a Free Massive

Scalar

The FP action for the Gaussian model - which is a set of massless free fields -

has been derived in [4] by iterating a blocking RG transformation step. Here we

are going to show that the perfect action for the free massive scalar can also be

constructed. Since the mass of the particle is the inverse correlation length of the

theory, this action is a quantum perfect action for the massive scalar at any value of

the correlation length.

Here also, instead of the blocking RG transformation step that takes a field con-

figuration from a fine lattice to a coarse lattice, we are going to use a RG step that

blocks the lattice fields directly out of the continuum. This method of "integrating

out of the continuum" has been shown [26] to lead directly to the FP of repetitive

iterations of the blocking step. Consider the continuum Euclidean action

s[p] -' J d'2X[O",(x)z,cp(X) + m2p 2()] (4.1)

and the RG transformation that integrates the continuum fields on a square block c,

with size a and centered at x, c. = [ 1 - a/2, xi + a/2] x [X2 - a/2, X2 + a/2]. The

lattice field is

= d2y c(y) (4.2)

and the corresponding blocking in momentum space can be found for the lattice fields

in the first Brillouin zone B =] - ir, 7r]2 (we set a = 1 for convenience)

(p) = E d2ycp(y) eipx I dY2 yJ 2 q o(q) eq"eip (4.3)

d2q  eiq,(~(+1/ 2 ) 
)- eiq,(x,.-1/2)

-o (q, ) II eq) -
S(2)2 =1,2 zq,

S I d 2 qW (q) n 2 sin(q,/2) ei(q+p)x

The momentum integration is replaced by an integration over infinitely many copies

The momentum integration is replaced by an integration over infinitely many copies



of the first Brillouin zone

m(p) = E E d  (q+ 2l)I(q + 2rl)ei(q+p)
X E221B (27r)2

: i d 2q

p (2r (q + 2rl)II(q +

Sc(p + 27rl)Il(p + 27r1)
IEZZ2

Consider the RG transformation which smears

distribution of width a. The perfect action is

27rl)(2ir)28p(q + p)

2 sin(p,/2)
; II(p) =

A=1,2 Pp

the 6-function blocking to a Gaussian

exp(-S[4]) = JDT exp - a - dY c(y) exp(-s[p]), (4.5)

and the RG transformation leaves the blocked partition function invariant as it should.

The Gaussian blocking kernel is replaced by an integration over the auxiliary lattice

field i,

exp(-S[4]) = D dr, exp + i ( - d2y P(y))] exp(-s[]) .

(4.6)

In momentum space we get

exp(- S[P]) D D7 exp -)2 q(p)q(-p)
lB (2 - (2 7 ) 2

+ i d (p) (p + 2l)II(p + 2rl))(-p)

- (2p) 2pp)(p + m2)(-p)}

and the Gaussian integration over the continuum field o can be solved as an exact

saddle point. The classical continuum field which minimizes (4.7) is

ill(p)iII(p) r+(p)
P 2 + M22

(4.4)

(4.7)

p (-OO, OO)2 (4.8)



and by replacement in (4.7) we get

exp(-S[]) exp 2 ()[ 2(p + 2r) 2 (-p) (4.9)
1E 7 2 (p + 21rl)2 + m

The remaining integration is also Gaussian and therefore the saddle point auxiliary

field replacement gives the exact answer for the perfect action

1 r d2p
S[b] = 1 41(p)A (p; m) (-p) (4.10)

2 JB( 2
P ()2

where the blocked propagator A(p; m) is given by

II(p + 2rl)(p;m) = E (p + + a . (4.11)

IEZ 
2 (p + 2r)2 + m2

The configuration space couplings are determined by the Fourier transform of the

inverse propagator

p(r ;m) = ( 2 r A - (p; m) exp(ipr) (4.12)

and the perfect action in configuration space is

1
S[] = ) p(r ; m)+ . (4.13)

The RG parameter a can be tuned such that the action is maximally local. We should

note also that the result is trivially extended to any dimension. It turns out that the

summations in (4.11) cannot be performed analytically in more than one dimension.

This is not a problem because a numerical optimization is possible to high accuracy.

In any case, the couplings decay exponentially fast with the distance. In 1-d, the sum

can also be done analytically (appendix A) using the complex residue theorem. The



value
a = sinh m 1 (4.14)

n 3  m 2

ultralocalizes the action to the standard nearest-neighbor coupling. We call ultralocal

the actions that extend over a finite number of couplings. It is important to realize

that the action (4.13) is a perfect action at any value of the correlation length ( =

1/m. Therefore, the couplings from (4.11) parameterize the full RT and provide the

quantum perfect action for any massive free scalar theory.

Let us demonstrate the perfectness of the theory by computing the spectrum

from the two-point function at large time separation. Consider the field operator

that creates a particle with spatial momentum pi at a (Euclidean) time x2 .(Direction

1 is space and direction 2 is time)

J (Pi)2 = (p, p 2) exp(ip2x 2 ) . (4.15)

The two-point function (4(-p),((pl)o) describes the creation of a particle with

spatial momentum pi at time 0, its Hamiltonian evolution in time and its annihilation

at time r. Inserting a complete set of energy eigenstates In) we get

(((-pi)((Pi)o) = (p Il exp(-rH) pl) = (pl ln) 2 exp(-rEn) (4.16)
n

which for large times is dominated by the ground state

(t(-pl)r4(pi)o) - C(pl) exp (- rEo(p)) . (4.17)

We can therefore compute

((-PIr(P)o) = ((-pi,2)(PI, P2)) exp(ipr) (4.18)

27 r -d2Pr

S 2pl, P2 )2r8p(p2 +p) exp(ip' r)
lr 27" -7 27r 

2 2

7- -dP2A(pi,p2) exp(-ip2r) = r P2 (p 27r + a) exp(-i2

-2 -r 2x (p +27rl) 2 +a r



[0 dp2  II 2 (p +27r1 1 ,p 2 )
- 2E (pl + 2r1) 2 + p2 + m 2 exp(-ip27) + a 5 -,o

11E fo 27 (p + 2l) 2 2

where in the last step we combined the sum over 12 and the integration over the

Brillouin zone to a full momentum integration. The integral is computed with the

complex residue method and the summation over 11 provides infinitely many poles

that contribute

P2 = -i V(pi + 27r1) 2 + m 2  (4.19)

The correlation function is therefore decaying like

(41(-Pl)I(pi)o) = E C(pl + 21 1r) exp(-E(pi + 27rl)r) + a6r,o (4.20)
11 E2

and the energy eigenstates of the system agree exactly with the continuum dispersion

relation for a relativistic particle with mass m

E(pi + 271l) = (p + 27rl1) 2 + m 2 . (4.21)

It becomes clear that the reason the spectrum is restored completely is due to the

contribution of all the Brillouin zones to the perfect propagator (4.11). This is

in contrast to the standard action where there is only one pole and the spectrum

sinh(E(p1 )a/2) = sin(pia/2) has strong lattice artifacts. Any analytical or numerical

computation on a lattice with finite spacing using the quantum perfect action (4.13)

will be free of any lattice artifacts.

4.2 The Large N Quantum Perfect Action

With the perfect action for free massive scalars at hand we can now develop a program

for the computation of the quantum perfect action for O(N) spins at large N. We

consider the O(N) system on a lattice and use the quantum perfect action for free



massive scalars as the action for the kinetic part of the spins

Z = I dE 6(. - 1) exp - E E, -p(r;m)b+, . (4.22)
X 2g xrI

We express the constraint as an integration over the Lagrange multiplier field A,

which enforces the constraint locally

Z = dE dA, exp 2g E -p(r; m)E+, - 2g (4.23)

Based on chapter 2, we introduced A, with the right sign so that A0 > 0. As we

already demonstrated in chapter 2, the large N limit of the theory is the saddle point

taken with gN fixed and finite. Only the zero mode A0 is important in that limit,

or equivalently the local constraint field is replaced by a soft global constraint. The

N fields are free with the zero mode A0 contributing to the square of the mass. The

effective potential for Ao is

exp (-Ver(Ao)V) = exp - V 2 In [A-(p; m) + Ao] + AoV} (4.24)

and its minimization determines the saddle point value of the auxiliary field

Sd2p - (4.25)
(27r) 2 A-1(p; ) + A0  gN

The action will be a perfect action for the O(N) model at N -+ oo if the parameter m

coincides with the non-perturbative mass-gap of the model. The action will become

perfect therefore if the dynamics at large N set A0 = 0. The full RT is given by the

mass-gap equation
Sd 2  1 (4.26)(4.26)
B (27r)2 -l(p; m(g)) gN

which determines the quantum perfect action couplings p(r; m(g)) for any value of

the correlation length = 1/m(g).



4.3 Scaling in the 0(3) Non-Linear a-Model

We applied the large N quantum perfect action to the 0(3) model and checked its

scaling behavior [25]. We performed the Liischer-Weisz-Wolff scaling test [15] and

measured the lattice artifacts of the renormalized coupling g(L) = m(L)L where

m(L) is the mass-gap of the system at finite spatial extent L. Periodic boundary

conditions are applied to both directions. The time extent of the lattice is taken

at least six times larger than the measured correlation length so that it appears

effectively infinite. We implemented the program following the steps

* For a lattice of spatial size L, we aim at a mass gap fixed by m(L)L = 1.0595.

This is chosen so that we can compare with the results in [15, 14].

* We tune the coupling g so that the action is perfect at large N. This requires

the use of the free perfect action p(r; m(g)) with the parameter m(g) tuned

such that it coincides with the measured mass-gap m(L) of the system. This

procedure converges to a unique point in the parameter space (g, m(g)). The

mass-gap is extracted from an exponential fit of the zero-spatial momentum

two-point function at large time separation. The parameter a is fixed to the

1-d ultralocalization value a = sinh m/m3 - 1/m 2 which is checked numerically

to be near the ultralocal point in 2-d also. The Fourier transform of A -(p; m)

is computed numerically on a mesh with high accuracy.

* Keeping the coupling g fixed, we double the lattice spatial size. We simulate

the system and tune the parameter m so that the action now becomes perfect

on the 2L lattice. This requires m = m(2L). The value of the running coupling

g(2L) = m(2L)2L determines to what extent lattice artifacts contaminate the

results.

The large N action contains only two-spin couplings. The action is truncated to

a set of nearest-, diagonal- and next-to-nearest neighbor couplings. It was checked

that further couplings are insignificant. The truncation respects E, p(r)r2 = 4 which

follows from p(p) . p 2 for small momenta.



Table 4.1: Truncated large N perfect couplings for L = 6, m(L)L = 1.0595. The

symmetries of the model require that p(ri,r2 ) = p(r 2,ri) = p(-ri,r2 ) = p(r 1 , -r 2 ).

We tested the scaling at two lattices L = 6, 8 where the correlation length is small

and the lattice artifacts stronger. We simulated the system using the Wolff cluster

algorithm ( chapter 5). The scaling properties as shown in figure 1 are not improved,

in fact they turn out to be even worse than the standard action.

4.4 Final Comments

The classically perfect action presented in chapter 3 is a truncation to 24 terms that

include two-, three- and four-spin couplings. It is surprising that this action scales

so well even for small correlation lengths. As demonstrated in chapter 4, the full RT

can be computed for the O(N) non-linear o-model in the large N limit. Although

this action knows about the dynamical mass generation and in fact provides a way

to compute non-perturbatively the mass gap, it fails to show improved scaling when

applied to the 0(3) model. Clearly, large N dynamics does not explain why the

classically perfect action for 0(3) stays close to the RT.

We noticed that the large N truncated couplings are very close to the two-spin

couplings of the classically perfect action. But the three- and four-spin couplings in

the classically perfect action seem to be important in capturing the physics of rough

configurations. In particular they have been shown to be important for topological

effects [22]. In the large N scheme, three- and four-spin couplings occur in the 1/N

expansion, indicating a possible direction for improving the scaling of the large N

action when applied to N = 3.

r p(r; m)
(1,0) 0.61880
(1,1) 0.19033

(2,0) 1.9930 - 10-3
(2,1) 6.7863- 10- 4

(2,2) -1.6177- 10-3

(3,0) 2.3413 . 10- 4
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Figure 4-1: Cut-off dependence of m(2L)2L for fixed value of m(L)L=1.0595 for the

standard action, the FP action and the large N quantum perfect action. The values

of L/a are indicated in the plot. The square is the extrapolated continuum value of a

fit with a second order polynomial in (a/L)2.

Other strategies have also been employed in an attempt to understand the scaling

properties of the classically perfect action. The authors of [27] combined Monte Carlo

and RG methods with a truncated action containing up to 13 different patterns of

two-, three- and four-spin couplings. No considerable improvement with respect to

the standard action was recovered either. The authors of [28] considered a large N

Symanzik improved action applied to N = 3. Their action contains only two-spin

couplings. They report some improvement compared to the standard action but their

action scales far worse than the classically perfect action.

It seems that one needs quite a large set of couplings (including three- and four-

spin ones) in order to catch the physics of rough configurations and to improve scaling.

There has been no analytical understanding yet of the mechanism responsible for

these couplings which make a classically perfect action scale so amazingly at small

correlation lengths.



The quest for improved actions for QCD has been very intense during the last years

([29, 30] and references therein). One approach is to look for the classically perfect

action for QCD which requires an extensive parameterization and determination of

the couplings through the multigrid minimization. It turns out that the problem is

far more complicated than the O(N) model. It is an on-going project to determine

the perfect action that will systematically eliminate the lattice artifacts from every

measurable quantity. Another approach developed from the MIT group [26] is looking

for the perfect action starting from the perfect action for free fields. As we saw in

section 4.2, the perfect action can be found by integrating the scalar fields out of the

continuum. We should not be surprised that the same is possible for free fermions and

gauge bosons since the Gaussian action and Gaussian RG kernel path integrals can

be performed exactly. The perfect action for Wilson fermions was found in [31] and

for gauge bosons in [26]. The structure of the perfect propagators is similar consisting

of infinite poles from a summation over all the Brillouin zones. The propagators also

contain extra functions that ensure the right polarization states. In all cases the RG

parameter a can be tuned so that the action is maximally local. These actions are

the starting point for a perturbative construction to O(g) of lattice chiral fermions

[32] and the 0(g) quark-gluon and three-gluon perfect vertices [26]. The method

can be combined with multigrid minimization techniques for the determination of the

non-perturbative perfect action for QCD [33].



Chapter 5

The Cluster Algorithm for

Classical O(N) Spins

5.1 The Monte Carlo Method

Given a partition function of a system like the O(N) model on a lattice the question

raised is how to make a practically feasible study of it. The number of configurations

that are summed over is tremendous -just consider that for an Ising model on a 102

lattice we get 2100 M 1030 configurations. Let us denote a general configuration of the

fields by C. The action of the configuration is S[C] and the partition function is

Z = exp(-S[C]) (5.1)

where the summation includes in general integrations with a suitable measure for

fields with continuous internal spaces, for example integrations over the SN- 1 spheres

for the O(N) model. The idea that allows a numerical simulation is importance

sampling. If the action is bounded from below, a shift can in general make it positive

for any configuration. The sum (5.1) will be dominated from the configurations that

maximize exp(-S[C]). The expectation value of an observable

(0) = Z 0 o[c] exp(-S[C]) (5.2)
C



is dominated therefore by those configurations that have the maximal Boltzmann

weight exp(-S[C])/Z. The idea of importance sampling is to generate an equilibrium

ensemble of configurations where each configuration has a probability density

W[C] = exp(-S[C]) (5.3)

with respect to the same measure used in (5.1). The probability density should

satisfy the axioms of a probability, i.e. 0 < W[C] < 1 for any C and Ec W[C] = 1.

In the equilibrium ensemble the configurations which are most important to the path

integral will occur more frequently than the ones with small Boltzmann weight. The

expectation value of an observable can then be measured directly as the statistical

average

()O[C] (5.4)

In principle, an infinite number of configurations is required to ensure (5.3) but we

expect that with a finite number N the error in (0) will be typical of a canonical

ensemble, i.e. 1/V/N. Therefore making the ensemble larger guarantees that

the statistical error will always decrease to the desired accuracy. Generating the

configurations that constitute the equilibrium ensemble is a stochastic process. This

means that given a configuration C already in the ensemble, there is a given transition

probability P(C -- C') which depends on C to generate a new configuration C' of

the ensemble. The transition probability should satisfy

E (C + C') = 1 (5.5)
C'

for every configuration C of the system. In a general ensemble, the sequence of

configurations generated with P(C - C') will alter their probability density. After

a configuration is generated, the probability density W[C] will change to

W'[C'] = y W[C]P(C - C') . (5.6)
C



We see that in general the transition probability P(C -+ C') defines a motion of

the probability density. We would like this motion to converge to the Boltzmann

distribution (5.3). Configurations generated after that will constitute the equilibrium

ensemble. For this reason we require that a fixed point is reached

EW[C]P(C -- C') = W[C'] = Zexp(-S[C']) . (5.7)
C z

We should be careful that whatever choice of P(C -* C') is made, the fixed point

of the weight density should be unique otherwise the results of the simulation will

be ambiguous. We require also that the transition probability obeys the ergodicity

condition. This is the requirement that starting from any configuration, we can reach

any other configuration in a finite number of transitions.

The equilibrium ensemble which is generated with the ergodic transition proba-

bility P(C C') is called a Markov chain and the process of generating the sequence

a Markov process.

One way to generate a Markov chain is to select the transition probability so that

it obeys the so-called detailed balance equation

exp(-S[C])P(C - C') = exp(-S[C'])P(C' -+ C) (5.8)

for every pair of configurations C, C'. A summation over C or C' is easily seen to

verify (5.7). We note that this is only a sufficient condition for (5.7). By construc-

tion, a Markov chain is guaranteed to move through the phase space of the system

ensuring that configurations which contribute more to the path integral occur with

correspondingly larger probability.

5.2 The Metropolis Algorithm

Having understood the importance sampling and the requirements for the generation

of a Markov chain, we proceed to specific algorithms which generate the sequence

and which essentially are a choice of a transition probability. The first algorithm



proposed historically is the Metropolis algorithm [34]. In this algorithm the transition

probability is determined from two steps. The first step is a probabilistic suggestion

for a new configuration and the second step is a probabilistic acceptance or rejection

of the transition. The combined process defines the transition probability which

should respect the detailed balance and ergodicity conditions. Given a configuration

C, the algorithm first makes a suggestion for a possible transition with the probability

Ps(C -* C'). The suggestion probability is required to be symmetric, i.e

Ps(C -, C')= Ps(C' -C) . (5.9)

After that, the algorithm examines the action of the new configuration and decides if

it will accept the transition. In particular, if the action is lowered, i.e. S[C'] < S[C]

the algorithm always accepts the change. If the action is raised, the algorithm accepts

the transition with the probability

PA(C -+ C') = exp(- (S[C'] - S[C])) . (5.10)

It is important that there is always the possibility to have a transition to higher action

because in this way the algorithm cannot get trapped for ever in local minima of the

action. The acceptance probability depends on the change of the action AS[C]

S[C'] - S[C] and in any case is given by

PA(C -- C')= min{l, exp(-AS[C])}. (5.11)

The suggestion probability should be chosen such that the algorithm is ergodic. The

detailed balance is seen easily to be obeyed. Indeed, if S[C'] < S[C] then

PA(C --- C')= 1 and PA(C' -+ C)= exp (- (S[C] - S[C'])) (5.12)



and therefore using also (5.9) we verify

exp(-S[C])Ps(C - C')PA(C - C') = exp(-S[C'])Ps(C' - C)PA(C' -* ) .

(5.13)

Otherwise, if S[C'] > S[C] we have

PA(C - C') = exp (- (S[C'] - sic])) and PA(C' --+ C)= 1 (5.14)

and again detailed balance is satisfied. In practice we cannot suggest configurations

that differ much because the change in action is large and they will almost always be

rejected. Instead we have to perform local changes to the configuration. In particular,

we apply the algorithm to the O(N) model by visiting all the sites of the lattice one

after the other. On each site x we make the suggestion to reverse the direction of the

spin component which is parallel to a randomly chosen direction R with probability

1. More precisely, we consider the random direction R and decompose the vector E,

into components parallel and perpendicular to R

EI - (Ex - R)R , . = - (Ex -•R)R . (5.15)

The suggested reflection - which is called a Wolff flip - results in the spin

E = -E + ~E = Ex - 2(E. -R)R (5.16)

This process does not alter the unit-length property of the vector since

E'. - (-E + E)2 = E + I _ 1. (5.17)

We then compute the change in the action which is due only to the four nearest

neighbors

AS 1= (, [ Z (E+ + Ex ] (5.18)
g A=1,2



and decide on the acceptance from (5.11). The ergodicity of the algorithm is ensured

from from the random choice of R and the fact that any two O(N) vectors can be

connected with a suitable Wolff flip.

Local changes like the ones proposed by the Metropolis algorithm result in slow

motion through the phase space of the model. The situation becomes even worse as

we approach the continuum limit where the correlation length ( grows large. The

system is organized at large scales and the site-by-site changes that we make are very

slow in creating a statistically independent configuration. More precisely, we define

the autocorrelation time r which measures how many Markov steps are needed in

order to produce a statistically independent configuration. The autocorrelation time

depends on the observable examined, for example the energy density of the system.

The statistical error of the observable becomes roughly V/ larger than the naive one if

it has an autocorrelation time r. The observable which has the largest autocorrelation

time is the actual measure of autocorrelations in the Markov chain. As the correlation

length grows, the autocorrelation time will generally grow as

Soc( , (5.19)

where z is called the dynamical critical exponent and is the true measure of the effi-

ciency of the algorithm. If z > 0, near the continuum limit the algorithm will become

extremely slow in producing a statistically independent configuration -this is called

the critical slowing down problem. Local changes are updating the system in a random

walk manner and therefore demand about (2 steps in order to find an independent

configuration in the phase space. The Metropolis algorithm consequently has z 0 2.

Notice that we have scaled out the volume dependence of the autocorrelations from

7 which is slowing down the update of the d-dimensional system by an extra factor

of (d

Various improvements of the basic Metropolis algorithm logic have been proposed

in order to reduce the dynamical critical exponent. At present the most efficient local

algorithm for Wilson's gauge theory is the overrelaxation algorithm which has z - 1.



5.3 The Cluster Algorithm for Classical Spins

A radical solution to the critical slowing down for various spin models has been

discovered over the last decade. This is a non-local algorithm called the cluster

algorithm which in some cases has dynamical critical exponent z r 0 and consequently

eliminates critical slowing down completely. We note here that the computing effort

still increases as (d for a d-dimensional system but this is an unavoidable problem

connected with how closely we want to approach the continuum limit on a given

volume. Swendsen and Wang [35] discovered the cluster algorithm for Ising-like spin

models. They first noticed that Fortuin and Kasteleyn [36] had mapped the partition

function of the Potts model to the so-called random bond model. The random bond

model is formulated in terms of 0 or 1 valued variables that live on the links connecting

two neighboring sites. Links with value 1 necessarily occur between sites with the

same spin and have a weight p in the partition function with 0 < p < 1. Links

with value 0 are indifferent to the spin states and have weight 1 - p in the partition

function.

Swendsen and Wang realized that each link which has value 1 can be thought of

as a bond created with probability p, connecting the two same-state adjacent spins.

They turned this picture into a Markov step for the Potts model in the following way.

Starting from a spin, bonds are placed connecting it with its same-state adjacent spins

with probability p. When the growth of the cluster of connected spins has stopped, a

new spin is chosen and a new cluster is grown. In this way, the lattice is decomposed

into same-state clusters of spins. The update consists of a random selection of a

new Potts state for the spins in a cluster and was shown to be ergodic and obeying

detailed balance. Since clusters of spins are updated simultaneously, the algorithm

results in a very effective motion through the phase space even near the critical point.

For example, the dynamical critical exponent for the 2-d Ising model was found to

be z r 0.35.

The idea of a cluster algorithm was soon extended successfully to the O(N) non-

linear c--model by Wolff [23, 37]. The Wolff cluster algorithm for O(N) spins was



shown to eliminate critical slowing down completely and to improve tremendously

the accuracy on the measured quantities. Wolff's idea was to embed an Ising spin

in the O(N) sphere and apply the Swendsen-Wang percolation ideas to the partition

function. More precisely, Wolff selects randomly a unit vector R in the O(N) space -

called the Wolff direction - and decomposes the vector E into components parallel

and perpendicular to the Wolff direction

S= (E, R)R E = E, -(E, -R)R . (5.20)

The direction of E defines the Ising variable s, = sign(E .R). The update of this

variable is the Wolff flip, E -- / -E. The growth of the cluster starts with the

random selection of a site x. Next the algorithm examines every nearest-neighbor y

and decides if it is going to put a bond between x and y. If a bond is put, y becomes

also a member of the cluster and the Ising spin on y will be flipped along with the

rest of the cluster. If s, is flipped, the contribution of the < xy > pair to the action

will not change since

1- " 1 "1-_"

g g g

If s, is not flipped, the action will change

1 - 1 1 2
E'-E, -2( ) - E,= E,- Ey+- (E R)(Ey-R) S',. (5.22)

If flipping both spins is more favorable for the action, i.e. if S,y < S',, the algorithm

puts a bond on < xy > with probability

P,, = 1 - exp (-(S'y - SY)) . (5.23)

If S, > S,, it is more favorable to leave the spins independent and the algorithm



puts no bond on < my >. In any case, the probability for a bond is given by

2
P =1- exp (min{O, S., - S,}) 1-exp (min{O , - (E,.)(E -R)}) . (5.24)

When the iterative process of including neighbors in the cluster is completed, all the

Ising spins in the cluster are flipped. This results in a very efficient motion through

phase space. Let us demonstrate the detailed balance of this algorithm. Consider a

configuration C and a new configuration C' which is the result of flipping a cluster

c of spins in C. Consider the pair (my) with action S,, given by (5.21). If one spin

is flipped, the action becomes S., given from (5.22). The probability that in the C'

configuration one of the two spins is flipped is equal to the probability that no bond

is put on the link which is 1 - P,, = exp (min{O, S., - S,J). Starting now from

the pair in configuration C', the probability for independent flips which results in C

is 1- P , = exp (min0, S:, - S.,}). The detailed balance is then verified for the

pair (my) since in any case one of the probabilities will be 1

exp(-S,) exp (min, S , S - S,) = exp(-S',) exp (min , S', - S,,) . (5.25)

On the other hand, for a pair of sites (xy) in which both spins are flipped, the

probability for the flip is the probability to activate the bond P,,y given by (5.24).

Since the action does not change in this case, the return probability is also P,,.

Detailed balance therefore holds also for these pairs. The new configuration C' differs

from C with regards to pairs with both spins in the cluster and pairs on the boundary

of the cluster where only one spin is updated. Since detailed balance holds for each

pair, it holds also for the update of the whole lattice. The ergodicity of the algorithm

is easy to verify since there is always a finite probability to have a cluster with just

one spin. There is also always a Wolff direction R that takes a vector E to any

other vector after the Wolff flip. Combinations of these moves can connect any two

configurations of the system.

Wolff's original algorithm is constructing one cluster which is flipped with prob-

ability 1. The algorithm can be generalized to a multi-cluster algorithm. After the



first cluster is grown, we select a new site outside the cluster and grow a new cluster.

We continue this process until the whole lattice is decomposed into clusters. The

system is then updated by flipping independently the clusters with probability 1/2.

Besides solving the critical slowing down problem, cluster algorithms offer im-

proved estimators for various physical quantities. The improved estimators measure

the physical quantity only from information on the cluster and therefore reduce signif-

icantly the computing cost. It is shown in [37] that the spin-spin correlation function

(E, -E) can be measured only from the Ising spins on z, y that both belong to the

cluster

(E, - E) = N - ( -) ( R-)) (5.26)

where V is the volume of the system and Icl the size of the cluster. Notice that this

quantity is taking contributions only from parallel Ising spins and therefore there

are no sign cancelations in it. As expected, this improved estimator leads to strong

reduction of the statistical error in the correlation function besides the already reduced

cost for measuring it. The magnetic susceptibility of the model X also has an improved

estimator [37] in terms of the Ising spins that belong to the cluster

1 2 1

X=*) = NKA(Z x _ R) (lc) . (5.27)

The last step is very important since it shows that the size of the cluster is propor-

tional a physical quantity, the magnetic susceptibility, and therefore it cannot grow

large outside the critical region. This property guarantees the efficiency of the al-

gorithm since the size of the updated cluster of spins and therefore the propagation

of information is connected to the correlation length. If such a connection does not

exist, there is always the danger that the clusters may grow too large rendering the

algorithm inefficient.

Finally, we mention that the Wolff cluster algorithm is applicable to the O(N) spin

model with multi-spin couplings in the action as, for example, the classically perfect

action of chapter 3. Niedermayer has developed a general strategy for doing that [24].

For example, consider a three-spin coupling involving spins on the sites z, y, z where



one spin already belongs to the cluster. The algorithm then examines all possibilities,

i.e. including none, one, or both of the other spins in the cluster. Then it finds the

maximum value S"" for the action of all the possibilities and decides if it will include

all the rest of the spins in the cluster with the probability

puz = 1 - exp (min(0, S z - S"}) . (5.28)

It can be seen [24] that besides ergodicity this choice satisfies detailed balance.

Despite the effort, efficient cluster algorithms have not been found for the Wilson

formulation of lattice gauge theory. The ideas in the following chapters will allow us

to construct a cluster algorithm for the quantum link formulation of the U(1) gauge

theory and indicate how the same may be possible for non-Abelian gauge theories

also.



Chapter 6

Classical 0(3) Spins and Quantum

Antiferromagnets

6.1 Introduction

The starting point of part II of this work is the classical 0(3) spin model in two dimen-

sions which was the object of study in part I. But the motivation now is completely

different. What we aim at is to demonstrate that the physics of the classical 0(3)

spins can be described in a different framework which uses only discrete variables.

Nevertheless, the continuous symmetry is still represented exactly in the discrete the-

ory by properly identifying the finite Hilbert space of the states and the action of the

symmetry generators on it. We are going to demonstrate how the discrete variables

can build collective excitations in the discrete theory which, when the correlations

grow large, can be identified with the classical 0(3) spins. The mass-gap of the 0(3)

spin model will be in fact connected to the correlations of the collective excitations

in the discrete theory. Therefore, we will argue that the discrete theory constitutes

a new non-perturbative formulation of the classical spin theory and is based on the

promotion of the classical spins to quantum spin operators. This will be the first

example of what turns out to be a very general framework for the non-perturbative

study of field theories with global or gauge symmetries and is referred to as D-theory.

In order to motivate this approach, we are going to present in the following a study



of the 2-d Heisenberg Antiferromagnet. Although this model has its own merit, we

are going to show that the nature of its excitations makes it a natural D-theory

formulation of the physics of 2-d 0(3) spins.

6.2 The 2-d Heisenberg Antiferromagnet

Since the discovery of high-temperature superconductivity, the 2- d Heisenberg quan-

tum antiferromagnet has been the subject of many theoretical investigations. It has

been found experimentally that the precursor insulators like La 2 Cu0 4 or Sr 2CuO 2C 12 ,

which under doping can turn into superconductors, have crystal structure where the

dominant interaction is between neighboring atoms fixed on the sites of square lat-

tice planes. Neutron scattering has experimentally verified long range order in these

materials [38]. This is the Neel ordered state in which spins are arranged with alter-

nating orientations on alternating lattice sites, therefore with a spontaneously gener-

ated staggered magnetization. Correlation lengths are observed to grow exponentially

large with the inverse temperature as the temperature is lowered towards zero.

From the field-theoretic point of view, the ordered state of these materials signals

the existence of infinite correlations and therefore massless excitations in the dynamics

of the system. These characteristics are described by the 2-d Heisenberg Hamiltonian

H = J [SS + SS2 , + S3S3 ] (6.1)

2, A=1,2

with the antiferromagnetic coupling J > 0. A spin operator S, = (Si, Sx, S ) is

defined on every site x of the square lattice satisfying the local SU(2) algebra

[S , S] = i8yEabcS" . (6.2)

The Hamiltonian is invariant under global SO(3) rotations of the spin operators.

These rotations are generated by the total spin operator E S. which is therefore



conserved

[H, E S] = 0. (6.3)

Numerical simulations [39, 40, 41] study the quantum partition function of the model

at temperature T = 1//3,

Z = Tr exp(-PH), (6.4)

which is also pictured as describing the evolution of the system for a Euclidean time

interval p. They have shown that the staggered magnetization,

M= (-1)X+  g
2

- , , (6.5)
X=(Xl,X2)

which is not conserved, gets a non-zero expectation value as /3 - oo, signaling there-

fore a phase transition at zero temperature. The simulations show that indeed the

correlation length grows exponentially with P as 3 -- oc and therefore verify the long

range order.

The physics of this growth can be understood. When the staggered magnetization

becomes non-zero, a direction is prefered in the internal spin space and therefore the

SO(3) rotational symmetry of the spins breaks spontaneously to the SO(2) rotations

around the prefered direction. According to the classic analysis by Goldstone on

the spontaneous breaking of global symmetries, a number of massless particles -

Goldstone bosons - will appear. Their number equals the number of broken sym-

metry generators which in this system is the number of SO(3) generators minus the

number of SO(2) generators, i.e. 3 - 1 = 2. These fields belong to the coset space

SO(3)/SO(2) 2 S2 . Therefore, the two Goldstone bosons can be described by the

classical 0(3) spin vectors e with e'. - = 1. For the 2-d Heisenberg antiferromagnet

these fields describe the antiferromagnetic magnons.

The partition function (6.4) describes a classical theory in a (2+1)-d slab with time

extent /3. For large /, the physics is dominated by the Goldstone fields and is to a

large extent determined by the 0(3) symmetry. The system is in the universality class

of the 3-d 0(3) non-linear o-model. Therefore, at low energy we can write an effective



0(3) action based on the simplest interaction between the magnons. Following the

principles of chiral perturbation theory, this action has been written [42] as

S[e = f dtf d2 [8, , (6.6)

with the spin stiffness p, and the spin-wave velocity c. In this framework of chiral

perturbation theory, higher derivative terms would be needed to capture the behavior

of the magnons at higher energies. For 3 strictly infinite, the theory is effectively the

3-d 0(3) non-linear a--model. In the ground state, the spin vectors are spontaneously

oriented along a direction and the symmetry is broken to the 0(2) rotations around

the direction of the staggered magnetization. Therefore we understand the infinite

correlations as due to the existence of Goldstone bosons in the 3 - d volume.

Now consider the slab with large but still finite P. The correlation length of the

magnons - as will be shown later - is much larger than /. The Euclidean time

extent is negligible compared to this scale of the theory and therefore can be safely

ignored. The system appears dimensionally reduced to a 2-d theory of interacting

magnons. For the action (6.6) dimensional reduction amounts to ignoring the time

dependence of e, i.e. setting Ote' = 0. The time integration is then performed trivially.

The magnons appear as the interacting fields of the 2-d 0(3) non-linear or-model,

= dX,. a,, (6.7)

with the coupling

g (6.8)

The Coleman-Mermin-Wagner theorem [3] forbids the spontaneous breaking of a con-

tinuous global symmetry in two-dimensional field theories. Although the 0(3) action

(6.7) has no scale classically, a scale is generated non-perturbatively from the quan-

tum fluctuations. The magnons acquire a non-perturbative mass which has been



computed [7] in the MS scheme

m = -AMs (6.9)
e

and therefore the correlation length is kept finite due to non-perturbative effects.

A more elaborate picture to understand the non-perturbative mass of the magnons

at low temperatures has been suggested by Hasenfratz and Niedermayer [43]. A block-

spin renormalization group transformation can be performed on the (2+1)-d slab by

averaging the fields in a cube and defining the average field at the center of the cube.

The length of the cube in the time direction is 3 since the theory is strongly correlated

along this direction. Due to the spin-wave velocity c, the scale of correlations along

the spatial directions is pc and therefore the spatial side of the averaging cube is

taken to be 3c. The result of this RG transformation is the mapping of the theory

in the slab to a 2-d lattice theory defined on a coarse lattice with spacing a' = 3c,

different from the original quantum spin lattice spacing a. Furthermore, since the

nature of this RG transformation is to integrate out the fields of the continuum, the

resulting action is the fixed point action for the 0(3) non-linear cr-model on a coarse

lattice. As argued in part I, this action is free of any lattice artifacts and therefore,

after dimensional reduction, any lattice artifacts will be entirely due to the spacing

of the microscopic quantum spin lattice.

We can finally derive the exponential growth of the magnon correlation length

with the inverse temperature. At large 3, we see from (6.8) that we are in the

weak coupling region of the 2-d effective 0(3) model. In this phase we can trust the

perturbative beta-function of the model to predict the scaling of the coupling. The

beta-function P(g) describes the change of the coupling with the momentum cutoff

A = 1/a' given the reference scale m and in one-loop perturbation theory is given by

d 1
- -g(A) (g)=--g2 . (6.10)

d In - 27r
m



Integrating this relation at large A we get

A 27\
- exp - (6.11)
m g

and using (6.8) we confirm the exponential growth of the correlation length at low

temperatures

Sm - 1 oc exp (27rp,) . (6.12)

Dimensional reduction therefore occurs as 3 approaches infinity, which from (6.8)

gives the continuum limit g -- 0 of the classical 0(3) spin model.

d-dimensional ordinary lattice field theory

(d+l)-dimensional D-theory

Figure 6-1: Dimensional reduction of a D-theory: Averaging the (d + 1)-dimensional

effective field of the D-theory over blocks of size P in the extra dimension and pc

in the physical directions results in an effective d-dimensional Wilsonian lattice field

theory with lattice spacing fc.

The experimental neutron scattering data [38, 44] do not agree with the higher

loop analysis [45, 43] of the correlation length growth. The available numerical data

around ( - 10 2 a - where a is the actual lattice spacing of the undoped antiferro-

magnetic planes - agree with the scaling predicted by the four-loop beta function.

The numerical simulation of the 2-d Heisenberg antiferromagnet with the loop-cluster

algorithm in continuous time [41, 46], as described in chapters 11 and 12, combined



with the precisely-known finite size scaling behavior of the 0(3) model [47, 48] has

provided accurate data for correlation lengths up to ( 105a where the three-loop

asymptotic scaling sets in. The fact that asymptotic scaling sets in at correlation

lengths 105a and not 105a' as one would naively expect for the 0(3) model [47],

confirms that the dimensional reduction leads to a perfect 0(3) action on the coarse

lattice of lattice spacing a' with lattice artifacts entirely due to the microscopic lattice

spacing a.

Besides the extremely interesting applications of quantum antiferromagnets in

condensed matter physics, its presentation here has a different motivation. What we

actually want to emphasize is the field-theoretic approach to the study of the 0(3)

non-linear o-model. For that reason, we quantized the spin variables and constructed

the antiferromagnetic Hamiltonian which leads to a spontaneously ordered ground

state at zero temperature. Due to this order, the Goldstone bosons are collective

excitations of the discrete spin states which provide infinite correlations in the (2+1)-d

theory. Dimensional reduction of these fields results in the 2-d theory of classical spin

fields. The dynamically generated mass-gap of the 0(3) model has been connected

with the low temperature mass of the magnons. Therefore, a new non-perturbative

treatment of the 0(3) theory has been obtained, formulated entirely in terms of

discrete variables. This formulation will be our paradigm for the D-theory description

of gauge theories which will be presented in the next chapter.



Chapter 7

Non-Abelian Gauge Theories on a

Lattice: Classical and Quantum

Links

7.1 Introduction

Gauge symmetry stands at the heart of our understanding of the fundamental inter-

actions in Nature. The theory which describes the interaction of light with charged

matter is Quantum Electrodynamics (QED). QED is a quantum field theory which

exhibits the phenomenon of invariance under local Abelian transformations of the

photon and the charged fermion fields. In QED the photon is described by a spin-1

field A, while the electron is described by a Dirac spinor field I. The Euclidean

Lagrangian of the theory is

LQED = 1F,,Ft,,z + I("h8, + m)' + e'thA, 1F (7.1)

where Ft,1 = 8O,A, - (9,A, is the field strength, e is the electron charge and y, the

Euclidean Dirac matrices which satisfy {y,, 7y,} = 28,.



This Lagrangian is invariant under Abelian gauge transformations of the fields

A',(x) = A,(x) + - ,a(), @'(x) = exp(ia(x))'(x), *'(s) = '(x) exp(-ia(x))
e

(7.2)

Quantization of this action with the usual commutation and anticommutation rela-

tions for the bosonic and fermionic fields along with a perturbative expansion in terms

of the coupling constant e results in excellent understanding of all the electromag-

netic phenomena in Nature. The key of this success is the fact that the expansion is

carried out in terms of the fine structure constant a = e2/47r 2_ 1/137 and therefore

a few Feynman diagrams are enough to give excellent agreement with experimental

data. Renormalization theory predicts that the interaction gets stronger and a gets

larger as the energy is increased, but the rate of increase is slow and the perturbative

analysis is very reliable at all energy scales reached by experiment.

Yang and Mills generalized QED to a theory exhibiting invariance under non-

Abelian local transformations of the fields. The photon field is promoted to a Lie

Algebra valued vector field, A , = A Ta, which describes a set of gauge bosons A J.

The T" s are the Hermitian generators of a Lie Algebra in the fundamental represen-

tation with commutation relations and normalization

[Ta , Tb] = ifabcc T, Tr(TaTb) = 1
8 ab (7.3)

The Yang-Mills Lagrangian is formulated in terms of the non-Abelian field strength

F , = F~aTa

1
LyM = -1TrFF,,F, , F,, = aA, - d, A, - ig[A,, A,], (7.4)

with a dimensionless coupling constant g in four dimensions.

A local transformation U(x) = exp(iaaTa) transforms the gauge field inhomoge-

neously

A(x) = U(x)A,,(x)U+(x) - -U(X)8,U+(x) ,(7.5)
(95



it transforms the field strength and the covariant derivative D, = 6,, + igA, homo-

geneously

F,,(x) = U(x)F,,,(x)U+(x) , D(x) = U(x)D,(x)U+(x) (7.6)

and leaves the Yang-Mills Lagrangian invariant.

Charged fields under the gauge group can be easily introduced as covariantly

coupled to the gauge field. These theories are central in the Standard Model describing

both the weak and strong interactions of Nature. Quantum Chromodynamics (QCD)

describes the strong interaction sector of the Standard Model. It assumes that an

SU(3) gauge theory describes the strong interaction between quarks and gluons. The

strong interactions are mediated by 8 gauge bosons - the gluons - and each quark

takes one of three color values, i.e. transforms in the fundamental representation of

SU(3). The gluons are also charged and therefore self-interacting. They transform

under the adjoint representation of SU(3). The Euclidean QCD Lagrangian has the

form

LQCD = TIF e fp8f 9Nf7 A, 9) (7.7)
f=1

for a number of flavored quarks of mass mf. Jf denotes an SU(3) triplet of colored

quarks with if the corresponding anti-triplet of antiquarks.

Despite the simplicity of the appearance, QCD incorporates extremely diverse

and complicated phenomena. A perturbative analysis indicates that the coupling

constant gets smaller, i.e. the interaction gets weaker, as the energy scale is increased.

This is the effect of asymptotic freedom; the expectation that quarks and gluons

become free at very high energies. At energy scales of a few GeV, the coupling is

small enough that the perturbative description through Feynman diagrams becomes

reliable. Cross sections involving quarks and gluons carrying high energy can be

estimated and compare favorably with experimental data building a strong confidence

that we have the correct theory of strong interactions.

On the other end, we do not observe quarks and gluons as free particles. Instead

we see the colorless bound states we call hadrons: the fermionic baryons - among



them the proton and the neutron - and the lighter unstable bosons we call mesons.

This is the effect of confinement; the colored constituents are permanently confined

in the hadrons.

QCD develops a scale quantum mechanically through the regularization of Feyn-

man diagrams in perturbation theory. This scale in the MS scheme is roughly esti-

mated to be A-gS ~0 150 MeV. The hadronic states appear with quantum numbers

consistent with the fact that the constituent particles are the SU(3)-colored, spin-1/2,

fractionally charged quarks. Only the three lighter quarks, up, down and strange are

relevant to low-energy QCD. Considering that the up and down quarks have masses

of 5-10 MeV but the pions appear with a mass around 150 MeV and the nucleons

with a mass around 1 GeV, we see that the binding effects are very strong. The mass

of the hadrons is a non-perturbative quantity and therefore a connection to the scale

Auj-s cannot be derived in the diagrammatic expansion of QCD. The phenomenolog-

ical approach to low energy QCD is based on the fact that the light quarks appear

almost massless compared to the scales of the pions and the nucleons. The approxi-

mate chiral symmetry gets spontaneously broken at low energies and the pseudoscalar

mesons are naturally identified as Goldstone bosons. An analytical understanding of

the chiral symmetry breaking mechanism in QCD is also not available at present time.

Despite the lack of an analytical understanding of the confinement in QCD, a

mechanism which asserts confinement does exist. Confinement of the quarks means

that the chromoelectric field between two colored charges does not spread out in

space as the electric field between two electric charges does. Instead, it is confined

in a narrow flux tube between the quarks. Based on that, 't Hooft and Mandelstam

have proposed [49, 50] that the ground state of QCD should behave like a type II

superconductor. In a type II superconductor the so-called Meissner effect takes place.

Electrons couple into Cooper pairs and condense in the superconducting ground state.

The ground state becomes perfectly diamagnetic which means that the magnetic field

gets expelled from the superconducting region. If two magnetically charged objects

are kept in the region, then the magnetic flux forms a narrow tube - named Abrikosov

line - which connects the magnetic charges and has an energy proportional to its



length.

A favorite picture for QCD confinement is that a dual Meissner effect appears.

Non-Abelian magnetic monopoles condense in the vacuum and restrict the chromo-

electric fields into bound states. The flux tube has an energy proportional to its

length, therefore a linear potential connecting the quark pair would naturally arise.

The string tension which is the energy per length of the tube is a very important

phenomenological parameter that needs to be computed in some frame. If the quarks

are dynamical, then it is understood that, as we invest energy trying to separate them

into asymptotic states, a quark-antiquark pair will be created from the vacuum and

break the tube into two new hadronic states enforcing the permanent confinement of

color.

The belief in this picture has been enforced by non-perturbative results that be-

came available during the last years in supersymmetric formulations of QCD(SQCD).

The ground state of NA = 2 SQCD has been found analytically [51] and presents con-

finement due to the dual Meissner effect, i.e. condensation of magnetic monopoles.

The assumption that the same is true for Nature's QCD is being examined in the

non-perturbative lattice formulation for QCD that we are going to discuss next.

7.2 Wilson Formulation of Non-Abelian Gauge

Theories

A very important framework for the non-perturbative understanding of gauge theories

was presented by Wilson in 1974 [52]. Wilson regularized the infinities that plague

continuum field theory by replacing space-time with a four-dimensional hypercubic

lattice of spacing a. He introduced as fundamental gauge degrees of freedom the

parallel transporters u,, which are the Wilson lines of the continuum gauge theory

between two neighboring sites

u,, = exp( I dyAA(y)). (7.8)



Here we consider a general SU(N) gauge theory. Therefore the parallel transporters

are members of an SU(N) group living on the links connecting the lattice sites.

Under gauge transformations the parallel transporter transforms as a Wilson line

usually does, i.e. by group elements at both ends of the oriented path

u',, = exp(ia Ta)u,,, exp(-ia- T' ) . (7.9)

For the SU(N) group, a runs over the N 2 - 1 generators T".Let us consider the pla-

quette variable U,,,, as the discretized version of a Wilson loop around an elementary

plaquette of sites

U,,,, =Tr[u.,u+,vu+t ,,t,] . (7.10)

By construction, the plaquette variable is gauge invariant and the Wilson action for

the SU(N) gauge theory takes the form

Sag 2Ne [u] = 2 (i 1 U ] . (7.11)
u 2 E,<v 2N +UX )

This action has the correct continuum limit as the lattice spacing a tends to zero.

This can be seen easily if we consider a gluon field A a on each link and replace the

parallel transporters u,j, --+ exp(iaA , Ta).

The plaquette variables then can be approximated as

UX,,, = Tr[exp(iaA.,,) exp(iaA,+,+,,) exp(-iaA,+,,, ) exp(-iaA,,,)]. (7.12)

Carrying out the Taylor expansion Az+,, - A, + a+ ,A,,,, + ... and using the

Baker-Hausdorff lemma exeY = eX+Y+ [x Y]+... we get for the plaquette, keeping the

lowest orders in a,

U,,, _A Tr exp(iaA,,,) exp (ia(A, + aa,,A,,, + ... )) (7.13)

exp (- ia(A, + a ,,A,,I, +...)) exp (-iaA,,)]



Tr [exp (ia(A,, + A + aA.,+ + 2 [A,,, A.,] +

exp ia(A.,, + A.,, + a ,,,, - ia[A,,,, A.,,,] + )

= Tr exp (isaF,, + O(a3)) Tr 1 + ia2 F, - - FF ,,. + 0(a)
a4

N - a-TrF,,,,, ,,, + O(a5 )2

Notice that the O(a3 ) correction in the plaquette is a commutator and therefore its

trace vanishes. Therefore, for small spacing a the Wilson action approaches

Sgauge[u] = 2N (1- 1 + U (7.14)

12 X<v 2NZLV

2N ( 2N1 (2N - a4 TrFF vF, ) 1 a4 TrF .
S2 < 2N 2g2  1411

2 2  d4x TrFFL

which is the correct Euclidean action for a four-dimensional non-Abelian gauge theory.

The Wilson action is not the only lattice action that has the correct continuum

limit as a becomes small. Gauge invariant terms with higher order dependence on a

are certainly allowed since they become irrelevant for small a. In fact, as discussed

in part I of this thesis, such terms can be used in order to construct an action with

improved scaling properties. As we have seen explicitly in the O(N) classical spin

model, the renormalization group flow indicates that a perfect action exists which is

free of any lattice artifacts. Although finding the perfect action for QCD seems very

difficult, improved actions which add higher order terms in a and suitably eliminate

lattice errors to O(a) or O(a2 ) have been constructed and used with encouraging

results.

Fermions can be easily included in this formalism with a suitable discretization

of the Dirac action. The fermions are defined on the sites of the lattice and are

minimally coupled to the link elements. Wilson proposed the complete lattice QCD



action with naive discretization

SQCD [U, ', ] = Sgauge[u] + (m + 4r)Z 4a, (7.15)

- 1 E[ '@±jj(r + 1m)ut , + *,(r - r )uxjAx+ A]2 ;X/

Due to the first order derivative structure of the Dirac operator extra unphysical

states appear for the fermions. This fermion doubling problem was eliminated by

Wilson with the introduction of the r dependent terms. Unfortunately, these terms

now violate explicitly the chiral symmetries of the quarks even when their bare mass

m, is zero. In order to study the chiral symmetry breaking on the lattice we have

to fine-tune mq such that the pion on the lattice appears massless. Ways out of this

problem have been proposed in the last years. The domain wall fermions [53, 54, 55]

make use of a fifth unphysical dimension where two domain walls transverse to the

4-d physical universe are defined. Fermion modes with properly selected boundary

conditions on the walls result in massless fermions without fine tuning in the 4-d

bulk. Another way is to use the Wilson-Ginsparg fermions, defined through a local

discrete Dirac operator which involves the fields at any distance with exponentially

small couplings. This operator satisfies a certain defining relation which turns out to

maintain the chiral properties of the quarks without fine-tuning.

The study of QCD can now be rephrased as a study of a statistical mechanics

system. We have to simulate the partition function

Z = DuD-DI exp(-SQcD[u, , I]) (7.16)

by properly generating a Markov chain of configurations of the fields on the lattice.

Correlation functions of various fields can easily be studied by constructing the wave

functions with proper quantum numbers and averaging the values of these fields.

In order to extract physical results we need to approach the continuum limit. The

continuum limit is approached as the lattice spacing is driven to zero while keeping

the physical mass scales fixed, i.e. under the limit ma -- 0. Inversely, in a given



simulation with finite lattice spacing, we must have large correlations in order to

measure successfully the physical particle masses. In that sense, the continuum limit

is approached in the critical region of the theory which is at bare coupling g --+ 0.

The difficulty of the problem lies precisely in the fact that we cannot update

efficiently lattice QCD at criticality. Only local algorithms are available so far for

QCD. The Metropolis algorithm has a dynamical exponent z a 2 while the state of the

art overrelaxation algorithm which is presently used has dynamical exponent z 1.

Therefore the critical slowing down problem is still present and makes simulations at

criticality difficult. Despite many attempts, efficient cluster algorithms have not been

found for QCD or even the simpler U(1) lattice gauge theory. The major amount of

work goes into approaching the continuum limit from rather small lattices and time

consuming calculations.

7.3 Phases and Order Parameters for Gauge The-

ories

There are three phases that can appear in a gauge theory and they are identified from

the behavior of the Wilson loop order parameter which will be introduced shortly.

i. The Coulomb phase is a phase with massless particles. This is an ordered

phase, i.e. a phase with infinite correlation lengths, in the corresponding statistical

physics system. Charges in the Coulomb phase interact weakly through a Coulomb

law, therefore there is no confinement. The Wilson loop in this phase presents a

perimeter law behavior.

ii. The confinement phase is a phase with massive particles which are neutral

under the gauge group. The correlation length remains finite in physical units. Static

charged particles are confined with a linear potential. This fact leads to an area law

for the Wilson loop expectation value. If the charges are dynamical then the Wilson

loop presents a perimeter law.

iii. The Higgs phase is a phase in which part of or all the gauge symmetry is

broken through the Higgs mechanism. Short correlation lengths corresponding to



the massive gauge bosons are naturally introduced in this phase due to the vacuum

value of the Higgs field. The electrically charged particles interact weakly and the

Wilson loop follows again a perimeter law. In order to distinguish the Higgs phase

from the confinement phase one can also construct another order parameter. In

order to do that one investigates the behavior of magnetically charged particles in

the theory. A dual or magnetic gauge potential responsible for the chromomagnetic

fields can under certain assumptions be defined - unambiguously at least for the

Abelian gauge theory. The corresponding Wilson loop for the dual potential is called

the 't Hooft loop and similarly reflects the interaction between magnetic monopoles.

In the Higgs phase the 't Hooft loop shows an area law while in the Coulomb or the

confinement phase it has a perimeter law.

The most important order parameter for the study of a gauge theory is the ex-

pectation value of the Wilson loop. In the continuum, the Wilson loop is a gauge

invariant non-local quantity defined along an oriented space-time path C

We = Tr P exp(i c dx"A,(x)) , (7.17)

while the corresponding lattice theory expression uses the ordered product of parallel

transporters on the links along the discretized path

We = Tr i ul . (7.18)
LeC

The order parameter studied in the lattice formulation is the expectation value

(W) = f Du exp(-Sgauge [u])TrL1 c ul (7.19)
f Du exp(-Sgauge[])

The static quark-antiquark potential can be extracted from the rectangular space-

time Wilson loop shown below.

Let us consider the Wilson line WAB. Under a gauge transformation it transforms

as

WAB 9gA WAB (7.20)



t+T- D C

to A B

Xo xo+L

The quark-antiquark operator A 4B creates a quark at B and an antiquark at A

and transforms the same way

A B - gA AB gB (7.21)

therefore the line WAB creates the external quark-antiquark source at time t = to.

In the Hamiltonian picture, the lines WBC and WDA describe the evolution of the

static sources forward and backward in time for the quark and antiquark respectively.

Finally, the line WCD which corresponds to the fermionic operator ECD destroys

the quark at C and the antiquark at D at time t = to + T. Therefore, the path

integral value for (Wc) describes the gluonic system in the presence of a static quark-

antiquark pair which lived for a time period T. The Hamiltonian evolution between

to and t o + T filters out the lowest energy gluonic state in the presence of the two

static charges and therefore for very large T the path integral value will be dominated

by this state

(W(L, T)) - exp(-TEo(L)) . (7.22)

The lowest energy Eo(L) is the static quark-antiquark potential which in the con-

finement phase increases linearly with the distance Eo(L) = o-L. In the confinement



phase therefore, the order parameter shows the area law dependence of the loop

(W(L, T)) - exp(-uLT) (7.23)

from which the string tension can be extracted for large T.

More precisely, we should also take into account the self-energy of the quark

sources along the loop which contributes a term proportional to the loop perimeter

plus possible constant terms to the energy. Therefore, at large T the confining ground

state energy should be parameterized as

- In (W(L, T)) = Co + C1 (L + T) + oLT . (7.24)

In order to get precise measurements of the string tension in the simulations, the

Creutz ratio can be defined and it is easy to show that it equals the string tension

(, T) -In W(L, T) W(L - 1, T - 1)

W(L,(L, T - 1) W(L - 1, T))

In the absence of confinement, the ground state energy is dominated by the quark

self-energies. Therefore, a perimeter law dependence of (W(L, T)) for an unbroken

gauge theory signals a Coulomb phase.

An important observable for the finite temperature behavior of a gauge theory is

the Polyakov line. It requires a finite extent P in the time direction and is simply the

Wilson line along a fixed space, time ordered path from 0 to 3. In the path integral

picture it describes the worldline of a static quark in a field theory with temperature

P-l. Therefore, the Polyakov line expectation value is related to the free energy F,

of a static quark in the gluonic system

f Du exp(-Sguge[u]) Tr l o u t,
(P) = u exp(-Sg T u oc exp(-PF,q) . (7.26)

f Du exp(-Sgause[ l)

Its significance to the finite temperature deconfinement phase transition becomes now

evident. In the low temperature phase with confinement, a single quark has infinite



free energy in the gluonic system and therefore (P) = 0 . On the other hand, if at

some finite temperature the system becomes deconfined, a single quark only costs a

finite amount of free energy and (P) 4 0 .

It is very interesting to notice that there is a symmetry connected with this order

parameter, just like the magnetization of a spin system is connected with the breaking

of a global symmetry. For the SU(N) Wilson theory, this is the symmetry of the action

under the multiplication of all the links in the time direction in a certain timeslice

(e.g. the last) by an element of the center group ZN of SU(N)

2 ri
Ull,4 - U:9Z,4 Z  , Z=exp( Nin) [N, n = 0,1,...,N-1 (7.27)

where lN is the unit N x N matrix. Since Z commutes with all the SU(N) group

elements, the spacetime plaquettes on the last timeslice which get a factor Z and a

factor Z t from their time directed links, remain invariant. On the other hand, the

Polyakov line has one time link affected and therefore the order parameter transforms

as P -*ZP.

In the confining phase where (P) = 0, the order parameter is invariant under

the ZN transformation. If a deconfinement phase exists at high temperature then

the order parameter will break the ZN symmetry. Numerical simulations for the

SU(2) and SU(3) Wilson theory confirm that the center symmetry is broken at finite

temperature and therefore a deconfining phase exists. Near the phase transition, the

standard Landau-Ginzburg action can be constructed based on the long wavelength

degrees of freedom. Universality suggests that the order of the phase transition should

be the same as that of a three-dimensional Potts-like ZN spin model. The prediction

is a second order phase transition for the SU(2) theory and first order transition for

the SU(3) theory, in agreement with the results from Monte Carlo simulations.

If dynamical fermions are added to the gauge theory, the Polyakov line is not an

order parameter for deconfinement anymore. In fact, due to screening effects between

quarks and gluons a deconfinement order parameter cannot be defined at all. On

the other hand, for (almost) massless quarks a chiral phase transition now appears



at finite temperature with (~i) as an order parameter signaling the existence of a

quark-gluon plasma phase.

We have argued so far that the Wilson theory is a well defined gauge theory on

a discretized space-time. But it is not a priori obvious that the continuum limit

will indeed correspond to Nature's QCD. Renormalization arguments of the Wilson

theory show that the continuum limit is approached as the coupling g tends to zero.

Wilson computed the Wilson loop of the lattice gauge theory at large g and showed

an area law, therefore confinement of the charges. There is strong belief based on the

numerical simulations that the 4-d non-Abelian lattice gauge theory does not have a

phase transition at arbitrarily small values of the coupling. The consensus is that the

continuum limit of lattice gauge theory will indeed be Nature's QCD. On the other

hand, it has been established numerically that in 5-d the non-Abelian gauge theory

has a transition to a deconfined phase at non-zero temperature. This very fact will

prove crucial in the development of a model with discrete variables for QCD as will

be shown in the next section.



7.4 Quantum Link Formulation of Non-Abelian

Gauge Theory

We will now show that quantum versions of SU(N) lattice gauge theory can be

constructed [56, 57] in the same sense that quantum spin models where constructed

as quantized versions of the classical spin systems in the previous chapter. A special

construction of the SU(2) theory was already found in [58]. Since the fundamental

variables are based on the links of a lattice, the name "Quantum Link Models" seems

natural.

Consider the classical links u,, which are SU(N) matrices in the fundamental

representation, therefore N x N matrices whose elements are complex numbers. We

are going to promote them to quantum link operators U,,, by quantizing those N2

complex numbers and keeping the SU(N) matrix structure. Therefore each quantum

link is a N x N matrix of operators.

The models are constructed by simply promoting the Wilson action to a Hamilton

operator H by replacing the classical links u-,, with the quantum link operators

H = -J E Tr[U,,U,4,U ,,,UL , + U,,--v ,,U~+,,,U ,]. (7.28)

The multiplication between the link operators is the N x N matrix multiplication

and the trace is taken only in the N x N matrix space. In order to ensure the

Hermiticity of H, U.,t, denotes the Hermitian conjugate of U,,, in both the operator

and the SU(N) matrix space. This SU(N) matrix space is generated from N 2 - 1

generators. In this section we work with the Hermitian generators A' = 2T' which

have commutation relations and normalization

[AX, )b] = 2ifabcAc Tr( a b) = 2 ab . (7.29)

For the model to possess the non-Abelian gauge invariance, we require that local gauge



generators G' satisfying the SU(N) algebra exist and commute with the Hamiltonian

[H, G ] = 0 , [G , G,] = 2i6,;fabcGc (7.30)

The Ga are the generators of infinitesimal gauge transformations at the site x and a

general unitary operator representing gauge transformations can be constructed

S= flexp(-ia Ga). (7.31)

In order to ensure that H is invariant under the action of g, we require that the link

operators transform as

U,= U,, = exp(iaA a)U,,, exp(-ia a+Aa). (7.32)

If we consider an infinitesimal gauge transformation at the edges of a link, the LHS

of eq.(7.32) becomes

exp(-iaG.) exp(-ia +G+) U,,, exp(ia.G) exp (ia+rG+p)_ (7.33)

(1 -iaG)(1a G U, (1 + ia G )(1 +aG )

U,, - ia [G , U,,,] - ia+, [G,+, U,,]

while the RHS becomes

exp(ia Aa) U0,, exp(-ia+ Aa) (1 + ia a) U, ,, (1 - ia+,a) (7.34)

U,,, + i Aa" U,,, - iU,,, a +AAa

and we arrive at the fundamental commutation relations of the links with the gener-

ators

[G,, U, ,,1] = 5y,x+, U, ,,A - 6,, AaU,, . (7.35)

These relations can be satisfied if we introduce the generators of the left and right



gauge transformations L', and R ,, which are naturally defined on the links

G = E(R_,, + L ,), (7.36)

and satisfy independent SU(N) algebras on every link

[L , Lb,,] = 2i86C,,, f abcL , [R ,,, R,,] = 2iS.,,,] fabcR , [L R = 0.

(7.37)

Using eq.(7.36) in eq.(7.35) we find the local commutation relations

[L ,,, Uy,,] = -68x6y, A"U,, , [R,,, Uy,L] = 8y64, Ux,,A . (7.38)

These relations should not surprise us. In fact the same relations appear in the

Hamiltonian formulation of Wilson's theory (see in [59] for a thorough discussion).

The difference here is that the U's are operators which do not commute with the Ut's

and will in general act on a finite dimensional Hilbert space per link. In the Wilson

theory, the link variable is a group element commuting with its conjugate and lives

in the infinite dimensional space of functions on the SU(N) group space.

Let us examine the algebra of operators living on a link. Each link operator

consists of N2 operators or 2N 2 Hermitian operators ReUij and ImUij defined from

(dropping the link indices)

Uij = ReUj + i ImUij, (Ut)i j = ReUji - iImUji. (7.39)

We also have the 2(N 2 -1) generators of the SU(N)L 0 SU(N)R transformations and

it is possible to embed all these operators in an SU(2N) algebra. Let us define a set of

N2 matrices M( ij) such that M(Ij) - &Si6jk. Then, in the fundamental representation

of SU(2N) we can write

R" ( ) La 
0 0 0 A a



ImUj = (0 M(ij )

M (j O 0 )
0 -iM(( )

iM(ii) 0

It can be checked that these operators have SU(2N) commutation relations

[ReUij, ReUkl] [ImUij, ImUkl] = -i( 8 ik ImA' 1 R' + 8j ImA'k L),
2

[ReUij, ImUk] = i(bik ReA 1 R" - jr ReA k L a + 6ik1j T).

from which we also learn that

[uij, UIl] = [(Ut)ij, (Ut)l] = 0 ,

A new operator T has appeared

[Uj, (Ut),kl] = 2 (iA R " - kai La +
2 8, 4)

(7.42)

(7.43)

which together with the 2N 2 operators of U and the 2(N 2 -1) La 's and R" 's complete

the 4N 2 - 1 generators of SU(2N). The significance of T will be appreciated if we

notice its commutation relations

[T, L a ] = [T, R] = 0, [T,U] = 2U , [T,Ut] = -2 U t ,

from which we realize that T is responsible for an extra U(1) gauge symmetry. Indeed,

the generator
1

'I
- T -,,p) (7.45)

will transform the links under an extra local Abelian group

U, = IIexp(iaG,y) U,, II exp(-iazGz) = exp(ia,) U,,, exp(-ia,+g). (7.46)
y z

The Hamiltonian presented in eq.(7.28) turns out to describe a U(N) lattice gauge

ReUij = ( (7.40)

(7.41)

(7.44)



theory. It is not difficult to turn this into an SU(N) gauge theory. What we have

to do is to add a term which breaks the extra U(1) symmetry while respecting the

SU(N) invariance. A natural term to select is detU,,, + detUJ,,. This has all the

right properties since under SU(N) transforms with the unimodulus elements g, and

gz+p

It 
detU', = det (g U,p 9g +) = detg, detUz,, detg+ = detU,,, (7.47)

while under the Abelian group

detU;,, = det(exp(ia,) U,,, exp(-ia,+,)) = exp(ia,) detU,, exp(-ia,i+). (7.48)

A quantum link formulation of SU(N) gauge theory is therefore given by

H = -J E Tr[U,,,,U,+,+,, ,UJ,,] + J' E [detU,,, + detUt,,]. (7.49)

Notice that since [Ujj, Uki] = 0, there are no operator ordering ambiguities in the

definition of detU,,,. On the other hand, in the fundamental representation relations

(7.40) detU,,, vanishes identically. Therefore, in order to break the extra U(1) suc-

cessfully we need to choose a representation for the operators where detU,,, will be

non-trivial. It will become clear from the rishon representation to be presented later

that the lowest representation of SU(2N) with non-trivial detU,,,, is the (2N)!/(N!)2 -

dimensional one. This means that for the SU(2) and SU(3) quantum link theories we

require a 6-dimensional and a 20-dimensional Hilbert space per link respectively, as

opposed to the compact group manifolds required per link for the Wilson formulation.

Despite this drastic reduction, the gauge symmetry remains intact.

Contrasting the Hamiltonian (7.49) with the Wilson theory Hamiltonian formu-

lation, which can be found in [59], we realize that we can add to the Hamiltonian the

electric term constructed from the left and right SU(N) Casimir operators

Helectic = JE [L L ,, , + R',p R ],,L]. (7.50)
X X X



Due to the finiteness of the representation and therefore the non-commutativity of

U and Ut, the QLM Hamiltonian (7.49) is already a non-trivial dynamical problem

in (4+1)-d. As the dimension of the representation becomes very large, the link

operators tend to the classical link group elements and (7.49) to the diagonal magnetic

energy term of the (4+1)-d gauge theory.

7.5 Dimensional reduction and the Gauss Law

So far we have presented the construction of a Hamiltonian in 4-d which has a local

SU(N) symmetry. We are now going to discuss how this theory becomes relevant to

the Wilson theory and eventually Nature's theory of strong interactions by following

precisely the steps presented for the quantum spins. The quantum link Hamiltonian

defines evolution in a fifth Euclidean time coordinate not to be confused with the

physical time coordinate which is part of the 4-d lattice. Therefore the quantum

partition function appears also as the partition function of a 5-d gauge theory with

finite extent 3 of the fifth direction

Z = Tr exp(-PH). (7.51)

The key feature is that the 5-d non-Abelian gauge theory has massless gluonic ex-

citations and therefore infinite correlation lengths. Early numerical evidence of this

property was presented by Creutz [60] and a recent study can be found in [61]. There-

fore, for finite f the infinite correlation length makes the theory appear dimensionally

reduced to the 4-d gauge theory. Notice that we wrote the partition function (7.51)

without a projection to gauge invariant states in contrast to what is done in ordinary

Hamiltonian formulations of gauge theory. As is well known, the Gauss law con-

straint appears in the path integral formulation as a non-trivial Polyakov line of the

5-d theory with the A5 component of the gauge potential appearing as the Lagrange

multiplier field enforcing the constraint.

It is precisely the non-trivial Polyakov line in the fifth direction that we want to



avoid. The reason is that after dimensional reduction, the fifth direction is lost and

the Polyakov line appears as a scalar in 4-d transforming in the adjoint representation

of the group. In order to avoid the presence of these scalars we select the temporal

gauge A 5(x) = 0. Note that for infinite / such a selection is legal as any other gauge

selection and the theory would possess a full 5-d gauge invariance. For finite 3 though,

only the 4-d gauge invariance is present. This should not worry us because this is

the physical symmetry we want to obtain. We should not worry also if this gauge in

finite # spoils the Coulomb phase of the 5-d theory. This is easy to understand if we

think that a Coulomb phase implies that massless modes can be excited in the world-

volume. If we do not enforce Gauss's law, we simply allow more states to propagate

in the world-volume and as long as the ground state remains gauge invariant the

massless modes would still be present.

Based on the SU(N) symmetry, we can write a low energy effective action de-

scribing the massless gluonic excitations of the 5-d quantum link model with finite 3

in the A 5 = 0 gauge

S[Am] dX5  d [Tr F,F,, + 2Tr 5Am&5Am] . (7.52)

The indices ji, v run over 1 - 4 only. We have defined the 5-d dimensionful gauge

coupling e and the 5-d velocity of light c (the 4-d velocity of light is set to 1). Given

the infinite correlations in this theory, dimensional reduction will take place and we

can ignore the x5 -dependence of A,. The x5 integration is then trivially performed

and the reduced theory is non other than

S[A,] = TrF,,F,, (7.53)

with effective coupling
1 = (7.54)

g2 e2

We can also imagine the reduced theory as a lattice theory if we repeat the renormal-

ization arguments given by Hasenfratz and Niedermayer [43] for the 2-d Heisenberg



antiferromagnets. We can perform a blocking renormalization step by averaging the

field A,1 in the action (7.52) over a cube of size P in the fifth direction. Since 3 is

a time extent and c the velocity of light in 5-d, the blocking cube size in the four

physical directions should be 3c. The result of such a blocking will be a lattice version

of the gauge theory in (7.53) with spacing a' = 3c, different from the quantum link

model spacing which is a. Furthermore, we should notice that as with the quantum

spins, the blocked action is the fixed point action for the 4-d Wilsonian gauge theory

and therefore any finite spacing artifacts are entirely due to the microscopic quantum

link lattice.

The 4-d lattice gauge theory approaches its continuum limit as g - 0. This is

due to the asymptotic freedom property of these theories. The beta-function P(g)

describes the change of the coupling with the momentum cutoff A = 1/a' given a

reference scale m and in one-loop perturbation theory is given by

d 11N 3 (7.55)
dln g(A) /(g) = 48r 2 3 . (7.55)

Integrating this relation at large A we get

A 247I'2
-A , exp (7.56)
m llNg2

A mass scale is expected to be generated non-perturbatively in the 4-d gauge theory.

The mechanism responsible for that is the confinement of color and creation of glue-

balls. From the relation (7.54) we see that the continuum limit g - 0 is reached in

the 5-d formulation when/3 P oo. Therefore, the dimensional reduction will actually

happen for large fifth time extent. Using the confinement assumption, it is possible

then to predict the scaling of the glueball correlation lengths ( with P

=m- 1  N2C exp 
(7.57)

We have established now that indeed the 4-d non-Abelian gauge theory has been

formulated as a Hamiltonian model with discrete variables. We required an extra



coordinate where the discrete variables can build modes with infinite length correla-

tions and therefore dimensionally reduce to 4-d physics with the usual classical fields.

Information about the physical SU(N) spectrum can be found in the correlations of

these fields in the physical 4-d volume after the dimensional reduction at large 3. Al-

though a fifth dimension is required, the advantage of the formulation is clear. Only

a discrete state is required per link, e.g. a 20-state link for the SU(3) theory. It is

plausible that powerful cluster algorithms can now be constructed for these models,

as has been done for the spin models. In that case, more efficient sampling of the

QCD phase space is to be expected with more accurate physical predictions than the

ones available today.

The analogy of this construction with the 2-d quantum antiferromagnet physics

is complete. The quantum antiferromagnet used the 3-d 0(3) broken phase with

Goldstone bosons while the quantum links used the 5-d Coulomb phase with massless

gluons. Both models exhibit dimensional reduction at large 3. A non-perturbative

mass gap is generated for the reduced theories, due to the Coleman-Mermin-Wagner

theorem for the 2-d spin theory and due to color confinement for the 4-d gauge theory.

Finally, the scaling of the mass gap with / and the dimensionless couplings g is the

same, dictated by the asymptotic freedom of both theories.

7.6 Rishon formulation of Quantum Link Models

We are now going to present an elegant representation of the algebra of quantum

link operators and gauge transformation generators [57, 61]. Recall from section 4

that each link carries its own Hilbert space with SU(2N) generators acting on it with

commutation relations

[L , Lb] = 2ifabcLc, [R , Rb] = 2ifabcR, [La , Rb] = 0, (7.58)

[L , uj] = -Aak j, [R" , Uj] = UikAJ

[T, Uj] = 2U j, [T, Ra] = [T, La] = 0,

[Uj, UkA] = 0, [U,j, (Ut)kl] = 2 (6tAda R - Sk3 ,i La + N6kji T .



These operator relations can be satisfied if we define fundamental fermionic operators

on each link. We need two N-plets of fermions associated with the left and right edges

of a link. We define c,,,, c' the fermionic operators at the left of the link U,,, i.e.

the I direction of site x, and ,_, c,_ the operators at the right of the link U,-p,

i.e. the -/ direction of site x. The index i = 1, 2,..., N labels the SU(N) color of

the fermions, therefore they transform in the fundamental representation of the left

or right gauge transformation groups on the links. We postulate the fundamental

anticommutation relations

{ c, 4i, , ct}= { ,,f±6V6 , {C, (4,} = { C(-,p, c,±} = 0 . (7.59)

These fundamental 2N colored fermions that live on each link shall be called rishons.

We can construct all the SU(2N) operators with them in a way that the relations

(7.58) are satisfied

(vU, (U) = c (7.60)

L = c i + Ac, , = c _ =+ ,_

i,3 2,3

= Z,(c - +,-,_ ,+ X,+,.
i

We should notice that we can also quantize the rishons with bosonic commutation

relations and the representation (7.60) would still hold. However, the determinant

of the link operator vanishes and we get back the U(N) gauge symmetry. It can be

shown that the rishon number operator

.I,= (c i + c, c, (7.61)j(X'1+ - +X ,+I._+, )

commutes with all the SU(2N) operators in (7.60) and therefore there is a superselec-

tion rule of fixed number of rishons per link. This rule, which fixes the dimensionality

of the Hilbert space per link, is equivalent to a selection of a certain irreducible rep-

resentation of SU(2N) per link.



We can now express the SU(N) gauge theory completely in terms of the rishons.

Let us first evaluate the U(1) breaking term

detU,,, = N .l'' N(U*N U)il. (U,2")i2i: '"(U ,P)iNi "q'/N (7.62)

1 i t i2 c '2t N iNt
-il i2 ...iNC~ ,+jjC ,+1C CX+ ,-C • •,+C +,- .. N

N! c1 it 2 21 N Nt
= . cA,, X ,,c + +_ . .. c ,+IC A,

Notice from the second line that detU,,p is zero if the rishons are quantized as bosons

due to the antisymmetry of the e-tensor. In fact it will have a non-trivial action only

on a unique state half-filled with N rishons. We conclude that in order to construct

an SU(N) quantum link model we must work with fixed A/" = N fermionic rishons

on every link. The corresponding SU(2N) representation has the dimensionality

2N () (7.63)
N (N!)2

The SU(N) rishon formulated quantum link Hamiltonian is

c cit ckt ck t c it

X,IAOV i,j,k,l

+ J'1 N ! [ c1 lt _ N Nt 1 i a 't . N .c c ( 6Nt)

+ JZN! [1lt N cNt +c1 i*t cN c+t 1(7.64)
z,+ C +X,_ . c,+I e+A,-+  Cz,+JA c + ,-, X,+ ]

where we have also reexpressed the U(N) part in terms of the color singlet "glueball"

operators

x= Z C ,+±ij . (7.65)

The picture that emerges for the SU(N) gauge theory reminds us of an abacus. N

colored objects live on every link. The plaquette term of the Hamiltonian shifts these

objects around the corners of the plaquettes as prescribed from the glueball operators.



Besides, the determinant term acts on every link and shifts the N-plet of rishons from

one end of the link to the other. The dynamical evolution of these discrete states

in the fifth direction may lead to the excitation of five-dimensional massless gluonic

states. For large extent 3, the dimensional reduction of this picture is non-other than

the 4-d gauge theory.

O-giiiiliiii- ,(
Iz~ C,

-[*0-

Tr Up

det U x,R

Figure 7-1: QCD dynamics as a rishon abacus: The trace part of the Hamiltonian
induces hopping of rishons of various colors around a plaquette. The determinant
part shifts a color-neutral combination of N rishons from one end of a link to the
other.



Chapter 8

Classical and Quantum Spins with

Global U(1) Symmetry

8.1 The 2-d Classical XY Model

In this chapter we are going to apply the D-theory approach to the study of the two-

dimensional spin model with continuous global Abelian symmetry. The model which

goes under the name 0(2) Heisenberg magnet or U(1) spin model or simply XY

model is by itself interesting because it possesses an infinite order phase transition

at finite temperature separating an ordered phase at low temperatures from a phase

with short correlations. We will show how a natural quantization of this model in

the framework of D-theory results in the 2-d quantum XY model and study the

dimensional reduction from the ordered phase to the classical XY model. We will

use this model as a playground for the D-theory formulation of the Abelian gauge

theory since the 4-d Wilson Abelian gauge theory also has a phase transition at finite

coupling separating the Coulomb phase from a disordered confined phase.

There are a couple of equivalent ways to define the spin model with the Abelian

symmetry. Consider an 0(2) vector e' = (el, e2) at every site x with g = 1. The



action of the classical 0(2) Heisenberg magnet is given by

S[ e- = E e $+ . (8.1)
g x A=1,2

We can solve the unimodulus condition for the 0(2) vector by introducing the angle

on each site x with ei = cos cp,, e = sin ,. Then we obtain the action in the

form that we are going to use further

S[kp] = E 1 [exp(ic.) exp(-ip.+,) + exp(-i) exp(ipa,+,)] (8.2)

1 E cos(cp ,- cp,+a).
g # =1,2

In this form the invariance under a global U(1) rotation

exp(ip,) -* exp(ia) exp(ip,) (8.3)

is transparent. The generator of this transformation is given by

G = -i d(8.4)

and satisfies the fundamental commutation relations with the U(1) spins

[G, exp(ip,)] = exp(ip,) , [G, exp(-ip)] = -exp(-ip,) (8.5)

[exp(ip,), exp(-ip,)] = 0.

The last relation although trivial is the statement that the model is formulated with

classical fields since a complex number commutes with its conjugate. The quantum

spin model as will be shown in the next section is formulated with spin operators

which do not commute with their Hermitian conjugates.



The path integral formulation of the model

Z = 17s dp exp (-pS[p]) (8.6)

has been studied with both analytical and Monte Carlo methods. The numerical

simulations of the model have shown that there is a phase transition at some finite

critical coupling go. The correlation function decays at large distances Ix - y as

Re( exp(ipo,) exp(-ip,)) - exp (- I - y I/) (8.7)

where ( is the coupling dependent correlation length. It has been found that the

correlation length is short for g > gr and diverges as it approaches the critical coupling.

The correlation length stays infinite in the weak coupling region g < go. We can take

the continuum limit of the lattice action (8.1) everywhere in the ordered phase by

driving the lattice spacing a to zero

(x e2: )2
S[e 1 -e,1 a 2" 2 + constant (8.8)

9g j=1,2 9g x =1,2

1-d2 X A eX - (9d2ej X2g

or in terms of the angular variable

S[] * d 2 X 2 (0,()) , (8.9)

and recover that the ordered phase is the theory of a massless non-interacting scalar

in the 2-d continuum. This scalar is the Goldstone boson of the spontaneous breaking

of the 0(2) symmetry in the ground state. The breaking occurs because the classical

0(2) action is minimized when all the spins pick a direction in the 0(2) plane and

is allowed by the Coleman-Mermin-Wagner theorem since the Goldstone bosons are

not interacting.

The phase transition separating this phase from the disordered phase has been

established to be of infinite order and is called the Kosterlitz-Thouless (KT) phase



transition [62]. A phase transition can occur at the thermodynamical limit only, i.e.

in the infinite volume limit of the system. An n-th order transition is identified if the

quantity

K n lnZ) (8.10)

has a discontinuity at the critical coupling while it is smooth for all powers smaller

than n. Since the free energy of the system is defined through F = -In Z, the

n-th order transition signals an n-th order pole of the free energy at the critical

value of the (complexified) inverse temperature. The KT phase transition is therefore

connected with the existence of an essential singularity at go of the free energy of the

2-d classical XY model. Instead of the usual power law divergence of the correlation

length ( - (g/gc - 1)- " typical for a second order phase transition, the KT phase

transition is characterized by an exponential growth of the correlation length.

Analytical manipulations of the partition function have shown that it can be

reexpressed as a gas of vortices with a long-range interaction. These vortices are

configurations carrying an integer topological charge. At strong coupling the vortices

form a gas which disorders the vacuum and keeps the correlation length short. The

topological charge is indefinite in this phase and therefore it is understood that the

strong coupling phase of the XY model is a vortex condensate. When the coupling

is lowered, vortices with charge +q bind with antivortices carrying charge -q into

neutral states. The neutral bound states can no longer disorder the vacuum and we

expect the transition to a phase with infinite correlation length.

8.2 The 2-d Quantum XY Model

In this section we are going to construct the 2-d quantum XY model as a D-theory

approach to the classical 0(2) Heisenberg magnet in two dimensions. Although the

model is long known to the physics community, we are going to reconstruct it based

on the D-theory methodology as a warm-up for the Abelian gauge theory. Recalling

the form of the action (8.2) we are going to promote the U(1) spins to non-Hermitian

operators defined on the sites. The complex conjugation of the classical spins maps



to the Hermitian conjugation

exp(icp,) -- S: , exp(-i,) - Sj, (8.11)

and the quantum XY model will be defined by the Hamiltonian

J
H = E E [ SS+ S, + S ]+  (8.12)

2 2=1,2

The global U(1) invariance generated by G acts on the spins as

exp(iaG)S: exp(-iaG) = exp(ia)Sf , exp(iaG)S2- exp(-iaG) = exp(-ia)S7 ,

(8.13)

from which the commutation relations are immediately derived for small a

[G, S:] = S: , [G, S] = - S . (8.14)

At this point we can decompose G = EZ S and recover the commutation relations

of a local SU(2) algebra on every site x

[SX, S:] = S: , [SX, S2] = -S2 . (8.15)

A quantum spin S. = (Sx, S:2, S.) lives on every site x satisfying the fundamental

SU(2) algebra

[S , s] = iSEabcS:, (8.16)

while Sf = S + iS2 are identified with the raising and lowering operators of the

quantum spin states. The U(1) invariance is guaranteed by the commutation relations

(8.14) which are the same as the classical relations (8.5). What distinguishes the

quantum XY model is that it is defined with a finite SU(2) representation where

[S+ , S-] = 2S. instead of zero.



8.3 Dimensional Reduction to the Classical XY

Model

Having defined the quantum spin model with Abelian invariance, we will study as

usual its dynamics through the quantum partition function at temperature T = 1//3

Z = Tr exp(-PH) . (8.17)

Once more, this partition function will be interpreted as the partition function of a

classical theory defined in the (2+1)-d slab under the evolution of the Hamiltonian in

the finite extent p Euclidean time. The theory in the (2+1)-d slab is invariant under

0(2) transformations and therefore is in the universality class of the 3-d classical

0(2) Heisenberg magnet. It is known that this theory is ordered at low temperatures

and describes a massless non-interacting spin-wave. There is a phase transition which

separates the spin-wave phase from a disordered phase. We will therefore expect that

above a finite critical extent /3 , we can describe the low energy excitations of the

quantum XY model with the action for a massless 3-d spin-wave p(x,t) at finite

temperature

S[ = dt d2Xs [ ( )2 + 1(at])2 . (8.18)

The correlation length is infinite everywhere in the spin-wave phase and therefore

the Euclidean time extent P will be negligible compared to the scales over which the

theory is correlated. The model will therefore undergo dimensional reduction. This

is expressed in the action (8.18) by ignoring the time-dependence of the spin-wave,

i.e. by setting 9tp(x, t) = 0 and performing the trivial integration in time

S[k] -- p d2x (,o(x)) 2  (8.19)

As promised, we recover the classical XY model action with an induced dimensionless

coupling g = 1/pp,. Since the model is non-interacting, the beta-function is zero

and g does not run.



We can again apply the blocking renormalization group transformation to the 3-d

spin-wave theory by averaging over the cube with extent 3 in Euclidean time and

,pc in the spatial directions. This results in the fixed-point action of the XY model

on a square lattice with effective spacing a' = /c. We have therefore established

that the physics of the 2-d quantum XY model in the spin-wave phase is described,

after dimensional reduction, by the spin-wave of the classical XY model. As the

critical temperature is approached from above, the correlation length of the quantum

XY model diverges. Due to dimensional reduction, the correlation length will grow

large with an exponential law as predicted by the classical XY model and therefore

the phase transition at 3c is expected to be the infinite order Kosterlitz-Thouless

transition. The model can be simulated very efficiently with the loop-cluster algorithm

as will be described in detail in chapter 11. Simulations of the model in the spin-1/2

representation and a scaling analysis at the critical point indicate [63, 64] that the

system undergoes the KT phase transition at finite temperature.



Chapter 9

Abelian Gauge Theory in the

Wilson and Quantum Link

Formulation

9.1 The Wilson Formulation

The D-theory formulation of the U(1) gauge theory will be presented in this chapter.

The theory in the continuum is the non-interacting theory of photons. Wilson for-

mulated gauge theories on a space-time lattice which regularizes the infinities of the

continuum. It turns out that the Abelian Wilson theory is a non-trivial theory with

interesting phases and the nature of its phase transition is still under investigation

and debate. The current numerical investigations of the theory are performed with

local algorithms on medium size lattices and are not conclusive. Therefore propos-

ing an alternative non-perturbartive formulation of the Abelian lattice gauge theory

which further leads to a natural cluster algorithm for numerical simulations seems a

well-motivated task.

The Wilson theory is formulated with the parallel transporters

u,,, = exp(i dy A,(y)) (9.1)
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as the fundamental fields living on the links connecting two neighboring sites x and

x + AL of a four-dimensional hypercubic lattice. These fields are simply phases and

therefore belong in the infinite dimensional representation of the U(1) group. The

Wilson action is

1 t ut .t ut (9-2)

S[u] 2g2 [L, ±ip ,AXA +DpX A±v (9 2)j
292 z,<~

or in term of the U(1) angles u , ,,, = exp(ip,,,,)

1
S[p] = [1 - cos 4,,,] ; ,,, = P,, + p,+A,v - 9,+PI - , (9.3)

--,/A<V

The continuum limit a --, 0 is easy to show if we replace Wp,,, r aA,(x) and Taylor

expand

,,,,, % aA,((x) + a (A,,(x) + a,A,(x) + ... ) - (9.4)

a (A,(x) + aO,A,(x) + ... ) - aA,,(x) a2F,,,() + O(a3)

from which we get

S 1 - 92 1 4g dxF ,,FV, , ,(x) . (9.5)

The Hamiltonian of the theory is defined on a fixed time-slice. The spatial links

defined on the 3-d spatial lattice with sites & are denoted ux,i with i = 1, 2, 3. The

theory is invariant under the local U(1) transformations defined on the sites X of the

spatial lattice which transform the links as

UTn -t i exp(ia)u,,i exp(-iaca) . (9.6)

The gauge transformations are generated from the local operators G- which act on
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the links as

exp(iagGs) exp(i i,i) exp(-iasGs) = exp(ias) exp(i ,i) , (9.7)

exp(ia-t;G+;) exp(iYi) exp(-ia9 , 4G; ) = exp(-ia, ) exp(i ,i)

These relations expanded for small a lead to the commutation relations

[Gg, exp(i ,pi)] = exp(ip-,i) , [Gl, exp(ips,i)] = - exp(ip ,i) (9.8)

from which the generator GS is determined

G - (G,i - Ga_,i) Gei -i (9.9)

These relations with the following commutation relations define that we work with

the classical U(1) links

[Gg,,, s,;] = u, , [Gg,,, ,] =-; , , [;,, ,] = 0 . (9.10)

The quantization of the theory in the Hamiltonian formulation proceeds by first

imposing the temporal gauge u.,,O = 1 and working on a fixed time-slice. The canonical

momentum conjugate to the gauge potential Ai(£) = a- p,i is the electric field Ei(xF)

satisfying

[Ai(£), E()] = (9.11)

from which we get the electric field defined on the space-like links of the Wilson theory

Ei( x) = (9.12)
a2 d

The lattice Hamiltonian is

2a 9 g2
:F,i XX
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and has the correct continuum limit

S E a E Ex( + -B a]Fi. (9.14)
2 ae,i 2g2 2,i<j 2g

The Gauss' law V- E = 0 is the constraint equation which in the quantum theory has

to be imposed on the states of the Hilbert space in order to enforce gauge invariance.

The corresponding lattice generator is given by the lattice divergence of the electric

field

Ga = (Eg, - Eg_ 2  - (9.15)
i 2 O19wi a _,

This generator which is locally conserved has to annihilate the physical, i.e. gauge

invariant, states of the lattice Hilbert space

[H, Ge] = 0 , G| )P, = 0. (9.16)

The physical states are those which have zero total electric flux flowing in and out of

every lattice site. The theory can be studied in the Hamiltonian formalism through

the quantum partition function

Z = Tr[PGexp(-H)] = _ (hh, exp(-PH)| Iph,) , (9.17)
I'kphya)

where the projector PG makes sure that only the physical states contribute.

Some intuition about the structure of the theory can be gained also in the conju-

gate electric representation where the states are diagonal to the electric field on the

links. Since the link variable is a U(1) angle, the momentum state is characterized by

the integer mg,i with matrix element ( p, lmg,i) = exp(i ma,ipa,i). In the momentum

representation therefore, the Hilbert space states are characterized by their integer

electric flux on the links. The magnetic field term now induces an interaction on the

plaquette due to the matrix elements

(m' exp(+ii) |m) = d (m' ') (cp' exp(ipo) |p)(p~m) = (9.18)
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dp d WI exp(-im'p') 27r8(' - p) exp(±icp) exp(imp) = 8m',m±1 ,

and the Hamiltonian matrix elements are

2 1

( [m'] H [m]) = m S Im I 6- m;,, (9.19)
2 ,i 1 P=(11121314 ) 1 P

m,mi 16 ,m 1 2 +1 m ,m13 - 18  ,r 14 -1 +rn 1 ,rn 1 -16m' ,m 1 2 -16 rn3 ,rn13 +1 ,m +1

where 1 labels the links and P the plaquettes of the lattice. We therefore see that

the role of the interaction induced by the magnetic field is to shift one unit of electric

flux clockwise and counterclockwise around each plaquette P of the lattice.

9.2 Phases of the Wilson Theory

The Wilson theory defined with the Euclidean action (9.3) can be studied through

the path integral

Z = J d,,, exp(-S[p]) . (9.20)

The Wilson loop is the order parameter of the theory which can distinguish between

the Coulomb and the confining phase. Wilson estimated the expectation value of

the loops in the strong coupling limit of the theory, i.e. when g is very large. He

demonstrated that the Wilson loop expectation value shows an area law which means

that the theory is in the confining phase and therefore two static electric charges in

this region would attract each other with a linearly rising potential. This is in fact a

general result which holds independent of the dimensionality of the system. In order

for the Wilson theory to be relevant to the 4-d physics of photons we see in reality, the

Wilson theory should show a phase transition at some finite value of the coupling go

to a phase with infinite correlation length and the Coulomb law interaction between

static charges. Guth presented a rigorous proof in 1980 [65] that this anticipation is

indeed true. He showed that at sufficiently small values of the coupling g, the Wilson

loop expectation value is bounded by a perimeter law and the electrostatic potential
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is bounded by the Coulomb law behavior. Therefore, a phase transition occurs at

some finite coupling to a phase with the correct physical properties.

Numerical simulations of the partition function (9.20) with local algorithms have

verified this picture. Wilson loop fits in the weak coupling phase show that the

electrostatic potential indeed follows the Coulomb law and therefore the continuum

limit of the theory can be taken in this phase resulting in Nature's electromagnetism.

On the other hand, there is still dispute over the phase transition being first or second

order. It is not clear if the metastability observed in the simulations is a finite size

effect and if the correlation length at criticality scales according to the first order

prediction or scales with a second order exponent. Simulations on larger lattices with

better statistics are needed in order to conclusively settle this matter.

Banks, Kogut and Myerson [66] have reexpressed the partition function of the

model as a gas of monopole loops. The loops are the wordlines of monopoles in 4-d

interacting through a long-range potential. Their magnetic charge is inversely propor-

tional to g and therefore this is a strong-weak coupling dual formulation of the U(1)

theory. In this picture, we can understand qualitatively the phases of the theory. The

strong coupling phase of the system is a dense gas of weakly interacting monopoles

and antimonopoles. The monopole loops therefore become large and extend through

the system disordering it at large distances. The magnetic charge is indefinite in

this phase and therefore the strong coupling phase is a monopole condensate. The

existence of the condensate pushes the electric flux lines of a pair of electric sources

into a tube connecting the charges. Therefore the origin of confinement in this phase

is the dual Meissner effect. In the weak coupling phase the magnetic charge strength-

ens and the monopole interaction becomes stronger. Monopoles tend to bind with

antimonopoles and the monopole loops become rare and small in size. The vacuum

in this phase becomes ordered and the electric field lines can now spread out and

induce the Coulomb law electrostatic potential. The monopole condensate and the

monopole mass have also been studied in the numerical simulations of the theory.

In fact, the form of the action most suitable for the analytical manipulations
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mentioned above is not the Wilson action but instead the Villain form

Z=JI dp,A H exp 1- (- p + 2w np) , (9.21)
XP np 9

which approaches the Wilson action for small and large g and provides an equal footing

regularization of the theory. We note that the partition function of the U(1) theory

can be rewritten on the dual lattice as a Z gauge theory, i.e. a gauge theory with

integer valued links. This action is the most suitable for the Monte Carlo study of the

monopole condensate and monopole mass [67]. Finally we note that this theory can

be expressed as the infinite-coupling limit of the non-compact Abelian Higgs model.

The three-dimensional lattice U(1) theory in the Wilson or Villain form has also

attracted many studies. It has been established analytically [68, 69] that the theory

does not have a phase transition and remains confining for arbitrarily small coupling.

The theory has been reexpressed as a gas of interacting monopoles [68] which stay in

a condensate phase for all couplings. Therefore we cannot take the continuum limit

to the 3-d theory of free photons anywhere in this theory.

9.3 The U(1) Quantum Link Model

We proceed now to the D-theory formulation of the Abelian gauge theory. The model

was presented in [70] before its reinvention in [56]. We will consider a 4-d hypercubic

lattice with spacing a and postulate the existence of a Hilbert space on each link. We

are going to promote the classical fields u,,, and u.,/ to the operators U,, and U,

acting on the Hilbert space of the link. The classical Wilson action will be promoted

to the Hamiltonian of the U(1) quantum link model

H = -J [U+,,U,:, ,U +o,,Ut,, + U U,U,t ,U ,1,,UV,] . (9.22)

The theory possesses a U(1) gauge invariance if there is a local generator G, of the

symmetry on the sites of the lattice which transforms the quantum link operators
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under gauge transformations from the left and right

exp(ia ,G,) Ux,p exp(-ia.Gx) = exp(ia,)U, , (9.23)

exp(ia,+AG,+p) U,,, exp(-ia,+G+f) = U,,, exp(-ia,- +)

A general gauge transformation = L, exp(iaG) transforms the links as

UX, = gU,,g t = exp(ia,)U,,,, exp(-ia,,+I) , (9.24)

and leaves the Hamiltonian (9.22) invariant. Expanding the tranformation relations

(9.23) for small a, we get the commutation relations

[G,, U.,,,] = (6, - y,X+) Ut,,, , [G,, Ux,,] = ( y,x+A - 6,,x) Ux,, . (9.25)

The generator G, should be expressed as the lattice divergence of the link-based

Hermitian electric field operator G ,,

G. = E (G,l - G,_x,A) , (9.26)

with the local commutation relations

[GX,., U,j] = U,,A, [G,,, Ut,] = -Ut,. (9.27)

These relations are the same with the Wilson theory relations (9.10) with the added

modification that the quantum link operators U,,, and Ut,, will no longer commute.

These relations are interpreted as raising and lowering relations if we embed these

operators in the link-based SU(2) algebra

[S,), S,] = Es6,abcSc,, (9.28)
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with the identification

Uc, =S iS = U, = S, - iS 22 = S, , G, = S (9.29)

The U(1) quantum link model is therefore formulated with quantum spin opera-

tors on the lattice space-time links. The quantum spins can be chosen in any

SU(2) representation. The SU(2) j-representations have dimensionality 2j + 1 with

j = 1/2, 1, 3/2, ... and therefore the Hilbert space of the links is discrete and fi-

nite. Nevertheless, the continuous U(1) gauge symmetry is represented exactly in

the model. The electric field operator is identified with the third component of the

quantum spin and the link operators U,,, and Ut., increase and decrease the electric

flux by one unit. A natural basis is the electric basis where a state of the system

is characterized by the electric flux units -j, -j + 1,..., j - 1,j on the links. The

dynamics of the Hamiltonian is to shift one unit of flux clockwise and counterclock-

wise around each plaquette of the lattice. Notice that this is precisely the behavior of

the magnetic term in the Hamiltonian formulation of the Wilson theory (9.19). The

difference is that the electric flux space of the Wilson theory contains all the integer

states, while the quantum link electric flux is truncated between -j and j.

Motivated from the Wilson theory Hamiltonian (9.19) we observe that we can add

also an electric term to the model

HE JE S3, S1 (9.30)

which is by construction gauge invariant. Of course in the quantum link model, the

magnetic term is already non-trivial because of the non-commutativity of the link

operators. The electric term will give a non-trivial contribution to the energy in any

represenation except the lowest j = 1/2 where it becomes a trivial constant.

We finally note that the model has the charge conjugation symmetry which in

the classical theory takes each link to its conjugate u,., -- + u or equivalently flips

the electric flux E,, -* -E,,,. In the j = 1/2 quantum link model the charge
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conjugation operator is given from

C = II 4, (9.31)

which transforms the operators as CS',Ct = S,,, CS, C t = -S',, and is obvi-

ously a symmetry of the model.

9.4 Dimensional Reduction

Working with a finite representation of the quantum links, the 4-d Hamiltonian (9.22)

induces a non-trivial dynamical evolution in a fifth unphysical Euclidean direction x5.

The quantum partition function at temperature T = 1/3

Z = Tr exp(-PH) (9.32)

will as usual be pictured as the path integral of a classical theory in the (4+1)-d slab

with finite extent p of the fifth dimension. Universality says that this classical theory

is based on the 5-d gauge invariance only and therefore the low energy approximation

to the theory in the slab will be the 5-d Abelian gauge theory. Since we are working

on a lattice, we expect that the 5-d theory possesses a strong coupling phase at small

p. It should also have a phase transition at some finite Pr to a Coulomb phase at weak

coupling where the continuum limit of 5-d free photons can be taken. Therefore, when

the slab extent / exceeds the critical value, the correlation length grows to infinity

and we can describe the low energy excitations of the 5-d Coulomb phase with the

5-d Abelian gauge theory action

S[A, = j d J d F4 [ ,F ,, + - a5Aa 5A] . (9.33)

The 5-d theory has the dimensionful gauge coupling e and velocity of light in fifth

direction c. Given the infinite correlation length in the Coulomb phase, the finite ex-

tent of the fifth direction becomes insignificant and the theory appears dimensionally
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reduced to a 4-d theory. Once more we can imagine this reduction as the result of

a renormalization group transformation which averages the 5-d photon field over the

hypercube where it is strongly correlated. This hypercube has extent 3 in the fifth

direction and pc in the other four directions. The result is the fixed-point action for

the standard lattice gauge theory on a 4-d lattice of spacing a' = Oc. The continuum

limit of this theory results from the 5-d theory (9.33) if the fifth direction dependence

of the fields is ignored, i.e. asA,(x, s5) = 0. We can then perform the X5 integration

and get the reduced theory

S[A,]- d d4x 1 2F F, (9.34)

with effective coupling

1 = - (9.35)
g2 e2

We therefore understand that the quantum link model for 3 > 3c dimensionally

reduces to the Coulomb phase of the standard lattice theory. Further, as /3 approaches

/3c, the correlation length grows large. Due to dimensional reduction, the correlation

length grows large with the same exponent as the correlation length of the Wilson

theory near its critical coupling and therefore the nature of the phase transition will

be the same as the transition in the Wilson theory. We conclude that the physics of

the standard lattice theory formulated with the compact U(1) gauge fields can also be

described via dimensional reduction of the collective excitations of discrete variables

in five dimensions.

Notice that similar to the non-Abelian quantum link formulation, we have not

imposed the Gauss law G,IQ) = 0 on the states of the theory contributing to the

trace (9.32). It is well known that in the path integral formulation the Gauss law

results in a non-trivial Polyakov line of the gauge field in the time direction. This is

because the time component of the gauge field appears as the Lagrange multiplier field

which enforces the constraint. In the quantum link model the Gauss law constraint
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would induce a component A 5 (x, s5). After dimensional reduction the Polyakov line

P() = exp (i dU5 A 5(, X 5 )) (9.36)

would appear after as a scalar field in the 4-d reduced theory. We would like to avoid

this field since we do not know its effect on the phase structure of the reduced theory.

For this reason we do not impose the Gauss law and therefore the 5-d theory (9.33)

is written in the gauge A5 = 0. This choice breaks the 5-d gauge symmetry for finite

time 3 but the physical 4-d gauge symmetry is intact in (9.33). The existence of the

5-d Coulomb phase should not be affected by this modification. Adding gauge-variant

states which propagate in the fifth direction does not influence the massless excitations

right above the ground state of the system. The physical spectrum information is in

the correlation functions of operators in the physical time coordinate which is part

of the 4-d lattice. Compactifying this direction would naturally lead to the quantum

link formulation of the finite temperature gauge theory.
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Chapter 10

Strong Coupling Expansions in

U(1) Gauge Theory

10.1 Confinement at Strong Coupling

In this chapter we are going to demonstrate analytically properties of the U(1) quan-

tum link theory at strong coupling. Recall that the quantum partition function is

Z = Tr exp (0JZ_ (Up + Up)) (10.1)
P

where P runs over all the plaquettes of the lattice with Up = U U2U U4 the plaquette

operator made out of the 4 links in counterclockwise fashion around the plaquette.

Consider that we work with a 4-d lattice with dimensions L1 x L 2 x L 3 x L 4 . The

trace is over the Hilbert space of the NL = 4L 1L 2L3 L 4 links of the lattice. The

strong coupling expansion assumes that 3J <K 1 and therefore we can expand the

exponential of the Hamiltonian in a Taylor series around PfJ = 0 and truncate to the

first few terms, which should be a good approximation. The name is motivated by

the Wilson theory where the expansion parameter is 1/g 2. Expanding (10.1) we get

Z= 0n E Tr [(UN1 + U 1) (UN2 +Ut,) ... (UN +U)] (10.2)
n=0 N, N2 N.
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where the Ni's run over the set of the Np = 6L 1L 2L3L 4 plaquettes of the lattice.

We will analyze the j = 1/2 quantization of the links in the following for which the

quantum spins are ,,= , and a are the Pauli matrices

(0 =0 1

The plaquette operator is

Up = a+ +

where arethespin-/2 raising and lowering2 opera3 4 tors

where ao are the spin-1/2 raising and lowering operators

+ ( 1
00)

S (00
1 0

Recall the properties

a+0+ = -- = , -+-= P , -++ = P- ,0.0. 00 U
Tr o = 0

where P' are the projection operators on the ±+ ) states with the properties

P+P- = P-P+ = , P P+ = P+ P-P- = P- , TrP = 1.

(10.6)

(10.7)

We therefore understand that in order to get a non-vanishing trace of a certain link,

the unit operator or an even number of link operators should be traced, chained as

0+-+0 -0+0. .. 0+,-0 or 0- 0+- 0+ . .. -- 0 0+. Pictorially, this means that every time

the flux is flipped in one direction, the next move should undo the flip. The same is

true for the plaquette operator also, which satisfies

UP= UPU =0, UPU = P -P0P P- P, UUt = P-P P+P+ (10.8)

and therefore a shift of flux around the plaquette due to Up can be canceled from the

antiplaquette Ut . There are two ways to get contributions in the expansion (10.2).
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First, for each plaquette Up that appears in a term, the corresponding antiplaquette

Ukp should also appear. In that way it is possible to neutralize the link operators with

their conjugates. Second, for each plaquette Up that appears in a term, neighboring

plaquettes that share links with Up should also appear exactly once in the same

orientation so that the link operators are neutralized. An example of these terms is a

cube made of six plaquettes in the proper orientation or some larger structure which

is bounded by a 2-d orientable surface with no boundary. As long as the surface is

orientable and has no boundary we can tile it completely with plaquettes and get

a non-vanishing trace. Another example valid on a periodic lattice with toroidal

topology is the complete tiling of a plane with plaquettes, since it is a surface with no

boundary on a periodic lattice. For example, tiling completely the 1 - 2 plane once

gives a contribution at 0(pL 1 L2 ). A general term will consist of various disconnected

surfaces. And of course pairs of plaquette-antiplaquettes can be overlaid anywhere

on the surfaces as long as the ordering is allowed.

It is easy now to find the lowest order in 3 of the partition function (10.2). There

is no O(3) term since it traces one plaquette only and the 0(,32) term requires the

plaquette-antiplaquette term

Z Tr I+ 1 2  Tr [(UN1, + U1j)(UN1 + U)1  (10.9)
N1

2N"  J)2Np2N -4Tr [ P+ P2+ 3-P 4- + PP-P3+ P 4]

S2NL 1 + Np + ((J)4)

A trivial lemma of the above analysis is that on a lattice with even L 1, L 2 , L 3 , L 4 the

partition function contains only even powers of P. The energy density of the model

can also be computed at lowest order

- (H) 1 Tr [H exp (-PH)] 1 dZ 30 J2

S- _=+ 0( - J4). (10.10)
V V Tr [exp(-PH)] VZ +0 4

Confinement in the strong coupling phase can be demonstrated if the Wilson loop

expectation value exhibits the area law. Consider a planar rectangular Wilson loop
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of dimension L x T embedded in a space-time plane of the lattice. The expectation

value can again be expanded for small 3

1
(WLT) = -Tr [WLT exp (-H)] (10.11)

S... ETr [WLT (UN, + U) (UN2 +U' 2) ... (UN + U)1
n=o N1 N2  Nn

Since the Wilson loop is a chain of operators

WLT = U1+ ..."" ... C+ oT -L .o- ...- (10.12)

we will get contributions from the terms that can neutralize the link operators that

live on the loop. In the light of the analysis we did earlier for the partition function,

we see that this is possible if we tile an orientable surface, which is bounded by the

Wilson loop, with plaquettes. The orientability of the surface guarantees that it can

cancel exactly the oriented flux that goes around the loop. The lowest order in 3 to

which this is possible requires the lowest number of plaquettes and therefore defines

a minimal surface area problem with given boundary. The answer for the rectangular

Wilson loop we work with is the planar surface defined by the rectangle. It requires

LT antiplaquette operators to tile the rectangular and therefore the lowest order

expectation value is

1 (j) LT Z _ Tr [WLT U . . U (10.13)
(WLT) 2N (LT)! (10.13) N

(,3 J) LT T) ()L(T+1)+T(L+1) = (J)LT ()L+T

(LT)! 2 4 2

To lowest order, Z should be taken as the constant 2NL . There is a factor (LT)!

from the permutations of the LT plaquettes that contribute. Any of these orderings

uniquely fixes the state that contributes on the L(T + 1) + T(L + 1) links that are

involved in the rectangle and so they offer half of their Hilbert space to the trace.
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Rewriting (10.13) as

(WLT) = exp (LTln (j) (L + T)ln2) (10.14)

we recognize the usual behavior of confining gauge theories with an area law for the

Wilson loop followed by the perimeter term. We therefore establish linear confinement

at small pfJ in the U(1) quantum link model with a lowest order string tension

S= In ( j) (10.15)

0 L

Figure 10-1: Tiling a Wilson loop with plaquettes proves the area law in the strong

coupling expansion.

The next order contributions to (10.13) will come from excitations of the minimal

surface that covers the rectangle. The lowest excitation is the attachment of a cube

on the plane. This requires additional four plaquettes and can be attached on any

of (LT) positions. We should not consider a disconnected plaquette-antiplaquette

excitation which corrects at O(32) since this will be canceled by a corresponding
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term in the denominator. Therefore the result (10.14) can be modified to

(WLT) - (WLT) [1 + 0 ((PJ)4LT)I 0 (WLT) exp (O ((iJ)4LT)) (10.16)

and the string tension will have the leading correction

S=ln( ) + 0((3j)) . (10.17)

Examining increasingly more complicated graphs we can derive higher order terms in

this expansion. Nevertheless, these results will be valid only within the convergence

radius of the expansion. The existence of a phase transition which means a non-

analyticity in the partition function can never be determined in the series of P3J. In

the series (10.11) an area law will appear at any order and we cannot deduce if a

Coulomb phase exists at sufficiently small coupling. This requires non-perturbative

methods which in most theories calls for a Monte Carlo simulation.

10.2 Some Comments

Having understood the nature of the strong coupling expansion of the j = 1/2 U(1)

quantum link model we can comment on some things.

First, the U(1) theory with quantum links in a general j-representation is confining

at strong coupling. This can be seen if we examine the expansions (10.2) and (10.11)

for the partition function and the Wilson loop. The analysis we performed concerning

the geometrical objects that contribute to both expansions remains the same simply

because we should again match the number of times we raise the flux on each link

with the number of times we lower the flux. The only difference is that more orderings

of the operators are available since the flux space is larger and we can raise the flux

more than once. To be more precise, a general j-representation state with flux m is

transformed under raising and lowering as

U| j, m) = ij, m + 1) , cim = (J - m)(J + m + 1), (10.18)
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Ut j,m) = cjm j,m - 1), cj-, = (j + m)(J - m + 1),

U 2j +1 =0 , U t 2j + l = 0.

The trace on links with flux raising and lowering is

TrUUt = TrUU (,mIUUt ij , m) = (j, mUtU j,m) = (10.19)
m=-3 m=-j

2 2 2j(j + 1)(2j + 1)Z C =L Cjm 3
m=-3 m=-3

Based on this, we can easily compute the lowest order contribution to (WLT)

1 (PJ)LT E E .. Tr [WLTUNt U 2 ... t (10.20)
(WLT) + )NL (LT)! N1 N2  NLT

_z. U~j / ____________LT

(pJ) (LT)I 1  L(T+1)+T(L+I) (2(j + 1)(2j + 1))L(T+1)+T(L+1)
= (L T)!

We should not forget that the transformations are rotating a quantum spin with

magnitude j(j + 1) and therefore we should divide each link operator U,Ut by

j(j + 1) in order to approach the classical U(1) results where a unit vector is rotated.

With this normalization the Wilson loop expectation value

(WLT) = (4J) ) T= exp -LTln (9) - (L + T)ln( )) (10.21)

shows an area law which again signals linear confinement at small PJ for any repre-

sentation j.

A second comment concerns the non-Abelian quantum link models. It is well

known that at strong coupling Wilson's non-Abelian gauge theories are confining.

The lowest order contribution to the Wilson loop comes from completely tiling the

minimal area stretched by the loop with plaquettes and tracing in the group space.

This is based on the property that a group integration requires the link matrix and

its conjugate in order to be non-zero. The same behavior carries over in the quantum

link formulation. Here a link operator matrix element changes the colored flux in a
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particular pattern and only the conjugate element can bring the state back. The group

integration is replaced by the trace in the link Hilbert space and the strong coupling

expansion will again get contributions from the orientable surfaces that are bounded

by the Wilson loop operator and are tiled with plaquettes. The only difference is that

some orderings of the operators will not be allowed but otherwise the Wilson loop

will again show an area law. Therefore the non-Abelian quantum link models will

be confining at small PJ. Due to dimensional reduction 3J - 1/g2 this is consistent

with the strong coupling phase of the reduced Wilson theory.

Osterwalder and Seiler have proved [71] that the strong coupling expansion of any

lattice gauge theory with a compact group in any dimension has a finite radius of

convergence. Equivalently, there will always be a critical coupling c, > 0 such that

for / < ,c the theory is in the confining phase. From what we have seen so far, the

strong coupling expansion of the quantum link theories shows the same qualitative

behavior as the classical theories and therefore it seems natural to conjecture that

the Osterwalder-Seiler theorem holds also for all D-theory formulations of the gauge

theories.

10.3 A Constraint on the Critical Coupling

The analysis of the strong coupling series for the partition function (10.2) and the

Wilson loop (10.11) can be fully applied to the standard Wilson U(1) theory. The

link operators should be replaced by the corresponding phases and the trace of the

Hilbert space by the U(1) group integration

1 dcp
UX,, -- exp(i z,,) , J -- 2 Tr f W (10.22)

2g2  - 27r

Consider an arbitrary order n term in the expansion

Z = j Z- Tr [(UN1 + U ') (UN2 + T2) ... (UN, +U )] (10.23)
n=O N, N 2 N,
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Each of the selections N 1, N 2, - - -, N , should tile exactly one or more closed sur-

faces and could further contain plaquette-antiplaquette terms in order to have a non-

vanishing trace. This is the case for both the j = 1/2 quantum link and the Wilson

theory. For each such selection there is one more contribution from its conjugate

term. All such selections contribute to the Wilson expansion but only some of these

selections contribute to the j = 1/2 quantum link model because the ordering of the

operators matters since each raising of flux should be followed only by lowering of

flux. Notice that all these terms appear with a plus sign in the expansion (10.23)

and therefore the (/3J) coefficient gets a smaller contribution in the quantum link

case. Furthermore, the tracing in the involved M, links brings in a factor (1/ 2 )MI

in the quantum case while it is a trivial integration with the measure (10.22) and

result 1 in the classical case. Therefore the order (PJ)n term always has a smaller

positive coefficient than the classical term. The quantum link model therefore has a

larger convergence radius than the classical model. If we assume that the radius of

convergence of the series equals the critical coupling in both the classical and quan-

tum link expansion, we can conclude that the critical 3 for the quantum link model

will be larger than the corresponding critical value in the Wilson theory. Simulations

of the Wilson theory show a critical value 1/g 2 = 1.01.. and in the mapping (10.22)

it is rescaled to (P3J)C = 0.50... We can therefore constrain the critical value of the

j = 1/2 quantum link model from below

(OJ)c > 0.50... (10.24)

The numerical results that we will present in the next chapter are consistent with

this constraint. Finally we notice that the derivation of this inequality is independent

of dimensionality. Since the classical Wilson theory in 3-d is strongly coupled at all

3, we conclude that the 3-d j = 1/2 quantum link model will also remain strongly

coupled for all 0 values.
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Chapter 11

The Cluster Algorithm for

Quantum Spins

11.1 Introduction

In chapter 5 we explained how classical spin systems can be simulated efficiently with

the Wolff cluster algorithm. Now we turn to the quantum systems and extend our

analysis to them. The Hamiltonian which defines the models can be diagonalized

explicitly only for very small systems, therefore different strategies are needed. In

fact, the Monte Carlo simulation is the only available method for accurate studies of

the quantum spin dynamics. The loop-cluster algorithm was first presented in [72].

Since we deal with a Hamiltonian and our variables are spin operators in a certain

representation, evolution in an extra time coordinate naturally emerges. In order

to model the evolution in a numerically efficient way, we discretize the time interval

and construct a path integral representation for the partition function, as we will

show in section 2. The method of importance sampling can now by applied to this

partition function. We expect that we can construct clusters of classical variables by

joining interacting spins together with rules that obey detailed balance and ergodicity

and update the system efficiently. In a more rigorous approach, we explain how the

partition function can be mapped to the partition function for a random cluster

model after a proper decomposition of the elementary transfer matrices. In section
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3 we apply the method to the XY model and derive the rules needed for a cluster

decomposition. We show the basis-independence of the cluster dynamics in section 4

and use it to measure Greens functions with improved estimators in section 5.

11.2 The Suzuki-Trotter decomposition

Let us consider the Hamilton operator for a spin model on a 2-d square lattice

H = h , , (11.1)

where h~, is a coupling of the spin operator at the site x and its neighbor in direction

1t = 1,2. The structure is immediately generalizable to higher dimensions. The

partition function is given by

Z = Tr exp(-PH). (11.2)

We now introduce the Suzuki-Trotter decomposition and imagine that H describes

evolution in the compact time interval [0, 3]. The trace implies periodic boundary

conditions in time. We discretize time in small steps e = - and rewrite Z as

N

Z = Tr exp(-cH) (11.3)
i=1

In order to make the partition function accessible to numerical simulations we expand

it further in a checker board pattern such that a minimal number of spins interact in

a single time step. The Hamiltonian decomposes into

H = H1 + H 2 H + H 4 (11.4)
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where the four terms are

H = h., H 2  E h., H3 = E h,'j, H4 =
zE(2m,n) cE(m,2n) E(2m+l,n) zE(m,2n+1)

(11.5)

Every Hi contains a sum of commuting operators, each of which represents a two-

spin interaction. Thus exp(-cHi) can be computed easily as a product of independent

exponentiations of the two-spin interaction h,,,. The essence of the Suzuki-Trotter

decomposition is the approximation

exp(-cH) _ exp(-cEH) exp(-cH2) exp(-EH3 ) exp(-EH4) (11.6)

which is valid for large N. The partition function is now expressed as a product

of 4N operators. We introduce the unit operator as a sum over a complete set of

states between the 4N exponentials. Each of these insertions defines a discrete time

label t = 1, 2, .., 4N. The ± sign which labels a spin state, e.g. as an eigenstate of

o , becomes a classical, Ising-like spin living in a (2+1)-d space. In this way we are

left with a product of matrix elements of spins. In fact, since each Hi is a sum of

commuting spin pairs, these matrix elements are independent products of the transfer

matrix for the two-spin interaction which is defined as

T(si, S2 ; 83, 84) = (83 84 Iexp (-E h,, 4) I1 82) (11.7)

In this notation, the neighboring spin states sl, 82, which live on a time slice t, are

coupled to their images 83, s4 forwarded to the time slice t +1. What we have achieved

is to reexpress a quantum partition function on a square lattice of dimension L 1 x L 2 as

an effective partition function for classical spins on a 3-d cubical lattice of dimension

4N x L 1 x L 2 ,

Z = exp(-S[s]) . (11.8)
z,t dS,t=±l/2

The action S[s] is a sum of contributions from the checker boarded plaquettes, each

linking four spins into an effective interaction. The Boltzmann weight of each pla-
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quette configuration is naturally given by the transfer matrix element between spin

states

exp(-S[s,.t, s,+A,t; sx,t+1, s,+P t+l])= T(s,,t, S,+,t ; S,,t+l, s+lt+l) . (11.9)

At this point we are ready to explore methods for an effective sampling of the con-

figuration space of the (2+1)-d system that we constructed. The principle will be

the same as in the classical spin systems that we have already explored. Namely, we

would like to examine the interacting groups of spins and group them into clusters

according to the weight of their configuration. The clusters constitute a complete de-

composition of the (2+1)-d lattice and are flipped independently resulting in a much

more efficient move through phase space. Of course the decomposition of the lattice

into clusters must be done such that ergodicity and detailed balance are obeyed. In

the way we have written the partition function as a product of independent plaquette

interactions this is not a hard task. In fact, we have to examine the 4 x 4 = 16 states

that can appear and construct flipping rules so that ergodicity and detailed balance

for the plaquette phase space is obeyed. This is sufficient to guarantee that we will

produce a Markov chain with this algorithm.

Actually, the decomposition of the plaquette can appear in a more natural way if

we remember that the partition function can also be written in the form

Z = Tr(H T), (11.10)
p=1

where we multiply in a time ordered fashion the Np = 2NL1L 2 transfer matrices. The

trace and the multiplication of the matrices constitute exactly the summation over

the spin states with periodic conditions in time. Each transfer matrix T(sl, s2 ; S 3 , s4)

can be rewritten as a sum over products of simpler tensors such as 6,, , or ,,,2 for

example. In fact, as will be shown in the next section for the XY model, if we

use tensors such that the plaquette is always decomposed into two groups of two

spins each, the decomposition is unique and results in clusters which are loops of
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spins. In that sense, the loop-cluster algorithm can also be pictured as following the

worldlines of quantum spins in their (2+1)-d evolution. At the same time, as will

be shown in detail in the next sections, this representation helps to reveal the basis-

independence of the quantum cluster dynamics and consequently the construction of

improved estimators for Green's functions.

11.3 Clustering the XY model

We apply the analysis of the previous section to the XY model which in the spin-1/2

representation is defined through the Hamilton operator

1H= h hs= + (+ )  (11.11)

with a ferromagnetic coupling J > 0. Using the relations 1 = O- + -- and

r2 = -i(o + - o-) we can express the transfer matrix as

T = exp(-he h ,) = exp(EJ (a:4+A + +: )) . (11.12)

It is easy to carry out the exponentiation if we remember that r 0+ + = 0-a- = 0,

1+0. - = P+ and or-, + = P-, where P1 are the projection operators on the ±

eigenstates. Even and odd powers of EJ separate and the result is

T = 1 + (cosh(EJ)- 1)(P+P-+, + P:P+ ) + sinh(EJ)(o- o + ) (11.13)

Explicitly, the only non-zero matrix elements are

T(+-; +-) = T(-+; -+) = cosh(eJ), (11.14)

T(+-;-+) =T(-+; -) =sinh(EJ),

T(++;++) =T(--;--) =1.

125



Now we notice that we can decompose this transfer matrix as a sum of simpler tensors.

For the six non vanishing elements that we have, it is enough to use the diagonal

operator 68 ,,3 6,8,,, a cross-diagonal operator 86,,,,,, and the operator 81 2 83,84 ,

which projects onto opposite spins on the same time slice. The decomposition can be

written as

T(si, s2 ; S3, S4) = w1 6, 6s,s4 + W 2 61,82,83 + w 3  4 . (11.15)

Matching the left and right matrix elements we get the equations

cosh(eJ) = w 1 + w 3 , (11.16)

sinh(EJ) = w2 + 3 ,

1 = w1 + W 2

which give the solution

1 1 1
S= (1 + exp(-eJ)), w2  (1 - exp(-EJ)), w3  2(exp(cJ) - 1). (11.17)

Since we have Np = 2NL1L 2 plaquettes in the lattice and each one can offer three

different tensors, the partition function can also be expressed as a sum over 3NP terms,

each one being a unique product of the tensors weighted with the corresponding

product of weights w, w2 or W3 . A choice of one of the tensors corresponds to a

decomposition of the plaquette. For example, the tensor 8,,,,36,,,84 corresponds to a

configuration where the spins si, s2 are in the same state with their forward neighbors

in time. In that case, the spins sl and s3 should be put in one cluster together while

the spins S2 and s4 are joined into a different cluster. The tensor 6,,,4 8,,,, is applied

to states where sl equals s4 and 82 equals S3. It joins s, with s4 and s2 with s3.

Finally, the tensor 0 .,a3, applies to states with si opposite to its time slice

neighbor s2 and likely s3 opposite to s4. It joins s, with s2 into a cluster and s3 with

s4 into a different cluster. As we have seen, each of the six plaquette configurations

that have non-zero weight can be decomposed with two out of the three patterns. The
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loop-cluster is simply following a given spin as various decompositions join it with

neighboring spins in space or time. The evolution is traced forwards and backwards

in time and due to the periodic boundary conditions, the worldline is going to form

a loop. The spin is evolving keeping its orientation unless the loop joins it with a

neighbor on the same time slice.

The probability for each plaquette decomposition appears naturally as the ratio

of the decomposition factor wl, w 2 or W3 with the weight of the state. In this way we

can prove easily that flipping a loop-cluster obeys detailed balance.

Let us examine the plaquette configurations

C1 = (+-;+-) with weight W[C1 ] = cosh(eJ) ,

C2 = (+-;-+) with weight W[C 2 = sinh(EJ) and

C3 = (++; ++) with weight W[C3] = 1

and recall that total flips have the same weight.

Configuration C1 can be decomposed with patterns wl or w3 . After flipping the joined

spins it will result in the configurations C3 or C2. The corresponding probabilities

are

P(C1 - C3) = w 1/ cosh(EJ) = [1 + exp(-EJ)]/[2 cosh(EJ)], (11.18)

(C- C2) = w 3 / cosh(cJ) = [exp(EJ)- 1]/[2cosh(eJ)].

Configuration C2 can be decomposed with patterns w 2 or w 3 . After flipping the joined

spins it will result to the configurations C3 or C1. The corresponding probabilities

are

P(C2 ~ C3) = w 2 / sinh(EJ) = [1 - exp(-cJ)]/[2 sinh(cJ)] , (11.19)

P(C 2 -* C1) = w 3/ sinh(eJ) = [exp(EJ) - 1]/[2sinh(cJ)].

Configuration C3 can be decomposed with patterns wl or w 2 . After flipping the joined

spins it will result to the configurations C1 or C2. The corresponding probabilities
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are

P(C 3 -* Cl) = wi = 1(1 + exp(-eJ)), (11.20)

1
P(C - 2) =  2 = (1 - exp(-cJ)).

We can see that detailed balance is satisfied automatically for any pair of configura-

tions

W[Ci] P(Ci -+ C) = W[C] P(Cj -* Ci). (11.21)

Finally, notice that any plaquette configuration can decay to any other, therefore the

constructed algorithm will also be ergodic.

l+e-EJ e EJ 1

2cosh (E J) 2 cosh( J )

+ +

+ E 1 -e-
2 2

- O + __

E J - 1 1-e

+ O O - 2 sinh(J ) 2 sinh( J )

Figure 11-1: The plaquette decomposition probabilities in the quantum XY model.

The analysis can be easily repeated for the Heisenberg ferromagnets or antifer-

romagnets or any other spin model. In fact, the loop-cluster algorithm that we just

developed has proved a very efficient tool for the simulation of all the spin models.
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It can operate either as a single cluster algorithm where one constructs a single loop

and flips it or as a multi cluster decomposition of the lattice where one would flip the

clusters independently with a 50 - 50 probability.

11.4 Basis-Independence of the Clusters

In this section we are going to pursue further the understanding of the cluster de-

composition of the (2+1)-d lattice. We recall that the partition function has been

rewritten as

Z = Tr(i I T) = E W[si , (11.22)
p=1 S

Each configuration of spins S appears with a probability P[si] = W[s]/Z.

Now we recall that each plaquette transfer matrix Tp can be written as a sum of

three decompositions which we denote as {n,} = {1, 2, 3}. Therefore the partition

function can be written as

Z = Tr(1 E wpMn) = Tr(i w,,M,,). (11.23)
p=l np{1,2,3} G={np} p=l

Here G denotes a unique choice of plaquette decompositions for the whole lattice,

which is actually a connected graph of a complete decomposition of the lattice into

loops. For convenience we name the tensors

M1 = 1 ,s 3 52,84 M2 = 81,84 s2,s3 . 3 = a 0 . (11.24)

Let us now define the weight WG= -p1 w, for a certain graph G and the time

ordered operator MG = HNp 1 Mn,

The partition function can now be written as

Z = ~WG Tr[MG], (11.25)
G

which suggests an interesting interpretation. It describes a random cluster model in
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the sense that the phase space now consists of the graphs containing loops that cover

completely a (2+1)-d lattice. The associated Boltzmann weight is WG while Tr[MG]

represents an internal quantum number assigned to the graph. It is very important

to notice that WG and Tr[MG] are independent of the basis used to represent the

spin operators. This means that the clusters are dynamical objects with geometrical

properties of their own. The choice of a particular representation only changes the

rules according to which the plaquettes are decomposed and therefore the way the

loops are grown without affecting the Boltzmann weight that their length, shape e.t.c.

is associated with.

11.5 Measurement of Green's Functions

The expectation value for an operator O, at site x is given by

1
(0,) = Tr[O, exp(-3PH)]. (11.26)

Z

We would like to have an expression that would allow us to measure this expectation

value. Therefore we again decompose H as in eq.(11.4) and insert 4N time slices to

define a path integral. We immediately see that in order to recover the same (2+1)-d

Boltzmann weight, 0, has to be diagonal in the representation we are working in. If

this is the case, we simply measure its value on an arbitrary time slice and we can

determine its expectation value. If O, is not diagonal, then it appears as a defect in

the effective interaction on some time slice. This means that a different path integral

has to be generated in order to measure (O,). Still, the observable in that case would

be the modified partition function itself divided by the unmodified partition function,

and it appears extremely hard to measure such a thing with the available algorithmic

processes.

The problem seemed intractable until it was realized recently [73] that precisely

the cluster algorithm itself provides a way out. Recall that the partition function is

a trace of time-ordered T-matrices. Now the presence of O, implies an insertion of
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the matrix 0,,,',, between some T(...s,,t) matrix coupling t-1 and t slice bond, and

a T(Bi,t...) matrix acting between t and t+1 slices in the multiplicative scheme

.... [ T(...sx,t)O y.,,, £,,T(j,,t ... ) ].... (11.27)

Since every T-matrix has been decomposed as T = wl M 1 + w 2 M 2 + w 3 M 3 , Oa

will be inserted in each of the 3NP decompositions of the lattice between the M,p

operators

S= Tr[II w(O=M)] = [ Tr [I wn(OMn)] (11.28)
p=1 np,={1,2,3} G={np} p=1

and we recover an expression in the random cluster model

1 Tr[OMG]
(O) = WG Tr [O,MG] )r[G (11.29)

G Tr[MG]

The numerical evaluation of this expression is an easy task with the cluster algorithm.

After generating a graph G in a Markov chain with probability

1
P(G) = WG Tr[MG] (11.30)

we have to examine the clusters of the graph and count if they contribute to the

quantity Tr[OMG ].

Let us demonstrate how this works with a concrete application to the XY model.

Suppose we are interested in the expectation value of the operator o4. The graph

G consists of NG clusters, C2 (i = 1, 2, ... , NG) and since they do not intersect, the

traces decompose into independent traces of the clusters

NG NG

Tr[MG = i Tr[MCi] , Tr[OMG] = Tr[,Mc,] . (11.31)

Therefore (:) = (Tr[,1Mc])c. But now remember that given a spin on the loop,

all the other spin states are automatically determined from the clustering rules. This
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gives TrMc = 2. Furthermore, the operator ao is the flipping operator a1-I) = IT)

and therefore causes an inconsistent flip within the loop. Therefore Tr[o4Mc] = 0

and (o-1) = 0.

Now we proceed to the more interesting two-point function Re( ogCo;) from which

the correlation length is extracted. Since o+ = (a.1 + io.2)/2 and a- = (o1 - io 2)/2 ,

it follows that Re(c7;r+ ) = ((roir) + (2 ))/4. The 0(2) invariance of the model

implies further that (cV ) = (r-2) after a rotation by 7r/2 in the X-Y plane.

Therefore (ao1r,) suffices for reconstructing all physical results.

In order to get a contribution to (0r~1) we need to have both points x and y on

the same loop. In this case, the second flip repairs the inconsistency created from the

first and Tr[o. 'Mc] gets always the contribution 2. The loop appears as being cut

at the sites x and y and half of it is flipped. Therefore, the improved estimator for the

two-point function Re(o -:o) gets a positive contribution 1/2 for any pair of points

in an examined loop. The translational invariance of the Hamiltonian guarantees

that all the pairs are contributing equally to a correlation function which at the end

depends only on the distance vector x - y.

Notice that on a given loop, we can get a non-zero contribution only if we put

an even number of operators o-1 or .r2. The operator -2 also behaves like a flipping

operator up to phases, since 21 ±) = ±ilF) . A general 2n-point function of o's and

a2's will get a non-zero contribution if all the points live on a loop or are split in always

even subsets that live on different loops. As a lemma, we realize that any 2n+1-point

function is always zero, a result that we anticipated based on the reflection symmetry

S -s of the model.

The reason we managed to extract information about Green's functions previously

thought unreachable can be traced precisely to the basis independence of the cluster

dynamics. Since the geometrical properties of the clusters themselves are basis inde-

pendent - recall that the graph weights WG are basis independent - we can imagine

that we work in a basis in which the operator O, is diagonal. In that case, the same

clusters would be grown under different rules and we could go on and measure imme-

diately the value of O, from the generated configuration. The basis independence of
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the cluster dynamics can be checked explicitly in the XY model as in fact has been

demonstrated in [73]. Suppose we are interested in (a 2 )xy. We can choose to work

in the representation in which -2 is diagonal. This can be achieved formally if we

rotate S by 7r/2 in the 2- 3 plane with the unitary operator U = Ife exp(-iirl/4)

which takes o- - *a and a - . The transformation effectively maps the XY

model to the XZ model which is defined through the Hamiltonian

Hxz - 'E + + (11.32)

Due to this rotation we have (a 22)xy = (Oa ~e)xz .Now, the plaquette decompo-

sition rules for the XZ can be easily extracted from the rotated transfer matrix

Txz = exp(iIr,/4) exp(i7r+,/4) Txy exp(-i /4) exp(-ir-+,/4) (11.33)

which again in the or3 basis is

Txz(sl, 2 ; S3, 84) = L U 4 T xY(s', s'31 S) 1 2,, . (11.34)

a1 82) 83 84

Using eq.(11.15) for Txy along with

1 1 1Uz, ( - i , U = - (6 ,' +i a ) (11.35)

we get

Txz(si, 2; S33 84) = 1Ii {(83,, + io- 3 ,)(8,4 ,,4 + ior), 1.36)

Txz(, 2 TXZ( 83, 4) = w ,s 2,4 w 2  2, 3 3 1,2,3,4 (11.37)

TXZ(Sl, S2 -) 3, S4) - W1 881,83882,84 + W2 881o84 8 82,8 + W3 8.1,82 8 83,04 (11.37)
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We see that the three patterns which decompose the plaquette remain the same and

in fact appear with the same weights 1, w 2 , w2 3. Therefore, both XY and XZ models

are mapped to the same random cluster model. Nevertheless, one crucial difference

has appeared. All the tensors are now 6-functions which means that the loops for the

XZ contain spins of the same orientation only. What can we learn about correlation

functions in the XZ in the a3 basis? First, notice that Tr[xMci] = 0. This is true

since again cr1 and cr2 cause inconsistent flips around the loop and o3 gets +1 and

-1 contribution from the spin states. Second, Tr[alo Mc,] gets a contribution +1

if the pair x, y belongs to the same loop. From this we conclude that (1So)xz =

(0oS)xy . Since the spins in a loop are all in the same state, we learn also that

Tr[ ro-rMc_] = Tr[Mcj] = 2. Therefore, we also get a +1 contribution to (o o3)xz

and conclude the following interesting chain of equalities

(o1 )xy = o ) ( '' 1 0)xz = (o 0-3 )xz . (11.38)

Using this methodology interesting relations can appear between higher n-point func-

tions in the XY and the XZ spin models.
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Chapter 12

The Flux-Cluster Algorithm

12.1 Introduction

In this chapter we are going to develop a cluster algorithm for the spin-1/2 U(1)

QLM. We are going to follow step-by-step the methodology applied to the Abelian

spin model. In section 2 we are going to perform the Suzuki-Trotter decomposition

and construct the (4+1)-d path integral with a discrete fifth direction. We therefore

expect that the importance sampling of this partition function can be achieved by

forming clusters of links and updating the system. We show in section 3 that rules for

joining interacting links such that detailed balance and ergodicity are respected can

be found. In section 4 we demonstrate that the cluster algorithm provides improved

estimators for the measurement of Wilson loop expectation values. We finally show

in section 5 that the discreteness of the Hilbert space allows the simulation of the

model directly in the continuum of the fifth direction.

12.2 Suzuki-Trotter decomposition

Let us recall the U(1) Hamiltonian

H = -J [U,,,U ,,, U + U U U , (12.1)
e,/<v
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where in the spin-1/2 representation the link operators and the Gauss law generator

are given by

U- == U3 = G - C_ ) . (12.2)

Since S, corresponds to the electric field vector defined on the link, a natural basis

to work with is diagonal in the electric field. Therefore, the J± > eigenstates of

0a,3 correspond to the quantized electric flux living on the link (x, I) and the cluster

algorithm that is to be presented will be naturally named flux-cluster algorithm.

We start the Suzuki-Trotter decomposition by dissecting the compact interval

[0, 3] into N small steps = eN,

N

Z = Tr exp(-cH) . (12.3)
i=1

In four dimensions, there are six planes in which the plaquette operators live. Search-

ing for the maximal sets containing commuting operators we realize that we have to

perform a checker board decomposition for each plane (IL < v)

HIA = H(white) + H(black) (12.4)

(whfite) _ - J [UV+US4,VU,,,VU , +4 =,-V ,U, ] , (12.5)
x Ix,+x,=2n

H(black) - -J [Ux,,U +±,UU, U, + UU+a,,tU+,vu,] . (12.6)

x xA+x-,=2n+l

H(white) and H(black) are both sets of mutually commuting plaquette Hamiltonians.

Furthermore, for each plane (suw) there is an orthogonal plane (SA) with all p, v, n, A

different from each other. We can therefore decompose H into six maximal sets of

commuting plaquette operators

H = Hi + H2+ H3+ H4 + H+ H6, (12.7)

Hi = H(white) + H( hite ) , H 2 = H(black) + H(black) (12.8)
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H (whe) (w (white) (black) (black)H3 = -13 + H214 = H-H13 + 24 (12.9)

H5  H (white) + (white) H6- H (black) + H(black) (12.10)

For large N we approximate

exp(-cH) _ exp(-cHi) exp(-cH 2) exp(- EH3 ) exp(- EH 4) exp(- eH) exp(- EH6)

(12.11)

and inserting complete sets of flux states between the 6N exponentials, we recover

a path integral for a 5-d partition function with 6N time slices between t = 0 and

Z = i exp(-S[e]). (12.12)
,..Lt e 1 2

The classical fields are now the electric flux configurations e,,,t living on each t-slice

copy of the 4-d lattice. Each plaquette transfer matrix

T = exp 6J +  +  - a , r+r=+ p,V,]) (12.13)
TrjAO'X+A ,V FC + - - + +

defines an effective cubic interaction between a plaquette and its image in the next

slice. The classical action S[e] appears as a sum of the individual cubic terms. For

simplicity let us rename the flux states of a cube as

e,,t = el , e,+,,, = e 2 , ez+,,,t = e 3 , e,v,t = e 4 , (12.14)

/ I I /

ex,4,t+l = el , e,+A,,v,t+l = e 2 , e,+,,t+l = e 3 , e,,,,t+l = e4

Each cube appears with a Boltzmann weight

W[e, e2, e3 , e4 ; e, e', e, e'] = exp (-S[e,e 2, e3, e4 ; , ]) (12.15)

= (e' e e e'4 fTle e2 e3 e4)

The exponentiation of T is easy to carry out; in fact, it gives the same series as the
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XY model, only with the addition of more diagonal states

T = 1 + (cosh(cJ)- 1)(P+,P ,,P,,- P, + P P, P+ ,)(12.16)

S+ s + + a-.. + +).

From the 16 x 16 matrix elements, only 18 are non-vanishing:

The diagonal ( + + - -ITI + + - -) = (-- +I7 - + +) = cosh(cJ), the

rest of the diagonals with weight 1 and the non-diagonal ( + + - -ITI - - + +) =

(- -+ +|TI + + - -) = sinh(eJ).

12.3 The Discrete Time Algorithm

The flux cluster algorithm is equivalent to a choice of decomposing the eight links of

the elementary interacting cube into clusters in such a way that if one of the groups

is flipped, a new state is obtained while detailed balance and ergodicity are always

obeyed.

In contrast to the spin models, this problem appears too complicated to be handled

transparently with the algebraic decomposition of T in simpler tensors. Therefore,

we are going to work in a more pictorial way in order to present the general choices of

cluster rules for the elementary cube. We are going to examine the cube configurations

with non-zero weight and simply examine the possibilities for decomposition patterns.

Then, we are going to assign probabilities to each pattern such that detailed balance

and ergodicity are obeyed. We will find that we have many options for an algorithm

and, in fact, parameterize the space of possible algorithms. Different choices will in

general have different degrees of efficiency.

Examining the cube states we should first remember that the ± flux state denotes

the electric field orientation, which in the following graphs is going to be represented

by an arrow. Second, note that the Hamiltonian is invariant under rotations and

reflections and therefore our cluster rules should respect that. We are going to define

classes of cube configurations related by these symmetries and treat them identically.
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Class 1 contains the diagonal states (+ + -- ; + + -- ) and (- - ++ ; - - ++)

with non-trivial weight cosh(eJ). They are characterized by the fact that the flux

flows continuously around the plaquettes.

x 5

Class 1

Class 2 contains the diagonal states (+ - -+ ; + - -+) and (- + +- ; -+ +-)

with weight 1. The flux flow for these states is interrupted at all four corners of the

plaquette.

Class 2

Class 3 contains the diagonal states (++ ++ ++; + ++) , ( -- ; - - -- )

and (+ - +- ; + - +-) , (- + -+ ; - + -+) of weight 1. These states have violation

of the flux flow at two diagonally opposite sites of the plaquette.

Class 4 contains the diagonal states (+ + -+ ; + + -+) , (+ + +- + + + -),

(+--- ; +---) , (-+-- ; -+--) and their flipped partners (--+-; -- +-)

, (- - -+ ; - - -+), (- + ++ ; - +++) and (+ - ++ ; + - ++). All these

states have weight 1 and their characteristic is that one link flux is against the flow

of the rest three on the plaquette.
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Class 4

Class 5 contains the only non diagonal states (+ + -- ; - - ++) and

(- - ++ ; + + -- ) which have weight sinh(cJ). These states have a continuous flux

flow on both plaquettes but in opposite directions. We will refer to these states as

transition cubes.

We start by looking for decomposition patterns that would make a transition cube

decay to one of the 16 diagonal states. We will refer to the decomposition patterns

generally as "cube breakups". Since each link on the transition cube has opposite

flux from its t-forward neighbor, a cluster flip that can take it to a diagonal state

needs to flip exactly four links and no pair of them should be t-forward neighbors.
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Class 5

Therefore, the transition cube breakups decompose the cube into two clusters of 4

links each and as we see easily there are 8 patterns to do that. Each pattern has

the meaning of a projection operator on a certain state as we will specify later. We

identify rotationally connected breakups into patterns B1-B4.

1 !
I I

B3

B4

B4

Transition Breakups

The other class of breakups would after flipping take a diagonal state to a diagonal

state. In order to respect that, these breakups should include t-forward neighboring

links in the same cluster. There are several ways to perform these diagonal breakups,

again identifying rotationally related patterns.

One way (D1) is to assign all four pairs to independent clusters.
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A second way is to join two pairs in one cluster and the other two pairs in a

different cluster. There are two classes that achieve this, depending on if the joined

pairs are opposite (D2) or adjacent (D3) to each other in the plaquette.

A third way is to join three pairs into a cluster and the last pair to a different one

(D4).

Finally, a fourth way is to join two of those pairs to a cluster and assign the other

two pairs to independent clusters. Rotational symmetry distinguishes two classes in

this way according to if the two independent pairs are adjacent (D5) or opposite (D6)

to each other in the cube. We are not considering the possibility to join all 8 links to

a cluster since such a move would not induce an interesting update.

The breakup types that we have pictorially presented above actually represent

projection operators made out of appropriate tensors that decompose the transfer

matrix as we have already seen in the spin models. This pictorial decomposition is

not yet complete since we have not specified what configurations live on the links that

are joined with these graphs. We are going to assign such a specification now. We

are going to demand that links on the same time slice that are going to be included

in a cluster should keep the flux flow around the plaquette. This will be essential,

as we will see later, for the existence of improved estimators for Wilson loops. Each

projection operator, which is one of the graphs above, is assigned a coefficient in the

decomposition of the transfer matrix. We call these coefficients B1 - B 4 and D 1 - De

according to the patterns.

Following this specification, each of the five classes of transfer matrix elements

is decomposed uniquely into the patterns B1-B4 and D1-D6. For example, a class 1

configuration can decay to a transition cube (class 5) through the pattern Bi only. It

can also decay to the diagonal class 4 through pattern D1, to class 2 through pattern

D2, to class 3 through both of the patterns D3, to class 4 through the four patterns

D4, to class 3 through two of the patterns D5 and to class 4 through the other two

patterns D5 and finally to class 2 through one of the D6 patterns and to class 4

through the other D6 pattern.

A class 2 configuration can decay to the transition cube only through pattern B2.
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The diagonal patterns that are allowed are only D1, D2 and D6. The rest violate the

flux continuation restriction we imposed. It can therefore decay through D1 to class

4, through pattern D2 to class 1 and through one pattern D6 to a class 1 state and

through the other pattern D6 to a class 4 state. Similarly we can find pictorially the

decays for the other states. The pictorial decomposition of the transfer matrix gives

the equations

cosh(cJ) = B 1 + D1 + D2 + 2D03 + 4D 4 + 4D5 + 2D6 , (12.17)

1 = B 2 +D +D 2 +2D 6 ,

1 = B 3 + D + D+D+ 2D5 ,

1= B 4 +DI+D 4 +2D 5 +D 6 ,

sinh(cJ) = B 1 + B 2 + 2B 3 + 4B 4 .

Each cube has a probability to decay to another cube given by the coefficient of the

decay pattern that connects the two cubes divided by the weight of the first cube. In

this way the detailed balance is automatically guaranteed - recall the discussion for

the XY cluster algorithm. The coefficients B 1 - B 4 and D 1 - D6 are therefore positive

numbers between 0 and 1. Further, we see that only D 1 is an 0(1) number while

the rest are small O(EJ) numbers. There are five parameters left undetermined from

(12.17). Each allowed choice of these parameters constitutes a flux-cluster algorithm

for the j = 1/2 U(1) QLM which will automatically have improved estimators for

Wilson loops. Ergodicity has to be checked individually for each selection. We can

select D 2 - D6 as free parameters. The rest of the coefficients are then determined

7 + e- eJ  1 1
D D- -D- D 4 - 2D5 - D 6 , (12.18)

8 4 2

4e" + 3e - eJ - 7 3 3
B 1 = D -- -D - 3D 4 - 2D - D6

8 4 2
1 - e- J+ 3 1

B 2 = D2 +-D 3  4 +D 4 +2D-D 6 ,
8 4 2

1 - e- J  1 1
B3  = + D2--D +D4+D6

8 4 2
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1 - e- 'J 1 1
B4  + D 2 + -D 3 .

8 4 2

A simple choice for an algorithm is D 2 = D3 = D4 = D5 = D6 = 0. This is an ergodic

choice and is the algorithm that has been used for the numerical results presented in

chapter 14.

12.4 Measuring Wilson Loops

The algorithm we presented above joins links carrying electric flux in a continuous

flow and follows their evolution in the fifth Euclidean direction. Therefore the cluster

which is generated is a two-dimensional surface embedded in the (4+1)-d lattice of

the QLM. Physically this surface is the world-sheet of electric flux strings. Since

we do not enforce the Gauss law constraint in the QLM Hilbert space, these electric

flux strings can be oriented closed or open strings. A closed string carrying oriented

flux does not change the charge anywhere after it is flipped and therefore respects the

Gauss law constraint. An open string, on the other hand, is an electric field line from

one point to another, and after it is flipped it will generate violations of the electric

charge at its endpoints. The cluster which is the string world-sheet will therefore be

an orientable surface of arbitrary topology and in general we can picture it as a union

of both closed and open 2-d patches.

Following the quantum XY development, we would anticipate that the partition

function can be rewritten as a quantum random surface model. Indeed the partition

function is
N.

Z = Tr(H T) = W[e] (12.19)
c=1 {e)

with the transfer matrices in a fifth direction ordered product. Each transfer matrix of

the Nc cubes has been expressed as a sum of the projection operator-patterns B1-B4

and D1 - D6 with corresponding coefficients B 1 - B 4 , D1 - D 6. There are in total

8 + 14 = 22 decompositions. Let us denote all these decompositions nc = 1, 2,..., 22
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with corresponding operators M, and coefficients w,,. Then

N, 22 Nc

Z = Tr( i  i MW,.M ) = Tr(l wn,M,n) (12.20)
c=l 7lc=1 G={n} c=1

where G is a graph representing a unique choice of breakup {nc} for each of the (4+1)-

d lattice cubes. We can define the fifth direction ordered decomposition operator for

each graph MG = -Nfl Mn, which has the weight WG = lINl wnh. Each graph G

is a unique and complete decomposition of the (4+1)-d lattice into 2-d surfaces. The

partition function then becomes

Z = WGTrMG , (12.21)
G

which is the partition function for a random surface model. Notice that this expression

is independent of the basis chosen to describe the Hilbert space. The surfaces that fill

the volume are dynamical objects generated with the Boltzmann weight WG and an

associated internal quantum number TrMc. For a given 3J their shapes, topology

e.t.c. is independent of the basis chosen to describe the system.

The order parameter of the model is the expectation value of the Wilson loop

operator

(Wc) = 1Tr[UU 2 ... UJ_1U exp(-PH)] , (12.22)
Z

for a loop C with length 1. Since it is a non-diagonal operator, we cannot measure

its value by simply looking at the (4+1)-d configuration. In fact, it corresponds to a

different partition function than Z, namely one with a defect loop inserted on a certain

time-slice to which flips the electric flux along the loop. But we can again realize

that the flux-cluster algorithm provides the solution. This is because the flux-cluster

algorithm generates objects that occasionally contribute to both the numerator and

denominator of (12.22). These objects are the 2-d surfaces which contain the Wilson

loop under examination on the time-slice to. Further, they should contribute to both

traces in (12.22). Given the flux on a link, all the other link states are immediately

defined from the growth rules of the cluster. The Wilson loop flips the electric flux
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on the surface as it crosses the time-slice to. In order to get a contribution to the

numerator, it should therefore be possible to flip the flux on half of the cluster or in

other words cutting the cluster along the loop on time-slice to should produce two

disconnected components. We see that clusters that grow forward and backwards

from time-slice to so that eventually the two sides join through the periodic fifth

direction boundary cannot fall into two pieces and they will hence not contribute to

the Wilson loop expectation value. Using the transfer matrix decomposition patterns

we can express (12.22) as

1 N, 22 Nc

(Wc) -Tr[l wnc(WcMn)] = Z z Trlf wn(WcMn,)] (12.23)
c=1 nc=1 G={nc} c=1

Z WCM TrTCMG]
Z G Tr[MG G

where all the operators are inserted in the fifth direction ordered fashion. If the graph

G contains NG connected surfaces and one of them allows the Wilson loop cut, then

Tr[MGc] = Tr[WCMG] = 2NG and we see that we always get the contribution 1 to

(12.22). We have therefore realized an improved estimator for the order parameter. In

the numerical simulations, after a cluster is generated we should examine all possible

Wilson loop cuts on various time-slices and record which ones contribute. In this way

we can collect rapidly a lot of information on Wilson loops of various sizes.

We should finally emphasize that the algorithm provides us with this improved

estimator because of the flux continuation on each time-slice requirement. Only in this

way the Wilson loop, which is an oriented product of raising and lowering operators,

is able to match with the electric flux on the path and reverse it. Therefore the

improved estimator is guaranteed to exist for any of the algorithm choices in (12.18).

12.5 The Continuous Time Algorithm

The standard approach for recovering a path-integral formulation for a field theory,

given its Hamiltonian formulation, is based on the fine discretization of the time

dimension and the introduction of a copy of a complete set of states at each time-slice.
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The path integral weight is then recovered from the transfer matrix element between

two consecutive time-slices. The expression becomes exact only as the discretization

interval approaches zero. Farhi and Gutmann realized [74] that this is necessary only

if the field basis is continuous. This is because the fields can fluctuate infinitesimally

even in very small time intervals and we should therefore be able to include these

fluctuations in the path integral. On the other hand, if the field basis is discrete the

picture is different, namely a basis state evolves for finite time segments before the

sporadic jump to a different state. Any path then can be reconstructed exactly from

an enumerable set of data which are the initial state and the time-values when the

field jumps to a different state. It was shown in [74] how to construct a measure for

the finite time segments per state and the transition matrix between states so that

the exact path integral is recovered.

This idea finds excellent application to the numerical simulations of quantum

spin and link systems. The cluster algorithms can be implemented directly in the

continuum of the Euclidean time. There are two major advantages compared to the

discrete time implementations. The first is the complete elimination of the O(c)

Trotter error of the observables in a simulation. Furthermore, no repetitive runs for

various e values are required in order to establish a reliable e -* 0 limit. The second

advantage lies in the reduction of storage. Only the times of the sporadic transition

for each spin need to be recorded and this constitutes a substantial decrease in the

computer storage space that is required.

The discrete-time flux-cluster rules (12.18) indicate what should be done in the

continuum. Taking E - 0 we get D 1 = 1 which simply states that each link state

evolves in time as is. The rest of the parameters are 0(c) numbers and become

uniform probability densities. Dividing by e, the parameters B 1 - B 4 become proba-

bilities per unit time for a plaquette with clockwise or counterclockwise flux to have

a transition on any of the links it comprises. This is pictured as a new segment of the

flux-cluster starting on the transition links according to the patterns Bi - B4. The

parameters D2 - D 4 divided by c are the probabilities per unit time for a link to be

joined with a neighboring link on a common plaquette. This amounts into joining an
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existing cluster segment with another segment on the neighboring link at the time of

the transition according to the patterns D1 - D4. The continuous time probability

densities B 1 - B 4 and D2 - D6 satisfy

J 3- 3-
B1 = D - Da - 3D4 - 2D - D6 , (12.24)

8 4 2
J 3 1

B 2  D2 + -D3 + D4 + 2D5 - D 68 4 2
- J 1 1

B3 = + 1D2 - 1A + f4 + 6
8 4 2
J 1- 1

B4  + D2 + -D
8 4 2

for the allowable D 2 - D6 choices.

Finally we note that if the fields take values on a continuous but also compact

manifold the continuous time path integral can be constructed. This is because the

state space in the momentum representation is discrete. For some standard manifolds

like toruses and spheres the momentum representation is known since it requires

solving the Laplace problem on them. For an 0(2) spin or a compact U(1) gauge

field for example the momentum space basis is labeled by the integers. It is therefore

feasible that, if cluster algorithms are found in the Hamiltonian formulation of Wilson

gauge theories, they could operate in the continuum of the time coordinate. It would

be expected to be advantageous, especially when the fields do not fluctuate much.
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Figure 12-1: Typical paths for the third component of a classical spin e3 and a quantum

spin-1/2 state s3. The random motion of the classical spin requires time discretization

while the sporadic flips of the spin-1/2 state require only the recording of the transition

time.
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Chapter 13

The Winding Number

In this chapter we are going to discuss a very interesting quantity that can be defined

in the U(1) spin and gauge theories at finite volumes. We refer to this quantity

as winding number because it turns out that it is a non-local quantity connected

with the topological properties of the field configuration. In particular, it reflects the

dependence of the theory in a finite volume on the boundary conditions. It requires

large correlations in the theory in order to feel the effect of the boundary and therefore

the winding number can be used as a probe for the existence of a massless phase. We

will study the behavior of the winding number in connection with the transitions to

the ordered phases of the 2-d XY model and the 4-d Abelian gauge theory. Since

we also have the D-theory formulations of these models, we are going to study the

winding number in the quantum spin and link models and discuss how it can be

measured with the cluster algorithms.

13.1 Winding number in the XY model

Consider the classical XY model in a 2-d volume L 1 x L 2. Instead of the usual periodic

boundary conditions, we are going to apply the "twisted" boundary condition

p(x 1 + L1 , X2 ) = p(x 1 , l 2 ) + 0, , Op(x, l 2 + L2) = PO(X, X2 ) + 02 (13.1)
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which amounts to rotating all the spins on the boundary in direction 1 by a constant

angle 01 and all the spins on the boundary in direction 2 by 92. This is expected to

change the ground state of the system since we can no longer align all spins in order

to get the minimal energy solution. In order to understand qualitatively the change

in the ground state energy consider the classical equation of motion

0,p() = 0 (13.2)

subject to the boundary condition (13.1). Due to the second order derivative, the

field has a first order dependence in x as

) 191  z 22
Lc(-) = X2 + constant , (13.3)

and a classical action

s , 1  2 dX2 (p,) 2 =1 L jL 2 1 2 ) 2 

(13.4)

which for a square lattice L 1 = L 2 has no volume dependence

1
So, [oc] = 2,0, . (13.5)

2g

In the saddle point approximation the partition function will be

ZoI 0 exp (-So,[~~ ]) exp (-2g . (13.6)

Consider then the expression

1 d2 Ze 2

Z E 1 o =0 = - (13.7)
1 p=1,2 g

from which the renormalized coupling g can be found. It is not realistic to measure

numerically the partition function for varying twist angles 0, around 0. Instead,
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consider the Fourier transformed partition function

Ze, = E Zw, exp(iO,W,) (13.8)
WjEZZ

where we passed to a description in terms of the integer winding number W,. The

result (13.7) then becomes

1 dZe, ,E WMeZ WPW Zw _ 2

d- 9,=0 = = (W=W) - (13.9)
Zeo, A=1,2 1 wEw2Z Zw, g

from which we understand that the renormalized coupling equals the statistical av-

erage of the squared winding number - called the helicity modulus - measured in

a simulation with untwisted boundary condition but with varying winding number.

The winding number squared of a field configuration is proportional to the energy

stored in the spin bonds that pass through the boundary. From the derivation (13.9)

we expect that the helicity modulus is sensitive to the large correlations of the system.

In fact it is an order parameter for the KT transition. At high temperatures there

are short correlations and therefore the helicity modulus vanishes in the infinite vol-

ume limit. At the critical coupling the correlation length grows large and the helicity

modulus obtains a non-zero value, connected to the renormalized coupling through

(13.9). Everywhere in the ordered phase the average winding number has a non-zero

distribution which can be qualitatively estimated from (13.6)

Zw1, dO, exp - 908,) exp(iO,W,) exp (- WW. . (13.10)

As argued before, it will be sharply peaked at zero for large couplings while it will

become broader in the weak coupling phase.

We can now extend the study to the quantum XY model. We introduce the

twisted boundary condition by rotating the quantum spin operators

S,+41t,Z = exp(iO2 S 1 2 )S3 1 ,1, exp(-ilS,, (13.11)

S -3, exP(-i02S 3 )
Sxl,,2+L2 = exp(i02S, ,, S exp(-i82S)1,1,.2
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which transforms the spin raising and lowering operators on the boundary to

S exp(iil)S , , S - exp(±i02)Sf,,L2  (13.12)

and leaves the S3 components invariant. The Hamiltonian of the model is therefore

modified by extra phases on the spin bonds that cross the boundaries. The model is

now described from the modified quantum partition function

Ze, = Trexp(-PH,) . (13.13)

As we have already discussed in chapter 8, evolution in the Euclidean time extent P

defines an effective (2+1)-d theory which, as long as 3 > I03, is a free spin-wave phase

with the low-energy effective action

~] = dt d  dx dx 2  P [(a "60)2 + 1- ( dtp)2] (13.14)
S[l = a 0 2 c

subject to the twisted boundary condition

p(xi + L 1 , x 2 , t) = PO(x2, 2 , t) + 1, (x 1, x 2 + L 2 , t) = V(X 1, 2, t) + 02 (13.15)

Due to the large correlation length and as long as the dimensions L 1 and L 2 are much

larger than pc, the spin-wave will dimensionally reduce to the 2-d spin-wave (13.3)

described by the classical XY action with coupling

1
- = Pp,. (13.16)
g

We can therefore repeat the steps (13.4) - (13.9) and connect again the helicity

modulus in the quantum XY model to the renormalized coupling or spin stiffness

1 d2 Z w , W, WZw
1 d 2 ,=O W- W (W, W ,) = 2pp,. (13.17)

Z8T =1,2 dEWE Zw,

The helicity modulus is again an order parameter for the quantum XY model KT
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phase transition. In the ordered phase the winding number is expected to have a

broad distribution with a non-zero helicity modulus while it is very suppressed in the

high temperature phase. The jump in the value of the helicity modulus at the KT

temperature is a universal quantity of various 2-d critical theories. It determines the

value of quantities like the renormalized charge, superfluid density, spin stiffness and

other depending on the microscopic theory in question.

The winding number in the quantum XY model can be measured accurately with

the loop-cluster algorithm. The transfer matrix for the modified bonds that touch

the boundary is

TOI = exp (J (eiBa o+ + e -i a +))= (13.18)

1 + (cosh(cJ) - 1))(P+P- + P P ) + sinh(eJ)(eo o + e- , +

and we see that the effective plaquette interaction with weight sinh(cJ) gets mod-

ified. Recall that this plaquette is always decomposed such that the loop crosses

the boundary. Every time the cluster passes through the boundary we will record a

O,-dependent change in the plaquette energy after the flip. The quantity

1 d2ZeZ d2 o9,=0 (13.19)

exactly measures the energy stored in the boundary bonds which equals the squared

winding number. We see that a loop-cluster that crosses the boundary-1 W1 times

and the boundary-2 W2 times induces after its flip a change in the winding number

AW, = (W1 , W2 ). We therefore see that the loop-cluster algorithm provides a clear

way to measure the winding number which can in turn be used for an accurate study

of the KT phase transition in the quantum XY model [64].

13.2 Winding number in the U(1) gauge theory

A winding number can be introduced in the finite volume U(1) gauge theory also.

Consider the theory in a volume L1 x L2 x L3 x L4 and allow periodicity for the gauge
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field A,(x) up to a gauge transformation as it passes the boundary in a transverse

direction v

A,(x + Li) = A,(x) + a,A(")(x). (13.20)

Translating to another point by passing boundaries in v and p directions in different

order

A,(x + Lv,, + Lp) = A,(x + Lv') + 0,A(P)(x + L ,) (13.21)

= A,() + dA(v)(x) + ±,A(P)(x + L,) ,

A,(x + Lvi' + Lp,p) = A,,(x + Lp) + 8,A(")(x + Lp)

= A,(x) + 8,A(P)(x) + 8,A(v)(x + Lp) ,

generates a constraint on A(v)(x)

a, [A(")( + LpP) - A(")(x) - (v - p)] = 0 , (13.22)

from which we deduce the non-periodic boundary condition on the gauge transfor-

mations

A(")(x + Lp) = A()(x) + 9,, (13.23)

with 0,, an antisymmetric constant. We dropped the symmetric piece as we will see

that it does not affect the physical F,,. The smoothest transformation satisfying

(13.23) for general indices is

A =z)() 0L, (13.24)
P LP

which implies the boundary condition on the gauge field

A,(x + L,i) = A,(x) + ,hA")(x) = A,(x) - . (13.25)
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From this we get the classical solution for the gauge field and the corresponding field

strength

Ac' - , Fc'(x) = (O,A, - , 2A,)() = (13.26)
A ),LX L v

We therefore understand that introducing the non-periodic gauge transformations has

the physical effect of introducing a constant background field strength in the bulk of

the theory. Discretizing the bulk on a lattice with spacing a compactifies the gauge

field and the gauge transformation to angles in [0, 27r]. From (13.23) we see that ,,

also becomes an angle. The links in the Wilson theory obey the lattice version of

(13.25)

u+L, ,,A =u,,, exp -ia ) (13.27)

which implies the minimal action plaquette

c 2 - a 2 20A. (13.28)
"'AV 

L LV

The physical effect remains the same. The minimal action is

1 42 L,
ae F Fd4  2 l2 pL (13.29)S,, 4g 2  vv - 2 < LL

which for the lattice with L 1 = L2 = L3 = L4 is volume independent. The semiclas-

sical approximation to the partition function in that case is

2
Zo, ,exp (-2 Z Yy (13.30)

with the renormalized charge due to quantum effects. We can again pass to the

Fourier space description with integer winding number W,,

ZO, = y Zw, exp(i9,W, ) (13.31)

w,, Ea2Z
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and connect the renormalized charge to the helicity modulus

1 d2ZE vEZwE WvW,4, Zw,, 48

1 d2  0,,=0 = = (WW,) = 42 (13.32)
ZeY EW E,, Zw,, g

In complete analogy to the XY model we expect the helicity modulus to be an order

parameter for the 4-d Abelian lattice theory. The infinite correlation length in the

Coulomb phase can feel the boundary of the system and consequently a non-zero

value for the helicity modulus is to be expected. The winding number has a broad

distribution in this phase which qualitatively is the Fourier transform of (13.30)

Zw,, exp 8 W . (13.33)

In the strongly coupled phase we expect the winding number to be largely suppressed

and the helicity modulus to drop to zero. The value of the helicity modulus jump at

the critical coupling is then expected to define the renormalized electric charge of the

theory.

We can define the winding number in the quantum link formulation also. We

impose the boundary condition (13.27) on the quantum links by rotating the link

operators

Ux+LL,, = exp ia Si U,,,exp ia S (13.34)

which therefore modifies the quantum link operators by extra phases on the bound-

aries of the system and consequently modifies the plaquette operators of the Hamil-

tonian that touch the boundaries. The modified quantum partition function

ZOJA = Tr exp(-PHe,,) (13.35)

is also the path integral for the evolution of the system in the fifth periodic direction

with extent 3. As long as 3 > f8 the 5-d effective theory is the Abelian gauge theory
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in the gauge As = 0

S[A,] = j dx5 J d4x 1 [Fv,F + u sA 5,sAm,  (13.36)

but now subject to the non-periodic boundary condition

A,(x + LVi, X5 ) = AA(x, Xs) - (13.37)

Due to the infinite correlation length, dimensional reduction to 4-d is going to take

place. We require L1 ,2,3 ,4 > 3c and therefore the reduced theory will be the finite

volume Abelian gauge theory with the non-periodic boundary condition (13.25) and

coupling
1 _ (13.38)
g2 e2

We can therefore again connect the helicity modulus in the quantum link model with

the effective coupling

- 2, , d ,=, = = wW,,, Zw = (We(1) (13.39)
ZOv :0/ JV Ew,, 7"2 Zw,,

The helicity modulus in the quantum link model is an order parameter for the phase

transition to the Coulomb phase, which due to the dimensional reduction is the same

as the Wilson theory transition. It is expected to have a universal jump with a broad

winding number distribution in the Coulomb phase, > c.

The winding number in the quantum link model can be measured with the flux-

cluster algorithm. The transfer matrix for the modified plaquettes is

T exp J [e ++ - - L , , + ++, + (13.40)

S1 + (cosh(J) - 1) (P+ P++ ,,,P- -

+d wesinh(eJ) te t~,o u + e a eL,h --- -+ o

and we see that only the transition cubes with weight sinh(EJ) get modified. In the
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Trotter decomposition of chapter 12 the partition function gets modified by the extra

phases. Each clockwise transition cube (+ + -- ; - - ++) contributes +1 to the

winding number while each counterclockwise cube (--++ ; ++--) contributes -1.

Each plaquette of the 4-d QLM evolves in time and the net number of its clockwise

minus its counterclockwise transitions is its contribution to the winding number. In

order to determine the winding number W, we examine a plaquette in the (jlv) plane

that touches the boundary and measure the net number of its transitions as it evolves

in the fifth direction. We further examine all the translations of this plaquette in

the two transverse directions and the total net number of transitions is the winding

number W,,. Due to the gauge symmetry, this number is the same for any plaquette in

the (ILv) plane. This is because the phase modifications on the boundary can become

equal phase modifications on any plaquette in the (ILv) plane using appropriate gauge

transformations. This is reflected in eq.(13.26) where a uniform background field

appeared due to the modified boundary conditions. We see that the winding number

is a clear and easy quantity to measure directly on a QLM configuration.

In the j = 1/2 (3+1)-d and (4+1)-d QLM simulations it turns out that the

winding number is not updated efficiently. The algorithm is exploring a part of the

phase space with the winding number staying practically fixed for all the Monte

Carlo updates. It is unfortunate that we cannot learn anything about the phases

of the QLM through the helicity modulus which has been proved very useful for

the quantum XY phase transition. Nevertheless, in a higher representation QLM

simulation it would still be a very prominent probe for the phase structure of the

theory.
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Chapter 14

Simulations of the U(1) Quantum

Link Model

14.1 Local Observables

We have run extensive simulations of the j = 1/2 QLM in (3+1)-d and (4+1)-d. The

reason we are interested in the (3+1)-d theory also is that this model should dimen-

sionally reduce to the 3-d Abelian lattice theory which is confining at all couplings.

This model should not possess any phase transition and it is instructive to look for

the qualitative differences of various observables between three and four dimensions.

We used the continuous time flux-cluster algorithm and we studied the behavior of

the cluster size per volume along with local observables like the energy density and

the specific heat of the model looking for a singular behavior.

In figures (14-1) and (14-2) we present the behavior of the cluster area per vol-

ume for the (4+1)-d and (3+1)-d QLM. In the spin models we can prove that the

cluster size is connected to the squared magnetization of the system and is therefore

a physical quantity which shows a singular behavior at the critical point. We have

not managed to connect the cluster area in the QLM with a physical quantity but we

nevertheless find these graphs very interesting and possibly indicating a connection

with the correlation length in the models. The (4+1)-d QLM cluster area seems to

have a transition at 0 r 0.65 from a small finite value to a value that increases with
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Figure 14-1: Cluster area per 5-d volume in the (4+1)-d U(1) quantum link model.

the volume. If the cluster area is connected to the correlation length, this indicates

an infinite correlation length above P 0.65 and therefore a Coulomb phase. The

(3+1)-d QLM cluster area is plotted in the same scale and does not seem to increase

with the volume but instead stays finite for all couplings. The fact that the cluster

area becomes also large here is a finite volume effect and will go away as long as the

correlation length can fit in the volume.

The energy density of the system is

1 1 9Z
£-= Tr [H exp(-P3H)]  - (14.1)

VZ vz

where V = #L 1L 2 L3 L4 is the 5-d volume of the theory. After the Suzuki-Trotter
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Figure 14-2: Cluster area per 4-d volume in the (3+1)-d U(1) quantum link model.

decomposition, the 5-d effective action is written in terms of cubic interactions

z=HI E exp(-S[e])

A 5-d configuration has N1 cubes with weight e - s l = cosh(cJ), N2 cubes with weight

e- s 2 = sinh(EJ), N3 cubes with weight e - s 3 = 1 and action S = N1 S 1 + N 2 S2 . From

this we find

1 He
- s

VZ ,A,, e,jL, =± I
2e

1

V
[j tanh(eJ)
0

1 dS -s

VZ , 80
(N1 ) e ~ 1LtJ2

(N) + coth(cJ)(N2)]
EJ .,,,
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which is easy to measure with the discrete time algorithm from the Monte Carlo

averages of cubes with non-trivial weight. The continuum limit of the energy density

is taken as c -- 0
1

E-= (N 2 ) (14.4)

and the continuous time algorithm measures the energy density by averaging the

number of transition plaquettes. In figures (14-3) and (14-4) we present measurements

of the energy density of the QLM. Examination of the energy histograms for various

volumes for the (4+1)-d QLM has not revealed any signal of a phase transition. The

explosion of the cluster area at p e 0.65 is not escorted by a critical behavior in the

energy or the higher moments of the energy examined.

0.00
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-0.20
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Figure 14-3: Energy density of the (4+1)-d U(1) quantum link model.
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Energy density of the (3+1)-d U(1) quantum link model.

The specific heat of the system can be derived similarly

C -
cT

2 O #2 0
v a (1 azZ 0p)

P2 1 02Z
V Z 19,2

1 OZ
Z 00)

Using (14.2) and (14.1) we find the discrete time formula

12c-vzH z
m'tD't e,lL,t -

g; 8 (g
S#2
V

02
__e-s _3 2 2V0/32

2 2 S

#02

02S

02

e-s _ 2E2V

- 0 2 2V
KS 2

80 s\
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o----------- 12x12x12 lattice
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C
a)

-

a)

2.0

(14.5)

S2

VZ

(14.6)

I I I

01M(,t e.,l



S(CJ)2  ((N2) - (N 1 )2) tanh2 (J) + ((N2) (N 2 )2) coth 2(6J)

+2((NN 2) - (N)(N2)) + 1 (N 2 )
cosh2(6j) sinh 2(cJ)•

The continuous time limit of this expression is

C = V [(N2) - (N) 2 - (N 2 )] , (14.7)

and therefore the continuous time algorithm evaluates easily the specific heat from

the average number of transitions and its variance. We observed that the specific heat

has strong fluctuations and does not give useful information about a critical point in

the theory.

14.2 Higgsing the U(1) Theory

It is interesting to examine a modification of the QLM where the gauge symmetry

is broken. Typically in order to break the gauge symmetry we employ the Higgs

mechanism which minimally couples the gauge fields to the Higgs scalars and forces

the symmetry breaking through a quartic potential. The result is a mass term for the

gauge bosons and therefore short correlation lengths in the theory. In order to break

the U(1) symmetry we consider first the minimal coupling of the classical U(1) links

to a classical Higgs complex scalar. We then select the unitary gauge which eliminates

the Higgs field from the action and quantize the links resulting in the Higgsed U(1)

Hamiltonian

H = -JE(Up + T) - 2 (U, + Ut ). (14.8)
P z,

Notice that the charge conjugation U,,, *-* U,, is still a symmetry of the theory. At

K = 0 the theory is expected to have the confining and the Coulomb phase separated

at some critical p. At positive Ia we expect a line of transitions to extent in the

0 - a plane separating the confining from the Coulomb phase. At large enough a the

Higgs phase should appear with short correlation length corresponding to a massive
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photon. Expanding the classical link u,,, ~ exp(iA,()) we estimate the photon mass

as m = r/i. A line of transitions will separate the Higgs from the Coulomb phase at

finite r for any # above the critical value. The confining and the Higgs phases are

analytically connected.

The model (14.8) is easy to simulate with the flux-cluster algorithm we already

have. In the j -= 1/2 QLM the breaking term is nr, and is therefore a flux flipping

operator on each link. We perform the Suzuki-Trotter decomposition by introducing

an extra time-slice for the breaking term. The transfer matrix for the breaking term

assigns an O(Ecn) probability to each link to flip its state when it passes to the next

time-slice. In the flux-cluster algorithm this assigns an O(cEn) probability for each link

of the cluster to terminate its propagation in fifth-time when it is in the special time-

slice. The U(1) breaking interaction can be easily incorporated in the continuous time

flux cluster algorithm also. Here each link propagates for finite time intervals and is

assigned the 0(r.) probability per unit time to flip uniformly in the [0, P) interval.

We have simulated this model in (4+1)-d at small volumes 44 and 64 with the

discrete time algorithm. We simulated at P between 1.0 - 3.0 (we always set J=1)

and various n from 0.01 up to 5.0. We measure the cluster size and the energy of the

system due to the gauge invariant plaquette term and the breaking term separately.

In this p range without the breaking term the cluster size is very large. As the

breaking term is turned on, the cluster size decreases very fast. This is what we

expect physically. Although we have not succeeded to connect the large cluster size

with an infinite correlation length, in the Higgs phase where the correlation length is

definitely short the cluster size should definitely be short also. Indeed, at n - 1 - 2

the cluster size has dropped substantially indicating a massive photon in the theory.

Also the energy of the system is transfered from the plaquette term to the breaking

term and at n - 1 - 2 the breaking term already dominates the system.

In our preliminary study we have not observed signals of a phase transition in the

energy of the model as we vary n. Typically it is seen that Higgs phases are separated

from Coulomb phases with first order transitions. We instead see a crossover from the

Higgs phase to the strongly coupled phase of the model. While we cannot exclude that
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Figure 14-5: Cluster area per 5-d volume in the Higgsed (4+1)-d U(1) quantum link
model at 3 = 1.0. The cluster area decreases fast with the Higgs parameter r. since

the correlation length becomes short.

a high-statistics study of the Higgsed model at large volumes might reveal the phase

transition to a Coulomb phase, it does not seem very plausible with the results we

already have. This may be due to the inability of the algorithm to move efficiently in

the phase space, thus hiding the true dynamics of the model in the region of couplings

explored.

14.3 Final Comments

In this work we have presented a new non-perturbative formulation for gauge theories

which follows the general framework of D-theory. We showed that by quantizing a
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classical spin or gauge theory in d dimensions we may obtain the dynamics of the orig-

inal theory formulated with classical fields. This is possible if the (d+ )-dimensional

theory has massless excitations. The extra dimension in that case becomes insignifi-

cant compared to the correlation length of the theory. The collective excitations of the

discrete variables build the classical fields which after dimensional reduction interact

through the original classical theory. In that sense, we saw that the 2-d quantum

Heisenberg antiferromagnetic magnons at low temperatures describe the physics of

the 2-d 0(3) non-linear a-model fields at weak coupling while the KT phase transi-

tion of the 2-d 0(2) model can be studied via the critical point of the 2-d quantum

XY model. We utilized the Coulomb phases of 5-d Abelian and non-Abelian gauge

theories to show that quantum link formulations of gauge theories also exist.

A discrete variable formulation is not simply an academic matter. The loop-cluster

algorithm can be constructed for the quantum spin models resulting in very efficient

simulations. An extra advantage due to the discreteness of the variables is that we can

implement the algorithms directly in continuous time. We showed how a flux-cluster

algorithm naturally exists for the spin-1/2 Abelian QLM. Further, the algorithm

provides an improved estimator for the Wilson loop which is the order parameter

of the theory. This alone is a major improvement compared to the traditional local

algorithms applied to the study of gauge theories. It is very plausible that the flux-

cluster algorithm can be generalized in non-Abelian quantum link models also.

The simulations have not identified with certainty a critical point in the (4+1)-d

model. The cluster area presents a qualitatively different behavior between (3+1)-d

and (4+1)-d which would point to a phase transition to a Coulomb phase at 3 - 0.65

if a connection between the cluster area and the correlation length really exists. We

have not been able to establish this connection. The energy of the model, on the

other hand, and higher moments of it do not show any signal of a phase transition

in this region of couplings. All we learn from strong coupling expansions is that the

critical 3 is above 0.5, but this does not exclude that the model might not have a

phase transition at all.

The Wilson loops in our simulations do not indicate a phase transition also. Al-

169



though the clusters become large above 3 ~ 0.65, we have found that most of the

clusters do not contribute to the Wilson loop improved estimator. In fact, even at

large # the clusters that contribute to the improved estimator have small area and

the Wilson loops are therefore also small. This behavior is consistent with an area

law and therefore confinement at all couplings if the algorithm is moving efficiently

in the phase space. The algorithm we used becomes de facto inefficient for P above

- 2 because the clusters fill the volume. Therefore we cannot conclude anything from

our study about the model beyond 3 - 2.

The winding number is a very interesting topological quantity that can be defined

and measured for both classical and quantum Abelian spin and link theories. In the

quantum spin model it has proved an excellent probe for the KT phase transition.

Unfortunately, the same is not true in the quantum link model with spin 1/2. The

flux-cluster algorithm does not update the winding number efficiently and we can-

not learn anything from it. Maybe this is pointing to a general inefficiency of the

algorithm. In any case the general algorithm has a large parameter space. Different

choices of algorithms in this space will in general result in different efficiencies. It is

certainly an interesting direction for future studies.

Another interesting direction for the understanding of the Abelian QLM is to

study the model at a higher representation. Already at spin-1 the model presents

an interesting qualitative difference from spin-1/2. A spin-1 quantum link contains

spin-0 besides the +1 states and therefore it is possible to construct a state with zero

flux everywhere. This is encouraging because the classical ground state of the Wilson

theory also has zero flux everywhere. In the spin-1/2 quantization on the other hand

this is not possible and this could be a reason for the presence of frustration in the sys-

tem which eventually alters the expected behavior. The spin-1 quantization appears

as a more reasonable truncation of the electric flux space and deserves investigation.

The cluster algorithms can be extended to higher spin quantizations. The method for

spin-j is to introduce 2j spin-1/2 states on each site/link and enforce the projection

to the spin-j states. The transfer matrix appears as a sum of interactions between

various spin-1/2 quantum spins and therefore cluster rules can again be found. The
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update is the flipping of the spin-1/2 states that belong to the cluster. A continuous

time loop-cluster algorithm for the general spin 2-d Heisenberg quantum antiferro-

magnet has already been constructed and is clear that the same can be achieved for

the Abelian QLM.

In summary, a lot of experience has been gained from the numerical investigations

of the spin-1/2 Abelian QLM with the flux-cluster algorithm. Based on this expe-

rience and the new tools that have become available the long standing problems of

lattice gauge theory can be attacked.
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Appendix A

An Ultralocal Perfect Action in

One Dimension

The expression for the perfect free massive propagator in 1-d

1 4 sin2 (p/2)

pm) (p + 27rl)2 + m 2 (p + 27rl)2

with p ] - 7r, 7r] can be computed analytically using the formula

SF(1) = - E Residua ofj{r cot(rz)F(z)}i (A.2)
IeZZ {zil

where {zi} are the poles of the function F(z) in the complex plane with the require-

ment that none of the poles is in 7. This formula is valid if F(z) vanishes as Iz| - 00o.

A complex contour integration of 7r cot(rrz)F(z) around the boundary of the complex

plane will vanish and therefore the sum of the residua of the poles in the plane will

be zero. A straightforward computation of the residua of 7r cot(rz)F(z) at the first

order poles of cot(irz) which are all in 7 verifies (A.2).

Define
1 1

F(z)= (A.3)
(p/27r + z) 2 + (m/27r) 2 (p/27r + z)2

which has the second order pole z0o = -p/27r and the first order poles

z1 = -p/27r + im/27 and zl = -p/2w - im/2r.
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The residua at the poles are

R(zo) - Residue of{ cot(7r (A.4)
z) F (z)}d cot(7rz)(z - zo)2

zo dz (z - zo)2Z - 1)(Z - z 1 1 z=zo

sin2 (rzo) (z0 - z)(zo0 - -1)

cot(7rzo)

(z 0 - z 1 ) 2 (Z 0 - zi)

cot(rzo)

(Z0 - z 1 )(Z 0 - 2)

47r3  1

Sm
2 sin 2 (p/2)

R(zi) - Residue of{ cot(rz)F(z)}z
cot(7rz)(z - z1)

- zo) 2 (Z - Zl)(z -

.473

= cot(-p/2 + im/2)

R(Zl) - Residue of{ cot(rz)F(z)l},
cot((rz)(z - 1)

z- zo0)(2 - Z)(Z2- 1) Z=

= -i M cot(-p/2 - im/2)

and from these after some trigonometric algebra we get

= -w[R(zo) + R(zi) + R(1i)]

41r4  1

m 2 sin 2(p/2)

The propagator is

A(p;m)

47r4  sinh m

m3 sin 2 (p/2) + sinh 2(m/2)

4 sin 2(p/2)
= F(1) + a

1 sinh m
= 2
m 2 m 3

8 sinh 3 (m/2) cosh(m/2)

m 3 [4 sin2(p/2) + 4 sinh 2(m/2)]

We can ultralocalize the 1-d perfect propagator to the standard nearest-neighbor
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(A.6)

SF(1)
ic7i

(A.7)

(A.8)
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propagator if we choose the RG transformation parameter

sinh m 1
a m3 .- (A.9)

We also learn that the standard propagator [4 sin 2(p/2) + A2]-1 can become a perfect

propagator in 1-d with the physical mass m given from 2 sinh(m/2) = I and the wave-

function renormalization factor 8 sinh'(m/2) cosh(m/2)/m 3 . At the limit m - 0 we

get a = 1/6 in agreement with the value in [14] that optimizes also the 2-d FP

action. We noticed also that formula (A.2) cannot be applied successively to perform

the higher-dimensional summations. The structure of the poles is such that the second

summation residua reintroduce the infinite summations.
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